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ABSTRACT 

In today's linear control systems, exact solutions can 

be obtained by the use of Laplace Transforms in the 

frequency domain. In dealing with nonlinear systems, exact 

solutions are not always achievable. For this reason, it is 

necessary to linearize the system and then apply frequency 

response methods. 

This paper shows the comparison of a nonlinear system 

with the linearized model of the same system. For both 

proportional and proportional-integral control, the response 

to a unit step change in the set point showed minimal 

difference between the linearized and nonlinear system. 
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CHAPTER I 

INTRODUCTION 

Control Theory had its origins in the 1700s with Jam~s 

Watt's centrifugal governor for the speed control of a steam 

engine. Due to its proportional-control action, the Watt 

governor resulted in a static error of engine speed. To 

eliminate this error, an integral control action was 

implemented. In this instance, the integral action created 

an unstable condition. Without modern tools, stable 

solutions could only be obtained by experimentation and 

intuition. 

In the 1900s, the advent of instruments and regulators 

for process and power industries created a need for theory 

to replace intuition in the design of control systems. The 

use of differential equations and the Routh-Hurwitz 

stability criteria became more widespread. These 

applications were still constrained to low-order and simple 

systems. 

Due to World war II, a large interest in weapon 

position-control developed. This development spurred the 

subsequent development of the frequency-response and 

root-locus methods. These two methods form the core of 
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classical control theory. Basic feedback control soon 

included such problems as sample-data control, random-signal 

systems and some phenomena caused by system nonlinearities 

and nonlinear control. Recent developments are geared 

towards finding optimal control for both deterministic and 

stochastic systems. 

In today's linear control systems, exact solutions can 

be obtained by using Laplace Transforms. While dealing with 

non-linear systems, exact solutions are not always 

achievable. For this reason, it is necessary to linearize 

the system and then apply frequency response methods. In 

most practical cases, the main concern is with the stability 

of the non-linear system. Approximate solutions and 

stability checks are obtained by applying Laplace Transform 

techniques to the linearized system. 

In this paper, a comparison of a nonlinear system with 

its linearized model will show how both differ in response 

to a unit step input. This comparison should show if the 

linear model fails and if so, by how much. A study of how 

any failure can be affected will be explored. 

This paper will first describe the nonlinear system. 

The real-life tanks and pumps will be physically described 

and then modeled to arrive at a nonlinear system. A 
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linearization will be conducted and linear control theory 

will be applied to arrive at an exact linear solution. A 

computer simulation will then numerically calculate the 

actual nonlinear numerical solution. A comparison of the 

results should show any failures of the linear model. 



CHAPTER II 

PHYSICAL SYSTEM 

The nonlinear system to be controlled is a series of 

two tanks attached to a controller and pump. A diagram of 

the tank apparatus is depicted in Figure 2-1. 

The two tanks are connected by four holes. Three of 

these holes are at a height of 3 cm above the base of the 

tank and can be closed off. Their diameters are 1.27 cm, 

.95 cm and .635 cm. The other hole, .317 cm in diameter, is 

at a height of 1.5 cm and remains open at all times. The 

total cross-sectional area of the four holes, a1, is the 

cross sectional area of orifice one. This orifice also has 
-

a discharge coefficent of Col· 

The second tank has two input flows, F2 and FL• F2 is 

the flow of liquid between the two tanks and FL is a load 

flow that is supplied from a source outside of the system. 

The output flow of the second tank, Fo, is through a valve 3 

cm from the base of the tank. This valve is an adjustable 

tap that creates orifice two. Fully open, the diameter of 

the tap is .70 cm. Orifice two has a discharge coefficient 

Co2 and cross-sectional area a2· 

4 
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A A 

Figure 2-1.Tank Apparatus. 



F1, according to a voltage supplied to its motor, VM· This 

voltage is supplied from a controller which receives a 

voltage input, V1, from a depth sensor. The depth sensor 

transforms the variable height of tank one, H1, into a 

voltage, V1. The height of orifice two, H3, remains fixed 

at 3 cm. 

There are several different types of parameters in the 

system. Parameters such as a1, a2, Colr Co21 H3 and the 

cross-sectional area of each tank, A, (A = 200 cm2 in this 

system) are fixed by the physical nature of the system. 

6 

Parameters such as the proportional gain, Kc, the reset 

time, TR, and the derivative time, T0 , are input into the 

system. These three control parameters create which type of 

controller action the system will follow. This paper will 

only investigate two types of controller action. These tw0 

types are proportional control <Kc= 10, TR =e, To= 0) and 

proportional-integral control <Kc= 10, TR= 10, To= O>. 

The two remaining parameters are used only in the 

linearized system. The pump motor constant, Gp, and the 

depth sensor constant, G0 , both depend on operating 

conditions. Gp is the small change in pump flow f1 wheri a 
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small change in voltage to the motor, vM, is supplied at 

original voltage Vm· This is an approximation to the 

derivative of the relationship between F1 and V1 evaluated 

at some constant Vm· In much the same way, Go is the small 

change in voltage to the controller, v1 1 when a small change 

in the height of tank one, h1 1 occurs at some original 

height H1. The derivation of Gp begins by finding the 

relationship between VM and F1 by applying a least-squares 

fit polynomial approximation to actual data. From Figure 

2-2 this relationship is given by: 

F1 = f(VM) = -49.176VM2 + 1023.8VM -687.28 

60 (eq. 2-1) 

The next step is finding the rate of change by 

differentiating equation 2-1. 

dF1 = -98.352VM + 1023.8 

dVM 60 (eq. 2-2) 

Gp is then found by evaluating equation 2-2 at the 

original voltage VM· 

= dF1 = -l.6392VM + 17.063 

(eq. 2-3) 
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To derive G0 , the same procedure is followed. First, 

the relationship between H1 and V1 must be found by applying 

a least-squares fit polynomial approximation to actual data. 

From Figure 2-3, this equation is given by equation 2-4. 

V1 = f(H1) = .0008lH13 - .02214H12 + .47795H1 + 1.1766 

( eq. 2-4) 

Differentiating equation 2-4 yields equation 2-5. 

dV1 = .00243H12 - .04428H1 + .47795 

dH1 (eq. 2-5) 

-And then evaluating equation 2-5 at H1 gives equation 2-6. 

Go = v1 = 

~1 
= .00243812 - .0442Bii1 + .47795 

h1 dH1 

- (eq. 2-6) H1= H1 
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CHAPTER III 

SYSTEM MODELING 

Since the system has already been described physically, 

it will now be described with dynamic equations. The first 

equations will be those that describe the time rate of 

change of the heights, H1 and H2, in terms of the flow 

variables, F1, F2, FL and Fo, and physical parameters. 

Equations for the flows, F0 and F2, in terms of physical 

parameters and height variables, H1 and H2, will be next 

derived. Finally, the steady state relationship for H2 in 

terms of H1 and FL will be found. Assuming the system is 

initially in steady state, this will enable the initial 

height of tank two to be found from the height in tank one 

and the load variable. For this model, orifice one shall 

have all but the largest hole open Ca1 = 1.109) and the tap 

on orifice two will be wide open Ca2 = .384). No load 

variable will be applied (FL = 0) and tank one is initially 

at a height of 10 cm CH1 = 10). With these two sets of 

equations, the goal of comparing linear and non-linear 

solutions can be met. The time rate of change of H1 and H2 

is found by deriving dH1 and dH2. 

dt dt 

11 
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The rate of change of volume of a tank is equal to the 

rate of volume into the tank minus the rate of volume out 

of the tank. This implies the rate of change in the volume 

of tank one CV1> is described by equation 3-1. 

dV1 = F1 - F2 

dt ( eq. 3-1) 

In the same manner the rate of change in the volume of 

tank two <V2) is given by equation 3-2. 

dV2 = (F2 + FL) - Fo 

dt < eq. 3-2 > 

Since the volume of a rectangular tank is the area 

times the height of the tank, equations 3-3 and 3-4 hold for 

this example. 

( eq. 3-3) 

< eq. 3-4) 

Since the area A is constant, equations 3-5 and 3-6 

apply. 



13 

( eq. 3-5) 

dV2 = A*dH2 

dt dt ( eq. 3-6) 

By substituting equation 3-5 into equation 3-1 and 

solving for the rate of change of height one, equation 3-7 

holds. 

dt A ( eq. 3-7) 

Following the same procedure, the rate of change in 

height two is given by substituting equation 3-6 into 

equation 3-2 and is shown by equation 3-8. 

dt A ( eq. 3-8 > 

To find F1 and F2 in terms of height variables and 

physical parameters, several steps are completed. 

First, Bernoulli's Theorem states that for Figure 3-1, 

equations 3-9 and 3-10 hold. 
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"'I ~ ! p2 

x2 

.__..._~~--~--------~~ 

WHERE P = PRESSURE 

x = HEIGHT 

r = RA~E OF FLUID FLOW 

~ = DENSITY OF FLUID 

~ = CROSS-SECTIONAL AREA 

Figure 3-1. Single Tank With Orifice 



3-12) 
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P1 + pgX1 + t pr1 2 = P2 + pgX2 + t pr22 (eq. 3-9) 

By the equation of continuity, equation 3-11 yields the 

relationship between rates of flow and cross-sectional 

areas. 

( eq. 3-11) 

For the situation depicted in Figure 3-2, applying the 

relationship in equation 3-10 yields equation 3-12. 

(eq. 

Substituting equation 3-11 into equation 3-9 yields 

equation 3-13. 

P1 + pgX1 + tpr12 = P1 + pg(X3 - X2> + pgX2 + tpr22 

( eq. 3-13 > 

Subtracting P1 from both sides, regrouping and dividing 

by the density yields equation 3-14. 
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Figure 3-2.Dual Connected Tanks. 
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( eq. 3-14) 

Equation 3-11 can be rewritten as shown in equation 

3-15. 

Ceq. 3-15) 

Substituting the simplified equation 3-14 into equation 

3-15 and solving for r22 yields equation 3-16. 

r22 = 2g(X1 - X3) 

1 - ( (l 2/ (l 1 ) 2 ( eq. 3-16) 

By finding the square root of both sides of equation 

3-16, r2 is shown by equation 3-17 after some regrouping. 

= v'2gCX1 - X3) 

a 1 2 - a 2 2 Ceq. 3-17) 

Since Figure 3-2 is a sharp-edged orifice and the 

volume flowrate through such an orifice equals the 

cross-sectional area of the orifice times the rate of flow 
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through the orifice, the volume flowrate for Figure 3-2 is 

given by equation 3-18. 

Volume = ( a2) 1 

Flowrate ( eq. 3-18) 

Therefore the tank in Figure 2-1 has a flowrate out of 

the first tank given by equation 3-19. 

F2 = a1 A \f2gvfH1 - H2 

A2 - a12 (eq. 3-19) 

Substituting the variables that describe the flowrate 

out of the second tank into equation 3-18 yields equation 

3-20. 

A 

( eq. 3-20) 

Upon regrouping equation 3-19 and calling the second 

factor the discharge coefficient c0 1, equation 3-21 

describes F2· 

( eq. 3-21) 



Fo is found in the same manner with the second factor 

as the discharge coefficient Co2 and is calculated with 

equation 3-22. 

19 

(eq. 3-22) 

Since A >> a1 and A >> a2 for Figure 2-1, both Col and 

c0 2 approximately equal 1. 

Finally, using equation 3-22, the steady state 

relationship for H2 in terms of H1 and FL can be found. 

Since at steady state dH2 = 0, equation 3-8 yields equation 

3-23. dt 

dt A (eq. 3-23) 

Solving for Fo in terms of F2 and FL gives the 

relationship in equation 3-24. 

(eq. 3-24) 

Substituting equations 3-21 and 3-22 into equation 3-24 

gives the following equation. 
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co2a2~ V82 - H3 = co1a1v-:rgvH1 - R2 +FL 

C eq. 3-25) 

To solve this let y = VH1 - H2, then y2 = H1 - H2 and 

H2 = H1 - y2. Substituting these last two equations into 

equation 3-25 gives equation 3-26. 

Squaring both sides of equation 3-25 yields equation 

3-27. 

Co22a222g[ < H1 - H3 > - y2] = Co1 2a1 22gy2 + 

2FLC01arj2gy + FL2 (eq. 3-27) 

Rewriting equation 3-27 as a quadratic gives equation 

3-28. 

O=CC01 2a1 2+Co2 2a2 2 >y 2+FLC01a1fiY+FL 2-co2 2a2 2 <H1-H3> 

yg 2g 

C eq. 3-28 ·) 

Solving equation 3-28 for the unknown y and simplifying 

yields equation 3-29. 
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y=-FLC01a1±.Co2a2vc'ii1 ~ H3 > <Co1 2a1 2+cn2 2a2 2 > 2g - FL 2 

v'29<co12a12+co22a22> 

( eq. 3-29) 

Equation 3-29 gives two solutions. But since by 

definition y is the square root of the differences in 

height, it must be greater than zero. The negative solution 

can then be disregarded and equation 3-30 gives the proper 

result. 

y= Cn2a2 V< fi1 - H3 > < Co1 2a1 2+Co2 2a2 2 > 2g-FL 2 - FLC01 a1 

{29<co12a12+co22a22> 

( eq. 3-30) 

Applying the definition of y and solving for H2, the 

desired solution is achieved and given by equation 3-31. 

H2=H1 - Co2atf H1 ...:H3) ( Co1 2a1 2+Co2 2a2 2 )2g-FL 2---FLC01a1 

~2g<Co12a12+co22a22> 

( eq. 3-31) 



CHAPTER IV 

LINEAR SYSTEM 

The non-linear system has been found in terms of 

physical parameters, operating parameters, control 

parameters and variables. To control a linearization of the 

system in Figure 2-1 several steps must be completed. 

First, a feedback loop is described as in Figure 4-1. Using 

this loop, the unknown characteristics, Go and Gp, must be 

found as shown back in Chapter Two. A Taylor's series will 

be used to find the unknown system transfer function, G(s). 

The feedback loop will then be applied and the control 

height h1Cs) will be found in response to the change in 

reference height, h1RCs). Laplace Transform techniques will 

be used in the two different types of control. For 

proportional only CKc = 10, TR =ao, To= 0) and 

proportional-integral <Kc = 10, TR = 10, To = 0) control, 

h1(t) and h2(t) will be found. After finding these small 

changes, H1Ct) and H2Ct) will be found. 

Finding the depth constant, G0 , and pump constant, Gp 

for this system begins by applying the initial conditions 

H1 = 10 and FL = O. By substituting these values into 

equation 3-34, H2 is 9.24 cm. Inserting this value into 

equation 3-21, yields F1 as 42.6 cc/sec. After finding this 

22 
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flow and placing this into equation 2-4, VM is found to be 

3.9 volts. Finally from equations 2-3 and 2-6, Go is .278 

volts/cm and Gp is 10.67 cc/sec per volt. 
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To find G(s), the pump flow as a function of time first 

must be found. For a small change in pump flow, f1Ct), the 

total flow of fluid into tank one, F1<t>, is described by 

equation 4-1 where F1 is some original flow. 

(eq. 4-1) 

In the same manner equations 4-2 and 4-3 describe the 

heights of tank one and two for small changes in height, 

h1Ct) and h2(t), and original heights gland H2. 

Ceq. 4-2) 

(eq. 4-3) 

By differentiating equations 4-2 and 4-3, equations 4-4 

and 4-5 are found. 

Ceq. 4-4) 

(eq. 4-5) 



By using a Taylor's series with small changes hi and 

h2, the flow F2 is given by equation 4-6. 

25 

( eq. 4-6) 

As equation 4-7 shows, F0 can also be written in a 

Taylor's series. 

Fo = Fo + oF0 h1 + 8Fo h2 

0H1 0H2 (eq. 4-7) 

-' - - -
H1,H2 H1,H2 

By differentiating equation 3-21 and substituting into 

equation 4-6, equation 4-8 is found. 

Co1a1J _ g 

2(H1 - H2> 

( eq. 4-8) 

Regrouping like terms and rewriting yields equation 4-9 

F2 = F2 + k1<h1 - h2> 

where k1 = c0 1a1 / _ g 

'\/2cH1 - H2> ( eq. 4-9) 
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For the tank described in Chapter Two, k1 is 28.03. In 

the same manner, the flow out is given by equation 4-10. 

Fo = Fo + k2h2 

where k2 = c0 2a2 g 

Ceq. 4-10) 

For the system in Chapter Two, k2 is 3.41. 

Taking equation 3-7 and substituting into equations 

4-4, 4-1 and 4-9 yields equation 4-11. 

dt A A Ceq. 4-11) 

-Since the system is initially in steady state, F1 is 

equal to F2 and equation 4-11 can be rewritten as equation 

4-12. 

dt A A A Ceq. 4-12) 

In the same manner, equation 3-8 can be rewritten as 

shown in equation 4-13 by inserting equations 4-5, 4-9 and 

4-10. 
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dt A A A (eq. 4-13) 

Since this system is also initially in steady state and 

FL remains constant throughout the problem FL plus F2 equals 

Fo and equation 4-14 holds. 

dt A A (eq. 4-14) 

Rewriting equations 4-12 and 4-14 into matrix form 

yields equation 4-15. 

h1 -k1 k1 h1 

~ d = A A + f 1 

dt h2 k1 -k1 + k2 h2 
OJ 

A A 

(eq. 4-15) 

Since the system transfer function G(s) is h1Cs) over 

f1Cs), Laplace Transforms will be needed. By transforming 

equation 4-15 and since h1Ct=O), h2(t=0) and f1<t=O) all are 

zero, equation 4-16 holds. 
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h1(s) -k1 k1 h1(s) 1 

s = A A + ,A f1(s) 
i 

h2(s) k1 - k1+k2 h2(s) : 0 

A A (eq. 4-16) 

Regrouping, inverting and solving yields equation 4-17. 

h1(s) 

f1(s) 

h2(s) 

f1(s) 

= 1 

s2+2k1+k2s-k1k2 

A A2 

A 

( eq. 4-17) 

Therefore the system transfer function is given by 

equation 4-18. 

GC s) = 

s2+2k1+k2s-k1k2 -A A2 (eq. 4-18) 

The next step is finding the change in height h1Cs) in 

response to a small change in the reference height h1R(s). 

From Figure 4-1, it can be seen that the reference voltage 

to reference height relationship is given by equation 4-19. 

( eq. 4-19) 
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Also for Figure 4-1, the voltage/height relationship is 

given by equation 4-20. 

v1 = G0 h1 <s> ( eq. 4-20) 

By completing the loop around Figure 4-1, equation 4-21 

is found. 

( eq. 4-21) 

Substituting 4-19 and 4-20 into 4-21 yields equation 

4-22. 

( eq. 4-22) 

Solving for the first height in the frequency domain 

gives equation 4-23. 

GoGpK(s)G(s) 

1 + GoGpK(s)G(s) ( eq. 4-23 > 

Therefore, for the system in Chapter Two, this equation 

can be rewritten as seen in equation 4-24. 
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.0148K(s)(s+.157) 

s2+.297s+.00239+.0148K(s)(s+.157) 

( eq. 4-24) 

Now the change in height one in response to a unit step 

change in the reference height with proportional control 

<Kc= 10, TR=~, To= 0) can be found. Since it is a unit 

step change h1R(s) is l/s. And since this is proportional 

only control, K(s) is 10. Inserting these values into 

equation 4-24 yields equation 4-25 . 

. 148(s+.157) 

scs2+.445s+.0257) ( eq. 4-25 > 

h1Ct) will be the inverse Laplace Transform of equation 

4-25. To find this inverse, a Heaviside expansion will be 

used. The roots of the denominator are -.0682 and -.3768, 

therefore: 

where Z(s) = s + .157 

s(s+.0682)(s+.3768) ( eq. 4-26 > 

Rewriting this into a manageable form gives equation 

4-27. 
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B + 

s+.0682 

where A is the limit of n as s goes to zero, 6.109, 

B is the limit of (s+.0682)Z(s) as s goes to 

-.0682, -4.219 and C is the limit of (s+.3768)Z(s) 

as s goes to -.3768, -1.89. ( eq. 4-27) 

Finally, inverting equation 4-27 gives equation 4-28. 

h1<t> = C.904 - .624e-.0682t - .28e-.3768t> o1<t> 

( eq. 4-28) 

By inserting equation 4-28 into equation 4-2, the time 

response for the height of water in tank one is: 

H1Ct) = 10 + C.904-.624e-.0682t - .28e-.377t) o 1 (t) 

( eq. 4-29) 

To find h 2 Cs) and subsequently its response to the step 

change as a function of time, H2Ct), equation 4-14 will be 

transformed by a Laplace Transform. 

A A Ceq. 4-30) 

Solving for h 2 Cs) and inserting the values for the 

physical system gives equation 4~11. 
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.14 

s + .157 < eq. 4-31 > 

By inserting h1<s> as found in equation 4-25 and 

inverting yields equation 4-32. 

h2(t) = (.148) t_-l[YCs>] 

where Y(s) = .14(s+.157) 

Cs+.157)s(s2+.445s+.0257) ( eq. 4-32) 

Going ahead and expanding equation 4-32, yields 

equation 4-33. 

= ( . 14 8 ) J: -1[ As + 

5 

+ B + C 1 
.0682 s + .3768 

where A is the limit of sY(s) as s goes to 

zero, 5.45, B is the limit of (s+.0682)Y(s) as s 

goes to -.0682, -6.65, and C is the limit of 

(s+.3768)Y(s) as s goes to -.3768, 1.20. Ceq. 4-33) 

Inverting equation 4-33 yields the final result for 

h2(t) = ( .806 - .984e-.0682t+.178e-.3768t) s
1

ct> 

( eq. 4-34) 
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Putting equation 4-34 into equation 4-3 yields equation 

4-35. 

H2(t)=9.24+(.806 -.984e-.0682t+.178e-.3768t) o1 (t) 

(eq. 4-35) 

Figure 4-2 lists the results for H1Ct) and H2 (t) in 

response to a step change with proportional control. 

To find the change in height one in response to a unit 

step change in the reference height with integral control, 

the same steps are followed. For the problem, let Kc= 10, 

TR = 10 and To = O. Then, as before, h1R<s> is l/s and 

since this is an integral control example: K(s)= 10 Cl + 

l/10s). Substituting these values into equation 4-24, gives 

equation 4-36. 

.148(s2+.257s+.0157) 

s(s3+.445s2+.0404s+.00232) (eq. 4-36) 

Separating equation 4-36 into a workable form yields 

equation 4-37. 

h1<s> = 1 - s2 + .297s + .00236 

s s3+.445s2+.0404s+.Ou232 Ceq. 4-37) 



Figure 4-2. Hl ( t) I tt2 ( t) With Proportional Control. . 
LINEAR SYSTEM 
TIME TANKl TANK2 

41 - · - .av.oo 9.98 0 1 (I 9.24 
42 10.86 9.98 1 10. 12 9.24 
43 10.87 9.99 2 10.22 9.27 
44 10.87 9.99 3 10.3 9.3 
45 10.87 10 4 10.36 9.33 
46 10.87 10 5 10.41 9.37 : 

' 47 10.87 10 6 10.46 9.41 · 48 10.88 10 7 10.49 9.44 49 10.88 10.01 8 10.52 9.48 ' 50 10.88 10.01 9 10.55 9.51 51 10.88 10. 01 10 10.58 9.55 52 10.88 10.01 11 10.6 9.58 53 10.88 10.01 12 10.62 9.61 54 10.88 10. 02 13 10.64 9.64 55 10.88 10.02 14 10.66 9.66 56 10.89 1 (). 02 15 10.67 9.69 57 10.89 10.02 16 10.69 9.71 58 10.89 10.02 17 10.7 9.73 59 10.89 10.02 18 10.72 9.75 60 10.89 10.02 19 10.73 9.77 61 10.89 10.03 20 10.74 9.79 62 10.89 10.03 21 10.75 9.81 
6~ 10.89 10.03 ._. 22 10.76 9.82 64 10.89 10.03 23 10.77 9.84 65 10.89 10.03 24 10.78 9.85 66 10.89 10.03 2~ 10.79 9.86 . 67 10.89 10.03 26 10.79 9.87 68 10.89 10.03 27 10.8 9.88 69 10.89 10.03 28 10.81 9.9 70 10.89 10.03 29 10.81 9.9 . 71 10.89 10.03 30 10.82 '-/ • ..., 1 

. 72 10.89 10.03 31 10.82 9.92 
73 10.89 10.03 32 10.83 9.93 
74 10.89 10.03 33 10.83 9.94 
75 10.9 10.04 34 10.84 9.94 

1 o. 9 10.04 76 "7G' 10.84 9.95 
77 10. 9 10.04 

·~...I 

9.96 36 10.85 
78 10.9 10.04 37 10.85 9.96 

10.9 10.04 9.97 79 38 10.85 
10.9 10.04 9.97 80 w 39 10.86 

~ 9.98 . ~ . . 

-4l0 -- . 10.86 



By numerical methods s = -.348 is a root of the 

denominator of the second term. Therefore rewriting using 

Heaviside expansion yields equation 4-38 . 

35 

s s+.348 

• 786s+.00271 

s2+.097s+.00664 Ceq. 4-38) 

Rewriting equation 4-38 as equation 4-39, allows easy 

conversion through inverse Laplace Transforms • 

h1Cs)= 1- .214 - .786Cs+.0485) + . 0354 

s s+.348 (s+.0485)2+.06552 (s+.0485)2+.06552 

Ceq. 4-39) 

The final solution for the small change in height one 

as function of time is given by equation 4-40. 

h1 Ct) =Cl-.214e-.348t-.786e-.0485tcosC.0655t) 

+.54le-.0485tsinC.0655t))81(t) 

Ceq. 4-40) 

Substituting equation 4-40 into equation 4-2, gives the 

final solution. 

H1 Ct)=l0+ Cl- .214e-.348t -.786e-.0485tcos(.0655t) 

+.54le-.0485tsin(.0655t))81Ct) 

(eq. 4-41) 
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Substituting equation 4-36 into equation 4-31 and then 

factoring yields: 

.0207Cs + .157)(s + .1) 
------~--------

(s + .157)(s +.348)s(s2 + .097s + .00664) 

< eq. 4-42 > 

Rewriting equation 4-42 by factoring and using 

Heaviside expansions again gives the following: 

1.05( s + .0453 ] 

s2+.097s+.00664 

h2(s) = .896 + .157 

s s + .348 

( eq. 4-43) 

Writing equation 4-43 into the proper form for inverse 

Laplace Transforms gives: 

h 2 (s)=.896+ .157 -1.05 [ s + .011 - .0032 1 
---; s+.348 (s+.0485)2+.06552 (s+.0485)2+.06552 

( eq. 4-44) 

Inverting equation 4-44 yields the following solution 

for a small change in the second tank height as a function 

of time. 
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h2Ct>= Ga96 + .157e-.348t - l.05e-.0485tcosC.0655t) 

+.0513e-.0485tsin( .0655t>]81Ct) 

( eq. 4-45) 

Substituting equation 4-45 into equation 4-3 gives the 

final solution for the second tank height 

withproportional-integral control. 

H2 Ct)=9.24+ ~896+ .157e-.348t_ l.05e-.0485tcosC.0655t) 

+ .0513e-.0485tsinC.065St>]o 1 ct> 

Ceq. 4-46) 

Results for H1Ct) and H2Ct> in response to a unit step 

change in the set point with integral control are supplied 

in Figure 4-3. 



Figure 4-3- H
1
(t), H

2
(t) With Proportional-Integral Control. 

LINEAR SYSTEM 
TIME TANt<1 TANK2 
0 10 9.24 41 11.12 10.26 

1 10.13 9.25 42 11. 12 10.26 

2 10.25 9.27 43 11. 11 10.26 

3 10.34 9.3 44 11. 1 10.25 

4 10.43 9.35 45 11.09 10.25 

5 10.51 9.39 46 11.09 10.24 

6 10.58 9.44 47 11.08 10.24 

7 10.64 9.49 48 11. 07 10.23 

8 10.7 9.54 49 11 . 06 10.23 

9 10.76 9.59 50 11.06 10.22 

10 10.81 9.64 51 11. 05 10.22 

11 10.85 9.69 52 11. 04 10.21 

12 10.9 9.74 53 11. 04 10.21 

13 10.93 9.78 54 11. 03 10.2 

14 10.97 9.83 55 11. 03 10.19 

15 11 9.87 56 11. 02 10.19 

16 11. 03 9.91 57 11. 02 10.18 

17 11.06 9.95 58 11. 01 10.18 

18 11. 08 9.98 59 11. 01 10.17 

19 11. 1 10.02 60 11 10.17 

20 11. 12 10.0~ 61 11 10.16 

21 11. 13 10.08 62 11 10.16 

22 11. 14 1 o. 1 63 10.99 10.16 

23 11. 16 10. 13 64 10.99 10.15 

24 11. 16 10. 15 65 10.99 10.15 

25 11.17 10. 17 66 10.99 10.15 

26 11. 18 10.18 67 10.98 10.14 

27 11. 18 10.2 68 10.98 10. 14 

28 11. 18 10.21 69 10.98 10.14 

29 11. 18 10.23 70 10.98 10.13 

30 11. 18 10.24 71 10.98 10.13 

31 11. 18 10.24 72 10.98 10.13 

32 11. 18 10.25 73 10.98 10.13 
""t'"'::' 11. 17 10.26 74 10.98 10.13 
•J..J 

34 11. 17 10.26 75 10.98 10.12 

35 11. 16 10.27 76 10.98 10.12 

36 11. 16 10.27 77 10.98 10.12 

37 11. 15 10.27 78 10.98 10.12 

38 11. 15 10.27 79 10.98 10.12 w 
39 11. 14 10.27 80 10.98 10.12 00 

40 11. 13 10.27 



CHAPTER V 

NONLINEAR SYSTEM 

The system of equations found in Chapter Three will be 

used to evaluate the nonlinear system. These differential 

equations will be rewritten as difference equations with step 

size At. During each ~t, the equations will be used to find 

the flow rates (equations 3-21 and 3-22), use these rates to 

find the rate of change in height (equations 3-7 and 3-8) and 

then calculate the new height. This cycle will be repeated 

PTSP times and the heights will be output to the user each 

time segment of length CPTSP)*(At). After 80 of these print 

steps, the program ends. This cycle is illustrated in Figure 

5-1. 

The use of this program involves several steps by the 

user. First, the user must describe the tank settings for 

orifice one and two. For the purpose of this paper, orifice 

one is set so the 1.27 cm hole is plugged (Ans. "Y") and 

holes .95 cm and .625 cm are open (Ans. "N"). The tap for 

orifice two will be wide open (Ans. "l"). The physical 

parameters for this configuration are now displayed. The 

next entries by the user are the control parameters. The 

user is asked for the proportional gain, Kc, and the reset 

39 



FIND VOLTAGE OF TANK 1 v1 C 0) =f CH 1 C 0) ) eqn 2-4 

FIND ERROR e(O) =v1R - v1CO> 

FIND NEW MOTOR VOLTAGE VmCO)=Vm + Kc(e(O)+TDe(O)/~t) 

FIND FLOW INTO TANK l F1 ( 0 ) =f ( Vm ( 0 ) ) eqn 2-1 

FIND dH1(0) dH1 CO)= F1CO)- F1 

dt dt A 

FIND dH2CO> dH2CO>= 0 

dt dt 

AS n = 1,2,3... [tj = j At] 

FIND NEW HEIGHT l H1Ctn>=H1Ctn-1>+dH1Ctn-1> At 

FIND NEW HEIGHT 2 

FIND FLOW BETWEEN TANKS 

FIND FLOW OUT OF TANK 2 

FIND VOLTAGE OF TANK 1 

FIND ERROR 

FIND NEW MOTOR VOLTAGE 

FIND FLOW INTO TANK 1 

FIND dH1 Ctn) 

dt 

FIND dH2 ( tn) 

dt 

NEXT n 

dt 

H2<tn>=H1Ctn-1>+dH1<tn-1> At 

dt 

Fo<tn>=f<H2<tn>> 

v1<tn>=f<H1<tn>> 

eCtn>=v1R-v1<tn> 

eqn 3-22 

eqn 2-4 

f\ 

Vm Ctn) =vm +Kc { e Ctn>+. J~ e Ct i) /TR 
L•O 

+To e<tn>-e<tn-1>) 

At 

F1Ctn>=f<vm<tn>> 

dH1Ctn>= Fi<tn>-F2Ctn> eqn 3-7 

dt A 

dt A eqn 3-8 

Figure 5-1. Cycle of steps for Solving the Nonlinear System. 

40 
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time, TR. Throughout this paper Kc is ten. For proportional 

only control, as in the first example, TR= O. For this 

paper's proportional-integral control problem, example two, 

TR= 10. The final control input derivative time, T0 , is 

input. To = 0 in both of these examples. 

The initial values are then input to begin the 

simulation. These consist of the initial level in tank one 

(10 cm in both examples), the step change in the control 

variable Cl cm in both examples) and the load variable that 

describes the input into tank two (0 cc/min for these cases). 

Several informational values are output and the simulation 

begins. 

A reference listing is supplied in the Appendix. 

Sample outputs are supplied in Figure 5-2 (Proportional Only 

Control) and Figure 5-3 (Proportional-Integral Control). 

As a check for accuracy of this numerical solution by 

Euler's method, another method was attempted. The second 

method to be chosen was a fourth order Runge-Kutta solution. 

The equations that describe this solution are given as 

depicted in equation 5-1 for H1. 

H1<to+ At) = H1<to> + k1+2k2+2k3+k4 

6 (eq. 5-1) 



CHOOSE A TANK CONFIGURATION 
WHICH HOLES DO YOU WISH PLUGGED? 
( Y== ... /ES ... i···.l=i\10) 
1 .. 27 CM ?Y 
• 95 CM ?~\I 

• 63'..5 CM?N 

HOW DO YOU WANT THE TAP OF THE SECOND TANK SET ? 

1 ,. FULL OFEN 
2. ::::: / •+ DF'EN 

4.. :L / .+ DFEN 

PHYSICAL FARAMETERS 

H3 = ":"' G - -· 
CD 1 -- 1 CD2= 
:'-1 

·1 ·-
., 

1 .:'.~ -.1. .L " :-t~ 

i·~ 
.. _ 2Ci(:i 

CONTROL PARAMETERS 

E~l\!TL~F'. :<C;'7· 1 () 

980 
1 
~a .. ._1\..,...1 

42 

ENTER TR FOR INTEGRAL CONTROL CO IF NONE DESIRED>?10 
ENTER TD FOR DIFFERENTIAL CONTROL(O FOR NONE)?O 

IN IT I :~L './ALUES 

WHAT IS YOUR INITIAL LEVEL IN TANK 1 C3 TO 25 CM>?lO 

INPUT THE LOAD VARIABLE CCC/M!N)?O 

'v'AF.: I ABU::: 1v1ALUES 

F 1 D == · 2552 FL = 0 
SET F'OINT 11 
SET POINT VOLTAGE 4.83 
DESIGN VOLTAGE 3.88 

Figure 5-2. Results For Proportional Crmtrol Of _,_. 
The Nonlinear System. 



Figure 5-2. - Continued. 

TIME TANt<l TANt<2 
<SEC> <CM> <CM> 41 10.85 9.97 

0 10 9.24 42 10.86 9.98 
l 10.09 9.24 43 10.86 9.98 

2 10.18 9.26 44 10.86 9.98 

3 10.25 9.28 45 10.87 9.99 

4 10.31 9.31 46 10.87 9.99 

5 10.36 9.34 47 10.87 9.99 

6 10.41 9.38 48 10.87 10 

7 10.45 9.41 49 10.87 10 

a 10.48 9.44 50 10.88 10 

9 10.51 9.48 51 10.88 10.01 

10 10.54 9. :51 52 10.88 10.01 

11 10.56 9.54 53 10.88 10.01 

12 10.59 9.57 54 10.88 10.01 

13 10.61 9.59 55 10.88 10.02 

14 10.63 9.62 56 10.88 10.02 

15 10.64 9.65 57 10.88 10.02 

16 10.66 9.67 58 10.89 10.02 

17 10.68 9.69 59 10.89 10.02 

18 10.69 9.71 60 1 o. 8'J 10.02 

19 10.7 9.73 61 10.89 10.03 

20 10.72 9.75 62 10.89 10. 03 

21 10.73 9.77 63 10.89 10.03 

24 10. 74 9.79 64 10.89 10.03 

23 10.75 9.8 65 10.89 10.03 

24 10.76 9.82 66 10.89 10.03 

25 10.77 9.83 67 10.8'i 1 n. n ·;. 

26 10.78 9.85 68 10.89 10. ff.S 

27 10.78 9.86 69 10.89 10.03 

28 10.79 9.87 70 1 C). 89 10. o ~.s 

29 10.8 9.88 71 10.89 10.03 

30 10.81 9.89 72 10.9 10.04 

31 10. 81 9.9 73 10.9 10.04 

32 10.82 9.91 74 10. ~1 10.04 
-:r" 10.82 9.92 75 10.9 10.04 
·.J..:> 

34 10.83 9.93 76 10.9 10.04 

35 10.83 9.93 77 10.9 10.04 

36 10.84 9.94 78 10.9 10.04 

37 10.84 9.95 
79 10.9 10.04 

38 10.84 9.95 
fjl) 10. t/ 10.04 ~ 

w 
39 10.85 9.96 
40 10.85 9.97 



CHOOSE A TANK CONFIGURATION 
WHICH HOLES DO YOU WISH PLUGGED? 
(\{=\(ES, r\~=t\![!) 

1 a 27 C~1 ~:'\' 

" t~.3 5 C~1?r·· .. i 

HOW DO YOU WANT THE TAP OF THE SECOND TANK SET ? 

1. FULL OF'EN 
2 • 3 / 4 0 F' E ~\f 
3 • 1 / 2 0 F' E t...,I 
4. 1/4· OF'E!··.I 

H3 = -..:· 
C::D1= 1 
~! 1 = .. .. 

.L II j_ 

C:i -· 98() 
CD2= 1 
{42 = -:--r·: 

II ... ) :=1 

CONTROL PARAMETERS 

44 

I r· .. ! T ............. · r_, rr;._· r-...... , I r_·.·.: !.·.·.··_; 1"°'.',! 7,· i:;, •• • .1.·_1.: 1.·.· ••• _-.... _.! ... ':=- 1· I,, to; 11-·· -1· .. ,.... .. 1 .. - .... ..- r- T .. \ r·· -- - ,\tt_!t \,c. ._}t::. ·=· .L :-i.'.r.:..L)} :·' (_:i 

DI F=-FEF.'.ENT I P1L CONTF'.OL ( U FDF.: i\l[!r-..!E) r::•() 

tl.J HAT I ~: .. y' CJ L~ F.: T.t ,\ ~ T -r, T ...... / .... ! 1,'_ r-:-1.._} F~ l _ T I' ,· ..... , .'\ ... ft •· -f : -r ., ... ,- ·1 .-. c:- - ...... \ - · ~ .. 
- ., - .a. - - • - - .L ... , , r-:: ... : r:.. .!. • ... .::, i '-· .. ::: ... _.! 1_; r:1 ) :·' i i'.J 

I f\~F'fJT T~·iE :::;TEF' CHP:r,~C:it~ I r\l -rH I~; CCJf\i"TF:C)L !.../f:~-{~;.'. I PtJ3t_E:'? 1. 
I j\ j F' i_; T, i,. !, .... ;, F i r··.i. ,·:· ........ _ •. ·.i '·· ...... H.r· •• 'r•,' T. ·./ ..... : :.-·, '!_. :~ ' .-·. ;-. I h..-t T ,. I . ,_. • • - - - - - - ~ i,• i._. Lo / : • j .t I\: } :': (_) 

! 1 .'\1 ! ?r··r-· 
....... t--1 i- I_} c. ·= 

~-! 1 < () ) = :L () 
;:.-:- :L [) = 2552 FL = U 

SET POINT VOLTAGE 4.83 
DESIGN VOLTAGE 3.88 

Figure 5-3. Results For Proportional-Integral Control Of 
The Nonlinear System. 



Figure 5-3. - Continued. 

TIME TANKl TANK2 
<SEC> <CM> <CM> 41 11. 16 10.28 

0 10 9.24 42 11. 15 10.28 
1 10. 1 9.24 43 11. 14 10.28 
2 10.19 9.26 44 11. 13 10.28 
3 10.28 9.29 45 11. 12 10.27 
4 10.36 9.32 46 11. 11 10.27 
s 10.44 9.36 47 11. 11 10.26 
6 10.5 9.4 48 11. 1 10.26 
7 10.57 9.44 49 11 • 09 10.25 a 10.63 9.48 50 11. 08 10.25 
9 10.69 9.53 51 11. 07 10.24 
10 10.74 9.57 52 11. 06 10.23 
11 10.79 9.62 53 11. 06 10.23 
12 10.84 9.66 54 11. 05 10.22 
13 10.88 9.71 55 11. 04 10.21 
14 10.92 9.75 56 11. 04 10. 21 
15 10.96 9.79 57 11. 03 10.2 
16 10.99 9.84 58 11. 02 10.2 
17 11. 03 9.88 59 11. 02 10.19 
18 11. 06 9.91 60 11.01 10.18 
19 11. 08 9.95 61 11. 01 10.18 
20 11. 11 9.98 62 11 10. 17 
21 11. 13 10.02 63 11 10.17 
22 11. 15 10.05 64 11 10.16 
23 11. 16 10.08 65 10.99 10. 16 
24 11. 18 10. 1 66 10.99 10. 15 
25 11. 19 10.13 67 10.99 10. 15 
26 11. 2 10.15 68 10.99 10.15 
27 11. 2 10.17 69 10.98 10. 14 
28 11. 21 10.19 70 10.98 10. 14 
29 11. 21 10.21 71 10.98 10.14 
30 11. 21 10.22 72 10.98 10.13 
31 11. 21 10.24 73 10.98 10.13 
32 11. 21 10.25 74 10.98 10.13 
?.., 
•JoJ 11. 21 10.26 75 10.98 10.13 
34 11. 21 10.27 76 10.97 10.12 
?o:::' 11. 2 10.27 .j..J 77 10.97 10.12 
36 11. 2 10.28 78 10.97 10.12 ~ 
37 11. 19 10.28 79 10.97 10.12 U1 

38 11. 18 10.28 BO 10.97 10.12 
39 11. 17 10.29 
40 11. 17 10.29 



Equation 5-2 gives the value for H2. 

H2<to+At) = H2<to> + n1+2n2+2n3+n4 

6 

The value of k1 is found from equation 5-3. 

46 

(eq. 5-2> 

Ceq. 5-3) 

Where fCH1,H2> is the time derivative of H1 calculated 

by equation 3-7. In the same manner n1 is found by equation 

5-4. 

Ceq. 5-4) 

Where gCH1,H2> is the time rate of change of H2 as found 

in equation 3-8. The definition of k2 is shown in equation 

5-5. 

Ceq. 5-5) 

In the same manner, n2 is given by equation 5-6. 

Ceq. 5-6> 
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k3 is given by equation 5-7. 

( eq. 5-7) 

Equation 5-8 yields n3. 

(eq. 5-8) 

The value of k4 is found by equation 5-9. 

( eq. 5-9) 

To find n4, equation 5-10 is used. 

( eq. 5-10) 

Results of the Runge-Kutta solution and a comparison to 

the previously calculated Euler's method are shown in Figure 

5-4 for Proportional Only Control and Figure 5-5 for 

Proportional-Integral Control. As can be seen by these 

results there are no major differences in the two solutions. 

Since an analytic solution does not exist, this lack of a 

difference is an opportunity for future study of the two 

nonlinear solutions. But for this paper's purpose it is not 

required and all future references to the nonlinear system 

will imply the Euler's solution. 



Time --
0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 

H1 H2 

Euler's Runge-Kut ta Euler's Runge-Kut ta 

10 10 9.24 9.24 
10.36 10.36 9.34 9 .. 35 
10.54 10.53 9.51 9.52 
10.64 10.64 9.65 9.65 
10.72 10.72 9.75 9.76 
10.77 10.77 9.83 9.84 
10.81 10.81 9.89 9.9 
10.83 10.83 9.93 9.95 
10.85 10.85 9.97 9.98 
10.87 10.87 9.99 10 
10.88 10.88 10 10.02 
10.88 10.89 10.02 10.03 
10.89 10.89 10.02 10.04 
10.89 10.9 10.03 10.05 
10.89 10.9 10.03 10.05 
10.9 10.9 10.04 10.05 
10.9 10.9 10.04 10.06 

Figure 5-4. Proportional Only Control Comparison 
For The Nonlinear System. 
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Time 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 

H1 H2 

Euler's Runge-Kut ta Euler's Runge-Kut ta 

10 10 9.24 9.24 
10.44 10.41 9.36 9.37 
10.74 10.71 9.57 9.58 
10.96 10.93 9.79 9.79 
11.11 11.08 9.98 9.98 
11.19 11.17 10.13 10.12 
11.21 11.2 10.22 10.22 
11.2 11.19 10.27 10.27 
11.17 11.16 10.29 10.28 
11.12 11.12 10.27 10.27 
11.08 11.07 10.25 10.25 
11.04 11.03 10.21 10.22 
11.01 11 10.18 10.19 
10.99 10.98 10.16 10.16 
10.98 10.97 10.14 10.14 
10.98 10.96 10.13 10.13 
10.97 10.96 10.12 10.12 

Figure 5-5. Proportional-Integral Control Comparison 
For The Nonlinear System. 
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CHAPTER VI 

COMPARISON OF RESULTS 

Plotting the results of the proportional only control 

solutions in figures 6-1 and 6-2 show a comparison of the 

linear and nonlinear solutions. In this example, no 

noticeable difference occurred between the two systems. The 

nonlinear system reacts slightly slower, but at no point 

does it differ by more than 1/2%. In both instances the 

final steady state values are the same. By these results 

the linearization appears to hold throughout. In 

proportional only control, the linear model displayed no 

major faults. 

For Proportional-Integral control, as displayed in 

figures 6-3 and 6-4, no major difference between the linear 

and nonlinear solutions appear. Once again the nonlinear 

system lags behind the linear model. No difference appeared 

in the steady state values either. From these results, the 

linear model appears to also hold for proportional-integral 

control. 
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Figure 6-1. Height Of Tank 1 vs Tim= Proportional Control Only. 
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Figure 6-2. Height Of Tank 2 Vs Tlire Proportional Control Only. 
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Figure 6-3. Height Of Tank 1 Vs Ti.Ire Proportional-Integral Control. 
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Figure 6-4. Height Of Tank 2 Vs Time Proportional-Integral Control • 
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CHAPTER VII 

SUMMARY 

This report investigated the comparison of linearized 

and nonlinearized solutions of a nonlinear physical 

situation. The system was modeled through the relationships 

of height to voltage, voltage to pump flow, tank flow rates 

and orifice flows. The system was then linearized and an 

analytic solution was calculated using linear control theory 

and Laplace Transform techniques. A nonlinear system 

simulation found the exact solution using the model's flow 

rate equations as difference equations. 

Results for these two different solution techniques 

were obtained and compared. No major differences were 

apparent between the linearized and nonlinearized solutions. 

The only perceptable difference between these solutions was 

a slight lag between the linear and actual nonlinear result. 

This lag arose in both proportional only and 

proportional-integral control situations. In both of these 

situations, the linearized and nonlinearized solutions 

attained the same steady state value. 
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In conclusion, this paper has shown that for a 

nonlinear system under proportional only or 

proportional-integral control, a linearization can be used 

to find an analytical solution that closely resembles the 

exact numerical solution. This analytical solution 

suff icently replicates the exact numerical system to use 

modern control theory techniques for subsequent studies in 

the variation of proportional gain, reset time and the 

effects of a change in step size of the reference variable 

on the system. 
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APPENDIX 

REFERENCE LISTING FOR COMPUTER MODEL OF THE 
NONLINEAR SYSTEM AND ASSOCIATED VARIABLE DESCRIPTIONS 



H3 = HEIGHT OF ORIFICE 3 CH3) 

CDl = DISCHARGE COEFFICIENT ORIFICE 1 CC01> 

CD2 =DISCHARGE COEFFICIENT ORIFICE 2 CC02> 

G = GRAVITATIONAL CONSTANT Cg) 

A = AREA OF TANK (A) 

Al = CROSS SECTIONAL AREA OF ORIFICE 1 Ca1> 

A2 = CROSS SECTIONAL AREA OF ORIFICE 2 Ca2> 

KC = PROPORTIONAL GAIN (Kc) 

TR = RESET TIME (TR) 

TD = DERIVATIVE TIME (To) 

Hl = HEIGHT OF TANK 1 CH1> 

H2 = HEIGHT OF TANK 2 CH2> 

HSP = SET POINT HEIGHT CH1R> 

FL = LOAD VARIABLE INTO TANK 2 (FL) 

FlD = ORIGINAL PUMP FLOW CF1> 

VD = ORIGINAL MOTOR VOLTAGE Cvm> 

VS = REFERENCE VOLTAGE Cv1R) 

V = VOLTAGE OF TANK 1 Cv1> 

EV = DIFFERENCE FROM REFERENCE Ce) 

VM = VOLTAGE TO THE MOTOR Cvm> 

Dl =RATE OF CHANGE OF HEIGHT IN TANK 1 (~~~) 
D2 = RATE OF CHANGE OF HEIGHT IN TANK 2 ( ~~) 

Definitions of Nonlinear System Variables With 

Their Linear System Equivalent in Parentheses 
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DT = TIME STEP 

PTSP = NUMBER OF TIME STEPS PER PRINTING 

O(A) = VOLTAGE-HEIGHT RELATIONSHIP eqn. 2-3 

X(A) = FLOW-VOLTAGE RELATIONSHIP eqn. 2-1 

A = DUMMY VARIABLE 

CNF = TOTAL OF OPEN RADius2 FOR ORIFICE 1 

A$ = INPUT VARIABLE TO SIGNIFY OPEN HOLE 

B = SIGNIFIES OPENING OF TAP 

Cl = CONSTANT DESCRIBING ORIFICE 1 

C2 = CONSTANT DESCRIBING ORIFICE 2 

HSTP = STEP CHANGE IN THE REFERENCE VARIABLE 

PEV = PREVIOUS TIME STEP'S ERROR 

TTE = TOTAL ERROR 

T = RUNNING TIME 

L = COUNTS PRINT STEPS 

W = COUNTS TIME STEPS 

Description of Other variables 

"Y" PLUGGED 

"N" OPEN 
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