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ABSTRACT 

Volume gratings were studied both theoretically and experimentally in order to 

design and analyze practical volume holographic optical elements. The diffraction of 

finite (Gaussian) beams by transmission gratings is investigated. A closed form solution 

for the off-Bragg profiles is obtained, and the distortion in the resulting profiles is 

analyzed. Criteria for when the finiteness of the beam has a minimal effect on the 

angular selectivity response are given. A model is developed to investigate the cross talk 

in multiplexed gratings Experimental verification in LiNb03 and PTR glass is 

demonstrated. The diffraction efficiency and output profiles of finite beams diffracted 

from reflection gratings on and off-Bragg are investigated. Using these beams decreases 

the diffraction efficiency, and the diffracted profiles are shown to be distorted, with 

higher distortion off-Bragg. The fidelity is shown to improve with increasing grating 

strength. The output profiles of diffraction by overlap gratings is investigated. Lateral 

shift and beam distortion are observed. When the diffraction efficiency reaches 83% the 

diffracted beam is shown to split into multiple sections. A method is given to obtain a 

diffracted beam with any desired profile. It is shown that most of the previously 

mentioned effects can be corrected, however the splitting of the beam at 83% cannot. 

Multiplexing in reflection gratings is also investigated. A narrow transmission peak is 

shown to occur midway between the Bragg wavelengths of the individual gratings. By 



adding more gratings, additional peaks are obtained. Similar devices are designed using 
X 

thin film stacks. These devices have many advantages, including simpler scaling and no 

sidelobes. The number of transmission peaks is found using multi-mirror Fabry-Perot 

interferometer theory, and expressions are given for their location and width. The effects 

of including the variation in average index when modeling gratings recorded in the 
Y 

presence of absorption is presented. These effects are seen to increase as the grating type 

goes from un-slanted transmission to un-slanted reflection. Finally, the characteristics of 

plane waves incident on over-modulated transmission gratings are investigated. It is 

shown that they will experience one of three types of off-Bragg behavior. 
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CHAPTER 1 

INTRODUCTION 

k Early optical systems were composed entirely of elements whose properties are 

on the reflection and refraction of light. These included such elements as mirrors, 

and prisms. Due to the inherent simplicity of these devices, people have 

for centuries how to manipulate light with them, as well as how to combine 

into compound optical systems. Although this required considerable insight into 

properties of light, it was not until the wave nature of light was recognized that many 

n effects involving interference and diffraction could be properly explained. Once 

t i ~ n  of light as a wave was finally accepted, tools and techniques were developed to 

wave properties of light in many novel ways. 

: As our understanding of these principles increased, and our ability to manufacture 

to better tolerances improved, an additional class of optical elements was 

which has had an enormous impact on the design of optical systems. These 

&he diffi-active optical elements (DOEs). DOEs are optical components which use 

tion itself to manipulate the wavefront of the incident light. The addition of a DOE 

Vm optical system can improve performance in many ways such as reducing 



chromatization effects, reducing system weight, and even replacing one or more 

traditional components [I]. In addition, DOES can be used to create a number of devices 

which can not be made with refractives such as beam shapers, filters, head up displays 

and novel optical interconnects. 

Diffractive optical elements can be of many different types including diffraction 

gratings, surface relief structures and computer generated holograms. Similar effects 

may also be obtained from stacks of alternating high and low index layers. This work 

will however, be limited to one type, the volume holographic optical element (VHOE). 

These are simply diffractive elements produced by recording the interference pattern of 

two coherent beams in a thick material [2]. By a judicious selection of the object and 

reference beams, one can store a pattern that, upon reconstruction, will yield such things 

as a focusing wave, diverging wave or even multiple waves. These would be equivalent 

to a positive lens, negative lens, and beam splitter respectively. The selection of other 

forms for the object and reference beams can lead to even more novel structures. 

By their very nature volume holograms require thick material. This thickness has 

two advantages. First it leads to higher diffraction efficiencies for small index 

modulations (more light coupled into the diffracted beam). Second, it adds a requirement 

that there be phase matching between the incident beam and the element in order for the 

diffracted beam to contain significant energy. This allows the devices to be used as 

excellent narrowband angular and wavelength filters. 

The objective of this work is to investigate the analysis, design, and applications 

of VHOEs. All devices will be based on the simple diffraction grating, so after a brief 



on of Bragg chapter two will give a review of the mathematics of grating thtory. 

I 
Of &C many ways to describe grating behavior (modal analysis, rigorous electromagnetic 

I 'I 

(bories...) the coupled wave theory as presented by Kogelnik [3] will be the primary 

method used in this study, due to its simplicity and applicability. Since this is a one- 

dimensional theory (assuming incidence by plane waves on infinite gratings) and many of 

the problems in VHOE design and analysis are two dimensional; it must either be 

expanded to two dimensions. or used in combination with a spectral decomposition of the 

input btam. Each of these methods will be used in this work (the choice depending on 

the problem at hand), therefore a description of each method is given in chapter 2. 

Chapter 3 briefly reviews the materials of volume holography, describing their 

main characteristics, along with listing some of their strong and weak points. This is 

intended to give the reader an introduction into some of the choices from which he can 

select his material for volume holography. 

Chapters 4 and 5 are devoted to diffraction of finite beams in transmission and 

reflection holograms respectively. They will attempt to cover in some detail the main 

characteristics of these devices. The chapters are organized around their uses as angular 

and wavelength filters; covering angular selectivity profiles (both theoretical and 

experimental), along with the effects that these devices have on the diffracted and 

transmitted beam profiles (specifically gaussian). 

Chapters 6 and 7 are devoted to overlap (finite) gratings, beginning with a general 

solution for gaussian beams in these types of structures. Using this solution, diffracted 

and transmitted beam profiles are given for both Bragg and off-Bragg incidence. Then in 



chapter 7 these results are used to develop a general methodology for the design of 

VHOEs with particular desired characteristics. Three particular examples will be given 

which include an edge emitter and a spot generator. 

Chapter 8 is dedicated to multi-line filters, and begins by discussing multiplexed 

transmission and reflection gratings. The emphasis is on effects that result specifically 

from the multiplexing process itself. In some cases multiplexing closely spaced (in 

wavelength) reflection gratings can give a narrowband wavelength filter which operates 

as a transmission filter. This filter is discussed in detail, along thin-film alternatives 

which have similar properties, and which are somewhat easier to manufacture. 

Chapter 9 considers two additional issues of volume holography, absorption 

during the recording process and overmodulation. The fmt of these is present in all types 

of holograms, and can significantly affect the angular selectivity profiles. The second 

(overmodulation) results in regions which exhibit non-traditional angular and wavelength 

selectivity profiles. Operating in these areas gives some rather unexpected results, which 

could lead to some novel devices. 

The work finishes with a chapter devoted to conclusions and a discussion of 

possible future work 



CHAPTER 2 

BACKGROUND 

In order to analyze and design volume holographic optical elements (VHOEs) an 

adequate model of their behavior is needed. Such a model allows the simulation of 

different conditions and an investigation into the workings of any structure. All elements 

in this work are based on volume diffraction gratings, thus solutions for these devices 

will be derived. We begin by considering the required phase relationships for light to 

diffract from a volume structure, then use coupled wave analysis to develop grating 

solutions. This is followed by a discussion of plane wave decomposition, which can be 

comDinea with coupled wave analysis to handle more complex problems. The chapter 

ends bv covering two dimensional coupled wave analysis, which is used like plane wave 

decomposition, but adds insight to the solution, as well as into the design problem. 

2.1 Derivation of the Braan Condition 

Throughout this work many references will be made to the incident beam being 

either on or off-Bragg. In this context Bragg refers to a particular angle of incidence 



(wavelength) that maximizes the diffracted intensity at the incident wavelength (angle) 

' for a given structure. These conditions will now be developed, based on a description by 

Syms [I]. The geometry of the problem is shown below in Figure 2.1.. We start with 

, part a of the figure, where we have an array of scatterers separated by a distance L. An 

infinite plane wave (of wavelength h in all regions) is incident on the scatters at an angle 

IIIFFRACTED 
PLANE WAVE 

INCIIIEKT 
PLANE WAVE 

Figure 2.1 a. Thin Grating 

INCIDENT 
PLANE WAVE 

Figure 2.1 b. Thick Grating 

The effect of each scatterer is to distribute the incident light in all directions, 

resulting in a field that at any point will be the sum of the fields from each scatter. Since 

the incident light is monochromatic and spatially coherent, the periodicity of the structure 

will force additional interference effects. In particular, a plane wave output will be 

significant only if the fields from adjacent scatters add in phase. We see that this happens 

if the difference between paths AB and CD is an integral number of wavelengths. This 

path difference is given by AB - CD = L, (sin 8, - sin Bi ) . Forcing this to be an integer 

number of wavelengths and solving for the diffracted angle gives: 



mh 
sin ed = sin Bi + - 

L x  

In this equation (which is the well known grating equation) m is the order number 

and refers to any integer. The equation states that the grating will distribute the light 

from an incident beam into a number of orders, each traveling in a direction determined 
Y 

by the properties of the grating along with the wavelength and angle of incidence. Since 

this relationship is based strictly on the periodicity of the grating, it is valid regardless of 

the thickness of the structure. 

The above discussion arose from the fact that constructive interference will only 

occur when all individual waves add up in phase. If we consider part b of the figure 

where the grating has become thick, and treat each grating line as a partial mirror, then 

we get an additional requirement. Not only must the components from different fringes 

add up in phase, but those components scattered from different portions of the same 

fringe must also add constructively. Thus paths such as EF and HG must also be equal. 

This will occur if either 0, = ei or 0, = 2($ - 7~12)- Bi (where Q is the grating slant 

angle, and is measured perpendicular to the fringes). Inserting the first of these 

requirements into equation 2.1 (with L, = ~/cos(cp - lt I 2 ) )  leaves m=O. This describes 

the propagation of the transmitted portion of the incident wave. Inserting the second of 

these requirements into equation 2.1 and using some simple algebra along with a bit of 

trigonometry yields: 



h is one form of the well known Bragg equation for volume gratings. From this 

quation we see that each order requires a different angle of incidence in order to 

popagate. Deviation from that angle will result in a significant intensity reduction for 

that order. This is an inherent angular selectivity, which makes these devices appropriate 

for filtering applications. The amount of reduction as a function of this deviation depends 

on the parameters of the structure, and equations for it will be derived later. 

2.2 Modeling Grating Behavior - Coupled Wave Theorv of Thick Holomams 

Coupled Wave Analysis presented by Kogelnik [2], due to its simplicity and physical 

intuitiveness. In spite of this simplicity, it gives quite accurate predictions of the 

In this section the properties of volume diffraction gratings are analyzed using the 

diffraction process. It is based on an assumption of monochromatic light incident on an 

infinite grating at or near the Bragg angle. Only two significant light waves are assumed 

present, the incoming reference wave and an outgoing signal wave. For this to be true the 

grating must be thick enough that all but one order violates the Bragg condition strongly 

and thus can be ignored. The grating under study is shown below in Figure 2.2. 



2.2. Grating under Study 
C 

As mentioned above the grating is assumed ta extend to i n f ~ t y  in the x and y 

dhcti~m, and to have thickness d in the z direction. Its fringes are descri;bed by way of 

r K rector, whose direction is at en angle @ perpendicular to the fringe lines and whose 

magnitude is given by: 

(where L is the period of the grating). A transverse electric (TE) plane wave is incident 

on the material at an angle 8, given by: 



For simplicity the average dielectric constant will be taken as the same inside and outside 

e medium (allowing us to neglect refraction). Using this model of a grating, 

- expressions for the relative permittivity and the conductivity of the grating are written as: 

r 

where : [::I [ s ~ ~ ( O I  
p =  p, = p  0 

cos (0) 

Since we assume the presence of only a reference wave and a signal wave in the medium 

the following form for the electric field is obtained: 

This is now inserted into the scalar wave equation: 



w h m  k is obtained by inserting (2.5) into : 

resulting in: 

, In this equation K is a coupling coefficient which describes the coupling of light between 

the reference and signal waves, and is given by: 

I 

The propagation vectors p and o give the magnitude and direction of the reference 

and signal waves respectively. Since R always propagates, the magnitude of p is equal to 

(the unmodulated propagation constant for the material), and the direction of p is given 

by the reference wave propagation direction. The magnitude and direction of o are 

determined by the grating as follows. From the grating equation we have: 

It is further assumed that: 



I 

Any corrections required from this assumption will be accounted for in the magnitude of 

R(z) and S(z). In addition, if the condition: Id = 14 = P is met then we get the well 

known Bragg condition of thick holograms: 

Clearly this condition is limited to very weak modulation, where the propagation 

constant can be accurately taken as equal to its average value in the medium. This 

relationship is easily described by Figure 2.3 below. When the magnitude of a is equal to 

.. 
(as in part a of the figure), the Bragg condition is satisfied and the diffracted wave will 

have its maximum amplitude. In part b of the figure the reference wave vector was 

changed, o # P, and the Bragg condition is no longer satisfied. 

Figure 2.3. Graphical representation of the Bragg Condition 

Equations (2.6) and (2.9) are now inserted into (2.7), which results in the following set of 

coupled wave equations: 



We now solve for the field amplitudes. In doing so the second derivatives of R and S are 

neglected, which should be valid if the coupling is slow on the order of a wavelength. 

[ Additionally iiny waves propagating well off Bragg are ignored. The resulting coupled 

i" 
wave equations are: 

- H 

where 

h 
6=b2 - ) 3 1 2 ) / 2 p = ~ 8 - ~ s i n ( + - 0 , ) - & . ~ 2  - 

4 n z  

P z  K and c, =- 
P 

=case, Cs = o z / p = ~ 0 ~ 8 - - ~ 0 ~ $  
P 

In this expression c~ will always be positive, however the sign of cs will depend on the 

hologram type. In transmission holograms (where cp > d 4 )  cs remains positive, however 

it becomes negative in reflection holograms ((9<d4). The characteristics of each 

hologram type vary in a smooth fashion as the slant angle (9) is changed, however when 



sign of cs changes (when cp crosses d4), the hologram type changes abruptly and a 

tmmspondingly abrupt (and interesting) transition takes place in these characteristics. 

The general solution to equation 2.15 is given below: 

d 

where rl, 1-2, sl and s* are constants that are determined by the boundary conditions. The 

values for yl and yz are found by plugging equation 2.16 into the wave equation. Doing 

this yields: 

By muItkpIying equation 2.15(a) by R* and 2.lS(b) by S*, md adiring the resulting 

equations to their complex conjugates the following energy balance expression is found: 

In the absence of absorption the last two terms reduce to 0 and we are left with 

c, RR* + c, SS* = k where k is a constant. The value of this constant can be found by 

looking at the plane z=0. At this point S=O so (assuming an incident uniform plane 



wave) the constant becomes CR. We can then define the diffraction efficiency (the 

C 
betion of incident wave power which is coupled into the diffracted wave) as: 

The transmission and reflection cases are now considered separately (due to their 

' differing boundary conditions) to solve equation 2.16. 

Transmission Holograms 

For transmission holograms the boundary conditions are R(O)=l , S(O)=O. Using 

these boundary conditions, expression for the diffracted field becomes: 



In these equations, v is a grating strength parameter, 5 a dephasing parameter 

(measuring the deviation from Bragg) and a is the readout absorption coefficient. Often 

this is small enough to be neglected. Doing so, and redefining 6 and v to be real yields 

the following equations for the diffracted field and the diffraction efficiency: 

Note that at zero dephasing (incidence at the Bragg angle) the diffraction efficiency 

becomes: 11 =  sin(^)^. Thus we can see that when v is a multiple of d 2  the "On Bragg" 

diffraction efficiency reaches 100%. 

Figure 2.4 below shows the diffraction efficiency (normalized to its value on 

Bragg) plotted vs the dephasing parameter 6 for three values of the grating strength 

parameter. 

i 
1: 



Figure 2.4. Normalized Diffraction Efficiency vs. Dephasing - Transmission Holograms 

Reflection Holograms 

The major difference between transmission and reflection holograms is that in 
I 

I reflection holograms the diffracted wave comes out on the same side as the incident wave 

I (cS < 0). The boundary conditions then become R(O)=l and S(d)=O, where again d is the 

thickness of the hologram. Inserting these in the coupled wave equations and applying 

the same simplifications as before yields the following equation for the signal beam and 

diffraction efficiency at the output (the plane z=0) in the absence of absorption: 



In these equations v has been redefined from that used in equation 2.21 to remain purely 

real. The figure below shows these equations plotted as a function of the dephasing 

parameter 6 for three values of the grating strength parameter v. 

Figure 2.5. Normalized Diffraction Efficiency vs. Dephasing - Reflection Holograms 

Since a principal use for these devices is an optical filter, an important parameter 

is the FWHM of the main lobe with deviations in angle or wavelength. Table 2.1 below 

shows these values for each hologram type with various efficiencies. 



Table 2.1. Full width at half maximum for various grating types 

Bragg Efficiency 

50 % 

100 % 

Due to the presence of the tangent function in several of these expressions, we can see 

that for typical angles of incidence transmission gratings are better suited as angular 

filters, while reflection gratings are more suited to wavelength filters. 

2.3 The Annular Spectrum of Plane Waves 

Transmission 

As noted in the introduction, coupled wave analysis will be the main tool with 

which we will study VHOEs. This is, however a one-dimensional theory, which assumes 

plane wave incidence and allows the amplitude of the waves to vary in only one 
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direction. All practical gratings and replay beams are of course finite, thus assuming 

plane waves is an approximation (although usually a reasonable one). 
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In order to get more accurate results, or to consider problems which are inherently 

two-dimensional (such as investigating beam profiles), a means of extending coupled 

wave analysis to two dimensions is needed. The simplest way to do this is with the 

angular spectrum of plane waves. This has been well described in the literature [3-61, so 

only a brief review will be given here. For simplicity this discussion will be restricted to 

waves traveling in the plane y=O. Generalization to three dimensions can be found in the 

references. 

For this analysis the following two-dimensional transform pairs will be used: 

m -j2r(fxx+ f z Z )  

f(x,z)= p ( f X , f z ) e  df, df, 

and 

where f, and f, are the spatial frequencies (in lines per millimeter) of the distribution 

along the x and z axes respectively. These correspond to the traditional frequency 

component in one-dimensional Fourier analysis. 

Assume an arbitrary wave is traveling in the x-z plane as in part (a) of Figure 2.6. 



Figure 2.6a. The angular spectrum Figure 2.6b. Propagation of the angular 
spectrum through a grating 

If the complex field of this wave at z=0 is denoted by E(x,O), and its Fourier 

transform by E(f, ,0) , then we can write E in terms of the inverse Fourier transform of 

E as: 

Recalling that a plane wave traveling at an angle 0 to the z axis can be written as: 

we can recognize equation (2.24) as the superposition of a number of plane waves, each 

propagating in a direction given by sin -' (A f, ), with a complex amplitude given by 

E(f, ,0) evaluated at f, = sin 0/k  . The ability to decompose any function into a number 



of plane waves in this manner gives the function E(f,,O) the designation "the angular 

spectrum" of the field E(x,O). 

Since our input is now just a number of plane waves, the diffracted and 

transmitted profiles can be calculated by applying coupled wave analysis to each of them. 

This will result in a transmitted and a diffracted wave for each component, which can be 

superposed to obtain profiles for both the diffracted and transmitted waves. This is 

described graphically in part b of Figure 2.6 above. In addition, a numerical integration 

across these profiles will yield diffraction efficiencies for the overall beam. 

Most of the analyses presented in this work will consider the incident beam to 

have a Gaussian shape, since this is approximately the profile of a typical laser beam. It 

therefore seems appropriate to determine the angular spectrum of this distribution. This 

is performed as follows. The field distribution at the plane z=0 of a Gaussian beam 

traveling in a direction O0 can be written as: 

+ J' koX sin OO 

E(X,O) = E, e 

Using the Fourier transform expressions of equation 2.23, the amplitudes of the 

corresponding plane waves can be written as: 



where 

h 
f 

where this expression is evaluated at f, = sinB/A. This can be simplified by the use of 

I 
the following identity: 

Inserting this into equation 2.27 results in the following plane wave amplitudes: 

2cos 0, 
where a, = 

a 

These amplitudes are then inserted into equations 2.21 or 2.22 (depending on the 

hologram type) to obtain the transmitted and diffracted profiles and diffraction efficiency. 

In the above derivation the decomposition was performed in the plane z=0. It is 

permissible however to decompose the beam in a direction perpendicular to its 

propagation. In this case the amplitude distribution changes slightly to 



where k, = 2xf, 

; Again this 'is evaluated at f, = sinO/A, which is the spatial frequency in the direction 

perpendicular to propagation (r). Since these angles are measured from the direction of 

propagation they actually represent differential angles to that of the central spectrum. We 

' can therefore consider this as additional angular dephasing (which may be positive or 

negative) for the corresponding angular spectrum component. In a typical analysis a total 

phasing amount (determined by the sum of the central and differential angles) for each 

component would be inserted into equation 2.21 or 2.22 to find the response. 

It is possible however to use this concept in a slightly different way in order to get 

a quick feel for how a given beam profile will change the filtering characteristics, or 

alculating the intrinsic angular width of a particular beam one can see if this will 

whether the diffracted beam will be highly distorted by a particular grating. This is 

because this "additional" dephasing is intrinsic to the particular beam. Thus, by 

I 
+ comprise a large portion of the angular acceptance region of a given grating (the main 
r 
I lobe of its angular selectivity curve). By the term intrinsic angular width I am referring 
i 

to the angle corresponding to the highest spatial frequency in the beam (given by j 

1 quation 2.29). Technically equation 2.29 has an infinite width since a Gaussian 

distribution never drops to zero, however if we use the customary (albeit arbitrary) lle2 

beam width criteria then this spatial frequency component is f,-, = &/XU. Using 



sin(8) 
f r  =- 

&a 
il 

and assuming a small angle yields an intrinsic angular width of 8, = -. 
no 

inserting this into the dephasing equations (2.21 or 2.22) gives the resulting intrinsic 

angular dephasing. For unslanted transmission and reflection gratings these can be 

approximated is: 

and 

As a quick example of this we see that a helium-neon laser beam with a Gaussian 

width of 0.5 rnm has an intrinsic angular width of 0.03". As mentioned above 

determining whether this will significantly alter the diffraction characteristics depends on 

the grating itself (through its angular selectivity curve), thus examples showing the 

effects of this and other beams will be left until chapters 4 and 5, where specific cases are 

considered. 

2.4 Two Dimensional Cou~led Wave Analysis 

In the previous section the combination of plane wave decomposition and 

traditional coupled wave analysis was used as a means to describe the diffraction of a 

beam whose amplitude may vary in two directions. Another method to do this is to use 

two-dimensional coupled wave analysis. This method was first used in 1962 by Takagi 



-j(Cr.?) -j(GS?) 
E, = ~ o A ~ ~ ( x , y , z ) e  and Es = S, As, (x, y, z) e 

[7] in x-ray diffraction in order to account for changes in crystal parameters. It was not 

used in volume holography until 1977 when Kogelniks equations were rederived in two- 

dimensional form by Solymar [a]. It has since been extended to give solutions for 

gratings with non flat boundaries [9-111, non-uniform gratings and replay beams [12-141, 

and in a limited manner reflection gratings [9,15]. 

Although this derivation closely follows that of one dimensional coupled wave 

analysis, which was reviewed at the beginning of this chapter, its ability to include effects 

resulting from the profiles of the recording beams, along with the number of 

approximations which are required for a solution warrant a full re-derivation of the 

coupled wave equations. 

The recording of the hologram is made by the interference of a reference and a 

subject beam, which can be written respectively as: 

In these equations IQ and So are amplitude constants, ARo and Aso describe the 

variation of these amplitudes with position (i.e. the recording beam profiles), k, and k, are 

the propagation constants, and r is the position vector. Although there is no inherent 

difficulty in allowing k to be complex, the derivation here will be limited to real values 

for k (equivalent to ignoring absorption during recording). For the interested reader a 

derivation of the coupled wave equations when the propagation constants are complex is 

given in [8]. The holographic recording material is assumed linear with incident field 



intensity, thus after recording and development, the dielectric constant of the material 

will be proportional to the field intensity distribution: 

where equation 2.3 1 was inserted for ER and Es. This can be written in a simpler form by 

defining a vector K as K = (G, - &), along with the following two parameters: 

R, E. = 2c Ro SO erO (x, y, I)= A:~(x, Y,z)-+ (x, Y, Z)&] 
2 so Ro 

With these expressions, eq. 2.32 for the permitivity of the material simplifies to: 

A solution for the diffracted field is obtained by inserting this permitivity 

variation into the wave equation: v~(E)+  k2(~)= 0. Since we are dealing with thick 

media we can again assume that we are in a two wave region, thus during replay the field 

in the grating will be of the form: 



which we can be written as E = E1+E2. For simplicity we will take the Laplacian of each 

part separately and combine them later. Using straightforward (albeit tedious) algebra we 

get: 

In this equation the dependence of R' and A ' ~  on position is understood and has not been 

explicitly written. For the remainder of the chapter this will be done wherever it will not 

lead to confusion. Additionally, use was made in this equation of the fact that 

p2 = p i  + p i  (propagation was confined to the x-z plane). Following a similar 

procedure as above, we can obtain the following expression for v2 E2: 

Next, an expression is needed for k2 E. This is obtained from eq. 2.34 as: 

2 
4 x2 X'E = [T n] B = {T [-[rr,, + (x, y, z)+ rr, iR, Aso cob[& i]])E (2.38) 



By neglecting &(x,y,z) (the effects of this will be discussed in chapter 9), and using the 

fact that p=2rm/h, this can be written (again after significant algebra) as: 

By combining equations 2.36, 2.37 and 2.39 into the wave equation, the following 

monstrosity is generated: 

The complexity of this equation (in which the dependence of each term on all 

coordinates is not shown) should be obvious. In order to proceed several simplifications 

must be made to reduce its complexity. First we ignore V~R' and v~s',  which as in the 



one-dimensional case should be valid if the coupling is slow on the order of several 

wavelengths. Second, we will not allow beam profiles to spatially vary too quickly, 

again on the order of several wavelengths - thus allowing us to neglect V*A'R and v~A's. 

By analogy with one-dimensional analysis these assumptions are valid if the strength of 

the modulation is very small (i.e. E, I Q <<I) [16], which should be valid for most of the 

materials considered in this work. Additionally we will ignore the last two terms in 2.40 

since they are well off Bragg, and will thus not contain any significant power. Finally 

since we assumed that AR, As, R and 9 did not vary too quickly then we can also ignore 

~ ( v A ,  VR) and ~ ( v A ,  - v$) (see Solymar and Cooke [17]). This leaves: 

1 1 
Wenow definePI andPz as: P, a-(p,x+p,z)  . P, = - ( O ~ X + O , Z ) ,   where^^ is a 

B B 

unit vector in the direction of travel of the phase front of wave 1. P2 is in the direction of 

travel of wave 2, however its magnitude varies slightly from unity as we deviate from 

Bragg. Using these definitions equation 2.4 1 becomes: 



Per [18] any two-dimensional coupled wave analysis must obey the laws of geometrical 

optics. One requirement of this is that the power conservation theorem be met, thus: 

2VP, VR + ~ v * P ,  = 0 .  Furthermore, from our definition of PI and Pz we have V2 P = 0 .  

Combining these with the previous condition gives: 2VP1 vA, = 0 & 2VP2 . vA, = 0 .  

Inserting these requirements in 2.42 gives: 

For a solution at all places, each exponent must separately equate to 0. Doing this, and 

making use of Kogelnik's dephasing parameter (ll) = b2-1012) )  allows us to write eq. 
28 

2.41 as: 



Again the dependence of the variables on position in these equations is understood and 
I 

has not been shown. Although the equations are now simpler, they are still not in a form 

where solutions are evident. In order to put them in such a form, a coordinate 

transformation must be made. The new coordinates used are r and s which are defined to 

be perpendicular to the directions of propagation of the reference and object beams 

(perpendicular to PI and P2). The coordinate system is shown below in Figure 2.7. 

Figure 2.7. Transformed Coordinate System 

and the coordinate transformations are given by: 

r = sin (0,)z - cos(8,)x 

s = sin ( 1  0,1)z+cos (1  0,I)x 



As a result of this ~ ( x , y , z )  and ~ ( X , ~ , Z )  are transformed into R(s,r,y) and S(s,r,y). 

additionally the quantities A, (x, y, z) and As (x, y, z) are transformed into AR(r,y) and 

As(s,y), while ARO (x, y, Z)  and As, (x, y, z) are transformed into ARo(s,r,y) and 

Aso(s,r,y),. With this change in coordinates we can write the following: 

Since the system is defined such that r and s are perpendicular to the directions of 

propagation, (VP, v r )  = (VP, VS) = 0 .  Inserting these into equation 2.46 and plugging 

the result into 2.44 yields: 

Now from the definitions of PI ,  P2, r and s (see eq. 2.45) we can write: 



Which, when inserted in equation 2.47 reduces the coupled wave equations to: 

where 6'=61sin(8,+l8~l) & k'=klsin(8,+ledl) 

B As a final simplification we can approximate -as 1 everywhere except in the 
101 

dephasing term itself and our coupled wave equations become: 

The solution of which will give us the transmitted and diffracted wave amplitudes. 

Further development of this solution and describing the results depends on the particular 

values of the components. This will be given in the chapters where it is to be used. 



CHAPTER 3 

MATERIALS OF VOLUME HOLOGRAPHY 

In order to design volume holographic optical elements, some understanding of 

the materials available is needed in order properly select one for a given application. 

Before listing these however, it seems prudent to give characteristics of an ideal material 

in order to see how existing ones compare. This material would be readily available, 

linear, capable of high diffraction efficiency with low scattering and have a low cost. 

Depending upon the required application, it would be either erasable (for read 1 write 

applications) or permanently fixable (for read only applications). As will be seen, none 

of the existing materials meets all of these requirements, and tradeoffs must be 

considered when selecting one. For more information on any of the materials, see Syrns 

[l] or Solymar and Cooke [2]. They are listed in order of general popularity. 

3.1 Photoma~hic Emulsions 

Photographic emulsion materials consist of a plate of glass on which a thin layer 

d gelatin containing silver halide is coated. They are stable, require additional 



processing to obtain an image, have high sensitivity and can be used for both amplitude 

i and phase gratings. Thicknesses are generally limited to approximately 15 pn, which is 

low, but considered acceptable for volume holography. Their principle disadvantages are 

processing difficulties and relatively large scattering. Additionally, they are becoming 

less available as many manufacturers have stopped making them. 

The intrinsic response of these materials lies in the blue I UV end of the spectrum, 

however by including dyes, they can be sensitized to longer wavelengths. The recording 

process in these materials includes generating silver halide grains, which can be too large 
i 
1 for recording high resolution patterns. To counter this, materials were developed with a 1 
i smaller grains, but these had a huge drop in sensitivity. Thus a tradeoff exists between 

efficiency and resolution. Initial development of these materials produces an amplitude 

3.2 Dichromated Gelatin 

'1 hologram, however they can be bleached into a transparent silver salt which results in a 

higher efficiency phase grating. 

After photographic emulsions the next most popular material is dichromated gelatin. 

This was first used for volume holography in the late 60's [3], and immediately yielded 

efficiencies above 90%. It consists of a gelatin layer doped with ammonium dichromate. 

Thicknesses can be as high as 100 p, and both diffraction efficiency and optical quality 

are higher than photographic emulsion. Unfortunately its short useful lifetime has made 

it commercially unavailable, and it must be made in the laboratory by stripping the 

chemicals off of photographic plates and coating them on a plate of glass. 
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Unlike photographic emulsion where the light sensitive material is grainy, 

dichromated gelatin is homogeneous, giving low scattering and high spatial modulations. 

High index modulations (above 0.08) have been achieved by Chang and Leonard [4]. 

Again, the intrinsic sensitivity is in the UV I blue range, but can be shifted by the addition 

of dyes. The principle disadvantage of this material seems to be that it can experience 

shrinkage during development. This material has many excellent properties, however 

until it becomes commercially available its use will probably remain limited. 

Photopolymers typically consist of a film-forming polymer, a photoinitiation 

system, and one or more monomers. During exposure, light is absorbed by the initiator. 

causing the monomer to become polymerized. These polymers have a slight difference in 

refractive index, which gives the required index variation. The process occurs in real 

time and is considered self-developing. The exposure sensitivity is relatively high, and 

although scattering is lower than photographic emulsion, it is still considered a problem. 

Many different photopolymers exist, and the results obtained with each are quite 

different. This makes it impossible to give minimum and maximum thicknesses, An's or 

even efficiencies. Historically most photopolymers have been experimental, thus it has 

been difficult to verify results or to select materials for future development. Nonetheless, 

the excellent properties of these materials has led to some becoming commercially 

available, and it is likely that more will become so in the future. 
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3.4 Photochrornics 

- A photochromic material is one whose color is altered on exposure to light. 

Typically, exposure at one wavelength causes a change in one direction (activation), 

which is reversed by exposure at another wavelength (or by thermal relaxation). The 

hermally unstable state is usually darker, so the reversal is called bleaching. 

Reversibility implies reusability, which is advantageous, however the efficiency of these 

materials is typically low, and they have been eclipsed by other holographic materials. 

Typically these are fine-grained materials, which allows high spatial resolutions 

(albeit with a low sensitivity). Holograms are made either by exposure of a bleached 

material or by bleaching of an activated material. In either case the grating is made in 

nal time. The modulation is primarily of the absorption type. These materials can be 

made very thick giving increased selectivity and the ability to superimpose many 

gratings, however later exposures tend to degrade earlier ones significantly. 

3.5 Photorefractives 

Another important class of holographic material is photorefractive crystals. They 

wge first used for holography by Chen, LaMacchia, and Fraser in 1968 [S ] .  These are 

@ time materials, with many properties which make them quite complex. The most 

Mdely studied of them is lithium niobate (LiNb03), which will be emphasized here. 



In any photorefractive crystal the hologram is recorded using the photorefractive 

effect. The first step is the photoexcitation of electrons, which then move through the 

crystal lattice. There are three contributions to this motion: the influence of electric 

fields, the photovoltaic effect, and diffusion. Depending on the particular crystal and 

experimental contributions, any one of these effects can dominate. Electrons are then 

trapped by nearby unexposed regions, and set up a space-charge field. This modulates 

the refractive index via the electro-optic effect, resulting in the recording of a volume 

phase hologram. In order for this to work, suitable traps are necessary, which are 

typically obtained by doping the LiNb03 with Fe impurities. The exact performance of 

any sample depends on the level of doping and on the ratio of ~ e * +  and ~ e ~ '  ions. 

These crystals can be quite thick, which gives excellent selectivity and the ability 

to record many holograms. Using only angular multiplexing Staebler et al [6] recorded 

over 500 holograms in a 2mm thick sample, each with DE over 2.5% (although with poor 

uniformity across the recordings). Taking advantage of a scheduling method proposed by 

Mok et al [7] to improve this uniformity, An, Psaltis, and Burr recorded 10,000 

holograms with notable uniformity in a single L imo3  crystal [8]. The diffraction 

efficiency of each hologram was approximately 2x lom9. 

In general, additional exposure can re-excite electrons out of the traps and 

redistribute them, thus causing an erasure of the hologram. Thus some sort of fixing is 

required for nondestructive readback. In LiNb03 this is usually done by modest heating 

(=lOO°C) after recording. This gives rise to a stable pattern which can last for months. 

Due to the mechanism of real-time recording and to the crystallinity of the 

medium, modeling the output of photorefractives is quite difficult. Reasons for this 
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include the fact that the writing beams are themselves coupled during the recording, and 

the anisotropy of the crystals requiring a vectorial analysis. 

3.6 Photo-Thermo Refractive (PTR) Glass 

PTR glass is a new material for recording volume phase holograms. It is an 

aluminosilicate base glass doped with Ce203, Ag20 F, Br. The index variation is 

obtained in the following manner. Upon exposure to ultraviolet light, an additional 

electron is removed from a ce3+ ion, which is then absorbed by a AgC ion. The glass is 

then heated at 450°C where the neutral silver atoms form metal colloid centers, which act 

as centers of nucleation. Further heat treatment at 520°C forms microcrystals where the 

colloid centers were. These microcrystals have a different index then the base glass, 

resulting in a spatial variation of the index of refraction [9]. 

The glass can be made quite thick, which allows high diffraction efficiencies and 

narrow angular and wavelength selectivities. This in turn gives the ability to multiplex 

many holograms on a single spot. The resolution and dynamic range are both high [lo- 

1 ll. Because it is a glass, it has the additional benefit of being able to be shaped almost 

arbitrarily, even after exposure. It seems to have two main disadvantages - first it is only 

available experimentally, and second the recording must take place in the ultraviolet. 

Because of this requirement, if a pictoral hologram is recorded, and replay is attempted at 

a different wavelength, then additional distortion must be present. This arises because 

each spatial frequency making up the subject beam will record a separate hologram with 
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the reference beam. If replay is at the recording wavelength then a single angle (that of 

the recording subject beam) will Bragg match all of these gratings, however if replay is at 

some other wavelength, then only one of these gratings can be exactly Bragg matched for 

any incidence angle. 

Although all of the materials listed above are considered volume holographic 

materials, the fabrication of VHOEs with strong selectivity requires very thick media. 

Thus all experimental portions of this work will be limited to the use of photorefractive 

crystals (LiNbO,) and PTR glass. Additionally, this work will include considerable 

modeling of the diffraction characteristics resulting from a variety of effects. In making 

these models, it is assumed that the recording material has a linear response to the 

incident intensity, exhibits no scattering, and is capable of obtaining index modulations 

on the order of lo4. When comparing the predictions of these models to experimental 

data, any effects due to the material violating these assumptions will be noted. 



CHAPTER 4 

DIFFRACTION OF FINITE BEAMS BY 

TRANSMISSION GRATINGS 

In chapter 2 solutions were derived for the diffracted field and the diffraction 
El. 
dficiency of plane waves incident on transmission gratings. At this point we will 
t!i 
consider the characteristics of these structures in more detail, concentrating on their 

&ring abilities and beam profiles. Theoretical predictions and experimental verification 

will be given and discrepancies between them will be discussed. 

4.1 Angular Filtering Characteristics 

The diffraction efficiency versus dephasing for a transmission grating was given 

in equation 2.21 (which is repeated below), and the resulting characteristics were 

~rmnmarized in table 1. This table indicated that transmission gratings are best suited for 

m a r  filters at reasonable angles of incidence (due to the presence of a tangent function 

9 'their wavelength characteristics). 



Because these filtering properties are potentially useful, an investigation into them 

for gratings recorded in photo-thermo refractive (PTR) glass was made. This involved 

writing several gratings in 2 mm thick samples of PTR glass, and recording their angular 

selectivities. Using this data, plots of the diffracted power versus angular deviation from 

Bragg were generated, a typical one of which is shown in Figure 4.1 below. Along with 

the experimental results, the graph includes theoretical predictions obtained from 

equation 4.1, which have been scaled to match the measured diffraction efficiency. 

Figure 4.1. Diffraction Efficiency vs. Angular Dephasing - Theory and Experiment 
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When comparing the two plots, many similarities are apparent, however several 

obvious differences also exist. The first and most notable of these is the lack of sidelobes 

in the experimental data. The second (and perhaps more important in filtering 

applications) is the difference in width of each curve's main lobe. To get a quantitative 

idea of this difference, we again consider table 2.1, where the full width half power was 

calculated to be approximately 0.866 Ud, or about 0.023O in the material (0.0343O in air). 

In looking at the graph we see that the experimental value is roughly 0.052O in air. 

The magnitude of these differences between the theoretical and experimental 

curves warranted additional investigation, and after some consideration the source of the 

discrepancy became apparent - the characteristics of the replay beam. Recall that 

equation 2.21 was derived for a uniform plane wave incident on an infinite grating, while 

the experimental curve was obtained using a typical helium neon laser beam (which is 

obviously finite, with an approximately Gaussian amplitude profile). By modeling the 

response of the grating to a similar input beam we should expect to improve on the 

agreement between the theoretical and experimental data. 

As discussed in chapters one and two, the characteristics of the replay beam can 

be included by using either two-dimensional coupled wave analysis (allowing the 

amplitude of the wave to vary in two dimensions) or plane wave decomposition. 

Although either method is valid, the remainder of this section will use plane wave 

decomposition, with the two-dimensional analysis left until section 4.2 and chapter 6 

(where overlap gratings are considered). For a Gaussian input beam the amplitudes of 

the plane wave components were shown in equation 2.28 to be: 



2cos e, 
where a, = 

a 

The values of a and h for the replay beam used in Figure 4.1 were inserted into 

equation 2.28 and coupled wave analysis was applied to the resulting plane waves. 

Finally, the diffracted amplitudes were summed to form an angular selectivity curve for 

the specific input beam used. This procedure was performed numerically, and the results 

are shown in Figure 4.2 below, along with that of the experimental data from Figure 4.1 

and the plane wave case for comparison. 

- Plane Wave D.E. Bragg: 50.7'7% 
h = 632.8 nm 

a = 0.32 mm 

C 
0 -= 0.2 
0 

Figure 4.2. D. E. vs. Angular Dephasing - Plane Wave, Gaussian Beam Thy. & Exp. 



In this plot we see considerably better agreement between the experimental data 

and theoretical predictions. First, the widths of the main lobes of both plots are almost 

exactly the same. Second, we see that the predicted curve no longer contains side lobes, 

which is in agreement which was experimentally obtained. 

There is a simple physical explanation for why the Gaussian beam exhibits wider 

angular dephasing characteristics than those of a plane wave, and why it should not go to 

zero between the sidelobes. First, we recognize that the plane wave case is equivalent to 

keeping only the central angular spectrum component of the input beam. When all of the 

angular spectrum components are included, the diffracted power at each angle becomes 

the sum of all components. This power will therefore be higher than that of a single 

plane wave, and a wider main lobe will result. Additionally, although the power 

diffracted by the central angular component still drops to zero at points between the side 

lobes, the other spectral components continue to diffract power at these points, forcing 

the total diffracted power to be higher than zero (essentially "washing out" the sidelobes). 

It is important to note that the changes in the angular selectivity just described are 

a result of the particular beam used in the experiment, and that the use of a different beam 

can cause substantially different results. To show this effect (and to verify that the match 

between theoretical and experimental curves was no mere coincidence) we see Figures 

4.3 and 4.4 below, which show similar measurements for increasingly wider input beams. 



D.E Bragg: 62.8% 
cr = 0.504 mn 

h = 632.8 nm 
L =0.9141 p m  

y = 0.355 7-r 

Figure 4.3. D.E. vs. Angular Dephasing - Gaussian Beam (a = 0.5 rnm) Thy. & Exp. 

L = 0.9141 p m  
v = 0.363 .rr 
a = 1.115 mm 
g = 0.3343 
h = 514.5 nm 
D.E. Bragg: 81.73% 

Theory 

-0.10" -0.05" 0.00" 0.05" 0.10" 0.15" 

Figure 4.4. D.E. vs. Angular Dephasing - Gaussian Beam (a = 1.1 mm) Thy. & Exp. 



In each of these figures we see excellent agreement between the theoretical and 

experimental data. Additionally, we see that as the incident beam width increases, the 

characteristics start to resemble those of a plane wave (i.e. in Figure 4.3 we just begin to 

see the predicted sidelobes, while in Figure 4.4 the replay beam has become wide enough 

that they are clearly visible). This should have been anticipated, as Fourier theory tells us 

that this wider b e e  will have a narrower angular spectrum (which is closer to the plane 

wave case). 

The discussion accompanying Figures 4.1 through 4.4 provides a nice qualitative 

analysis of the source of their particular shapes, as well as of the trends exhibited as the 

incident beam is widened. It is possible however to use the expressions given in chapter 

2 for the intrinsic angular dephasing to get a quantitative feel for this behavior. 

For the beam used in Figure 4.2 (k632.8 nm and a=0.32 rnrn), 8,, is found 

from equation 2.30 to be 0.0009 radians or 0.05". In Figures 4.3 and 4.4 these values 

decreased to 0.0006 radians (0.03") and 0.0002 radians (0.012") respectively. The 

grating used in all of these experiments however, had an angular FWHM of 0.0006 

radians (0.04") in air. One can get a feel for the amount non-uniform attenuation present 

by taking the ratio of these quantities. This ratio is 0.6 in Figure 4.2, 1.0 in Figure 4.3 

and 3.0 in Figure 4.4. 

These figures show that the profile of the replay beam must be considered when 

accurate predictions of a grating's replay characteristics are needed. It would be nice 

however, to know when this can be ignored in rough calculations. From Figure 4.3 (in 

which the effect of the beam profile is large) and Figure 4.4 (which shows "almost plane- 

wave" behavior), we can surmise that we can ignore the beam profile when the ratio is 
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approximately 3. This therefore becomes our criteria. By combining the equations for 
r 

these values (table 2.1 and equation 2.30) we can derive the following criteria for 
Y 

ignoring the profile of the replay beam in angular selectivity calculations: 

h 

I This value is useful for making quick assessments of the implications of the 

! incident beam, however it is important to see what the actual attenuation of each 

component will be. This is shown for our three cases in Figure 4.5 below. Again, the 

behavior will look like that of a plane wave when the attenuation of each angular 

spectrum component is nearly the same. 

Figure 4.5. Grating angular selectivity and angular spectra with a=0.3,0.5 and 1 mrn 



4.2 Beam Profiles 

In the last section, the profile of the replay beam was combined with coupled 

wave analysis in order to improve on the theoretical predictions of the angular selectivity. 

This was done by performing a plane wave decomposition, essentially forming a two- 

dimensional theory. In addition to improved angular selectivity predictions, two- 

dimensional theory gives an additional benefit - the ability to readily calculate the 

profiles of the transmitted and diffracted beams, and to compare them to the input beam 

in order to determine the fidelity of reconstruction. 

Both plane wave decomposition and two dimensional analysis have been used to 

determine these profiles for various input beams (including beams with uniform and 

gaussian amplitude distributions) [I-71, although all but one of the papers restricted 

consideration to exact Bragg incidence (with the single exception discussing general off- 

Bragg trends only). The following section will discuss the profiles of the diffracted and 

transmitted beams for an input beam with a Gaussian amplitude distribution (the 

approximate situation encountered in the laboratory). It will concentrate on off-Bragg 

incidence, although the Bragg case will be included for comparison purposes. 

Before performing this analysis, it is noted that Moharam, Gaylord and 

Magnusson [l] used a two dimensional coupled wave theory to obtain the following 

expressions for the diffracted and transmitted portions of a Gaussian beam incident on a 

volume transmission grating at the Bragg angle: 



where : g = d sin 0/a and y = ~ d / c o s  0, 

In these expressions R represents the transmitted beam and S the diffracted one. The 

coordinate system used is shown below in Figure 4.6. 

Figure 4.6. Geometry used for 2-dimensional solution for beam profiles 

By integrating these solutions over the beam profile we can determine the on- 

Bragg diffraction efficiency for any value of g and grating strength. A plot of this 

information for several values of g and for grating strengths up to 4x was presented in 

[I]. Due to its interesting characteristics this plot has been repeated below. 



Figure 4.7. On-Bragg diffraction efficiency versus grating strength - various values of g 

From this figure we see that the diffraction efficiency of finite beams on 

transmission gratings will not in general approach unity unless the grating has been well 

overmodulated. Additionally, this effect is larger as the value of g goes up (as the width 

of the replay beam is decreased. 

The solution in equation 4.4 is very elegant since it is a function of only two : I 
!' 
t '  

j normalized parameters: gamma - a normalized grating strength, and g - a geometry 
I I 

, 8 

I factor. These parameters allow a quick and encompassing investigation of many different 

i 
I I input beam widths and Bragg angles to be made, which appears to give two dimensional 
, 

I coupled wave analysis an advantage over the angular spectrum of plane waves approach 
L 

(where normalized parameters are not apparent). It therefore seems prudent to begin our 
I 

I 1 off-Bragg analysis by deriving two-dimensional solutions for off-Bragg incidence in the 
I 

manner of [I], with the hopes that the solution will closely resemble the Bragg case. : I 



It turns out however that Benlarbi, et al [8] have shown that equation 4.4 can be 

derived directly from the general plane wave decomposition equations (eq. 2.24), by 

including the approximations inherent to two-dimensional coupled wave analysis, along 

with some semi-obscure mathematical identities [9]. For reasons that will become 

apparent in the next chapter, this method will be used to derive off-Bragg equations 

similar in form to equation 4.4. That is, starting with the off-Bragg plane wave 

decomposition equations and using similar identities and approximations to Benlarbi, a 

closed form expression for the off-Bragg solutions will be derived. In order to avoid 

duplication of effort this derivation will closely follow [8], differing only when we reach 

the off-Bragg portion. 

The electric field of an incident two-dimensional wave can be written as: 

Now, if we consider the input to be a "beam", with a central spectrum angle €lo, then this 

expression can be normalized to that central angle, giving: 

where p(6, ) = p [sin 6, i - cose,i] is the wave vector of the central spectrum 

component, and O was re-defined in terms of the angular frequency parameter z : 



1' Since we have considered this to be a beam traveling in a given direction eo, then if the 

beam does not diverge too quickly, and if the z dependent term in the integrand can be 
a 
1 

approximated as (- z tan 0, ) then the field can be written as a function of the direction 

perpendicular to its propagation, ie: 

Note that the accuracy of this approximation depends on how far the beam propagates 

from the boundary and on how quickly the distribution varies with 6. Equating equations 

4.6 and 4.8 at the boundary z=O yields the following fourier transform pairs: 

~ ( 0 , - x  case)= J'e(2) exp(- jzx) dz 

Note that the only difference in what we have done here and in the fourier 

decomposition of chapter 2 is that we have decomposed the beam in a direction 

perpendicular to its direction of propagation (usually we write the field in the x direction 

and decompose it directly). Standard grating theory tells us that the effect of a grating 

(with grating vector Kg) on each of these plane wave components will be to produce a 



transmitted wave and n diffracted waves. This can be expressed (as a differential effect 

for an individual plane wave) as: 

We can determine the effect of the entire input beam by integrating these individual 

results over the entire input spectrum. Before doing this, we note that the additional phase 

matching required by the thickness of the material considered in this work will cause 

each incident wave to yield only a transmitted beam and a single diffracted order. Thus 

equation 4.10 can be simplified to: 

The total filed can now be written as a sum of transmitted and diffi-acted beams: 

- ~ ~ ( 0 0 ) '  + V, - j( ~ ( 0 ~ )  - kg)  . r  
~ ( r )  = V, (r) e 

where Vo(r) and Vl(r) are the amplitude distributions of the transmitted and diffracted 

beams, and are made up respectively of the transmitted and diffracted portions of all 

angular spectrum components. Thus: 



In these expressions S and R are the diffracted and transmitted field amplitudes for each 

. 
plane wave. Their values (which are obtained from Kogelnik's analysis) are given 

below, where S is repeated from equation 2.21 and R was obtained from [lo] 

I sin v2 +c2 
~ ( e , d ) = e - j l  C O S ( $ ~ ) +  j 5 M  ,/q 

In these equations 5, t3 and v are as defined in equation 2.21. Inserting equation 4.14 into 

equation 4.13 yields: 

Before continuing with the analysis a more convenient form for the dephasing 

parameter (in terms of the angular frequency parameter T) will be derived. In doing this, 
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Benlarbi et. al. restricted their derivation to the case where the central beam component 

was on Bragg. This allowed Kogelnik's dephasing parameter (6) to be written as 

29 = 20sin6,. This restriction is however unnecessary, and it is relatively 

straightforward to generalize this to off-Bragg incidence, in which case the previously 

defined angular frequency parameter becomes: 

The coupled wave dephasing parameter can now easily be written in terms of T. Doing 

so yields: 

6 = 22 sin 8, + IS, [sin 8, -sin 0,] 

which can be written concisely by defining 7,  = Kg [sin 8, - sin €I,] as: 

By substituting the values of 6 and v from equation 2.21, along with 6 from eq. 4.18, the 

following two expressions can be written: 



X I j r s inl-Jr2+(rs ineB+~o)2 cos e I 

&c2 + (zsin 8, + T , ) ~  1 

- 

sine + T  T 
- j [T[x+ci[  B ~ ~ o /  ))+B~coSe-.oseo). I 

It is important to stress that these equations have been derived using only plane 

dr (4.19.a) 

wave decomposition. Since no additional approximations have been made they are as 

accurate as Kogelnik's equations. Unfortunately their form is somewhat complicated and 

unwieldy. In order to obtain expressions similar in complexity to those of Moharam et. al 

[I], further simplification is necessary. 

To obtain the desired form two assumptions must be made. These are: 

cos 8 s cos 8, 

and 

rx+rzs in0, /cos0+~z(cos8-cose, )~rx  



h 

The first of these assumptions is obvious, and the second is valid to the first order. These 

requirements will hold as long as the incident beam is not too narrow. Benlarbi has 

shown the effects of gradual violations of these conditions [3], and it turns out that beams 

from standard laboratory helium-neon lasers fall well within the region of validity. 

- 
Using these approximations, and defining z0 and P as To = 7, /sin 8, and 

P I d sin B ,  /cos 0, , yields the following pair of equations: 

sin P 1-1 - -jx 
C O S ~ ~  j~ V-, = e - j ~ ( z ;  

sin 0, 

r 

This can be further simplified by defining the following function: 

-i*. 
Vo = e  cOseo J@(z) 

0 

d 
-cos(-./~2 +(mine, +zO)' + j( isineB + z o )  

- 

cos e 1 
sin[::::; 

X 

sin 0, 1- sin 0, 
- A 

dz (4.22) 



Inserting this into equation 4.20 and 4.21 yields: 

aG(z + To) 
V ~ = S X ~ [ - ~ ~ ] [ @ ( T ) [  cos 0, ap + ~(T+T,)G(T+T,) e-jTX do  I 

Per the Fourier transform pair of equation 4.8 these are merely inverse transforms of 

products of our input spectrum and shifted versions of the G function defined above, i.e.: 

j~ J ~ ~ ~ e O  V-, =-- 3-' [@(T) G(T + To)] 
sin 0, 

Equation 4.25 may be recast into a better form using the convolution theorem of 

Fourier transforms, along with help from the shifting theorem. The derivation of the 

transform pairs for Bragg incidence is outlined in [8], and developed more rigorously in 

[l l] .  The extension of these to off Bragg incidence (which is handled by the shifting 

theorem) is straightforward, and is given in appendix B. Applying the resulting 

transforms (equations B.9 through B. 1 I), and inserting the expression for a Gaussian 

beam (eq. 4.1) as our input yields the following amplitude expressions: 
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- j2E 
cos e0 Vo = e  

where the normalized parameters y and g are exactly as defined previously (eq. 4.4). This 

is the form that we have been searching for - a two dimensional solution for off-Bragg 

incidence in terms of a few normalized parameters. As we can see from these equations, 

when goes to zero (when the input beam central component is on Bragg) the equations 

of [ l ]  fall directly out, which provides a nice check. 

In addition to showing the equality of plane wave decomposition and 2-D coupled 

wave analysis when the approximations are valid, this derivation allows us to use the 

This in turn will allow an normalized Bragg parameters for the off-Bragg case. 

encompassing number of cases to be quickly covered when investigating off-Bragg 

profiles. Finally, this long derivation shows us that even when using plane wave 

decomposition (whether for its accuracy or for another reason), the solution may still be 

in terms of only a few parameters, even though this may not be apparent. 

Now that we have the desired output expressions, we can use them to show the 

diffracted and transmitted profiles away from Bragg. The first case covered (g=l) is 

shown in Figure 4.8. Plots are given for grating strengths from d 8  to d 2 ,  along with 

dephasing parameters from 0 to 3. To get a feel for these pararnerters we note that in a 2 
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mrn thick grating grating with a period of one micron and an index of 1.5, g=l 

corresponds to a helium neon laser with a Gaussian beam width of 0.42 mm (typical of a 

laboratory he-ne laser). Additionally the dephasing parameters of one, two and three 

correspond to angular deviations from Bragg of 0.009", 0.01 8" and 0.027" respectively. 

Transmitted Beam Diffracted Beam 
I i 

Figure 4.8. Diffracted and transmitted beam profiles, various strengths - g = 1.0 

The discussion of the plots will start with the diffracted beam. We see in Figure 

4.8 that when g= 1, the diffracted profile on-Bragg remains reasonably Gaussian 

regardless of the modulation strength (the grating faithfully reproduced these replay 



beams on-Bragg). As we deviate from Bragg however, not only is the diffracted power 

decreased (which is anticipated), but the diffracted beam also undergoes significant 

distortion. This distortion increases as we go further from Bragg, even to the point where 

a beam which looks quite good on-Bragg may break into more than one part. 

Furthermote we see an enhancement of this effect as the gratings gets stronger. 

This off-Bragg behavior can be easily explained. Since distortion occurs when 

the angular spectrum components are non-uniformly attenuated, and since the uniformitiy 

of the grating's angular selectivity curve decreases as we deviate from Bragg (the slope 

of Figure 2.4 increases) then good profiles on-Bragg (where the uniformity is reasonably 

constant over the widest range) may become distorted as we go off-Bragg (where this 

uniformity decreases). The enhancement of these effects with stronger gratings occurs 

because this slope increases with increasing grating strength. 

When considering the transmitted beam we see that the best beam profiles occur 

well away from Bragg, which should be obvious since little power is coupled from the 

incident beam under these conditions. Few overall generalizations regarding the 

transmitted beam can be made, except to note that the coupling of energy from the beam 

does not occur uniformly. 

These plots seem to imply that on-Bragg incidence ensures that the diffracted 

beam will faithfully reproduce the recording beam. This was so in the last example due 

to the relatively narrow intrinsic angular width of the replay beam, however it is not 

necessarily true in the general case. To show this, Figure 4.9 below has been included. 

This is similar to Figure 4.8, except that the geometry factor (g) has been increased to 3. 

For identical gratings, an increase in g represents a decrease in the beam width, thus for 
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the grating described above (2 mm thick, n = 1.5, L = l pm)  this value of g represents a 

beam of width 0.14 mm. 

Transmitted Beam 

v = d 8  

Diffracted Beam 

Figure 4.9. Diffracted and transmitted beam profiles, various strengths - g = 3.0 

Again concentrating on the diffracted beam, we see that Figure 4.9 tells a much 

different story than 4.8. In this figure all of the diffracted beams are highly distorted. 

Furthermore, for each grating strength as we go off-Bragg we do see a decrease in power, 

but the additional distortion that was present throughout Figure 4.8 no longer exists. 



r 

Just as in Figure 4.8 these effects can be explained by considering the widths of 

the grating's angular selectivity curve and the input beam's angular spectrum. Since the 

angular spectrum of this input beam has increased then the attenuation uniformity across 

the spectrum has decreased, causing distortion (even on Bragg). Again these effects 

increase with increasing granting strength since the grating is acting as a low pass filter 

for angular spectrum components whose passband is narrowed as the strength is 

increased. 

To summarize these plots we see that in Figure 4.8 the narrowness of the angular 

spectrum resulted in a somewhat uniform attenuation when the beam was centered on 

Bragg. As we deviated from this incidence however, the attenuation became much less 

uniform and the beam became significantly more distorted. In contrast to this is Figure 

4.9, where the angular spectrum of the input beam was much wider. In this case the non- 

uniform attenuation was significant, even when the "beam" was on Bragg, thus all of the 

diffracted beams were highly distorted. Here the severity of the on-Bragg distortion 

made that which occurs off-Bragg less pronounced. For reasons described above all of 

these effects became worse as the grating got stronger. 

Throughout this section a normalized geometry factor (g) has been used which 

contains information about both the grating (through the sin(Oa) ) and the incident beam. 
I 

r 

Since these are the parameters that were combined to give approximate criteria for 

I ignoring the beam profile, it may be possible to simplify this criteria in terms of g. First 
i 

, the expression for sin(Be) from the Bragg equation is inserted in the definition of g. This 
f 

i 
yields: a = d h / (2n lg). From equation 2.30 this value of g gives an intrinsic angular 

, width of: 
i 



Using the expression for the FWHM of the angular selectivity curve from table 2.1 we 

can writeour approximate criterial for near plane wave behavior (8,s 3 A ~ M )  as: 

Neither the gratings and replay beams used in generating Figure 4.8 nor those 

used to generate Figure 4.9 are close to meeting this criteria, thus we would anticipate 

seeing significant distortion in the beams. Clearly the figures indicate that this is the 

case, as almost all of the beam profiles presented have some amount of distortion. Since, 

however the parameters used for Figure 4.8 were much closer to meeting the required 

criteria (even if they did not meet them) then we would anticipate that the distortion 

would be lower in that figure. Again the data which is presented in Figure 4.8 agrees 

with this prediction. As mentioned above, when we look at the profiles of the beams 

incident away from Bragg in both figures there is additional distortion, since we are 

operating in a region with more non-uniformity in the attenuation.. 

At this point we have predictions for the on and off-Bragg beam profiles of beams 

transmitted through and diffracted by volume transmission gratings. It is important to 

check these predictions in some manner (as was done with the filtering characteristics of 



section 4.1). To perform this checking a CCD camera was used to record the profiles of 

various beams diffracted from transmission gratings both on and off Bragg. Some of 

these measurements are shown below in Figures 4.10 and 4.1 1, alongside the theoretical 

predictions. 

F i p n  4.10 below shows the case of a helium neon laser beam with a gaussian 

width of 0.504 rnm incident on a 2 rnm thick grating with a period of about 0.914 

microns. The medium used for the recording was photo-thermo-refractive (PTR) glass. 

Per equation 4.4 this represents a normalized geometry parameter of 0.91. The 

diffraction efficiency (which in the theoretical plot was obtained by integrating over the 

curve and in the experimental data was measured with a power meter) was slightly over 

50%. 

In L ~ T  On ?a 4n .I(T .Lo On Ln I n  

Figure 4.10. Theoretical and experimental beam profiles - g = 0.9 1 



In this figure we see remarkable agreement between the theoretical and 

experimental plots for a wide range of incidence angles (deviations from Bragg ranged 

from 0 to almost 0.05'). There are however two features present in the experimental data 

which are not predicted - a lack of smoothness and some asymmetry to the profiles. 

The first of these effects is due to the fact that the replay beam is not exactly 
'r 

gaussian, and contains some high frequency noise. Although this could have been 

reduced by adding a spatial filter, this would have complicated the system by requiring 

additional optics to place the waist of the beam back on the grating. The second effect is 

most likely due to a non-uniform grating (all theoretical predictions assumed a uniform 

grating). This non-uniformity arises from the grating being recorded with two gaussian 

beams, thus the grating strength will be strongest at the center of the overlap region and 

decrease as we go out from this. Even more non-uniformity will occur if the maxima of 

the recording beams do not coincide in the plane of recording. In this case the grating 

strength profile will have two maxima centered around a local minimum. 

Since this was a relatively wide replay beam, it seems important to consider the 

more stringent case of a much narrower beam. This is shown below in Figure 4.11 where 

lenses were used to reduce the width of the beam to 0.25 mm, again incident on a 2 mm 

thick transmission grating with a slant of about 5" and a grating period of 1.02 p. This 

represents a geometry factor of 2.38, approximately three times as high as above. In this 

case the diffraction efficiency was 30%. 



Figure 4.1 1. Theoretical and experimental beam profiles - g = 2.38 

Again we see good agreement between the theoretical and experimental profiles, 

both on and off-Bragg. Not only do the curves show agreement in the amplitudes of the 

beams at all cases, but the general shape of the beam (the flattening of the top, or the 

breaking of the beam into two portions) is also well predicted. Clearly the asymmetry 

discussed above is still present (and perhaps even worse), and the smoothness of the 

curves is still an issue. 

These plots verify that when using typical laboratory helium neon laser beams we 

are well within the range of cases for which the theory is valid. They also serve to show 

how accurate the theory (including the additional off-Bragg parameter) can be, even with 

slightly non-uniform gratings. 



4.3 Summary 

High efficiency transmission gratings were recorded in photo-thermo-refractive 

glass and analyzed with various replay beams. Several differences were found between 

the measured angular selectivity and that predicted by coupled wave analysis. These 

were shown to result from the angular spectrum of the replay beam. 

In order to investigate these finite beam effects further, a closed form solution for 

the off-Bragg diffracted and transmitted beam profiles of a Gaussian replay beam was 

derived. Using this solution it was shown that additional distortion (above that which 

happens on-Bragg) occurs when the devices are operated off-Bragg. This distortion (both 

on and off-Bragg) arises due to non-uniformity in the attenuation of the angular spectrum 

components. It was shown that when a > 1.6 hd/n L (or equivalently g < 0.32) the 

effects of the beam profile on the angular selectivity are minimal, and near plane-wave 

responses are found. All profile predictions were experimentally verified. 



CHAPTER 5 

DIFFRACTION OF FINITE BEAMS BY 

REFLECTION GRATINGS 

In the last chapter a discussion of the diffraction properties of transmission 

gratings was given, with the emphasis placed on the diffracted beam profiles and on their 

use as angularly selective filters. This chapter will perform a similar analysis for 

reflection gratings. Again the diffracted and transmitted beam profiles will be discussed. 

along with a discussion of their filtering characteristics (in terms of diffracted power 

versus dephasing). As in chapter four each section will begin with theoretical predictions 

and will finish with experimental verification. 

5.1 Wavelength Filtering Characteristics 

At the end of section 2.1 solutions were derived for the diffracted field and the 

diffraction efficiency of reflection gratings as a function of the grating strength and the 

amount of dephasing present. In this section the repercussions of those solutions will be 



investigated in more detail. Naturally the starting point of this analysis is equation 2.22, 

which is repeated below for convenience. 

v = jnn,d/k (c, c,); e = -6d/2c, 

The filtering characteristics arising from these expressions were summarized in 

table 2.1, and the resulting selectivity curves were given in Figure 2.5. These plots were 

in terms of a general dephasing parameter, which could represent either angular or 

wavelength deviations from Bragg. The amount of each type of dephasing required to 

drop the diffracted power to half of its maximum value was also given in table 2.1. For 

reflection gratings this is: 

L 
AeFWHM = K I  - 

d tan 8 

where KI is a constant that varies roughly between 1 and 2. The presence of the tangent 

function in the denominator of the angular equation limits the usefulness these gratings as 

angular filters. This term is not present in the wavelength equation, thus the potential 
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exists for their use as wavelength filters. To get a feel for the degree of filtering possible 

with these devices, consider the example of a grating designed for normal incidence at 

1.55 p. The Bragg requirement sets the period at h I 2n. Inserting this into equation 

5.2 (assuming a value of KI around 1.5 and a 2 rnm grating recorded in glass) yields: 

or AA = 6 angstroms 

The narrowness of this linewidth indicates strong potential for these devices as 

wavelength filters in DWDM systems. 

These filtering characteristics were investigated experimentally in several gratings 

recorded in 5 mrn thick samples of iron-doped lithium niobate. Since the theoretical 

curves were derived without regard to the type of dephasing, angular selectivity curves 

will be given. If reasonable agreement is found between the theoretical and experimental 

curves, we can assume that the model is adequate for the particular beams used on the 

gratings investigated, and simple scaling could be performed to see the wavelength 

filtering characteristics. 

A typical example of an angular selectivity plot is given below in Figure 5.1. 

Along with the experimental data, the figure contains two theoretical plots - one for 

plane wave incidence (obtained from equation 5.1) and one which assumes incidence is 

with a Gaussian beam (obtained by combining equation 5.1 with plane wave 

decomposition). 



D.E. Bragg: 12% 
h = 514.5 nm 
a = 0.15 mm 

Figure 5.1. D.E. vs. Angular Dephasing: Theory and Experiment - reflection gratings 

This figure has many features similar to its transmission grating counterpart 

(Figure 4.2). Just as in that figure, the predicted main reflection lobe for an incident 

plane wave is much narrower than the experimental results. Additionally, the side lobes 

that are present when the incident beam is a plane wave have again been washed out 

when the grating is replayed with a gaussian beam. As described in chapter 4 both of 

these effects are primarily due to the presence of an angular spectrum of input waves. 

The third plot in the figure is a theoretical prediction which assumes the incident 

beam has a Gaussian amplitude distribution similar to the experimental beam. We see 

that using this profile has given some improvement in the predictions (we no longer 

expect sidelobes and the width of the main lobe has increased somewhat), however the 

match is still not as good as it was in the transmission gratings of chapter four. Most 

likely this is due to the grating being non-uniform. 
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This non-uniformity can happen in LiNb03 for a variety of reasons. Two 

examples (Gaussian recording beams and imperfect overlap) were discussed in chapter 

four. Along with these a taper (variation of grating strength through the thickness of the 

grating) will occur if the absorption of the material at the recording wavelength is 

relatively 'high. In LiNb03 this absorption depends strongly on the level of doping, 

however it can easily exceed 6 cm-', thus taper must be considered in thick gratings. The 

diffraction characteristics of tapered gratings are addressed in detail in chapter 9, thus a 

discussion of the effects will be left until then. Another cause of non-uniformity in 

LiNb03 is the fact that it is a real time material. In these materials the grating is present 

as the recording is taking place. This causes the recording beams themselves to be 

diffracted, leading to a non-linear chirp (variation of the period) throughout the grating 

thickness. Modeling this effect requires the grating to be sliced into a number of 

sections, the solution of each which becomes the input to the next until the grating is 

traversed. Since this effect is a function of the grating strength, not the recording time or 

power, it can not be alleviated by simply recording with a more powerful beam for less 

time (or a less powerful beam for more time). Finally some non-uniformity can arise due 

to erasure of the grating during replay (since the erasure will be highest where the 

intensity of the replay beam is highest). It is most likely that the mismatch between the 

theoretical predictions and the experimental data in these plots is due to a combination of 

all of these non-uniform grating effects. 

An additional difference between Figure 5.1 above and the corresponding plot for 

a transmission grating is the scale of the x-axis. In Figure 4.2 most of the power was 



confined in an angular region of about 0. lo (experimentally), while this has increased to 

about 0.15" in Figure 5.1. One might have expected a much larger increase in this 

parameter due to the presence of the tangent function described above. The reason that 

the parameter has not increased more dramatically is that Figure 4.1 was generated with 

an on-Bragg diffraction efficiency of approximately 5 195, while that of Figure 5.1 was 

only 12%. Increasing this efficiency to a comparable level would have significantly 

increased this value, as it directly affects the value of KI in equation 5.2. 

Since reasonable agreement was obtained between the experimental curves and 

theoretical predictions for angular dephasing, the use of the model in these materials has 

been validated, and the wavelength filtering characteristics (important for DWDM 

systems) can be obtained by simple scaling of this dephasing parameter. 

5.2 Diffracted and Transmitted Beam Profiles 

The previous section analyzed the angular and wavelength filtering properties of 

reflection holograms. This analysis included the profile of the replay beam for an 

improved match between the theoretical and experimental data. This was done using 

Fourier decomposition, since 2-D coupled wave analysis solutions are quite limited for 

reflection gratings [l-21. Just as with the transmission gratings, we can obtain the 

diffracted and transmitted beam profiles from this analysis. After a brief discussion of 

normalized parameters, the remainder of this chapter will consider these profiles in detail. 



It was shown in chapter 4 that when the additional requirements of 2-D CWA 

were added to Fourier decomposition, the two methods were mathematically equal. This 

allowed the normalized parameters of 2-D CWA to be retained for analyses performed 

with plane wave decomposition, which in turn allowed many combinations of recording 

beams &d gratings to be considered with only a few plots. It would be nice to have 

similar normalized parameters for reflection gratings, however the lack of a two- 

dimensional solution suggests that these may not be available. At the same time, since 

normalized parameters existed when Fourier decomposition was used on transmission 

gratings (even if they weren't apparent), then it is possible that they exist for reflection 

gratings also. 

It is obvious from Kogelnik's solutions for reflection gratings [3] (eq. 5.1), that 

the grating strength parameter will remain normalized for reflection gratings. Since his 

solutions were not intended for a two-dimensional analysis however there is nothing to 

suggest that the geometry factor would also remain normalized. Nonetheless a numerical 

investigation was performed to see if this would hold, and in all cases keeping this factor 

constant did result in the same output. It thus appears that this factor does remain 

normalized, and we will therefore use these same parameters (defined in equation 4.4) to 

show general cases for the reflected beam profiles. 

The coordinate system used for this analysis is shown in Figure 5.2 below. All 

diffracted beam plots are given along the direction s, while any transmitted profiles are 

given along the direction r. 

incidence. 

This system will be used for both on and off-Bragg 



Figure 5.2. Geometry used for 2-dimensional reflection grating beam profiles 

Our investigation of the diffracted beam profiles will begin with the exact Bragg 

incidence case (in transmission gratings Bragg incidence had been studied previously [4- 

61). Our first results (which are given below in Figure 5.3) are for a geometry factor of 1. 

If we assume a 2 mrn thick grating recorded in material of index 1.5, this represents an 

incident gaussian beam with a width of 0.14 mm at 633 nm. The figure contains 

diffracted profiles for gratings with strengths ranging from 0 to n. 

A few things are instantly apparent when looking at this plot. First, as the grating 

strength is increased the profile of the diffracted beam becomes significantly better. This 

is in complete contrast to transmission gratings, where the opposite effect has been 

reported [4]. This effect can be easily explained by considering the properties of these 

gratings under plane wave illumination, along with the angular spectrum of the input 

beam. Figure 2.5, which gives the diffraction efficiency of a reflection grating vs. 

dephasing, shows that as the strength of the grating is increased, the grating became less 
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sensitive to angular or spectral dephasing. Thus, by increasing the strength of the grating, 

the attenuation of the angular spectrum components becomes more uniform, resulting in a 

better diffracted beam profile. 

Figure 5.3. Diffracted profile vs. grating strength for a reflection grating (g = 1) 

As will be shown below these effects will be more pronounced when the incident 

beam is narrowed. In Figure 5.4 the diffracted profiles of the same grating are 

investigated when the geometry factor has been increased to 3. This is equivalent to 

decreasing the width of the incident beam by a factor of three. 



Figure 5.4. Diffracted profile vs. grating strength for a reflection grating (g = 3) 

Again we see similar effects as above (when the grating strength increased, the 

fidelity with which the diffracted beam matched the incident one also increased), 

however with this narrow an incident beam there is considerable distortion, even with a 

grating strength as high as x. Obviously these are both because the narrow beam has a 

much wider angular spectrum, and the attenuation of these components is highly un-even. 

Additionally we see that the diffracted beam has spread out considerably (it is 

approximately 4 times as much as in the previous case). 

One final thing that must be considered is the diffraction efficiency of finite beam 

when the incident beam is on-Bragg. This is shown below in Figure 5.5 for three 

different incident beams (a plane wave and Gaussian beams of two different widths). 

From this plot it is clear that the effect of a wider angular spectrum is to decrease the 

overall Bragg diffraction efficiency. Additionally we see that when the geometry factor 



is below 0.1 the finiteness of the beam has almost no effect on the overall diffraction 

effcienc y. 

Figure 5.5. Diffraction efficiency for various input beams on reflection gratings 

Now that we have looked at the angular selectivity curves as well as the important 

on-Bragg effects (beam profile and diffraction efficiency), we are ready to investigate the 

final effect - beam profiles when the incidence is off-Bragg. In all cases covered the 

dephasing parameters are calculated from equation 5.1, and were obtained by varying the 

angle of incidence (selected arbitrarily). Plots are included for grating strengths of d4,  

d 2  and 3d4, with dephasing parameters ranging from 0 to 3. Again geometry factors of 

1 and 3 are shown. These dephasing parameters correspond to angular deviations from 

Bragg of O.OOOO, 0.027", 0.054" and 0.082" respectively. 



The case of g=l is given below in Figure 5.6. As described above, if the grating 

is 2 mm thick in a material of index 1.5, this represents an incident gaussian beam with a 

width of 0.14 rnrn at 633 nm. 

Transmitted Beam g = Diffracted Beam 

Figure 5.6. Diffracted and transmitted beam profiles, reflection gratings - g = 1.0 

As in the analysis of transmission gratings the discussion starts with the diffracted 

beam. Again we see that as we deviate from Bragg the decrease in diffracted power is 

accompanied by additional distortion. Not unexpectedly this distortion increases as we 

go further from Bragg, again to the point where a beam which looks good on-Bragg 

becomes unrecognizable. From these plots it is hard to make quantitative statements, but 



it appears that the off-Bragg profiles do improve (albeit slightly) with increased strength 

(i.e. for a given amount of dephasing a stronger grating gives a slightly better profile). 

When viewing the transmitted beams we see effects similar to transmission 

gratings, with the best profiles away from Bragg (where little power is coupled from 

them). One generalization seen by Figure 5.6 is that the coupling of energy from the 

beam is not uniform, it occurs principally from the side of positive r (see Figure 5.2). 

The diffracted and transmitted profiles which occur with a narrower incident 

beam are shown in Figure 5.7 below. This is similar in content to Figure 5.6, however 

the incident beam width has been decreased by 2 3  (which results in a g value of 3). 

Transmitted Beam g = 3 Diffracted Beam 

Figure 5.7. Diffracted and Transmitted beam profiles, reflection gratings - g = 3.0 
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We see with this narrow an incident beam that all of the Bragg profiles are 

significantly distorted, even when the grating strength reaches 3d4. For the two lower 

strength values ( d 4  and rd2) the diffracted beam appears almost flat-topped due to the 

near truncation of the highest spatial frequency components. It is not until the strength 

has increked to 3rd4 that any resemblance (albeit small) of a Gaussian beam is present. 

In each of these plots there is minimal additional distortion as our incidence 

deviates from Bragg. Essentially for every strength the profiles have the same shape as 

their on-Bragg counterparts, however their amplitude is decreased. This is similar to the 

effects seen in Figures 4.9 where the non-uniform attenuation on-Bragg causes enough 

distortion that the additional off-Bragg distortion is barely noticible. 

If the Again we can summarize these figures in the following manner. 

characteristics of the filter are such that on-Bragg significant non-uniformity exists in the 

attenuation, then any additional off-Bragg effects (where the slope of Figure 2.5 is 

highest) will be less pronounced. Essentially the grating acts as a low pass filter for 

angular spectrum components whose bandpass increases as the grating becomes stronger. 

We now have theoretical predictions for the on and off-Bragg beam profiles 

diffracted by and transmitted through reflection gratings. Again we would like to check 

these predictions in real materials, and to do so several gratings were recorded in 5 mm 

thick samples of iron-doped LiNb03. The diffracted beam profiles were then recorded 

with a CCD camera, and the results are given below in Figures 5.8 and 5.9. 

Figure 5.8 covers the case when the grating was replayed with the beam from an 

argon laser (h = 5 14.5 nm) with a width of about 1.7 mm. Per equation 4.4 this 



represents a normalized geometry parameter of 0.13. The diffraction efficiency in these 

plots was 2.1%. This value was obtained experimentally by direct measurement and 

theoretically by performing a numerical integration of the curve. 

/la 20 Oa 

Figure 5.8. Theoretical and experimental beam profiles - g = 0.13 

In this figure, aside from noise due to undersampling we see reasonable 

agreement between the theoretical and experimental plots for a wide range of angles of 

incidence (deviations from Bragg ranged from 0 to almost 0.04'). There is again a large 

amount of asymmetry to the experimental profiles. As discussed above this is most likely 

due to the grating being non-uniform (either from the amplitude profiles of the recording 

beams, imperfect overlap, or from taper and chup effects which arise from the real-time 

nature of the material). 



This replay beam was however somewhat wide, and it seems prudent to also 

consider the more stringent case of a much narrower beam. This situation is shown in 

Figure 5.9 below which was performed with an argon laser beam shrunk to o = 0.2 mm, 

again incident on a 5 mm thick reflection grating in iron-doped lithium niobate. The 

geometry.. .factor corresponding to this situation is approximately 1.13 (roughly 8 times 

that of the previous case). Again the diffraction efficiency is 2.1 %. 

Theoretical I Experimental I 

Figure 5.9 Theoretical and experimental beam profiles - g = 1.13 

Although the match isn't as good as was obtained with the wider beam, even in 

this stringent case we still see decent agreement between the theoretical and experimental 

profiles, both on and off-Bragg. Along with a reasonable conformity in the amplitudes of 

the beams for each dephasing amount the general shape of the beam (the flattening of the 

top, or the breaking of the beam into two portions) is also well predicted. As in previous 



cases, these plots give a good verification that we are well within the range of cases for 

which the theory is valid. 

5.3 Summary 

The diffraction efficiency and resulting profiles of finite beams diffracted from 

uniform reflection gratings on and off-Bragg were investigated. With regard to the 

diffraction efficiency the effect of replaying with a finite beam will be an overall decrease 

in the level. For a typical He-Ne laser beam this decrease will be about 5% when the 

grating strength is near W2. 

The profiles diffracted from these reflection gratings will generally be distorted 

versions of the replay beams, with the distortion increasing as incidence deviates from 

Bragg. Unlike in transmission gratings however, the fidelity of the on-Bragg profiles 

improve as the grating strength is increased. This happens because stronger reflection 

gratings have wider regions of approximately uniform attenuation. Again, all profile 

predictions were verified experimentally. 



CHAPTER 6 

OVERLAP GRATINGS 

The previous two chapters dealt with investigating the properties of volume 

transmission and reflection gratings. In those chapters the gratings were assumed infinite 

with plane parallel front and back boundaries. The type of hologram present (reflection 

or transmission) was determined by the angle that the grating lines made with those 

surfaces. In this chapter another type of grating known as crossed beam [I] or overlap 

type will be studied. These generally arise due to finiteness of either the recording beams 

or the holographic material. Examples of overlap gratings arising from each of these 

situations are shown below in Figure 6.1. Regardless of the cause of the overlap, the end 

result will be a grating with non-uniform or non-planar boundaries. The solution to all of 

these problems will be found using the two-dimensional coupled wave analysis described 

in section 2.3. This is chosen for its ease in handling these non-planar boundaries. 

This chapter will investigate the diffraction characteristics of these gratings both 

on and off-Bragg by looking at three specific examples of subject beams: a Gaussian 

beam, a truncated uniform beam, and an array of Gaussian beams. These beams have 

been selected to show effects that are general to overlap holograms, as well as some that 

are critical to systems currently under design. 
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Figure 6.1. Types of Overlap Gratings 

6.1 Cou~led Wave Eouation Solution for over la^ Holomams 

In section 2.3 equations for two-dimensional volume holograms were derived. 

These expressions were given in equation 2.50, and are repeated below. 

Now that we have these equations for overlap gratings we need to solve them to 

get the beam profiles and diffracted power. In order to obtain a solution using known 

methods, their form must be modified slightly, and an additional approximation must be 



made. The required approximation is that Am(r,s) = Am(r), and Aso(r,s) = AsO(s). This is 

equivalent to forcing the beams to be read back at an angle close to that at which they 

were recorded. It must be noted that this does not nullify its use in angular dephasing 

problems (since the magnitude of the deviation is small enough in these instances (<< lo) 

that the approximation remains valid). It does however restrict the validity of the 

solution to cases where the readback beam is the same wavelength as the recording one 

(since changing the wavelength requires a large change in incidence angle to satisfy the 

Bragg condition). With these approximations equation 6.1 reduces to: 

Now, by making the following two substitutions into each of the equations: 

and 

We get: 



These equations can now be combined into a single second order-linear hyperbolic 

differential equation. This can be done in terms of either the reference or the signal 

beam, with the resulting equation being one of : 

Obviously the first of these is used when the signal beam profile is desired, while 

the second is used to determine that of the reference beam. From Figure 6.1 we see that 

the boundary conditions are that the replay beam has an amplitude of RO at the boundary 

s=O, and that the amplitude of the signal beam is 0 at r=O. These can be written as: 

~ ( r , s ) = ~ ~ l ~ = ~  and s(r,s)=ol, 

Writing these in terms of our new variables (equation 6.3) and incorporating equation 6.4 

results in the following boundary conditions: 

aS 
-=- j ~ ' A , ~ ( r , ~ ) A , ( r , ~ ) e + j ~ ~ ( ~ ) R ,  along the lines = O  ar 

along the line r = 0 



At this point we can write our final expressions for the beam amplitudes, which 

we will do starting with the signal beam. The solution will be obtained using Reimenn's 

technique for second order linear hyperbolic partial differential equations. A detailed 

description of this method (from Courant & Hilbert [2]) can be found in appendix 1, 

where two overall forms of the solution are derived. Essentially the method gives a 

general form for the solution, into which problem specific parameters and boundary 

conditions b e  inserted. In calculating the signal beam we will use form 1 of the solution 

(equation A 1.14.a), which is: 

Lac aS 
~(r,s)=S(-,s) - I S-dsl+ G- dr' 

-QO 
as' 

-00 
ar ' 

In this equation G is the Riemann function, which represents any function that meets a 

number of requirements. These requirements are listed in equation A1.10 of appendix 1. 

It is easy to show that one such function that meets these requirements is: 

u(r,Y)= jA:o(r',y)dr' and 

Inserting this for the Riemann function in 6.8, along with the boundary conditions from 

equations 6.6 and 6.7 gives the following solution for the signal beam at the output face: 



In order to determine the reference beam solution we need to use form two of the solution 

(equation A 1.14.b), which is: .. 

Again inserting our boundary conditions, along with the Riemann function from above 

yields the following solution: 

r - A, (r, y )eJ K1(r) 
~ ( r ,  s) = - ~ K ' R ,  I 

4 0  (r. Y -m 

These equations are now transformed back into R and S, which yields: 

- - j K' R, A,, (s, y ) e-J ('") A,, (r, y ) ~ ,  (r, y ) e - j(6-r) s (r, s)  = 
As (s, Y )  -x I J , [ ~ K '  ~ v ( s , ~ ) ( u ( r , ~ ) -  u(r', y)i]dr' 



6.2 Resulting Beam Profiles 

Now that we have general solutions for the diffracted and transmitted beams of 

overlap gratings, we can use them to show the resulting profiles and diffraction 

efficiencies for various inputs. In order to present results, specific recording and replay 

beams must be selected. Since the profile of a typical laser beam is approximately 

Gaussian, this distribution will be used for the reference beam in all cases. Three 

different subject beams have been chosen: a Gaussian beam of width oso, an array of five 

Gaussian beams (each of width oso), and a truncated uniform beam. 

Each of these profiles has been selected for a different reason. The Gaussian 

beam is used because it is the situation that naturally occurs when the grating is made 

with standard laser beams. The uniform beam is valuable because its simplicity allows 

small profile distortions to be seen most easily. Finally, the array of Gaussian beams has 

been selected because this is the manner in which typical holographic data storage 

systems are operated (i.e. the signal beam consists of a number of spatially separated bits 

formed into a page of data. These pages are then angularly and spatially multiplexed to 

avoid crosstalk. This investigation will therefore look for effects that could be important 

in practical implementations of these systems. 

Although expression 6.12 was developed for replay with an arbitrary beam, this 

analysis will be limited to replay with Gaussian beams of width om (ie: reading back with 

the original recording beam). Additionally, although the theory can provide three 

dimensional profiles (by slicing the beam into a number of two-dimensional sections and 



solving each separately), generating these profiles is numerically intensive, and little 

additional information is gained from the off-zero sections; therefore only the section at 

y=O will be shown. In situations where the profile of the beam's central portion is not 

typical of the entire beam or when the entire profile can not be ascertained from its 

central portion the full three-dimensional profile will be given. 

Case 1: Gaussian Subject Beam 

As discussed above, the first example will examine the diffraction properties 

when the grating was recorded with two Gaussian beams. For this example the width of 

the reference beam is taken to be a, and that of the signal beam to be 4, where as = 10 

4 These recording and replay geometries are shown below in Figure 6.2. 

Figure 6.2. Recording and Reply: Case I - Gaussian Subject Beam 
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The diffracted beams which result from this grating are shown below in Figure 

6.3. This figure covers overall Bragg efficiencies of 50%, 75% and 85%. For each of 

these, plots are given for dephasing amounts of 0 (on-Bragg) 1, 2 and 3, along with an 

appropriately scaled Gaussian beam. This additional beam allows the diffracted profile 

to be compared to the recording beam for checking the fidelity of reconstruction. 

Figure 6.3. 

- ~ t )  - ! i) 

Diffracted beam profiles - single gaussian subject beam 



For each efficiency the discussion will begin with the on-Bragg profiles. We 

essentially see two effects in all of these profiles, a shift in the location of the beam 

toward positive values of s (see Figure 6.2), and an asymmetry (the right side falls off 

quicker than the left). In the first plot (50% D.E.) this asymmetry is minimal, and the 

location shift is less than d5, however each of these effects becomes more pronounced as 

the overall efficiency increases. By the time this efficiency reaches 85%, the shift 

amount has become nearly a. 

The reason for each of these effects can be found by looking back at Figure 6.2 

(the playback geometry). As the replay beam starts diffracting, its amplitude is decreased 

and beam depletion effects occur. This causes the right side of the diffracted beam 

(where the amplitude of the replay beam is highest) to have more power than the left. 

Essentially we are seeing the effects of violating the first Born approximation (which is 

typically made in calculating hologram outputs). Obviously these issues are more 

pronounced as the grating strength increases. 

In addition to the distortion and shift discussed above, a third occurrence has 

shown up when the diffraction efficiency reached 85%. In looking at the on-Bragg 

characteristics we see that the amplitude drops to zero for a bit just beyond the center of 

the graph - essentially the beam has split into two. It will be shown that this effect is 

fundamental to overlap holograms, and results in an absolute limit to the diffraction 

efficiency with which a subject beam can be faithfully reproduced. 

Some discussion of the off-Bragg profiles is now in order. As in previous 

chapters it is difficult to make sweeping generalizations. For all efficiencies however, the 



off-Bragg profiles are more distorted than their on-Bragg counterparts. This distortion is 

not extreme when the overall diffraction efficiency is below 75% (the diffracted profiles 

resemble those found on-Bragg, just with less power). At a diffraction efficiency of 85% 

however, the resemblance of the on and off-Bragg plots quickly falls off with dephasing, 

and much of the structure of the diffracted beam is lost. These are interesting effects, 

since these profiles are caused more by the diffraction process itself than by beam 

depletion (less of the replay beam has been diffracted away in this case). Additionally we 

see that the off-Bragg beams are no longer split into multiple sections. Aside from these 

simple statements very few generalizations on the off-Bragg behavior can be made. 

Case 2: Array of Five Gaussian Subject Beams 

The second overlap grating structure to be investigated is that which results from 

the recording of a Gaussian reference beam of width a~ and a subject beam which 

consists of an array of five Gaussian Beams, each of width a ~ .  The separation of the 

maxima in this example is 4 OR. As noted above this is an important geometry to 

consider because it represents the type of subject beam that is typically used in 

holographic data storage systems. The recording situation is shown below in Figure 6.4, 

alongside the replay geometry. 



Figure 6.4. Recording and Reply: Case 2 - Five Gaussian Subject Beams 
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output beams (regardless of whether each has the same amplitude). Again the dephasing 

parameters considered (found from equation 2.49) run from 0 (Bragg) through 3. These 

results are shown below in Figure 6.5. For the sake of clarity the recording beams have 

been omitted from these graphs. These profiles will, however be given later. 

Again the on-Bragg results will be discussed first. We see in Figure 6.5 that when 

the overall diffraction efficiency is SO%, each of the individual beams remains 

approximately Gaussian. This does not imply that beam depletion effects are not present 

- they are. In this case they are manifested as a decrease in beam amplitude as we go 

from positive s (where the amplitude of the replay beam is highest) to negative. 



Figure 6.5. Diffracted beam profiles - array of five gaussian subject beams 

This result becomes considerably larger when the overall diffraction efficiency 

reaches 75%. At that point the amplitude of the first diffracted beam is more than 4 times 

that of the fifth. Even more non-uniformity occurs when the diffraction efficiency 



reaches 85%, and in that case it is combined with severe distortion of the third through 

fifth beams. In addition to this distortion we see that the amplitude of the fourth beam 

has dropped to almost zero. As will be shown in the final section of this chapter, this is 

equivalent to the break-up of the diffracted beam in Figure 6.3. 

Just as was the case when the signal wave was a wide Gaussian beam, the latter 

bits ire shifted along the s axis in the positive direction. This is difficult to see in Figure 

6.5 due to the number of plots present in each graph, so Figure 6.6 has been included 

below. This figure shows a blow up of the on-Bragg diffracted profiles for overall 

diffraction efficiencies of 75% and 85%, along with the recording subject beams. In this 

figure the shift of the diffracted beam is clearly visible. 

- Diffracted B e a m  I I \  I 
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Figure 6.6. Detail of 75% and 85% five beam array diffracted profiles 

Each of these two effects is of critical importance in holographic data storage 

systems. The shifting is important because the detection of bits in these systems is done 



with an array of photocells. In this case if a bit is shifted it could cause a false reading in 

either its own cell or in an adjacent cell. The shifting seen in Figure 6.6 does not appear 

large enough for this to happen because a large spacing (40) was used between bits. 

The other issue (large amplitude variation) causes additional concerns because 

each detector has minimum and maximum threshold levels. If a large number of bits are 

present then the last bit may not have enough power to meet this minimum threshold. 

Increasing the replay beam power to account for this could cause the first beam to exceed 

its maximum threshold. One solution to these issues is to operate at a low efficiency 

(where the first Born approximation holds). Another will be investigated in chapter 7. 

When we look at the off-Bragg profiles of Figure 6.5 we see that the effects are 

similar to those that occur in the single beam case. In the 50% and 75% total diffraction 

efficiency cases the off-Bragg profiles look like reduced amplitude versions of their on- 

Bragg counterparts. Additionally, beam depletion effects are still present in these off- 

Bragg plots (up to about 5=2). Finally, in the off-Bragg case at 85% diffraction 

efficiency the fourth bit has returned. As above, generalizations of this behavior are 

difficult to make. 

Case 3: Truncated Uniform Subject Beam 

The final case to be investigated is the recording of a Gaussian reference beam 

with a truncated uniform subject beam. The recording and replay situations are shown 

below in Figure 6.7. 



Figure 6.7.. Recording and Reply: Case 3 - truncated uniform subject beam 

The diffracted beam profiles of this grating are given below in Figure 6.8. As 

before overall diffraction efficiencies of SO%, 75% and 85% are investigated. Again for 

each of these efficiencies plots are included for dephasing amounts of 0, 1.2 and 3. 

In looking at the plots we see that just as in the two previous cases, when the total 

diffraction efficiency is 50% the resulting beam is quite uniform, and an excellent 

reproduction of the recording beam is obtained (the fidelity of reproduction is high). 

Naturally, for reasons described above the right side of the output (that which interacts 

with the replay beam first) is higher, but this effect appears insignificant. Off Bragg this 

effect is less pronounced since less depletion occurs in this case. 



a 
Figure 6.8. Diffracted beam profiles - truncated uniform subject beam 

Again we see in plots 2 and 3 that increasing the total diffraction efficiency results 

in additional beam degradation. At 75% diffraction efficiency those effects become 



somewhat dramatic, with the right side of the beam approximately three times that of the 

left. Again this effect is lessened as the beam incidence deviates from Bragg, but this 

improvement in beam quality comes at the cost of lower efficiency, as well as with any 

other problems associated with operating off-Bragg. 

Finally, these problems become extreme when the diffraction efficiency reaches 

85%. By that time most of the power is contained in the first 25% of the original beam 

width. Again the beam drops to zero (at least on-Bragg), before coming back up in 

amplitude again. By the time the efficiency reaches this level, the reproduction fidelity is 

low enough to limit its use in any application for which this is an important issue. 

6.3 Diffraction Efficiency Calculations 

In each of these three cases the graphs were distinguished by their overall 

diffraction efficiency. Although the calculation of this efficiency is done in the same 

manner as in earlier sections (integrate the diffracted profile and divide by the known 

incident power), some insight is gained by considering this in detail. In the three- 

dimensional case Mohararn et a1 [3] have shown these powers to be: 



where q, is the average characteristic impedance of the medium. The diffraction 

efficiency then becomes: 

When the problem is limited to the two-dimensional case (i.e. when we consider 

only the plane y d )  Solymar and Jordan [4], and Keenen [5 ]  have shown that the 

expression for the diffraction efficiency can be reduced to: 

DE,, = 1 - J ~ [ ~ K ' ( u ( - )  v(-))Y~]- J;[~IC'(U(-) v ( - ) ) ~ ~ ]  

where u and v are as defined in section 6.1. In discussing this equation however, 

Mohararn et al [3] pointed out that since u(-) and v(=) are proportional to the total 

powers of the recording reference and signal beams respectively, the diffraction eficiency 

is independent of the beam profile and depends only on the product of the power in each 

of the two writing beams. Therefore equation 6.34 represents a universal result for the 

diffraction efficiency of all two-dimensional crossed-beam gratings with a given 

recording power. On its own this is quite surprising, however this fact actually has 

important additional repercussions. 

The first implication of equation 6.34 comes from the form of the expression 

itself. Although an initial look at the equation probably does not show this, a plot of this 



equation versus G = 2 ~ '  ( U(-)v(=) ) v2 shows the function to be a non-decreasing 

function. This plot is given as Figure 6 .9  below. 

Figure 6.9. Diffraction efficiency versus grating strength - overlap gratings 

Since G is defined by the total amount of power in the recording beams, 

increasing the power in either of these beams will therefore increase the diffraction 

efficiency (or at least keep it constant). We now consider a grating recorded with an 

arbitrary reference beam and a uniform subject beam of width w. We can integrate over 

these profiles to find G, and then determine the diffraction efficiency from equation 6.34. 

If we now keep the reference beam the same, but increase the width of the subject beam, 

G will increase accordingly, as will the diffraction efficiency. In this situation the 

increase in diffraction efficiency represents the amount of light diffracted into the 

additional width. From Figure 6.9 we see that after an initial ramp up period (g < 0.4) 

this increase will be approximately linear with G (i.e. with position). Within a certain 



area however (G s 1.8 . . . 2.1) widening the subject beam results in no additional 

diffraction efficiency, thus no light is diffracted into this area. 

This is the origin of the beam break-up as the efficiency approached 85% in the 

previous plots (the value of G was between 1.8 and 2.1 in those areas). This effect can be 

seen much more clearly in Figure 6.10 below, which shows the derivative of equation 

6.34 versus G. It therefore represents the additional light that is diffracted as the replay 

beam is widened. 

Figure 6.10. Change in diffraction efficiency with grating strength - overlap gratings 

Once we have increased the length of our uniform subject beam such that G 

exceeds 2.1 we again get light diffracted. By looking back at Figure 6.9 we see that the 

diffraction efficiency where this starts to happen is about 83%. Clearly this effect (which 

is mathematically due to a zero in the JI Bessel function) is the cause of the break-up of 

the beams in all of the 85% graphs given earlier. Since there is no way around this limit 

(theoretically one would need an infinite amount of energy in an infinitely narrow area to 



"jump" over this region, and even if this recording beam could be generated, the material 

would need to be linear across this infinite range), it can be said that 83% represents a 

fundamental limit to the diffraction efficiency with which an overlap hologram can give a 

faithful reproduction of the recording beams. Additionally from either Figure 6.9 or 6.10 

we can see that a similar effect happens at G z 3.5 and G z 5. Continuing these plots out 

towwd infinity would show an infinite number these discontinuities. 

The fact that the relationship between the diffraction efficiency and the recording 

beam power is so simple has an additional benefit. Since we increase the incident beam 

power as we widen the recording beam we naturally get an increase in diffraction 

efficiency (up to the limit of 83%). By varying the amplitude while widening the subject 

beam it is possible to choose the shape of the diffracted beam. This effect may be used 

for a correction of some of the distortion discussed above (i.e. that which results from 

beam depletion during replay), or to perform somewhat arbitrary beam shaping. Each of 

these issues will be discussed in considerable detail in chapter 7 

6.4 Summary 

The profiles of the diffracted and transmitted beams of overlap gratings were 

investigated using known solutions. When the grating is replayed with the exact 

recording reference beam, the resulting diffracted beams will be shifted and distorted 

versions of the recording subject beam. These effects arise because the first Born 



approximation is violated (substantial beam depletion occurs). At overall efficiencies of 

up to 50% they are minimal, however they become pronounced at 75%. When the 

overall efficiency exceeds 83% the diffracted beam splits into more than one section. 

This distortion and shift can be problematic in data storage systems. 



CHAPTER 7 

DESIGN OF OVERLAP GRATINGS FOR BEAM 

CORRECTION AND BEAM SHAPING 

In chapter six, profiles were given for the beams diffracted by and transmitted 

through overlap holograms. In all cases the fidelity of the reconstructed beams was less 

than ideal, with the distortion increasing as the efficiency went up. At the end of the 

chapter a simple expression was given for the diffraction efficiency of these structures 

(when replayed on Bragg with the original reference beam). This expression indicated 

that the overall D.E. could be found simply from the total power in the recording beams. 

In this chapter we will attempt to use this relationship to perform beam shaping by 

varying the distribution of the recording waves. A general method will be given to find 

the required subject beam such that the wave diffracted by the resulting hologram will 

have some desired form. Once the required profile is found, it is obtained by placing an 

amplitude mask in front of a base subject beam (such as a Gaussian beam). After 

describing the method, an example of its use will be given. In this example a grating will 

be designed that diffracts a uniform wave from a Gaussian replay beam. 



Several additional examples will then be given to show the improvement that can 

be obtained when the hologram is created with these scaled subject beams. The examples 

will be the same cases used in chapter 6 to describe the properties of overlap gratings (i.e. 

a Gaussian beam, an array of 5 Gaussian beams and a truncated uniform beam). 

7.1 Basic method to obtain a desired beam profile 

In this section a description of how to perform beam shaping with volume 

holography will be given. The geometry used throughout the discussion is shown below. 

The figure shows an overlap hologram being recorded by the interference of a Gaussian 

reference beam and an arbitrary subject beam (shown with a Gaussian amplitude). 

1 1 1 1  ; 
, Diffracted Beam 

Figure 7.1. Geometry for beam shaping method 



where : 

The basic idea is to determine the necessary grating strength profile (K vs. 

position) that will cause the diffracted beam to have some desired form (e.g. uniform, 

Gaussian.. .). In general finding this profile is not a trivial task, however with some 

insight equation 6.34 can be used to determine it. As discussed in section 6.3 this 

equation gives the Bragg diffraction efficiency of an overlap grating as a function of the 

total recording power (regardless of the actual profiles). Naturally the value it gives is 

the overall efficiency. 

Suppose, however that the recording signal beam is truncated at some point x. 

We can insert the power in this portion of the beam into equation 6.34 (along with that of 

the reference beam) to determine the diffraction efficiency of this modified hologram. 

By repeating this process for various values of x, the following function for the 

diffraction efficiency vs. position (i.e. D.E.(x)) can be obtained (see fig. 7.1): 

and u(=) and K' are as defined in chapter 6. 

The amount of power diffracted into the output beam as we travel along the x-axis 

can then be determined from this expression for any given recording beam. This is 

essentially the diffracted amplitude profile. Obtaining these profiles in this manner is 



straightforward enough, however it still must be performed numerically. Thus it holds 

little advantage over the use of equation 6.12. 

This discussion assumed that we were given a recording signal beam, and from 

recording time). 

We now have values for v(x), the derivative of which will yield the necessary 

recording profile. In most cases these last two steps will be done numerically, which will 

require the desired output beam to be split into a number of discrete sections, each of 

this the resulting diffracted profile was calculated. If however, it was desired that the 

diffracted beam have a particular profile, then we could use similar logic to calculate the 

D.E.(x) that would give this profile. These values could then be inserted into equation 

7.1 to obtain the necessary form for ~ ( x )  = 2 ~ ' ( u ( ~ ) v ( x ) ) ' ~ .  

Since we know the total power in the reference beam, all that is needed to find 

v(x) from this equation is the value of K'. This is obtained by choosing a value for the 

transmission of the amplitude mask's first section. It turns out however that this selection 

is arbitrary, as it merely represents a scaling factor for the entire mask (any changes 

resulting from a different value are absorbed in &, which in turn is set by changing the 

which is solved individually. The number of sections used will determine how well the 

profile matches its desired value, as well as how smooth the output is. 

The entire process can be summarized into the following simple algorithm: 



Algorithm for Performing Beam sha~inp 

Select a value for the overall diffraction efficiency (De,) 

Choose the desired diffracted beam profile. 

Select the number of discrete sections ( N ). 

a. Using N and (2), calculate the desired D.E., (the desired diffraction 

efficiency at the end of each discrete section) 

Using the equation: DE = 1 - J ,  (2 y ) - J ,  (2y ) ,  solve for the yx9s. 

Calculate the power in each discrete section of the base subject beam. 

These will be designated as Fk. 

Using the n ' s  from (4) and the Fk9s from (3, calculate the amplitudes of 

the transmission mask (the Ak9s ) from the equation: 

Test the resulting profile to determine if it is smooth enough or whether the 

number of sections N must be increased. 

Despite the number of individual steps, this process is actually quite simple. In 

order to show this, an example will be given. In this example the profile required to 

convert a Gaussian replay beam into a uniform diffracted beam will be found. For this 

example a base subject beam with a Gaussian profile will be used. Each step will be 

described below, as well as shown graphically in Figure 7.2 for additional clarity. 



The first step in the process is to select an overall diMaction efficiency. For this 

example a value of 50% will be used. It is desired that the diffracted profile be uniform 

(step 2), and in step 3 the number of discrete sections is arbitrarily chosen to be 10. This 

allows us to calculate the desired cumulative diffraction efficiency of these 10 sections 

(i.. D ) .  These values are given in Figure 7.2. Inserting them into equation 7.1 yields 

the cumulative grating strength of each section (i.e. y(x))(step 4). 

Figure 7.2. Graphical description of the beam shaping method 
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The combination of steps 4 and 5 are then translated into scaling factors for the recording 

beam in step 6. This requires knowledge of the total power in the reference beam, which 

for a Gaussian beam is A;, a,/%. The resulting scaling factors are shown in the figure. 

Two final steps are then performed. The first is to divide all of the AL9s by their largest 

value.(to keep the transmission levels of the amplitude mask below unity), and the second 

is to apply a curve smoothing function to avoid discontinuities at the end of each section. 

The design is now complete, and the resulting profile is inserted into equation 

6.12 to find the output of the grating. The results are shown in Figure 7.3 below. Along 

with the output profile, the transmittance of the required amplitude mask is given. 

Total Diffraction Efficiency : 50% 

Amplitude 0.06 t'\ ', Mask ('0.05) 
\ 

Figure 7.3. Results for a Gaussian to uniform beam converter 

0.02 

We see in Figure 7.3 that an approximately uniform diffracted beam has been 

\ I 
i Diffracted Profile - I 
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generated. In this example there is an amplitude variation of about 15%. If this is too 

\ # 



high for a given application then it can be lowered by increasing the number of discrete 

sections used. The method therefore appears to work well for overall beam shaping. 

When looking at the transmission characteristics of the amplitude mask, however 

a serious problem becomes evident. The transmittance must vary up and down between 

0.04 and 1.0 across a relatively small area, which is difficult to fabricate. Additionally 

this analysis assumed that the phase difference in propagating through the mask would be 

constant for all sections, which is probably not the case with this large a difference in the 

section transmittances. The complexity of the mask in this example was a result of the 

large difference between the base subject beam (Gaussian) and the desired output beam 

(uniform). This was done to show the overall generality of the method. In most 

applications, however the base beam will be similar to the desired output, and better 

results will be obtained with simpler masks. The remainder of this chapter will give 

examples of the improvement that can be obtained by using the method. 

7.2 Using the method to correct for distortion in the diffracted profiles 

In order to present results of using a modified subject beam we again must select 

specific cases. The three cases to be shown are those of chapter 6 (i.e. a single Gaussian, 

multiple Gaussians and finite rectangular subject beams). In each case the diffracted 

profile will be given for an unapodized grating (from chapter 6) as well as for an 

apodized grating (using the method). In addition, a plot of the transmission 

characteristics of the required amplitude mask will be included. 



Case 1 : Gaussian Subject Beam 

As in chapter 6, the fust case to be considered will be the Gaussian subject beam. 

Again overall diffraction efficiencies of 50%, 75% and 85% will be covered, although 

only the Bragg diffracted profiles will be given. The results when the overall diffraction 

efficiency is 50% are shown below in Figure 7.4. 

Mask Amplitudes _______------------.-- 

Figure 7.4. Scaled and unscaled diffracted profiles (overall D.E. = 50%) 

This figure clearly shows that for an overall diffraction efficiency of 50% using a 

modified subject beam can give a diffracted profile that is almost exactly Gaussian. No 

longer is the output shifted, and the asymmetry has been removed. This is a considerable 

improvement over the unscaled case of chapter 6 (shown in the figure). Additionally, the 



required amplitude mask has a relatively simple transmission profile which makes 

fabrication straightforward. As will be shown below, this may not always be the case. 

When the overall diffraction efficiency is increased to 75%, as in Figure 7.5 

below, we again get a diffracted profile which is nearly Gaussian. In generating this 

, figure 20 discrete sections were used, which left some difference between the apodized 

plot and the Gaussian curve, however if necessary the agreement could be improved by 

using more sections. Again the results show considerable improvement over the unscaled 

curve obtained from chapter 6. 

Figure 7.5. Scaled and unscaled diffracted profiles (overall D.E. = 75%) 

In looking at the amplitude mask we see that a larger difference in transmission 

levels is required to correct the distortion at this efficiency, however the change in 



transmission is gradual and it should not be overly difficult to make the mask. Thus the 

method seems practical for efficiencies up to 75%. 

The final example of a Gaussian subject beam is for an overall diffraction 

efficjency of 85%. This is shown below, and it contains a few interesting points. 

1- GAUSSIAN 
UNAPODIZED I 1 

Figure 7.6. Scaled and unscaled diffracted profiles (overall D.E. = 85%) 

The first thing indicated by this figure is that although the corrected profile 

matches the Gaussian curve better than that of the unapodized grating, the match is not as 

good as it was for lower efficiencies. We see therefore that as the diffraction efficiency 

increases, correcting for the corresponding distortion becomes more difficult (it would 

require a large number of discrete sections and a better curve fitting algorithm). Even if 

more sections were added to the analysis however, an exact Gaussian match could not be 

obtained since the diffracted profile must still drop to zero at 83%. This is the second 



important issue illustrated by Figure 7.6, and it reinforces the idea that this is a 

fundamental limit to the diffraction efficiency with which an arbitrary profile can be 

obtained. 

In looking at the apodization function of Figure 7.6 we see immediate problems. 

The transmittance varies by more than a factor of 100. Additionally, this variation occurs 

over a range of about a 1 10, which makes this mask all but impossible to fabricate. 

Case 2: Array of Five Gaussian Subject Beams 

The second geometry considered is an array of five Gaussian beams. Again, three 

cases will be covered (diffraction efficiencies of 50%, 75% and 85%), the results of 

which are shown below in Figures 7.7, 7.8 and 7.9. In all of these cases a very simple 

apodization function was used - five uniform transmission layers (one for each of the 

diffracted beams). The transmission level for each of the sections are shown in the 

figures by their respective beams. 



Total Diffraction Efficiency: 50% (1 0% / Beam) 

Figure 7.7. Scaled and unscaled profiles - 5 Gaussian Beams (overall D.E. = 50%) 

In this first figure the diffraction efficiency is 50%. It is clear from the figure that 

at this diffraction efficiency the overall method can be used to make the outputs of all 

beams approximately uniform. This addresses one of the data storage issues described 

earlier (the threshold problem). Additionally, the beams are not shifted (the other 

concern), however at this efficiency the shift was also minimal in the unapodized plot. 

Since the apodization function is just five uniform levels fabrication of the mask is quite 

simple. 

When the diffraction efficiency is increased to 75% we get the results shown 

below. Again we see that the beam diffracted from the apodized grating closely matches 

the desired profile (five uniform Gaussian beams). The separation of the maxima of 

these beams is relatively constant, which implies that the shifting of the beams has also 



been corrected. As in all of these cases, the simplicity of the apodization function makes 

the mask quite easy to manufacture, increasing the practicality of its use. 

Total Diiraction Efficiency: 75% (1 5% / Beam) 

Figure 7.8. Scaled and unscaled profiles - 5 Gaussian Beams (overall D.E. = 75%) 

The final case has a diffraction efficiency of 85%. The diffracted profile of this 

grating is shown below in Figure 7.9. With this efficiency the first four beams have the 

desired profile, however the fifth beam is considerably distorted and again drops to zero 

at 83%. We do see significant improvement over the un-scaled grating (where the third 

through fifth beams were highly distorted and the fourth beam was virtually non- 

existent), which implies that the method is still worthwhile. Although the profile of the 

fifth beam could be improved by using a more complex amplitude mask (one where the 

transmittance varies across the final section), the zero drop would still not be removed, so 

it is questionable whether it would be worth the additional complexity. 



Total Diff action Efficiency: 85% (1 7?h 1 Beam) ; 

Figure 7.9. Scaled and unscaled profiles - 5 Gaussian Beams (overall D.E. = 85%) 

Case 3: Truncated Uniform Subject Beam 

The final case to be covered is the uniform subject beam. Figure 7.10 shows the 

resulting profiles (both apodized and unapodized) for all three diffraction efficiencies. 

Due to the simplicity of the profile all efficiencies have been included in one plot. 

As was the situation in the single Gaussian and multi-Gaussian cases we see that 

at 50% diffkaction efficiency we were able to obtain the desired profile (a diffracted beam 

with uniform amplitude) quite nicely, with a relatively simple amplitude mask. In a 

similar manner when the diffraction efficiency was raised to 75% the profile still 

remained substantially uniform, again with a reasonable amplitude mask. 



Figure 7.10. Beam profiles for a uniform desired beam (various D.E.'s) 

When the efficiency was increased beyond 85% however, the profile could no 

longer be made uniform, even with the complex amplitude mask shown in the figure. As 

in the other cases, the amplitude dropped to zero at an overall diffraction efficiency of 

83%. Because the amplitude masks in the 50% and 75% cases were so simple (the 

transmission varied by no more than 13%), it seems that this method is practical for 

correcting these profiles. 

Based on all of these examples we can state that the distortion that is naturally 

present in an overlap hologram can be substantially reduced by applying an amplitude 

mask to one of the recording beams (at least in the linear region of Figure 6.10). 

Additionally, somewhat general beam shaping can be performed. Along with the 



examples presented here, this was also shown in [I] where a similar method was used to 

alter the diffracted beam profile. 

Although the plots with multiple Gaussian beams indicate that two of the issues in 

holographic data storage can be addressed, there are problems associated with correcting 

them in this manner. This is because the required amplitude mask depends on the 

numbef of illuminated bits. Thus the ideal mask would change for each bit pattern 

stored. It may be possible however, to choose a profile that is based on some average 

number of bits being illuminated (such as assuming that every other bit is illuminated). 

In this way the effects would be reduced (although not eliminated). It may be that the 

best way to correct these problems is that which was suggested in chapter six - operating 

at a low enough efficiency where the first Born approximation holds. 

Finally, the ability to perform somewhat arbitrary beam shaping brings up 

the possibility of an interesting device - a variable beam shaper. The idea is to angularly 

multiplex several holograms with different diffracted profiles in one area. Then by 

rotating the stored hologram a person could choose any one of a number of profiles for 

use in an optical system or projection applications (such as shaped laser pointers). This 

would avoid the necessity of entirely replacing the shaping element when a new profile is 

desired. 

7.3 Summary 

A method was developed for obtaining a diffracted beam from an overlap 

hologram with any desired profile. This method is based on using an amplitude mask 



over the subject beam to vary the grating strength with position. The required amplitude 

masks are simple (realizable) when the desired profile is close to that of the recording 

subject beam, thus this should be used when possible. It was shown that the method can 

be used to correct for most of the beam depletion effects discussed previously, however 

the splitting of the beam at 83% can still not be alleviated, thus it represents the true limit 

at which a good reproduction of the recording beam can be obtained. 



CHAPTER 8 

MULTILINE FILTERS 

Throughout this work the filtering properties of various hologram types have been 

discussed. In all cases the thickness of the medium resulted in a filter with an extremely 

narrow linewidth. This narrowness can be exploited to record multiple holograms within 

the same volume. Although the effects of this multiplexing could have been analyzed as 

each type of hologram was presented, it seems more appropriate to separate the topic into 

a single chapter on multi-line filters. Thus, all filters considered here will have multiple 

resonances (either in angle or wavelength). Analysis will begin with multiplexed 

transmission gratings, continue with reflection gratings, and end with a discussion of 

novel thin film alternatives which can give similar results. 

8.1 Angularlv Multi~lexed Transmission Gratings 

Table 2.1 listed the width of the angular response of a transmission grating as a 

hnction of its thickness. For our materials this width is on the order of 



0.05", which is narrow enough for these devices to be used in such applications as high 

density data storage systems and multi-line filtering systems with close angular spacing. 

In any of these applications the separation necessary for the individual holograms 

to be uncoupled is an important point. It is determined from the properties of the 

individual gratings, along with those of the replay beam, and the particular application at 

hand (which determines how "independent" the gratings must be). Although this 

decoupling can easily be obtained by putting "extra" angular spacing into the separation 

(to ensure minimal cross coupling ), this is not a desirable solution as it wastes precious 

bandwidth and reduces the number of gratings which can be multiplexed. Determining 

the required separation is clearly an electromagnetics problem, and an investigation of it 

will be given shortly. 

Along with finding the necessary angular separation between holograms there is 

an additional concern which must be addressed when multiplexing gratings in many real 

materials - holograms that are recorded later tend to degrade those which were recorded 

previously. This effect is obviously material specific, however it has been well studied in 

some of the more common materials [l-41. Results from these works will be discussed 

presently, along with a brief discussion of the effect in PTR glass. 

A number of approaches have been used to investigate cross coupling in 

multiplexed gratings, three of which will be discussed here. The first, which was devised 

by Tu et. al. [5], uses a multiple scattering approach to predict the outputs. This method 

can handle any number of gratings (although only the dual grating case was discussed in 

the paper), along with multiple coupling between orders. It appears to be the most 



powerful of the methods described here, however it has the disadvantage of being a 

purely numerical approach which makes obtaining physical insight difficult. 

A simpler method was used by Case [6] who (following a procedure similar to 

Kogelnik) derived a set of coupled wave equations for two superposed gratings which 

shared a common reference angle. By restricting his derivation to exact Bragg incidence 

he was able to obtain closed for solutions, although only for the overall diffraction 

efficiency of each beam. 

Finally, Alferness and Case [7] gave a method which could handle any number of 

gratings (although again limiting the discussion to the dual grating case) which was based 

on thin grating decomposition. Their paper presented several cases of grating strengths 

and angular separations, and showed that considerable cross-coupling effects can exist. 

From the results obtained they were able to determine that a reasonable estimate of the 

Bragg-angle difference necessary to effectively decouple the gratings was 1.5 times the 

width between the maximum and the first zero of a single grating. Their solution was 

obtained by slicing the grating into a number of thin sections, and using scalar diffraction 

theory to determine the transmission of each one. The output of each slice was then used 

as the input to the next until the grating was traversed. Although it is questionable 

whether scalar diffraction theory is valid for these gratings, considerable insight is 

nonetheless gained from the analysis. 

In this section we present the derivation of coupled wave equations for two or 

more multiplexed gratings. The resulting expressions will be valid for on or off-Bragg 

incidence. The basic procedure is to insert the permitivity variation corresponding to a 

pair of superposed sinusoids into the wave equation and to solve it under the assumption 
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of four propagating waves (a reference beam and three signal beams), while allowing any 

of these waves to propagate off-Bragg. This will result in a set of four coupled equations 

from which an overall solution can be found. 

The perrnitivity variation which results when a pair of sinusoids are recorded in a 

linear non-absorbing material can be written as: 

Plugging this into the wave equation and assuming that the replay field is given by: 

results in the following set of coupled wave equations. 

a~ K, K2 -+ j-S, + j-S2 = 0 
az cR CR 

as, . s, I K, -+ J-Sl + j-R + j-S3 = 0 
cs1 Cs1 Cs1 

as2 s 2  K2 Kl -+j-S2+j-R+j-S3 = O  
az cs2 Cs2 cs2 

as3 *3 '=2 '= 1 -+ j-S, + j-S, + j-S2 = 0 
az cs3 cs3 cs3 

where : 



These equations are quite complicated, however they are also quite general. In 

the special case where the recording beams share a common reference angle and 

incidence is strictly on-Bragg, they reduce exactly to those of [6]. Additional gratings 

can be included in the analysis, which will add two equations to expression 8.1 for each 

new grating. Because of the complexity of these equations, closed form solutions are not 

available. Since we are dealing with transmission gratings however, the boundary 

conditions are such that a solution can be obtained using a simple Runge-Kutta numerical 

integration. Although this is less desirable than an explicit solution, it does make 

incorporating such things as finite beams (through the angular spectrum of plane waves) 

relatively straightforward. 

In order to present results, specific examples must be selected. For comparison 

purposes, individual gratings similar to those used by Alfemess and Case in [6] and [7] 

will be used. The analysis will include replay with plane waves as well as Gaussian 

beams. The plane wave results that will be given are significantly different from those of 

[7]. The differences arise because the authors chose an unusual method of calculating the 

angular separation between the gratings, which is atypical of traditional multiplexing 

systems. The result is that the actual separation of the gratings in their system is much 

higher than they listed. Because of this, their analysis does not apply to typical 

multiplexing schemes. In the following analysis, the results of multiplexing (and 

measuring the angular separation) in the traditional manner are presented. 

Figure 8.1 below gives the resulting angular selectivities when two gratings are 

multiplexed with a separation of 5". Results are shown for replay with a plane wave, as 

well as with two different Gaussian beams. The index modulation of each grating is 
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chosen such that 1Md2, thus the plane wave diffraction efficiency of each grating in the 

absence of the other would be 100%. Again, these gratings are approximately the same 

as those used by Alfemess and Case for comparison purposes, thus they have a HWHM 

slightly below 1.15O. 

0.8 - Plane Wave 
0.6 - 

0.8 - Gaussian (n  = 6 A)  
0.6 - 

Figure 8.1. Angular selectivity of two multiplexed gratings - A@=5" for various inputs 

These plots show several important effects. The first is that the maximum 

diffraction efficiency of both beams has dropped from what they would be if only a 

single grating were present. Secondly, the location of each of these maxima has shifted 

slightly outward from their recording locations of 0" and 5". Additionally, the responses 

are no longer symmetrical around their maximum values. All of these effects are present 

regardless of the type of incident beam, however they become more pronounced when the 

input beam is finite. Part (c) of this figure shows another important effect. At no point 



does the diffraction efficiency of both beams drop to zero. If it did then a measurement 

of the sum of the diffracted beams could easily distinguish the presence of two gratings. 

Although measuring this sum in Figure 8.lc would show two maxima, the high 

diffraction efficiency between the peaks (>40%) would make distinguishing the 

individual gratings difficult. A final effect (which is barely visible in Figure 8.1) is that 

the maximum diffraction efficiency of each of the beams has become unequal. 

All of these effects are even more pronounced in Figure 8.2 where the separation 

has been narrowed to 3". In this case measuring the total diffracted power with either 

Gaussian beam would show efficiency plots with a single peak. Clearly when the replay 

beam is Gaussian (or at all finite) the effects of the inter-grating coupling are worse, and 

a wider separation than that suggested by Alfemess and Case should be used. 

0.8 - Plane Wave 

0.6 - 

0.4 - 

-B 0.8 - Gaussian (cr = 14 h 

r 0.4 - 

0.8 1 Gaussian (cr = 6 A) 

Figure 8.2. Angular selectivity of two multiplexed gratings - A@=3O for various inputs 



The Gaussian beams used for these analyses were extremely narrow. This was 

necessary for any beam effects to be apparent due to the thin material used (the HWHM 

of these filters was about 1.15"). The gratings considered in the present work are much 

thieker, so we can expect to see similar effects even with relatively wide beams. Figure 

8.3 shows this by giving the replay characteristics of a pair of gratings (with separations 

of 0.1" and 0.05") recorded in lithium niobate and replayed with a plane wave and with a 

typical He-Ne laser. The FWHM each grating was about 0.025". In this case the effects 

seen above are present even with the wide beams. For these parameters a separation of 

about 4 times the FWHM is adequate for independent replay with Gaussian beams. 

Separation = 0.1 O 

I - 

Figure 8.3. Angular selectivity of multiplexed gratings - P.W. & typical gaussian inputs 



As in previous chapters an experimental verification of these effects was 

performed. In this case five gratings were recorded in lithium niobate with angular 

separations of 0.3" and 0.4" (in air). Replay was made with a helium neon laser. The 

results are shown below in Figure 8.4, which clearly indicates the presence of cross 

coupling effects. For the particular grating and beams used in the experiment a 

separation of 0.4 degrees seems adequate for independence. The D.C. background 

present in these plots is most likely due to scattering within the crystal. 

Separation = 0.3" Separation = 0.4" 1' 
I\ 0.005 

0.003 

, 0.001 

Figure 8.4. Experimental verification of multiplexing in LiNb03 - A@=0.3", 0.4" 

All of the previous analyses were concerned with finding the required separation 

between multiplexed gratings, however as discussed earlier another issue exists when 

multiplexing - the gratings recorded later tend to degrade the ones recorded earlier. This 

effect can be seen in Figure 8.5 below, which shows the angular selectivity of 10 gratings 

multiplexed in lithium niobate. The gratings were recorded in order from left to right, 

and the exposure times and recording intensities were kept constant throughout. 



Obviously the latter gratings have a much higher diffraction diffraction efficiencies than 

those recorded earlier, indicating that overwriting has taken place. 

Figure 8.5. 

-1.2 -Om4a @(deg)Oq4 1.2 2.0 

Effect of grating overwriting when multiplexing in L i m o 3  - experimental 

In this plot we see that the gratings with higher diffraction efficiency have a 

correspondingly higher signal to noise ratio (SNR). For this reason it is important to 

equalize the individual grating's efficiencies. The overwriting that is seen in Figure 8.5 is 

due to the writing process in lithium niobate, where the motion and trapping of charge 

carriers sets up a space charge field along with a corresponding modulation of the 

refractive index. In these materials later recordings re-orient the distribution of charges, 

thus changing the induced field and adding an additional index modulation - at the 

expense of previous recordings. 

Since this process is reasonably well understood, scheduling methods have been 

developed which vary the exposure time or intensity, leading to much better uniformity in 
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multiplexed gratings [I]. Using these methods over 10,000 holograms have been 

recorded in lithium niobate with notable uniformity across their efficiencies [8]. 

Nevertheless the requirement for this scheduling, along with other complications in 

L i m o 3  add significant complications to the multiplexing process. 

Because a different mechanism is used to obtain an index modulation in PTR 

glass, it is desirable to see if similar effects occur when multiplexing in it. To investigate 

this, several sequential exposures were made in a sample of PTR glass, after which all 

exposures were developed (heated) concurrently. The recording intensity and time was 

kept constant for all exposures. Figure 8.6 shows an example where two gratings were 

multiplexed and heated several times. In this experiment a large separation angle was 

used in order to remove any effects due to cross coupling. 

Thermal Treatment 
92 minutes 
A8 FWHM = 0.044 "4.002" 

Recording Power: 24 mw 
A8 FWHM = 0.044 "4.002" 1 

A8 FWHM = 0.046 "4.002" 1 

-0.5 -0.1 0.1 0.3 0.5 0.7 0.9 1.1 

Figure 8.6. Multiplexing two gratings in PTR glass - experimental 



As can immediately be seen, each of the gratings has approximately the same line 

shape and maximum diffraction efficiency, even across several heatings. In addition 

scattering is seen to be negligible. This is quite desirable as it implies no special 

- compensation or scheduling is required when using this material. 

The number of multiplexed gratings was then increased to fifteen, and the angular 

separation was reduced significantly. The results are shown in Figure 8.7 below. Again 

it appears that the diffraction efficiencies are relatively constant (only one of the fifteen 

gratings differs in diffraction efficiency by more than 25%), and cross talk remains 

minimal. Thus it appears that minimal degradation of earlier gratings is occurring during 

mutltiplexing - at least at this efficiency. This is in agreement with the understanding of 

the physical processes at hand, however it is anticipated that degradation would occur as 

the efficiency was increased to near the limit of the dynamic range. 

Figure 8.7. Multiplexing fifteen gratings in PTR glass - experimental 
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8.2 Angularly Multi~lexed Reflection Gratings 

Just as in the case of transmission gratings, additional multiplexing effects can be 

investigated when the gratings are of the reflection type. Performing this analysis in the 

manner used for transmission gratings would be quite difficult, since the boundary 

conditions of the differential equations exist at two different points, which is not 

straightforward to solve even with numerical methods. It is possible to avoid this 

complexity by limiting the analysis to cases where all of the gratings are unslanted, for 

which simpler solution methods exist. 

When all of the gratings are of the unslanted reflection type the chain-matrix 

method described by Mohararn and Gaylord [9] can be used to find the solution. This 

method slices the resulting index profile into a number of uniform sections and calculates 

the diffracted and transmitted fields as the beam propagates through the individual 

sections. Unlike when Alferness and Case used a similar concept for solving 

transmission gratings, the slices in this analysis are uniform, therefore the accuracy can 

be made arbitrarily high by increasing the number of slices. This section will present 

some of the results obtained using this method. Since these gratings are typically used as 

wavelength filters all plots will be in terms of wavelength deviations. 

Figure 8.8 shows the wavelength response of two multiplexed gratings 

illuminated by a uniform plane wave. The grating wavelength separation is varied 

between 1 nm and 0.2 nm, the index modulation is kept constant at 0.000295, and the 

base index was chosen to be 1.5. These values were selected because they are typical for 

gratings recorded in either PTR glass or in doped fibers (for use in fiber Bragg 



gratings)[lO]. In this example the center wavelength was 1 p, and normal incidence 

was assumed which gave a period of about 0.3 pm. Ten thousand periods were used, 

thus these normalized lengths represent actual lengths of approximately 3 mm. Again 

this is well within the reaches of either PTR glass or fiber Bragg gratings. 

Figure 8.8. Wavelength response of multiplexed reflection gratings - various Aks 

The first thing we can note from these plots is that effects due to the presence of 

more than one grating definitely exist. This is obvious from the response between the 

two peaks. If no cross coupling or interference effects were present each individual plot 

would be symmetric and the intensity between the peaks would be the sum of the 

individual responses. Clearly, however they are not. The intensity in this area is 



considerably lower than what would be present with only a single grating. This effect 

could result from either cross coupling between the gratings or from the individual 

responses from the grating interfering destructively. In fact it is most likely due to a 

combination of these. Similar effects are seen outside of the peaks, but the level is 

consi&rably less since the intensity of one of the responses is much lower than the other. 

An interesting (and possibly useful) occurrence is seen in the fourth part of the 

figure (where the separation is 0.2 nm). Between the two reflection peaks is a narrow 

transmission peak. It is possible that this could be used as a wavelength transmission 

filter (recall that typical wavelength filters are used in the reflection geometry). The 

narrowness of this linewidth (on the order of angstroms) as well as its symmetry are both 

desirable properties. Additionally, the fact that this operates as a transmission filter 

brings up the possibility of using this filter in non-traditional areas of a WDM 

comrnunications system. 

Another advantage of this filter is its simplicity, which allows it to be scaled for 

generating multi-line narrowband wavelength transmission filters. This is shown below 

in Figure 8.9 where one, two, three and four gratings have been multiplexed to make 

filters with zero, one, two and three transmission peaks respectively. Each of the gratings 

in all of the figures was 10,000 periods long and had an index modulation of 0.000295. 

The period of the first grating was LI=0.333pm, while those of the other gratings were: 

1.0002 Ll, 1.0004 LI and 1.0006 LI respectively. 



Figure 8.9. Wavelength response of one to four multiplexed reflection gratings 

Clearly this filter has some interesting possibilities in wavelength division 

multiplexing (WDM) systems, however its response also has many undesirable 

characteristics which must be addressed. These include the fact that the rejection band on 

either side of the transmission peak is relatively narrow, and the transitions are not 

extremely sharp. From the early chapters of this work we know that the first of these can 

be corrected by increasing the index modulation (which increases the width of the main 

reflection lobe). In a similar way we can turn to traditional grating theory to find the 

solution to the second problem - increasing the number of periods in the grating (this has 

been used extensively in fiber Bragg gratings [l 11 since extremely thick gratings are easy 

to obtain). Figure 8.10 below shows the effect of doubling the grating thickness to 20000 



periods (approximately 6 mm). As these devices get longer we are obviously entering an 

area best handled by gratings recorded in optical fibers. 

Figure 8.10. Wavelength response of two doubly thick multiplexed reflection gratings 

At this point we have achieved the desired sharp transitions, however a new (and 

perhaps worse) problem has developed - multiple sidelobes. Although the amplitude of 

these sidelobes has not increased for any given amount of dephasing, the width of each 

one has narrowed, and considerably more of them exist. Furthermore sidelobes have 

turned up between the main peaks. The problem of reducing sidelobes has been 

addressed often in traditional as well as in fiber gratings [12-151. The solution that is 

typically used (applying an apodization function) actually dates back into the early days 



of microwave theory [16]. In this method the grating strength is varied as a function of 

position. Several possible functions have been investigated [17], the most popular of 

which are the raised cosine and the gaussian profiles. Since the raised cosine gives better 

sidelobe suppression it will be used in the following analysis. Cases where the thickenss 

is 5,000, 10,000,20,000 and 40,000 periods are considered. 

Figure 8.1 1. Response of multiplexed apodized reflection gratings - various thicknesses 

Again we see that traditional methods have solved the problem. In all but the first 

case narrow linewidth with sharp transitions were attained. In the 5000 period plot the 

transitions were not sharp enough for a transmission spike to exist (the 0.2nm separation 

was originally selected based on a 10,000 period grating). 



Since it appears that all undesirable characteristics of can be corrected, an 

investigation of manufacturing tolerances seems appropriate. Figure 8.12 shows one 

example of this - the wavelength response as the phase between the gratings is varied 

between 0 and x (i.e. one grating is kept as a cosine while the other is varied between a 

cosine and a sine). In this figure all gratings are 10,000 periods long and have an index 

modulation of 0.000295. 

999.3 1000.0 1000.8 ~999.3 1000.0 1000.8 

Figure 8.12. Response of a filter with different relative grating phases 

Figure 8.12 indicates a serious potential problem with these devices. The width of the 

transmission peak is strongly dependent on the phase difference of the gratings. Since 

the phase of each grating is determined by that of the recording beams this overall 



difference cannot be controlled. Thus these filters appear impractical for large scale use, 

since these operations require many filters with similar characteristics (as opposed to a 

single filter with an extremely narrow linewidth). It should be pointed out that similar 

effects were predicted in doubly multiplexed fiber Bragg gratings [17]. 

Before abandoning the idea of a multi-line filter it seems worthwhile to see if 

similar characteristics could be obtained from a filter manufactured in another manner. 

Some insight may be found by considering the mathematics of the interference pattern. 

Assuming that the gratings are of equal strength, the index distribution of the resulting 

combination of gratings becomes 

With some simple algebra this can be written as 

In this form the pattem looks like a single grating (whose period is equal to the average 

of the two holographic periods), with a sinusoidal apodization placed upon it. Using a 

single mask with this amplitude distribution would alleviate the problems of 

reproducibility, however it is highly unlikely that such a mask could be manufactured (it 

would require an amplitude which varies between 0 and 1 in a sinusoidal fashion, along 

with several pi phase transitions located with extreme accuracy). 
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It is reasonable to assume that the narrow transmission peaks result more from the 

phase transitions (zero crossings) than from the sinusoidal amplitude distribution. Thus it 

may be possible to get the same effect with a mask of uniform amplitude, but with a n 

phase transition whenever equation 8.5 changes sign. Gratings of various lengths with 

this profile were modeled, and the wavelength characteristics are given below. 

Figure 8.13. Response of a filter with simplified (k1) profile 

This figure clearly shows that the simpler device does contain the desired 

transmission peaks. Although large sidelobes are also present in the responses, adding an 

apodization function will again lower their value. Even though the mask required to 

make this filter is simpler than the previous one, and could probably be manufactured 



(making our multi-line filter truly a possibility), the number of phase transitions may 

make its attainment cost prohibitive. 

By recognizing that these transitions are simply x phase shifts, we can see the 

origin of these transmission peaks. Essentially we have a number of reflection gratings 

each separated by a x phase shift. The entire ensemble is therefore acting as an array of 

FabrySerot interferometers, with the grating sections as the mirrors and the phase shifts 

as the spacers. Knowing this, and recognizing that these components can be made from 

thin films makes a thin film version of the entire device seem possible. Thus the final 

section of this chapter will discuss the characteristics of multi-line filters created from 

thin film layer stacks, and will describe how to vary the parameters to meet desired 

characteristics. 

8.3 Thin Film Stack Multi-line Filters 

Since it appears that the multi-line filters we have been discussing are essentially 

Fabry-Perot interferometers with multiple mirrors, a review of Fabry-Perot interferometer 

theory should yield additional insight into their behavior. We will begin this with the 

traditional (two mirror) case, while postponing the discussion of the multi-mirror 

situation until later. 

The characteristics of a standard Fabry-Perot interferometer has been well studied 

and the results are readily available [18]. The transmittance of this device can be 

expressed as: 



where RI and R2 are the reflectances of mirrors 1 and 2 respectively, and 6 is the round 

trip difference of the spacer layer. A schematic drawing of the device along with 

the characteristics resulting from this equation (assuming RI = R2 = R) are shown below 

in Figure 8.14. for several values of r = &. Clearly the transmission peaks become 

narrower and sharper as the value of R increases. 

Figure 8.14. Fabry-Perot interferometer and resulting transmission characteristics 

In addition to showing the transmission characteristics, equation 8.6 also gives the 

requirements necessary for the transmission of the device to reach 100%. The first of 

these is that the phase difference must be n: (which is actually just the requirement for a 

transmission peak), while the second is that the mirrors have equal reflectivity. It will be 

shown presently that similar requirements hold when the interferometer is made with 

multiple mirrors. 



Fabry-Perot Interferometers (FPIs) can be made in a number of ways, including 

using free standing mirrors separated by air or even a simple block of optical material 

with parallel sides (where the thickness determines the phase difference, and the 

reflections at the boundaries act as the mirrors). Another way to make a Fabry-Perot 

interferometer is with thin film stacks. In this method two stacks of quarter wave layers 

are joined by a half wave layer. Each of these stacks then acts as a mirror, and the half 

wave layer performs the duties of the spacer. Since the optical thickness of the spacer is 

exactly one half wave only at the design frequency, maximum transmission is limited to 

that wavelength with symmetric reductions occurring as this is varied. 

Despite the similarities between the different versions of these devices, subtle 

differences exist. First, since the reflectivity of these thin film stacks is determined by 

the indices of refraction and the number of layers, the requirement for equal mirrors when 

using thin-films is that each stack must have the same number of layers. Additionally a 

real advantage to using thin films becomes evident when constructing multi-mirror 

versions. They are made by simply adding a half wave spacer and an additional stack to 

the previous design for each new mirror desired, which is quite simple. 

Before continuing, a method to describe the various high-low layer combinations 

will be given. This is done by listing in order the index (either H or L) of the individual 

quarter wave sections. Thus, HLHS refers to a low index quarter wave section between 

two high index sections atop a substrate, while in HLLHS the low index section is a half 

wave thick. For compactness repeated H/L combinations will be designated as (HL)" 

where n is the number of repeated pairs. Thus the combination H L H L H H L H L H S 

is written as (HL)~ HH (LH)~ S. 



An example of a thin film multi-line filter is shown below, along with the 

responses of several different versions. The individual combinations used are given in 

each plot. In every case the high and low indices of refraction were 2.0 and 1.5. 

Figure 8.15. Example and response of thin film filters with multiple H/L stacks 

Clearly this is the behavior that we have been seeking - several narrow 

transmission peaks separated by regions of near zero transmission. Additionally these 

(HL)~OHH (HL)~OHH (HL)~OHH (LH)IOHH (w)1° 
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responses contain no sidelobes, which is a big advantage over holographic alternatives. 

These plots may give the impression that adding additional stacks automatically 
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results in additional transmission peaks. Although this probably seems obvious, it is 

actually not even true in the general case. In order to determine how the filter will 

behave when a stack is added, one can use either multi-mirror Fabry-Perot interferometer 

theory [19] or traditional thin film filter theory [20,21]. With regard to the number of 
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transmission peaks, they give similar results (even though they are arrived at in entirely 

different manners). For the remainder of this discussion the multi-mirror FPI theory will 

be used since it appears to give more insight. 

Van de Stadt and Muller [19] presented an analysis of multi-mirror FPIs which 

gave expressions for the transmissivity of three and four mirror versions of these devices. 

In this work it was shown that symmetric structures are required for the transmissivity to 

reach 100% (which is equivalent to the need for equal mirrors in the traditional case). 

This requirement has been seen to hold in the thin film case, thus only symmetric 

structures will be presented here. Furthermore, due to the complexity of the equations 

this analysis will be limited to cases with either three or four mirrors. The insight gained 

from this can however be generalized if additional mirrors are used. 

The diagram of a three mirror FPI is shown below in Figure 8.16. The resulting 

transmission characteristics (assuming R1=R3 and 61=&=8 ) are given by : 

where Rl, Rz and R3 are the mirrors reflectivities, and 6 ,  and & are the round trip phases 

between the mirrors. This expression is a corrected version of that found in [19], where 

an error was made in determining the sign of the reflection coefficients at either side of 

the mirror. This resulted in a positive value for the cosine term, and a shift in the 

resonance location. 



By setting equation 8.7 to 1 and recalling that the minimum value of the cosine is 

-1 we can determine that the requirement for unity transmission is: 

If the equality sign in this expression holds then a single peak (of amplitude 1) will occur 

at h. If the left side is less than the right side, two peaks (each with magnitude 1) 

symmetric around &R will be present. If the right side of equation 8.8 is greater than the 

left then a single peak will occur at k x ,  however its magnitude will be less than unity. 

These relationships are shown in Figure 8.16 below, which gives the transmission 

characteristics of a three mirror Fabry-Perot interferometer as the phase difference 6 is 

varied. Several values are shown for the reflectivity of the inner mirror, while the 

reflectivity of the outer mirrors remain constant at 70 percent. 

Figure 8.16. Three mirror FPI and resulting transmission characteristics 



The following figure shows the responses of thin film versions of the 3-mirror FPI 

structure. The high and low indices of refraction used were 2.0 and 1.5. The outer stacks 

were kept constant at 13 layers, while inner ones were varied between 17 and 33 layers. 

The resulting reflectivities are such that in parts a and b of Figure 8.17 the requirements 

of equation 8.8 are met and two unity transmission peaks occur, while in part d of the 

figure these requirements are not met and a single of lower amplitude is found. Figure 

8.17~ represents the equality in relationship 8.8, and the single peak has 100% 

transmission. Clearly multi-mirror FPI theory accurately predicts the number of peaks. 

990 1000 1010 h 990 1000 1010 

Figure 8.17. Response of a three-stack structure with various layers in each stack 

A similar (albeit more complicated) expression was given in [19] for the 

transmission of the 4-mirror Fabry-Perot interferometer. Assuming a symmetric structure 

(i.e. R1=&, R2=R3, and the transmission can be expressed as: 
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where : 

and r is & . Using this equation the condition for unity transmission becomes: 

Again we can use these to investigate the filter response under various conditions. Figure 

8.18 shows this response as the inner mirror reflectivity is varied while the outer mirror 

reflectivities are kept constant at 70%. In this situation an inner mirror reflectivity of 

99.5% equates both sides of expression 8.10, and we see in the figure that all of the peaks 

again sit atop each other. We also see that this results in a response with the flattest top. 

0 . 7 5 ~  1 . 0 0 ~  

Figure 8.18. Four-mirror FPI and resulting transmission characteristics 



It is interesting to note that the plots for which the additional peaks have collapsed upon 

themselves (the equality signs in equation 8.8 and 8.10) correspond to traditional multi- 

cavity designs when using thin films. These designs use multiple half wave layers (hence 

the name multicavity), to give a filter with a single peak that is extra flat. This 

additional flatness is also present in Figures 8.16 and 8.18. 

We saw above that as the reflectivities of the mirrors in an FPI are increased, the 

transmission peaks become narrower. Furthermore, we know that the reflectivity of a 

stack of quarter-wave layers increases with the number of layers. Thus we would 

anticipate that the widths can be controlled by varying the number of layers in each stack. 

This is examined for four-stack devices in Figure 8.19. In this investigation the number 

of layers in the inner stacks was kept constant at 17, while those of the outer stacks were 

varied between 13 and 25. Again the high and low indices of refraction were 2.0 and 1.5. 

990 lo00 1010 A 990 lo00 1010 

Figure 8.19. Varying the number of layers in the outer stacks of a multi-line Alter 



The behavior exhibited by this filter exactly matches what was anticipated. It thus 

appears that these devices do indeed act like typical multi-mirror FPIs. An additional 

observation from Figure 8.19 is that the response does not drop all the way to zero 

between the transmission peaks in the first two cases. The value of the transmission in 
h 

these areas is equal to that of the individual stacks since the phase difference prevents 

constructive interference. For the number of layers and indices used in this example the 

reflectivity is approximately 88%, which explains the 12% minimum in the graph. 

Clearly this figure indicates that the number of layers in the outer stack determines the 

linewidths of the filter (by setting the reflectivity of the stack). Again expressions for 

these linewidths will be given at the end of this chapter. 

Since it has been shown that the outer stacks determine the width of the 

transmission peaks, it is natural to question what the inner stacks do. Figures 8.16 and 

8.18 suggest that the reflectivity of these layers will determine the quantity and the 

location of the transmission peaks. Figure 8.17 verified that the number of transmission 

peaks was indeed found from these stacks. In order to see if these stacks also determine 

the location Figure 8.20 has been included. In this figure the number of layers in the 

outer stacks was held constant at 21 (representing a total reflectivity of about 98.7%), 

while the number in the inner stacks was varied between 17 and 23. As in all previous 

examples the high and low indices of refraction were chosen as 2.0 and 1.5, which gave 

outer stacks with reflectivities that varied between 96% and 99.3%. 



Figure 8.20. Varying the number of layers in the inner stacks of a multi-line filter 

This figure indeed indicates that the number of layers in the inner stacks 

determines the location of these resonances. In order to separate these transmission peaks 

further the number of layers is decreased, while it is increased to bring them closer. 

Since this behavior was predicted by multi-mirror interferometer theory, it appears that 

we can design devices to meet desired criteria. Unfortunately however, the exact 

locations of the resonances in Figure 8.20 do not correspond to those predicted from 

equation 8.9. A similar difference in location is found when three stacks are included in 

the analysis. Furthermore it seems that no simple scaling parameter can be used to 

reconcile these locations. 



Transmision Peak Locations and Linewidths 

It turns out that accurate predictions of the location of these resonances can be 

found using traditional methods of thin film optics. One approach is to replace the entire 

device (including all spacer layers) with an equivalent one composed of only one or two 

layers. The typical Fabry-Perot rules are then applied to this simplified structure (i.e. a 

transmission peak is found when the optical phase difference is an integral multiple of x 

at some wavelength). The difficulty lies in determining these equivalent parameters. In 

the case of symmetric stacks however, a means of calculating them was given by Epstein 

[22] and extended for practical use by Thelen [23]. This method was described by 

Macleod [24], so only a brief review of the results will be given below. 

The phase shift experienced by a wave as it propagates through a layer of 

thickness d at an angle 0 is given by 6 = 2x11 dcos 0 / h .  Using this, the fields at the input 

to the layer can be written in terms of those at the output as: 

where Y is the admittance of the layer. We can define an input optical admittance for the 

entire stack as: Y, = Hi" /E, . Adding additional stacks merely adds additional matrices 

to equation 8.1 1, thus for a stack of q layers the resulting characteristic matrix is: 



cos 6, (jsin 6, )/Y, 
cos 6, I 

Consider the special case of a three layer symmetric (nl=n3, PI=%) stack. In this 

situation the components of equation 8.12 become: 

Now if two quantities % and YE are defined by: 

coscp, = M,, = M, and 

Then since M, , M ,, - MI, M,, = 1 it follows that: 

MI* = jYE sincp, 



These quantities have the same form as a single layer of phase thickness c p ~  and 

admittance Ye. Thus equations 8.13 and 8.14 can be solved to obtain values for these 

equivalent parameters. At the particular wavelength for which the layers have a quarter- 

wave optical thickness the equivalent parameters are given by: 

and 

At wavelengths away from this value the expressions for the equivalent parameters get 

quite complicated. From equations 8.13, 8.14 and 8.15 the following are obtained: 

Y: sin ( 1  
sin 2 

This expression is multi-valued so the value chosen is the one nearest to 2&+&, (the 

actual sum of the phase thicknesses). Figure 8.21 shows the characteristics of this phase 

for a stack of 5 high and low layers (with indices of 2.0 and 1.5 respectively) as the 

incident wavelength is varied. In this plot we see that the phase varies by f d 2  around 

the value 2.5 x (36,+2&). We also see that there are no values for hcO.85M) or h>1.15h0 



(actually the values are imaginary). Mathematically this occurs because MI 1 < -1 (i.e. cos 

(PE <1) in equation 8.13a. In these regions the equivalent index (from equation 8.17) 

approaches infinity. These represent transmission stop bands, and occur when the stack 

becomes highly reflecting. As with cpe , q~ is also imaginary in this region. 

Figure 8.21. Equivalent phase thickness of a stack of layers - n" = 2.0, n ~ =  1.5 
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Although the above derivation was made for a stack of three layers it is actually 

valid for any symmetric stack. To see h s ,  consider a stack of five alternating high and 

low layers: H-L-H-L-H. By following the above procedure we can replace the 3 

symmetric center layers (L-H-L) with a single equivalent layer E. This leaves H-E-H. 

This too is a symmetric layer, so it can be reduced to a single layer. Clearly this can be 

0.85 0.90 0.95 1.00 1.05 1.10 1.15 
ho/ h 

- 

- 

- 

repeated any number of times to reduce a symmetric stack to a single layer. It should be 

noted that these equivalent layers are not exact replacements for the true stacks, and there 

are some phenomena that cannot be accounted for in this way [24]. 

pass band -b 

I I r I I I 



From these formulas we can see that at the design wavelength, a stack of q 

alternating high and low index layers will have an effective phase and index given by: 

n (q+lY H 2 

and n,=- n F- lY2  

The phase behavior seen in Figure 8.21 above is typical for any symmetric stack. 

Regardless of the number of layers present the phase will vary by across a narrow 

transmission band which can be given approximately by [24]: 

Because Fabry-Perot theory tells us that the phase difference must be an integral multiple 

of n for a transmission peak to occur, then these peaks cannot occur when only a single 

stack is present (since (q-l)d2 < cp <(q+l)lt/2, cp never reaches an integral number of n). 

If however an exact copy of this stack is placed behind the first then the combination will 

have the same effective index, but double the phase difference. Thus it will vary by bt 

around the center point of qd2, and a transmission peak will be found at qsc (again peaks 

can not occur at (q-1)n and (q+l)n because these are in the high reflection (stop band) 

region). Adding a third stack would give an overall phase difference of 3n centered 

around qW2, which would result in two peaks. This procedure can be repeated to add 

additional peaks. 



This procedure has been used by Macleod to design dual line transmission filters 

for wideband applications (i.e. two transmission bands hundreds of nanometers wide 

separated by large bands), however appears untested in narrowband filtering applications. 

Although this method gives the location of the transmission peaks, a much 

simpler method can be used to obtain the same information, along with information on 

the FWHM of the peaks. Again it is based on the admittance of a stack of layers, but its 

simplicity gives more insight into the problem. 

The normalized admittance of any layer versus position can be written as: 

In traversing an almost quarter wave (including higher order) layer this admittance is: 

Y(0) - jYo cot 6,/, 
Y (2) = Yo = Yo 

jY(0) tan 6,/ + Yo p = 0,1,2*.- 
Yo - jY(0) cot jYo tan 6,/, + Y(O) 

where : 

while in traversing a half wave (including higher order) layer it becomes: 



where : 

This process can be repeated to give the following expression for a WL pair: 

At the wavelength for which these layers are exactly h/4 ( 6 0 )  this formula reduces to: 

Again this can again be repeated for a stack of M quarter wave layers: 

If 6,,,< 0.01 and Y, = Y, equation 8.23 becomes: 



while for a stack of these WL pairs it is: 

Equations 8.20 through 8.27 give expressions for most of the combinations of high and 

low pair seen in thin film stacks, thus they can be used as building blocks from which the 

characteristics of any thin film filter can be found. For instance, Figure 8.22 below 

shows a device consisting of a half wave section between two quarter-wave sections 

sitting on a substrate: 

H L H L H L  H L H L H L H  

Figure 8.22. Dual stack thin film filter 

Equations 8.22 and 8.24 can now be used to find the input impedance at each of the 

points labeled in Figure 8.22. By selecting equation 8.22 instead of 8.21 we are assuming 

that the phase difference in traveling through the stacks is negligible. This is in 

accordance with our understanding that the stacks are acting primarily as partially 

reflecting mirrors which would not be as sensitive to the phase. Equations 8.28 through 

8.30 below give the resulting impedances. 



For small values of 6, equation 8.30 simplifies to: 

Y,, zy, [ l+jtanG, [[:I:T-[?I+r)] - - 

Additionally, if M is large it can be further reduced it to: 

By choosing the index of the substrate and incident medium to be that of the high layers 

we can write the reflection coefficient, and reflected and transmitted intensities as: 



yo - yo", - - - j(yH / YL )2M tan 6, 
r = - 

Yo + Ym 2 + j(yH / yL )2M tan 6, 

We can see from these equations that a transmission peak will occur when 6c0 (i.e. at the 

wavelength for which the stacks are quarter wave). Additionally we can solve these 

equations for the following HWHM values: 

At thls point all of the traditionally important filter parameters have been determined for 

this simple two-stack filter. A similar (albeit more complicated) method can be used for 

multi-stack devices, an example of which is given in Figure 8.23 below: 

You t 
t Ys 

Figure 8.23. Triple stack thin film filter 



In calculating the location of the transmission peaks for this filter it is possible to 

use the exact formulas of equations 8.21 and 8.22, but this will restrict us to a numerical 

solution. If however we again assume that the outer stacks act primarily as mirrors we 

can use the approximate forms for the quarter-wave stacks get a closed form solution for 

these values. Doing this yields the following values for the impedances listed in Figure 

8.23: 

Yl=Ys(: J"=ySx1 where A =  [: - 

The process is now continued to get the remaining impedances. Figure 8.23 

indicates that the second stack can be considered as either (LH)"'L or as ( H L ) ~  . Either 

way will give the same results, thus it will be derived using the first notation. The 

resulting impedances (which are again found from the formulas 8.20 - 8.28) are: 



Finally, we make the approximation that the outer stack also acts simply as a mirror, 

which yields: 

. . 

By setting YH = YS the following simplified expression is obtained: 

you, -- A + jB tan&,,,-AB tan6,,,tan6,, 
= A  

YH B + ~ A ( B  tans,,,+ tan6,,,) 

The field and intensity reflection coefficients can be calculated from this. which gives: 

out I-- 
r = 

Y, - - (B + j m  tans,,+jA tans,,,)- A(A - ~ ~ t a n 6 ~ , , t a n 5 ~ , , + ~ ~ t a n 6 ~ , )  
Y,, (B + jAB tan6,,,+jA tan&,,,)+ A(A - AB tan6,,, tan~,,,+jB tans,,) 1+- 
YH 

(BA-, - 1 + B tans,,, tans, ,  r + [BA-I (tan6,,,- tans,,)+ A-' tan6,,, 
1rl2 = 

(BA-, + 1 - B tan6,,,tan5,, r + [BA-I (tans,,,+tans,,,)+ A-' tans,,, 

To find the location of the resonance lr12 is set to zero. This yields: 



which for small 8 becomes: 

From this expression the following resonance location is found: 

To obtain the FWHM of these transmission peaks we again consider standard Fabry- 

Perot interferometer theory. This gives: 

I = 
1 

where F =  
4R 

9 $ = k , z  
1 +  sin^ $ (1 - R ) ~  

By inserting the following expressions for the admittance and reflectance of quarter-wave 

stacks we can get the desired linewidth: 



Written in terms of wavelength deviations these become: 

If the overall impedance of each example given in this chapter is calculated using 

equations 8.21 and 8.22 , the locations of the predicted transmission peaks line up exactly 

with those obtained rigorously (Figures 8.15, 8.19 and 8.20). Using the simplified 

expression of equation 8.43 however, requires a correction factor of (1 - n, In, ) to be 

Ax 1 1  
added, which makes the location: - = --• f i  ( 1-- ) This has been shown 

numerically with much accuracy, and is believed to be a result of the phase difference 

experienced by the various wavelengths as they travel through the stacks, however 

analytical verification has not been possible. 

Thus, by combining the general ideas of multimirror Fabry-Perot interferometers 

with the impedance concept from thin films (which itself has been borrowed from 

microwave theory), all of the characteristics of these filters can be understood and used. 



Miscellaneous Issues 

Throughout this section an analysis has been made of multi-line thin film filters. 

This presentation has indicated that these are interesting and useful devices, and has 

highlighted the positive features. A few other points should be noted. First, the spacing 

between the peaks is constant in frequency (not wavelength) since the resonances occur 

when the phase difference is an integral number of x. The second issue is more of a 

problem. This is seen in Figure 8.19. This figure shows how the width of each 

transmission peak changes with the number of layers in each stack (with the reflectivity 

of the mirrors). Since the number of layers in a stack can only be changed in a discrete 

manner (full layers are added), there is only a discrete number of passbands that can be 

made without changing materials. There are two ways to address this issue. The first is 

to choose relatively close high and low indices. This of course will require additional 

layers to get any desired reflectivity. Since fabrication issues make it desirable to use the 

least number of layers possible this is not a preferred solution. Another way to vary the 

width of the transmission peaks is to use three separate materials in the filter design. This 

makes the analysis slightly more complicated, however it has been addressed in thin film 

design [25],  so some insight into the problem is available. 

Despite these difficulties the idea of a multiline filter with the characteristics 

presented still seems to remain an intriguing device. 



A set of coupled wave equations for calculating the output of multiplexed 

transmission gratings was developed which are valid for both on and off-Bragg 

incidence. ' They are comprised of two equations for each multiplexed grating. Using 

them it was found that the required spacing for uncoupled gratings offered by previous 

analyses was insufficient. Experimental verifications of the resulting angular selectivities 

were performed in PTR glass and in LiNb03, where it was seen that at low modulations, 

the overwriting of previous gratings when multiplexing in PTR glass is minimal, while it 

can be considerable in LiNb03, due to the real-time nature of the process. 

When multiplexing reflection gratings, a narrow transmission peak will occur 

midway between the Bragg wavelengths of the individual gratings. By multiplexing 

several gratings, additional transmission peaks are obtained. Although this device has 

interesting possibilities as multi-line transmission filters in DWDM systems, the strong 

dependence of the transmission peaks on the phase of the individual gratings (which is 

not controllable) makes them impractical for typical applications. 

An alternative method of fabricating these devices using stacks of thin films each 

h/4 thick was presented. These thin film versions have the added advantages of no 

sidelobes and simpler scaling (adding extra stacks to make multi-line versions is 

relatively straightforward). The number of transmission peaks was shown to match those 

of multi-mirror Fabry-Perot interferometers, and expressions were given for the location 

and widths of the individual transmission peaks. 



CHAPTER 9 

THE EFFECTS OF LINEAR ABSORPTION AND 

OVER-MODULATION IN VOLUME HOLOGRAMS 

Throughout this work many characteristics of volume holography have been 

investigated, with an emphasis on their filtering abilities. The material has generally been 

presented by hologram type (i.e. each chapter dealt with a particular type of hologram). 

In this chapter two additional issues will be covered - absorption during recording and 

over-modulation. They are presented together because they are either not specific to any 

particular type of hologram, or are not encountered under typical operating conditions. 

9.1 Absorption During - the recording process 

The first issue to be considered is the effect of subject and reference beam 

absorption during recording. The result of this process will be a variation in both the 

grating strength and the average permittivity. These effects have been addressed by many 



authors [l - 101 with the general result being the use of a modified grating strength 

parameter that decays with grating position. All of these works however, considered the 

variation in the modulation only, completely neglecting the change in the average index 

that also occurs. This was pointed out by Owen and Solymar [ll], who gave a solution 

that included this effect, and who showed that it could be significant. Their solution 

however, was restricted to unslanted reflection holograms. In the following paragraphs a 

similar derivation will be presented which is applicable to all hologram types (regardless 

of slant angle), and which includes the effects of the varying average permittivity. It will 

follow Kogelnik's notation, however it will include Owen and Solymer's handling of the 

absorption. 

As with previous derivations, we start with two plane waves incident on a 

medium from the same side (transmission holograms) or from opposite sides (reflection 

holograms). In the situation under consideration the medium is lossy which strictly 

speaking results in a non-sinusoidal interference pattern. In the derivation it will be 

assumed that the waves are incident from an index-matched medium (allowing refraction 

to be neglected). It is straightforward to include refraction when performing numerical 

calculations, thus the plots at the end of this section will do so. The recording situation is 

shown in figure 9.1 below. 



REFLECTION 

n=n, n=n, 

Figure 9.1. Transmission and reflection recording geometries 

n=n, 

Transmission gratings will be considered first. From figure 9.1 we can see that 

within the medium the recording fields are: 

TRANSMISSION 

and E, =A,e - j ( ~  -6 )e-a[&] 

The intensity of the interference pattern inside the medium is therefore I = 1 El + E2 f or: 

X -2a - 

I A I I * ~  ('OS ) + Z l h l l A 2 1 e  
cos €32 COS el cos((k, - k , ) .  r) 

Assuming that the material is linear, the relative permittivity after development will be 

proportional to this intensity (G = k*I), thus E, can be written as G = Q + & or: 



where : A (A I/IA2 I is the ratio of the recording beams and E,, = 2 k 1 A, I I A, I 
(9.3) 

This can be separated into slowly and quickly varying parts by writing t + & + ~  where: 

This expression for the permittivity is quite complex since the amplitude of both 

the sinusoidal and average portions vary with position. It must be pointed out that a plane 

wave will not propagate in a material with a varying average permittivity [12]. Thus the 

first step in finding a solution is determining the form of a wave which can propagate. 

The general form of this waves is assumed to be : 

(i.e. waves that accumulate additional phase as they propagate). For these to be valid they 

must satisfy Maxwell's equations, thus El is inserted into the wave equation with ~7 = 



and the value of gl(z) which yields a solution is found. Doing this gives the following 

formula for gl (z): 

cos e2 

-Per1 
&(.I= 

~ ( E , ~ + E , ~ ) c o s ~  

Assuming that o in the diffracted wave is given by a = p-K, the above procedure is 

repeated find the form of g2(z) The result is: 

az a z  
e l n ( ~ )  - 2 -  - l n ( ~ )  - 2- 

cos el + e C O S ~  2 e e + 2 z  
2a 2a 

i3z 
where: 8(z)=g,(z)[5- l ]+-  CS 

Now that we have the forms of the replay beams El and E2, we can follow 

Kogelnik by inserting them into the wave equation with ~ s + Q .  The result of this is 

the following rather messy equation: 



This can be simplified considerably by ignoring the last two terms (which 

propagate way off Bragg) and noting that gl' and g2' were calculated specifically to force 

several of the terms to zero. Additionally we note that gl'(z) < < p ~  and can therefore be 

ignored, along with the second derivatives (which is standard in coupled wave analysis). 

Using these approximations reduces equation 9.8 to the more manageable: 

Setting each portion to zero and solving for the coupled wave equations yields: 



cR-- aR(z) - - jK(z)S(z)e -j&l and cs-=-~K(z)R(z)~ ask) j 
a z  a z  

where CR and cs are the same as in standard coupled wave theory, 6(z) is defined in 

equation 9.7, and ~ ( z )  is given by the following function: 

Other than K being a function of position, the only difference between equation 

9.10 and the typical coupled wave equations is the additional phase term qz). By 

combining these two first order coupled wave equations into a single second order one, 

we can see the effect of the variation in the DC term. The result of this combination is: 

Recall that this equation was derived for the transmission case. Similar results are 

obtained for reflection holograms by replacing E2 in equation 9.1 with: 



The algebra involved when this substitution is made is the same as in the transmission 

case, so it will not be repeated. The result of the substitution is that gl becomes: 

No additional changes are required in the derivation. Thus, when dealing with 

transmission gratings (slanted or unslanted) equation 9.6 is used in equation 9.12, while 

equation 9.14 is used for all reflection gratings. 

Several things should be noted from equation 9.10. First, the original dephasing 

parameter (ud/2cs) has been replaced by one which is itself a function of the additional 

phase parameter g. Furthermore the concept of being on Bragg at a particular angle no 

longer makes sense since "Bragg" changes as we go through the material (it is a function 

of 2). This was addressed in [ l l ]  by replacing the dephasing parameter with its average 

value. This seems reasonable (for small variations in g(z)), so the result becomes: 



It is clear from these equations that in the case of unslanted transmission (cs=cR ) 

there is no additional effect of the varying DC term. For an unslanted reflection grating 

(cR = -cS), the additional dephasing is 2il(z). Between these two cases the effect 

increases, but the results are complicated because g'l(z) is a function of CR and &I. 

In traditional coupled wave analysis the equations were solved (using standard 

methods) to obtain the results. Unfortunately however, no closed form solutions exist for 

equation 9.10; thus solutions must be found numerically (by way of a fourth order Runge- 

Kutta numerical integration). This has been done, and the results are shown in figures 9.2 

through 9.5 below. In these figures, plots are given for gratings ranging from pure 

transmission (O=lr) through pure reflection (@do). Situations are covered where the 

absorption coefficient causes the power to drop by 0, 50% and 75%, and include several 

values of An and A (the ratio of the recording beam intensities). For comparison 

purposes, models calculating absorption in the usual manner (ignoring average 

permittivity variation) are also included (except in the unslanted transmission case where 

the derivation showed that there is no additional effect of the DC variation). 



Figure 9.2. Angular Selectivity vs. dephasing for @=7~/2 and various values of A. 
/cd = 0.5 (top); tcd = n/2 (bottom) 



Figure 9.3. Angular Selectivity vs. dephasing for @=7~/3 and various values of A. 
tcd = 0.5 (top); tcd = d 2  (bottom) 



Figure 9.4. Angular Selectivity vs. dephasing for @=7~/6  and various values of A. 
~d = 0.5 (top); ~d = rd2 (bottom) 



Figure 9.5. Angular Selectivity vs. dephasing for @=O and various values of A. 
~d = 0.5 (top); ~d = d 2  (bottom) 



In discussing the characteristics of these gratings we first notice the obvious fact that as 

the absorption during recording is increased, the overall diffraction efficiency (both on 

and off Bragg) during replay is decreased. This occurs because as the recording beams 

are attenuated with propagation in the medium, the strength of the grating decreases 

accordingly. 

Much more interesting than this is the fact that several differences exist in the 

diffraction properties when the variation in the average permittivity was included from 

those where it was ignored. These differences increase as the grating type changes from 

an unslanted transmission to an unslanted reflection. Additionally, they increase as both 

the grating strength (v) and asymmetry factor (A) increase. With a slant angle of 60 

degrees for example, there is almost no difference when the D.C. variation is included in 

the analysis - even with grating strengths as high as d 2 .  At 30 degrees however, the 

effect of this variation has become obvious in almost all cases. These effects manifest 

themselves in two ways: the peak value of the diffraction efficiency is shifted toward the 

negative end of the dephasing (due to the variation in "Bragg" described above), and the 

shape of the angular selectivity curve changes. 

This change in shape causes the angular selectivity to become asymmetric with 

dephasing (in all cases where the variation in average permittivity was ignored the 

resulting angular selectivity curve was symmetric). This was also the case in all other 

gratings considered in this work (even those which included non-uniform recording 

beams). Thus having a material where the average value of the permittivity varies 

represents a unique and interesting situation. 



9.2 Over Modulated Transmission Gratings 

In an earlier chapter the characteristics of transmission gratings were investigated 

with the emphasis placed on their filtering characteristics. The chief means of examining 

these characteristics has been to look at the dependency of the diffraction efficiency on 

some sort of dephasing (either angular or wavelength). Although the actual shape of 

these characteristics differed somewhat, they all followed the general trend of being 

maximum on-Bragg, dropping as they deviated from Bragg, and increasing again slightly 

at a sidelobe. 

It turns out however that gratings with large modulation values (higher than about 

0.8~) can experience significantly different behavior. This behavior is not typically seen 

since the modulation strength is usually kept below 0.51~ where an incident plane wave 

would have 100% diffraction efficiency. The behavior of these over-modulated gratings 

is important however, as their characteristics are distinct enough to allow the possibility 

of interesting new devices. In this section we present the characteristics of these gratings. 

The behavior of transmission gratings at all strengths can be determined from 

equation 2.2 1, which is repeated below. 

v2 
q =  e2 + v2 

sin (J-) 



When the grating is operated on-Bragg this simplifies to 11 = sin2 (v). In typical 

situations (V < 0.5~) deviation from Bragg incidence causes the first term in equation 9.16 

to drop while the second one rises. The magnitude of this drop is much higher than the 

rise however, which results in the grating having the behavior discussed in chapter 4 (a 

drop as we'deviate from Bragg, followed by a slight increase at a sidelobe. As the value 

of v increases however, the change in the first term of equation 9.16 will be lower for any 

given amount of dephasing, and the effects of the sine term may dominate. 

In these regions one of three types of behavior can be seen, first the grating can act 

as it does for low modulation strengths. This occurs when the variation in the sin term is 

minimal with additional dephasing (near M2). The second type of behavior that can 

occur is that the grating starts out acting in the traditional manner (the diffracted power 

decreases as we deviate from Bragg), however at a side lobe the power is higher than its 

on-Bragg value. The final type of behavior is when the diffracted power increase 

immediately as we deviate from Bragg. The choice of which behavior is seen is 

determined by the modulation strength, and varies cyclically. 

We will determine the value of the grating strength where each region begins 

separately, starting with region 3. On one side of these points the grating increases with 5 

while on the other side it decreases with 5, thus they can easily be found by setting the 

derivitive of equation 9.16 to zero in the limit as 6 approaches zero. This derivative is 

given by: 



This becomes zero in the limit as 6 approaches 0 at v=mn and at v = md2 for arbitrary 

integers m. Taking the second derivative shows that the values around mn/2 are merely 

inflection points, and it is the values at mn which are the minima and maxima that we are 

seeking. Thus at grating strengths of mx where m is an integer the diffraction efficiency 

will decrease as the incidence deviates from Bragg. 

In order to find the second type of behavior (when the diffraction efficiency falls 

as we deviate from Bragg incidence, but then exceeds the Bragg level at a sidelobe), we 

mlt 
first note that sidelobes occur at = - where m is any odd integer greater than 

2 

one. The sidelobe with the highest efficiency (the first one) occurs with the lowest value 

mn 
of m such that - > v . Since this efficiency is given by (1 + t 2 / v 2  r' (see equation 

2 

9.16), we can combine the last two equations to give the following value: 

Region 2 areas are found by solving for grating strengths when this value exceeds that 

found on-Bragg, i.e. : 



Each of these regions are shown below in figure 9.6. In this figure each pattern 

denotes a different type of behavior, and the pattern repeats every x. 

<;rat in? S l~ - t ' n_~ r l l ~  

Figure 9.6. Regions of transmission grating behavior 

Figures 9.7, 9.8 and 9.9 below show in detail how the grating acts in each of the 

regions for incidence by plane waves as well as with various Gaussian beams. The 

grating strengths were chosen such that the on-Bragg diffraction efficiency of an incident 

plane in all figures is constant at 15%. In figure 9.7 we see the behavior in region 1 

(which is the typical region where these devices are operated). Here the grating acts as 

described above, starting with a maximum diffraction efficiency on-Bragg that decreases 



as our incidence deviates from this. The geometry factors (see chapter 4) used in these 

analyses are 1 and 3. Essentially the behavior is as described throughout chapter 4 where 

it was shown that as the width of the replay beam was decreased, the on-Bragg diffraction 

efficiency decreased also, and the off-Bragg sidelobes were washed out due to the 

presence of the beam's finite angular spectrum. 

- P.W. 
- a -  g = 3  
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Figure 9.7. Behavior of a transmission grating in region 1 

When the grating is operated in the second region however, its behavior is 

considerably different. In this case the width of the replay beam completely determines 

the behavior of the device, both on and off-Bragg. This is shown in figure 9.8 below, 

where we see that an incident plane wave exhibits behavior that matches the description 

given for this region above. 



Figure 9.8. Behavior of a transmission grating in region 2 

In this figure when the incident wave is a narrow Gaussian beam the diffraction 

efficiency remains substantially constant across the entire range of dephasing (there is no 

filtering present). As the beam is widened however, the diffraction efficiency increases 

almost immediately -acting as a plane wave would in the third region. The other 

important effect seen is that the on-Bragg diffraction efficiency exhibits behavior just as 

strange. In this case the diffraction efficiency of a wide gaussian beam is higher than that 

of the plane wave, while that of a narrow gaussian beam is lower than the plane wave. 

Each of these effects occurs because the narrow beam has a wide enough angular 

spectrum for the outer components to exceed the sidelobe, while those of the wide beam 

just reach the sidelobe. As mentioned above the sidelobe power in these regions is higher 

than the Bragg value, which makes the overall diffraction efficiency of the wide Gaussian 



beam higher than that of a plane wave, while that of the narrow beam is slightly lower 

than the plane wave. 

The behavior in the final region is shown in figure 9.9, and again we see that the 

width of the replay beam determines how the grating will operate. In this case the grating 

not exhibit good filtering characteristics for any of the beams since they all either 

increase with dephasing or have only a minimal drop. In this region the width of the 

gaussian incident beam determines whether the power will increase off-Bragg, or whether 

it will decrease right away (albeit in a very small amount). Both gaussian beams have a 

higher Bragg diffraction efficiency than the plane wave, with the narrower beam having 

the highest. 

I + Narrow Gaus (g=3) 
I I - Plane Wave 

Figure 9.9. Behavior of a transmission grating in region 3 



As before, this behavior can be explained by considering the width of its angular 

spectrum along with the plane wave response. That is, since the diffracted power 

increases with dephasing, and since the angular spectrum can be considered as dephasing 

(see equation 2.30), then the narrowest beams (which have the widest angular spectrum) 

will have a higher efficiency. 

A problem occurs however, if the region in which we are experimentally 

operating is not exactly known. For example if when measuring the angular selectivity 

curve of an unknown grating the efficiency initially increases before decreasing well off- 

Bragg, without knowing the exact region in which we are operating, there is no way of 

determining whether this effect comes from being in region 3 with an extremely wide 

beam, or being in region two with a medium sized beam. The Bragg diffraction 

efficiency would give some excellent clues as to which region we are operating in, 

however the actual Bragg efficiency is not known (only the maximum efficiency). One 

method of determining the operating point is to first thoroughly characterize the replay 

beam, then to take accurate measurements of the spacing between the two peaks (they 

will be symmetric across the Bragg angle). Then by measuring the diffraction efficiency 

half way between the peaks one can get the actual value of the on-Bragg efficiency which 

should help determine where we are operating. If the position is not known after this 

procedure, repeating it with a different replay beam should determine it. 

Since much of the emphasis of this dissertation has been on the profiles of 

diffracted beams, a discussion of these profiles in over-modulated transmission gratings 

seems to be in order. This will be limited to gratings with modulations high enough to 



exhibit the third type of behavior seen above (increase in off-Bragg efficiency). Again 

values of one and three will be used for the geometry factor of the replay beam. Figure 

9.10 shows the results of the relatively wide replay beam (g=l). 

Figure 9.10. On and off-Bragg profiles of gratings in region 3 (g= 1) 

From the plot we see that when the wave is incident on-Bragg, the diffracted beam 

appears to be approximately Gaussian in shape, and as we go off Bragg the amplitude 

initially grows (although this time it keeps its shape unlike in the earlier transmission 

gratings), but finally starts to drop in efficiency (again keeping a reasonably nice shape). 

In figure 9.11 below beam profiles are given when the same grating is illuminated 

with a much narrower replay beam. In this case the beam profile is distorted even on- 

Bragg, and this distortion remains through all values of the dephasing parameter. 



Figure 9.1 1. On and off-Bragg profiles of gratings in region 3 (g=3) 

Since transmission gratings are not typically operated in these regions, these non- 

traditional off-Bragg effects are not well known. It may turn out however that these areas 

could be used to improve on off-Bragg diffracted profiles or efficiencies, or even to take 

advantage of the symmetry of the side lobes to make dual line filters. 

9.3 Summary 

The effect on the angular selectivity of the induced variation in average index 

which occurs when gratings are recorded in the presence of absorption was investigated 

for all hologram types. It was seen that no additional effects occur for un-slanted 

transmission gratings, however effects are present in all other grating types. These 



include an asymmetric angular selectivity as well as a shift in the location of the 

maximum. Generally these effects increase as the grating type changes from unslanted 

transmission to unslanted reflection. 

Finally, the characteristics of plane waves incident on over-modulated 

transmission gratings was investigated. It was seen that they can experience one of three 

types of off-Bragg behavior. These include the traditional behavior, an immediate 

increase in off-Bragg amplitude, or an immediate drop followed by a latter increase in 

this amplitude to an overall off-Bragg maximum. These effects make the response of the 

gratings (both in terms of angular selectivity and beam profile) strongly dependent on the 

particular replay beam chosen, and results in a difficulty in characterizing the gratings. 



CHAPTER 10 

CONCLUSIONS 

The purpose of this work was to design and analyze volume holographic optical 

elements. Toward this end transmission, reflection and overlap gratings were studied. 

These analyses used several models including standard coupled wave analysis, two- 

dimensional coupled wave analysis and plane wave decomposition. A Gaussian 

amplitude was used for the beam profile studies because this approximates the 

distribution of a standard laser. 

High efficiency transmission gratings were recorded in photo-thermo-refractive 

glass and analyzed with various replay beams. Several differences were found between 

the measured angular selectivity and that predicted by coupled wave analysis. These 

were shown to result from the angular spectrum of the replay beam. 

In order to investigate these finite beam effects further, a closed form solution for 

the off-Bragg diffracted and transmitted beam profiles of a Gaussian replay beam was 

derived. Using this solution it was shown that additional distortion (above that which 

happens on-Bragg) occurs when the devices are operated off-Bragg. This distortion (both 

on and off-Bragg) arises due to non-uniformity in the attenuation of the angular spectrum 



components. It was shown that when a > 1.6 hd/n L (or equivalently g < 0.32) the 

effects of the beam profile on the angular selectivity are minimal, and near plane-wave 

responses are found. All profile predictions were experimentally verified. 

The diffkaction efficiency and resulting profiles of finite beams diffracted from 

uniform reflection gratings on and off-Bragg were investigated. With regard to the 

diffraction efficiency the effect of replaying with a finite beam will be an overall decrease 

in the level. For a typical He-Ne laser beam this decrease will be about 5% when the 

grating strength is near d 2 .  

The profiles diffracted from these reflection gratings will generally be distorted 

versions of the replay beams, with the distortion increasing as incidence deviates from 

Bragg. Unlike in transmission gratings however, the fidelity of the on-Bragg profiles 

improve as the grating strength is increased. This happens because stronger reflection 

gratings have wider regions of approximately uniform attenuation. Again, all profile 

predictions were verified experimentally. 

The profiles of the diffracted and transmitted beams of overlap gratings were 

investigated using known solutions. When the grating is replayed with the exact 

recording reference beam the resulting diffracted beams will be shifted and distorted 

versions of the recording subject beam. These effects arise because the first Born 

approximation is violated (substantial beam depletion occurs). At overall efficiencies of 

up to 50% they are minimal, however they become pronounced at 75%. When the 

overall efficiency exceeds 83% the diffracted beam splits into more than one section. 

This distortion and shift can be problematic in data storage systems. 



A method was developed for obtaining a diffracted beam from an overlap 

hologram with any desired profile. This method is based on using an amplitude mask 

over the subject beam to vary the grating strength with position. The required amplitude 

masks are simple (realizable) when the desired profile is close to that of the recording 

subject beam, thus this should be used when possible. It was shown that the method can 

be used to correct for most of the beam depletion effects discussed previously, however 

the splitting of the beam at 83% can still not be alleviated, thus it represents the true limit 

at which a good reproduction of the recording beam can be obtained. 

A set of coupled wave equations for calculating the output of multiplexed 

transmission gratings was developed which are valid for both on and off-Bragg 

incidence. They are comprised of two equations for each multiplexed grating. Using 

them it was found that the required spacing for uncoupled gratings offered by previous 

analyses was insufficient. Experimental verifications of the resulting angular selectivities 

were performed in PTR glass and in LiNbO,, where it was seen that at low modulations, 

the overwriting of previous gratings when multiplexing in PTR glass is minimal, while it 

can be considerable in LiNb03, due to the real-time nature of the process. 

When multiplexing reflection gratings, a narrow transmission peak will occur 

midway between the Bragg wavelengths of the individual gratings. By multiplexing 

several gratings, additional transmission peaks are obtained. Although this device has 

interesting possibilities as multi-line transmission filters in DWDM systems, the strong 

dependence of the transmission peaks on the phase of the individual gratings (which is 

not controllable) makes them impractical for typical applications. 



An alternative method of fabricating these devices using stacks of thin films each 

h/4 thick was presented. These thin film versions have the added advantages of no 

sidelobes and simpler scaling (adding extra stacks to make multi-line versions is 

relatively straightforward). The number of transmission peaks was shown to match those 

of multi-mirror Fabry-Perot interferometers, and expressions were given for the location 

and widths of the individual transmission peaks. 

The effect on the angular selectivity of the induced variation in average index 

which occurs when gratings are recorded in the presence of absorption was investigated 

for all hologram types. It was seen that no additional effects occur for un-slanted 

transmission gratings, however effects are present in all other grating types. These 

include an asymmetric angular selectivity as well as a shift in the location of the 

maximum. Generally these effects increase as the grating type changes from unslanted 

transmission to unslanted reflection. 

Finally, the characteristics of plane waves incident on over-modulated 

transmission gratings was investigated. It was seen that they can experience one of three 

types of off-Bragg behavior. These include the traditional behavior, an immediate 

increase in off-Bragg amplitude, or an immediate drop followed by a latter increase in 

this amplitude to an overall off-Bragg maximum. These effects make the response of the 

gratings (both in terms of angular selectivity and beam profile) strongly dependent on the 

particular replay beam chosen, and results in a difficulty in characterizing the gratings. 
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APPENDIX A 

RIEMANN'S SOLUTION OF 2nd ORDER LINEAR 

HYPERBOLIC DIFFERENTIAL EQUATIONS 

Chapter 6 of this work required the solution of a 2nd order, linear, hyperbolic 

differential equation. The solution given was obtained by inserting boundary conditions 

into a known solution form. At this time the derivation of that form will be given, based 

on a description by Courant and Hilbert [I]. 

A.l Riemann's Method of Solution 

Any second order linear hyperbolic differential equation can be written in terms of an 

operator L as: 

where a, b, c and f are functions of the independent variables r and s (the principle 

coordinate axes), u, and us represent the derivative of u with respect to the variables r and 



s respectively, and u, is the second partial derivative with respect to r and s. The solution 

to this equation is an expression for u in terms of the function f and the initial conditions 

at some point P. These initial conditions are assumed known along some curve c. The 

coordinate system and these points are shown in Figure A. 1. 

C r  

Figure A. 1. Coordinate system used for the problem 

To begin the solution it is noted that by definition the adjoint of an operator L (written as 

L*) has the requirement that VL[U]-uL*[v] must be a divergence expression. For 

equation A. 1 this adjoint is given by: 

L* [v] = vrs - (av), - (bv), + cv 

Therefore: 

V L [ U ] -  u L* [v] = vu, - uv, + (urn), + (ubv), 

which can be written in one of two forms: 

V L [ ~ ] -  u L* [v] = (VU, + buv), - (uv, - ~ u v ) ~  

= (VU, + auv), - (uv, - buv), 



As noted above, these are divergence expressions. To solve them we need to integrate 

over the area G. In doing so we will make use of Green's Theorem: 

where r denotes the perimeter of the surface R. Using A.5 along with A.4 yields: 

Form 1 : We rewrite equation A.6a as: 

But: 

Thus we can write equation A.7 as: 



This expression can be simplified considerably if the function v in the equation satisfies 

the following criteria: 

(A. 10) 

If these requirements are met the function is called a Riemann function and will be 

denoted.as R. If this holds equation A.9 simplifies to: 

B 

u(P)= u ( a ) v ( a ) + j [ ~ ( u ,  +bu)dr+u(R, -aR)ds]+f lRf  drds 
A C 

In a similar manner, had we started with equation A6b, we would get form 2, ie: 

B 

u(P)= u(B)v(B)- j[R(uS + au) dr + U(R,  - bR) dr]-  I j  Rf dr ds 
A G 

Note that if the initial curve (A-B) is a right angle given by r=a, s=p (fig. A.2): 

(A. 1 1) 

(A. 12) 

Figure A.2. Coordinate system when the initial curve degenerates into a right angle 



then equations A. 1 1 and A. 12 become: 

- 
u ( P ) = u ( B ) R ( B ) + ~ R ( u ,  + a u ) d s - ~ U ( R ,  - b R ) d r - l / ~ f  drds  

D D G 

Finally note that for most of the problems considered here a = b = f = 0, thus: 

(A. 13) 

(b) 

(A. 14) 

Since each of these forms is equally valid, the choice of which to use comes from the 

boundary conditions available from the problem. 
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APPENDIX B 

SPECIAL FOURIER TRANSFORM PAIRS 

In chapter four, a derivation was given which showed the equivalence of plane 

wave decomposition and 2-D coupled wave analysis in certain situations. This required 

(in equation 4.25) the use of three complex Fourier transform pairs. These transforms are 

derived below. 

B. 1 Develo~ment of the Fourier transform pairs 

The following three inverse fourier transforms are needed: 

These are found from: 

(B. 1 a,b,c) 



along with combinations of the following well known fourier transform theorems: 

shifting theorem: 

convolution theorem : 

derivative theorem : 

~"[F(O-a,)]= e-jUx f (x) 

The next step is to find expressions for B. 1 a, B. 1 b and B. 1 c. First we do B. 1 a 

Inserting the expression for G given by equation 4.23 gives: 

Note that the first half of this equation is an even function, while the second is an odd 

function. Due to the integration rules of even and odd functions this becomes: 



sin[~,/(k/sin 0,)2 + o2 
3' [G(G)]= 2 1  cos (o)da JW 

Now, from the table of integrals by Gradshteyn et.al [ I ]  identity 3.876.1) this is: 

Repeating this procedure to obtain an expression for B. 1 b gives: 

Inserting g(x) in fkom above gives: 

Finally the expression for B. l c  is given by: 

otherwise 



3-' ba~(a)]= 
d x  d x  sin 0, 

sin 8, 

otherwise 

Combining equations B.5, B.7, and B .8with the three transform theorems given above 

yield the following complex transform pairs 

(B. 10) 

where a(x) = 3-I [@(a)] in equations B.9 through B. 1 1. 
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