
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1986

Utilization of Expert Systems in the Work Place: Performing Utilization of Expert Systems in the Work Place: Performing

Project Software Cost Estimation on Training Systems Project Software Cost Estimation on Training Systems

Henry A. Marshall
University of Central Florida

 Part of the Industrial Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Marshall, Henry A., "Utilization of Expert Systems in the Work Place: Performing Project Software Cost
Estimation on Training Systems" (1986). Retrospective Theses and Dissertations. 4909.
https://stars.library.ucf.edu/rtd/4909

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/307?utm_source=stars.library.ucf.edu%2Frtd%2F4909&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4909?utm_source=stars.library.ucf.edu%2Frtd%2F4909&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

UTILIZATION OF EXPERT SYSTEMS IN THE WORK PLACE:
PERFORMING PROJECT SOFTWARE COST
ESTIMATIONS ON TRAINING SYSTEMS

BY

HENRY A. MARSHALL
B.S.E., University of Central Florida, 1979

RESEARCH REPORT

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Graduate Studies Program of the College of Engineering
University of Central Florida

Orlando, Florida

Spring Term
1986

ABSTRACT

This research report investigates the use of an expert system

to aid project engineers at the Naval Training Systems Center in

making decisions concerning the requirements of the computer systems

used in simulators. For a prototype system domain, the author

chose an expert system that would generate a software development

cost estimate. This system questions the user about the features

and options required on the training system. The expert system then

analyzes the information to generate a "lines of code" estimate.

A selected model ·will combine various factors to generate a value

answer for the user. The capabilities and features of current expert

system development tools are reviewed as to what features would best

address this problem domain. EXSYS, a rule-based expert system

shell that runs on both Zenith and IBM PCs, was selected to develop

the prototype'because of its capability to meet the requirements of

the software cost estimation domain. The COCOMO estimation model

was selected to generate the user answers. The technique of using

a rule-based system in combination with other management decision

tools, such as spreadsheets, holds a potential of being an excellent

approach for providing a tool for storing and utilizing estimation

data and heuristics.

LIST OF TABLES . .

LIST OF FIGURES

Chapter

TABLE OF CONTENTS

I. INTRODUCTION
What is an Expert System? .

iv

v

Statement of the Problem

1
1
2
4
7

Why an Expert System?

I I.

I I I.

IV.

Selection of a Prototype System Domain

EXPERT SYSTEMS
Overview
The K~owledge Base
The Inference Engine
Expert System Development Tools .

SELECTING AN EXPERT SYSTEM DEVELOPMENT TOOL
Overview
The Cost Estimation Domain
Selection of a Knowledge Representation .
Selection of the Development Tool

THE DEMO PROTOTYPE
Overview
The Software Estimation Model
Generating a "Line-of-Code" Es ti mate
The Demo Program

V. CONCLUSION

Appendices
A. IBM PC EXPERT SYSTEM DEVELOPMENT TOOLS .

B. DEMO PROGRAM RULE-BASE .

REFERENCES

iii

9
9

11
17
23

27
27
27
30
36

38
38
39
46
50

55

64

67

. . . . 80

LI ST OF TABLES

1. Suitable Versus Unsuitable Evaluation Factors

2. Basic COCOMO Effort and Schedule Equations

3. A Breakdown of the Functions and Phases of the COCOMO
Model and the Phases of the Standards used to Develop

4

42

Training Systems Software 43

iv

LIST OF FIGURES

1. Basic Architecture of an Expert System .

2. An Example of a Rule ..

10

12

3. Example of an Object-Attribute-Value Representation 13

4. A Semantic Network Describing Some of the Breakdown
Elements of Aviation Flight Trainers 15

5. An Example of What a Frame to Represent the Computer
Image Generation Coding Effort Possibility Could Be 16

6. Example of How Uncertainty Factors are Resolved 18

7. Two Rules Used to Explain How Backward Chaining Works 19

8. Frame System to Evaluate Vehicle XYZ .

9. The Spectrum of Expert System Development Tools

10. An Example of a Qualifier and a Rule to Implement the

22

24

Basic COCOMO Model 45

11.

12.

13.

An Example of a Product Hierarchy WBS

Some Rules to Aid in the Understanding of How a
11 Line-of-Code 11 Estimate Could be Generated by a
Rule-Based System

The Suggested Implementation of a Software Cost
Estimation Expert System

v

48

49

57

CHAPTER I

INTRODUCTION

What is an Expert System?

An expert system is a computer system with domain knowledge

capable of aiding the user in making intelligent decisions within

that domain. It provides advice based on both the answers the user

gives and the knowledge the system possesses. An expert system

programmer is referenced to as a knowledge engineer. His/her function

is to gather the facts, rules of thumb and heuristics that domain

experts use in making decisions. He/she then installs this information

in the computer so it can allow users the benefit of expert

knowledge in making decisions within the system's domain.

Most expert systems have two major parts: the knowledge base

and the inference engine. The knowledge base contains the facts,

rules and heuristics gathered from the domain experts. The inference

engine uses the knowledge base in combination with the answers it

gathers from the user to come up with a conclusion. The conclusion

can take many forms, depending on the inference engine. An inference

engine with an empty knowledge base is called an expert system shell.

Expert system shells are commonly used by knowledge engineers because

of the large amount of effort involved in programming an inference

engine. However, very few of the shells will custom fit any given

2

expert system requirement. Many of the expert system development tools

allow for some flexibility of the inference engine to meet the

requirements of various users (Forsyth 1984).

The expert system is designed on a much different software design

premise than the traditional algorithmic system. The algorithmic

system has its knowledge structured in the code with 11 90 to 11 and

11 if-then 11 statements. This structure would make the expansion of a

knowledge based system difficult. In an expert system, knowledge is

separated from the inference engine which allows easier expansion of

the knowledge base. Thus, the knowledge that drives the system is

explicit and is easy to access.

The parts and functions of the expert system will be discussed

in greater detail later in this report.

Statement of the Problem

Embedded in almost every training simulator is a complex computer

system. Most of the development effort on the simulator is involved

with the software and computer hardware requirements. The knowledge

on how to best meet these requirements is scarce and known by very few

individuals.

Many of the requirements for the computer system contained

within a trainer will be det~rmined by the contractor who builds the

trainer. However, numerous decisions must be made throughout the

acquisition process by the project engineer/manager at the Naval

Training Systems Center.

3

To aid the project engineer/manager in making decisions regarding

computer systems, the author proposes to create an expert system whose

domain knowledge will contain facts, rules and heuristics associated

with trainer computer systems.

This expert system will increase the productivity of the project

engineer/manager, as well as the software engineer he/she normally

consults. The limited number of experts in this area are unable to

review all of the trainer programs on a case-by-case basis. This

system will free some of the software engineer's time, thus allowing

him/her to be more productive. The system also will ensure that

experience or lessons learned on previous trainer procurement will be

considered in the advice given by the expert system to the user. Y The

knowledge engineer will translate the information necessary to solve

the new situations into the knowledge representation of the expert

system being utilized. The system will utilize the new information

in generating advice for future users. This will generate a signi

ficant cost savings by allowing engineers to be more productive and

thorough in their jobs.

The knowledge engineering task this system proposes will be

enormous. Gathering the facts, rules and heuristics associated

with the computer systems will be difficult because of common

disagreement on methods.

Since computer technology and government standards are constantly

changing, the expert system will have to be changed on a periodic

4

basis. This makes an expert system more difficult to implement.

These revisions may force the system to reside on a common host

versus numerous small PCs because it will be vital to control the

configuration of the expert system. These updates will ensure that

the system formulates its conclusion with the latest rules.

Why an Expert System?

Most potential expert system users will not realize their

application is a good choice for an expert system. Some of the basic

evaluation factors are listed in Table 1.

TABLE 1

SUITABLE VERSUS UNSUITABLE EVALUATION FACTORS

SUITABLE

Heuristic

No established theory

Human expertise scarce

Data are unclear

Task requires mainly
cognitive skills

UNSUITABLE

Algorithmic

"Magic formula" exists

Human experts are .a dime a
dozen

Facts are known precisely

Task requires common sense
decisions (very situation
dependent) and/or skills
acquired through practice

SOURCE: Forsyth 1984, Waterman 1986

5

To solve any given problem, two possible alternatives exist.

First, there is the algorithmic approach. This is a step-by-step

procedure which guarantees that the right answer will be given if

the inputs are correct. The heuristic approach is based on developing

probable answers based on the various rules of thumb developed

through experiences. Unlike algorithms, heuristics do not guarantee

a correct solution (Forsyth 1984).

Expert systems are the branch of computer science that derives

solutions with the heuristics that human experts use. Therefore,

any application that could be expressed with an exact solution method

should be implemented using the algorithmic approach. Areas where

there is no known exact method for generating solutions may be good

expert system candidates.

A major consideration in implementing an expert system is the

cost. Implementing a very small system can easily cost hundreds of

thousands of dollars. Therefore, the expertise in the chosen domain

must be both rare and capable of significant cost savings. This will

allow the recovery of the agency's funds expended on the system.

There are several possible applications for expert systems at

the Naval Training Systems Center. The main goal at the center will

be to allow the project engineer/manager to monitor more activities

while simultaneously increasing the quality and quantity of the

decisions they make, thus increasing productivity and ensuring cost

savings. The areas reviewed are the various software engineering

functions.

6

One possibility is an expert system that will facilitate

determining and writing the 11 Proposa l Requirements Documents 11 for

a training system. This includes defining technical proposal and

specification requirements. This expert system could present probable

inputs to the project engineer. Most expert systems allow you to ask

the expert system why it is asking a question. The system responds

with the rule(s) it is trying to satisfy. This would provide a

computer-aided instruction environment which would help junior or

inexperienced personnel become proficient faster. It would also take

a burden off senior engineers.

The next possibility is an estimator of computer coding costs.

Although you would assume this function would best be performed by

the algorithm approach, the author found that most estimation is

performed based on heuristics. Most cost estimators have developed

heuristics based on past projects that had certain requirements and

circumstances. They combine these heuristics with algorithms to

justify the costs they propose. An expert system to estimate project

costs would greatly aid the program managers in cost planning.

People with this expertise are rare, thus a tool to do cost estimating

would be widely used.

Other areas for a possible application include an estimator for

life cycle support requirements and an estimator for the computer

size and type requirements for a given training device application.

7

Selection of a Prototype System Domain

The intent of this research paper is to develop one of the

possible applications of expert systems at the Naval Training Systems

Center through the prototype phase. This will attempt to demonstrate

the feasibility of using expert systems as a productivity tool to aid

the project engineers/managers. It will also explore the development

and tool selection process associated with developing expert systems.

After reviewing the list of possible applications, the author selected

the software cost estimation system because it generated the most

interest. This application would be unique in that the system would

have to support the mathematics involved with software cost

estimation.

Several software costing models have been reviewed and used by

estimators. Some examples of software cost estimating methods are

the COCOMO and Taylor models. None of the models available generate

a "lines of code" estimate. In fact, they require this as an assumed

input to the model. The disadvantage with these methods is that a

great deal of knowledge of the system being estimated is required.

The knowledge is necessary to ensure that the values placed in the

software costing models are correct and justifiable. This work is

very time-consuming for the expert performing the estimate.

The author proposes that the expert's evaluation role in this

process be replaced by an expert system. The expert system would

ask the user about the features and options of the training system.

8

The expert system would evaluate the size and complexity of the

software development effort based .on program histories and other

heuristics gathered and developed by estimators. The system would

then place these values in the cost model to generate a value answer

for the user. While performing this estimate, the system could also

note information on the type and amount of computer equipment

required in the past to perform the proposed task.

Limiting the scope of the prototype system domain is necessary

to ensure that the problem can be kept within manageable bounds.

Many of the early expert systems failed because the domains they

covered were much too broad. An expert system to generate a software

cost estimate for all types of trainers is much too broad a task.

In fact, it would be unwise to select this as the final goal of the

expert system. A general rule for selecting a prototype domain is

to pick a domain that most people feel is too small. The author will

restrict the system to fixed wing operational flight trainers. In

addition, the author will abridge the number of features the system

will address. The operational flight trainers make a good candidate

because most personnel involved with training systems can identify

with the parts and features of these trainers. In selecting this

domain, the author will be able to best demonstrate the problem

definition, and possible knowledge representation for the domain.

CHAPTER II

EXPERT SYSTEMS

Overview

This chapter will explain the components of an expert system and

the options available for each component. This is very important in

making a decision as to what options would best serve the computer

cost estimation domain. A later section will explore the tools and

languages availab)e for developing expert systems.

The basic components of most expert or knowledge-based systems

are shown in Figure 1.

The knowledge base contains the facts and heuristics about the

domain the system covers. The inference engine derives new facts

and conclusions by using the knowledge base (Harmon 1985). It

controls the questioning of the user to derive information to

generate a conclusion. As the inference engine derives new facts,

either from questioning the user or by inferring a logical truth in

the knowledge base, it stores this information in the working memory.

The user interface generates a user-friendly environment by

presenting the questions the inference engine wishes to ask in an

understandable form. It often will allow the user to ask why it is

asking a certain question or what line of reasoning the inference

engine is following (Harmon and King 1985, Hayes-Roth 1985). The

9)

Knowledge
Base

Knowledge
Acquisition

Tools

Knowledge
Engineer

10

Inference Engine

Working
Memory

User
Interface

User

Figure 1. Basic Architecture of an Expert System.

11

knowledge acquisition tools are usually composed of debugging aids

and a knowledge base editor. The debugging aids allow the user to

trace the steps of the inference engine as it searches through the

knowledge base. The knowledge base editors are used to create and

make changes to the knowledge base. A common feature is a consistency

checker to ensure that a new piece of knowledge does not conflict

with an existing one. The following sections describe the options

currently used in developing expert systems. These options are very

important because they allow expert systems to support different

types of knowledge domains.

The Knowledge Base

As stated earlier, the knowledge base is the part of the expert

system that contains the domain knowledge. To best represent this

knowledge, several different types of knowledge representations have

been developed. They are rules-based systems, frame-based systems

and semantic nets. Each one of these methods has inherit advantages
~

and disadvantages. Different types of applications are best per

formed with each type of knowledge representation. Some applications

combine these methods to allow unique applications to be represented.

Rule-based knowledge centers on the use of the IF (condition),

THEN (action/results) repres~ntation. An example of a rule is shown

in Figure 2.

Rule-based or production systems constitute the most popular

method for representing the problem-solving know how of human experts.

12

RULE #8:

IF: The birds are flying
south

THEN: The season is fall

Figure 2. An Example of a Rule.

Experts tend to express most of their problem-solving techniques in

terms of situation-action rules (Hayes-Roth 1985). This makes a

rule-based system the suggested choice for decision intensive expert

systems.

In a rule-based system, the domain knowledge is represented as

a set of rules that are checked against a collection of facts. When

the IF portion of a rule is satisfied by the facts, the action

specified by the THEN portion is performed. When that happens, the

rule is said to fire or execute. The new facts are stored in the

working memory and the cycle repeats itself with the new facts.

To build the rules, attribute-value pairs or object-attribute

value pairs are used. In the object-attribute-value scheme, the

objects may be either physical or conceptual entities. Attributes

are generally characteristics or properties associated with objects

(Harmon and King 1985). The value specifies the specific nature of

an attribute in a particular situation. An example of an object

attri bute-val ue pair is shown in Figure 3. The rule shown in Figure

2 is split into parts.

RULE #8:

IF:

THEN:

Object
Birds

Season

13

Attribute
Flying

Identity

Value
South

Fall

Figure 3. Example of an Object-Attribute-Value Representation.

Many systems are built for single objects. In this case, the

systems represent facts in terms of attribute-value pairs. Attribute

value pair systems differ from object-attribute-value pair systems in

that the object-attribute must be combined to form the attribute

(Harmon and King 1985). This gives the attribute-value pair system

less flexibility in expressing factual information.

Rule-based systems perform judgemental knowledge quite well.

However, factual knowledge and procedural knowledge cannot be easily

expressed with a rule-based system. Factual knowledge represents

assertions about objects and relationships between objects (Hayes-Roth

1985). Procedural knowledge represents sequences of problem-solving

steps.

The semantic net knowledge representation is based on a network

organization. The basic elements of the network are nodes and arcs

(Harmon and King 1985). The nodes could be objects, concepts, object

descriptors or events. Arcs are the network links that connect the

nodes. They describe the relationship between the nodes they connect.

14

Examples of arcs commonly used are 11 is-a 11 and "has-a. 11 An example

of a semantic network is shown in Figure 4.

Based on the simple network in Figure 4, we can infer that an

instrument flight trainer has flight dynamics, an instructional

system and an instrument simulation module. The arcs establish an

inheritance hierarchy _within the net. This means items lower in the

net can inherit properties from items higher up in the net (Waterman

1986, Winston 1984). Semantic nets are useful in representing

knowledge in domains that use well-established classifications. The

primary use of semantic nets is in natural language research, where

they are used to analyze the meaning of a sentence. Because semantic

nets by themselves lack the capability to make judgements and perform

math functions, they are clearly inadequate for the cost estimation

domain.

The frame-based knowledge representation uses a network

representation with frames instead of nodes. A frame is a description

of an object that contains slots for .all of the information associated

with the object. Slots may also contain default values, pointers to

other frames, sets of rules or procedures by which values may be

obtained. The types of procedures are if-added, if-removed and if

needed. The if-added procedure executes when new information is placed

in the slot, the if-removed executes when information is deleted from

the slot and the if-needed executes when another frame or a variable

within the frame needs the value for the slot. The basic concept of

Flight has-part Aviation Flight has-part Inst ructi ona 1 -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ +++++++++
Dynamics Trainer System

+
f .
+ 1s-a

+
Instrument has-part Instrument Flight
Simulation -+-+-+-+-+-+ -+-+ -+-+ Trainer

or +
Stimulation +

+ is-a
+

has-part + has-part CIG Opera ti ona l Flight Motion
-+ -+ -+ -+ -+ -+ -+ -+ -+ -+ ++++++++++

System Trainer System
+
+ is-a +
+

has-part +
Weapon Weapon System
System -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ Trainer

Simulation

Figure 4. A Semantic Network Describing Some of the Breakdown Elements of Aviation
Flight Trainers.

.-.a
U1

16

a frame is shown in Figure 5. As a possible frame representation for

the coding effort on the computer image generation system in an

operational flight trainer (Waterman 1986, Harmon and King 1985).

SLOT 1

SLOT 2

SLOT 3

SLOT 4 ,

SLOT 5

SLOT 6

Computer Image Generation

Number of Channels

Speed of Device

Size of Playing Area

Degrees of Freedom

Levels of Detail

Estimated Number of Lines of
Code to Support CIG System

Attached
Procedures

and/or
Rules

Figure 5. An Example of What a Frame to Represent the
Computer Image Generation Coding Effort
Possibility Could Be.

The frames are joined together in the same manner as the semantic

net. Frames have an inheritance hierarc~y that allows frames to

inherit values from frames higher in the net.

The final possibility is to develop a new knowledge

representation specifically suited to the problem domain (Fikes and

Kehler 1985). The ideal criteria for a knowledge representation is

as follows: (1) the experts must be able to communicate their

knowledge easily and effectively to the system, (2) the experts must

be able to evaluate the knowledge representati·on and understand

17

what the system knows and (3) the expert system must be able to use

the representation effectively in generating advice for the user.

The Inference Engine

The primary purpose of the inference engine is to act as a

mediator between the user and the knowledge base. The two major

tasks of the rule-based system's inference engine are to examine

the knowledge base to determine new facts and conclusions, and to

determine the order that rules are to be examined and the user

questioned (Harmon and King 1985). These two factors are commonly

called inference and control.

The basic inference strategy used by rule-based systems is the

logical rule modus ponens. Modus ponens states that, 11 if A then B. 11

Thus, if A is true, then we can conclude that B is true. The con

ditions listed in the 11 IF 11 portions of the rule are evaluated

against the facts stored in the working memory. If the facts match

the rule, it is said to fire or execute. The statements listed in

the 11 THEN 11 portion of rule become facts for the next rule

evaluation (Harmon and King 1985).

To enhance the evaluation capability of rule-based systems,

we can use uncertainty factors. The uncertainty factors allow

users to convey their confidence to the questions the expert system

asks them. One example of the use of confidence factors is the

prospector system. This · system is used to aid geologists in searching

18

for ore deposits. When asked about the presence of a type of rock,

the user responds using a scale from -5 (certain it is absent) to +5

(certain it is present) (Waterman 1986). Confidence factors also

allow knowledge engineers to convey the confidence that the

heuristic used to create the rule will generate proper advice for

the user. An example of the use of uncertainty factors is shown in

Figure 6. The need for uncertainty factors is a very important

consideration in determining the best expert system approach to

a given domain.

-1

definitely
not

0

ignored

Confidence Range

. 3

slight
evidence

RULE: IF the birds are flying south

.6

probably
confident

THEN probably cf(.6) the season is fall

QUESTION TO THE USER: Are the birds flying south?

USER RESPONDS: +1 (definite)

Then the inference engine combines (1) (.6)

+1

definite

. ·.Therefore, the system concludes that probably
(.6) the season is fall

Figure 6. Example of How Uncertainty Factors are Resolved.

19

The control mechanism of a rule-based system inference engine

is responsible for providing the system's reasoning process (Harmon

and King 1985). The two standard control strategies used by rule-

based systems are backward and forward chaining.

Backward chaining is oriented towards proving or disproving

a given goal or system conclusion. Backward chaining reduces a

system conclusion into easier, simpler to achieve subgoals. For an

example, see the two rules shown in Figure 7.

RULE #10:

IF: The application is real time

THEN: A large amount of speed is needed

RULE #33:

IF: A large amount of speed is needed

AND: A large amount of memory is needed

THEN: Select an XYZ Computer

Figure 7. Two Rules Used to Explain How Backward Chaining
Works.

Using the two rules in ~igure 7, the system would evaluate

whether it should recommend that the user select an XYZ computer

for the desired task. The system would establish if a large amount

20

of speed and memory are needed as subgoals. If either of these

subgoals have been proven false, the inference engine would disregard

the rule and search for another rule which recommends the selection

of an XYZ computer. Assuming both are unknown, the system evaluates

the subgoal which asks if a large amount of speed is needed. The

inference engine finds that rule 10 references the speed subgoal

in the "then" (conclusion) part of the rule. The system establishes

if the application is real time as the next subgoal. If the system

is unable to find this subgoal referenced in the "then" portion of

another rule, the system will ask the user a question to determin~

the solution (Harmon and King 1985, Hayes-Roth 1985). If any of the

subgoals are proven false, the system disregards the conclusion. The

advantage of this method is that the line of questioning generated

by the inference device is towards proving a certain goal. This

forces the user to maintain a logical line of reasoning. Backwards

chaining is also thorough in that all possible conclusions are either

proven or disproven.

While backward chaining is goal-directed, forward chaining is

data-directed. In a forward chaining system, the objective is to

find possible solutions based on the known facts. The user typically

enters information which is stored as facts in the working memory

(Waterman 1986, Harmon and King 1985). The system proceeds down the

list of rules looking for a possible match. When a match occurs,

the rule fires and new factual information is stored in working

memory. The system cycles until it makes a complete pass through

21

all the rules without any rules firing. Many forward chaining

systems perform user questioning by using rules that ask the user

for information if certain facts are present. Since user questioning

is generated based on rule order, the questioning generated by a

forward chaining system is random in nature. This is inappropriate

for many expert system domains since the questioning may tend to

confuse the user. An example of an appropriate usage of a forward

chaining system is the XCON system used by DEC to configure computer

systems. The user inputs a computer order and the system outputs

the desired configuration.

Within XCON, there are a large number of possible computer

configurations. These configurations cannot be narrowed to a few

possible configurations by asking just a few questions. If a

backwards chaining system was used, the amount of questioning

generated by the system to try to verify every possible configuration

would be enormous. A forward chaining system eliminates the

unnecessary questioning, making it much faster for a user to configure

a computer system.

The frame-based system operates on a combination of the

procedures attached to each slot and the inheritance hierarchy set

up by the semantic net connecting the frames. The procedures are

used to find or determine the slot's value for the user. Figure 8

shows a possible sequence of frames to evaluate vehicle XYZ. Using

the frames and the attached evaluation procedures as the knowledge

Vehicle
speed
length
width
color

Auto
tires
exhaust system
engine

Sports Car
turbocharger
aerodynamics
racing stripes

Vehicle XYZ
cost
options

is-a

is-a

is-a

22

Attached Procedures

+

+

+

+

+

+

+

+

+

+

+

+

Figure 8. Frame System to Evaluate Vehicle XYZ.

base, the frame system would evaluate a given user request. Suppose

the user asks for the speed of vehicle XYZ. The system would move

through the hierarchy to the vehicle frame, there the system would

invoke the necessary procedures to find the speed value (Waterman

1986, Winston 1984). This, in turn, could invoke other procedures

in other frames where information to determine the speed is held.

23

Expert System Development Tools

This section will explore the methods by which expert systems

are currently being developed. Each method has inherent trade-offs

and advantages that makes the method the best selection for different

application domains. Defining the correct problem scope and picking

the right rool for building the expert system are the two most

difficult decisions to make in building an expert system.

The variety of current development methods are shown in Figure

9. On the left-hand side of the spectrum, we have the high level

procedural languages. These languages are the development method

for most of the expert system shells. Selecting to prototype your

system with a high level language allows you to develop a shell with

very few constraints, but remains a tremendous programming effort.

Most of the early experimental systems were designed by using a high

level language. Recently, numerous development tools have entered

the software market. Most of the new expert systems have been

developed with these tools because it allows the knowledge engineer

to spend the majority of the time performing knowledge acquisition

rather than programming. One should develop the expert system with

a high level language only if none of the available development tools

is able to address the requirements of the cost estimation domain.

Next are the expert system programming languages. These differ

from the high level languages in that the system has an inference

engine to evaluate the knowledge data. PROLOG, which stands for

Time to
Develop
System

Shell
Programming

Procedural
Languages

Expert Hybrid Expert
System Expert System

Languages System Shells
Minor I Tools I Major

~--C_on_s_t_r_a_in_t_s~----+--------------~1---------------+---------------41~- ---C-o_n_s_tr_a_i_n_ts __)

LISP
FORTRAN
c
PASCAL

PRO LOG
OPS 5

ART
KEE
SRL+

EMYCIN
EXSYS
M.1
(most of the tools
in Appendix A)

Figure 9. The Spectrum of Expert System Development Tools.

25

programming in logic, was designed to manipulate and evaluate logical

expressions (Harmon and King 1985). The OPS 5 language is a forward

chaining rule-based system language. Expert system programming

languages differ from the expert system shells in that the knowledge

acquisition and user interface must be designed by the programmer.

Hybrid development tools are very similar to expert system

languages, except the hybrid tools are designed to support a variety

of knowledge representations and inference methods (Harmon and King

1985, Waterman 1986). Hybrid systems are designed to provide a great

deal of flexibility in designing the shell. Some of the disadvantages

are these tools are very expensive (60K-80K dollars) and require a

Symbolic 3600 or VAX computer. The vendors that sell hybrid systems

provide a training course to familiarize the user with how to perform

knowledge engineering with the tool. In conclusion, hybrid systems

offer an excellent alternative to designing your shell with a high

level language.

The last development possibility is the expert system shell. A

shell has all of the elements of the expert system designed, the only

thing that needs to be created is the knowledge base that allows the

system to derive a solution. In selecting a shell, you have made a

major design commitment. A general rule is that every shell has a

task perfectly suited to it, unfortunately, if the shell does not fit

the requirements of the application domain, then you have wasted a

great deal of time and money. Thus, a shell is the preferred method

26

of designing an expert system because it limits the design effort to

mainly knowledge acquisition; however, the features of the shell must

be thoroughly reviewed against the needs of the application domain.

Appendix A shows (lists) the expert system development tools that

are currently available for the IBM PC. Their features and

capabilities are listed so they can be reviewed against the

requirements of any given domain. The next section of this report

analyzes the software cost estimation domain to determine the best

method to design the demo prototype.

CHAPTER III

SELECTING AN EXPERT SYSTEM DEVELOPMENT TOOL

Overview

This section of the report will perform an analysis of the

procedures used by software cost estimators in estimating the costs

and level of effort involved with a given training system. The

different types of expert system features will be reviewed as to how

they could address this application . Based on an analysis of the

possible development methods, a method will be selected for developing

the demo prototype. The general methods used in selecting a tool

for this domain will be applicable for other expert system

applications.

The Cost Estimation Domain

Before deciding on a tool and a general knowledge engineering

approach, it is necessary to thoroughly analyze the cognitive methods

used by experts in deriving a solution. Hopefully, an expert system

that performs with the same level of competence as the current domain

experts can be developed.

The given input to the cost estimation cycle is usually a

specification of the training system. The specification defines the

scope and performance criteria of the training simulator. Sometimes

27

28

a request to generate a software cost estimate has only several vague

concepts as the requirement. This is usually because a specification

has not been written and the military agency is trying to determine

the scope and cost for the trainer. This will allow the agency to

determine if the trainer is within their funding and budgeting

constraints.

Depending on the thoroughness of the description, the engineer

performing the estimation may have to perform some system level design

work to define the hardware and software features of the trainer.

To derive a preliminary estimate, the features of the trainer being

estimated are compared to other trainers that have already been

designed. Once trainers that have similar operational features have

been identified, the documentation that was generated during the

system's development is used to aid in developing the estimate.

The most useful document for estimating the level of coding

effort for each function pertaining to the trainer is the Program

Performance Specification (PPS). The PPS will translate and allocate

the trainer system functional requirements specified in the trainer

specification to software functional requirements. This document

segments the complete computer program into computer program

components (CPC) which are a functionally distinct part of the

computer program. Each computer program component (CPC) is made up

of one or more computer program modules. A computer program module

is a unit of software which performs a sub-function of the computer

29

program component. Because of rules set forth by software standard

MIL-STD-1644, each program module may contain no more than 200 lines

of code. Most modules average around 100 lines of code. By counting

the number of modules associated with a given functional requirement

and multiplying it by an average module size, an estimate of the

number of lines of code could be generated. The PPS and associated

documents provide a work breakdown structure for the coding effort.

Once a line of code estimate is derived, the total "lines of code" is

phased into a costing model that considers programmer and engineer

productivity and programmer/engineer hour costs. Some models also

consider the costing for certain contractors with different levels of

software development experience. At this time, the author will limit

the scope of the cost model to a general estimate versus a model that

would evaluate the capabilities of the personnel and organization

performing the coding.

The basic duty of the cost estimator is to generate a work

breakdown structure from the requirements of the specification. The

ideal expert system would use the following evaluation scheme: the

inputs to the system would be the various features, options and

performance criteria for the training system. Time sensitive cost

information, like the cost per engineering personnel hour, will be

external. From the inputs, the ·expert system will evaluate the scope

and complexity of a training system to meet the given criteria. The

30

system performs a work breakdown structure to estimate the types and

numbers of software modules required. A line of code estimate for

each module would be generated either by assigning a direct numerical

value or by an algorithm. It may also be desirable to present the

module estimate as a statistical value. The values of each module

in the work breakdown structure are summed to generate a total lines

of code estimate. It is also desirable that the system explain the

work breakdown structure generated and the past training devices used

as references.

Selection of a Knowledge Representation

The possible selections for a knowledge representation are the

frame-based system, the rule-based system or a custom or tailored

knowledge representation fit to the cost estimation domain.

Unfortunately, cost and time are both factors which enter into the

selection criteria. If the custom knowledge representation is

selected, the time and effort to develop the shell alone would be

enormous. Many of the shells on the software market cost upwards

of $10,000, far too much money for developing a prototype

system. As a secondary criterion, the knowledge representation

selected should compliment your own knowledge engineering capabilities

and be developed within a reas~nable amount of time (Waterman 1986).

The development tools should be within the development budget.

The frame-based system offers the most implicit form of knowledge

representation because the frames of the system can be used to

31

represent the elements of the work breakdown structure. An example

frame might be the software to support the computer image generation

equipment. The slots for the computer image generation frame would

contain attributes such as the number of channels and the image

complexity. Other sub-module frames would be attached to the computer

image generator frame via a semantic network. This hierarchical

setup would allow the user to see and understand the work breakdown

structure the system is using to derive a solution. Other

hierarchies could be set up among common elements in the work breakdown

structure; for example, if the software controlling a radar has

simularities to the software controlling other instruments, then parts

of each software element in the work breakdown structure could be

represented by a general frame for commonly held features. Also, the

hierarchical features among trainers themselves could be represented.

For example, a weapon systems trainer is an operational flight trainer

with weapon systems added. Each frame might have procedures attached

to each slot to gather the information necessary to determine the

slot's value. To use the system, the user would ask for the total

software costs. This inquiry would trigger the if-needed procedure

for the total software cost slot. The procedure would then ask for

information from other slots, which trigger other procedures, which ask

the user for needed information to fill in values where needed. The

disadvantages of a frame-based system is that the procedures to

compile the information to determine the value results would be quite

complex. In addition, none of the shells or hybrid systems currently

32

on the market support the math necessary for the cost estimation

domain. Even if they could support the required math, the 60-80K

price of the frame-based tools currently make them a financially

impossible choice. The author's recommendation is to reconsider the

frame-based system when the available tools support the required math

functions for determining slot values and become lower in price.

The next knowledge representation reviewed is the rule-based

system. The rule-based system has to its advantage a very large

assortment of shells and tools. Rule-based systems are by far the

most mature knowledge representation systems. In reviewing the use

of a rule-based system, the control and inference methods of the

various development tools must be compared with the requirements of

the software cost estimation domain.

The primary disadvantage in selecting the rule-based knowledge

representation is that the work breakdown structure used by the

system will be much less implicit than a frame-based system. The

user must sort through the different rules to determine how they are

related to each other, and how the work breakdown structure is

analyzed.

The rules will have to be written such that they are made to

fit only certain hierarchies within the work breakdown structure.

This requires that the knowledge engineer place the proper number

of 11 IF 11 conditions on each rule.

One consideration is using a rule-based system is to determine

if uncertainty factors are used when the expert system is trying to

33

evaluate evidence. This is useful in domains where a simple yes-no

answer is insufficient. In the cost estimation domain, the user will

have to know exactly what is needed. For example, it is unlikely

that a user would 11 maybe 11 desire a motion platform or graphics system.

In order to generate a good estimate, the features and operational

criteria of the training system would have to be well-defined in the

user's mind. The best application for an uncertainty factor would be

in the numerical value assigned to represent the line of code estimate

for every element in the software work breakdown structure. These

values would be combined to generate an overall value for cost and

total lines of code. Many of the software costing models use statis

tics to convey to the user the uncertainty involved with generating a

cost estimate. Some studies indicate that if given the exact same

coding job, the number of lines of code generated by different

programmers can vary by more than 30%. A major drawback

to using statistical values is the amount of data that would have

to be gathered on each work breakdown element to generate a proper

value. In addition, the users of the system may have difficulty in

properly utilizing and understanding the generated values. None of

the tools on the market support statistical values. These values

can be created by using multiple variables for every estimate or by

calling external programs.

The two standard control strategies, forward and backward

chaining, must be reviewed as to how they could be utilized in the

34

software cost estimation domain. Both of these control methods were

explained in detail in an earlier section.

In a forward chaining approach . to the cost estimation domain,

the user enters requirements and functional information about the

trainer. The system scans the rule-base looking for a match based

on the information entered~ To derive a solution, the system would

need enough information to generate an accurate guess for each of

the elements in the work breakdown structure. A forward chaining

system would need to combine both forward chaining and some backward

chaining. The backward chaining would allow the system to ask

additional questions in areas where the user inputs were deficient.

Also, the system would need to realize if its knowledge base was

insufficient to generate a cost estimate. An example would be for a

user to ask for a feature on the training system that is not

supported by the rule-base. In general, the software cost estimation

domain does not lend itself to a forward chaining system.

Within the rules, numerous algorit_hms for generating a line of

code estimation will be specified. From these algorithms, a backward

chaining system would have to ask the user questions to determine a

value for the variables used in the algorithms. The major advantage

of a backward chaining system is that all of the elements in the

work breakdown structure known to the expert system will be tested.

Potential users of these systems usually prefer the system ask

for the information it needs, instead of the user inputting the

35

trainer requirements. Although the number of possible elements

within the work breakdown structure is huge, the elements can be

quickly narrowed or eliminated by asking just a few questions, thereby

eliminating the major reason for selecting a forward chaining system.

The major disadvantage is that the user would have to recognize

if certain features in the trainer's requirements were not asked for

by the expert system. Since the main purpose of this system is to act

as a co-worker, with an engineer doing the cost estimating, this may

not be a major problem. The rule-based expert system would have to

support backwards chaining on selected variables instead of the usual

symbolic choices. Only a few rule-based expert systems on the market

support this feature,which makes selection very limited and difficult.

The last possibility is to develop a unique or a variation of

one of the current types of knowledge representations. To select

this path would require a major time commitment. Many of the knowledge

engineering projects that have chosen the custom shell course had to

undergo several prototype changes before the knowledge acquisition

process began. In the author's opinion, it would be more time

efficient to perform the demo with an existing tool and use the

knowledge engineering experience in building the demo to better

analyze the requirements of the chosen domain.

Therefore, the most reasonable selection for a knowledge

representation would be a rule-based system that supports math and

backward chaining on variables.

36

Selection of the Development Tool

The ideal selection would be to find an expert system shell

that resides on an IBM PC that would be suitable for the cost

estimation domain. The advantages of selecting a shell that can

reside on the IBM PC are the lower initial costs of purchasing the

software and faster development due to the common availability of the

PC in the work place. The two possibilities for a development computer

are the VAX 11/780 and the Zenith PC because of their availability at

the Naval Training Systems Center. As a general rule, the software

costs for a comparable shell or language is approximately ten times

greater for the VAX than the PC. As the system grows, it may be

necessary to place the system on the VAX; however, the PC offers the

most attractive choice for developing the prototype.

Shown in Appendix A is a list of the development tools currently

available for the IBM PC. This list was compiled by a committee at

the International Artificial Intelligence Conference h~ld in Los

Angeles, in the summer of 1985. Out of the list, two tools seemed

to be able to address the domain requirements. These tools are

EXSYS and Ml by Teknowledge. Both tools support the required math,

variables and backward chaining on variables to find their values.

The expert system shell, Ml, supported many features involved

with confidence levels which are totally unnecessary. Also, since

the shell is written in PROLOG, the execution speed is quite slow.

All of the symbolic languages, like LISP and PROLOG, have slow

37

execution speeds because many of the systems run on interpreters,

and the factual information is managed by creating a giant list of

attribute-value pairs that have been proven true. The process of

checking the attribute-value pairs in the rules against this list

is a very slow process for an IBM PC. Most of the shells written

for the PC are now being done in an algorithmic language like C. In

fact, Teknowledge's Ml is now in the process of being rewritten in

C. The major advantage of an algorithmic language in performing a

rule-based system is numeric values can be assigned to each value and

an attribute can be a certain location in an array. When the system

determines the proper value .for the attribute, it can be placed in

the reserved array location. This method makes comparisons and

searches much faster.

Based on the $10,000 cost, and since it is implemented

in PROLOG, the author decided to reject Ml in favor of

EXSYS. EXSYS is very user-friendly. It supports a knowledge base

editor and a consistency checker. The system supports all of the

major math functions and uses backward chaining to determine values

for every variable that is going to be displayed at the end of the

user session. EXSYS is written in C which permits greater operational

speed and allows more rules to be stored with less memory,

permitting large expert systems to reside on the PC.

CHAPTER IV

THE DEMO PROTOTYPE

Overview

The major function of the demonstration program is to show how

a complex software estimation system could be implemented using

expert system techniques. The function of the expert system will be

to provide an implicit format for capturing and perfecting software

cost estimation heuristics. It is impossible for the author to attempt

to provide a verifiable model for generating a cost estimate. Such

a model or models will require a long-term research, data collection

and validation effort. It is important to note that the effort in

estimating a trainer's cost is different at the proposal phase than

at the later development phase, where the product definition is much

better. For this reason, different expert systems supporting

different models would be required for estimation at different stages

in the development effort. The system the author will demonstrate

will show how the system could support decision making in the early

phases of a project. In the conclusion of the report, the author

will suggest additional features to add to the system.

The rules in the cost ·estimation expert system will be directed

towards analyzing one of the two major functions. The first function

is determining cost, time and personnel required to complete the

38

39

project. Different models should be used for different types of

software development efforts. Many advanced models use adjustment

factors to reflect project difficulty and personnel capability.

Rules will be written for each model describing the conditions under

which a given model should be utilized. Other rules can define the

condition under which different adjustment factors should be utilized.

As an input to the model, a 11 line-of-code 11 estimate will be

required. Thus, the second function will be to attempt to estimate

the total number of "lines-of-code" to implement a training system

with given functional requirements. The rules in this section will

be oriented toward breaking the effort down into subfunctions and

estimating the 11 lines-of-code 11 required to implement the subfunctions.

The condition part of each rule will state the circumstances under

which a given subfunction would be required. The estimates of all

of the desired subfunctions will be summed to generate an overall

estimate for the project.

The following sections will discuss the cost estimation model

and the generation of the 11 line-of-code 11 estimate. The last section

will discuss the operation of the demo.

The Software Estimation Model

The software estimation model which is the most thoroughly

documented and accepted is COCOMO (Cost Constructive Model). The

COCOMO model has three versions: the basic, intermediate and

detailed models. Each model can serve different cost estimation

40

requirements. The scope of these models will be discussed later.

For the demonstration program, the author will implement the COCOMO

basic model. The basic model will provide a sufficient demonstration

of the feasibility of using expert systems to perform software costs

estimating. The advanced COCOMO models follow the basic model,

except that a more detailed analysis of the project scope is

required. The COCOMO model is thoroughly described in the book,

Software Engineering Economics, by Barry Boehm (1981). This text

makes an excellent reference for any person attempting to perform

software cost estimation.

The COCOMO model generates estimates based on the number of

thousands of delivered source instructions (KDSI) in the software

project. A source instruction includes all program instructions

created by project personnel that are processed into machine code.

It also includes job control language, format statements and data

declarations. Excluded are comment statements and unmodified

utility software. It is important to realize that source instructions

are not a uniform commodity. Yet, most models prove mathematically

that the number of source instructions is the most reliable variable

in generating an accurate estimate (Boehm 1981). To reflect the

difference in the basic effort involved with different types of

projects, COCOMO splits efforts into three different groups: organic,

semi-detached and embedded.

The simplest mode of development is the organic mode. An

organic object would require little new hardware integration,

41

innovative data processing architectures or algorithms (Boehm 1981).

The project would place .a low requirement on an early completion.

Due to the generally familiar nature of organic projects, most

project personnel can contribute in the early stages and throughout

the development process. This makes for higher productivity in

developing the project.

On the other end of the spectrum is the embedded mode. The

embedded mode project must operate within very tight operational and

reliability requirements (Boehm 1981). Due to the complexity of

the development effort, longer design and testing phases are required.

Since most personnel can be utilized for limited functions within

the development cycle, higher peaks in the personnel curve occur.

Last, is the semi-detached mode. This mode has a mixture of

both organic and embedded mode characteristics. Based on the

examples presented in the Software Engineering Economics text

(Boehm 1981), the author can conclude that the software development

effort for most training simulators will fall under the semi-detached

mode.

The basic COCOMO effort and schedule equations for all three

modes are shown in Table 2. These equations estimate the number of

man-months (MM) and the time to develop the software (TDEV).

The basic COCOMO equations will provide gradually increasing

programmer productivity with larger size programs. The model assumes

a man-month consists of 152 hours of working time (Boehm 1981). The

42

TABLE 2

BASIC COCOMO EFFORT AND SCHEDULE EQUATIONS

MODE

Organic

Semi-detached

Embedded

EFFORT

MM= 2.4(KDSI) 1· 05

MM= 3.0(KDSI) 1·12

MM = 3.6(KDSI) 1·20

SOURCE: Boehm 1981

SCHEDULE

TDEV = 2.5(MM) 0· 38

TDEV = 2.5(MM)o. 35

TDEV = 2.5(MM) 0· 32

development phases used by the COCOMO model are highlighted in Table

3 (Boehm 1981). The development and maintenance phases are add-on

phases that are not estimated by the COCOMO model, but by a separate

model. These two phases are the equivalent to life cycle support

efforts. Each phase can be broken down into COCOMO functions. This

is done by using the tables in the Software Engineering Economics

textbook (Boehm 1981) for the mode of development being estimated.

Table 3 also presents the phases used by the military standards

for developing trainer software to permit a comparison to the COCOMO

development phases.

The basic COCOMO model provides a level of accuracy useful

in the rough early stages ·of software product definition. These

stages occur before any actual development work begins. The inter

mediate and advanced models are more suitable for cost estimation

TABLE 3

A BREAKDOWN OF THE FUNCTIONS AND PHASES OF THE COCOMO MODEL AND THE
PHASES OF THE STANDARDS USED TO DEVELOP TRAINING SYSTEMS SOFTWARE

COCOMO MODEL COCOMO PHASES · DOD-STD-2167 MIL-STD-1644
FUNCTIONS PHASES PHASES

Requirements analysis Plans and Pre-software Planning phase
requirements

Product design Product design Software requirements Ana 1 ys is phase
analysis

Programming Programming-detailed Preliminary design Design phase
design-code and unit
test

Test planning Integration and test Detailed design Production phase

Verification and Development/ Coding and unit testing Integration phase
validation Maintenance
Project office functions Computer system Acceptance phase

component testing

Configuration management Computer system
and quality assurance configuration item

testing

Manuals System integration and
testing/operational
testing and evaluation

SOURCE: Boehm 1981

44

in the more detailed stages of software product definition (Boehm

1981). The intermediate model uses an additional fifteen adjustment

variables which provide greater estimation accuracy. Some of the

adjustment values include required software reliability, programmer

capability and required development schedule. Although the author

chose not to implement the advanced models, the rule-based system

would provide an excellent tool for implementing the advanced models.

Rules could be written for every adjustment value describing the

conditions under which the adjustment variable should be given a

certain numeric value.

Shown in Figure 10 is a rule and a qualifier. Qualifiers are

the basic elements used by EXSYS to create rules and to ask user

questions (Huntington 1985). The qualifier can be split into two

parts: the attribute and its values. Possible values for the attri

bute are presented in a menu form. The symbolic statements in the

rules are created combining a qualifier with a selected value, such

an examp 1 e can be in the 11 I F.11 portion of rule 1. To create this

statement, qualifier #1 with value one would be specified.

The major reason for selecting EXSYS to develop a software cost

estimation system was its capability to support mathematical

formulations and perform backwards chaining on selected variables.

While in the rule-base editor, the system will ask if a certain

variable should be displayed at the end of the user session. If the

answer is 11 yes , 11 -then the system treats the variable as a goal and

45

Qualifier #1

The basic COCOMO model to select is the:

1. organic mode

2. semi-detached mode

3. embedded mode

Rule #1:

IF: The basic COCOMO model .to select is the
organic mode

THEN: [MM] is given the value (2.4*EXP(l.05*(LOG([KDSIJ))))
and

[TDEV] is given the value (2.5*EXP(.38*(LOG([MMJ))))

NOTE: Basic COCOMO model for effort and schedule for organic
mode

Figure 10 . An Example of a Qualifier and a Rule to Implement the
Basic COCOMO Model (Boehm 1981).

will attempt via the rule-base to find a value for it. If the system

cannot find a value for the variable by inferring the rules and/or

asking user questions, EXSYS will ask the user to enter a value for

the variable. This will be necessary for such items as labor costs,

wh1ch are very time sensitive.

In the 11 THEN 11 portion of rule #1 in Figure 10, two COCOMO

formulas for determining man-months and the time to develop an

organic mode project are stated. The variables, MM and TDEV, will

be displayed at the end of the user session. Because of this, EXSYS

will attempt to find a value for qualifier #1 to determine if rule #1

46

is true. First, EXSYS will examine the rule-base for any rules that ·

use qualifier #1 in the "THEN" portion of the rule. The knowledge

engineer may wish to create rules that would infer the conditions

under which certain modes should be utilized. Assuming no such rules

exist, the system would ask the user to select a value for qualifier

#1. Assuming a one is selected, the two formulas would become factual

information. The unknown variable, KDIS (thousands of deliverable

source instruction), will become a goal for the system to determine.

To find the value for the total number of source instructions, the

rules to generate a "line-of-code" estimate will be utilized. Other

rules in this section can state conditions for which various formulas

for manpower, cost and work breakdown be utilized.

Generating a "Line-of-Code" Estimate

Software cost and size estimates are typically based on

historical data. Therefore, data must be collected during current

projects in order to estimate effort and schedule for future projects.

The experts in the cost estimation field suggest that organizations

develop procedures for software cost data collection throughout the

life cycle of a software development process. In Software Engineering

Economics (Boehm 1981), the suggested data collection forms and

procedures are presented.

The purpose of this section is to examine how a rule-based expert

system could aid in storing the sizing data that has been collected.

47

For planning purposes, it is useful to organize project activity

elements into a hierarchical structure called a work breakdown

structure (WBS). There are two major hierarchies to generate a WBS

(Boehm 1981). There is an activity hierarchy and a product hierarchy.

An activity hierarchy indicates the functions which may deal with the

software development effort. An example function could be programming,

quality assurance or configuration management. The activity hierarchy

is useful for generating man-month estimation models, but not for

estimating the number of 11 lines-of-code. 11 The product hierarchy

indicates how the various software components fit into the overall

software system. The product hierarchy has already been discussed

to a limited degree in an earlier section examining the cost estimation

domain. An example of the basic structure of a product hierarchy WBS

is shown in Figure 11. The general feeling among most estimators

is that the smaller elements the product hierarchy is broken down into,

the less the possibility exists for making a large estimation error.

The rules in the 11 line-of-code 11 estimation section would be

based on data co 11 ected from past programs. In Figure 11, in the

very last function block, are listed "unsupported functions" as a

product. It is important to realize that every new software develop

ment project will have requirements not performed by past projects.

This function will create · a variable that will allow the user to

estimate the number of lines of code to support these functions.

When data is collected on the unsupported functions of past programs,

Function 1
(Mo ti on)

Function 2A
(Malfunctions)

, Trainer
System

Software

Function 2
(Instructional

systems)

Function 28
(Playback
analysis)

1f

J-------------

Function 2BA
etc.

. . .

Figure 11. An Examole of a Product Hierarchy WBS.

Function X
(Unsupported

functions)

Function 2X
(Course wave)

49

the rule-base can be expanded to cover a wider range of development

efforts. The control mechanism in EXSYS allows the user to follow

the steps the system traces through the rule-base. This utility

will allow the user to realize the scope of the knowledge base and

determine what the deficient functions are.

In Figure 12, three example rules are shown to aid in the

understanding of how a "line-of-code" estimate could be generated

from a rule-based system.

RULE NUMBER 1:

IF: The type of trainer is an XYZ system

THEN: [DSIJ is given the value [function l] +
[function 2] + {unsupported functions]

NOTE: Data from trainer system XYZ

RULE NUMBER 2:

IF: Function 1 is desired

THEN: [Function lJ is given the value [function lAJ
+ [function lBJ

RULE NUMBER 3:

Figure 12.

IF: Function 1 is not desired

THEN: [Function lJ is given the value 0

Some Rules to Aid in the Understanding of How a "Line
of-Code" Estimate Could be Generated by a Rule-Based
System.

50

In rule 1 in Figure 12, the major functions of an XYZ system

are summed to generate a deliverable source instructions (OSI)

estimate·. The only variable that the system desires to display

at the end of the user session is the OSI variable. Therefore,

to find a value for OSI will become a goal for the system. Assuming

that the trainer is an XYZ system, the formula for solving OSI will

become factual information. In the process, all of the other

variables in the formula will become sub-goals for the system. To

find a value for "function l, 11 the system will search the rule-base

· for rules that define "function 1" in the "THEN" portion of the rule.

The system will then create goals out of the conditions in the 11 IF 11

portion of the rule. In Figure 12, rule #2, a further breakdown

of the functions of "function 111 are specified. This breakdown

would continue to the point at which a "line-of-code" estimate could

be generated. Structuring rules in this fashion allows the knowledge

engineer to easily expand the WBS of a given training system when

new data is collected.

The Demo Program

In attempting to demonstrate the feasibility of using an expert

system as a decision support tool for engineers performing cost

estimation, the author found the data required to generate and

validate custom modules is not available. Therefore, the thrust of

the study must be explaining how an expert system environment could

51

best support the implementation of a decision support tool that

will evolve in the future.

In Appendix B, a rule listing of the small demonstration

program is presented. When creating a new expert system, EXSYS asks

the user for the subject and the system's author. EXSYS uses this

information to generate an introduction to the system. Following

the introduction, the "starting text" is displayed. This text can

explain the scope and purpose of the system. The ending text, which

is displayed at the end of the user session, provides the user with

guidelines for interpreting the advice or information generated by

the system.

The body of the rules are split into three major parts. Rules

numbered 1 through 7 are designed to aid the user in selecting the

proper COCOMO basic model. Rule number 1 selects the semi-detached

mode for a flight trainer based on examples in Software Engineering

Economics (Boehm 1981). Rule number 1 also presents an example

partial product WBS for a flight trainer. In this situation, only

the navigation and the fuel system are presented. In an actual

analysis, the product WBS at the functional level would include

over twenty elements. Based on the author's brief study, the

elements which will require the most "lines of code" would be the

program executive, computer image generation and any weapon or

tactics simulation. The rest of the elements of the WBS would be

generated in a manner similar to the methods presented for the

navigation and fuel systems. The variable, 11 KDSI, 11 in rule 1 is

52

one of the variables to be displayed at the end of the user's

session; therefore, the system will attempt to generate a value for

the variable using backward chaining. Rules 2 through 7 define

the criteria for selecting a COCOMO model. These rules will be

utilized by EXSYS's control mechanism if the device is not a fixed

wing trainer.

The next major section is rules 8 through 10. These three

rules define the basic formulas for the three · COCOMO modes of

development. In these rules, the variables, "MM" (man-months) and

11 TDEV 11 (time to develop the project in man-months), are defined.

Both of these variables are required to be displayed at the end of

the user session.

The rules which are numbered · 11 through 26 are designed to

show how a rule-based system could be used to generate a basic line

of code estimate. The usefulness of the "line of code" estimate

is during the early stages of the procurement cycle where the product

definition is very limited. As the project matures, the emphasis

of the expert system should shift to a more detailed model that

analyzes programming team capability, types of tools and languages

utilized and other factors that wi 11 affect deli very ti me and cost.

The system's function must be broken into the smallest possible

elements. An example of· this is rule number 11 which splits

navigation systems into a list of navigation instruments on past

trainer systems.

53

In rules 12 through 14, an estimate for the 11 lines of code 11 to

support the doppler radar simulation is gener~ted. The qualifier

that generated these three rules is qualifier #4 in Appendix B. Each

value associated with the qualifier is assigned a code estimate by

one of the three rules. The 1 as t va 1 ue, ca 11 ed 11 take your own GUESS,"

is not supported by any of the rules; thus, the system will be forced

to ask the user for the value. Another possible method is to use

multiple qualifiers like in rules 19 through 23 which attempt to

generate an estimate for the radar altimeter function. Two qualifiers

are very important in finding a value for the function, these are

numbers 6 and 8. The rule-base must address every possible

combination of these qualifiers or the user will be forced to

generate an estimate for the combination, but supported by the rule

base. In rules 20 through 23, every combination is given an estimate.

Now that a 11 line of code" estimate. and a model have been

selected by the system, the two are combined to generate a value

for the key variables in the COCOMO model. At this point, the

system needs to complete the estimation by generating an activity

WBS for the project. In COCOMO, the phases are split into percentages

of the total man-month estimate based on the development mode and

the project size in deliverable source instructions. To perform

this breakdown in a rul~ format would be an undesirable task. The

most implicit format for this data would be in a spreadsheet format.

A major inadequacy of version 2.3 of EXSYS is its inability to create

54

data files for external program analysis. Version 3.0 (the newest

version which the author has not been able to obtain) allows the

system to create 11 .PRN 11 files containing key variables. This file

could be utilized by either external programs that figure

calculation factors like inflation or by spreadsheets like Lotus

11 123. 11 In 11123, 11 the 11 .PRN" file can be loaded in by using the

11 /file import" command. In the conclusion, a final configuration

for the system is suggested.

CHAPTER V

CONCLUSION

In 1980, approximately 2% of the gross national product

was spent on software. Growth in software costs is considerably

greater than the rest of the economy. In the area of training

systems, software costs have become the lowest cost item in any

training device procurement. Therefore, methods to guide managers

in making budgetary decisions regarding software development costs

have become increasingly important. It should be obvious that any

organization heavily involved with either software procurement or

development should place an increased emphasis on building a software

cost data base and developing estimation models. To perfect estima

tion models and generate data useful to the development managers,

a data analysis system to meet the requirement of all possibilities

within the domain should be developed.

In expert system prototype development, the knowledge engineer

usually must develop several prototype approaches before an approach

which is suitable to the user is developed. Version 2 of the EXSYS

program is lacking several utilities that would make the fmplementation

of an expert system much easier and complete. In version 3 of EXSYS,

numerous new utilities have been added to increase capability of the

system to support the cost estimation domain. Some of the new

55

56

features include 11 IF-THEN-ELSE 11 rules. This type of rule would allow

the user to combine many parts of the product WBS analysis. An

example would be rules 2 and 3 of Figure 12. The new rule would

be assigned to the function's variable, else the value would be

zero. Other new features include a built-in report generator and

more flexibility in exchanging information with external programs.

Because the types and number of expert system tools are presently

very limited in scope and few in number, any person attempting to

develop an expert system in the future should re-survey the market

for expert system tools that may be useful for the selected problem

domain.

In implementing an expert system that will be useful to both

the user and knowledge engineer, it is necessary to expand the

capabilities of the rule-based system in communicating results to

the user. The best methods of performing this is to utilize spread

sheet packages and external programs in addition to the rule-based

system. In Figure 13, a suggested implementation of a cost

estimation expert system is presented. One of the major elements

in the configuration is a spreadsheet program. The spreadsheet

provides a useful way for the cost estimation engineer to enter

a percentage breakdown by phase and function. In COCOMO, each

development mode has its own project activity distribution by phase.

The phase percentages are referenced by program size. Clearly, the

most implicit and understandable method to present the percentages

is in a table form. Thus, storing the information in a table format

Spreadsheet

- Charts containing
breakdown by project
phase and function
(activity WBS)

+
-+

Basic External Programs

- Any large computational
effort

Report generation not
supported by the
rule-based shell

- Exchanges information
between the rule-based
system and the
spreadsheet when
needed

+
-+

Rule-based System

- Heuristics for
selecting an
estimation model
and the model 1 s
adjustment factors

Heuristics on
estimating
deliverable source
instructions

- Generates estimates
on all major
variables

Handles interface
with the user

User

Figure 13. The Suggested Implementation of a Software Cost Estimation Expert System.

58

would be more superior than trying to store the data in a rule format.

It is possible to have a basic program to utilize the spreadsheet's

data file to generate a project breakdown, or to have another spread

sheet to generate the breakdown, based on certain inputs by the user.

The external BASIC program provides a method for allowing the

system to support complex computational analysis of the expert

system's results. An example would be the effect of inflation,

project overhead and contractor profit. Regardless of the decisions

made by the rule-base, the basic computation of these variables to

achieve a cost breakdown will remain the same. Therefore, having

a separate program (_or programs) to provide a breakdown of expenses

in a format that can be utilized by management is a desirable

approach.

· The brain of the whole system outlined in Figure 13 is the

rule-based system. The system contains the rules by which decisions

concerning the software cost estimation variables are made. The

system will generate an estimate on all major variables based on

questions asked to the user. In any area where a large computational

effort or special report generation is involved, the system will

exchange information via a data file and invoke an external program

that can support the desired functions.

After all the commotion generated by expert systems, some

users may wonder if you have to develop the heuristics that go into

the expert system, why not just write a program in a procedural

59

language like Fortran or Basic, or develop a spreadsheet using

complex macros to implement the system. The author has developed

several reasons why a rule-based system would be superior to the

others mentioned. First, and perhaps the major reason, is the

implicit presentation of a knowledge representation like a rule

based system presents to both the knowledge engineer and user.

While working on this paper, the author discussed software cost

estimation with another engineer who wrote a program to implement

several models. It was very difficult to extract the decision

processes that were embedded in the code. The "condition-results"

format used in a rule-based system can be easily understood by

both the domain expert and the knowledge engineer, allowing the

team to spend their efforts on validation of the system, instead

of programming it. Second, the rule-based system provides an easy

method to add or subtract evaluation conditions based on

circumstances. Third, the backward chaining control mechanism

automatically generates user questioning based on conditions that

cannot be satisfied by the rule-base. To generate the same user

questioning system in a procedural language would be a huge effort.

The inference engine uses the knowledge base to create a logical

decision tree. The changing of one rule or its conditions could

greatly alter the tree generated by the inference engine. If this

decision tree was implemented in a procedural language, the

changing of one decision parameter could require a major re-ordering

60

of the decision process and user questioning. Fourth, most expert

systems, including EXSYS, have trace capabilities to allow the user

to follow the control mechanism of the expert system as it traces

through the rule-base. Also, expert systems allow users to ask why

the system is asking a certain question to which the system responds

with the rule or conditions it is trying to satisfy. All of the

conditions above combined make a rule-based system a worthwhile

choice for this problem domain.

The disadvantages of implementing a rule-based system surface

when the system grows in number of rules and the interrelationship

between facts grow. At that point, generating new rules that cor

rectly and logically integrate with the rest of the rules will become

more difficult and improper relationships between rules could

result.

In continuing this project, several critical questions or

problems could occur. While lots of work has been done on developing

models for generating cost and activity breakdowns based on a

line of code input, almost no guidelines have been developed for

generating the line of code estimate. In the simulator area, trainers

such as aviation trainers have similar elements in the product WBS

which can be associated with past programs. Other trainers, such

as surface weapons trainers, often have uniquely functional require

ments which cannot be associated with past development efforts. As

additional data is collected, it is likely that better guidelines

61

for developing lines of code estimates can be developed. Another

major question is the suitability of rule-based systems to support

the cost estimation domain. As data is collected and new models

are developed, some of the new models may be awkward or impossible

to implement on a shell such as EXSYS or any other rule-based system.

Many new shells that support a wide range of capabilities are

entering the market at a rapid rate. Anyone attempting to support

a cost estimation system should keep informed of the new products

which may be more suitable to support the requirements of the system.

Another major question is on what computer system will the

final expert system reside. The EXSYS shell can support 3000-5000

rules on a PC with 640K of memory. This should allow the system

to begin development using a PC. The author envisions that the final

system will be a combination of expert systems providing analysis

of different types of trainers and different systems to estimate

costs at different stages of product definition/development.

The software engineering development cycle forms a neat step

by-step development sequence. An example of this sequence can

be seen in COCOMO's development phases. The knowledge engineering

development cycle involves a constant cycle of prototyping, criti

cizing and refining program heuristics . This cycle will be an

ongoing activity as the . technology and software procurement standards

for training systems change. If any organization is to provide

reasonably accurate software cost estimates, a comprehensive project

62

data collection system should be instigated. To support the

collection system, software management tools to store, analyze and

provide other users with the capability using the heuristics learned

on past programs to analyze a current development effort is a

necessity. The author feels the type of system suggested by this

paper deserves serious consideration by any organization involved

with either software development or procurement.

APPENDICES

APPENDIX A

IBM PC EXPERT SYSTEM DEVELOPMENT TOOLS

COMPANY

Arte 11 f gence, Inc.
1402 Preston Road
Dallas, TX 75240

Caltfornta lntelltgence
912 Powerll Street
San Franc t sco • CA 94 JO:J

Ot gtta lie, Inc.
5200 W. Century Blvd.
Los Angeles, CA 90045

Dynamic Haster Systems
P.O. Box 566456
Atlanta, GA 30356

PRODUCT NAME

OPS5t

XSYS

Methods

TOPSI

Expert Systems lnt 1 I. ES/P Advisor
1150 First Avenue
king of Prussia, PA 19 1106

·Exsvs. Inc. EXSYS
P.O. Box 75158
Albuquerque, NH 87194

Genera I Research, Inc. Tltf~
7655 Old Sprlnghouse Road
Mclean, VA 22102

tfuman Edge Software• In(:. Expert Ease
2445 Farber Place
Palo Alto, CA 94303

level 5 Research, Inc. Insight I
4980 S-AIA
Melbourne Beach. FL 32~•5 I

PRICE ($) WRITTEN IN HAXIHUH RULES CO:iMEfHS

l,000.00 C 1500 Implementation of OPS 5, •~forward
chaining system. Requlret I a~use.

1,000.00 IQ LISP Systems can be Forward and backward chaining on an
linked opportunistic basis. Supports uncer

tainty. math and di.reel LISP program
ming. Rule-based. Requires IQ LISP.

250.00 Assembler Systems can be Implementation of Smalltal~. An object
and Bas I c 1 Inked or I en ted progranvni ng 1 anguage. Support~

forward and backward chaining. math and
confidence levels.

75.00 Turbo Pascal 5,000 systems lmplementatton of OPS 5, a forward
can be linked chaining system.

1,895.00 PROLOG 400-systems
can be linked

Forward and backward chafnlnq, ts best
used with the fr PROLOG. Can be coq> 11 ed

295.00 C 5,000 Rule-based language supports math and
confidence levels. Backward chaining.

9,500.00 Fortran 11 500 Induction extraction tool, can generate
Its own examples. Generated rules can
be deleted. Supports confidence levels.

695.00 UCSD Pascal JOO-systems lnductton extraction tool, forward
can be linked chaining. Supports confidence levels.

95.00 Turbo Pascal 2000 Rule-based language, supports conftdencr
levels. 8ac~ward chaining with llmtted
forward chaining ability.

PPE, Inc.
P.O. Box 2027
Gathersburg, HO 20879 .

Radian
8501 fwkJ-Pac Blvd.
Austin, TX 78766

Software A&£, Inc.
1500 Wilson Blvd.
Arlington, VA 22209

SRI In terna tf ona 1
333 Ravenswood Ave.
~~nlo Park, CA 94025

Te knowledge
525 University Ave.
Palo Alto, CA 94301

Texas •~struments
P.o. Box igog
Austin, lX 78769

SOURCE: Schwartz 1985

PRODUCT HAHE

Expert System

Ru1e Master

KES

Serl es PC

HI
HIA

Personal
Consultant

PRICE ($) WRITTEN IN

20.00 Baste

5,000.00 c

~

4,000.00 IQ LISP

15,000.00

IO ,000. 00
2,500.00

],000.00

IQ LISP

PROLOG

IQ LI SP.

MAXIMUM RULES

·5000

200-systems
can be linked •

COMMENTS

Rule-based system, us~s tnternal data
base system for rule entry~ · lt support
con f tdence I eve Is and · ma th'.·, 8ackwa rd
chaining. lhis ts a freeware program.

Induction extraction tool. Rules can 1

edited. Supports math and confidence
levels.

Systems can be Supports multiple objects, Inheritance
linked procedural control and Bayesian proba

bl 1 ttfes. Includes IQ LISP and suppor
direct LISP progranmtng.

JOO-systems
can be I Inked

JOO-systems
can be linked

400-systems
can be linked

Rule-based language. Requires IQ LISP
license and supports direct LISP pro
granmlng. Backward chaining.

Rule-based language, supports conf Iden·
levels, variables. math and cycles.
Backward chaining.

Rule-based language wtll ~lso suoport
di reel LISP prograuming. · (nc ludes IQ
LISP. Backward chatntng wtth nJ1ttple
context structure, Inheritance and
confidence levels. ·

APPENDIX B

DEMO PROGRAM RULE-BASE

68

This is a demonstration system to examine the possibility of

using an expert syste~ to aid in estimating software costs. This

system is not complete and also has not been verified. This system

shows how the shell (EXSYS) could handle this problem domain. It

also examines possible approaches to generating a software cost

estimate. The expert system performs backwards chaining on the

variables in the COCOMO model. The knowledge in the rules is used

in combination with user answers to derive the proper values to be

placed in the model. If a value is not derivable from the rule-base,

the system will ask the user to determine the proper value.

Again note, this system is not complete and has not been

verified. The estimate generated by the system is for demonstration

only.

RULE NUMBER 1:

IF:

THEN:

NOTE:

RULE NUMBER 2:

IF:

THEN:

NOTE:

RULE NUMBER 3:

IF:

THEN:

NOTE:

69

The type of operational flight trainer is fixed wing

The suggested COCOMO development mode is the semi
detached mode and [KDSIJ is given the value
[navigation system] + [fuel system] + [unsupported
elements]

This rule selects the COCOMO basic formula for flight
trainer training devices and presents an example
product WBS.

Concurrent development of associated new hardware
and operational procedures:some and need for
innovative data processing architectures,
algorithms:minimal

The suggested COCOMO development mode is the organic
mode

From Table 6-3 in Software Engineering Economics,
p. 81 (Boehm 1981)

Concurrent development of associated new hardware
and operational procedures:moderate and need for
innovative data processing architectures, algorithms:
some or :considerable

The suggested COCOMO development mode is the semi
detached mode

From Table 6-3 in Software Engineering Economics,
p. 81 (Boehm 1981)

RULE NUMBER 4:

IF:

THEN:

NOTE:

RULE NUMBER 5:

IF:

THEN:

NOTE:

RULE NUMBER 6:

IF:

THEN:

NOTE:

70

Need for innovative data processing architectures,
algorithms:considerable and concurrent development
of associated new hardware and operational procedures:
extensive

The suggested COCOMO development mode is the embedded
mode

From Table 6-3 in Software Engineering Economics,
p. 81 (Boehm 1981)

Concurrent development of associated new hardware
and operational procedures:some and need for
innovative data processing architectures, algorithms:
some or :considerable

The suggested COCOMO development mode is the semi
detached mode

This assumes the semi-detached mode is a mixture of
characteristics

Need for innovative data processing architectures,
algorithms:some and concurrent development of
associated new hardware and operational procedures:
extensive

The suggested COCOMO development mode is the semi
detached mode

Based on a mixture of characteristics

71

RULE NUMBER 7:

IF: Concurrent development of associated new hardware
and operational procedures:moderate or :extensive
and need for innovative data processing architectures,
algorithms:minimal

THEN: The suggested COCOMO development mode is the semi
detached mode

NOTE: Assumes semi-detached is a mixture of organic and
embedded characteristics

RULE NUMBER 8:

IF: The suggested COCOMO development mode is the organic
mode

THEN: {MM] is given the value (2.4*EXP(l.05*(LOG([KDSIJ))))
and [TDEV] is given the value (2.5*EXP(.38*(LOG([MMJ))))
and the organic COCOMO development mode was selected.
Utilize the organic spreadsheet to generate an
activity WBS.

NOTE: From Table 6-1 in Software Engineering Economics,
p. 75 (Boehm 1981)

RULE NUMBER 9:

IF: The suggested COCOMO development mode is the semi
detached mode

THEN: IMM] is given the value (3.0*EXP(l.12*(LOG[KDSIJ))))
and [TDEV] is given the value (2.5*EXP(.35*(LOG([MMJ))))
and the COCOMO semi-detached mode was selected.
Utilize the semi-detached spreadsheet to generate an
activity WBS.

72

RULE NUMBER 10:

IF: The suggested COCOMO develooment mode is the
embedded mode

THEN: [MM] is given the value (3.6*EXP(l.2*(LOG[KDSIJ))))
and [TDEV] is given the value (2.5*EXP(.32*(LOG
(IMM])))) and the COCOMO embedded mode was selected.
Utilize the embedded spreadsheet to generate an
activity WBS.

NOTE: COCOMO model for embedded mode, for complex
development projects. From Table 6-1 in
Software Engineering Economics, p. 75 (Boehm
1981)

RULE NUMBER 11:

IF: Does this trainer simulate the navigation systems
inside the airplane:no

THEN: [navigation system] is given the value 0

RULE NUMBER 12:

IF: Does this trainer simulate the navigation systems
inside the airplane:yes

THEN: Inavigation system] is given the value [Doppler radar]
+ !inertial navigation system] + [radar altimeter]

NOTE: This is a product WBS of some common navigation
instruments

73

RULE NUMBER 13:

IF:

THEN:

Which of the following best describes the Doppler
radar system in the simulator you are estimating:
no system on trainer

[Doppler radar] is given the value 0

RULE NUMBER 14:

IF:

THEN:

NOTE:

Which of the following best describes the Doppler
radar system in the simulator you are estimating:
system with no installed malfunctions

!Doppler radar] is given the value 3

Based on A-6 simulation system

RULE NUMBER 15:

IF:

THEN:

NOTE:

Which of the following best describes the Doppler
radar system in the simulator you are estimating:
system with instructor installed failures

fDoppler radar] is given the value 7

From estimate on A-6 trainer

RULE NUMBER 16:

IF: The statement which best describes the inertial
navigation system is:no system

THEN: _[inertial navigation] is given the value 0

74

RULE NUMBER 17:

IF:

THEN:

NOTE:

The statement which best describes the inertial
navigation system is:major instructor installed
fai 1 ures

[inertial navigation] is given the value 2

Estimate from A-6 simulator

RULE NUMBER 18:

IF:

THEN:

NOTE:

The statement which best describes the inertial
navigation system is:normal operation with no
failures

!inertial navigation] is given the value .9

Estimated from A-6 module that does the control
simulation alone

RULE NUMBER 19:

IF:

THEN:

NOTE:

A radar altimeter is desired:no

Iradar altimeter] is given the value 0

Murphy's Law

RULE NUMBER 20:

IF:

THEN:

NOTE:

A radar altimeter is desired:yes; and the radar
altimeter will simulate a malfunction:no; and the
terrain the aircraft will be flying over is flat,
like an ocean

[radar altimeter] is given the value .7

Based on A-6 modules

75

RULE NUMBER 21:

IF:

THEN:

A radar altimeter is desired:yes; and the radar
altimeter will simulate a malfunction:yes; and the
terrain the aircraft will be flying over is flat,
like an ocean

[radar altimeter] is given the value 1

RULE NUMBER 22:

IF:

THEN:

NOTE:

A radar altimeter is desired:yes; and the radar
altimeter will simulate a malfunction:no; and the
terrain the aircraft will be flying over is of
varying elevation

Iradar altimeter] is given the value 1.2

Based on an estimate of a breakdown of A-6 simulator
components by function

RULE NUMBER 23:

IF:

THEN:

NOTE:

A radar altimeter is desired:yes; and the terrain
the aircraft will be flying over is of varying
elevation; and the radar altimeter will simulate a
malfunction:yes

Iradar altimeterJ is given the value 1.4

From A-6 program module breakdown

RULE NUMBER 24:

IF:

THEN:

NOTE:

The statement which best describes the fuel system
is:no system

[fuel system] is given the value 0

Murphy 1 s Law

76

RULE NUMBER 25:

IF:

THEN:

NOTE:

The statement which best describes the fuel system
is:normal operation with no failures, except the
effects of running out of fuel

[fuel system] is given the value 1

Based on the A-6 trainer

RULE NUMBER 26:

IF:

THEN:

NOTE:

The statement which best describes the fuel system
is:system which simulates the effects of the loading
of fuel tanks on the plane's center of gravity and
the effects of running out of fuel

If~el system] is given the value 1.5

Based on A-6 trainer

77

Qua 1 i fi ers

1 The type of operational flight trainer is

Other trainer type
Fixed wing

Used in rule(s): 1

2 The suggested COCOMO development mode is the

Organic mode
Semi-detached mode
Embedded mode

Used in rule(s): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3 Does this trainer simulate the navigation systems inside the
airplane

:yes
:no

Used in rule(s): 11, 12

4 Which of the following best describes the Doppler radar system
in the simulator you are estimating

:no system on trainer
:system with no installed malfunctions
:system with instructor installed failures
TAKE YOUR OWN GUESS

Used in rule(s): 13, 14, 15

5 The statement which best describes the inertial navigation
system is

:no system .
:major instructor installed failures
:normal operation with no failures

Used in rule(s): 16, 17, 18

78

6 The terrain the aircraft will be flying over is

:flat, like an ocean
:of varying elevation

Used in rule(s): 20, 21, 22, 23

7 A radar altimeter is desired

:yes
:no

Used in rule(_s): 19, 20, 21, 22, 23

8 The radar altimeter will simulate a malfunction

:yes
:no

Used in rule(s): 20, 21, 22, 23

g The statement which best describes the fuel system is

:no sys tern
:normal operation with no failures, except the effects

of running out of fuel
:system which simulates the effects of the loading of

fuel tanks on the plane's center of gravity and the
effects of running out of fuel

Used in rule(s): 24, 25, 26

10 Concurrent development of associated new hardware and operational
procedures

:some
:moderate
:extensive

Used in ru 1 e (s) : 2 , 3 , 4 , 5 , 6 , 7

79

11 Need for innovative data processing architectures, algorithms

:mini ma 1
:some
: considerable

Used in rule (s) : 2, 3, 4, 5, 6, 7

REFERENCES

Boehm, Barry W. Software Engineering Economics. Englewood Cliffs,
NJ : Prent i c e-Ha 11 , In c . , 19 81.

Fikes, Richard, and Kehler, Tom. 11 The Role of Frame-Based
Representation in Reasoning. 11 Communi cations of the ACM
(September 1985): 904-920.

Forsyth, Richard. Expert Systems. New York: Chapman and Hall,
1984.

Harmon, Paul, and King, David. Expert Systems. New York: John
Wiley and Sons, Inc., 1985.

Hayes-Roth, Frederick. "Rule-Based Systems. 11 Communications of
the ACM (September 1985): 921-932.

Huntington, Dustin. EXSYS User's Guide. Albuquerque, NM: EXSYS,
Inc., 1985.

Schwartz, Tom. "Artificial Intelligence in the Personal Computer
Environment, Today and Tomorrow. 11 Proceedings of the Ninth
International Joint Conference on Artificial Intelligence
{_.19-85): 1261-1266.

Waterman, D.A. A Guide to Expert Systems. New York: Addison
Wesley Publishing Company, 1986.

Winston, Patrick Henry. Artificial Intelligence. New York:
Addison-Wesley Publishing Company, 1984.

80

	Utilization of Expert Systems in the Work Place: Performing Project Software Cost Estimation on Training Systems
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	TABLE OF CONTENTS
	iii

	LIST OF TABLES
	iv

	LIST OF FIGURES
	v

	CHAPTER I. INTRODUCTION
	What is an Expert System
	01

	Statement of the Problem
	02
	03

	Why an Expert System?
	04
	05
	06

	Selection of a Prototype System Domain
	07
	08

	CHAPTER II. EXPERT SYSTEMS
	Overview
	09
	10

	The Knowledge Base
	11
	12
	13
	14
	15
	16

	The Inference Engine
	17
	18
	19
	20
	21
	22

	Expert System Development Tools
	23
	24
	25
	26

	CHAPTER III. SELECTING AN EXPERT SYSTEM DEVELOPMENT TOOL
	Overview
	The Cost Estimation Domain
	27
	28
	29

	Selection of a Knowledge Representation
	30
	31
	32
	33
	34
	35

	Selection of the Development Tool
	36
	37

	CHAPTER IV. THE DEMO PROTOTYPE
	Overview
	38

	The Software Estimation Model
	39
	40
	41
	42
	43
	44
	45

	Generating a "Line-of-Code" Estimate
	46
	47
	48
	49

	The Demo Program
	50
	51
	52
	53
	54

	CHAPTER V. CONCLUSION
	55
	56
	57
	58
	59
	60
	61
	62

	APENDICES
	63
	APPENDIX A. IBM PC EXPERT SYSTEM DEVELOPMENT TOOLS
	64
	65
	66

	APPENDIX B. DEMO PROGRAM RULE-BASE
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79

	REFERENCES
	80

