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ABSTRACT 

The use of computers for instructional purposes is 

steadily increasing, along with an emphasis on developing 

systems which create environments tailored to human beings. 

Artificial Intelligence techniques have been incorporated 

into these systems with an aim at developing better methods 

of modeling or simulating knowledge and intelligent 

behavior. One type of these systems, Intelligent Simulation 

Training Systems (ISTS), utilize a simulation in the 

training process. This is an ideal environment for the 

instruction of skills which focus on the ability to 

understand the time and space relationships of objects. 

An intelligent tutor module of an ISTS must configure 

scenarios for the simulation which meet the objectives of 

the student's current lesson. This document describes 

research efforts aimed at designing and implementing 

methods in which a tutor module intelligently configures 

scenarios off-line and then dynamically adapts these 

scenarios on-line as required, within the simulation. 
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CHAPTER 1 

INTRODUCTION 

This chapter describes the area of research, the 

objectives, the task and the focus of this thesis. 

Definitions of related terminology are also provided in the 

section which discusses the area of research. 

The Area of Research 

The use of computers for instructional purposes is 

steadily increasing, along with an emphasis on developing 

systems which create environments tailored to human beings. 

The application of computers to provide course content 

instruction in the form of drills, tutorials, and 

simulations is referred to as computer-aided instruction 

(CAI). One possible advantage of CAI is that a less costly 

form of instruction within a specific subject area may be 

provided. This is because any number of students may be 

accommodated, and the presentation of the material may be 

offered at any time. Another benefit is students may learn 

at their own rate, independent of other students' abilities. 

Unfortunately, CAI systems are generally inflexible and 

provide no individualized instruction. The evaluation and 

planning process tends to be static, in that no modification 

of the lesson occurs until after the lesson is completed. 
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The introduction of artificial intelligence techniques 

were later incorporated into computer-aided instruction with 

an aim at developing better methods of modeling or 

simulating knowledge and intelligent behavior. Systems 

incorporating artificial intelligence are referred to as 

intelligent computer-aided instruction (ICAI) or Intelligent 

Tutoring Systems (ITS) (Sleeman and Brown, 1982). 

Individualized tutoring from human instructors has 

demonstrated great effectiveness in fostering learning, 

because the student's abilities and needs are individually 

evaluated and used to determine the tutor's next 

instructional action. By incorporating the concept of 

individualized tutoring within ITS, a training environment 

with greater instructive capabilities may be achieved. The 

introduction of student modeling within ICAI provided a 

means for creating a model of the student's progress within 

the subject matter. This knowledge about the student may 

then be used in the tutoring process to provide 

individualized training. 

Individualized training involves creating a task for a 

student which is appropriate, and providing assistance in a 

fit and timely manner. Three main areas of knowledge are 

required for individualized training and these may be 

divided and represented by three separate components. The 

expert module, the student model, and the tutor module are 

these components (Woolf 1984, 25-27). 



The expert module contains knowledge of the specific 

domain in which the student will receive instruction. This 

knowledge base holds the correct data and rules from the 

subject area. This information can be used to evaluate the 

student's actions or be referenced for presentation of 

topics to be discussed (Woolf 1984, 27). 
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Knowledge concerning the student's understanding and 

possible misconceptions of the domain is incorporated within 

the student model. This information can be referenced and 

utilized to make tutorial decisions about the student's 

progress with the subject matter. The knowledge within the 

student model allows the capability to conduct 

individualized tutoring (Woolf 1984, 39). 

The knowledge which embodies teaching strategies 

resides within the tutor module and is necessary to achieve 

an effective teaching system. These strategies, rules, and 

processes govern the system's interactions with the student 

(Woolf 1984, 46). The pedagogical knowledge is the basis in 

which tutorial decisions are made by a teaching system. 

Tutorial decisions determine what topics to present, the 

form of presentation, when intervention is necessary, and 

what information should be presented at the time of 

intervention. The tutor module is the component responsible 

for utilizing the pedagogical knowledge to make these 

tutorial decisions. 



An intelligent tutor module utilizes the knowledge 

within the student model to conduct instruction in a manner 

personalized to the needs of an individual student. The 

actual text that is provided to the student at times of 

intervention is handled by another component of an ITS, the 

discourse module. The discourse module is responsible for 

handling communication between the system and its users 

(Woolf 1984, 51). 

The Task 

4 

Skills to be instructed may be divided into two types: 

cognitive skills and skills which focus on the ability to 

understand the time and space relationships of objects. 

Most prior work within ITS has dealt with the training of 

cognitive skills. Simulation-based training may be utilized 

for the training of skills required for the manipulation of 

objects within a time and space domain. This involves use 

of a simulation to dynamically display the status arid 

location of objects. Depending on the domain of 

instruction, different procedures, rules, and criteria must 

be exercised by the student for correct manipulation of the 

objects. The objective of simulation-based training is to 

teach these procedures, rules, and criteria, and to provide 

a dynamic environment in which these skills may be trained. 

Current research does not reflect much development of 

ITS within simulation-based training. The acronym "ISTS," 
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for Intelligent Simulation Training Systems, will be used to 

distinguish such systems (Biegel 1988). One goal of an 

intelligent tutor module is the ability to conduct a lesson 

according to the individual needs of a student. Each lesson 

defines an objective which states the skills and topics to 

be covered, and the level of mastery to be achieved. The 

tutor module is required to configure scenarios for the 

simulation, in order to meet the objectives of a current 

lesson. 

To personalize the lesson for a student, the tutor 

module will make use of the student model as a consultant. 

Prior to the initialization of a training session, the tutor 

module must configure a scenario to meet the objectives of 

the student's next lesson. This is based on student model 

information regarding where the student's progress is within 

the subject matter. The term "off-line" will be used for 

future reference to this initialization period prior to a 

training session. 

Once a scenario has started within the simulation, it 

may need to be updated dynamically based on the performance 

of the student, which is monitored by the tutor module. At 

times, the level of difficulty of the currently running 

scenario may need to be decreased or increased. The tutor 

module is responsible for determining if there is a need to 

adapt a scenario and if so, how the scenario should be 

modified. This monitoring and adapting process should be 



performed continuously and dynamically by the tutor module. 

The term "on-line" will be used when referring to actions 

taken during execution of a running scenario. 
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If tutorial decisions led to the conclusion that there 

is a need for a change in the difficulty level, then more 

decisions are required regarding how to generate this 

effect. The methods in which the difficulty level of a 

currently running scenario is decreased differ from the 

methods used for increasing the level. One method for 

decreasing difficulty is to increase the amount of 

intervention from the tutor module. 

The task of dynamically increasing the level of 

difficulty of a currently running scenario is evidently a 

difficult process. Tutorial decisions must be made 

concerning what skills should be challenged, what features 

should be added to the scenario to challenge these skills, 

and when should the scenario be adapted. This requires the 

ability of the tutor module to directly affect the 

simulation, depending on the outcome of the tutorial 

decisions. 

To have an intelligent, simulation-based training 

environment, there is clearly a need for the tutor module to 

dynamically adapt a scenario on-line within the simulation 

for the requirements of a student. This must be achieved in 

a timely manner and the modification must challenge the 

skills in need. 



Objectives 

This document describes research efforts aimed at 

designing and developing methodologies in which a tutor 

module of an Intelligent Simulation Training System can 

adapt a simulation according to the individual needs of a 

student. The important abilities of a tutor module within 

this type of training environment are also investigated and 

discussed in this report. 
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The goal is to make contributions to several areas of 

research. These areas are Intelligent Tutoring Systems, 

Simulation, and Expert Systems. Very limited research in 

Intelligent Simulation-based Training has been performed. 

This research describes the tutoring strategies required for 

ITS which are simulation-based and discusses those 

strategies which were designed and implemented using expert 

system techniques. 

The focus of this thesis is towards designing and 

implementing methods in which the tutor module intelligently 

configures scenarios off-line and then dynamically adapts 

these scenarios on-line as required, within the simulation. 

Artificial Intelligence knowledge representation methods 

were used to encode the various teaching strategies required 

to perform simulation-adaptation. Expert system techniques 

for problem solving were applied to perform those tutorial 

decisions required to determine which skills need to be 



challenged and how to implement this challenge within the 

simulation. 
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The teaching strategies were applied to the domain of 

air traffic control. The data required from components of a 

complete system were simulated to test the effects of these 

teaching strategies. Development of these components is 

currently in process by the ISTS project at the University 

of Central Florida, in Orlando, Florida. 

The remainder of the material presented is organized 

in the following manner. Chapter 2 is a background chapter, 

providing an overview on existing tutoring systems. 

Comments concerning the tutorial strategies used within each 

system are highlighted. 

A design for a complete tutoring component for 

intelligent simulation-based training systems is discussed 

in Chapter 3. 

Chapter 4 is a description of the methods researched 

and implemented involving off-line configuration of 

scenarios and on-line simulation-adaptation. 

Chapter 5 discusses conclusions from the study, and 

suggestions for further research are provided. 



CHAPTER 2 

BACKGROUND 

This chapter provides an overview of related research 

in the areas of intelligent tutoring systems. A section 

discussing microworlds is provided to illustrate their 

differences as compared with ITS. The last section 

discusses the major differences between ITS and intelligent 

simulation training systems. 

An overview of Existing Intelligent Tutoring systems 

Tutoring systems developed in the past have 

illustrated progress towards intelligent and adaptive 

tutoring achieved through computers. An overview of some of 

these systems is provided, with the strong points and 

weakness of the implemented tutoring methods highlighted. 

BIP 

The BASIC Instructional Program (BIP) developed at 

Stanford University was designed to teach introductory 

programming concepts and skills (Barr, Beard, & Atkinson 

1976). Their attempt to personalize tutoring was to select 

problems for a student based on the state of the student's 

knowledge of the subject matter. A Curriculum Information 

Network (CIN) was used to represent the skills and concepts 

of the subject matter and their interrelationships. The 

9 
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CIN was used to determine the student's progress within the 

domain and to select the appropriate problems for the next 

lesson (Wescourt, Beard, & Gould 1977). 

The CIN was authored by persons knowledgeable in the 

programming subject matter but was an attempt to move away 

from the strictly structured curriculum which was followed 

by most computer assisted instructional systems. The 

semantic network represented a human's interpretation of how 

each of the skills and concepts related to each other in 

terms of difficulty, and sets of tasks using these skills 

and concepts were defined. The semantic network was in fact 

defined by a human author. However, the succeeding task 

chosen by the system for presentation depended on the 

student's state of knowledge. 

The student model is updated by the evaluation of the 

student's performance and by a student's self-evaluation. An 

opportunity to indicate skills which the student feels are 

weak is available upon successful completion of a problem. 

There were aspects of BIP's tutoring and evaluation 

methods which were major drawbacks of the system. The 

solutions used to compare the student's solution against 

were limited, and there were several instances in which no 

match was made. This allowed for solutions generated by a 

student, which were correct, to sometimes be interpreted as 

incorrect, if that particular solution was not listed. Help 

and solutions were available at the student's request. The 



11 

system did not monitor the student's current session to make 

decisions on whether or not to intervene, and what to 

present if intervention is deemed necessary. The student 

decided at which level the requested help would be provided, 

and the student was allowed to quit in the middle of a 

problem. The student was allowed too much control over the 

tutoring process and the system did not construct 

individualized tutoring interactions. These drawbacks and 

others promoted inaccurate modeling of the student's 

knowledge and prevented appropriate tutoring based on the 

student's needs (Cochran 1985, 102-121). 

SOPHIE 

John Seely Brown and Richard Burton at the University 

of California, Irvine, began development of A Sophisticated 

Instructional Environment (SOPHIE) (Brown, Burton, and Bell 

1974, 1975). This system provided an environment in which 

students were allowed to create their own hypothesis and 

explore their own ideas. This reactive learning environment 

critiques the student's ideas and provides advice. The 

domain of electronic troubleshooting was used because the 

student can perform experiments and measurements to test 

proposed hypothesis as to where the problem in the circuit 

lies. An electronic simulator was used to model the circuit 

and the system inserted a fault to be isolated by the 

student. 
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Once the student had performed a series of tests, 

he/she then made a hypothesis regarding the fault. SOPHIE's 

job was to determine if the hypothesis was consistent with 

the student's measurements. A list of possible hypothesis 

would be provided for a help request made by the student, in 

the case that no hypothesis could be formulated by the 

student. 

Three versions of SOPHIE were developed. SOPHIE I did 

not have a student model and did not make tutorial 

initiatives. Questions asked by the student were answered 

and proposed hypotheses were evaluated. The system did not 

interpret when the student was having problems, and 

therefore did not provide assistance until asked for by the 

student. In addition to providing the features inherent in 

the first version, SOPHIE II furnished a means for allowing 

the student to watch the system demonstrate troubleshooting 

strategies on a given faulted circuit. The system would 

proceed through a series of tests and measurements, 

providing textual feedback of the troubleshooting strategy 

used. The discourse generated during this execution appears 

impressive, but it is merely achieved through prestored 

explanations (Wenger 1987, 51-78). 

One goal of SOPHIE III was to provide a coaching 

environment in which the system determined if intervention 

is necessary to provide the student with advice. This would 

be dependent on the student model. Neither of these 
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features, however, was fully implemented. The inferencing 

capabilities of the system were enhanced so the system could 

better explain the reasoning behind the student's 

troubleshooting behavior. Knowledge engineering techniques 

were applied to provide SOPHIE with more reasoning 

capability. 

One aspect of SOPHIE with major importance is the 

natural language processing abilities of the system. In a 

reactive learning environment, the student needs to be 

allowed to ask questions, preferably in a format as natural 

as possible. SOPHIE illustrated significant power in the 

interpretation of student's inputs. 

STEAMER 

A simulation-based training system, called STEAMER 

(Hollan, Hutchins, Weitzman 1984) was developed to 

investigate models people use to think and reason, graphical 

interfaces for interactive inspectable simulations, 

conceptual fidelity, and implementation philosophy. The 

goal of this system was to provide instruction on propulsion 

engineering. A color graphics interface to a simulation of 

a propulsion plant was provided. This interface allowed the 

student to monitor the plant at different levels and 

manipulate the plant's controls. 

Much effort by Hollan, Hutchins, and Weitzman was put 

into developing and implementing methods to maintain an 
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accurate representation of the statuses of both the plant 

and student. The representation of the information required 

to manage different levels of the plant was another major 

representation issue. 

The instructional strategy of STEAMER allowed students 

to manipulate and control different components of a plant 

and visually inspect the effects of the changes. The 

students also had the ability to view different aspects of 

the system which one could not normally witness in a real 

plant. This instructional strategy is limited by not having 

adequate questioning provided by the system itself. The 

student had the freedom of exploring ideas, but was not 

guided enough to provide instruction which covered all 

necessary concepts. The evaluation process of the student's 

behavior is limited and future expansion by Hollan, 

Hutchins, and Weitzman is proposed. 

WEST 

One of the first "computer coaches," WEST, was 

developed by Richard Burton and John Seely Brown (1979). The 

term "coach" describes a computer-based teaching environment 

in which the student performs or ·solves problems while the 

system "looks over the shoulder" and provides guidance and 

help. WEST was a coaching system built around the game "How 

the West Was Won". The coach recognizes weaknesses within 

the student's performance and provides explanations for 



these weaknesses. The coach intervenes when the student is 

in need of an idea and provides suggestions at this point. 
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"How the West Was Won" was a board-game, originally 

designed by Bonnie Anderson of the Elementary Mathematics 

Project at the University of Illinois. In WEST, the game 

board was computer-simulated and was 70 spaces long. The 

object of the game was to be the first player to land 

exactly on space 70, while following rules of the allowable 

moves which could be made by a player (Cochran 1985, 

362-364). 

To have a successful coaching strategy, decisions on 

when to interrupt the student and what to provide at the 

time of intervention have to be made carefully. These 

decisions were based on the information of the student's 

knowledge represented in the student model. The tutoring 

paradigm used by the WEST system was called "Issues and 

Examples." The skills and concepts the student was expected 

to master were defined as the issues and the problems or 

tasks representing the issues were called examples. Four 

levels of help were available to the student in which the 

detail of the hint was dependent on the degree of weakness 

shown. 

Limitations within the evaluation and modeling methods 

used in WEST were present. The system could not accurately 

evaluate which issue kept the student from making a correct 

move that involved more than one issue. Also, student's are 
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not always consistent and forget to use a skill that they do 

in fact know. This skill may then be labeled as unknown 

within the student model (Cochran 1985, 372-373). 

WEST's instructional strategy of coaching provided an 

environment which assisted the student through times of 

difficulty and suggested better moves which otherwise may 

never have been discovered by the student. However, no 

curriculum or instructional sequences were used by the 

system to exercise specific skills. 

·auIDON 

GUIDON developed by William Clancey and his colleagues 

at Stanford University (Clancey 1984) was an intelligent 

tutoring system for teaching medical diagnosis. MYCIN 

(Shortliffe 1976), an expert system for selecting antibiotic 

therapy for infectious diseases, was the basis for the 

GUIDON project. Clancey felt tracing MYCIN's reasoning 

during a consultation by asking "why" or "how" did not 

provide an efficient method for teaching the knowledge 

within MYCIN. GUIDON was developed by utilizing the 

knowledge base of MYCIN and explicitly representing teaching 

methods independently. 

A case is selected and described by GUIDON and the 

student asks questions and formulates hypothesis to diagnose 

the problem. Differential modeling is used to evaluate the 

student. This technique compares the student's behavior 



against the expert's behavior. The teaching methodology 

used was called "case method tutoring" by Clancey. 

17 

The important feature of GUIDON is the complete 

separation of domain knowledge from pedagogical knowledge. 

This concept of modularity allows the tutorial portion to be 

easily adapted for use in other domains (Wenger 1987, 

265-268). The tutorial strategies involved provide 

intervention when the student's performance is observed to 

be non-optimal or when the student requests intervention. 

CHU-LISP Tutor 

The LISP tutor was developed at Carnegie-Mellon 

University by John Anderson, Brian Reisor, Robert Farrel, 

and colleagues. The LISP tutor (Anderson and Reiser 1985) 

presented short instructional sequences to the student, and 

then guided the student through a series of programming 

problems. Two major modules, the "problem-solver" and the 

"advisor," are utilized by the tutor. The problem-solver 

monitors the student's performance and models the student. 

The advisor provides tutorial interaction for the student. 

A successful aspect of the LISP tutor was that immediate 

feedback was provided. The program monitors the students as 

they write their code, and alerts them to errors 

immediately. 

The LISP tutor can function in four distinct problem 

spaces to cover issues of design and coding. The problem 
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space holds production rules which are ordered by classes of 

difficulty. The tutor can change problem space according to 

the needs of the student. Therefore, if the student needs 

exercise within one aspect of programming, the tutor can 

reference problems from the appropriate problem space. Each 

lesson makes use of a different rule set, especially 

tailored to the needs of its specific level. These rule 

sets are ordered by .complexity and each are accessed by the 

tutor when the student has reached the appropriate level. 

The system contains an "ideal model" which represents 

the correct rules which the tutor is trying to teach. A 

"buggy model" is also contained within the tutor's knowledge 

base. The buggy model contains rules which are a variant of 

the ideal model's rules. Both of these models are used to 

evaluate the student's course of action. After each 

response made by the student, the tutor makes inferences 

upon which rules or goals could have produced the student's 

responses. Hence, the LISP tutor performs student modeling 

interactively. 

HBO 

MHO (Lesgold, Bonar, Ivill, and Bowen 1987) is a 

tutoring system which supports both free exploration and 

guided problem solving. The domain of instruction was 

electronics troubleshooting. The concept of "steering 

testing" is used by the tutoring component when the 



system is in control of the interaction. Tasks are 

generated dynamically based on the student's observed 

performance and the goals of the current lesson. 
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A layered curriculum representation proposed by 

Lesgold (1987) organizes the curriculum for tutoring systems 

into three layers. At the lowest level is the knowledge 

layer, in which the subject matter is represented as 

separate issues which are linked together. Above the 

knowledge layer, resides the curriculum layer. The 

curriculum layer represents the goals and subgoals, defining 

how the subject matter should be ~rganized into successive 

lessons. At the top of the curriculum representation 

scheme, is the aptitude layer. This layer represents skills 

such as learning abilities or reasoning skills. 

The student model of . the system contains a separate 

evaluation of mastery for each skill or issues to ·be 

addressed. · The tutoring component ·uses the information 

within the student model and the knowledge about the 

curriculum's structure to generate problems for the student. 

MHO concentrates on task generation for guiding the 

student's learning process rather than focusing on complete 

explanations of the behavior of the circuit. This 

corresponds to the bite-sized tutoring architecture 

presented by Bonar, Cunningham, and Schultz (1986). 

Tutoring systems following this architecture are organized 

around pedagogical issues, called bites. This differs from 
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the organization of systems around functional components, 

such as a diagnostic or an expert module. A bite focuses on 

a specific piece of subject matter and contains information 

about its conceptual and curricular relations to other 

bites. Conceptual relations correspond to information 

regarding how bites are classified into classes and 

subclasses with respect to related bites. Curricular 

relations define which bites are prerequisite to a related 

bite. Each bite contains student model information stating 

the student's mastery of the particular subject matter 

within the bite. Tutorial strategies also reside within 

each bite which allow for problem generation or 

instructional interventions relating to the knowledge of the 

bite (Wenger 1987, 146-149). 

Microworlds 

Microworlds are software which provide a training 

environment in which students may explore ideas. They 

usually involve the use of graphics. A microworld simulates 

the domain and the student is responsible for managing the 

learning process. The student serves as his own tutor. No 

specific learning agenda is embedded within the software. 

Therefore, the scope of the subject matter learned by the 

student will only be that in which the student decided to 

investigate. There is no assurance that all important 

concepts will be covered. Also microworlds do not judge a 



student's performance and utilize this information for 

future sessions. 
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An example of a microworld is the LOGO project applied 

to turtle geometry (Papert 1980). This was developed to 

help children learn problem-solving strategies. Children 

were provided with commands which allowed the drawing and 

combining of geometric shapes. The system - also furnished 

commands which permitted the student to manipulate and 

change the components comprising the shapes. The student 

observes the effects .of these changes, therefore building an 

understanding of the mathematical relationships of regular 

shapes. 

Like microworlds, STEAMER and SOPHIE provide a 

simulation and allow the student to explore the domain. 

However, these systems differ from microworlds in that they 

simulate knowledge about a domain, while a microworld 

simulates a domain under study. The use of knowledge~based 

systems within STEAMER and SOPHIE is a major difference from 

an AI standpoint. Thus microworlds are not considered to be 

ITS (Wenger 1987, 423-425). 

Differences Between Intelligent simulation-Based 
Training systems and ITS Developed to Date 

The tutoring systems discussed in the previous section 

concentrate on providing instruction for cognitive skills. 

Examples of cognitive skills include programming, ability to 

formulate hypotheses for specific problem areas, understand-
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ing of a subject matter, and the ability to solve problems 

requiring mental models or reasoning. Tutoring geometry, 

LISP, electronic troubleshooting, and arithmetic are 

examples of instruction on cognitive skills. The problems 

presented to test cognitive skills are generally completely 

defined and pos~d in entirety at the time of inquisition. 

The student answers the question or solves the problem after 

some type of mental reasoning has been completed. 

Another and different area of skills available for 

instruction are those that are required to understand the 

time and space relationships of objects. Examples of domain 

areas representing these skill types are air . traffic 

controlling, driving, and flying. These environments may be 

simulated graphically by a computer, allowing students to 

control and manipulate the objects simulated. Tutoring may 

then be provided to teach the students rules, concepts, and 

procedures which are appropriate for the simulated 

environment. This is the basis for Intelligent Simulation 

Training Systems (Biegel et al. 1988). 

The problems posed by the tutoring component of an 

ISTS are dynamic, because only the starting conditions for 

the scenario are provided. The simulation is dynamically 

updated to reflect the current status of the scenario. The 

outcome of a scenario depends on the student's input. 

Therefore, initial problems generated by the system are not 

complete since as the simulation runs, the status of the 



problems within the scenario changes. This is a major 

difference from the static problems generated by ITS 

tutoring cognitive skills. 
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Some ITS developed use a simulation to generate 

problems for a student, ·but the simulated objects are not 

functioning dependently amongst each other in a time and 

space domain. SOPHIE and STEAMER are examples of systems 

which utilize a simulation to achieve tutoring. SOPHIE 

displays an electronic circuit and STEAMER exhibits gages, 

valves, and various pipes within a propulsion plant. The 

student is allowed to interact with the simulation, but the 

objects simulated do not relate to one another within a time 

and space domain. 

The tutoring systems discussed in this chapter 

represent only a subset of the tutoring systems researched 

and investigated. These systems were selected for 

discussion because they embodied features regarding teaching 

strategies which are relevant to the thesis. 



CHAPTER 3 

A COMPLETE TUTOR MODULE FOR ISTS 

The main objective of an intelligent tutor module is 

to conduct a lesson in a manner that best suits a student's 

needs. This includes enabling the tutor module to modify 

its behavior depending on the abilities of the student and 

the current mode of the system. 

Modes of Operation 

The tutor module in an Intelligent Simulation Training 

System should behave accordingly, based on the role to be 

played for the student's current session with the system. 

These different modes in which the tutor module should 

operate pertain to the student's need for a demonstration, 

review, coach, or an evaluation at different stages in the 

student's learning process. 

Demonstration Mode 

There are two ways in which the demonstration mode 

can be evoked. The first is when a new student is 

introduced to the system for the first time. The tutor 

module will provide a general demonstration of the system 

and familiarize the student with the system commands. 

The demonstration mode is also initiated when a new skill or 

topic is to be introduced to the student. In this case, the 
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tutor module will furnish a presentation demonstrating how 

the concept should be applied. 

Reference Mode 
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The reference mode may be initiated upon a student's 

completion of a session. The history of a student's session 

is stored for a limited time and may be accessed by the 

instructor or the student. This allows the student to 

proceed through a session to re-enact the problems that were 

presented. Errors made may become more obvious and the 

student may further reinforce better solutions which were 

suggested by the expert. This access to history files also 

permits the student to pose questions for instructors and 

have available for display the situation which caused the 

error. Instructors have access to student's files and may 

occasionally review sessions to prevent "loosing touch" with 

student's accomplishments and weaknesses. 

Coaching Mode 

During the coaching mode, the tutor module will act as 

a coach, personalizing a session for the student's 

individual needs. Each time a student begins a new session, 

the tutor module will reference the student model to 

determine where the student is within the subject matter. 

Some domains in which instruction is to be provided may be 

governed by regulations and agencies. These agencies may 

enforce strict guidelines on how the information should be 
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presented. This is the case of Air Traffic Controlling. 

For domains under this type of influence, a lesson-sequence 

will be defined by appropriate individuals. The 

lesson-sequence specifies the order in which the domain 

should be taught. This should begin with lessons covering 

basic concepts and progress logically to lessons which are 

more advanced and challenging. 

Each lesson in the sequence specifies an objective. 

This objective defines which skills or concepts are to be 

covered and the degree of difficulty. The level of mastery 

which must be achieved by the student before progressing to 

the next lesson is also specified. Lessons do not 

explicitly define the simulation situations that are 

necessary to exercise the skills and topics to be covered. 

These scenarios must be configured and maintained by the 

tutor module. 

For domains which are not regulated by agencies or · 

laws, a differential modeling approach may be taken to 

determine what will be covered for each session. The 

student's knowledge of the domain may be modeled in a manner 

similar to that of the expert. _Each skill or concept that 

the student "learns" will be added to the knowledge within 

the student model. At the start of each session the tutor 

module will differentiate between the expert's knowledge and 

the student's knowledge. This difference in knowledge is 

then used to construct a lesson for the student. 
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Under the coaching mode of operation, the tutor module 

must also administer help and remediation when appropriate. 

Positive reinforcement should also be provided to encourage 

the student. All of these functions of the tutor module 

provide an environment for the student which is as person

alized and human-like as possible. These functions 

will be discussed in more detail in the latter part of this 

chapter. 

Evaluative Mode 

Under this mode of operation, the student is provided 

a test and the tutor module will not intervene during the 

session. The student's performance is evaluated throughout 

the session and the final evaluation is presented by the 

tutor module. The strong and weak points will be 

highlighted and suggestions for improvement will be 

furnished. The actual evaluation of the student is the 

responsibility of a different component within an ISTS. 

This component provides an evaluation of a student during 

the coaching mode as well. This information is used to 

update the student model. 

Functions Provided to Personalize the coaching Mode 

Many functions must be performed by the tutor module 

in order to serve as a personable coach during a student's 

session. These functions are addressed in this section. 
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Help 

Help is a function of the tutor module which supplies 

the student with hints or advice for specific situations 

in a scenario which is currently running within the 

simulation. Two sets of tutorial decisions have to be made 

regarding this issue. The first set determines when to 

intervene and the second decides what to present. 

There are two possible ways to evoke help. One is 

when the student requests help by pressing a pre-assigned 

help-key or typing a predefined command. A series of menus 

will then be provided by the system to pinpoint the objects 

and situations in which help is desired. Help can also be 

evoked by the tutor module itself. There are many 

considerations concerning when to allow the tutor module to 

intervene. Too much intervention inhibits a student's 

"learning by discovery" process. On the other hand, too 

little intervention may frustrate and discourage a student. 

The tutorial decisions regarding when to intervene can 

be based on the events occurring in the simulation. 

Potential conflicts or problems may be predicted and the 

time of occurrence of these events may be calculated. The 

tutor module may intervene at certain time intervals leading 

up to the time in which the violation will occur. The 

amount of information provided will depend on how close to 

the actual time of violation the intervention takes place. 

If there is plenty of time prior to an occurrence of a 
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violation, the tutor module may hint towards the pending 

situation. If little time is left, the tutor module may 

provide a complete and optimal solution to correct the 

problem. The expert module provides the necessary solutions 

for the tutor module to reinforce the student. As the tutor 

module monitors the progress of the pending event, 

intervention will take place regularly, with the amount of 

information provided increasing with time. This process 

continues until the student has remedied the situation or 

until the violation occurs. 

Another instance in which the tutor module may inter

vene is when a student consistently displays a weakness in a 

skill. The tutor module may provide guidance during the 

student's next performance of activities which requires the 

use of this skill. The amount of information presented at 

the time of intervention will depend on the level of help 

which has been provided for the skill previously. 

Remediation 

Remediation may be provided as a supplement to a 

lesson if it is determined necessary by the tutor module. 

The decision to initiate remediation may be determined 

before, during, or upon completion of a session. Before a 

session is initiated, special instructions may have been 

left by a human instructor to remediate the student on 
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certain skills or topics. The remediation will be conducted 

before the student is allowed to begin the session. 

During a session, if a student is currently displaying 

very poor performance on certain skills, regardless of how 

much assistance is given, the tutor module may decide to 

freeze the simulation and conduct remediation. This is done 

for skills which are designated as known by the student 

model. The assumption is the student knows the skills, but 

needs to be refreshed. 

At the end of a session, the tutor module may decide 

that the student may progress to the next lesson, only after 

the student is remediated on certain skills. This is 

possible if the student has mastered skills with a score on 

the low end of the satisfactory range. The final scores may 

pass the student to the next level of lessons, however the 

scores are marginal and further exercise is necessary. 

Remediation may be provided in many forms. The 

simplest is in textual form in which rules or concepts are 

presented to be read by the student. This may be 

appropriate to remind the student of specific rules or 

concepts, possibly forgotten, which should be applied. 

If the student needs exercise on how to apply specific 

rules or concepts, the simulation may be utilized for 

remediation purposes. Special drills concentrating on 

certain skills may be conducted, thus providing a more 

interactive form of remediation. 
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Positive Reinforcement 

The tutor module has provisions for notifying a 

student of mistakes or errors. Positive reinforcement 

should be provided when the student demonstrates correct use 

of a new skill or performs an excellent maneuver. This will 

create an encouraging environment for the student. 

Explanation 

A student may request the system to justify why a 

solution was sugges,ted by the expert to handle a situation 

in the simulation. A series of menus will be provided, 

similar to those for help requests made by the student, to 

determine which situation the student is referring. The 

tutor module will need to reference the solution that was 

generated and require the expert module to explain the 

reasoning process which led to the solution. 

Simulation-Adaptation 

The tutor module is required to configure a starting 

scenario to be portrayed by the simulation at the beginning 

of a student's session. This scenario will be configured 

depending on where the student is within the subject matter. 

The topics and skills to be covered must be exercised by 

these starting conditions. 

After the session is initialized, the status of the 

scenario changes as the simulation runs. The student's 

input affects the scenario, and as time passes, the scenario 
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is modified depending on the status of the objects within. 

The tutor module will need to adapt the scenario dynamically 

to challenge appropriate skills at appropriate times. The 

modification induced by the tutor module is based on the 

time of adaptation, the current situations within the 

scenario, and the purpose of the adaptation. 

The simulation-adaptation function is a new and 

complicated issue, but a requirement for personalized 

tutoring within an Intelligent Simulation Training System. 

This issue is addressed in more detail in the next chapter. 



CHAPTER 4 

METHODOLOGY FOR SIMULATION-ADAPTATION 

A tutor module needs to perform simulation-adaptation 

with the intent to provide tasks for the simulation which 

fulfill the objectives of the student's current lesson and 

to dynamically adapt the session to meet the needs of the 

student. This function distinguishes tutor modules for 

Intelligent Simulation Training Systems from those of 

Intelligent Tutoring Systems, which, in general, lack this 

type of simulation interface. This chapter discusses the 

different approaches available for generating tasks for 

students and justifies the method chosen for exploration by 

this research. The implementation of this method with 

respect to ISTS is also described in detail. 

Methods for Generating Tasks 

Three main methods in which tasks are generated for a 

student have been demonstrated in previous ITSs. The first 

is the exploratory approach in which the student is free to 

choose the topics or concepts to investigate. The system 

presents a problem for the student which relates to the 

subject matter chosen by the student. This approach has 

merit because it provides an interesting environment; 

however, several drawbacks are apparent. One disadvantage 
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is the subject matter is not presented in an organization 

which promotes the material to be learned in a logical 

order. Prerequisites may or may not be satisfied for topics 

elected for investigation. Also, there is no assurance that 

all necessary topics or concepts will be presented to the 

student. 

The second method involves a differential process 

between the information contained within the student model 

and the domain knowledge. As the student learns the 

material in the domain, the student model is updated in the 

same manner in which the domain knowledge was developed. 

The student model essentially keeps track of the topics 

learned. When the system is ready to generate a task for 

the student, the knowledge contained in the student model is 

compared against the domain knowledge to determine the next 

concept necessary for presentation. The tasks generated to 

exercise the concepts are generally completely defined. _In 

other words, once the problem is stated, it does not change. 

The student derives a solution and the student model is 

updated based on the solution provided. This process 

continues until all concepts have been covered. This method 

works well for teaching cognitive skills, but requires 

sophisticated student modeling. 

The last method for discussion involves the tutor 

module following a lesson sequence which has been previously 

outlined by a human instructor. This lesson sequence is 



comprised of individual lessons concentrating on specific 

concepts. The lessons are logically ordered by increasing 

complexity and in a manner ensuring prerequisites for a 

particular lesson would have been satisfied by prior 

lessons. This methodology allows the tutor module to 

proceed through the subject matter in a manner defined as 

well organized by a human instructor. All concepts 
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deemed necessary for coverage will be referenced by the 

tutor module. The effectiveness of this method relies 

heavily on how much information is rigidly specified in a 

lesson. If each lesson has a completely defined task to be 

used to exercise the topic specified by the lesson, the 

overall effect of task generation resembles a workbook. 

Each student proceeding through the sequence will receive 

the same tasks. The concepts of lessons and lesson 

sequences do, however, have potential for generation of 

tasks in ISTS. This principle is discussed below. 

Off-Line Task Generation in ISTS 

As mentioned previously in this document, the teaching 

of skills which involve understanding the time and space 

relationships of objects can be . effectively accomplished by 

the use of a simulation. The tutor module mus~ generate 

tasks for a student which reflect the current topic of 

discussion. The generated tasks will be presented by the 

simulation. Since the simulation is updated dynamically, 



the task initially presented will change as time passes. 

Therefore, the tutor module can only generate the starting 

conditions of the task. These tasks which are generated 

off-line will be referred to as "scenarios" because they 

specify the situations to be present within the simulation 

at the time in which the session begins running. 
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The method proposed for off-line scenario generation 

involves having the tutor module utilize a lesson sequence 

(see Figure 1). Lessons will be defined generally enough to 

allow the system to generate a different scenario for a 

lesson, each time the lesson is referenced by the tutor 

module. Each lesson specifies a description of what should 

be present within its corresponding scenario, but does not 

specify how this should be represented within the 

simulation. For example, a lesson may specify five objects 

to appear in a scenario, each with different capabilities in 

speeds, and heading in directions which will cause no future 

intersections amongst them, unless otherwise changed. The 

system will then have to calculate the required coordinates, 

headings, speeds, and other directives for the simulation 

which reflect the conditions specified by the lesson. The 

directives will be generated with as much randomness as 

allowed by the guidelines specified by the lesson. This 

promotes sessions which provide instruction specified by the 

current lesson, but with enough variability to prevent a 

rigid lesson sequence. 
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on-Line Generation of Tasks 

After the generated scenario has been loaded into the 

simulation, the simulation begins to run, thus initializing 

a student's session. The student will proceed with 

executing commands to control the objects as required by the 

lesson. The performance of the student can be dynamically 

monitored and made available for the tutor module. The 

tutor module can therefore make decisions concerning the 

student's demonstrated performance of the skills covered by 

the present lesson. At times the tutor module may decide to 

increase the difficulty of the current session. 

The lessons and lesson sequencing concepts can again 

be utilized to accomplish increasing difficulty. In 

addition to having the lessons specify, in general, what 

scenario should be present in the simulation at the start, 

· the lesson can also specify techniques which the tutor 

module should use to generate additional tasks that increase 

the difficulty of the lesson. For example, a topic for 

instruction within Air Traffic Control is the maintenance of 

separation standards between aircraft. This topic, along 

with the directives for the starting scenario, will be 

defined by a lesson. Maintenance of separation standards 

becomes more difficult with the increase in traffic or with 

the introduction of inclement weather. Methods, such as 

these, for increasing the difficulty of the topic of 

separation standards will also be specified by the lesson. 
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The tutor module can reference these methods at times when 

it is determined the student needs to be challenged. The 

tasks generated on-line to be added to the currently running 

simulation should again be created with as much variability 

as possible. 

Implementation 

The methods described above were implemented on a 

Symbolics LISP Machine and were developed for use in the 

instruction of handoffs and the maintenance of separation 

standards in the domain of Air Traffic Control. The 

Automated Reasoning Tool (ART), developed by Inference 

Corporation, was used to develop the rules necessary for 

making decisions concerning a student's past and present 

performance. It was also utilized to create a menu-driven 

authoring process to generate lessons. ART's blackboard 

architecture provided a convenie~t method for enabling the 

tutor to dynamically affect the simulation. A blackboard 

architecture is an inferencing mechanism which posts 

asserted facts on a blackboard which may match the premise 

or "if" condition of a rule. When a rule's premise is 

satisfied by the facts on the blackboard, the rule fires, 

carrying out the actions listed in the "then" part. ART 

continuously checks for matches between facts on the 

blackboard and conditions of rules. Therefore, rules which 

affect the simulation, are continuously monitored to 
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determine when its conditions are satisfied. At the instant 

these conditions are satisfied, the actions of the rule are 

immediately carried out, hence, dynamically affecting the 

simulation. 

Common LISP was used to implement the techniques which 

generate the directives necessary to drive the simulation. 

The simulation utilized for this research mimics a radar 

scope for an air traffic controller, and has the ability to 

display and update aircraft on the scope with time. The 

simulation was developed at the Simulation and Control 

Department of the General Electric Company in Daytona Beach, 

Florida, by Mr. Michaels. Kelsen and Mr. Blake Moselle, 

under the direction of Ms. Janice Eisele. 

Several functions and processes were implemented to 

develop a system which performs simulation-adaptation as 

described, and permit the demonstration of these techniques. 

The implementation of each of these processes is discussed 

in the following sections. 

The Authoring Process 

This process was implemented to allow a human 

instructor to create lessons and organize these within a 

lesson sequence for future reference by the tutor module. 

Whenever the system is loaded, the tutor's main menu is 

provided, which allows the user to choose between the 

authoring process or the initialization of a session (see 
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Figure 2). If the authoring process is selected, the lesson 

menu is presented which provides options concerning lesson 

sequence construction. 

Six functions may be selected from the lesson menu 

to assist instructors in the construction of lessons and 

sequences. The create function allows an instructor to 

create a new lesson and insert the created lesson within the 

lesson sequence at the position of his/her choice. Each 

lesson is created as an individual object, which contains a 

set of attributes or slots. The topic slot allows the 

instructor to indicate the topic(s) that are covered by the 

lesson. Slots are provided which specify information 

concerning the number of objects to appear in the starting 

scenario and the capabilities these objects should have. 

Each lesson also contains a slot which permits the 

instructor to specify whether or not problems should exist 

between the objects at the start of a student's session 

which covers the lesson. The system prompts the instructor 

for the values of these attributes and fills the slots 

accordingly. 

The lesson menu provides three functions for use on 

existing lessons. The show option permits an instructor to 

view a lesson and verify the values assigned to the 

attributes. If an instructor feels that a lesson's 

specifications should be modified, the edit option provides 

the ability to change any values specified. The delete 
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utility allows the deletion of a lesson from the lesson 

sequence. These functions must be performed on lessons 

existing within the lesson sequence and the system will 

notify the user of attempts to perform these functions on 

non-existing lessons. 
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When the authoring process is exited, the tutor's main 

menu reappears, permitting a student to initiate a session 

with the system. The implementation of the tutor module's 

actions at this stage is discussed next. 

The Initialization of a Session 

When a session is initialized by a student, the tutor 

prompts for information regarding the last lesson from which 

the student received instruction. This knowledge is used by 

the tutor to determine which lesson in the lesson sequence 

will be referenced for the student's current session. The 

specifications of the current lesson are consulted and 

utilized by the tutor to generate the starting scenario to 

appear in the simulation. 

The calculations for generating the directives 

necessary for creating a scenario were divided into two 

classes. One class handled calculations for creating 

scenarios with problems existing between the planes 

appearing on the radar scope. The second class determined 

directives which placed planes on the scope with no problems 

present at the start of the session. Each lesson specifies 
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if the planes appearing will have mixed abilities in speeds 

and if they will appear at different altitudes initially. 

This information is utilized to generate the student's 

initial scenario. As each plane is created, a scenario file 

is updated which will be loaded by the simulation when the 

scenario has been generated completely. 

For the generation of scenarios in which there are no 

current problems and the planes appear at different 

altitudes, the system will randomly generate altitudes for 

each plane, with enough vertical separation to meet 

separation standards. Logical values for the coordinates, 

headings, and speeds are then generated at random for each 

plane. The calculations become more involved, however, to 

create a scenario with no existing problems, when the planes 

are to appear at the same altitude. First, the system 

randomly generates a logical altitude to place all planes. 

The system must then place and head the planes in a manner 

producing no intersections amongst them. This was 

accomplished by dividing the scope into quadrants. 

Coordinates on the scope were generated at random for each 

plane and the corresponding quadrant was determined. The 

heading for the plane was then randomly generated from a 

range of angles, dependent on the quadrant selected, which 

would head the plane on a path radiating outward from the 

center of the scope. In the generation of coordinates and 

altitudes, precautions were taken to prevent placing more 
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than one plane at the same location. 

The calculations producing scenarios which contain 

problems between the planes initially are performed in a 

manner similar to the approach above. These calculations 

ensured that at least one problem would be initially present 

between two planes. For scenarios in which the planes are 

to appear at the sa~e altitude, an altitude was generated at 

random as described before. Next, logical coordinates for 

two planes would be generated at random. The headings of 

these planes would then be calculated such that the planes 

will be heading towards each other when the simulation 

begins. In the case in which different altitudes will be 

used, the same type of calculations for the coordinates and 

headings will be performed to head two planes towards each 

other, but their altitudes will not differ by an amount 

which meets the vertical separation standards. 

Once the initial scenario has been created and stored 

into a file, the system initiates the session. The 

simulation references the scenario file and displays the 

planes on the scope accordingly. The clock is then started 

and the simulation proceeds to update the status of the 

planes as time passes. The tutor is now ready to make 

decisions concerning when to challenge the participating 

student. 
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Challenging the student 

If the student is performing well during a session, 

the tutor needs to add to the simulation to make it more 

challenging. Implementation of this feature required 

simulating data which would be provided by a student model. 

This was accomplished by providing the user with a student 

model window which allowed the input of student model 

information. 

Each lesson created contains a slot which holds the 

name of a function to be called by _the system when the 

student needs to be challenged during that lesson's 

coverage. Whenever the simulated student data indicated 

good performance, the tutor referenced the current lesson to 

determine what function was listed in this slot. Any 

function listed had to have been defined and available for 

the system to call. The blackboard inferencing mechanism of 

ART was used for the dynamic monitoring of a student's 

performance and modification .of the simulation. At the 

instant the simulated student data indicated the student 

needed to be challenged, this "fact" was posted on the 

blackboard which triggered the rules governing the on-line 

task generation scheme. This process was nearly 

instantaneous which provided a timely manner of updating the 

simulation. 

The function defined for implementation by this system 

added planes to a currently running simulation. In Air 



Traffic Control, the increase in traffic increases the 

difficulty of maintaining separation standards between 

aircraft. Each time the simulated student data imply the 

student should be challenged, an aircraft is added to the 

simulation. The coordinates, headings, etc., for each 

aircraft are generated in manners similar to those 

calculations used to generate startup scenarios. 

-
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CHAPTER 5 

CONCLUSION 

This document has described the differences between 

Intelligent Simulation Training Systems (ISTS) and 

Intelligent Tutoring Systems (ITS). The role of a tutor 

module within ISTS has also been described and the design 

and implementation of simulation-adaptation for the 

environment of Air Traffic Control has been recounted. This 

chapter discusses the results and implications of this 

investigation, and provides suggestions for further 

research. 

Results 

The approach taken to perform simulation-adaptation 

proved to be effective by the resulting system. Air Traffic 

Control is carefully regulated and strict guidelines 

govern how controllers are instructed. The subject matter 

is taught in a well organized sequence which lends itself 

well to the methodology developed by this thesis using 

lessons and lesson sequences·. 

Several lessons were constructed and initiated to test 

the off-line scenario generation. The scenarios which were 

generated and displayed by the simulation reflected the 

specifications of the lessons. The system was also tested 
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for variability in which the same lesson was repeatedly 

initiated and the resulting scenarios generated were 

compared. Each scenario met the specifications of the 

lesson, but the arrangement of the objects were different in 

each. This illustrates the potential of utilizing a lesson 

sequence to teach a domain in a well structured manner, 

along with the ability to generate various and new tasks 

each time a lesson is initiated. 

For the implementation of the on-line simulation

adaptation method, · the use of ART to dynamically affect the 

simulation was beneficial. This is due to the blackboard 

architecture utilized by ART. The process of detecting 

student performance changes and modifying the simulation 

accordingly was accomplished in a timely manner. 

The system developed contains portions which are 

domain specific and portions which are generic. Generic 

systems are systems which may be used in any simulation

based training environment. The authoring process 

implemented may be used for any domain. Each lesson 

contains a series of slots which are given values by an 

instructor. The slots specifying the topic, the number of 

objects, the abilities in speeds and the functions to be 

called for challenging a student, all can be utilized for 

any domain concerned with the manipulation of objects in a 

time and space domain. 
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The tutorial rules developed which make decisions 

based on the student's past and present performance can be 

applied to similar domains and are not restricted to Air 

Traffic Control. Also, the technique in which the tutor 

retrieves the specifications of the lesson for use is again 

not restricted to the domain. The generation of the 

directives which drive a domain specific simulation are, 

however, restricted .to the domain. If this configurer of 

scenarios is separated from, but under the control of the 

tutor module, the possibility of a generic tutor is 

apparent. 

Summary 

In the introduction of this document, the need for 

individualized tutoring within Intelligent Tutoring Systems 

was stressed. This was the underlying approach taken for 

the development of techniques to perform simulation

adaptation for a~ Intelligent Simulation Training System. 

The utilization of expert system techniques for the 

implementation of these methods was somewhat limited by the 

lack of student information which should be provided by a 

student model. The system developed did, however, elucidate 

the methods proposed. 

suggestions for Future Research 

The system developed by this investigation may be 

expanded and examined in various ways. Techniques were 
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developed to create starting scenarios for the topics of 

handoffs and the maintenance of separation standards. The 

system could be expanded to manage the creation of scenarios 

for other topics in Air Traffic Control. Also, the current 

system could be investigated under various domains involving 

skills which focus on the ability to understand the time and 

space relationships of objects. This type of exploration 

would distinguish the generic portions of the system. 

The complete design of a tutor module for an 

Intelligent Simulation Training System was discussed in 

Chapter 3. The design and implementation of the features 

not covered by this investigation would contribute to the 

effectiveness of a tutor module and is also suggested for 

future research. 
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