
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1985

IPCL1- An Interactive Process Control Language IPCL1- An Interactive Process Control Language

Richard A. Erlandson
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Erlandson, Richard A., "IPCL1- An Interactive Process Control Language" (1985). Retrospective Theses
and Dissertations. 4731.
https://stars.library.ucf.edu/rtd/4731

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F4731&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4731?utm_source=stars.library.ucf.edu%2Frtd%2F4731&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

IPCLl - AN INTERACTIVE PROCESS
CONTROL LANGUAGE

RICHARD ALLEN ERLANDSON
B.S.E.E., University of Illinois, 1963

RESEARCH REPORT

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in the

Graduate Studies Program of the
College of Engineering

University of Central Florida
Orlando, Florida

Fall Term
1985

ABSTRACT

This report documents a Process Control Language. It

was written to provide an easy-to-use, user-friendly

language to control a manufacturing-type process. It is

not assumed the user is proficient or even familiar with

any computer languages. The user should be able to grasp

the simple set of commands available and begin writing

user' programs in a short period of time. Emphasis has

been placed on error messages to inform the user of the

type of error and enough information to correct it. The

language was written in PDP-11 assembly language and run

on a 11/34 computer in the Microcomputer Laboratory at the

University of Central Florida.

ACKNOWLEDGEMENTS

I wish to thank Mr. Clint Strange whose cooperation

throughout, and continuation of, this work has been most

gratifying.

I would also like to thank the faculty and staff of the

University of Central Florida for sharing their expertise

and knowledge. I would particularly like to thank Dr.

Christian S. Bauer whose attitude and enthusiasm for his

work has made a good part of this learning experience fun.

iii

TABLE O F CONTENTS

CHAPTER
3 , IHTRODUCTIONm 1

Objective 1
O v e r v i e w . 1 MemorySize 3 P r o g r a m L i s t i n g 3 Sample Program 4

1 I . D E S C R Z P T I O N O F I P C L l 5
U s e r O p t i o n s 6 . Editor 7
Program Statements 11 . ;XXXX 13

P A U S E e e m m e e e m m e e m e e e e m e m m 1 3
A B O R T . . m m . . . e . . e e e e e . 1 4
END . 1 4
GOTOXXXX 1 4
Z A P m m m m m e e e e e e e e e e e e e m e e 1 5

S E T e m e . e m e m m m e e m e m e m m e m m 1 5
1/0 Variables 1 6 D I S P L A Y 1 7
D E L A Y X X 1 8
CLEAR m . m e e e e e . e . 18
I F . . m e 19

111, S A M P L E P R O G R A M S Y N O P S I S 2 1

I V . SUMMARY . . m e e e e m e e 2 6

A P P E N D I X A - I P C L l S Y N T A X D I A G R A M S 27

APPENDIX B . SAMPLE PROGRAM FLOW DIAGRAMS 3 2

APPENDIX C - SAMPLE P w -&&@zXW .* rL * e -9 37 ? . < . . . APPENDIX D - SAMPLE PROGRAM SCHEMATIC DIAGRAM 40

APPENDIX E - I P C L l ERROR MESSAGES 4 1

REFERENCES e e e m e m m e e e e m e m m e m e 8 3

CHAPTER I

INTRODUCTION TO IPCLl

Objective

The objective of IPCLl was to develop a simple,

easy-to-use, Interactive Processor Control Language

(IPCL). The language was intended to be able to be

used by someone not proficient in a computer language.

IPCLl was developed so that a non-computer

professional could, with a minimum of training, write

a program to control a simple process. As a follow-up

on this project, Mr. Strange took the basic IPCLl

language, added disk storage and retrieval

enhancements, along with other amenities.

Overview

The language developed for IPCLl was a BASIC-type

language. Some of the commands that the user has at

his disposal are SET, IF, and GOT0 which people

familiar with BASIC will recognize. To keep the

language as simple as possible the number of commands

was kept to a minimum. To interface with the outside

world a set of special input and output variables were

defined and are under the control of the user.

Error messages are as descriptive as possible to

aid the user in the correction of his/her error. For

instance, if during the execution of a user
4

program, a GOT0 references a statement number that

does not exist, the following error message is

displayed: GOT0 HAS NON-EXISTENT STATEMENT NO. Along

with this error message the statment number of the

offending GOT0 statement will be given to show where

the user program was aborted. As shown in Appendix E

over 20 different error statements exist in IPCL1.

Also prompts are given whenever an input is

expected from the operator giving him/her the options

available at that time.

Variables defined by the user as we11 as

input/output variables are easily displayed along with

their present value using the DI (SP) command.

Programmable delays during the execution of the user

program are obtained via a single command, DE(LAY).

The P(AUSE) command will halt execution of the user

program for an unlimited amount of time until the user

strikes the carriage return on the terminal at which

time the program execution continues.

Any letters in a command shown in parenthesis are

are optional, and need not be entered by the user when

writing the program statement.

Comments can be displayed on the terminal during

execution of the user program to aid in debugging the

program. Statements can easily be deleted, K(ILL), or

listed, L(IST), with these simple commands.

Memory Size

The program is written in PDP MACRO-11 Assembly

Language. It consists of approximately 1000 lines of

code using approximately 6500 bytes of memory. The

basic IPCLl also has a user program storage area of 16K

bytes to hold the statements entered by the user. The

16K byte buffer will allow for approximately 200 user

statements which should be more than adequate for most

users. If more statements are needed it is only

necessary to add another 16K bytes of storage area for

each 200 added user statements.

Program Listing

While the IPCLl program listing is not part of this

report, it is available from the author and is fully

commented and structured to make it as readable and

maintainable as possible. A copy of the program, on

floppy disk, will be kept in the University of Central

Florida (UCF) microcomputer labs so that it can

down-loaded and run with minimal effort.

Sample Program

A sample program, included in this report,

demonstrates many of the commands available in IPCL1.

A step-by-step analysis of the sample program is also

included to show some of the possibilities using

IPCL1. Flow diagrams and syntax diagrams of all the

commands are also included in this report.

IPCLl is a simple, user-friendly language that

someone with minimal training can put to good use.

CHAPTER 11

DESCRIPTION OF IPCLl

IPCLl is a simplified, *user-friendlyu interactive

processor control language. A manufacturing or similar

process can be controlled through a set of simple

English-like instructions. Diagnostics have been

included throughout the program to inform the user

that an incorrect input has been made. Every attempt

has been made to inform the user in non-ambiquous

terms to aid in correcting the input. Some errors can-

not be detected until the user program is actually

running. When these types of errors are detected the

user program is aborted, and the location in the

user program that the error was detected is displayed

along with an error message to pinpoint the type of

error. Examples of error detection will be covered

later when the format for the user program is given.

Syntax diagrams in Appendix A are included to aid in

in understanding the various areas of the program.

User Options

When IPCLl is run initially the user has one of

four choices:

1) RUN - this command tells IPCLl to go to the

first (lowest number) user statement and start

executing the user program. The user program

statements are interpreted by the IPCLl program one at

a time and executed sequentially unless the user has a

GOT0 XXXX command which would cause the statement XXXX

to be executed instead of the sequential statement

following.

2) LIST - this command lists the user's program

starting at the lowest-numbered statement. If more

than twenty statements exist in the user program the

List portion of the IPCLl program waits for the user

to strike a key on the keyboard so program statements

do not roll off the top of the screen before they can

be analyzed by the user. LIST displays *NO USER

PROGRAMw if no user program has been entered.

3) EDIT - this command allows a new user program to

be entered or an existing user program to be modified.

4) TEST - this command tests all of the relays on

the Gardner Box by operating them one at a time in

approximately one-second intervals.

The EDITOR in IPCLl is used to create new user

Editor

programs or to change existing user programs. The

user program consists of a sequence of program lines.

A program line consists of an unsigned, four digit

statement number followed by a statement. A comment

following the statement may be added. A typical

program line is:

1020 SET A = 1 ;Initialize Variable A = 1

The ; and comment following is optional and does

not affect program execution but is useful in

debugging when using the listing of the program.

Program statement syntax is explained in more detail

later in the text and is supplemented by Syntax

diagrams which appear in Appendix A.

The statement number is the first part of the

program line. It must be a four digit number. If a

statement number less than 1000 is used, the user must

enter enough leading zeroes to make it a four digit

statement number. The user program will be executed in

numerical order, however the program statements do not

have to be entered in numerical order.

Using the Editor

To call the EDITOR type in an E while in the

MONITOR mode. When the EDITOR mode is entered an

opening message is displayed informing the user of the

options available while in the EDITOR.

To list a user program while in the EDITOR mode,

type in an L. The user program will be listed sixteen

lines at a time. To list the next sixteen lines, type

a carriage return. An "End of Filew message will be

displayed when the end of the user program has been

reached. If the user types an L and a user program

has not been entered, the "No Program in Bufferm

message will be displayed.

New statements can be inserted or added to the user

program by choosing an appropriate statement number.

It is strongly advised to use statement numbers at

least ten apart when entering the original user program

to leave room for later modifications to the program.

If more statements are needed between two existing

consecutive statements and there are not enough

statement numbers available (statement numbers must be

integer) then a GOT0 statement can be used. The GOT0

will direct the execution to a new sequence of

statements with a GOT0 at the end of the sequence of

statements to direct the execution back to the desired

statement.

Statement XXXX can be de le t ed from t h e use r program

KILL XXXX where XXXX r ep resen t s t h e

s ta tement number. If XXXX does n o t e x i s t , an e r r o r

message w i l l be displayed.

To change an e x i s t i n g statement YYYY re-type t h e

s ta tement number and new statement. The new s ta tement

w i l l r ep l ace t h e o l d one. For example, i f t h e

statement:

1020 SET B < A

e x i s t s , type t h e new statement:

1020 SET B = A

t o change it o r type:

KILL 1020

t o d e l e t e it.

Refer t o t h e SYNTAX diagrams i n Appendix A f o r

syntax of t h e var ious statements. These Syntax diagrams

w i l l show t h e exac t s t r u c t u r e of t h e program statement.

As mentioned e a r l i e r , any c h a r a c t e r s of t h e command

shown i n pa ren thes i s are op t iona l , and need n o t be

en te red by t h e user . Refer t o Appendix C f o r a sample

program l i s t i n g .

The l as t s ta tement executed should be an END

statement. Upon execut ion of t h i s s ta tement t h e

message "END OF PROGRAMw is p r in t ed and con t ro l

re turned t o t h e MONITOR.

To exit the EDITOR, type an E. This returns you to

the MONITOR mode where the user program can be run.

The user program can also be listed by typing an L.

To return to the EDITOR from the Monitor, type an Em

When the user program is run, execution will begin

at the lowest-numbered statement number and be

executed sequentially unless a GOT0 statement is

encountered. The original user program will probably

be entered in sequence, however, the statements can be

entered in any order. When a listing is made, they

will be shown in the correct sequence. For example, if

the following statements were entered in this order:

0100 SET A = 0

1050 DIS A

1040 SET A = A + 1

1060 PAUSE

1200 END

0010 DIS ALL

The program would be listed in this order:

0010 DIS ALL

0100 SET A = 0

1040 SET A = A + 1

1050 DIS A

1060 PAUSE

1200 END

Program Statements

The format for the program statements available to

the user are explained in the following paragraphs.

For a synopsis of the formats see the Syntax Diagram

in Appendix A.

The IPCLl program language consists of the

following commands:

; XXXXXXXX

PAUSE

ABORT

END

GOT0 XXXX

ZAP

SET

DISPLAY

DELAY XX

CLEAR

This set of commands will allow the user to

construct a program which will be able to monitor and

control 110 devices controlling a process. As seen in

in the sample program described in Chapter 111, a fair-

ly complex operation can be controlled in relatively

few program statements.

Using these statements the user can create a

program to run and monitor a manufacturing process or

similar operations. A sample of such a program is

explained later in the text. The flow diagram for the

sample program is in Appendix B. The listing for the

program is in Appendix C and the schematic diagram in

Appendix D.

Each statement is entered or altered while in the

EDIT mode of IPCL1. Each statement is preceded by a

four digit statement number. The statement number

determines the order in which the statements will be

executed while in the RUN mode. IPCLl starts executing

statements at the lowest-numbered statement and then

continually executes the next statement in numerical

order unless a GOT0 is encountered or an END statement

is reached.

If a GOT0 statement is encountered the program

execution will then continue at the statement number

referred to in the GOTO.

Statements will continually be executed until an

END, PAUSE, or ABORT statement is encountered. If an

error is detetected during the running of the user

program, the program may be aborted or halted,

depending on the severity of the error. An error

message, and the program statement that the program

stopped on, will be displayed for the user.

; XXXX

This command allows a comment to be displayed

during the execution of a program. For example, if the

user wanted to know every time a certain area of the

program was executed, a comment statement could be

inserted. Every time that statement was executed, the

comment would print out on the CRT terminal.

Comments placed after an executable statement are

listed when a LIST of the program is made but not

printed during program execution. Liberal use of these

comments is recommended to aid in reading and

debugging the program later. See the sample program

listing in Appendix C.

PAUSE

This command is provided to halt execution of the

program for an undetermined amount of time. The user

continues execution by hitting the carriage return

(CR) on the terminal. When this statement is executed

the statement along with the statement number is

displayed to inform the user where helshe is in the

program. The display also tells the user to hit the CR

to continue. This delay can used to make some needed

adjustments on the equipment being controlled by the

user-program.

ABORT

T h i s command s t o p s program execution and sets a l l

ou tpu t b i t s t o 0. I t i s intended t o be used when t h e

use r wants t o s t o p t h e program and t u r n o f f a l l t h e

outputs . A f t e r execution of t h i s s tatement t h e use r is

back i n t h e MONITOR mode of IPCLl where he l she has t h e

choice of L i s t i n g t h e program, Edi t ing t h e program,

Running t h e program, o r running t h e T e s t program. A

message is p r i n t e d after the execution of t h i s program

informing t h e use r t h a t t h e program has been aborted.

END

This command s t o p s program execution bu t leaves

a l l t h e ou tpu ts i n t h e i r f i n a l s t a t e . A f t e r execution

t h e message "End of Programw and t h e END statement

wi th i t s s ta tement number i s displayed t o inform t h e

use r where t h e program stopped.

GOT0 XXXX

This command al lows t h e use r t o s t a r t executing

another s ta tement o t h e r than t h e next one fol lowing

t h e one p resen t ly being executed. A f t e r t h i s s tatement

is executed t h e next s ta tement executed is t h e one

s p e c i f i e d (XXXX). Sequent ia l execution of s ta tements

then cont inues u n t i l another GOT0 s ta tement i s en te red

o r t h e program s tops .

ZAP

This command turns off (sets to 0) all of the

output bits controlled by the user program.

SET

Thire command allows the user to set a user

variable (defined by the user) to a value determined

by an expression, another user variable, or an 1/0

variable. It also allows the user to set an output

variable to 0 or 1. The syntax of the SET command

is as follows:

ER VARIABLE

EXPRESSION

ER VARIABLE

1/0 VARIABLE

A user variable is defined when used in the SET

statement for the first time. To define a variable

called CNT the following SET statement would be used:

SET CNT = 10

Thus, the variable CNT would be defined and have an

initial value of 10. To increment the CNT variable use

the statement:

SET CNT = CNT +1

To set the CNT variable equal to another

pre-defined variable A, use the statement:

SET CNT = A

If variable A has not been defined at run time an

error message will be printed and the program aborted.

The user variable can have up to four characters in

its name. The first must be an alphabetic character.

If a user variable with more than four characters are

used an error message will be displayed at run time.

1/0 Variables

110 variables are input/output variables. Sixteen

bits are available for output and sixteen available

for input. The output variables are labeled OUT00

through OUT15. The input variables are labeled IN00

through IN15. INXX and OUTXX are reserved labels for

1/0 variables and cannot be used as labels for user

variables.

To set bit 0 of the output variables to 1 use SET

OUT00 = 1. Since the output bits can only be 0 or 1,

only the value 0 or 1 can be used in the SET

statement. Similarly any output variable can be set to

The input variables cannot be set as they are

inputs from the Gardner (or similar I/O) box. These

can be displayed or compared as will be described

later.

DISPLAY

This command is used to display variable

information during execution of the user program. Any

variable can be displayed singly, or all of the

variables can be displayed with one command. To

display all of the variables, including user variables

and 1/0 variables use the statement DISPLAY ALL. The

user variables would be displayed first with their

current values, then the 1/0 variables and their

values would be displayed. To display only the input

ot output variables, use the statement DISPLAY IN or

DISPLAY OUT respectively. To display a single variable

use the DISPLAY statement with the variable's name

following, e . g . , DISPLAY OUT02 would display the value

of output variable OUTOZ.

If the statement asks to display a variable that

has not been defined in the user program up to the

point it is to be displayed, an error message "NO SUCH

VARIABLE IN TABLEw along with the statement will be

printed.
DELAY XX

This command is used to halt the execution of the

user's program for a given number of seconds. To halt

the program for ten seconds the following statement

would be used: DELAY 10. When this statement is

executed there will be a ten-second delay until the

following statement is executed. A delay of up to 99

seconds can be used the DELAY statement. If a number

larger than 99 is used, the following error message

will be printed: "DELAY TIME SHOULD BE LESS THAN 100

SECONDS." If no time is entered, *NO DELAY VALUE IN

DELAY STATEMENTw will be printed.

CLEAR/ CLEAR ALL

This command is used to clear user-defined

variables from the variable table. The statement CLEAR

ABC would remove the variable ABC from the variable

table.

'fhe command CLEAR ALL would remove all of the

user-defined variables from the variable table. 110

variables cannot be removed using the CLEAR

statement. If an 1/0 variable is named in the CLEAR

statement the fol lowing e r r o r message w i l l r e s u l t :

"CANNOT CLEAR 110 VARIABLES FROM TABLE."

T h i s command i s used f o r cond i t i ona l branching.

The syntax f o r an IF s ta tement is:

The program w i l l s t a r t execut ing t h e s ta tement

number i n t h e GOT0 XXXX po r t ion i f t h e va lues of t h e

express ions on e i t h e r side of t h e ope ra to r are such

t h a t the express ion is t rue . For example, i f A s 1 and

B=l when *If A+B GOT0 1020" i s encountered, t h e

program w i l l jump t o t h e s ta tement numbered 1020 and

s t a r t executing because A = B. I f , l a t e r i n t h e

program, A=l, INOO=O and *IF A = IN00 GOT0 1050N is

encountered, the program would n o t take a jump b u t

execute t h e fo l lowing s ta tement because A d i d n o t

equal INOO.

If a non-existent statement number i s used i n the

GOT0 XXXX portion of the statement the program w i l l be

aborted and an error message printed.

Three operators can be used i n the I F statement.

They are the =,>,or< s ign . I f another operator i s used,

an error message w i l l be printed a t execution t i m e .

CHAPTER 111

SAMPLE PROGRAM SYNOPSIS

T h e sample program is an opera t ing program

s imulat ing a machine shop type of operat ion. The flow

diagram i s i n Appendix B, and complete l i s t i n g f o r

t h i s sample program is contained i n Appendix C. The

s ta tements beyond t h e semicolon (;) are comments t o

a i d t h e use r t o fo l low t h e flow of t h e program.

Statements wi th only a comment after t h e s ta tement

number are p r i n t e d o u t dur ing t h e execution of t h e

program t o a i d t h e use r t o determine when key po in t s

(determined by t h e use r) a r e reached.

The i n t e r f a c e t o t h e computer (PDP-11) i s a t t a i n e d

through a Gardner box. The Gardner box provides

s i x t e e n b i t s of ou tpu t and s i x t e e n b i t s of i npu t

accessible t o t h e computer v i a an i n t e r f a c e board

i n s t a l l e d i n t h e PDP-11. Each of t h e 1 6 ou tpu t b i t s

opera te a r e l a y i n t h e Gardner box. The con tac t s of

t h e r e l a y s are accessible and can be wired t o opera te

t h e va r ious motors needed t o move t h e d r i l l , t u r n t h e

ca r rouse l , and run t h e conveyor t o s imulate t h e

machine shop operat ion. The schematic diagram is

Appendix D.

These ou tpu t b i t s are labe led OUT00 t h r u OUT15

inc lus ive . S imi l a r ly 16 i npu t b i t s are provided t h a t

can be read by t h e computer. These i n p u t s can be wired

t o switches t o monitor events i n t h e system. For

example, t h e c l o s i n g of switch SW1 i n d i c a t e s t h e

pusher has reached i t s f u l l r eve r se o r whome"

pos i t i on . This switch i s wired such t h a t an inpu t b i t

changes from a 0 t o a 1 upon t h e c l o s u r e of t h e

switch. The i n p u t b i t s are l a b e l l e d I N 0 0 t h r u IN15 i n

t h e u s e r sample program. The SW1 switch is connected

s o t h a t I N O l becomes a 1 'when SW1 is closed. The

sample program monitors I N O l i n a t i g h t loop (only

execut ing t h a t command t h a t reads INO1). When t h e I N 0 1

b i t t u r n s t o a 1 t h e program "knows" t h a t t h e pusher

i s i n t h e whomew pos i t ion .

The sample program w a i t s f o r an i t e m t o come down

t h e conveyor belt , pushes t h e i t e m on to t h e ca r rouse l ,

t u r n s t h e ca r rouse l on t o move t h e i t e m under t h e

d r i l l , t u r n on and lower t h e d r i l l t o d r i l l t h e

item, raise and t u r n o f f t h e d r i l l , and d e l i v e r t h e

f i n i s h e d i t e m i n t o a hopper by tu rn ing on t h e

car rouse l . If a new i t e m w a s a v a i l a b l e wi th in 5

seconds after an i t e m was d r i l l e d it would push a new

i t e m on to the ca r rouse l before tu rn ing on t h e

ca r rouse l and then s t a r t the d r i l l i n g opera t ion on t h e

new i t e n when t h e new i t e m was i n pos i t ion .

The first statement in the program begins the
1

initialization portion of the program by turning off

all motors. The program then checks to see if the

drill is in its full up or "homew position by checking

to see if IN04 = 1. If not, it turns on the Up-motor

for the drill until it is in the *homew position. The

program then checks to see if the carrousel is in the

home position by checking if IN03 = 1. If not, it

turns on the carrousel motor until the carrousel is

home. The program next checks to see if the pusher is

in its full reverse or home position by checking IN01

to see if it equals 1.

The program then turns on the conveyor motor by

setting OUT00 to 1. It then monitors switch OS1

(INOO) to determine when an item arrives. When an item

is sensed, the conveyor is turned off and the item

pushed onto the carrousel. The forward limit of the

pusher is sensed by monitoring IN09. When IN09 equals 1

the forward pusher motor is turned off and the reverse

pusher motor turned on. Again, IN01 is monitored to

detect the pusher reaching its home position.

After the pusher is home the carrousel is turned on

by setting OUT03 = 1. The program delays for one

second before monitoring IN03 to give the carrousel

tine to move from its home position. When IN03 = 1

the item is under the drill and ready for the drilling

operation.

The drill is turned on and the down-drill motor

turned on. When IN05 = 1 the drill is all the way

down, and therefore the down-drill motor is turned

off. The drill is left down for five seconds, then

raised by turning on the up-drill motor by setting

OUT05 = 1. When the drill is fully up in its home

position the up-drill motor and the drill are turned

off .
The processing of the item is now completed. The

conveyor is now turned on for five seconds to see if a

new item is ready to be processed. If a new item is

present after five seconds the item is pushed onto the

carrousel and the process repeated. When the

carrousel is turned on to position the new item under

the drill the previously processed item is delivered

into the hopper.

If no item is available after the conveyor has been

on for 5 seconds the conveyor is turned off and the

carrousel turned on to deliver the last item into the

hopper. As before, a one-second delay is inserted after

the carrousel is turned on before the program monitors

whether the carrousel is in the "homeN position. This

delay allows the carrousel to "leavew the present home

position after the carrousel motor is turned on.

A t thls time the conveyor is turned back on and the

program waits for a new item. However, the program

also munitors IN15. If IN15 = 1 (by manually operating

switch SW6) the program turns off all motors and ends.

Control is then back in the monitor where you have the

normal options, i . e . , LIST, EDIT, or RUN the program

again.

CHAPTER IV

SUMMARY

IPCLl is a user-oriented, friendly, high-level

lanquage. It should be able to be mastered quickly.

It is a good "starterm language for someone unfamiliar

with computer languages in general.

This report is written with the intent of it being

a 'users manualw in that most of the emphasis has been

given in describing the language and how to use it. It

has been run and fully tested in the microcomputer

laboratory where many of the error messages were

developed.

The sample program alluded to in the text has been

in operation in the laboratory controlling the

operation of the various devices described. It was

found to be very easy to change the operation of the

"shopm through the use of the Editor and the

simplicity of the language. The usage was made even

more wuser-friendlyw by the addition of program

storage capabilities by the continuation of the work

by Mr. Strange.

APPENDIX A

IPCLl SYNTAX DIAGRAMS

Monitor Runs User program.

sts User progra

its User program.

sts Gardner(Il0) box.

Figure 1. Monitor syntax diagram

Edit '- E x i t e d i t o r , return t o monitor

1

L i s t s User program

Crc Delete Statement XXXX

YYYY Stateme

*Adds or changes Statement YYYY
i b

Figure 2 . Edit syntax diagram

Program statement - unsigned, 4 digit Integer
I

SPACE STATEMENT

Figure Program statement syntax diagram.

Statement Comment

User Variable a
110 Variable v

Figure 4 . Statement syntax diagram

Statement

I
OUTXX x

Figure 4. continued

APPENDIX B * LOW DIAGRAM FOR IPCL1.SPL

Initialize 0
Clear All Relays
Home All Motors
Turn Off Drill

Turn On Conveyor
i b

(wait For New Itemb-

Yes

New Item 9
I Turn Off Conveyor Push Item Onto

Carrousel

w
Start Carrousel

!

Carrousel 0
Yes

Turn Off Carrousel
Turn On Drill
Turn On Down-
Drill Motor

,

Yes

T u r n Off Down-
Drill Motor

Turn Off Drill
Turn On Up-
Drill Motor

Yes

I Turn Off Up-
Drill Motor I
Turn On
Conveyor

Y e s

Turn Off Conveyor
Turn On Carrousel

I Yes

New Item 0

Yes

Turn Off Carrousel
Turn On Conveyor

Y e s

APPENDIX C

SAMPLE PROGRAM LISTING

0010 CLR OUT ;TURN OFF ALL MOTORS & DRILL

0020 IF IN04 = 160TO 0060 ;DRILL UP?

0030 SET OUT05 = 1 ;IF NOT, TURN ON UP-DRILL MOTOR

0040 IF IN04 = 0 GOT0 0040 ;NOT THERE YET

0050 SET OUT05 = 0 ;DRILL HOME, TURN OFF UP-DRILL MOTOR

0060 IF IN03 = 1 GOT0 0100 ;CARROUSEL HOME?

0070 SET OUT03=1 ;TURN ON CARROUSEL

0080 IF IN03 = 0 GOT0 0080 ;CARROUSEL NOT HOME YET

0090 SET OUTOS=O ;TURN OFF CARROUSEL, HOME

0100 IF IN01 = 1 GOT0 0140 ;PUSHER HOME?

0110 SET OUT02 = 1 ;TURN ON REVERSE PUSHER MOTOR

0120 IF IN01 = 0 GOT0 0120 ;PUSHER NOT HOME YET

0130 IF OUT02 = 0 ;TURN OFF REVERSE PUSHER MOTOR

0140 SET OUT00 = 1 tTURN ON CONVEYOR

0150 : START CONVEYOR

0160 IF IN00 = 1 GOT0 0160 ;WAIT FOR NEW ITEM

0170 ; NEW ITEM

0180 SET OUT00 = 0 ;TURN OFF CONVEYOR

0190 SET OUT01 = 1 ;START PUSHING ITEM ONTO CONVEYOR

0200 IF IN09 = 1 GOT0 0200 ;ITEM NOT ON CARROUSEL YET

0210 ; ITEM ON CARROUSEL
I

0220 SET OUT01 = 1 :START PUSHING ITEM ONTO CONVEYOR

0230 SET 0uTb2 = 1 :REVERSE PUSHER

0240 IF IN01 = 1 GOT0 0240 ;PUSHER NOT BACK YET

0250 SET OUT02 = 0 ;PUSHER BACK, TURN OFF REVERSE MOTOR

0260 ; TURN ON CARROUSEL

0270 SET OUT03 = 1 :TURN ON CARROUSEL

0280 DELAY 1 ;WAIT ONE SECOND FOR CARROUSEL TO START

0290 IF IN03 = 1 GOT0 0290 ;WAIT FOR CARROUSEL

0300 ; STOP CARROUSEL

0310 SET OUT03 = 0 ?TURN OFF CARROUSEL

0320 ; TURN ON DRILL

0330 SET OUT06 = 1 ;TURN OM DRILL

0340 SET OUT04 = 1 ;START LOWERING DRILL

0350 IF IN05 = 1 GOT0 0350 ;DRILL NOT DOWN YET

0360 ; DRILL DOWN

0370 SET OUT04 = 0 ;TURN OFF DOWN DRILL MOTOR

0380 DELAY 5 ;DRILL FOR 5 SECONDS

0390 SET OUT06 = 0 ;TURN OFF DRILL

0400 SET OUT05 = 1 ;START RAISING DRILL

0410 IF IN04 = 1 GOT0 0410 ;DRILL NOT UP YET

0420 SET OUTP5 = 0 ;STOP UP-DRILL MOTOR

0430 ; TURN ON CONVEYOR

0440 SET OUTOO = 1 ;TURN ON CONVEYOR

0450 DELAY 5 ;WAIT 5 SECONDS

0460 IF IN00 = 1 GOT0 0170 ;NEW ITEM?

0470 t NO NEW ITEM

0480 SET OUT00 = 0 ;TURN OFF CONVEYOR

0490 SET OUT03 = 1 !TURN ON CARROUSEL

0500 DE 1 ;WAIT FOR CARROUSEL TO START

0510 IF IN03 = 1 GOT0 0510 ;WAIT FOR CARROUSEL

0520 SET OUT03 = 0 ;TURN OFF CARROUSEL

0530 SET OWTOO = 1 ;TURN ON CONVEYOR

0540 IF IN15 = 1 GOT0 1000 ;END SIGNAL

0550 IF IN00 = 1 GOT0 0170 ;NEW ITEM

0560 GOT0 0540 ;WAIT FOR NEW ITEM OR END SIGNAL

1000 CLR OUT ;STOP ALL MOTORS

1010 END

APPENDIX D

SAMPLE PROGRAM LAYOUT

MOTORS

I

r

> M4D DRILL

1

1

b

CONVEYOR M1
FWD PUSHER M2F
REV PUSHER M2R
CARROUSEL I43
DRILL DOWN M4D
DRILL UP M4U
DRILL BIT L1

>

CONVEYOR

M1

M4U

CARROUSEL

M3
J

-

i

OUTXX SWITCHES

ITEM READY OS1
PUSHER HOME SW1
PUSHER FWD SW2

CARROUSEL HOME SW3
DRILL UP(H0ME) SW4
DRILL DOWN SW5
SHUT DOWN SW6

INXX

APPENDIX E

IPCL1 ERROR MESSAGES

MSG2: ONLY THE FOLLOWING OPTIONS ARE ALLOWEDIII

MSGZB: L(IST), K(ILL) XXXX TO KILL STMT XXXX OR

XXXX STATEMENT TO ADD OR CHANGE STATEMENT XXXX

MSG6: NO SUCH STATEMENT NO.!

MSG7: NOT 4 DIGIT STATEMENT NO.!,

MSG8: LINE TOO LONG11

MSG9: NO PROGRAM IN BUFFER

MSGABT: PROGRAM ABORTED AT STATEMENT:

MSGLVR: VARIABLE NAME TOO LONG

MSGNOV: NO SUCH VARIABLE IN TABLE

MSGREJE: INVALID KEYWORD

LNGDIG: TOO MANY DIGITS IN VALUE

MSGMOP: NO OPERATOR 1N IF STATEMENT

BICSN: STATEMENT NO. HAS MORE THAN 4 DIGITS

NOSMIIT: GOZ1-O WAS NON-EXISTENT STATEMENT NO.

NOGOTO: NO GOTO IN IF STATEMENT

MSNOEQ: NO EQUAL SIGN IN SET STATEMENT

ILLOPR: ILLEGAL OPERATOR IN ARITHMETIC STATEMENT

SMLDIV: DIVISOR TOO SMALL

WUbBIG: MULTIPLY OVERFLOW

LNGDLYr DELAY TIME SHOULD BE LESS THAN 100 SECONDS

NODLY: E10 DELAY VALUE IN DELAY STATEMENT

IOMSG: 1/0 VARIABLE INCORRECTLY SPECIFIED

CLRION: CMJNOT CLEAR I / O VARIABLE FROM TABLE

SETINP: CANHOT SET INPUT VARIABLES IN00-IN15

GENERAL REFERENCES

Biewald, J.: Goehner, P.; Lauber, R.; and Schelling, H.
"EPOS - A Specification and Design Technique for
Computer Controlled Real-Time Automation Systems,"
International Conference on Software Engineerinq,
4th, Proceedings of Technical 'University of Hunich,
Germany, September 17-19., 1979. New York: IEEE,
1979.

Bristol, E.H. "Small Languages for Large Systems and Other
Uses." Proceedings of Joint ~utomatic Control
Conference, Denver, Colorado. New York: AIChE,
1979.

Brodges ell, Am, and Copeland, J.R. "CRISP: A User-Oriented
Process Control Language." Proceedinqs of Advances
in Instrumentation, Volume 28, Annual ISA
Conference, 28th, Houston, Texas, October 15-18,
1973, Part 1. Pittsburgh, Pa.: ISA, 1973.

Chaky, ~ i k e ; Davidson, Glenn; Lee, Raymond; and Nichols, Jim
"Processing Control BASIC Simplifies Programming."
Instrument Control System 55 (January 1982): 51-54.

Copeland, J.R. "Process Control: It Isn't EPD!"
ISA Transactions 15 (1976): 155 - 160.

Curtis, R.O. ISAAC/LabSoft, Boston, MA: Cyborg
Corporation, 1981

Darda, L.; Gricuk, P.; and Kolodziejski, 3. "Interpretive
Language for Sequence Control of Chemical
Pro~esses.~ Software for Computer Control,
Proceedings of the Second IFAC/IFIP Symposium on
Software for ComputerControl, Praque,
Czechoslovakia, June 11-15, 1979. New York:
Pergamon Pfess, 1979.

Feher, A . t Czeiner, N.; Csaszar, 2.1 Turi, A.; Keviczky, L;
Bars, R.; Haber, R.; Haberraayer, M.; Hetthessy, J.;
Vajk,I.i and Vajta, M. Jr. "MERCEDES - Interactive
Software Package for Identification and Experimental
Control of Industrial Plants by a Portable Process
Camputer Laboratory." IFAC/IFIP Symposium on
Software for Computer Control, Pnd, Preprint SOCOCO

Laxanburg, Austria: IFAC, 197

Fisher, D. Grant "Computer Control Offers A Future Of
Changes and Challenges." Control Engineering 2
(January 1982): 18-20.

Fisher, D. Grant, and Brennek, Andrew "DISCO: A
Distributed, Supervisory and Control Program.''
Software for Com~uter Control, Proceedinas of the - - - - - - - - - - - - - - - - - - - - - - - -

Second WAC/ IFIP- Symposium on Software for Computer
Control, Praaue, Czechoslovakia, June 11-15, 1979. - - . -

 ax en bur^, ~6stri.a: IFAC, 1979.-

Freeman, I L.L. "Control Applications - The Need for High
Level Languages." National Conference Publication
of Instrument Engineers in Australia, Number 78/13,
Conference on Microprocessor Systems, Sydney,
Australia, November 21-22, 1978. Barton,
Australia: Institute of Engineers, 1979.

Gander, J.G., and Liechti, Hans U. *Real-Time Process
Control Based on a High Level State Language."
Real-Time programming- 1980, Proceedings-of - the
IFAC/IFI Workshop, Schloss Retzhof, Leibnitz,
Austria, April 14-16, 1980. ~lmsford, NY: ~ e r ~ a m o n
Press, 1980.

Ghezzi, C . ; Tisato, F.; and Osnaghi, A. "Language
Constructs for Distributed Processing." IFAC/IFIP
Symposium on Software for Computer Control, Znd,
Pregrint SUCOCO ' 7 9 , Praque, Czechoslovakia,' June
$1-15, 1379. Laxenburg, Austria: IPAC, 1979.

Guillespie, D.H. "Hierarchical Languages for Process
Control," Proceedinqs of the Joint Automatic
Control Conference, San Francisco, California, June
22-24, 1977 . New York: IEEE, 1979.

Harrison, Thomas 30 (Editor). Distributed Computer Control
3ystam,s, Procaedinqs of the IFAC Workshop, 1979,
Tadpa; Florida, October 2-4, 1979. Elmsford, NY:
Pergamon Press, 1980.

Hetthessy, 3; Nbgy, D.; and Zarandi, E. "MICROCOUNT
Interpretive Control Language Based on Intel 8080.'@
XFACEIFIP Symposium on Software for Computer
Control, 2nd, Preprint S O C K 0 '79, Praque,
Czechoslovakia, June 11-15, 1979. Laxenburg,
Austria: IFAC, 1979.

Krull, Fred N o "Experience with ILIAD: A High-Level Process
Control Language." Communications of the ACM 24
(February 1981): 66-72.

Lewis, A * , and Trainito, G. "Implementation of a Standard
Language for Real-Time Distributed Process Controlow
Software for Computer Control, Proceedings of the
Second IFAC/IFIP Symposium on Software for Computer
Control,' Praque, Czechoslovakia, June 11-15 1979.
New York: Pergamon Press, 1979.

Ludewig, Jochen "Process Control Software Specification in
PCSL." Real Time Programming 1980, Proceedings of
the IFACIIFIP Worksho~, Schloss Retzhof, Leibnitz,
~ustria,- April 14-16,- 1980. Elrnsford, -NY: ~ e r ~ a m o n
Press, 1980.

Moore, C o H o , and Rather, E.D. "Use of 'FORTH' in Process
Control." International Microcomputer/Minicomputer/
Microprocessor ' 77 , Proceedings of an International
Conference, Genevat Switzerland, Hay 24-26, 1977.
Guildford, Surrey, England: IPC Science and
Technology Press, 1977.

Novak, M. (Editor). Software for Computer Control,
Proceedings of the Second IFAC/IFIP Symposium on
Sottware for Computer Control, Prague,
Czechoslovakia, June 11-15, 1979. New York:
Pergamon Press, 1979.

Pageler, Evan I. "Interactive Process Control Language
Deslgned for the Control Engineer.' Advances in
Instrumentation, Volume 34, Part. 2. 1979,
Proceedinas of the ISA Conference and Exhibition,

H

Lnicago, 111 nois, October 22 - 25, 1979.
Pittsburgh, Pa.: ISA, 1979.

PROSPRO .XI (TSX11800) PROcess Systems PROqrams. White
Plains, NY: International Business Machine
Corporation, 1970.

Shaw, I.L.; Edbald, W.A.,; and Pavlovic, A.M. "Process
Control Languages - Designer's Perspective of
Adequacy and ~ u t u r e ~equirements." -~roceedinqs of
COMPSAC '78: IEEE Computer Society International
Software and Applications Conference, Znd, Chicago,
Illinois, November 13-16, 1978. New York: IEEE,
4 0 7 0

Strange, Charles Clinton. "DIPSTICK - A PROCESS CONTROL
LANGUAGE." Masters Research Report, University of
Central Florida, Orlando, 1985.

VAL Primer 398H3A. An Introduction to Basic Proqramminq
of PUMA Robot usinq VAL Lanquage. Danbury, CT:
Unimation Inc., 1980.

Walter, C. "Structuring Language for Computer Controlled
Multilevel Systems." Real Time Proqramminq 1980,
Proceedings of the IFAC/IFIP Workshop, Schloss
Retzhoff, Leibnitz, Austria, April 14-16, 1980.
Elmsford, NY: Pergamon Press, 1980.

Windal, G. "Universal Software Interfaces for Distributed
Process Control by Micro-Computers." Software for
Computer Control, Proceedings of the Second
~FAC/IFIP Svrn~osium on Software for Comnuter
control, prag;e, Czechoslovakia, June 11-15, 1979.
New York: Pergamon Press, 1979.

	IPCL1- An Interactive Process Control Language
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENTS
	iii

	TABLE OF CONTENTS
	iv

	CHAPTER I
	001
	002
	003
	004

	CHAPTER II
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020

	CHAPTER III
	021
	022
	023
	024
	025

	CHAPTER IV
	026

	APPENDIX A
	027
	028
	029
	030
	031

	APPENDIX B
	032
	033
	034
	035
	036

	APPENDIX C
	037
	038
	039

	APPENDIX D
	040

	APPENDIX E
	041
	042

	REFERENCES
	043
	044
	045
	046

