Control of a Nonlinear System by Linearization

Drew D. Nelson
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/rtd
University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

STARS Citation

Nelson, Drew D., "Control of a Nonlinear System by Linearization" (1986). Retrospective Theses and Dissertations. 4898.
https://stars.library.ucf.edu/rtd/4898

CONTROL OF A NONLINEAR SYSTEM BY LINEARIZATION

BY
DREW DOUGLAS NELSON
B.S., Pacific Lutheran University, 1981

RESEARCH REPORT
Submitted in partial fulfillment of the requirements for the degree of Master of Science
in the Graduate Studies Program of the College of Engineering University of Central Florida Orlando, Florida

ABSTRACT

In today's linear control systems, exact solutions can be obtained by the use of Laplace Transforms in the frequency domain. In dealing with nonlinear systems, exact solutions are not always achievable. For this reason, it is necessary to linearize the system and then apply frequency response methods.

This paper shows the comparison of a nonlinear system with the linearized model of the same system. For both proportional and proportional-integral control, the response to a unit step change in the set point showed minimal difference between the linearized and nonlinear system.

TABLE OF CONTENTS
LIST OF FIGURES iv
Chapter
I. INTRODUCTION 1
II. PHYSICAL SITUATION 4
III. SYSTEM MODELING 11
IV. LINEAR SYSTEM 22
V. NONLINEAR SYSTEM 39
VI. COMPARISON OF RESULTS 50
VII. SUMMARY 55
APPENDIX 57
BIBLIOGRAPHY 62

LIST OF FIGURES

$$
2-1
$$

2-2
2-3
3-1
3-2
4-1
4-2
4-3
5-1
5-2
5-3
5-4
5-5
6-1
6-2
6-3
6-4
Tank Apparatus 5
Relationship of V_{M} And F_{1} 8
Relationship of H_{1} And V_{1} 10
Single Tank With Orifice 15
Dual Connected Tanks 16
Feedback Loop For Linear System 23
$\mathrm{H}_{1}(\mathrm{t}), \mathrm{H}_{2}(\mathrm{t})$ With Proportional Control 34
$\mathrm{H}_{1}(\mathrm{t}), \mathrm{H}_{2}(\mathrm{t})$ With Proportional-Integral Control 38
Cycle Of Steps For Solving The Nonlinear System. 40
Results For Proportional Control of The Nonlinear System. 42
Results For Proportional-Integral Control Of The Nonlinear System 44
Proportional Only Control Comparison For The Nonlinear System. 48
Proportional-Integral Control Comparison For The Nonlinear System 49
Height Of Tank 1 vs Time Proportional Control Only 51
Height Of Tank 2 vs Time ProportionalControl Only52
Height Of Tank 1 vs Time Proportional- Integral Control 53
Height Of Tank 2 vs Time Proportional- Integral Control 54

CHAPTER I

INTRODUCTION

Control Theory had its origins in the 1700s with James Watt's centrifugal governor for the speed control of a steam engine. Due to its proportional-control action, the watt governor resulted in a static error of engine speed. To eliminate this error, an integral control action was implemented. In this instance, the integral action created an unstable condition. Without modern tools, stable solutions could only be obtained by experimentation and intuition.

In the 1900s, the advent of instruments and regulators for process and power industries created a need for theory to replace intuition in the design of control systems. The use of differential equations and the Routh-Hurwitz stability criteria became more widespread. These applications were still constrained to low-order and simple systems.

Due to World War II, a large interest in weapon position-control developed. This development spurred the subsequent development of the frequency-response and root-locus methods. These two methods form the core of

Abstract

classical control theory. Basic feedback control soon included such problems as sample-data control, random-signal systems and some phenomena caused by system nonlinearities and nonlinear control. Recent developments are geared towards finding optimal control for both deterministic and stochastic systems.

In today's linear control systems, exact solutions can be obtained by using Laplace Transforms. While dealing with non-linear systems, exact solutions are not always achievable. For this reason, it is necessary to linearize the system and then apply frequency response methods. In most practical cases, the main concern is with the stability of the non-linear system. Approximate solutions and stability checks are obtained by applying Laplace Transform techniques to the linearized system.

In this paper, a comparison of a nonlinear system with its linearized model will show how both differ in response to a unit step input. This comparison should show if the linear model fails and if so, by how much. A study of how any failure can be affected will be explored.

This paper will first describe the nonlinear system. The real-life tanks and pumps will be physically described and then modeled to arrive at a nonlinear system. A
linearization will be conducted and linear control theory will be applied to arrive at an exact linear solution. A computer simulation will then numerically calculate the actual nonlinear numerical solution. A comparison of the results should show any failures of the linear model.

CHAPTER II

PHYSICAL SYSTEM

The nonlinear system to be controlled is a series of two tanks attached to a controller and pump. A diagram of the tank apparatus is depicted in Figure 2-1.

The two tanks are connected by four holes. Three of these holes are at a height of 3 cm above the base of the tank and can be closed off. Their diameters are 1.27 cm , .95 cm and .635 cm . The other hole, .317 cm in diameter, is at a height of 1.5 cm and remains open at all times. The total cross-sectional area of the four holes, a_{1}, is the cross sectional area of orifice one. This orifice also has a discharge coefficent of $C_{D l}$.

The second tank has two input flows, F_{2} and $\mathrm{F}_{\mathrm{L}} . \mathrm{F}_{2}$ is the flow of liquid between the two tanks and F_{L} is a load flow that is supplied from a source outside of the system. The output flow of the second tank, F_{0}, is through a valve 3 cm from the base of the tank. This valve is an adjustable tap that creates orifice two. Fully open, the diameter of the tap is .70 cm . Orifice two has a discharge coefficient $C_{D 2}$ and cross-sectional area a_{2}.

Figure 2-1. Tank Apparatus.
F_{1}, according to a voltage supplied to its motor, V_{M}. This voltage is supplied from a controller which receives a voltage input, V_{1}, from a depth sensor. The depth sensor transforms the variable height of tank one, H_{l}, into a voltage, V_{1}. The height of orifice two, H_{3}, remains fixed at 3 cm .

There are several different types of parameters in the system. Parameters such as $a_{1}, a_{2}, C_{D 1}, C_{D 2}, H_{3}$ and the cross-sectional area of each tank, $A,\left(A=200 \mathrm{~cm}^{2}\right.$ in this system) are fixed by the physical nature of the system.

Parameters such as the proportional gain, K_{C}, the reset time, T_{R}, and the derivative time, T_{D}, are input into the system. These three control parameters create which type of controller action the system will follow. This paper will only investigate two types of controller action. These two types are proportional control ($\mathrm{K}_{\mathrm{C}}=10, \mathrm{~T}_{\mathrm{R}}=\infty, \mathrm{T}_{\mathrm{D}}=0$) and proportional-integral control $\left(\mathrm{K}_{\mathrm{C}}=10, \mathrm{~T}_{\mathrm{R}}=10, \mathrm{~T}_{\mathrm{D}}=0\right)$.

The two remaining parameters are used only in the linearized system. The pump motor constant, $G p$, and the depth sensor constant, G_{D}, both depend on operating conditions. G_{p} is the small change in pump flow f_{1} when a
small change in voltage to the motor, v_{M}, is supplied at original voltage V_{m}. This is an approximation to the derivative of the relationship between F_{1} and V_{1} evaluated at some constant V_{m}. In much the same way, G_{D} is the small change in voltage to the controller, v_{1}, when a small change in the height of tank one, h_{1}, occurs at some original height H_{l}. The derivation of G_{p} begins by finding the relationship between V_{M} and F_{1} by applying a least-squares fit polynomial approximation to actual data. From Figure 2-2 this relationship is given by:

$$
\mathrm{F}_{1}=\mathrm{f}\left(\mathrm{~V}_{\mathrm{M}}\right)=\frac{-49.176 \mathrm{~V}_{\mathrm{M}}^{2}+1023.8 \mathrm{~V}_{\mathrm{M}}-687.28}{60}
$$

The next step is finding the rate of change by differentiating equation 2-1.

$$
\begin{equation*}
\frac{d F_{1}}{d V_{M}}=\frac{-98.352 \mathrm{~V}_{\mathrm{M}}+1023.8}{60} \tag{eq.2-2}
\end{equation*}
$$

G_{P} is then found by evaluating equation 2-2 at the original voltage $\overline{\mathrm{V}}_{\mathrm{M}}$.

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{p}}=\frac{\mathrm{f}_{1}}{\mathrm{v}_{\mathrm{M}}}=\frac{\mathrm{dF}}{1}\left.\right|_{\mathrm{d} \mathrm{~V}_{M}} \\
& \mathrm{~V}_{\mathrm{M}}=-1.6392 \overline{\mathrm{v}}_{\mathrm{M}}+17.063 \\
&
\end{aligned}
$$

FLCT STANGAFDECY：N：？〈Y
＊＊＊＊＊＊＊＊＊HIVEFAGING ARIC smodthing
\＃FOIHTS HVEMSItG：0：12？？©
\＃FOINTS SMOUTHING：0：12）？（0）
＊＋＊＊＊＊＊＊＊＊CUP品E FITTING
NE KT SITEOL2：4）？〈2〉
：MTEPFOLATION OF LEAST SCLAPES FITTIMG 〔：L：H\％？L
\＃DF FOINTS ON DUFUE（25：187T）？（25）

CEGFEE OF FOLYNOMIAL（Z：S）？〈2：
O DEGREE COEFFICIENT $=-687.278032$
1 DEGREE COEFFICIENT $=1023.32071$
2 CEGFEE COEFFICIENT $=-40.175860^{\circ}$
COEFFICIENT OF DETEFMINHTIDN $=.802413849$
COEFFICIENT OF CORPELATION $=.995199704$
STANCAFE EFROR DF ESTIMATE $=115.336272$
SATISFACTOFICY：N）？（Y）

Figure 2－2．Relationship of $\quad V_{M}$ and F_{1} ．

To derive G_{D}, the same procedure is followed. First, the relationship between H_{l} and V_{l} must be found by applying a least-squares fit polynomial approximation to actual data. From Figure 2-3, this equation is given by equation 2-4.

$$
\mathrm{V}_{1}=\mathrm{f}\left(\mathrm{H}_{1}\right)=.00081 \mathrm{H}_{1}^{3}-.02214 \mathrm{H}_{1}^{2}+.47795 \mathrm{H}_{1}+1.1766
$$

(eq. 2-4)

Differentiating equation 2-4 yields equation 2-5.

$$
\frac{d v_{1}}{d_{1}}=.00243 \mathrm{H}_{1} 2-.04428 \mathrm{H}_{1}+.47795
$$

(eq. 2-5)

And then evaluating equation $2-5$ at \bar{H}_{1} gives equation 2-6.

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{D}}=\frac{\mathrm{v}_{1}}{\mathrm{~h}_{1}}=\left.\frac{\mathrm{d} \mathrm{v}_{1}}{\mathrm{dH}_{1}}\right|_{\mathrm{H}_{1}=\overline{\mathrm{H}}_{1}}=.00243 \overline{\mathrm{H}}_{1} 2-.04428 \overline{\mathrm{H}}_{1}+.47795 \\
& \quad(\text { eq. } 2-6)
\end{aligned}
$$

Figure 2-3: Relationship of H_{1} and V_{1}.

CHAPTER III

SYSTEM MODELING

Since the system has already been described physically, it will now be described with dynamic equations. The first equations will be those that describe the time rate of change of the heights, H_{1} and H_{2}, in terms of the flow variables, F_{1}, F_{2}, F_{L} and F_{O}, and physical parameters. Equations for the flows, F_{O} and F_{2}, in terms of physical parameters and height variables, H_{1} and H_{2}, will be next derived. Finally, the steady state relationship for H_{2} in terms of H_{1} and F_{L} will be found. Assuming the system is initially in steady state, this will enable the initial height of tank two to be found from the height in tank one and the load variable. For this model, orifice one shall have all but the largest hole open $\left(a_{1}=1.109\right)$ and the tap on orifice two will be wide open ($a_{2}=.384$). No load variable will be applied ($\mathrm{F}_{\mathrm{L}}=0$) and tank one is initially at a height of $10 \mathrm{~cm}\left(\mathrm{H}_{1}=10\right)$. With these two sets of equations, the goal of comparing linear and non-linear solutions can be met. The time rate of change of H_{1} and H_{2} is found by deriving dH_{1} and dH_{2}.

The rate of change of volume of a tank is equal to the rate of volume into the tank minus the rate of volume out of the tank. This implies the rate of change in the volume of tank one $\left(V_{l}\right)$ is described by equation 3-1.

$$
\frac{d v_{1}}{d t}=F_{1}-F_{2}
$$

(eq. 3-1)

In the same manner the rate of change in the volume of tank two $\left(V_{2}\right)$ is given by equation 3-2.

$$
\frac{d v_{2}}{d t}=\left(F_{2}+F_{L}\right)-F_{O}
$$

(eq. 3-2)

Since the volume of a rectangular tank is the area times the height of the tank, equations $3-3$ and $3-4$ hold for this example.

$$
\begin{align*}
& \mathrm{V}_{1}=A * H_{1} \\
& \mathrm{~V}_{2}=A * H_{2}
\end{align*} \quad(\text { eq. } 3-3)
$$

Since the area A is constant, equations 3-5 and 3-6 apply.

$$
\begin{aligned}
& \frac{d v_{1}}{d t}=A * \frac{d H_{1}}{d t} \\
& \frac{d v_{2}}{d t}=A * \frac{d H_{2}}{d t} \\
& (\text { eq. } 3-5) \\
&
\end{aligned}
$$

By substituting equation 3-5 into equation 3-1 and solving for the rate of change of height one, equation 3-7 holds.

$$
\frac{d H_{1}}{d t}=\frac{F_{1}-F_{2}}{A}
$$

(eq. 3-7)

Following the same procedure, the rate of change in height two is given by substituting equation 3-6 into equation 3-2 and is shown by equation 3-8.

$$
\frac{\mathrm{dH}_{2}}{\mathrm{dt}}=\frac{\mathrm{F}_{2}+\mathrm{F}_{\mathrm{L}}-\mathrm{F}_{\mathrm{O}}}{\mathrm{~A}}
$$

(eq. 3-8)

To find F_{1} and F_{2} in terms of height variables and physical parameters, several steps are completed.

First, Bernoulli's Theorem states that for Figure 3-1, equations 3-9 and 3-10 hold.

$$
\text { WHERE } \quad \begin{aligned}
P & =\text { PRESSURE } \\
x & =\text { HEIGHT } \\
r & =\text { RATE OF FLUID FLOW } \\
p & =\text { DENSITY OF FLUID } \\
\alpha & =\text { CROSS-SECTIONAL AREA }
\end{aligned}
$$

Figure 3-1. Single Tank With Orifice.

$$
\begin{align*}
& P_{1}+\rho g X_{1}+\frac{1}{2} \rho r_{1}^{2}=P_{2}+\rho g X_{2}+\frac{1}{2} \rho r_{2}^{2} \text { (eq. 3-9) } \\
& P_{2}=P_{1}+\rho g\left(X_{1}-X_{2}\right) \tag{eq.3-10}
\end{align*}
$$

By the equation of continuity, equation 3-1l yields the relationship between rates of flow and cross-sectional areas.

$$
a_{1} *_{1}=a_{2} * r_{2}
$$

(eq. 3-11)

For the situation depicted in Figure 3-2, applying the relationship in equation $3-10$ yields equation $3-12$.

$$
P_{2}=P_{1}+\rho g\left(X_{3}-X_{2}\right)
$$

(eq.
3-12)

Substituting equation 3-11 into equation 3-9 yields equation 3-13.

$$
P_{1}+\rho g X_{1}+\frac{1}{2} \rho r_{1} 2=P_{1}+\rho g\left(X_{3}-X_{2}\right)+\rho g X_{2}+\frac{1}{2} \rho r_{2}^{2}
$$

(eq. 3-13)

Subtracting P_{1} from both sides, regrouping and dividing by the density yields equation 3-14.

$$
P_{1}=P_{3}
$$

Figure 3-2. Dual Connected Tanks.

$$
g x_{1}+\frac{1}{2} r_{1} 2=g x_{3}-g X_{2}+g X_{2}+\frac{1}{2} r_{2}^{2} \quad(\text { eq. } 3-14)
$$

Equation 3-1l can be rewritten as shown in equation 3-15.

$$
\begin{equation*}
r_{1}={\frac{a_{2}}{a_{1}}}^{*} r_{2} \tag{eq.3-15}
\end{equation*}
$$

Substituting the simplified equation 3-14 into equation 3-15 and solving for r_{2}^{2} yields equation 3-16.

$$
\begin{equation*}
r_{2}^{2}=\frac{2 g\left(X_{1}-X_{3}\right)}{1-\left(a_{2} / a_{1}\right)^{2}} \tag{eq.3-16}
\end{equation*}
$$

By finding the square root of both sides of equation $3-16, r_{2}$ is shown by equation $3-17$ after some regrouping.

$$
\begin{equation*}
r_{2}=a_{1} \frac{\sqrt{2 g\left(X_{1}-X_{3}\right)}}{a_{1}{ }^{2}-\alpha_{2}^{2}} \tag{eq.3-17}
\end{equation*}
$$

Since Figure 3-2 is a sharp-edged orifice and the volume flowrate through such an orifice equals the cross-sectional area of the orifice times the rate of flow
through the orifice, the volume flowrate for Figure 3-2 is given by equation 3-18.

$$
\begin{aligned}
& \text { Volume } \quad=\left(a_{2}\right) \frac{1}{a_{1}^{2}-a_{2}^{2}} \sqrt{2 g\left(X_{1}-X_{3}\right)} \\
& \text { Flowrate }
\end{aligned}
$$

(eq. 3-18)

Therefore the tank in Figure 2-1 has a flowrate out of the first tank given by equation 3-19.

$$
F_{2}=a_{1} \frac{A}{A^{2}-a_{1}{ }^{2}} \sqrt{2 g} \sqrt{H_{1}-H_{2}}
$$

(eq. 3-19)

Substituting the variables that describe the flowrate out of the second tank into equation 3-18 yields equation 3-20.

$$
\begin{equation*}
F_{0}=a_{2} \frac{A}{A^{2}-a_{2}^{2}} \sqrt{2 g} \sqrt{H_{2}-H_{3}} \tag{eq.3-20}
\end{equation*}
$$

Upon regrouping equation 3-19 and calling the second factor the discharge coefficient $C_{D l}$, equation $3-21$ describes F_{2}.

$$
\mathrm{F}_{2}=\mathrm{C}_{\mathrm{Dl}} \mathrm{a}_{1} \sqrt{2 \mathrm{~g}} \sqrt{\mathrm{H}_{1}-\mathrm{H}_{2}}
$$

F_{O} is found in the same manner with the second factor as the discharge coefficient $C_{D 2}$ and is calculated with equation 3-22.

$$
F_{O}=C_{D 2} a_{2} \sqrt{2 g} \sqrt{H_{2}-H_{3}}
$$

(eq. 3-22)

Since $A>a_{1}$ and $A>a_{2}$ for Figure $2-1$, both $C_{D l}$ and $C_{D 2}$ approximately equal 1.

Finally, using equation $3-22$, the steady state relationship for H_{2} in terms of H_{l} and F_{L} can be found. Since at steady state $\mathrm{dH}_{2}=0$, equation $3-8$ yields equation 3-23.

$$
0=\frac{d H_{2}}{d t}=\frac{\mathrm{F}_{2}+\mathrm{F}_{\mathrm{L}}-\mathrm{F}_{\mathrm{O}}}{A}
$$

(eq. 3-23)

Solving for F_{O} in terms of F_{2} and F_{L} gives the relationship in equation 3-24.

$$
F_{O}=F_{2}+F_{L}
$$

(eq. 3-24)

Substituting equations 3-21 and 3-22 into equation 3-24 gives the following equation.
$C_{D 2} a_{2} \sqrt{2 g} \sqrt{\bar{H}_{2}-H_{3}}=C_{D 1} a_{1} \sqrt{2 g} \sqrt{\bar{H}_{1}-\bar{H}_{2}}+F_{L}$ (eq. 3-25)

To solve this let $y=\sqrt{\overline{\bar{H}_{1}}-\overline{\mathrm{H}}_{2}}$, then $\mathrm{y}^{2}=\overline{\mathrm{H}}_{1}-\overline{\mathrm{H}}_{2}$ and $\bar{H}_{2}=\bar{H}_{1}-\mathrm{y}^{2}$. Substituting these last two equations into equation 3-25 gives equation 3-26.

$$
C_{D 2} a_{2} \sqrt{2 g} \sqrt{\left(\bar{H}_{l}-H_{3}\right)-y^{2}}=C_{D 1} a_{1} \sqrt{2 g} y+F_{L}(\text { eq. } 3-26)
$$

Squaring both sides of equation $3-25$ yields equation 3-27.

$$
\begin{gather*}
C_{D} 2^{2} a_{2}{ }^{2} 2 g\left[\left(\bar{H}_{1}-H_{3}\right)-y^{2}\right]=C_{D 1}{ }^{2} a_{1}{ }^{2} 2 g y^{2}+ \\
2 F_{L} C_{D 1} a_{1} \sqrt{2 g y}+F_{L}{ }^{2}
\end{gather*}
$$

Rewriting equation 3-27 as a quadratic gives equation 3-28.

$$
0=\left(C_{D 1}{ }^{2} \mathrm{a}_{1}{ }^{2}+\mathrm{C}_{\mathrm{D} 2}{ }^{2} \mathrm{a}_{2}^{2}\right) \mathrm{y}^{2}+\mathrm{F}_{\mathrm{L}} \mathrm{C}_{\mathrm{Dl}} \mathrm{a}_{1} \sqrt{2} \mathrm{y}+\mathrm{F}_{\mathrm{L}}^{2}-\mathrm{C}_{\mathrm{D} 2}{ }^{2} \mathrm{a}_{2}^{2}\left(\overline{\mathrm{H}}_{1}-\mathrm{H}_{3}\right)
$$

(eq. 3-28)

Solving equation 3-28 for the unknown y and simplifying yields equation 3-29.

$$
\mathrm{y}=\frac{-\mathrm{F}_{\mathrm{L}} \mathrm{C}_{\mathrm{D} 1} \mathrm{a}_{1} \pm \mathrm{C}_{\mathrm{D} 2} \mathrm{a}_{2} \sqrt{\left(\overline{\mathrm{H}}_{1}-\mathrm{H}_{3}\right)\left(\mathrm{C}_{\mathrm{D}}{ }^{2} \mathrm{a}_{1}^{2}+\mathrm{C}_{\mathrm{D} 2}{ }^{2} \mathrm{a}_{2}^{2}\right) 2 \mathrm{~g}-\mathrm{F}_{\mathrm{L}}^{2}}}{\sqrt{2 g}\left(\mathrm{C}_{\mathrm{D} 1}{ }^{2} \mathrm{a}_{1}^{2}+\mathrm{C}_{\mathrm{D}}{ }^{2} \mathrm{a}_{2}^{2}\right)}
$$

(eq. 3-29)

Equation 3-29 gives two solutions. But since by definition y is the square root of the differences in height, it must be greater than zero. The negative solution can then be disregarded and equation $3-30$ gives the proper result.

$$
\mathrm{y}=\frac{\mathrm{C}_{\mathrm{D} 2} \mathrm{a}_{2} \sqrt{\left(\bar{H}_{1}-H_{3}\right)\left(C_{D 1} a_{1}{ }^{2}+C_{D} 2^{2} \mathrm{a}_{2}^{2}\right) 2 g-F_{L}^{2}}-F_{L} C_{D 1} a_{1}}{\sqrt{2 g\left(C_{D 1} a_{1}{ }^{2}+C_{D} 2^{2} a_{2}^{2}\right)}}
$$

(eq. 3-30)

Applying the definition of y and solving for \bar{H}_{2}, the desired solution is achieved and given by equation 3-31.

$$
\bar{H}_{2}=\bar{H}_{1}-\frac{C_{D 2} a_{2} \sqrt{\left.\bar{H}_{1}-H_{3}\right)\left(C_{D 1}{ }^{2} a_{1}{ }^{2}+C_{D} 2^{2} a_{2}^{2}\right) 2 g-F_{L}^{2}}-F_{L} C_{D 1} a_{1}}{\sqrt{2 g}\left(C_{D 1} a_{1}^{2}+C_{D} 2^{2} a_{2}^{2}\right)}
$$

(eq. 3-31)

CHAPTER IV

LINEAR SYSTEM

The non-linear system has been found in terms of physical parameters, operating parameters, control parameters and variables. To control a linearization of the system in Figure $2-1$ several steps must be completed. First, a feedback loop is described as in Figure 4-1. Using this loop, the unknown characteristics, G_{D} and G_{p}, must be found as shown back in Chapter Two. A Taylor's series will be used to find the unknown system transfer function, $G(s)$. The feedback loop will then be applied and the control height $h_{l}(s)$ will be found in response to the change in reference height, $h_{l_{R}}(s)$. Laplace Transform techniques will be used in the two different types of control. For proportional only $\left(\mathrm{K}_{\mathrm{C}}=10, \mathrm{~T}_{\mathrm{R}}=\infty, \mathrm{T}_{\mathrm{D}}=0\right)$ and proportional-integral $\left(\mathrm{K}_{\mathrm{C}}=10, \mathrm{~T}_{\mathrm{R}}=10, \mathrm{~T}_{\mathrm{D}}=0\right)$ control, $h_{1}(t)$ and $h_{2}(t)$ will be found. After finding these small changes, $H_{1}(t)$ and $H_{2}(t)$ will be found.

Finding the depth constant, G_{D}, and pump constant, G_{P} for this system begins by applying the initial conditions $\mathrm{H}_{1}=10$ and $\mathrm{F}_{\mathrm{L}}=0$. By substituting these values into equation $3-34, H_{2}$ is 9.24 cm . Inserting this value into equation $3-2 i$, yields F_{1} as $42.6 \mathrm{cc} / \mathrm{sec}$. After finding this

Figure 4-1. Feedback Loop For Linear System.
flow and placing this into equation $2-4, \mathrm{~V}_{\mathrm{M}}$ is found to be 3.9 volts. Finally from equations $2-3$ and $2-6, G_{D}$ is .278 volts/cm and G_{P} is $10.67 \mathrm{cc} / \mathrm{sec}$ per volt.

To find $G(s)$, the pump flow as a function of time first must be found. For a small change in pump flow, $f_{l}(t)$, the total flow of fluid into tank one, $F_{l}(t)$, is described by equation $4-1$ where $\overline{\mathrm{F}}_{1}$ is some original flow.

$$
\begin{equation*}
F_{1}(t)=\bar{F}_{1}+f_{1}(t) \tag{eq.4-1}
\end{equation*}
$$

In the same manner equations $4-2$ and 4-3 describe the heights of tank one and two for small changes in height, $h_{1}(t)$ and $h_{2}(t)$, and original heights \vec{H}_{1} and \bar{H}_{2}.

$$
\begin{align*}
& \mathrm{H}_{1}(t)=\mathrm{H}_{1}+\mathrm{h}_{1}(t) \tag{eq.4-2}\\
& \mathrm{H}_{2}(t)=\bar{H}_{2}+\mathrm{h}_{2}(t)
\end{align*}
$$

By differentiating equations $4-2$ and 4-3, equations 4-4 and 4-5 are found.

$$
\begin{align*}
& \frac{d H_{1}}{d t}=\frac{d h_{1}}{d t} \\
& \frac{d H_{2}}{d t}=\frac{d h_{2}}{d t}
\end{align*}
$$

By using a Taylor's series with small changes h_{l} and h_{2}, the flow F_{2} is given by equation $4-6$.

$$
\begin{aligned}
\mathrm{F}_{2}=\overline{\mathrm{F}}_{2}+\left.\frac{\delta \mathrm{F}_{2}}{\delta \mathrm{H}_{1}}\right|^{\mathrm{h}_{1}+\left.\frac{\delta \mathrm{F}_{2}}{\delta \mathrm{H}_{2}}\right|^{\mathrm{h}_{2}}} \begin{array}{r}
\overline{\mathrm{H}}_{1}, \overline{\mathrm{H}}_{2}
\end{array} \overline{\mathrm{H}}_{1}, \overline{\mathrm{H}}_{2}
\end{aligned}
$$

(eq. 4-6)

As equation 4-7 shows, F_{O} can also be written in a Taylor's series.

$$
\mathrm{F}_{\mathrm{O}}=\overline{\mathrm{F}}_{\mathrm{O}}+\left.\frac{\delta \mathrm{F}_{\mathrm{O}}}{\delta \mathrm{H}_{1}}\right|_{\mathrm{H}_{1}, \overline{\mathrm{H}}_{2}} ^{\mathrm{h}_{1}+\left.\frac{\delta \mathrm{F}_{\mathrm{O}}}{\delta \mathrm{H}_{2}}\right|_{\overline{\mathrm{H}}_{1}}, \overline{\mathrm{H}}_{2}} \mathrm{~h}_{2}
$$

(eq. 4-7)

By differentiating equation 3-21 and substituting into equation $4-6$, equation $4-8$ is found.

$$
F_{2}=\bar{F}_{2}+C_{D 1} a_{1} \sqrt{\frac{g}{2\left(\bar{H}_{1}-\bar{H}_{2}\right)}} h_{1}-c_{D 1} a_{1} \sqrt{\frac{g}{2\left(\bar{H}_{1}-\vec{H}_{2}\right)}} h_{2}
$$

(eq. 4-8)

Regrouping like terms and rewriting yields equation 4-9

$$
\begin{aligned}
\mathrm{F}_{2}=\overline{\mathrm{F}}_{2}+ & \mathrm{k}_{1}\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right) \\
& \text { where } \mathrm{k}_{1}=\mathrm{C}_{\mathrm{Dl}} \mathrm{a}_{1} \sqrt{\frac{\mathrm{~g}}{2\left(\overline{\mathrm{H}}_{1}-\overline{\mathrm{H}}_{2}\right)}}
\end{aligned}
$$

For the tank described in Chapter Two, k_{1} is 28.03. In the same manner, the flow out is given by equation 4-10.

$$
\begin{align*}
& \mathrm{F}_{\mathrm{O}}=\overline{\mathrm{F}}_{\mathrm{O}}+ \mathrm{k}_{2} \mathrm{~h}_{2} \\
& \text { where } \mathrm{k}_{2}=\mathrm{C}_{\mathrm{D} 2} \mathrm{a}_{2} \sqrt{\frac{g}{2\left(\overline{\mathrm{H}}_{2}-\overline{\mathrm{H}}_{3}\right)}} \tag{eq.4-10}
\end{align*}
$$

For the system in Chapter Two, k_{2} is 3.41 .

Taking equation 3-7 and substituting into equations 4-4, 4-1 and 4-9 yields equation 4-11.

$$
\frac{d h_{1}}{d t}=\frac{\bar{F}_{1}+f_{1}}{A}-\frac{\bar{F}_{2}+\mathrm{k}_{1}\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)}{A}
$$

(eq. 4-11)

Since the system is initially in steady state, $\overline{\mathrm{F}}_{1}$ is equal to $\overline{\mathrm{F}}_{2}$ and equation $4-11$ can be rewritten as equation 4-12.

$$
\frac{d h_{1}}{d t}=-\frac{k_{1}}{A} h_{1}+\frac{k_{1}}{A} h_{2}+\frac{f_{1}}{A}
$$

(eq. 4-12)

In the same manner, equation $3-8$ can be rewritten as shown in equation $4-13$ by inserting equations 4-5, 4-9 and 4-10.

$$
\frac{d h_{2}}{d t}=\frac{F_{L}}{A}+\frac{\bar{F}_{2}+k_{1} h_{1}-k_{1} h_{2}}{A}-\frac{\bar{F}_{0}+k_{2} h_{2}}{A} \text { (eq. 4-13) }
$$

Since this system is also initially in steady state and F_{L} remains constant throughout the problem F_{L} plus F_{2} equals F_{O} and equation 4-14 holds.

$$
\frac{\mathrm{dh}_{2}}{\mathrm{dt}}=\frac{\mathrm{k}_{1} \mathrm{~h}_{1}}{\mathrm{~A}}-\frac{\mathrm{k}_{1}+\mathrm{k}_{2}}{\mathrm{~A}} \mathrm{~h}_{2}
$$

(eq. 4-14)

Rewriting equations 4-12 and 4-14 into matrix form yields equation 4-15.

$$
\frac{d}{d t}\left[h^{h_{1}} h_{2}\right]=\left[\begin{array}{cc}
\frac{-k_{1}}{A} & \frac{k_{1}}{A} \\
\frac{k_{1}}{A} & \frac{-k_{1}+k_{2}}{A}
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
\frac{A}{A} \\
0 \\
f_{1}
\end{array}\right.
$$

(eq. 4-15)

Since the system transfer function $G(s)$ is $h_{l}(s)$ over $f_{1}(s)$, Laplace Transforms will be needed. By transforming equation 4-15 and since $h_{1}(t=0), h_{2}(t=0)$ and $f_{1}(t=0)$ all are zero, equation 4-16 holds.

$$
s\left[\begin{array}{c}
h_{1}(s) \\
h_{2}(s)
\end{array}\right]=\left[\begin{array}{cc}
-k_{1} & \frac{k_{1}}{A} \\
\frac{k_{1}}{A} & -\frac{k_{1}+k_{2}}{A}
\end{array}\right]\left[\begin{array}{l}
h_{1}(s) \\
\left.h_{2}(s)\right]+\left[\begin{array}{c}
28 \\
1 \\
A \\
0
\end{array}\right] f_{1}(s) \\
\text { (eq. } 4-16)
\end{array}\right.
$$

Regrouping, inverting and solving yields equation 4-17.

$$
\left[\begin{array}{l}
\frac{h_{1}(s)}{f_{1}(s)} \\
\frac{h_{2}(s)}{f_{1}(s)}
\end{array}\right]=\frac{1}{s^{2}+\frac{2 k_{1}+k_{2} s-k_{1} k_{2}}{A}} \frac{A^{2}}{A}\left[\begin{array}{c}
\frac{s}{A}+\frac{k_{1}+k_{2}}{A^{2}} \\
\frac{k_{1}}{A^{2}}
\end{array}\right] \quad \text { (eq. 4-17) }
$$

Therefore the system transfer function is given by equation 4-18.

$$
\begin{equation*}
G(s)=\frac{\frac{s}{A}+\frac{k_{1}+k_{2}}{A^{2}}}{\frac{s^{2}+\frac{2 k_{1}+k_{2} s-k_{1} k_{2}}{A}}{\frac{A^{2}}{A}}} \tag{eq.4-18}
\end{equation*}
$$

The next step is finding the change in height $h_{l}(s)$ in response to a small change in the reference height $h_{l R}(s)$. From Figure 4-1, it can be seen that the reference voltage to reference height relationship is given by equation 4-19.

$$
\begin{equation*}
\mathrm{v}_{l \mathrm{R}}=\mathrm{G}_{\mathrm{D}} \mathrm{~h}_{l \mathrm{R}}(\mathrm{~s}) \tag{eq.4-19}
\end{equation*}
$$

Also for Figure 4-1, the voltage/height relationship is given by equation 4-20.

$$
\mathrm{v}_{1}=\mathrm{G}_{\mathrm{D}} \mathrm{~h}_{\mathrm{l}}(\mathrm{~s})
$$

(eq. 4-20)

By completing the loop around Figure 4-1, equation 4-21 is found.

$$
\left(v_{l R}-v_{l}\right) K(s) G_{P} G(s)=h_{l}(s)
$$

(eq. 4-21)

Substituting 4-19 and 4-20 into 4-21 yields equation 4-22.

$$
\left.\left[G_{D} h_{l R}(s)-G_{D} h_{l}(s)\right] K(s) G_{p} G(s)=h_{l}(s) \quad \text { (eq. } 4-22\right)
$$

Solving for the first height in the frequency domain gives equation 4-23.

$$
h_{l}(s)=\frac{G_{D} G_{P} K(s) G(s)}{1+G_{D} G_{P} K(s) G(s)} h_{l R}(s)
$$

(eq. 4-23)

Therefore, for the system in Chapter Two, this equation can be rewritten as seen in equation 4-24.

$$
\mathrm{h}_{\mathrm{l}}(\mathrm{~s})=\frac{.0148 \mathrm{~K}(\mathrm{~s})(\mathrm{s}+.157)}{\mathrm{s}^{2}+.297 \mathrm{~s}+.00239+.0148 \mathrm{~K}(\mathrm{~s})(\mathrm{s}+.157)} \mathrm{h}_{1 \mathrm{R}}(\mathrm{~s})
$$

(eq. 4-24)

Now the change in height one in response to a unit step change in the reference height with proportional control $\left(K_{C}=10, T_{R}=\infty, T_{D}=0\right)$ can be found. Since it is a unit step change $h_{l_{R}}(s)$ is l / s. And since this is proportional only control, $K(s)$ is 10 . Inserting these values into equation 4-24 yields equation 4-25.

$$
h_{1}(s)=\frac{.148(s+.157)}{s\left(s^{2}+.445 s+.0257\right)}
$$

$h_{l}(t)$ will be the inverse Laplace Transform of equation 4-25. To find this inverse, a Heaviside expansion will be used. The roots of the denominator are -.0682 and -.3768 , therefore:

$$
\begin{aligned}
& \mathrm{h}_{1}(\mathrm{t})=.148 \mathcal{L}-1[\mathrm{Z}(\mathrm{~s})] \\
& \text { where } \mathrm{Z}(\mathrm{~s})=\frac{\mathrm{s}+.157}{\mathrm{~s}(\mathrm{~s}+.0682)(\mathrm{s}+.3768)}
\end{aligned}
$$

(eq. 4-26)

Rewriting this into a manageable form gives equation 4-27.

$$
h_{1}(t)=.148 \mathcal{L}^{-1}\left[\frac{A}{s}+\frac{B}{s+.0682}+\frac{C}{s+.3768}\right]
$$

$$
\text { where } A \text { is the limit of } n \text { as } s \text { goes to zero, } 6.109 \text {, }
$$

$$
B \text { is the limit of }(s+.0682) Z(s) \text { as } s \text { goes to }
$$

$$
-.0682,-4.219 \text { and } C \text { is the limit of }(s+.3768) \mathrm{z}(s)
$$

$$
\begin{equation*}
\text { as } s \text { goes to }-.3768,-1.89 \tag{eq.4-27}
\end{equation*}
$$

Finally, inverting equation 4-27 gives equation 4-28.

$$
\begin{array}{r}
h_{1}(t)=\left(.904-.624 e^{-.0682 t}-.28 e^{-.3768 t}\right) \delta_{1}(t) \\
(\mathrm{eq.} 4-28)
\end{array}
$$

By inserting equation 4-28 into equation 4-2, the time response for the height of water in tank one is:

$$
\begin{array}{r}
H_{1}(t)=10+\left(.904-.624 e^{-.0682 t}-.28 e^{-.377 t}\right) \delta_{1}(t) \\
(\mathrm{eq.} 4-29)
\end{array}
$$

To find $h_{2}(s)$ and subsequently its response to the step change as a function of time, $H_{2}(t)$, equation $4-14$ will be transformed by a Laplace Transform.

$$
\begin{equation*}
\operatorname{sh}_{2}(s)=\frac{k_{1} h_{1}(s)}{A}-\frac{k_{1}+k_{2} h_{2}(s)}{A} \tag{eq.4-30}
\end{equation*}
$$

Solving for $h_{2}(s)$ and inserting the values for the physical system gives equation 4-31.

$$
h_{2}(s)=\frac{.14}{s+.157} h_{1}(s)
$$

By inserting $h_{1}(s)$ as found in equation $4-25$ and inverting yields equation 4-32.

$$
\begin{aligned}
& \mathrm{h}_{2}(\mathrm{t})=(.148) \quad \mathscr{L}-1[\mathrm{Y}(\mathrm{~s})] \\
& \text { where } \mathrm{Y}(\mathrm{~s})=\frac{.14(\mathrm{~s}+.157)}{(\mathrm{s}+.157) \mathrm{s}\left(\mathrm{~s}^{2}+.445 \mathrm{~s}+.0257\right) \quad \text { (eq. 4-32) }}
\end{aligned}
$$

Going ahead and expanding equation $4-32$, yields equation 4-33.

$$
h_{2}(t)=(.148) \mathscr{L}^{-1}\left[\frac{A}{s}+\frac{B}{s+.0682}+\frac{c}{s+.3768}\right]
$$

where A is the limit of $s Y(s)$ as s goes to
zero, $5.45, \mathrm{~B}$ is the limit of $(s+.0682) Y(s)$ as s
goes to $-.0682,-6.65$, and C is the limit of
$(s+.3768) Y(s)$ as s goes to $-.3768,1.20$. (eq. 4-33)

Inverting equation $4-33$ yields the final result for $h_{2}(t)$.

$$
h_{2}(t)=\left(.806-.984 e^{-.0682 t}+.178 e^{-.3768 t}\right) \delta_{1}(t)
$$

Putting equation 4-34 into equation 4-3 yields equation 4-35.

$$
H_{2}(t)=9.24+\left(.806-.984 e^{-.0682 t}+.178 e^{-.3768 t}\right) \quad \delta_{1}(t)
$$

(eq. 4-35)

Figure 4-2 lists the results for $H_{1}(t)$ and $H_{2}(t)$ in response to a step change with proportional control.

To find the change in height one in response to a unit step change in the reference height with integral control, the same steps are followed. For the problem, let $K_{C}=10$, $T_{R}=10$ and $T_{D}=0$. Then, as before, $h_{l_{R}}(s)$ is $1 / s$ and since this is an integral control example: $K(s)=10(1+$ $1 / 10 s)$. Substituting these values into equation $4-24$, gives equation 4-36.

$$
h_{1}(s)=\frac{.148\left(s^{2}+.257 s+.0157\right)}{s\left(s^{3}+.445 s^{2}+.0404 s+.00232\right)}
$$

(eq. 4-36)

Separating equation $4-36$ into a workable form yields equation 4-37.

$$
\begin{equation*}
h_{1}(s)=\frac{1}{s}-\frac{s^{2}+.297 s+.00236}{s^{3}+.445 s^{2}+.0404 s+.00232} \tag{eq.4-37}
\end{equation*}
$$

$\underset{\text { Figeare SYSTEM }}{\text { Figh }} \mathrm{H}_{1}(\mathrm{t}), \mathrm{H}_{2}(\mathrm{t})$ With Proportional Control. LINEAR SYSTEM TIME

By numerical methods $s=-.348$ is a root of the denominator of the second term. Therefore rewriting using Heaviside expansion yields equation 4-38.

$$
h_{1}(s)=\frac{1}{s}-\frac{.214}{s+.348}-\frac{.786 s+.00271}{s^{2}+.097 s+.00664}
$$

(eq. 4-38)

Rewriting equation $4-38$ as equation 4-39, allows easy conversion through inverse Laplace Transforms.

$$
h_{l}(s)=\frac{1-.214}{s}-\frac{.786(s+.0485)}{s+.348}+\frac{.0354}{(s+.0485)^{2}+.0655^{2}} \frac{(s+.0485)^{2}+.0655^{2}}{}
$$

(eq. 4-39)

The final solution for the small change in height one as function of time is given by equation $4-40$.

$$
\begin{aligned}
& \mathrm{h}_{1}(t)=\left(1-.214 \mathrm{e}^{-. .348 t}-.786 \mathrm{e}^{-.0485 t} \cos (.0655 t)\right. \\
&\left.+.541 \mathrm{e}^{-.0485 t} \sin (.0655 t)\right) \delta_{1}(t)
\end{aligned}
$$

(eq. 4-40)

Substituting equation $4-40$ into equation $4-2$, gives the final solution.

$$
\begin{array}{r}
H_{1}(t)=10+\left(1-.214 e^{-.348 t}-.786 e^{-.0485 t} \cos (.0655 t)\right. \\
\left.+.541 e^{-.0485 t} \sin (.0655 t)\right) \delta_{1}(t) \\
(\text { eq. } 4-41)
\end{array}
$$

Substituting equation 4-36 into equation 4-31 and then factoring yields:

$$
\mathrm{h}_{2}(\mathrm{~s})=\frac{.0207(\mathrm{~s}+.157)(\mathrm{s}+.1)}{(\mathrm{s}+.157)(\mathrm{s}+.348) \mathrm{s}\left(\mathrm{~s}^{2}+.097 \mathrm{~s}+.00664\right)}
$$

Rewriting equation $4-42$ by factoring and using Heaviside expansions again gives the following:

$$
h_{2}(s)=\frac{.896}{s}+\frac{.157}{s+.348}-1.05\left[\frac{s+.0453}{s^{2}+.097 s+.00664}\right]
$$

(eq. 4-43)

Writing equation 4-43 into the proper form for inverse Laplace Transforms gives:

$$
h_{2}(s)=\frac{.896}{s}+\frac{.157}{s+.348}-1.05\left[\frac{s+.011}{(s+.0485)^{2}+.0655^{2}}-\frac{.0032}{(s+.0485)^{2}+.0655^{2}}\right]
$$

Inverting equation 4-44 yields the following solution for a small change in the second tank height as a function of time.

$$
\begin{array}{r}
\mathrm{h}_{2}(\mathrm{t})=\left[.896+.157 \mathrm{e}^{-.348 t}-1.05 \mathrm{e}^{-.0485 t} \cos (.0655 t)\right. \\
\left.+.0513 \mathrm{e}^{-.0485 t^{-.}} \sin (.0655 t)\right] \delta_{1}(t) \\
(\mathrm{eq.} 4-45)
\end{array}
$$

Substituting equation 4-45 into equation 4-3 gives the final solution for the second tank height withproportional-integral control.

$$
\begin{array}{r}
\mathrm{H}_{2}(\mathrm{t})=9.24+\left[.896+. .157 \mathrm{e}^{-.348 t}-1.05 \mathrm{e}^{-.0485 t_{\cos }(.0655 t)}\right. \\
+. .0513 \mathrm{e}^{\left.-.0485 t_{\sin }(.0655 t)\right] \delta_{1}(t)} \\
\text { (eq. } 4-46)
\end{array}
$$

Results for $H_{1}(t)$ and $\mathrm{H}_{2}(t)$ in response to a unit step change in the set point with integral control are supplied in Figure 4-3.

Figure 4-3. $H_{1}(t), H_{2}(t)$ With Proportional-Integral Control.

LINEAR					
TIME	TANK 1	TANK2			
0	10	9.24	41	11.12	10.26
1	10.13	9.25	42	11.12	10.26
2	10.25	9.27	43	11.11	10.26
3	10.34	9.3	44	11.1	10.25
4	10.43	9.35	45	11.09	10.25
5	10.51	9.39	46	11.09	10.24
6	10.58	9.44	47	11.08	10.24
7	10.64	9.49	48	11.07	10.23
8	10.7	9.54	49	11.06	10.23
9	10.76	9.59	50	11.06	10.22
10	10.81	9.64	51	11.05	10.22
11	10.85	9.69	52	11.04	10.21
12	10.9	9.74	53	11.04	10.21
13	10.93	9.78	54	11.03	10.2
14	10.97	9.83	55	11.03	10.19
15	11	9.87	56	11.02	10.19
16	11.03	9.91	57	11.02	10.18
17	11.06	9.95	58	11.01	10.18
18	11.08	9.98	59	11.01	10.17
19	11.1	10.02	60	11	10.17
20	11.12	10.05	61	11	10.16
21	11.13	10.08	62	11	10.16
22	11.14	10.1	63	10.99	10.16
23	11.16	10.13	64	10.99	10.15
24	11.16	10.15	65	10.99	10.15
25	11.17	10.17	66	10.99	10.15
26	11.18	10.18	67	10.98	10.14
27	11.18	10.2	68	10.98	10.14
28	11.18	10.21	69	10.98	10.14
29	11.18	10.23	70	10.98	10.13
30	11.18	10.24	71	10.98	10.13
31	11.18	10.24	72	10.98	10.13
32	11.18	10.25	73	10.98	10.13
33	11.17	10.26	74	10.98	10.13
34	11.17	10.26	75	10.98	10.12
35	11.16	10.27	76	10.98	10.12
36	11.16	10.27	77	10.98	10.12
37	11.15	10.27	78	10.98	10.12
38	11.15	10.27	79	10.98	10.12
39	11.14	10.27	80	10.98	10.12
40	11.13	10.27			

CHAPTER V

NONLINEAR SYSTEM

The system of equations found in Chapter Three will be used to evaluate the nonlinear system. These differential equations will be rewritten as difference equations with step size Δt. During each Δt, the equations will be used to find the flow rates (equations 3-21 and 3-22), use these rates to find the rate of change in height (equations 3-7 and 3-8) and then calculate the new height. This cycle will be repeated PTSP times and the heights will be output to the user each time segment of length (PTSP)*(Δt). After 80 of these print steps, the program ends. This cycle is illustrated in Figure 5-1.

The use of this program involves several steps by the user. First, the user must describe the tank settings for orifice one and two. For the purpose of this paper, orifice one is set so the 1.27 cm hole is plugged (Ans. "Y") and holes .95 cm and .625 cm are open (Ans. "N"). The tap for orifice two will be wide open (Ans. "l"). The physical parameters for this configuration are now displayed. The next entries by the user are the control parameters. The user is asked for the proportional gain, K_{C}, and the reset

FIND VOLTAGE OF TANK 1
FIND ERROR
FIND NEW MOTOR VOLTAGE
FIND FLOW INTO TANK 1
FIND $\mathrm{dH}_{1}(0)$
$\overline{d t}$
FIND $\frac{\mathrm{dH}_{2}(0)}{\mathrm{dt}}$
AS $n=1,2,3 \ldots \quad\left[t_{j}=j \Delta t\right]$
FIND NEW HEIGHT 1

FIND NEW HEIGHT 2

FIND FLOW BETWEEN TANKS

$$
F_{2}\left(t_{n}\right)=f\left(H_{1}\left(t_{n}\right), H_{2}\left(t_{n}\right)\right) \text { eqn } 3-21
$$

FIND FLOW OUT OF TANK 2

$$
F_{0}\left(t_{n}\right)=f\left(H_{2}\left(t_{n}\right)\right) \quad \text { eqn } 3-22
$$

FIND VOLTAGE OF TANK 1

$$
v_{l}\left(t_{n}\right)=f\left(H_{l}\left(t_{n}\right)\right) \quad \text { eqn } 2-4
$$

FIND ERROR
FIND NEW MOTOR VOLTAGE

$$
\begin{aligned}
& H_{1}\left(t_{n}\right)=H_{1}\left(t_{n-1}\right)+\underset{d H_{1}}{d t}\left(t_{n-1}\right) \Delta t \\
& H_{2}\left(t_{n}\right)=H_{1}\left(t_{n-1}\right)+\underset{d H_{1}}{d t}\left(t_{n-1}\right) \Delta t
\end{aligned}
$$

$$
e\left(t_{n}\right)=v_{1 R}-v_{1}\left(t_{n}\right)
$$

$$
v_{m}\left(t_{n}\right)=v_{m}+K_{C}\left(e\left(t_{n}\right)+\sum_{i=0}^{n} e\left(t_{i}\right) / T_{R}\right.
$$

$$
\left.+T_{D} \frac{e\left(t_{n}\right)-e\left(t_{n-1}\right)}{\Delta t}\right)
$$

FIND FLOW IN
FIND $\underset{d H_{I}}{d t}\left(t_{n}\right)$
$F_{1}\left(t_{n}\right)=f\left(v_{m}\left(t_{n}\right)\right)$
$\frac{d H_{1}}{d t}\left(t_{n}\right)=\frac{F_{1}\left(t_{n}\right)-F_{2}\left(t_{n}\right)}{A}$ eqn $3-7$
FIND $\frac{\mathrm{dH}_{2}}{\mathrm{dt}}\left(\mathrm{t}_{\mathrm{n}}\right)$

$$
\frac{d H_{2}\left(t_{n}\right)=}{\mathrm{F}_{2}\left(t_{n}\right)+F_{L}-F_{O}\left(t_{n}\right)} \underset{A}{\text { eqn } 3-8}
$$

NEXT n

Figure 5-1. Cycle of steps for Solving the Nonlinear System.

$$
\begin{aligned}
& v_{1}(0)=f\left(H_{1}(0)\right) \\
& \text { eqn 2-4 } \\
& e(0)=v_{1 R}-v_{l}(0) \\
& v_{m}(0)=v_{m}+K_{C}\left(e(0)+T_{D} e(0) / \Delta t\right) \\
& \mathrm{F}_{1}(0)=f\left(\mathrm{v}_{\mathrm{m}}(0)\right) \quad \text { eqn } 2-1 \\
& {\underset{d H}{I}}_{d t}^{d t}(0)=\frac{\mathrm{F}_{1}(0)-\mathrm{F}_{1}}{A} \\
& \frac{\mathrm{dH}_{2}}{\mathrm{dt}}(\mathrm{O})=0
\end{aligned}
$$

time, T_{R}. Throughout this paper K_{C} is ten. For proportional only control, as in the first example, $T_{R}=0$. For this paper's proportional-integral control problem, example two, $T_{R}=10$. The final control input derivative time, T_{D}, is input. $T_{D}=0$ in both of these examples.

The initial values are then input to begin the simulation. These consist of the initial level in tank one (10 cm in both examples), the step change in the control variable (l cm in both examples) and the load variable that describes the input into tank two ($0 \mathrm{cc} / \mathrm{min}$ for these cases). Several informational values are output and the simulation begins.

A reference listing is supplied in the Appendix. Sample outputs are supplied in Figure 5-2 (Proportional Only Control) and Figure 5-3 (Proportional-Integral Control).

As a check for accuracy of this numerical solution by Euler's method, another method was attempted. The second method to be chosen was a fourth order Runge-Kutta solution. The equations that describe this solution are given as depicted in equation $5-1$ for H_{1}.

$$
\mathrm{H}_{1}\left(\mathrm{t}_{0}+\Delta t\right)=\mathrm{H}_{1}\left(t_{0}\right)+\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+\mathrm{k}_{4}
$$

RUN
CHDOSE A TANK CONFIGLRATION
WHICH HOLES DD YOU WISH FILUGGED?
$(Y=Y E S, N=N D)$

1. 27 CM ?Y
.95 CH ?N
. 6.5 CM CN

HOW OO YOU WANT THE TAF DF THE SECOND TANK SET?

1. FULL DFEN
2. $3 / 4$ DFEN
․ 1/2 OFEN
3. 1/4 OFEN
$? 1$

FHYSICAL FAFAMETEFS

```
HS G G = 980
CDI=1 CD2=1
A1=1.1 A2=.3B
A = 200
CONTFOL FAFAMETERG
ENTER אC?10
ENTER TR FDF INTEGRAL CONTFOL (O IF NONE DESIFED)?10
ENTEF TD FOF DIFFEFENTIAL CONTFOL (O FOR NONE)?O
INITTAL VALUES
WHAT IS YOUF INITIAL LEVEL IN TANK 1 (J TO 25 CM) ?10 INFUT THE STEF CHANGE IN THIS CONTROL VARIAELE?1 INFUT THE LOAD VAFIABLE (CC/MIN)?O
VAFIABLE VALUES
\(H 1(0)=10 \quad H 2(0)=7.24\)
\(F 1 D=2552: \quad F L=0\)
SET FOINT 11
SET FOINT VOLTAGE 4.8 S
DESIGN VOLTAGE ふ. 88
```

Figure 5-2. Results For Proportional Control Of The Nonlinear System.

Figure 5-2. - Continued.

TIME (SEC)	TANK: 1 (CM)	TANK2 (CM)	41	10.85	9.97
0	10	9.24	42	10.86	9.98
1	10.09	9.24	43	10.86	9.98
2	10.18	9.26	44	10.86	9.98
3	10.25	9.28	45	10.87	9.99
4	10.31	9.31	46	10.87	9.99
5	10.36	9.34	47	10.87	9.99
6	10.41	9.38	48	10.87	10
7	10.45	9.41	49	10.87	10
8	10.48	9.44	50	10.88	10
9	10.51	9.48	51	10.88	10.01
10	10.54	9.51	52	10.88	10.01
11	10.56	9.54	53	10.88	10.01
12	10.59	9.57	54	10.88	10.01
13	10.61	9.59	55	10.88	10.02
14	10.63	9.62	56	10.88	10.02
15	10.64	9.65	57	10.88	10.02
16	10.66	9.67	58	10.89	10.02
17	10.68	9.69	59	10.89	10.02
18	10.69	9.71	60	10.89	10.02
19	10.7	9.73	61	10.89	10.03
20	10.72	9.75	62	10.89	10.03
21	10.73	9.77	63	10.89	10.03
22	10.74	9.79	64	10.89	10.03
23	10.75	9.8	65	10.89	10.03
24	10.76	9.82	66	10.89	10.03 10.0%
25	10.77	9.83	67	10.89	10.0?
26	10.78	9.85	68	10.89	10.03
27	10.78	9.86	69	10.89	10.03
28	10.79	9.87	70	10.89	10.03
29	10.8	9.88	71	10.89	10.03
30	10.81	9.89	72	10.9	10.04
31	10.81	9.9	73	10.9	10.04
32	10.82	9.91	74	10.9	10.04
33	10.82	9.92	75	10.9	10.04
34	10.83	9.93	76	10.9 10.9	10.04 10.04
35	10.83	9.93	77	10.9 10.9	10.04 10.04
36	10.84	9.94	78 79	10.9 10.9	10.04 10.04
37	10.84	9.95	80	10.9	10.04
38	10.84	9.95			10.01
39	10.85	9.96			
40	10.85	9.97			

```
CHODSE A TANG CONFIGUFATION
WHICH HOLES DO YOU WISH FIUGGED?
(Y=YES,N=NO)
1.27 CM ?Y
.55 CM ?N
.6S5 CMON
HOW DQ YOL WANT THE TAF OF THE SECOND TANK SET ?
1. FULL OFEN
2. 3/4 DFEN
3. 1/2 OFEN
4. 1/4 DFEN
?1
FHYSICAL FARAMETEFS
\begin{tabular}{ll}
\(H \mathrm{~S}=\mathrm{E}\) & \(\mathrm{G}=980\) \\
\(\mathrm{CD}=1\) & \(\mathrm{CD}=1\) \\
\(\mathrm{A1}=1.1\) & \(\mathrm{AD}=1.38\) \\
\(\mathrm{~A}=200\) &
\end{tabular}
CONTFOL FARAMETEFS
ENTER KCO1O
ENTER TF FOR INTEGFAL DONTFOL (O IF NONE DESIFED)?O
ENTEF TD FOF DIFFEFENTIAL CONTROL (O FOF NDNE)?O
INITIAL VALLUES
WHAT IS YOLF INITIAL LEVEL IN TANK I (S TO 25 CM)?10
INFUT THE STEF CHANGE IN THIS CONTEDL VARTABLEOI
INFUT THE LOAD VAFIABLE (CC/MIN)?O
VAFIABLE VALUES
H1(0)=10 H2(0)=9.24
FID=2552 FL=O
SET FOINT 11
GET FQINT VOLTAGE 4.8S
DESIGN VOLTAGE \Xi.8B
```

Figure 5-3. Results For Proportional-Integral Control Of The Nonlinear System.

Figure 5-3. - Continued.

TIME	TANK 1	TANK2			
(SEC)	(CM)	(CM)	41	11.16	10.28
0	10	9.24	42	11.15	10.28
1	10.1	9.24	43	11.14	10.28
2	10.19	9.26	44	11.13	10.28
3	10.28	9.29	45	11.12	10.27
4	10.36	9.32	46	11.11	10.27
5	10.44	9.36	47	11.11	10.26
6	10.5	9.4	48	11.1	10.26
7	10.57	9.44	49	11.09	10.25
8	10.63	9.48	50	11.08	10.25
9	10.69	9.53	51	11.07	10.24
10	10.74	9.57	52	11.06	10.23
11	10.79	9.62	53	11.06	10.23
12	10.84	9.66	54	11.05	10.22
13	10.88	9.71	55	11.04	10.21
14	10.92	9.75	56	11.04	10.21
15	10.96	9.79	57	11.03	10.2
16	10.99	9.84	58	11.02	10.2
17	11.03	9.88	59	11.02	10.19
18	11.06	9.91	60	11.01	10.18
19	11.08	9.95	61	11.01	10.18
20	11.11	9.98	62	11	10.17
21	11.13	10.02	63	11	10.17
22	11.15	10.05	64	11	10.16
23	11.16	10.08	65	10.99	10.16
24	11.18	10.1	66	10.99	10.15
25	11.19	10.13	67	10.99	10.15
26	11.2	10.15	68	10.99	10.15
27	11.2	10.17	69	10.98	10.14
28	11.21	10.19	70	10.98	10.14
29	11.21	10.21	71	10.98	10.14
30	11.21	10.22	72	10.98	10.13
31	11.21	10.24	73	10.98	10.13
32	11.21	10.25	74	10.98	10.13
33	11.21	10.26	75	10.98	10.13
34	11.21	10.27	76	10.97	10.12
35	11.2	10.27	77	10.97	10.12
36	11.2	10.28	78	10.97	10.12
37	11.19	10.28	79	10.97	10.12
38	11.18	10.28	80	10.97	10.12
39	11.17	10.29			
40	11.17	10.29			

Equation 5-2 gives the value for H_{2}.

$$
\begin{equation*}
\mathrm{H}_{2}\left(\mathrm{t}_{0}+\Delta t\right)=\mathrm{H}_{2}\left(t_{0}\right)+\frac{\mathrm{n}_{1}+2 \mathrm{n}_{2}+2 \mathrm{n}_{3}+\mathrm{n}_{4}}{6} \tag{eq.5-2}
\end{equation*}
$$

The value of k_{1} is found from equation 5-3.

$$
k_{1}=\Delta t * f\left(H_{1}\left(t_{0}\right), H_{2}\left(t_{0}\right)\right)
$$

(eq. 5-3)

Where $\mathrm{f}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)$ is the time derivative of H_{1} calculated by equation 3-7. In the same manner n_{1} is found by equation 5-4.

$$
\mathrm{n}_{1}=\Delta t * g\left(\mathrm{H}_{1}\left(\mathrm{t}_{0}\right), \mathrm{H}_{2}\left(\mathrm{t}_{0}\right)\right)
$$

(eq. 5-4)

Where $\mathrm{g}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)$ is the time rate of change of H_{2} as found in equation 3-8. The definition of k_{2} is shown in equation 5-5.

$$
\mathrm{k}_{2}=\Delta \mathrm{t}^{*} \mathrm{f}\left(\mathrm{H}_{1}\left(\mathrm{t}_{0}\right)+\mathrm{k}_{1} / 2, \mathrm{H}_{2}\left(\mathrm{t}_{0}\right)+\mathrm{n}_{1} / 2\right)
$$

In the same manner, n_{2} is given by equation 5-6.

$$
\mathrm{n}_{2}=\Delta t * \mathrm{~g}\left(\mathrm{H}_{1}\left(\mathrm{t}_{0}\right)+\mathrm{k}_{1} / 2, \mathrm{H}_{2}\left(\mathrm{t}_{0}\right)+\mathrm{n}_{1} / 2\right)
$$

(eq. 5-6)
k_{3} is given by equation $5-7$.

$$
k_{3}=\Delta t * f\left(H_{1}\left(t_{0}\right)+k_{2} / 2, H_{2}\left(t_{0}\right)+n_{2} / 2\right)
$$

(eq. 5-7)

Equation $5-8$ yields n_{3}.

$$
\mathrm{n}_{3}=\Delta \mathrm{t} * \mathrm{~g}\left(\mathrm{H}_{1}\left(\mathrm{t}_{0}\right)+\mathrm{k}_{2} / 2, \mathrm{H}_{2}\left(\mathrm{t}_{0}\right)+\mathrm{n}_{2} / 2\right)
$$

The value of k_{4} is found by equation 5-9.

$$
k_{4}=\Delta t * f\left(H_{1}\left(t_{0}\right)+\mathrm{k}_{3} / 2, \mathrm{H}_{2}\left(\mathrm{t}_{0}\right)+\mathrm{n}_{3} / 2\right)
$$

To find n_{4}, equation $5-10$ is used.

$$
\mathrm{n}_{4}=\Delta \mathrm{t} * \mathrm{~g}\left(\mathrm{H}_{1}\left(\mathrm{t}_{0}\right)+\mathrm{k}_{3} / 2, \mathrm{H}_{2}\left(\mathrm{t}_{0}\right)+\mathrm{n}_{3} / 2\right)
$$

Results of the Runge-Kutta solution and a comparison to the previously calculated Euler's method are shown in Figure 5-4 for Proportional only Control and Figure 5-5 for Proportional-Integral Control. As can be seen by these results there are no major differences in the two solutions. Since an analytic solution does not exist, this lack of a difference is an opportunity for future study of the two nonlinear solutions. But for this paper's purpose it is not required and all future references to the nonlinear system will imply the Euler's solution.

Time	Euler's	Runge-Kutta	Euler's	Runge-Kutta
0	10	10	9.24	9.24
5	10.36	10.36	9.34	9.35
10	10.54	10.53	9.51	9.52
15	10.64	10.64	9.65	9.65
20	10.72	10.72	9.75	9.76
25	10.77	10.77	9.83	9.84
30	10.81	10.81	9.89	9.9
35	10.83	10.83	9.93	9.95
40	10.85	10.85	9.97	9.98
45	10.87	10.87	9.99	10
50	10.88	10.88	10	10.02
55	10.88	10.89	10.02	10.03
60	10.89	10.89	10.02	10.04
65	10.89	10.9	10.03	10.05
70	10.89	10.9	10.03	10.05
75	10.9	10.9	10.04	10.05
80	10.9	10.9	10.04	10.06

Figure 5-4. Proportional Only Control Comparison For The Nonlinear System.

Time	Euler's	Runge-Kutta	Euler's	Runge-Kutta
0	10	10	9.24	9.24
5	10.44	10.41	9.36	9.37
10	10.74	10.71	9.57	9.58
15	10.96	10.93	9.79	9.79
20	11.11	11.08	9.98	9.98
25	11.19	11.17	10.13	10.12
30	11.21	11.2	10.22	10.22
35	11.2	11.19	10.27	10.27
40	11.17	11.16	10.29	10.28
45	11.12	11.12	10.27	10.27
50	11.08	11.07	10.25	10.25
55	11.04	11.03	10.21	10.22
60	11.01	11	10.18	10.19
65	10.99	10.98	10.16	10.16
70	10.98	10.97	10.14	10.14
75	10.98	10.96	10.13	10.13
80	10.97	10.96	10.12	10.12

Figure 5-5. Proportional-Integral Control Comparison For The Nonlinear System.

CHAPTER VI

COMPARISON OF RESULTS

Plotting the results of the proportional only control solutions in figures 6-1 and 6-2 show a comparison of the linear and nonlinear solutions. In this example, no noticeable difference occurred between the two systems. The nonlinear system reacts slightly slower, but at no point does it differ by more than $1 / 2 \%$. In both instances the final steady state values are the same. By these results the linearization appears to hold throughout. In proportional only control, the linear model displayed no major faults.

For Proportional-Integral control, as displayed in figures 6-3 and 6-4, no major difference between the linear and nonlinear solutions appear. Once again the nonlinear system lags behind the linear model. No difference appeared in the steady state values either. From these results, the linear model appears to also hold for proportional-integral control.

Figure 6-1. Height Of Tank 1 vs Time Proportional Control Only.

Figure 6-2. Height Of Tank 2 Vs Time Proportional Control Only.

Figure 6-3. Height Of Tank 1 Vs Time Proportional-Integral Control.

Figure 6-4. Height of Tank 2 Vs Time Proportional-Integral Control.

SUMMARY

This report investigated the comparison of linearized and nonlinearized solutions of a nonlinear physical situation. The system was modeled through the relationships of height to voltage, voltage to pump flow, tank flow rates and orifice flows. The system was then linearized and an analytic solution was calculated using linear control theory and Laplace Transform techniques. A nonlinear system simulation found the exact solution using the model's flow rate equations as difference equations.

Results for these two different solution techniques were obtained and compared. No major differences were apparent between the linearized and nonlinearized solutions. The only perceptable difference between these solutions was a slight lag between the linear and actual nonlinear result. This lag arose in both proportional only and proportional-integral control situations. In both of these situations, the linearized and nonlinearized solutions attained the same steady state value.

In conclusion, this paper has shown that for a nonlinear system under proportional only or proportional-integral control, a linearization can be used to find an analytical solution that closely resembles the exact numerical solution. This analytical solution sufficently replicates the exact numerical system to use modern control theory techniques for subsequent studies in the variation of proportional gain, reset time and the effects of a change in step size of the reference variable on the system.

APPENDIX

REFERENCE LISTING FOR COMPUTER MODEL OF THE NONLINEAR SYSTEM AND ASSOCIATED VARIABLE DESCRIPTIONS

```
H3 = HEIGHT OF ORIFICE 3 (H3)
```

CDl = DISCHARGE COEFFICIENT ORIFICE 1 (CDI)
CD2 $=$ DISCHARGE COEFFICIENT ORIFICE 2 ($C_{D 2}$)
$\mathrm{G}=\mathrm{GRAVITATIONAL}$ CONSTANT (g)
$A=$ AREA OF TANK (A)
Al $=$ CROSS SECTIONAL AREA OF ORIFICE 1 (a_{1})
A2 $=$ CROSS SECTIONAL AREA OF ORIFICE $2\left(a_{2}\right)$
$K C=$ PROPORTIONAL GAIN (K_{C})
$T R=\operatorname{RESET} T I M E\left(T_{R}\right)$
$T D=$ DERIVATIVE TIME (T_{D})
Hl $=$ HEIGHT OF TANK $1\left(\mathrm{H}_{1}\right)$
H2 $=$ HEIGHT OF TANK $2\left(\mathrm{H}_{2}\right)$
HSP $=$ SET POINT HEIGHT ($\mathrm{H}_{1 \mathrm{R}}$)
$F L=L O A D$ VARIABLE INTO TANK $2\left(F_{L}\right)$
FlD $=$ ORIGINAL PUMP FLOW (F_{1})
$\mathrm{VD}=$ ORIGINAL MOTOR VOLTAGE $\left(\mathrm{v}_{\mathrm{m}}\right)$
$\mathrm{VS}=$ REFERENCE VOLTAGE ($\mathrm{v}_{1 \mathrm{R}}$)
$\mathrm{V}=\mathrm{VOLTAGE}$ OF TANK $1\left(\mathrm{v}_{\mathrm{l}}\right)$
EV = DIFFERENCE FROM REFERENCE (e)
$\mathrm{VM}=\operatorname{VOLTAGE}$ TO THE MOTOR (v_{m})
Dl $=$ RATE OF CHANGE OF HEIGHT IN TANK 1 ($\frac{d H_{3}}{d t}$)
D2 $=$ RATE OF CHANGE OF HEIGHT IN TANK 2 ($\frac{d H_{2}}{d t}$)

Definitions of Nonlinear System Variables With Their Linear System Equivalent in Parentheses

```
DT = TIME STEP
PTSP = NUMBER OF TIME STEPS PER PRINTING
O(A) = VOLTAGE-HEIGHT RELATIONSHIP eqn. 2-3
X(A) = FLOW-VOLTAGE RELATIONSHIP eqn. 2-1
A = DUMMY VARIABLE
CNF = TOTAL OF OPEN RADIUS }\mp@subsup{}{}{2}\mathrm{ FOR ORIFICE I
A$ = INPUT VARIABLE TO SIGNIFY OPEN HOLE "Y" PLUGGED
"N" OPEN
B = SIGNIFIES OPENING OF TAP
Cl = CONSTANT DESCRIBING ORIFICE l
C2 = CONSTANT DESCRIBING ORIFICE 2
HSTP = STEP CHANGE IN THE REFERENCE VARIABLE
PEV = PREVIOUS TIME STEP'S ERROR
TTE = TOTAL ERROR
T = RUNNING TIME
L = COUNTS PRINT STEPS
W = COUNTS TIME STEPS
```

```
.0 1:%:1
```



```
OH REN
40 DT = .1
50 F'TSF = 10
SO REE|
7O FEN VOLTAGE-HEIGHT RELATIUNS
        HIF FOF TANK 1
80 FEM
90 DLF FiN U(A) = .000㬝 * A.. 3
        -.02214 * A = 2 + . 47795 *
        A+1.176b
100 FEM
110 FEM FLUMF-VOLTHOE FELAILUNSH
        IF
120 FEM
130 DEF FN X(A) = (.. 4%.170 *
        A * 2 + 102S.e * in - 687.28)
        / SO
    140 FEEII
15O FEM FHYSILAL FAKFIMETEFS
100 FEM
170 H3=3
100 CD1 = 1
190 CD2 = 1
200G = 760
210 A = 200
        FFINT "CHOUSE A TARN EUNH LGU
        Ei,TION"
230) CNF = (.317) \cdots :
2+O FHIINT "WHOCH HOLES DO YOU WI
        SH FLUH|ED?"
2SG FH/INT " (Y=YES,N=NO)"
ZoO FRLHT "1.27 LM ";
2%O [NFUT G%:
2GO IF HF = "N" THEN CNF =: CMF' -
        (1.27) 2
250 FKN1N1 ".75 CM ";
300 INFUT HEF
310 IF AF = "N" THEN CHF= CNFF+
        (.95) . 2
30 FF[IHT ".035 CM";
#%O INFUT F.&
340 LF AF = "N" THEN CNF = CNF r
        (.0S5; 2
350 H1 = LNF * 3.14 ; 4
SSO PFINT
370 FRINT "HOW DO YOUS WHNN THE I
        fif OF THE SECOOND Tarsk SET '""
```

```
740 FFFHNT "INFUTT THE STEF CHANGE
                IN THIS CONTFOI VAFIABLE";
TEO INFUT HSTF
GO HSF = H1 + HSTF
*79) FRIINT "TNFUIT THE LOAD VAFIAB
        L.E (CL/MINS)":
70% IHFIT HL
7%%1% = FL ; 60
EOg H% = H1- (CO2* STRF (CL.
        2+OO}2)\times(111-H3)-FL
        [2 2!) (2
81O F1D = C1 * SDR (H1 \cdots H2:
F2い リD=10.4-1.105* SQR (77.
        SES - F1D!
8% VS = FN D(HSF)
84O FRRINT
A5O FFINT "VARIABLE VALIIFS"
86O FFINT
RO FFFINT "H1(O) = " INT (H1 * 1
        (0): 1OO,"H2(0) =" INT (H2 *
        (60) / 100
BRN FFIINT "F1D = " INT {F1D * 600
        O):100."FL = " INT (FL * b
        000) / 100
QGO FRINIT "SFT FOINT " INT (HGF *
        100) , 100
OOO FFETNT "SET FOINT VOLTAGE " INT
        (VS * 100) / 100
Q10 FFINT "DESIEN VOITTABE " INT
        (VD * 100) / 100
92O FFEINT
O-O FEM SFT DTHEF: INITTAL VA!UE
        G
740 FEM
750 % FND(H1)
G60 EV = V'S -V
970VM =VD + KC * (EV + TD * EV ;
        OT)
GGO PEV = 0
9GO TTE = 0
1000 IF UM > 10 THEN UM = 10
101! IF UM < 2 THEN 1OSO AND F1 =
1020 F1 = FN X (VM)
10-0 D1 = (F1 - FID) / A
1040 D2 = - - 
1口5NT}T=
1&&" RFINT "TTME"."TANH1","TANHZ
```


1080	FFINT INT（T），INT（ H 1
	$\begin{aligned} & 00) / 100 \text {, INT }\left(H_{2}^{\prime} * 100\right) / \\ & 100 \end{aligned}$
1090	FEM
1100	REM STEF WITH TIMESTEF DT
1110	REM FFINTSTEF FT
	SF＇
1120	FOR L $=1$ TO RO
1130	FOR $\omega=1$ TO FTSF
1140	FEM
1150	FEM FIND NEW VALUES
1160	FEM
1170	$T=T+D T$
1180	$\mathrm{H}_{1}=\mathrm{H}_{1}+\mathrm{D} 1 * \mathrm{DT}$
1120	$\mathrm{H}_{2}=\mathrm{H}_{2}+\mathrm{D} 22^{*} \mathrm{DT}$
1200	$\mathrm{FO}=\mathrm{C} 2^{2}$－SCF $\left(\mathrm{H}_{2}-\mathrm{H}_{3}\right)$
1210	$\mathrm{F} 2=\mathrm{C} 1 *$ SCR $\left(\mathrm{H1}-\mathrm{H}_{2}\right)$
1220	$V=F N O(H 1)$
1こ30	$E V=V S-V$
1240	$\begin{aligned} & T T E=T T E+(F E V+E V) * D T / \\ & 2 \end{aligned}$
1250	$\begin{aligned} & V M=V D+V C *(E V+T T E \\ & F+T D *(E U-F E V) \quad D \Gamma \end{aligned}$
1260	FEV $=E V$
1270	IF VM＞ 10 THEN VM $=10$
1200	IF UM＜2 THEN 1 IOO AND F1＝ O
1290	$F_{1}=F N \times(V M)$
1300	$\mathrm{D}_{1}=\left(F_{1}-F_{2}\right) / A$
1310	$D 2=(F 2+F L-F O) / A$
1320	NEXT W
1－30	FEINT TNT（T＋－5），INT（H
	1 ＊10n：10\％，INT（18＊ 10
	a）$/ 1 \cdots$
10	r－+

BIBLIOGRAPHY

Conte, S. D., and deBoor, C., 1972. Elementary Numerical Analysis: An Algorithmic Approach, McGraw Hill.

D'Azzo, J. J., and Houpis, C. H., 1975. Linear Control System Analysis And Design, McGraw-Hill.

Kreyszig, E., 1979. Advanced Engineering Mathematics, John Wiley \& Sons.

Weber, T. W., 1973. An Introduction To Process Dynamics And Control, John Wiley \& Sons.

Weidner, R., and Sells, R., 1973. Elementary Classical Physics, Allyn and Bacon Inc.

Wellstead, P. E., 1981. Coupled Tank Apparatus. Tecquipment.

