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ABSTRACT 

This research report deals with one system in a 

Computer Aided Instruction package in the Dynamic Systems 

and Control Theory fields for college undergraduate 

students. It uses the computer to numerically solve the 

two degree of freedom equations of motion for a vehicle 

suspension system. Numerical solutions to the system 

differential equations are used to drive an animated 

display of the vehicle's motion (vertical displacement and 

rotation about the center of gravity) on the video display 

terminal. 
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INTRODUCTION 

The Computer Engineering Department is developing a 

set of software programs to be used for Computer Aided 

Instruction in the control theory and dynamic systems 

analysis fields. This research report is a software 

program in the dynamic systems analysis field. This 

program describes a mechanical system consisting of an 

automobile suspension system. Other projects in the 

Computer Aided Instruction package include a two tank fluid 

system and a pendulum on a cart mechanical system. 

The software programs are designed to run on an 

IBM AT computer equipped with graphics hardware. The 

software design goals were to use a high-level design 

language and an off-the-shelf software graphics package to 

perform the animation. The TURBO PASCAL language was 

chosen as the design language. A high-level language was 

chosen over the IBM assembly language so that other 

students could design future systems more easily. It was 

assumed that more students know a high-level design 

language than know the IBM assembly language. 

Dynamic systems qnalysis of a vehicle suspension 

system is intended to provide a visual representation of 

the effects of initial conditions, external loading and 
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choice of system parameters on the motion of a stationary 

automobile. Computer graphics are used to perform an 

animation of the system as the system equations are solved. 

A student can define the automobile with an initial 

displacement and an initial angle and then watch the 

automobile movement as it reaches steady state. Plots can 

be generated to show how the system reached steady state. 

Chapter 1 defines the problem statement. Chapter 2 

discusses the different numerical methods tested and the 

method for algorithm verification. Chapter 3 discusses 

different graphics packages that were investigated along 

with the animation method selected. Chapter 4 discusses 

the various ways the animation process was optimized. A 

sample simulation is discussed in Chapter 5. 

Software listings are contained in Appendix 1 and 

Appendix 2. A user's manual and sample output are 

contained in Appendix 3. 



CHAPTER I 

PROBLEM DESCRIPTION 

The design for this research report consists of three 

stages. The first stage involves drawing the free body 

diagram of the automobile and defining the system 

equations. The next stage in the design is the use of a 

numerical analysis method to solve the system equations. 

The third step consists of taking the output from the 

numerical analysis and driving the computer graphics 

animation. 

System Model 

Equations were defined to describe the motion of an 

automobile resting on the road with no horizontal motion. 

The automobile has two degrees of freedom. There is 

movement in the vertical direction and movement about the 

center of gravity. The free body diagram in Figure 1 

defines the forces acting on the front and rear of the 

automobile. The equations are defined assuming small 

rotation TH(t). The following definitions apply throughout 

this paper: 

TH(t) 

X(t) 

Angular Rotation Of Vehicle (radians) 

Vertical Displacement of Vehicle (IN) 
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Fxl External Force on Rear (LBS) 

Fx2 External Force on Front (LBS) 

Kl Spring Constant on Rear of Vehicle (LBS/IN) 

K2 Spring Constant on Front of Vehicle (LBS/IN) 

Bl Damping Constant on Rear Shock (LBS-SEC/IN) 

B2 Damping Constant on Front Shock (LBS-SEC/IN) 

Ll Length of Vehicle from Center to Rear (IN) 

L2 Length of Vehicle from Center to Front (IN) 

M Mass Of Automobile (SLUGS) 

I Moment of Inertia 

The two differential equations are derived by first 

summing the forces in the X direction and then summing the 
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torques about the center of mass. The positive X direction 

is down and the positive TH direction is counter-clockwise. 

Adding the forces in the X direction yields the following 

equation: 

M*X = - fl - f 2 + Fxl + Fx2 · 

where 
• • 

fl= Kl*(X - Ll*TH) + Bl*(X - Ll*TH) 
• • f2 = K2*(X + L2*TH) + B2*(X + L2*TH) 

Adding the torques around the center of mass yields 

the following equation: 

I*TH = -f2*L2 + fl*Ll + Fx2*12 - Fxl*Ll 

where fl and f2 are defined above. After combining like 

terms the two second-order differential equations that 



describe the automobile suspension system are defined as 

follows: 

X = (l/M)*[Fxl + Fx2 - (Bl+ B2)*X - (Kl+ K2)*X -

(B2*L2 - Bl*Ll)*TH - (K2*L2 - Kl*Ll)*TH] 

TH= (l/I)*[Fx2*L2 - Fxl*Ll - (Bl*Ll**2 + B2*L2**2)*TH 

- (Kl*Ll**2 + K2*L2**2)*TH - (B2*L2 - Bl*Ll)*X 

- (K2*L2 - Kl*Ll)*X] 

Solve System Equations 

6 

The next step in the design was using a numerical 

method to solve the two second-order differential equations 

derived in the system Model section. By using a numerical 

analysis method an infinite combination of initial 

conditions, external loading, and system parameters can 

be used as inputs and a solution to the equations still 

obtained. The numerical method chosen was the fourth­

order Runge-Kutta algorithm. This algorithm is the most 

widely used algorithm for solving differential equations. 

Animation 

The output from the numerical analysis method is 

used to drive an animation on the video display terminal. 

Output from the numerical analysis can rotate and 

translate the automobile depending on the system 

parameters. A design was required that can use the 



calculated X and TH values from the numerical method to 

accuratly redraw the automobile relatively fast. 

7 



CHAPTER II 

NUMERICAL SOLUTION OF SYSTEM EQUATIONS 

The fourth-order Runge-Kutta algorithm was chosen as 

the numerical analysis method. This algorithm was chosen 

because it is the most widely accepted algorithm used for 

solving differential equations. Two different fourth-order 

Runge-Kutta methods were attempted. The first method tried 

is known as the classical fourth-order Runge-Kutta method. 

The second fourth-order algorithm tried is known as the 

Runge-Kutta-Gill algorithm. 

The Runge-Kutta algorithms are used to solve first­

order differential equations or sets of first-order 

differential equations. The two differential equations 

defined in the problem description section are both second­

order. Therefore, a set of first-order differential 

equations must be defined before the Runge-Kutta algorithm 

can be applied. The two second-order equations were 

converted to four first-order differential equations. 

A new state variable, called Zl, was defined and set 

equal to x. A second state variable, called Z2, was also 

defined and equated to the first derivative of Zl. The two 

equations were defined as follows: 

8 
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Zl = X 

Z2 = Zl = X 

The desired two first-order differential equations 

were obtained by taking the derivative of both Zl and Z2. 

These two first-order equations resulted from the one 

second-order equation defining X. The resulting two first­

order equations were defined as follows: 

Zl = X = Z2 

Z2 = Zl = X 

= (l/M)*[Fxl + Fx2 - (Bl+ B2)*Z2 - (Kl+ K2)*Z3 

- (B2*L2 - Bl*Ll)*Z4 - (K2*L2 - Kl*Ll)*Z3] 

In a similiar manner the new state variables Z3 and 

Z4 were derived from the one second-order equation defining 

theta (TH). The resulting four first-order differential 

equations that were used in the Runge-Kutta algorithm are 

defined as follows: 

Zl = Z2 

Z2 = (l/M)*[Fxl + Fx2 - (Bl+ B2)*Z2 - (Kl+ K2)*Z3 -

(B2*L2 - Bl*Ll)*Z4 - (K2*L2 - Kl*Ll)*Z3) 

Z3 = Z4 

Z4 = (l/I)*[Fx2*L2 - Fxl*Ll - (Bl*Ll**2 + B2*L2**2)*Z4 

- (Kl*Ll**2 + K2*L2**2)*Z3 - (B2*L2 - Bl*Ll)*Z2 

- (K2*L2 - Kl*Ll)*Zl) 
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Classical Runge-Kutta Algorithm 

As mentioned previously two different fourth-order 

Runge-Kutta algorithms were tried. The first method was 

the classical Runge-Kutta algorithm. This fourth-order 

algorithm defines a new slope as the sum of the old slope 

and a weighted sum of four new intermediate slopes. The 

intermediate slope values were defined as Kl#, K2#, K3# and 

K4# where # is the associated state variable Zl, Z2, Z3 or 

Z4. The classical fourth-order Runge-Kutta algorithm for 

the Zl state variable is defined as follows: 

KlZl = Z2[i] 

K2Zl = Z2(i] + 0.5*H*KlZ2 

K3Zl = Z2[i] + 0.5*H*K2Z2 

K4Zl = Z2[i] + H*K3Z2 

Zl(i + l] = Zl(i] + (H/6)*[K1Zl + 0.5*K2Zl + 

0.5*K3Zl + K4Zl] 

In the above, H is defined as the step size. This 

algorithm was expanded to generate similiar equations for 

the three other state variables. Refer to Appendix 1 for 

the PASCAL program written to test the classical fourth­

order Runge-Kutta algorithm. 

This algorithm was tested using a step size of both 

H = 0.001 and H = 0.01. There was no difference in output 

·between the different step sizes therefore, a step size 

of H = 0.01 was used in the final design. 
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Algorithm Verification 

An extensive amount of time was spent to assure that 

the algorithm solved the set of differential equations 

correctly. Two different methods were used to verify the 

results. The first method consisted of generating a TUTSIM 

(APPLIED i 1985) model to simulate the equations. TUTSIM 

is a simulation language that can be used to solve systems 

described by differential equations or sets of differential 

equations. The TUTSIM model is contained in Figure 2. The 

second method consisted of assigning a set of known 

parameters and initial conditions and solving the 

differential equations. This equation was then used to 

generate the analytical solution. The output from the 

analytical solution was compared to the output generated by 

the Runge-Kutta algorithm for both the Zl and Z2 state 

variables. The results are contained in Table 1 and Table 

2 respectively. The output consists of the time value (H), 

the two state variables of interest Zl and Z2, the 

analytical solution (re) and the difference (dif) between 

the state variable, Zl or Z2, and the analytical solution 

(re). It was shown that for the compared points the 

difference was near zero. For the example contained in 

Appendix 1 the following values were assigned: 



Model Fila: car.silll 
Da~e: 6 I 23 I l986 
Time: lo : 29 
Ti:liinq: 0.0100000 ,DELTA 
PlotBlocks and Scales: 
Format: 

SlockNo, Plot-MINilllWZl, 
Hotz: o 0.0000 

Yl: 33 -5.0000 
Y2: 32 -5. 0000 
YJ: 
Y4: 

0.0000 
0.0000 
0.0000 
0.0000 

400.0000 
400.0000 

50.0000 
50.0000 

7.7720 
lS.000!+03 

7.7720 
0.0000 
s.oooo 

lS.000!+03 
0.0000 
0.0000 

l CON 
2 CON 
3 CON 
4 CON 
5 CON 
6 CON 
7 CON 
8 CON 
g CON 

lO CON 
ll SUM 
l2 SUM 
l3 MOL 
l4 MOL 
lS MOL 
16 MOL 
17 MOL 
lS MOL 
l9 MOL 
20 MOL 
21 MOL 
22 MOL 
23 StlM 
24 StlM 
25 StlM 
26 StlM 
30 SOM 

31 Aft 
32 INT 
33 INT 
34 MOL 
35 MOL 
36 MOL 
37 MOL 
38 StlM 

39 ATT 
40 INT 
4l INT 
42 MOL 
43 MOL 
44 MOL 
45 MOL 
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4.0000 ,RANGE 

Plot-MAX.imum: 
4.0000 
3.0000 
5.0000 

Comm ant 
Tua 
x 
XlOOT 

;FXl 
:FX2 
;Bl 
;B2 
:Xl 
;IQ 
:Ll 
iL2 
;M 
;I 

3 4 ;Bl+B2 
s 6 :Xl+K2 
4 8 ;B2*L2 
3 1 ;Bl*Ll 
6 a ;C*Ll 
s 7 ;Kl*Ll 
2 a ;?'X2*L2 
l 7 ;FXl.•Ll 
1 l4 ;Bl*Ll**2 
a l3 ;B2*L2**2 
7 16 il0.*Ll**2 
8 lS ;X2*L2**2 

l3 -l4 ;B2*L2-Bl*U 
lS •l6 :c•u-n•u 
19 20 ;Bl*Ll**2+B2*L2**2 
2l. 22 :n•u••2+ta•L2••2 

l 2 -34 
•35 -36 -37 

30 
31 ;Xl.DO'l' 
32 ;X 
ll 32 ; (Bl+B2) •XlDOT 
l2 33 ; (Xl+K2) *X 
23 40 ;(B2*L2-Sl*Ll)*TBE20 
24 4l ; (1U*L2-Kl*U) *THE 
l7 -is -42 

-43 -44 -45 
38 
39 ;TR!.lDOT 
40 ;THE 
23 40 ;(Bl*Ll**2+B2*L2**2) 
26 4l ; (Xl.*Ll*•2+1U*L2*•2) 
23 32 ;(B2*L2-Bl*Ll}*XlOOT 
24 33 ; (X2•L2-In*Ll} *X 

Figure 2. TUTS IM Model 
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TABLE l 

COMPARISON OF CLASSICAL RUNGE-KUTTA 
ALGORITHM AND ANALYTICAL SOLUTION (ZlJ 

H Zl Re Dif 

o.oo 5.0000 5.0000 0.0000 
0.10 2.6400 2.6400 0.0000 
0.20 -2.2122 -2.2122 0.0000 
0.30 -4.9761 -4.9761 0.0000 
0.40 -3.0424 -3.0424 0.0000 a.so l.7633 1.7633 0.0000 
0.60 4.9044 4.9044 0.0000 
0.70 3.4157 3.4157 0.0000 a.so -l.2975 -l.2975 0.0000 
0.90 -4.7859 -4.7859 0.0000 
l.00 -3.7563 -3.7563 0.0000 
l.10 0.8193 0.8193 0.0000 
l.20 4.6214 4.6214 0.0000 
l.30 4.0609 4.0608 0.0000 
l.40 -0.3332 -0.3333 0.0001 
l.50 -4.4127 -4.4128 0.0000 
l.60 -4.3266 -4.3265 0.0000 
l.70 -0.1561 -0.1560 0.0001 
l.80 4.1618 4.1618 0.0001 
l.90 4.5508 4.5508 0.0000 
2.00 0.6439 0.6438 0.0001 
2.10 -3.8709 -3.8710 0.0001 
2.20 -4.7315 -4.7315 0.0000 
2.30 -l.1255 -l.1254 0.0001 
2.40 3.5430 3.5431 0.0001 
2.50 4.8669 4.8668 0.0000 
2.60 l.5963 l.5962 0.0001 
2.70 -3.1812 -3.1813 0.0001 
2.80 -4.9556 -4.9556 0.0000 
2.90 -2.0518 -2.0517 0.0001 
3.00 2.7889 2.7890 0.0001 
3.10 4.9968 4.9969 0.0000 
3.20 2.4877 2.4876 0.0001 
3.30 -2-. 3698 -2.3700 0.0001 
3.40 -4.9902 -4.9903 0.0000 
3.50 -2.8998 -2.8997 0.0001 
3.60 l.9281 l.9283 0.0002 
3.70 4.9358 4.9359 0.0000 
3.80 3.2841 3.2839 0.0001 
3.90 -l.4679 -l.4681 0.0002 
4.00 -4.8342 -4.8342 0.0001 
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TABLE 2 

COMPARISON OF CLASSICAL RUNGE-KOTTA 
ALGORITHM AND ANALYTICAL SOLUTION (Z2] 

H Z2 Re Dif 

a.co 0.0000 0.0000 0.0000 
0.10 -43.0808 -43.0808 0.0000 
0.20 -45.4927 -45.4926 0.0000 
0.30 -4.9588 -4.9587 0.0001 
0.40 40.2562 40.2563 0.0001 
a.so 47.4688 47.4687 0.0001 
0.60 9.8701 9.8699 0.0003 
0.70 -37.0461 -37.0463 0.0002 
0.80 -48.9902 -48.9902 0.0001 
0.90 -14.6869 -14.6865 0.0004 
l.00 33.4811 33.4814 0.0004 
l.lO 50.0424 50.0424 0.0000 
l.20 19.3630 19.3625 o.ooos 
l.30 -29.5954 -29.5959 o.ooos 
l.40 -50.6153 -50.6153 0.0000 
l.SO -23.8536 -23.8531 0.0006 
l.60 25.4262 25.4269 0.0007 
l.70 50.7033 50.7034 0.0001 
l.80 28.1158 28.1151 0.0006 
l.90 -21.0135 -21.0143 0.0008 
2.00 -50.3057 -50.3059 0.0002 
2.10 -32.1086 -32.1079 0.0007 
2.20 16.3995 16.4004 0.0010 
2.30 49.4262 49.4265 0.0003 
2.40 35.7939 35.7932 0.0007 
2.50 -ll.6284 -ll.6295 O.OOll 
2.60 -48.0733 -48.0737 0.0005 
2.70 -39.1363 -39.1356 0.0007 
2.80 6.7459 6.7472 0.0013 
2.90 46.2599 46.2605 0.0006 
3.00 42.1038 42.1031 0.0007 
J.lO -l.7989 -l.8003 0.0014 
J.20 -44.0034 -44.0042 0.0008 
3.30 -44.6681 -44.6675 0.0006 
3.40 -3.1655 -3.1639 0.0015 
3.50 41.3254 41.3264 0.0010 
3.60 46.8044 46.8039 0.0005 
3.70 8.0994 8.0978 0.0016 
3.80 -38.2516 -38.2528 0.0012 
3.90 -48.4925 -48.4921 0.0004 
4.00 -12.9558 -12.9541 0.0017 



Fxl = Fx2 = o 

Kl = K2 = 400 

Zl[O] = 5 

Bl = B2 = 0 

Ll = L2 = 50 

Z2[0] = Z3[0] = Z4[0] =O 

With the above parameters it can be shown that 

X(t) = 5 *COS [(Kl+ K2)/M] * t 

15 

is a solution to the second-order differential equation for 

X with the given initial conditions. 

The above equation was used to generate the 

analytical values for the Zl state variable that was then 

compared to the Zl output from the classical Runge-Kutta 

algorithm. Tc compare the output for the Z2 state variable 

we need the first derivative cf the above equation. The 

first derivative results in the following equation: 

X(t) = - 5 * [(Kl+ K2)/M] *SIN [(Kl+ K2)/M] * t 

This equation was used to generate the analytical 

values for the Z2 state variable that were compared to the 

Z2 values generated by the classical Runge-Kutta algorithm. 

The above choice cf parameters and initial conditions 

were selected because they describe a system that is 

oscillatory and will never achieve steady state. It was 

felt that after an extended period of time, if the 

analytical solution still agreed with the output of the 

Runge-Kutta algorithm then the algorithm was correctly 

solving the set of differential equations. 
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The second method for the algorithm verification 

consisted of generating a TUTSIM simulation program and 

comparing the output of the TUTSIM simulation to the output 

of the Runge-Kutta algorithm. The two differential 

equations defined in the problem description section were 

used to generate a TUTSIM block diagram. The block diagram 

was converted to the TUTSIM model contained in Figure 2. 

The TUTSIM simulation output in Table 3 was generated using 

the TUTSIM program in Figure 2. The program used the same 

set of parameters and the same set of initial conditions 

that were used in the analytical solution. The output of 

the TUTSIM simulation was similiar to the output of the 

Runge-Kutta algorithm. The difference was as much as .04. 

This means that the TUTSIM output was also different from 

the analytical solution by as much as .04. The outputs 

were reasonably close and the TUTSIM output was considered 

additional verification of the classical Runge-Kutta 

solutions. The TUTSIM model was run using a step size of 

both H = 0.001 and H = 0.01. The TUTSIM output is included 

in Table 3. 

Runge-Kutta-Gill Algorithm 

The Runge-Kutta-Gill algorithm was the second 

numerical method tried. This method is similiar to the 

.classical approach with the differences being the weight 

factors assigned to the intermediate slopes. The algorithm 



TABLE 3 

TUTSIM OUTPUT 
Modal Fila: car.Sim 
Cata: 5 I 23 / 1986 
Time: lS 30 
Timinq: 0.0100000 ,O~A 
PlotBlocks and Scales: 
ror:nat: 

Block.No, Plot-MINimum, 
Horz: o o. 0000 

. 
I 4.0000 

Plo'C-MAXimwn.; 
4.0000 

,RANGE 

Comment 
Time 

Yl: 33 -5.0000 5.0000 
5.0000 

; x 
Y2: 32 -5.0000 
YJ: 
Y4: 

0.0000 
0.1000000 
0.2000000 
0.3000000 
0.4000000 
o.soooooo 
0.6000000 
0.7000000 
0.8000000 
0.8999990 
0.9999990 
1.1000 
l.2000 
l.3000 
l.4000 
l.5000 
l.6000 
l.7000 
l.8000 
l.9000 
2.0000 
2.1000 
2.2000 
2.JOOO 
2.4000 
2.5000 
2.6000 
2.1000 
2.aooo 
2.9000 
3.0000 
J.lOOO 
J.2000 
J.JOOO 
J.4000 
J.5000 
3.6000 
J.7000 
J.aooo 
J.9000 
4.0000 

5.0000 
2.6379 

-2.2619 
-S.Oll7 
-2.9932 

l.8750 
4.9614 
3.3275 

-l.4741 
-4.8754 
-3.6385 

l.0619 
4.7542 
3.9238 

-0.6414040 
-4.5987 
-4.l8l4 
0.2l560l0 
4.4098 
4.4094 
0.2124470 

-4.1890 
-4.6060 
-0.6396580 

3.9376 
4.7698 
l.0629 

-3.6576 
-4.8997 
-l.4793 

3.3508 
4.9945 
l. 8856 

-3.0l94 
-5.0536 
-2. 2791 

2.6658 
5.0764 
2.6569 

-2.2925 
-5.0628 

0.0000 
-43.4192 
-45.5661 
-4.3478 
4l.0306 
47.3839 

8.6442 
-38.3432 
-48.8640 
-ll.8855 

35.3759 
49.9954 
l7.04ll. 

-32.1494 
-50.7692 
-21.0809 

28.6866 
51.1793 
24.9757 

-25. 0120 
-51.2222 
-28.6974 

2l..l516 
50.8971 
32.2187 

-l7.l330 
-~0.2055 
-35.5142 

12.9847 
49.l520 
JS.5597 
-8.7365 

-47.7436 
-41. 3331 

4.4185 
45.9897 
43.8139 
-0.0617771 

-43.9023 
-45.9837 
-4.3025 

. 
I 

Xl.OOT 
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used to find the state variable Zl was defined as follows: 

KlZl = Z2[i] 

K2Zl = Z2[i] + 0.5*H*KlZ2 

K3Zl = Z2[i] + c3*H*KlZ2 + cl*H*K2Z2 

K4Zl = Z2[i] - (1 I SQRT(2))*H*K2Z2 + c2*H*K3Z2 

Zl[i + l] = Zl[i] + (H/6)*[K1Zl + 2*cl*K2Zl + 

where 

cl= 1 - (1 / SQRT(2)) 

c2 = 1 + (1 / SQRT(2)) 

c3 = - 0.5 + (1 / SQRT(2)) 

2*c2*K3Zl + K4Zl] 

The PASCAL program used to run the Runge-Kutta-Gill 

algorithm is contained in Appendix 1. The same 

verification methods used to verify the classical 

Runge-Kutta algorithm were used to verify the Runge-Kutta­

Gill algorithm. The results were similiar to the 

results obtained by the classical method and are contained 

in tables 4 and 5. Therefore, for reasons that are 

discussed in a later section, the classical Runge-Kutta 

algorithm was decided upon as the algorithm to solve the 

set of four first-order differential equations. 
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TABLE 4 

COMPARISON OF RUNGE-KUTTA-GILL 
ALGORITHM AND ANALYTICAL SOLUTION [Zl] 

H Zl Re Dif 

a.co 5.0000 5.0000 0.0000 
0.10 2.6400 2.6400 0.0000 
0.20 -2.2122 -2.2122 0.0000 
0.30 -4.9761 -4.9761 0.0000 
0.40 -3.0424 -3.0424 0.0000 
a.so l.7633 l.7633 0.0000 
0.60 4.9044 4.9044 0.0000 
0.70 3.4157 3.4157 0.0000 
a.so -1.2975 -l.2975 0.0000 
0.90 -4.7859 -4.7859 0.0000 
l.00 -3.7563 -3.7563 0.0000 
l.10 0.8193 0.8193 0.0000 
1.20 4.6214 4.6214 0.0000 
l.30 4.0609 4.0608 0.0000 
l.40 -0.3332 -0.3333 0.0001 
l.SO -4.4127 -4.4128 0.0000 
l.60 -4.3266 -4.3265 0.0000 
l.70 -0.1561 -0.1560 0.0001 
l.80 4.1618 4.1618 0.0001 
l.90 4.5508 4.5508 0.0000 
2.00 0.6439 0.6438 0.0001 
2.10 -3.8709 -3.8710 0.0001 
2.20 -4.7315 -4.7315 0.0000 
2.30 -1.1255 -l.1254 0.0001 
2.40 3.5430 3.5431 0.0001 
2.50 4.8669 4.8668 0.0000 
2.60 1.5963 l.5962 0.0001 
2.70 -3.1812 -3.1813 0.0001 
2.80 -4.9556 -4.9556 0.0000 
2.90 -2.0518 -2.0517 0.0001 
3.00 2.7889 2.7890 0.0001 
3.10 4.9968 4.9969 0.0000 
3.20 2. 4877. 2.4876 0.0001 
3.30 -2.3698 -2.3700 0.0001 
3.40 -4.9902 -4.9903 0.0000 
3.50 -2.8998 -2.8997 0.0001 
3.60 l.9281 l.9283 0.0002 
3.70 4.9358 4.9359 0.0000 
3.80 3.2841 3.2839 0.0001 
3.90 -l.4679 -l.4681 0.0002 
4.00 -4.8342 -4.8342 0.0001 
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TABLE 5 

COMPARISON OF RUNGE-KUTTA-GILL 
ALGORITHM AND ANALYTICAL SOLUTION [Z2] 

H Z2 Re Dif 

o.oo 0.0000 0.0000 0.0000 
0.10 -43.0808 -43.0808 0.0000 
0.20 -45.4927 -45.4926 0.0000 
0.30 -4.9588 -4.9587 0.0001 
0.40 40.2562 40.2563 0.0001 
a.so 47.4688 47.4687 0.0001 
0.60 9.8701 9.8699 0.0003 
0.70 -37.0461 -37.0463 0.0002 
0.80 -48.9902 -48.9902 0.0001 
0.90 -14.6869 -14.6865 0.0004 
l.00 33.4811 33.4814 0.0004 
l.10 50.0424 50.0424 0.0000 
l.20 19.3630 19.3625 0.0005 
l.30 -29.5954 -29.5959 0.0005 
l.40 -50.6153 -50.6153 0.0000 
l.50 -23.8536 -23.8531 0.0006 
l.60 25.4262 25.4269 0.0007 
l.70 50.7033 50.7034 0.0001 
l.80 28.1158 28.1151 0.0006 
l.90 -21.0135 -21.0143 0.0008 
2.00 -50.3057 -50.3059 0.0002 
2.10 -32.1086 -32.1079 0.0007 
2.20 16.3995 16.4004 0.0010 
2.30 49.4262 . 49. 4265 0.0003 
2.40 35.7939 35.7932 0.0007 
2.50 -ll.6284 -ll.6295 0.0011 
2.60 -48.0733 -48.0737 0.0005 
2.70 -39.1363 -39.1356 0.0007 
2.80 6.7459 6.7472 0.0013 
2.90 46.2599 46.2605 0.0006 
3.00 42.1038 42.1031 0.0007 
3.10 -1.7989 -1.8003 0 .. 0014 
3.20 -44.0034 -44.0042 0.0008 
3.30 -44.6681 -44.6675 0.0006 
3.40 -3.1655 -3.1639 0.0015 
3.50 41.3254 41.3264 0.0010 
3.60 46.8044 46.8039 0.0005 
3.70 8.0994 8.0978 0.0016 
3.80 -38.2516 -38.2528 0.0012 
3.90 -48.4925 -48.4921 0.0004 
4.00 -12.9558 -12.9541 0.0017 



CHAPTER III 

COMPUTER GRAPHICS 

Three different graphics packages were investigated 

before deciding on the TURBO TOOLBOX graphics package. The 

three packages were LENIPEN, TURBO PASCAL and the TURBO 

PASCAL TOOLBOX. 

LENIPEN 

The LENIPEN package consists of software that allows 

drawing in a free hand style of pictures on the video 

terminal~ The LENIPEN package was designed to interface 

directly with the BASIC software package purchased with the 

IBM AT. The LENIPEN package could save the graphic screen 

in a binary file that could be redisplayed using standard 

BASIC commands (BSAVE, BLOAD). The research was 

intended to be designed using the TURBO PASCAL language. 

In order to use LENIPEN with the TURBO PASCAL language, a 

program to read and display the binary file stored using 

BASIC was required. This was considered a minor task. 

Therefore, the LENIPEN package was investigated further. 

The automobile animation design required the ability 

to redisplay an automobile depending on the X and TH values 

calculated by the Runge-Kutta algorithm. To perform this 

21 
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animation the current automobile position must be known and 

the new position must be calculated. The LENIPEN package 

easily allowed whole screens or "windows" to be saved as 

binary files. The original intent for LENIPEN was to draw 

the car in different positions and then save the various 

displays to different binary files. This process would 

only allow a discrete number of new car positions to be 

drawn. This was unacceptable for the chosen design. A 

possible alternative for performing the automobile 

animation using LENIPEN was to determine on a pixel-by­

pixel basis where every point was within the binary file 

and then change the binary value to either draw or undraw 

the automobile. The amount of time and effort involved in 

this task was considered too extensive; therefore, an 

alternate approach was desired. 

The LENIPEN software also contained a package called 

LENIMATION. This package allowed the user to use the 

screen for animation. This was similiar to what was 

required by this design. Therefore, the LENIMATION package 

was investigated. It was determined that the LENIMATION 

package would take a finite number of user drawn screens 

and display them at an interval defined by the user. The 

set of screens was repeated as many times as desired. 

This method would be acceptable for animating a bird in 

flight where the bird was required to be shown in only a 
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finite number of positions and then repeated. A flying 

bird could be animated by displaying the bird with 

approximately six different wing and body positions. These 

six screens would be displayed in sequence an infinite 

number of times. In the vehicle suspension system the 

number of different automobile positions was infinite. 

Therefore, the entire LENIPEN package was no longer 

considered a viable option for this design. 

TURBO PASCAL Graphics Commands 

The next approach was to use the graphics 

capabilities of the TURBO PASCAL language. The package 

consists of commands to place the screen in graphics mode, 

draw line commands, and draw point commands. These 

routines, along with a combination of assembly language 

routines, could have been used in the design. It was 

decided not to use this method because a design goal of 

this research report was to use a high-level design 

language and a standard off-the-shelf software graphics 

package that other graduate students could easily adapt to 

future research reports or thesis work. Therefore, the 

TURBO TOOLBOX package was chosen as the graphics software 

for the design. 
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TURBO TOOLBOX Package 

The graphics design goal was to display an automobile 

as accurately and quickly as possible depending on the 

calculated X and TH positions. The automobile was defined 

by nineteen (19) pairs of X-Y points. Figure 3 shows the 

19 X-Y points and their location on the automobile. The 

wheels and inner wheels (hubcaps) were defined by 109 and 

52 pairs of X-Y points respectively. The WHLX, WHLY, HUBX 

and HUBY arrays were the wheel X and Y points and the 

hubcap X and Y points and are defined in the software 

listing contained in Appendix 2. 

Standard TURBO TOOLBOX graphics. routines were used to 

display the headings and borders that are contained on the 

graphics screen. A modified drawline procedure was used to 

draw the lines between the X-Y points. A new X and TH 

value was calculated from the Runge-Kutta algorithm. These 

new values could both rotate and translate the automobile's 

initial position. A capability was needed to perform both 

operations simultaneously and then redisplay the new 

position. The following equations when appled to all 19 

X-Y points would accomplish both functions. 

Pxl = centerx + cos(TH) * (Pxl[O] - centerx) 

- sin(TH) * (Pyl[O] - centery) 

Pyl = centery + X + sin(TH) * (Pxl[O] - centerx) 

+ cos(TH) * (Pyl[O) - centery) 
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Figure 3. 
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X-Y Data Points (19) that Define the Automobile 
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The values centerx and centery were the center point 

of the automobile and the values Pxl[O], Pyl[O] were the 

initial values for the automobile xl, yl point. The 

rotation was about the center of the automobile and was 

performed by adding and/or subtracting the sine and cosine 

values of the new angle TH from the initial points. When 

the angle was equal to zero no rotation was performed which 

was the expected result. The translation was in the 

vertical direction and was accomplished by adding the new 

value X to the original Y value. For the above equations 

the following directions were defined and pertain to the 

graphic display. A positive TH rotated the automobile in a 

counter clockwise direction. A positive X value lowered 

the automobile closer to the road surface. 

Graphics Animation 

The animation was performed by first drawing the 

automobile in RAM memory and then swapping the RAM memory 

into the video display area. The initial automobile was 

drawn using the user defined ititial conditions set on the 

two state variables Zl [X] and Z3 (TH]. The automobile was 

then undrawn by either clearing the RAM memory or by first 

setting the background color to black and then redrawing 

the lines using the previous set of 19 X-Y points. The 

automobile was then displayed in its new position by first 

calculating the 19 new X-Y points using the new X and TH 
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values and then drawing the lines to connect the points. 

The RAM ~emery was agian swapped into the video display 

area. This process was repeated for as long as desired and 

gave the impression of continuous movement. 

The procedure of having the new X and TH values drive 

the animation was one of two methods studied. 

An alternate approach was tried where the X and TH 

data points of the Runge-Kutta algorithm were stored in a 

file until the simulation reached a steady state or N 

number of data points were calculated. The steady state 

condition was assumed when both the old and new X and TH 

values differed by .0001 respectively. N was defined as 

3000 points. This method had its advantages and 

disadvantages over the chosen approach. The advantage of 

this method was a faster animation, because all the X and 

TH points were already calculated and the only overhead in 

the animation process was in the· drawing and undrawing the 

lines that outline the automobile. It was later determined 

that the actual Runge-Kutta algorithm was not a 

significant factor in the animation process. This is left 

for discussion in the next section. 

A disadvantage to this approach was the simulation 

was now a two-step approach, collecting the data 

and then performing the animation. A second 
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disadvantage was in trying to display an oscillating system 

for an extended period of time. In the oscillating system 

the calculation of 3000 data points was time-consuming and 

required the user to wait before the animation could be 

displayed. This was considered unsatisfactory. 

The second disadvantage resulted when the system had 

no damping, Bl = B2 = o. In this situation the system 

would oscillate forever and never reach steady state. The 

chosen number of data points, 3000, allowed the animation 

to run for a long time, but a mechanism was needed to 

allow the animation to run forever. These two 

disadvantages along with determining the math did not 

add a significant amount of overhead resulted in deciding 

upon the first approach for the final design. 

In addition to the software animation, plots were 

desired of all state variables versus time and the phase 

plots Xdot versus X and THdot versus TH. This was 

accomplished using the DRAWAXIS and DRAWPOLYGON procedures 

contained within the TURBO TOOLBOX package. It was a 

matter of supplying the two plotted data points in an array 

to the DRAWPOLYGON procedure. The design defines five 

arrays of 800 points each to store the first 800 calculated 

points for time, Zl, Z2, Z3 and Z4. The two desired plot 

values were used to build an array A that was passed to 

DRAWPOLYGON for plotting. It was decided that 
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800 points was sufficient amount of data to generate plots 

that accurately described the system. 



CHAPTER IV 

SOFTWARE OPTIMIZATION 

The optimum design was having the graphics emulate 

the automobile in real time. This means that if the set of 

parameters chosen would reach steady state in N seconds 

then the graphical display would be at steady state in N 

seconds. This was the design goal. 

The graphics software was designed using two 

different methods. The first method consisted of using the 

math algorithm output for the new X and TH values to 

directly drive the animation process. The second method 

consisted of saving the X and TH data in files and then 

using this data in the animation process after the 

simulation reached steady state or 3000 data points were 

calculated depending on which occurred first. This design 

was considered because it was first believed that the math . 

algorithm was a time-consuming process. It was eventually 

determined that the math algorithm added ·a minimal amount 

of overhead to the animation process. This was determined 

by running the animation with no math algorithm and two 

hard coded values for x. It was noted that this animation 

process took as much time as an animation using the math 
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algorithm. It was determined that a large amount of time 

was spent in the drawing, swapping, undrawing and then 

swapping portion of the animation. Therefore, a 

considerable amount of time went into attempting to 

optimize the graphics portion of the software. 

Math Algorithm Selection 
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As stated previously, two different Runge-Kutta 

algorithms were tested. A comparison of their outputs 

contained in tables 1 and 4 indicate that the algorithms 

have identical outputs. The difference between the two 

algorithms was that the Runge-Kutta-Gill algorithm had 

additional math calculations in the calculation of the K3 

and K4 terms along with the Z[i+l] term. This additional 

math overhead was considered unnecessary considering that 

the outputs were identical. It was for this reason that 

the classical Runge-Kutt.a algorithm was chosen as the 

algorithm to calculate the new X and TH values. 

Modified TURBO TOOLBOX Commands 

The TURBO TOOLBOX commands CLEARSCREEN and COPYSCREEN 

were used in the initial design of the· graphics display. 

The TOOLBOX software was investigated and it was determined 

that the CLEARSCREEN command was a procedure that consisted 

of the TURBO PASCAL FILMEM command. This command will 

write into memory a user-specified value. In the TOOLBOX 
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software the FILMEM command stored zeroes in memory. The 

zeroes, when displayed, will clear the screen. The 

COPYSCREEN command is a procedure that consists of the 

TURBO PASCAL MOVEMEM command. This command moves a block 

of memory from one address to another address. The 

procedure was used to copy data from the RAM memory into 

the video display area. This data was then displayed on 

the screen. The automobile was limited to where it could 

be displayed on the screen. It could never be displayed 

below the road surface. It also could not be lifted above 

a point that was twenty-five (25) inches above its steady 

state position. Therefore, only about one-fourth of the 

screen changed when the car was redrawn. It was decided to 

use the FILMEM and MOVEMEM commands and only clear or copy 

one-fourth of the screen. This was a considerable time 

savings and increased the animation speed considerably. 

The FILMEM command was chosen to clear the memory to undraw 

the car instead of changing the background color to black 

and then using DRAWLINEDIRECT to undraw the car because it 

was determined to be faster. This was determined by using 

both methods to undraw the car using the video display area 

only. 

The DRAWLINE procedure was also investigated. It was 

determined that only a portion of this procedure was 

actually required by the graphics in this project. The 
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additional software was considered overhead and 

unnecessary. Therefore, a portion of the DRAWLINE 

procedure was condensed and placed in the main software 

package. The new procedure was called DRAWLINEDIRECTT and 

was used to draw all the lines outlining the automobile. 

The wheels were first drawn using the DRAWCIRCLE 

procedure. There were two problems when using this 

procedure. The first problem was the time it takes to draw 

a circle using this procedure. Four different circles were 

needed every time the automobile was redrawn. Therefore, 

this procedure added a considerable amount of time to the 

animation process. The second problem was in trying to 

draw the wheels when the top portion should be hidden by a 

fender. The TOOLBOX procedure only allowed a full circle. 

Therefore, a different procedure was needed to draw the 

wheels. A pixel-by-pixel outline of the tire was designed 

and the X-Y points are stored in the WHL, HUB arrays. The 

DP (drawpoint) TOOLBOX procedure was then used to draw the 

four circles. This method was much quicker than the 

DRAWCIRCLE procedure and easily allowed for drawing any 

desired portion of the wheel. The wheels were shown 

disappearing into the fenders by not drawing the points if 

the Y value from the array was less than the points Pyl7 

for the front wheel or Pyl2 for the rear wheel. This was 
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accomplished using the DRAWWHEEL and DRAWHUB procedures in 

the main software body. 

Considerations for Displaying Automobile 

Another consideration in speeding up the animation 

was how often the automobile should be displayed. It was 

determined that the user could visualize a single pixel 

change in the automobiles position. Therefore, the 

automobile was redisplayed only when it was determined that 

it had changed by at least one pixel. The entire 

automobile could not be checked and so two points were 

determined to be the guiding factors for the single pixel 

change. These two points were chosen as the bottom front 

point Pyl9 and the bottom rear point PylO. The initial 

PylO and Pyl9 points were calculated using the initial 

conditions on Zl [X] and Z3 [TH] and stored as OLDPYlO and 

OLDPY19. The math algorithm was then run to generate the 

new X and TH values. These new values were used to 

calculate PylO and Pyl9. The new PylO and Pyl9 values were 

compared to the old values and if the absolute difference 

was greater than or equal to one (1) the automobile was 

redrawn and the new values for PylO and Pyl9 were stored 

for the next comparison. A similiar approach was used to 

ensure that the automobile was never displayed if it was 

above or below a certain value. The bottom points PylO and 

Pyl9 were compared to the value for the road surface. If 
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the values would place the automobile below the road 

surface the car was not redisplayed. The top points Py5 

and Py6 were compared to a point that was twenty five 

pixels above their initial values. The automobile was not 

redisplayed if the values for Py5 or Py6 would place the 

automobile outside this window. 



CHAPTER V 

RESULTS 

An example of the output from this research report is 

contained in this section. This specific example was 

chosen to show the effects of initial conditions on the 

solution to the system equations. The parameter values 

were selected such that the two second-order differential 

equations were non-coupled. This was achieved by selecting 

Bl = B2 = 5, Kl = K2 = 400, and Ll = L2 = 50. With this 

set of parameters the solution for X was not dependent on 

the solution for TH and the solution for TH was not 

· dependent on the solution for x. The Bl = B2 = 5 parameter 

was chosen because the desired output was to achieve steady 

state after at least 700 data points were collected. This 

was desired for better plots. 

The initial conditions were selected on the X [Zl] 

and TH [Z3] values such that the car was displaced 14 

inches closer to the road, X(O) = 14, and with an initial 

angle of 4 degrees, TH(O) = 4/57.3, in the counter­

clockwise direction. The positive X direction is down or 

closer to the road and the positive TH direction is 
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counter-clockwise or the front end is closer to the road. 

The parameter values for this example are contained in 

Figure 4. 

37 

This set of initial conditions on X and TH positions 

the front end of the automobile below the road surface. 

This position cannot be displayed and an error message was 

displayed. The error message is DISPLAY LIMIT EXCEEDED. 

This message was not removed until the automobile was 

within the display limits. The limits were defined as the 

road surface and twenty-five inches above the starting 

center point. The error message was displayed whenever the 

automobile was calculated as being beyond the display 

limits. Sample animation outputs are contained in Figure 5 

and Figure 6. 

The simulation/animation was allowed to run and 

collect at least 700 data points for the plots. The plot 

contained in Figure 7 is X versus TIME and shows X starting 

with an initial condition of X = 14 and eventually reaching 

a steady state value of X = o. A similiar plot of TH 

versus TIME is contained in Figure 9. In Figure 9 the TH 

value starts with an initial condition of TH = 4 and 

eventually reaches a steady state value of TH = O. The 

system exponentially decays in both plots due to the 

damping constants Bl and B2. The plots of Xdot and THdot 

are included as Figure 8 and Figure 10 respectively. Both 
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plots start from initial conditions of zero and both 

eventually reach a steady state of zero. This was expected 

because the initial conditions on Xdot and THdot were zero. 

The phase plots X versus Xdot and TH versus THdot are 

contained in Figure 11 and Figure 12 respectively. Both 

plots spiral into the origin from the associated initial 

condition. This was the expected result for a system that 

achieves a steady state condition of X = O and TH = o when 

starting from non zero initial conditions for X and TH. 

The numerical output in Table 6 is printed and 

displays the first 350 collected data points in H = .1 

increments. 
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This section allows you to change certain variables used 
in the automobile simulation. The following .variables and 
their values are changeable (units are in () ] : 

a·: NO CHANGES REQUIRED 
1: Fxl (force on rear (lbs) (-1500 to 1500])= 
2: Fx2 (force on front(lbs) (-1500 to 1500])= 
3: Bl(dmping cnst rear(lb-sec/in) (O to 500])= 
4: B2(dmping cnst frnt(lb-sec/in) (0 to 500])= 
5: Kl{spring const rear (lb/in) [10 to 1000])= 
6: K2(spring const frnt (lb/in) (10 to 1000])= 
7: Ll (center to rear (in) (10 to 75])= 
8: L2 (center to front (in) (10 to 75])= 
9: M (auto mass (lbs) (1500 to 4000])= 

10: X(O) (x init cond (in) (-25 to 15] )= 
11: XDOT(O) (x dot init cond (in/sec) = 
12: T ( o) (theta init cond (deg) (-4 to 4]) = 
13: THEDOT(O) (theta dot init con) = 
14: CLEAR ALL INITIAL CONDITIONS 

a.co 
o.oo 
5.00 
5.00 

400.00 
400.00 

50.00 
so.co 

3000.00 
14.00 

0.00 
4.00 
a.co 

J (moment of inertia) = 15608.81 

ENTER SELECTION AND RETURN > 

Figure 4. Case 1 Parameter Selection Menu 
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Dyna.Mic SysteMS Analysis ot Vehicle Suspension SysttM 

DISPIAY LIMIT llC!IDID 

TIPIE: 1.11 X: ?.66 THl.lA: 1.81 

Figure 5. Case l Automobile Exceedinq Display Limit 
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Dyna.tic SysteMS Analysis ot Uehicle Suspension SysteM 

TIME: 1.77 X: 1.83 THl.'TA: ·1.51 

Fiqure 6. Case l Automobile 
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10 
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TABLE 6 

CASE l NUMERIC OUTPUT 

SIMULATION HARDCOPY OUTPUT 

Fxl = 0.0 
Kl = 400.0 

Fx2 s 0.0 Bl a S.O B2 ~ S.O 

H 

o.oo 
0.10 
0.20 
0.30 
0.40 
a.so 
0.60 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
l.30 
1.40 
1.50 
l.60 
1.70 
1.80 
l.90 
2.00 
2.10 
2.20 
2.30 
2.40 
2.so 
2.60 
2.70 
2.80 
2.90 
3.00 
3.10 
3.20 
3.30 
3.40 
3.SO 

K2 m 400.0 Ll ~ SO.O 

Zl 

14.00 
7.66 

-4.70 
-11.40 
-7.20 

2.88 
9.19 
6.60 

-1.52 
-7.31 
-5.93 

0.54 
5.75 
5.24 
0.14 

-4.46 
-4.56 
-0.61 

3.40 
3.92 
0.90 

-2.55 
-3.32 
-1.06 

1.87 
2.79 
1.13 

-1.33 
-2.32 
-1.13 

0.92 
1.90 
1.08 

-0.60 
-1.54 
-1.01 

Z2 

o.oo 
-113.19 
-112.45 
-12.19 

86.77 
96.91 
19.99 

-6S.36 
-82.50 
-24.49 

48.21 
69.43 
26.59 

-34.64 
-57.78 
-26.95 

24.03 
47.57 
26.13 

-lS.87 
·-38.74 
-24.53 

9.69 
31.20 
22.47 
-5.11 

-24.83 
-20.18 

1.79 
19.52 
17.82 

O.S4 
-15.13 
-15.Sl 
-2.10 
ll.5S 

Z3 

4.00 
1.81 

-1.98 
-3.11 
-0.77 

2.04 
2.26 
o.os 

-1.89 
-l.S3 

0.40 
1.62 
0.94 

-0.64 
-1.31 
-0.48 

0.73 
0.99 
0.16 

-0.72 
-0.70 

0.06 
0.64 
0.46 

-0.19 
-0.54 
-0.27 

0.25 
0.42 
0.12 

-0.26 
-0.31 
-0.02 

0.2S 
0.21 

-0.04 

L2 = 50.0 

Z4 

o.oo 
-37.88 
-29.89 

8.69 
32.32 
18.10 

-13.2S 
-25.88 
-9.13 
14.84 
19.50 

2.74 
-14.45 
-13.73 

1.47 
12.86 
8.90 

-3.94 
-10.69 
-5.08 
5.10 
8.35 
2.24 

-S.34 
-6.13 
-0.28 
5.00 
4.19 

-0.96 
-4.32 
-2.60 

1.63 
3.50 
1.37 

-1.90 
-2.67 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

This research report consists of a software program 

in a Computer Aided Instruction package designed for the 

Dynamics Systems and Control Theory fields for 

undergraduate students. The system being described is an 

automobile with no horizontal motion. This paper defines 

the system equations, the numerical analysis method chosen 

to solve the equations and the method used to animate the 

output on the video display terminal. 

The system is designed so that students can change 

any system parameter defined in the system equations and 

also change any initial condition on the differential 

equations that describe the X and TH values. The solutions 

to the system equations are used to drive the animation on 

the video display terminal. A student is able to visualize 

the automobile's position as the system equations are 

solved. 

Additional features can be incorporated in this 

software project. An additional feature would be allowing 
I 

for a horizontal motion on the automobile. This would 

require a new set of system equations that account for the 
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road profile and the velocity of the automobile. The 

animation would be changed to show the automobile moving 

along a road. Another enhancement could be further 

optimization of the graphics software. Currently the 

graphics is performed mainly by TURBO TOOLBOX commands. In 

some instances these commands could be optimized by using 

assembly language routines instead of the TURBO TOOLBOX 

commands. This would increase the animation speed. 



APPENDIX 1 

ALGORITHM VERIFICATION 



program classical; 
var 

fzl,fz2,m,bl,b2,b,kl,k2,k,bll,bl2,bl,kll,kl2,kl : real; 
j,ll,12,fxll,fxl2,blsql,blsq2,blsq,klsql,klsq2 : real; 
klzl,k2zl,k3zl,k4zl,klz2,k2z2,k3z2,k4z2,klsq : real; 
klz3,k2z3,k3z3,k4z3,klz4,k2z4,k3z4,k4z4 : real; 
h,tl,t2,t3,t4 : real; 
i : integer; 
zl array[0 .• 1000] of real; 
z2 : array(0 •. 1000] of real; 
z3 : array[0 .. 1000] of real; 
z4 : array[O •• lOOO]of real; 

begin 
m := 7.772; 
j := 15000.0; 
fzl := o.o; 
fz2 := o.o; 
bl := o.o; 
b2 : = 0. 0; 
kl : = 400. 0; 
k2 : = 400. 0; 
11 := 50.0; 
12 := 50.0; 
zl[O] := 5; 
Z2[0] := O; 
Z3[0] := O; 
z4[0] := O; 
b := bl + b2; 
k := kl + k2; 
bll := bl * 11; 
bl2 := b2 * 12; 
bl := bl2 bll; 
kll := kl * 11; 
kl2 := k2 * 12; 
kl := kl2 - kll; 
fxll := fzl * 11; 
fxl2 := fz2 * 12; 
blsql := bl * sqr(ll); 
blsq2 := b2 * sqr(l2); 
blsq := blsql + blsq2; 
klsql := kl * sqr(ll); 
klsq2 := k2 * sqr(l2); 
klsq := klsql + klsq2; 
h := 0.01; 
i := 0; 
repeat . 

kl z l : = z 2 [ i] ; 
klz2 := (l/m)*(fzl+fz2 - (b*z2[i]) - (k*zl[i]) -

( b 1 * z 4 [ i ] ) - ( kl * z 3 [ i ] ) ) ; 
klz3 := z4 [i]; 
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klz4 := (1/j)*(fxl2-fxll-(blsq*z4[i])-(klsq*z3[i])-
(bl*z2[i])-(kl*zl[i])); 

tl := zl[i] + 0.S*h*klzl; 
t2 := Z2[i) + 0.5*h*klz2; 
t3 := z3[i] · + 0.5*h*klz3; 
t4 := z4[i] + 0.5*h*klz4; 
k2zl := z2[i] + 0.5*h*klz2; 
k2z2 := (l/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl*t3)); 
k2z3 := z4[i]+0.5*h*klz4; 
k2z4 := (l/j)*(fxl2 - fxll - (blsq*t4) -(klsq*t3) -

(bl*t2) - (kl*tl)); 
tl := zl[i] + 0.5*h*k2zl; 
t2 := Z2[i] + 0.5*h*k2z2; 
t3 := Z3[i) + 0.5*h*k2z3; 
t4 := Z4[i) + 0.5*h*k2z4; 
k3zl := z2[i] + 0.5*h*k2z2; 
k3z2 := (1/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl*t3)); 
k3z3 := z4[i] + 0.5*h*k2z4; 
k3z4 := (l/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -

(bl*t2) - (kl*tl)); 
tl := zl[i] + h*k3zl; 
t2 := Z2[i) + h*k3z2; 
t3 := z3[i] + h*k3z3; 
t4 := z4[i] + h*k3z4; 
k4zl := z2[i] + h*k3z2; 
k4z2 := (l/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl*t3)); 
k4z3 := z4[i] + h*k3z4; 
k4z4 := (l/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -

(bl*t2) - (kl*tl)); 
zl[i+l] := zl[i] + (h/6)*(klzl + 2*k2zl + 

2*k3zl + k4zl) ; 
z2(i+l] := z2[i] + (h/6)*(klz2 + 2*k2z2 + 

2*k3z2 + k4z2); 
z3[i+l] := z3[i] + (h/6)*(klz3 + 2*k2z3 + 

2*k3z3 + k4z3); 
z4[i+l] := z4[i] + (h/6)*(klz4 + 2*k2z4 + 

until keypressed; 
end. 

. 2*k3z4 + k4z4); 
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program gills; 
var 
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fzl,fz2,m,bl,b2,b,kl,k2,k,bll,bl2,bl,kll,kl2,kl : real; 
j,ll,12,fxll,fxl2,blsql,blsq2,blsq,klsql,klsq2 : real; 
klzl,k2zl,k3zl,k4zl,klz2,k2z2,k3z2,k4z2,klsq : real; 
klz3,k2z3,k3z3,k4z3,klz4,k2z4,k3z4,k4z4 : real; 
h,tl,t2,t3,t4,cl,c2,c3,c4 : real; 
i : integer; 
zl array(0 •. 2200] of real; 
z2 array(0 •. 2200] of real; 
z3 array[0 •. 2200] of real; 
z4 array[0 .. 2200] of real; 

begin 
m := 7.772; 
j := 15000.0; 
fzl := o.o; 
fz2 := o.o; 
bl : = 0. 0; 
b2 : = 0. 0; 
kl := 400.0; 
k2 : = 400. 0; 
11 := 50.0; 
12 := 50.0; 
zl[O] := 5; 
z2[0] := O; 
z3[0] := O; 
z4(0] := O; 
c 1 : = 1/ sqrt ( 2 ) ; 
c2 := 1 - cl; 
c3 := 1 + cl; 
c4 := -0.5 + cl; 
b := bl + b2; 
k := kl + k2; 
bll := bl * 11; 
bl2 := b2 * 12; 
bl := bl2 - bll; 
kll := kl * 11; 
kl2 := k2 * 12; 
kl := kl2 - kll; 
fxll := fzl * 11; 
fxl2 := fz2 * 12; 
blsql := bl * sqr(ll); · 
blsq2 := b2 * sqr(l2); 
blsq := blsql + blsq2; 
klsql :=kl* sqr(ll); 
klsq2 := k2 * sqr(l2); 
klsq := klsql + klsq2; 
h := 0.01; 
i := 0; 
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repeat 
klzl ·-.- z2 [ i] ; 
klz2 ·-.- (l/m)*(fzl+fz2 - (b*z2[i]) - (k*zl[i]) -

( b 1*z4 [ i ] ) - (kl* z 3 [ i ] ) ) ; 
klz3 
klz4 

·-.-·-.-
z4[i]; 
(l/j)*(fxl2-fxll-(blsq*z4[i])-(klsq*z3[i])-

(bl*z2[i])-(kl*zl[i])); 
tl := zl(i] + 0.5*h*klzl; 
t2 := Z2(i] + 0.5*h*klz2; 
t3 := z3[i] + 0.5*h*klz3; 
t4 := z4(i] + 0.5*h*klz4; 
k2zl := z2[i] + 0.5*h*klz2; 
k2z2 := (1/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl*t3)); 
k2z3 := z4[i]+0.5*h*klz4; 
k2z4 := (l/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -

(bl*t2) - (kl*tl)); 
tl := zl(i] + c4*h*klzl + c2*h*k2zl; 
t2 := z2[i] + c4*h*klz2 + c2*h*k2z2; 
t3 := z3[i] + c4*h*klz3 + c2*h*k2z3; 
t4 := z4[i] + c4*h*klz4 + c2*h*k2z4; 
k3zl := z2[i] + c4*h*klz2 + c2*h*k2z2; 
k3z2 := (l/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl*t3)); 
k3z3 := z4[i] + c4*h*klz4 + c2*h*k2z4; 
k3z4 := (l/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -

(bl*t2) - (kl*tl)); 
tl := zl[i] - cl*h*k2zl + c3*h*k3zl; 
t2 := z2[i] - cl*h*k2z2 + c3*h*k3z2; 
t3 := z3[i] - cl*h*k2z3 + c3*h*k3z3; 
t4 := z4(i] - cl*h*k2z4 + c3*h*k3z4; 
k4zl := z2[i] - cl*h*k2z2 + c3*h*k3z2; 
k4z2 := (l/m)*(fzl + fz2 - . (b*t2) - (k*tl) -

(bl*t4) - (kl*t3)); 
k4z3 := z4[i] - cl*h*k2z4 + c3*h*k3z4; 
k4z4 := (l/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -

(bl*t2) - (kl*tl)); 
zl[i+l] := zl[i] + (h/6)*(klzl + 2*c2*k2zl + 

2*c3*k3zl + k4zl) ; 
z2[i+l] := z2[i] + (h/6)*(klz2 + 2*c2*k2z2 + 

2*c3*k3z2 + k4z2); 
z3(i+l] := z3[i] + (h/6)*(klz3 + 2*c2*k2z3 + 

2*c3*k3z3 + k4z3); 
z4(i+l] := z4[i] + (h/6)*(klz4 + 2*c2*k2z4 + 

2*c3*k3z4 + k4z4); 
i := i + l; 
until keypressed; 

end. 



APPENDIX 2 

SOFTWARE LISTING 



program madrsm; 

{ Research Report For Bruce M. Skeldon } 

{ Dynamic Vehicle Suspension System } 

{ The Following modules are included from the graphics } 
{toolbox kit. Refer to manuals for specifics } 

{$I typedef .sys} 
{$I graphix.sys} 
{$I kernel.sys} 
{$I axis.hgh} 
{$i polygon.hgh} 
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{ The following arrays define the points to draw the wheels 
and hubcaps. The WHLXX/WHLYY arrays define the wheels. The 
HUBXX/HUBYY arrays define the hubcaps. The arrays were used 
to speed up drawing the wheels during the simulation. } 

type 
whlxx =array [1 •. 109] of integer; 
whlyy =array [1 .. 109] of integer; 
hubxx =array [1 .• 52] of integer; 
hubyy =array [l •• 52] of integer; 

var 

{ The next set of variables are used in the runga math to } 
{define the variables in the equation. } 

fzl,fz2,m,bl,b2,b,kl,k2,k,bll,bl2,bl,kll,kl2,kl : real; 
j,ll,12,fxll,fxl2,blsql,blsq2,blsq,klsql,klsq2 : real; 
klsq,klzl,k2zl,k3zl,k4zl,klz2,k2z2,k3z2,k4z2 : real; 
klz3,k2z3,k3z3,k4z3,klz4,k2z4,k3z4,k4z4 : real; 
h,hh,tl,t2,t3,t4 : real; 

{ Variables used for keyboard inputs , counters } 

dif ,adminvalue,newzl : real; 
i,admininput : integer; 
selection : char; 
admininputst: string[2]; 
adminvaluest: string[6]; 
noexit,adminexit,exitrunga,drawit : boolean; 
increment,count,ptr,ercode : integer; 
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{The following arrays are used to store the math output for 
plotting/numeric output. Zl = X , Z2 = Xdot , Z3 = THETA, 
Z2 = THETA dot , TM = TIME } 

zl array[0 .. 800) of real; 
z2 array[0 .. 800) of real; 
z3 array[0 .• 800] of real; 
z4 array[0 .. 800] of real; 
tm array[0 •• 800] of real; 

{ This defines the PLOTARRAY needed by DRAWPOLYGON } 

a PlotArray; 

{ These variables store the maximum value of the associated 
arrays. They are used during DRAWPOLYGON to label axis } 

zlmax,z2max,z3max,z4max,tmmax : real; 

{Arrays of two(2) numbers used during the math calculation 
ZZx[O) = ZZx[i] , ZZx[l] = ZZx[i + l] } 

zzl : array(O •• l] of real; 
zz2 array(O •• l) of real; 
zz3 array(O •• l] of real; 
zz4 array[O •• l] of real; 

{These values are used to speed the recalculation of the 
x/y points after the math finds new value. 

i.e s5 = sin * 5 } 

s5,c5,slO,clO,sl5,cl5,s30,c30,s241,c241,c,s real; 

{ These points describe the outline of the car as follows: 

{ 5 6 } 
{ I \ } 
{ I \ } 
{ 3 \ 8 } 
{2 I 4 centerx 7 \ } 

' { I centery I 9} 
{l I 17 16 13 12 I } 
{ \ I \ I I } 
{ 19 18 14 11 10 } 

. { } 
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pxl,px2,px3,px4,px5,px6,px7,px8,px9,pxlO : integer; 
pxll,pxl2,pxl3,pxl4,pxl5,pxl6,pxl7,pxl8,pxl9 :integer; 
pyl,py2,py3,py4,py5,py6,py7,py8,py9,pyl0 :integer; 
pyll,pyl2,pyl3,pyl4,pyl5,~yl6,pyl7,pyl8,pyl9 : integer; 
centerx,centery : integer; 

{ Used to store the previous pyl0/pyl9 values so that you } 
{know when to redisplay the car.} 

oldpylO,oldpyl9 : integer; 

const 

{ This defines the x points used to draw the wheels. The } 
{ values are added to 160 for the front wheel and 425 for } 
{the rear wheel. } 

whlx:whlxx=(l,l,2,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 
18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, 
33,34,35,36, 
37,38,39,40,41,42,43,44,45,46,47,48,49,50,51, 
52,53,54,55, 
56,56,57,57,57,56,56,55,54,53,52,51,50,49,48, 
47,46,45,44, 
46,45,44,43,42,41,40,39,38,37,36,35,23,22,21, 
20,19,18,17, 
16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,2,1); 

{ This defines the y points used to draw the wheels. The } 
{road is at y = 138 } 

whly:whlyy=(l26,125,124,123,122,121,120,120,119,119,118, 
117,117,117, 
116,116,116,115,115,115,115,115,115,115,114, 
114,114,114, 
114,114,114,114,114,114,114,114,114,115,115, 
115,115,115, 
115,115,116,116,116,117,117,117,118,119,119, 
120,120,121, 
122,123,124,125,126,127,128,129,130,l31,132, 
132,133,133, 
134,135,135,135,136,136,136,137,137,137,137, 
137,137,137, 
137,137,137,137,137,137,137,137,137,136,136, 
136,135,135, 
135,134,133,133,132,132,131,130,129,128,127); 

{ This defines the x points used to draw the hubcaps. The } 
{ values are added to 177 for the front and 443 for the } 
{ rear. } 



hubx:hubxx=(O,O,l,2,3,4,5,6,7,8,9,lO,ll,12,13,14,15,16, 
17,18,19,20, 
21,22,23,24,24,24,23,22,21,20,l9,18,17,16, 
15,14,13,12, 
11,10,9,8,7,6,5,4,3,2,l,O); 

{ This defines the y points used to draw the hubcaps } 

huby:hubyy=(l26,125,124,123,122,122,121,121,121,121, 
120,120,120,120, 
120,120,120,121,121,121,121,122,122,123, 
124,125,126,127, 
128,129,130,130,131,131,l31,l31,l32,l32, 
132,132,132,132, 
132,131,131,131,131,130,l30,l29,l28,l27); 

{This procedure gets a user input from the keyboard and } 
{verifies that the entry was a real number (ercode = O) } 

procedure getnewvalue; 
begin 

adminvalue := o.o; 
write(' ENTER NEW VALUE> '); 
readln(adminvaluest); 
val(adminvaluest,adminvalue,ercode); 
if ercode > o then 
begin 

admininput := o 
end; 

end; 
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{ Must calculat the moment of inertia (j) when L or M is } 
{changed } 

procedure calculatej; 
begin 

j := (m/12)*(sqr(ll+l2+50) + sqr(40)); 
end; 

{Only allow external forces in the range -1500 to 1500 LBS 
Set invalid inputs to a default of O LBS } 

procedure checkrangef; 
begin 

getnewvalue; 
if (adminvalue < -1500) or (adminvalue > 1500) then 

adminvalue := O; 
if admininput = 1 then 

fzl := adminvalue 
else 



fz2 := adminvalue; 
end; 

{ Only allow damping constants in the range o to 500 LE­
SEC/IN Set invalid inputs to a default of o LB-SEC/IN } 

procedure checkrangeb; 
begin 

getnewvalue; 
if (adminvalue < 0) or (adminvalue > 500) then 

adminvalue := O; 
if admininput = 3 then 

bl := adminvalue 
else 

b2 := adminvalue; 
end; 

{ Only allow spring constant values in the range 10 to 
1000 LB/IN Set invalid inputs to a default of 5 LB/IN } 

procedure checkrangek; 
begin 

getnewvalue; 
if (adminvalue < 10) or (adminvalue > 1000) then 

adminvalue := 10; 
if admininput = 5 then 

kl := adminvalue 
else 

k2 := adminvalue; 
end; 
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{ Only allow lengths from the center of the car to the } 
{wheels in the range 10 to 75 IN. Set invalid inputs to a} 
{default of 10 IN. } 

procedure checkrangel; 
begin 

getnewvalue; 
if (adminvalue < 10) or (adminvalue > 75) then 

adminvalue := 10; 
if admininput = 7 then 

11 := adminvalue 
else 

12 := adminvalue; 
calculatej; 

end; 

{ Only allow car weight in the range 1500 to 4000 LBS. Set 
invalid inputs to a default of 2500 LBS. Store mass (m) 



in slugs (m/386) .} 

procedure checkrangem; 
begin 

getnewvalue; 
if (adminvalue < 1500) or (adminvalue > 4000) then 

adminvalue := 2500; 
m := adminvalue/386; 
calculatej; 

end; 
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{Only allow Zl[O](x initial condition) in the range -25 to 
15 IN. Set invalid inputs to a default of o IN. The } 
positive x direction is down } 

procedure checkrangel; 
begin 

getnewvalue; 
if (adminvalue < -25) or (adminvalue > 15) then 

adminvalue := O; 
zl[O] := adminvalue; 

end; 

procedure checkrange2; 
begin 

getnewvalue; 
if (adminvalue < -25) or (adminvalue > 15) then 

adminvalue := O; 
z2(0] := adminvalue; 

end; 

{Only allow Z3[0](theta initial condition) in the range 
- 4 to 4 degrees. Set invalid inputs to a default of o 
degrees. Convert degrees to radians } 

procedure checkrange3; 
begin 

getnewvalue; 
if (adminvalue < -4) or (adminvalue > 4) then 

adminvalue := O; 
z3(0] := adminvalue/57.3; 

end; 

procedure checkrange4; 
begin 

getnewvalue; 
if (adminvalue < -4) or (adminvalue > 4) then 

adminvalue := O; 
z4(0] := adminvalue; 

end; 



{ Allow a single entry to clear all initial conditions } 

procedure clearinitcon; 
begin 

zl[O] := O; 
z2[0] := O; 
z3[0] := O; 
z4[0] := O; 

end; 
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{Main routine called to change any parameters. Loop asking} 
{for new parameter until a o or invalid entry is made. } 

procedure admin; 
begin 

ptr := O; 
adminexit := true; 
while adminexit do 
begin 
clrscr; 
writeln; 
write(' This section allows you to change '); 
writeln(' certain variables used'); 
write(' in the automobile simulation.'); 
writeln(' The following variables and'); 
write(' thier values are changable'); 
writeln(' (units are in() ] :'); 
writeln; ' 
writeln(' O: NO CHANGES REQUIRED' ); 
write(' 1: Fxl (force on rear (lbs) [-1500 to'); 
writeln(' 1500])= ',fzl:8:2); 
write(' 2: Fx2 (force on front(lbs) (-1500 to'); 
writeln(' 1500])= ',fz2:8~2); 
write(' 3: Bl(dmping cnst rear(lb-sec/in) [Oto'); 
writeln(' 500])= ',bl:8:2); 
write(' . 4: B2(dmping cnst frnt(lb-sec/in) [Oto '); 
writeln('500])= ',b2:8:2); 
write(' 5: Kl(spring canst rear (lb/in) [10 to '); 
writeln('lOOO])= ',kl:8:2); 
write(' 6: K2(spring canst frnt (lb/in) [10 to '); 
writeln('lOOO])= ',k2:8:2); 
write ( ' 7: Ll (center to rear (in) [ 10 to') ; 
writeln(' 75])= ',11:8:2); 
write (' 8: L2 (center to front (in) [ 10 to') ; 
writeln(' 75])= ',12:8:2); 
write(' 9: M (auto mass (lbs) [1500 to'); 
writeln(' 4000])= •,m*386:8:2); 
write(' 10: X(O) (x init cond (in) (-25 to'); 
writeln('l5])= ',zl[O] :8:2); 
write(' 11: XDOT(O) (x dot init cond (in/sec) '); 



writeln(' 
write (' 
wri teln (' 
write(' 
wri teln (' 
writeln (' 
writeln; 
write (' 
wri teln (' 
writeln; 
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= ',z2[0] :8:2); 
12: T(O) (theta init cond (deg) [-4 to'); 
4])= ',z3[0)*57.3:8:2); 
13: THEDOT(O) (theta dot init con) '); 

= I ,z4(Q) :8:2) i 
14: CLEAR ALL INITIAL CONDITIONS '); 

J (moment of inertia) 
= ',j:8:2); 

I ) ; 

write(' ENTER SELECTION AND RETURN> '); 
readln(admininputst); 

{Get entry from the keyboard and check for noentry (''), 
{ o entry or invalid input (ercode). Exit loop on any of} 
{ these conditions. } 

val(admininputst,admininput,ercode); 
if admininputst =''then 

adminexit := false; 
if admininput = o then 

adminexit := false; 
if ercode > O then 

adminexit := false; 

{If an integer was entered use CASE to call the proper 
routine } 

if adminexit then 
begin 

case 
1 
2 
3 
4 
5 

admininput of 
checkrangef; 
checkrangef; 
checkrangeb; 
checkrangeb; 
checkrangek; 

6 
7 : 
8 

checkrangek; 
checkrangel; 
checkrangel; 

9 
10 
11 
12 
13 
14 

else 

checkrangem; 
checkrangel; 
checkrange2; 
checkrange3; 
checkrange4; 
clearinitcon; 

adminexit := false; 
end; 

end; 
end; 
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end; 

{ Need to determine the maximum stored value for all arrays 
{to have proper dimensions on the plots. } 

procedure calculatemax; 
begin 

i := 0; 
zlmax ·-.- abs(zl[i]); 
z2max ·-.- abs(z2[i]); 
z3max ·-.- abs ( z 3 [ i ] ) ; 
z4max ·-.- abs ( z 4 [ i] ) ; 
tmmax ·-.- abs(tm[i]); 

{Loop from 1 until the number of points saved during the } 
{simulation run (ptr max= 800). Store the largest value} 

i := 1; 
while i < ptr do 
begin 

if abs(zl[i]) > zlmax then 
zlmax := abs(zl[i]); 

if abs(z2[i]) > z2max then 
z2max := abs(z2[i]); 

if abs(z3[i]) > z3max then 
z3max := abs(z3[i]); 

if abs(z4[i]) > z4max then 
z4max := abs(z4[i]); 

if abs(tm[i]) > tmmax then 
tmmax := abs(tm[i]); 

i := i + l; 
end; 

{Make Zl and Z2 maximum equal to one more than maximum. } 
{Convert Z3 and Z4 to radians and store maximum + 1. } 

zlmax ·-.- zlmax + l; 
z2max ·-.- z2max + l; 
z3max ·-.- (z3max)*57.3 + l; 
z4max ·- (z4max)*57.3 + l; .-

end; 

{ Calculate PLOTARRAY for X vs TIME plot } 

procedure pltxt; 
begin 

while i <= ptr do 
begin 

a[i+l,l] := tm[i]; 
a[i+l,2] := zl[i]; 



i := i + 1; 
end; 
defineheader(l, 'PLOT OF X VS TIME'); 
defineworld(l,O,zlmax,tmmax,-zlmax); 

end; 

{ Calculate PLOTARRAY for Xdot vs TIME plot. } 

procedure pltxdt; 
begin 

while i <= ptr do 
begin 

a(i+l,1] := tm[i]; 
a[i+l,2] := z2(i]; 
i := i + l; 

end; 
defineheader(l,'PLOT OF Xdot VS TIME'); 
defineworld(l,O,z2max,tmmax,-z2max); 

end; 

{ Calculate PLOTARRAY for THETA vs TIME plot. } 

procedure pltthetat; 
begin 

while i <= ptr do 
begin 

a[i+l,l] := tm[i]; 
a(i+l,2] := . z3[i]*57.3; 
i := i + l; 

end; 
defineheader(l,'PLOT OF THETA VS TIME'); 
defineworld(l,O,z3max,tmmax,-z3max); 

end; 

{ Calculate PLOTARRAY for THETAdot vs TIME plot. } 

procedure pltthetadt; 
begin 

while i <= ptr do 
begin 

a ( i + 1 , 1 ] : = tm [ i ] ; 
a(i+l,2] := z4[i]*57.3; 
i := i + 1; 

end; 
defineheader(l,'PLOT OF THETAdot VS TIME'); 
defineworld(l,O,z4max,tmmax,-z4max); 

end; 

{ Calculate PLOTARRAY for Xdot vs X plot. } 
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procedure pltxdx; 
begin 

while i <= ptr do 
begin 

a[i+l,l] := zl[iJ; 
a[i+l,2] := z2[iJ; 
i := i + l; 

end; 
defineheader(l, 'PLOT OF Xdot VS X'); 
defineworld(l,-zlmax,z2max,zlmax,-z2max); 

end; 

{ Calculate PLOTARRAY for THETAdot vs THETA plot. } 

procedure pltthetadtheta; 
begin 

while i <= ptr do 
begin 

a[i+l,l] := z3[iJ*57.3; 
a[i+l,2] := z4[i]*57.3; 
i := i + l; 

end; 
defineheader(l,'PLOT OF THETAdot VS THETA'); 
defineworld(l,-z3max,z4max,z3max,-z4max); 

end; 
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{ This is the main routine used to draw the various plots } 
{ Must first calculate the maximum values stored in the 
{arrays for dimensioning. } 

procedure pltroutine; 
begin 

calculatemax; 
adminexit := true; 

{ The simulation must have been run and stored three } 
{ data points before any plotting will take place } 

if ptr < 3 then 
adminexit := false; 

{Loop asking for plot type until o entry or invalid entry } 

while adminexit do 
begin 

clrscr; 
writeln; 
writeln; 
writeln; 
writeln; 



68 

writeln(' The following plots are available : '); 
writeln; 
writeln (' o NO PLOT DESIRED I ) i 
writeln(' 1 x vs TIME ' ) ; 
writeln(' 2 Xdot vs TIME ' ) ; 
writeln(' 3 THETA vs TIME ' ) ; 
writeln(' 4 THETAdot vs TIME ' ) ; 
writeln(' 5 Xdot vs x ' ) ; 
writeln (' 6 THETAdot vs THETA ' ) ; 
writeln; 
write (' ENTER SELECTION AND RETURN > ' ) ; 
readln(admininputst); 

{Get entry from the keyboard and check for noentry (' '), } 
{or entry outside the range 1 to 6. Exit loop on any of } 
{ these conditions. } 

val(admininputst,admininput,ercode); 
if admininputst =''then 

adminexit := false; 
if (admininput < 1) or (admininput > 6) then 

adminexit := false; 
if adminexit then 
begin 

{If no errors so far set up graphics and define window } 
{plotting. } 

entergraphic; 
definewindow(l,O,O,xmaxglb,ymaxglb); 

{ Use CASE statement to create PLOTARRAY for plots } 

1. ·-.-
case 

1 
2 
3 
4 
5 
6 

else 

O; 
admininput of 

pltxt; 
pltxdt; 
pltthetat; 
pltthetadt; 
pltxdx; 
pltthetadtheta; 

adminexit := false; 
end; 

{Select world/window, draw header, drawborder, draw axis, } 
{ and draw the plot using a = PLOTARRAY } 

selectscreen(l); 
selectworld(l); 



selectwindow(l); 
setheaderon; 
drawborder; 
drawaxis(s,-s,o,o,o,o,o,o,false); 
drawpolygon(a,l,ptr,o,o,o); 

{ Loop until keyboard entry causes exit from graphics } 

repeat until keypressed; 
removeheader(l); 
leavegraphic; 

end; 
end; 

end; 

{This routine is used to print the variables on the 
printer } 

procedure hrdcpy; 
begin 

if ptr > 3 then 
begin 

adminexit := true; 
writeln; 
writeln; 
write(' INCREMENT NUMBER> '); 
readln(admininputst); 
val(admininputst,increment,ercode); 
if ercode > o then 

adminexit := false; 
if admininputst =''then 

adminexit := false; 
if adminexit then 
begin 

dif := ptr; 
i := 0; 
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write(lst,' THIS IS A HARDCOPY OUTPUT'); 
writeln(lst,' OF THE SIMULATION'); 
write(lst,' Fxl = ',fzl:3:1,' '); 
write(lst,' Fx2 = ',fz2:3:1); 
writeln(lst,' Bl= ',bl:4:1,' B2 = ',b2:4:1); 
write (1st, ' Kl = ' , kl: 3: 1, ' ' ) ; 
write(lst,K2 = ',k2:3:1); 
writeln(lst,' Ll = ',11:4:1,' L2 = ',12:4:1); 
count := 3; 
repeat 

write(lst,' h= •,tm[i]:3:2,' zl= '); 
. write(lst,zl[i]:l0:4,' z2= •,z2[i]:l0:4); 
write(lst,' z3 = •,z3[i]*57.3:7:4); 
writeln(lst,' z4 = •,z4[i]*57.3:7:4); 



i := i + increment; 
count := count + l; 
if count = 63 then 
begin 

writeln(lst); 
writeln(lst); 
writeln(lst): 
writeln(lst): 
count := 2; 

end; 
dif := dif - increment; 

until keypressed or (dif < O); 
end; 

end; 
end; 

{This routine calculates the differential equations using 
a fourth order RUNGA KUTTA algoithm. The four equations 
are :} 
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{ Zl = Z2 } 
{ z2 = (l/m) [fxl+fx2-(bl+b2)z2-(kl+k2)zl-(b212-blll)z4- } 
{ (k212-klll)z3] } 
{ z3 = z4 } 
{ z4 = (l/j) [fx212-fxlll-(b212**2-blll**2)z4-(k212**2- } 
{ klll**2)Z3} } 
{ -(b212-blll)z2-(k212-klll)zl] } 

{ Where zl = X, z2 = Xdot, z3 = THETA and z4 = THETAdot } 
{ The algoithm used is as follows: } 

{ kl = zl(O] 
{ k2 = zl[O] + .S*h*kl 
{ k3 = Zl(O] + .5*h*k2 
{ k4 = zl(O] + k3*h 
{Zl(l] = Zl(O] + (h/6) [kl + .5*k2 + .5*k3 + k4] 
{Zl(O] = Zl(l] 

procedure gills; 
begin 

klzl := zz2 [OJ: 
klz2 := (l/m)*(fzl+fz2-(b*zz2[0])-(k*zzl[O])­

(bl*zz4[0])-(kl*zz3[0])); 

} 
} 
} 
} 
} 
} 

kl z 3 : = z z 4 [ 0 ] : 
klz4:=(1/j)*(fxl2-fxll-(blsq*zz4[0])-(klsq*zz3[0J)-

(bl*zz2[0])-(kl*zzl[O])): 
tl := zzl[O) + o.S*h*klzl; 
t2 := ZZ2[0) + 0.5*h*klz2; 
t3 := zz3[0) + 0.5*h*klz3; 
t4 := zz4[0] + 0.5*h*klz4: 



k2zl := zz2[0] + 0.5*h*klz2; 
k2z2 := (l/m)*(fzl+fz2-(b*t2)-(k*tl)-(bl*t4) 

-(kl*t3)); 
k2z3 := zz4[0] + 0.5*h*klz4; 
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k2z4 := (l/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -
(bl*t2) - (kl*tl)); 

tl := zzl[O] + 0.5*h*k2zl; 
t2 := zz2[0] + 0.5*h*k2z2; 
t3 := zz3[0] + 0.5*h*k2z3; 
t4 := zz4[0] + 0.5*h*k2z4; 
k3zl := zz2[0] + 0.5*h*k2z2; 
k3z2 := (1/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl•t3)); 
k3z3 := zz4[0] + 0.5*h*k2z4; 
k3z4 := (l/j)*(fxl2 - fxll - (blsq•t4) - (klsq*t3) -

(bl*t2) - (kl*tl)); 
tl ·:= zzl[O] + h*k3zl; 
t2 := ZZ2(0) + h*k3z2; 
t3 := zz3[0] + h*k3z3; 
t4 := zz4[0] + h*k3z4; 
k4zl := zz2[0] + h*k3z2; 
k4z2 := (1/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl*t3)); 
k4z3 := zz4[0] + h*k3z4; 
k4z4 := (1/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -

(bl•t2) - (kl*tl)); 
zzl[l] := zzl[O] + (h/6)*(klzl+2*k2zl+2*k3zl+k4zl); 
zz2[1] := zz2[0] + (h/6)*(klz2+2*k2z2+2*k3z2+k4z2); 
zz3[1] := zz3[0] + (h/6)*(klz3+2*k2z3+2*k3z3+k4z3); 
zz4[1J := zz4[0) + (h/6)*(klz4+2*k2z4+2*k3z4+k4z4); 
hh := hh + h; 
zzl[O) := zzl[lJ; 
zz2[0) := zz2[1); 
zz3[0] := zz3[1J; 
zz4[0) := zz4[1J; 

end; 

{Display an error message when display is either below the} 
road or to high. DRAWIT flag is used to draw/no draw new} 
position } 

procedure displayerror; 
begin 

gotoxy(2,7); 
write(' DISPLAY LIMIT EXCEEDED '); 
drawit := false; 

end; 



{ Check the range of py6, pylO, py19 and py3 to ensure 
that the car is within drawing window. If not display 
error. } 

procedure rangecheck; 
begin 

72 

if (py6<=50)or(pyl0>=137)or(py19>=137)or(py3<=50) then 
displayerror; 

gotoxy(l6,22); 
write('TIME = ',hh:5:2,' X = •,zz1[1]:6:2); 
write(' THETA= •,zz3[1]*57.3:6:2); 

end; 

{ This procedure is a modified version of the toolbox} 
DRAWLINEDIRECT It was modified to add speed to the} 
redrawing } 

procedure drawlinedirectt(xl,yl,x2,y2:integer); 
var x,y,deltax,deltay,xstep,ystep,direction:integer; 

begin 
x := xl; 
y := yl; 
xstep :=l; 
ystep :=l; 
if xl>x2 then xstep :=-1; 
if yl>y2 then ystep :=-1; 
·deltax:=abs(x2-xl); 
deltay:=abs(y2-yl); 
if deltax=O then direction:=-1 
else direction:=O; 
while not ((x=x2) and (y=y2)) do 
begin 

dp(x,y); 
if direction<O then 
begin 

y:=y+ystep; 
direction:=direction+deltax; 

end 
else 
begin 

x:=x+xstep; 
direction:=direction-deltay; 

end; 
end; 

end; 
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{ This procedure draws both the front and rear wheels using 
the wheel arrays. The front wheei is drawn when the y 
points are greater than py17+2. The rear wheel is drawn 
when the y points are greater than py12+2. This gives 
impression that wheel is entering the wheel well } 

procedure drawwheel: 
begin 

i := l: 
while i < 110 do 
begin 

if whly(i] > py17+2 then 
dp(whlx[i]+160,whly[i]): 

if whly[i] > py12+2 then 
dp(whlx[i]+425,whly(i]): 

i := i + 1: 
end: 

end: 

{ This procedure draws both the front and rear hubcaps 
inner wheel The front hub is drawn when the y points are 
greater than pyl7+2. The rear hub is drawn when the y 
points are greater than py12+2. } 

procedure drawhub: 
begin 

i := l: 
while i < 53 do 
begin 

if huby[i] > py17+2 then 
dp(hubx[i]+l77,huby[i]): 

if huby[i] > pyl2+2 then 
dp(hubx[i]+443,huby[i]): 

i := i + 1: . 
end: 

end: 

procedure drawnewcar: 
begin 

if drawit then 
begin 

GrafBase := seg(ScreenGlb~): { selectscreen(2)} 
fillchar(mem[GrafBase:$0750],3645,0): 
fillchar(mem[GrafBase:$2750],3645,0): 
oldpylO := pylO: 
oldpyl9 := py19: 
s5 := s*S: 
c5 := c*S: 
pxl := trunc(centerx-c241-s10): 
pyl := trunc(newzl-s241+cl0): 



px2 := trunc(centerx-c241+s5); 
py2 := trunc(newzl-s241-c5); 
px4 := . trunc(centerx+c*(-76)+sl0); 
py4 := trunc(newzl+s*(-76)-clO); 
pxS := trunc(centerx+c*(-36)+s30); 
pyS := trunc(newzl+s*(-36)-cJO); 
px7 := trunc(centerx+c*(l39)+sl0); 
py7 := trunc(newzl+s*(l39)-cl0); 
pxS := trunc(centerx+c*(234)+sl0); 
pys := trunc(newzl+s*(234)-c10); 
px9 := trunc(centerx+c241+s5); 
py9 := trunc(~ewzl+s241-c5); 
pxll := trunc(penterx+c*(l79)-s15); 
pyll := trunc(newzl+s*(l79)+c15); 
px12 := trunc(centerx+c*(l59)-s5); 
py12 := trunc(newzl+s*(l59)+c5); 
pxl3 := trunc(centerx+c*(ll9)-s5); 
pyl3 := trunc(newzl+s*(l19)+c5); 
pxl4 := trunc(centerx+c*(99)-s15); 
pyl4 := trunc(newzl+s*(99)+cl5); 
px15 := trunc(centerx+c*(-86)-slS); 
pyl5 := trunc(newzl+s*(-86)+cl5); 
pxl6 := trunc(centerx+c*(-106)-sS); 
pyl6 := trunc(newzl+s*(-106)+c5); 
pxl7 := trunc(centerx+c*(-146)-sS); 
pyl7 := trunc(newzl+s*(-146)+c5); 
pxl8 := trunc(centerx+c*(-166)-slS); 
pyl8 := trunc(newzl+s*(-166)+cl5); 
drawwheel; 
drawhub; 
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drawlinedirectt(pxl5,pyl5,pxl4,pyl4) ;{low mid seg} 
drawlinedirectt(pxl9,pyl9,pxl8,pyl8) ;{low frt seg} 
drawlinedirectt(pxl9,pyl9,pxl,pyl); 
drawlinedirectt(pxl,pyl,px2,py2); 
drawlinedirectt(px2,py2,px3,py3); 
drawlinedirectt(px3,py3,px4,py4); 
drawlinedirectt(px4,py4,px5,py5); { 
drawlinedirectt(px5,py5,px6,py6); 
drawlinedirectt(px6,py6,px7,py7); 
drawlinedirectt(px7,py7,pxs,py8); 
drawlinedirectt(pxs,py8,px9,py9); 
drawlinedirectt(px9,py9,pxlO,pylO) ;{back grill} 
drawlinedirectt(pxlO,pylO,pxll,pyll) ;{low rer seg} 
drawlinedirectt(px14,py14,px13,pyl3) ;{rer whl wel} 
drawlinedire.ctt(pxl3,pyl3,pxl2,pyl2); 
drawlinedirectt(px12,py12,pxll,pyll); 
drawlinedirectt(px18,pyl8,pxl7,pyl7) ;{frt whl wel} 
drawlinedirectt(pxl7,py17,pxl6,pyl6); 
drawlinedirectt(px16,py16,px15,pyl5); 
drawlinedirectt(0,138,0,25); {redraw left border } 

{ grill } 

{ hood 
windshield 

{ roof } 
{rear window } 

{ trunk } 

} 
} 
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drawlinedirectt(639,138,639,25) ;{redrw rigt bordr} 
move(mem[Grafbase:$0750],mem[$BS00:$0750],3645); 
move(mem[GrafBase:$2750],mem[$B800:$2750],3645); 

end; 
end; 

procedure exitloop; 
begin 

if abs(zzl[l]) < 0.01 then 
zzl[l] := o.o; 

if abs(zz3[1]) < 0.0001 then 
zz3[1] := o.o; 

newzl := centery + zzl[l]; 
c:=cos(-zz3[1]); 
s:=sin(-zz3[1]); 
slO := s*lO; 
clO := c*lO; 
s30 := s*30; 
sl5 := s*l5; 
c30 := c*30; 
cl5 := c*l5; 
s241 := s*241; 
c241 := c*241; 
px3 := trunc(centerx+c*(-23l)+slO); 
py3 := trunc(newzl+s*(-231)-clO); 
px6 := trunc(centerx+c*(l04)+s30); 
py6 := trunc(newzl+s*(l04)-c30); 
pxlO := trunc(centerx+c241-sl5); 
pylO := trunc(newzl+s24l+cl5); 
pxl9 := trunc(centerx+c*(-231)-slS); 
pyl9 := trunc(newzl+s*(-23l)+cl5); 
rangecheck; 
if ptr < 799 then 
begin 

end; 

ptr := ptr + l; 
zl[ptr] := zzl[l]; 
z2 [ptr] := zz2 [l]; 
z 3 [ ptr] : = z z 3 [ 1 ] ; 
z4 [ptr] := zz4 [l]; 
tm[ptr] := hh; 

if (abs(oldpylO-pylO)>=l)or(abs(oldpyl9-pyl9)>=1) then 
drawnewcar; 

end; 

procedure car; 
begin 

zzl[O] := zl[O]; 
zz2[0] := z2[0]; 



zz3 [O] := z3 [O]; 
zz4[0] := z4[0]; 
zzl[l] := zzl[O]; 
ZZ3(1) := ZZ3(0); 
ptr := O; 
b :=bl + b2; 
k := kl + k2; 
bll := bl * 11; 
l:>l2 := b2 * 12; 
bl := bl2 bll; 
kll := kl * 11; 
kl 2 : = k2 * 12 ; 
kl := kl2 kll; 
fxll := fzl * 11; 
fxl2 := fz2 * 12; 
blsql :=bl* sqr(ll); 
blsq2 := b2 * sqr(l2); 
blsq := blsql + blsq2; 
klsql := kl * sqr(ll); 
klsq2 := k2 * sqr(l2); 
klsq := klsql + klsq2; 
h := 0.01; 
hh := o.o; 
drawit := true; 
c := cos(-z3[0]); 
s := sin(-z3[0]); 
newzl := centery + zl[O]; 
pxl := trunc(centerx+c*(-241)-s*(lO)); 
pyl := trunc(newzl+s*(-24l)+c*(l0)); 
px2 := trunc(centerx+c*(-241)-s*(-5)); 
py2 := trunc(newzl+s*(-24l)+c*(-5)); 
px3 := trunc(centerx+c*(-231)-s*(-10)); 
py3 := trunc(newzl+s*(-23l)+c*(-10)); 
px4 := trunc(centerx+c*(-76)-s*(-10)); 
py4 := trunc(newzl+s*(-76)+c*(-10)); 
px5 := trunc(centerx+c*(-36)-s*(-30)); 
py5 := trunc(newzl+s*(-36)+c*(-30)); 
px6 := trunc(centerx+c*(l04)-s*(-30)); 
py6 := trunc(newzl+s*(l04)+c*(-30)); 
px7 := trunc(centerx+c*(l39)-s*(-10)); 
py7 := trunc(newzl+s*(l39)+c*(-10)); 
pxa := trunc(centerx+c*(234)-s*(-10)); 
pya := trunc(newzl+s*(234)+c•(-10)); 
px9 := trunc(centerx+c*(241)-s*(-5)); 
py9 := trunc(newzl+s*(24l)+c*(-5)); 
pxlO j= trµnc(centerx+c*(241)-s*(l5)); 
pylO := trunc(newzl+s*(24l)+c*(15) .); 
pxll := trunc(centerx+c*(l79)-s*(15)); 
pyll := trunc(newzl+s*(l79)+c*(l5)); 
pxl2 := trunc(centerx+c*(l59)-s*(5)); 
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pyl2 := trunc(newzl+s*(l59)+c*(5)); 
pxl3 := trunc(centerx+c*(ll9)-s*(5)); 
pyl3 := trunc(newzl+s*(ll9)+c*(5)); 
pxl4 := trunc(centerx+c*(99)-s*(l5)); 
pyl4 := trunc(newzl+s*(99)+c*(l5)); 
pxl5 := trunc(centerx+c*(-86)-s*(lS)); 
pylS := trunc(newzl+s*(-86)+c*(l5)); 
pxl6 := trunc(centerx+c*(-106)-s*(S)); 
pyl6 := trunc(newzl+s*{-106)+c*(5)); 
pxl7 := trunc{centerx+c*(-146)-s*(S)); 
pyl7 := trunc(newzl+s*(-146)+c*(5)); 
pxl8 := trunc(centerx+c*(-166)-s*(lS)); 
pyl8 := trunc(newzl+s*(-166)+c*(l5)); 
pxl9 := trunc(centerx+c*(-231)-s*{lS)); 
pyl9 := trunc(newzl+s*(-23l)+c*(l5)); 
oldpylO := pylO; 
oldpyl9 := pyl9; 
entergraphic; 
setwindowmodeoff; 
setaspect(l); 
setforegroundcolor(l4); 
selectscreen(2); 
clearscreen; 
drawborder; 
drawlinedirectt(l,138,640,138); 
rangecheck; 
if drawit then 
begin 

drawwheel; 
drawhub; 

{ road 

77 

} 

drawlinedirectt(pxl5,pyl5,pxl4,pyl4);{1ow midle seg} 
drawlinedirectt(pxl9,pyl9,pxl8,pyl8) ;{low frnt seg } 

} 

drawlinedirectt(pxl9,pyl9,pxl,pyl); 
drawlinedirectt(pxl,pyl,px2,py2); 
drawlinedirectt(px2,py2,px3,py3); 
drawlinedirectt(px3,py3,px4,py4); 
drawlinedirectt(px4,py4,px5,py5); 
drawlinedirectt(px5,py5,px6,py6); 
drawlinedirectt(px6,py6,px7,py7); 
drawlinedirectt(px7,py7,px8,py8); 
drawlinedirectt(px8,py8,px9,py9); 
drawlinedirectt(px9,py9,pxlO,pylO); {back grill } 
drawlinedirectt(pxlO,pylO,pxll,pyll) ;{low rear seg } 
drawlinedirectt(pxl4,pyl4,pxl3,pyl3) ;{rear whl well} 
drawlinedirectt(pxl3,pyl3,pxl2,pyl2); 
drawlinedirectt(pxl2,pyl2,pxll,pyll); 
drawlinedirectt(pxl8,pyl8,pxl7,pyl7);{frnt whl well} 
drawlinedirectt(pxl7,pyl7,pxl6,pyl6); 
drawlinedirectt(pxl6,pyl6,pxl5,pyl5); 

{ grill } 

{ hood } 
{ windshield 

{ roof } 
{ rear window 

{ trunk } 

} 

end; 



gotoxy(l4,3); 
write('Dynamic Systems Analysis Of Vehicle'); 
write(' Suspension System'); 
copyscreen; 
repeat 

drawit := true; 
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GrafBase := HardwareGrafBase; { selectscreen(l) } 
gills; 

end; 

exitloop; 
until keypressed; 
leavegraphic; 

{ This is the main routine in the simulation system~ It 
displays the main menu and calls the various 
subsystems.An entry of 'E' will exit back to DOS } 

begin 
centerx := 316; 
centery := 105; 
tm[ o] : = O; 
ptr := O; 
m := 3000/386; 
j := 15608.81; 
fzl := o.o; 
fz2 := o.o; 
bl := 40.0; 
b2 : = 4 0. 0; 
kl : = 4 00. 0; 
k2 : = 400. 0; 
11 := 50.0; 
12 := 50.0; 
zl[O) := O; 
z2[0] := O; 
z3[0] := O; 
z4[0] := O; 
initgraphic; 
leavegraphic; 
noexit := true; 
while noexit do 
begin 
clrscr; 
writeln; 
writeln; 
writeln; 
writeln; 
write (' 
writeln('SIMULATION 
writeln; 

WELCOME TO THE AUTOMOBILE '); 
SYSTEM'); 

writeln (' C = CHANGE PARAMETERS'); 



wri teln (' 
writeln (' 
wri teln (' 
writeln (' 
writeln; 
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R = RUN SIMULATION'); 
P = PLOT OUTPUT'); 
N = NUMERIC OUTPUT'); 
E = EXIT TO DOS '); 

write (' 
readln(selection); 
case selection of 

ENTER SELECTION AND RETURN> '); 

'c' admin; 
'C' admin; 
'r' 
'R' : 
'p' 
Ip I 

In I 

IN I 
I e I 

IE I 

end; 
end; 

end. 

car; 
car; 
pltroutine; 
pltroutine; 
hrdcpy; 
hrdcpy; 
noexit := false; 
noexit := false; 



APPENDIX 3 

USER'S MANUAL AND CASE STUDY 



USER'S MANUAL AND CASE STUDY 

Getting Started 

This software package is installed on the two IBM AT 

computers in the systems lab. The program is entered by 

typing AUTO in response to the DOS prompt after the initial 

power up. This will initilize the graphics printing, 

change to the AUTO directory and then enter the program. 

The Main Menu contained in Figure 13 is displayed. Enter 

the letter of the function that is desired. The functions 

are described in detail below. An E entry will exit from 

the program. 

Change Parameters 

This section is used to modify the system parameters. 

A sample of the Parameter Selection Menu is contained in 

Figure 15. To change a parameter value first enter the 

selection number 1-14 and then enter the new value. Any 

entry other than a 1-14 will exit back to the Main Menu. A 

parameter value that is outside the indicated parameter 

value range will result in .a default value being assigned 

to the parameter. The error default values are: 
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Fxl = Fx2 = o 

Bl = B2 = 0 

Kl = K2 = 10 

Ll = L2 = 10 

M = 2500 

X(O) = Xdot(O) = 0 

TH(O) = THdot(O) = 0 
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Limits were placed on the parameters for two reasons. 

The first reason was a real world system was being 

simulated therefore, real world values should be used. The 

second reason was to keep the automobile in the display 

area as much as possible. 

The moment of inertia J is displayed but not 

changeable because it is dependent on the M, Ll and L2 

entries according to the following equation: 

J = (M/12) * (D**2 + H**2) 

where M is the mass in slugs, D is the total length of the 

automobile, D = Ll + L2 + 50, and H is the height of the 

automobile, H = 40. 

A selection of o will exit back to the Main Menu 

while a selection of 14 will clear all initial conditions, 

X(O) = Xdot(O) = TH(O) = THdot(O) = o. 

Run Simulation 

This command will start the animation display. The 

automobile is first displayed using the initial conditions 

on X and TH. The ani~ation is continued until any key is 

entered at the keyboard. The system returns to the Main 

Menu after a key is pressed. If plots are desired it is 



best to allow the animation to run as long as possible. 

This is because the TIME plots are from TIME = o to the 

time the simulation was stopped. Figure 16 is a sample 

animation display. 

Plot output 
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This section allows TIME and phase plots of the four 

state variables. Figure 14 is the Plot Selection Menu and 

shows what plots are available. To create a plot just 

enter the number of the desired plot, 1-6, and return. Any 

entry other than a 1-6 will exit back to the Main Menu. 

The animation must run and collect at least 3 data points 

before any plots can be generated. Figures 17-22 are 

sample plot outputs. These plots were generated using the 

parameter values displayed in Figure 15. Note that when 

Bl = B2 = O the system has no damping and will oscillate 

forever. This is shown by the four TIME plots in 

Figures 17-20. The values of X and TH oscillate from the 

initial condition to the negative of the initial condition. 

The two phase plots are circles because the system 

oscillates and therefore the X and TH values do not reach a 

steady state value. 

Numeric Output 

This section allows for a hardcopy output of the 

simulation. It prompts for an increment number. This 
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number determines how many data points to skip over before 

printing the next value. The output contains the system 

parameters, the time (H) and the four state variables 

Zl-Z4. A sample numeric output is contained in Table 7. 

The state variables and their meanings are: 

Zl = X 

Z2 = Xdot 

Z3 = TH 

Z4 = THdot 



WELCOME TO THE AUTOMOBILE SIMULATION SYSTEM 

C = CHANGE PARAMETERS 
R = RUN SIMULATION 
P = PLOT OUTPUT 
N = NUMERIC OUTPUT 
E = EXIT TO DOS 

ENTER SELECTION AND RETURN > 

Figure 13. Main Menu 

The following plots are available 

0 NO PLOT DESIRED 
1 x vs TIME 
2 Xdot vs TIME 
3 THETA vs TIME 
4 THETAdot vs TIME 
5 Xdot vs x 
6 THETAdot vs THETA 

ENTER SELECTION AND RETURN > 

Figure 14. Plot Selection Menu 
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T~is section allows you to change certain variables used 
in the automobile simulation. The · following variables and 
their values are changeable [units are in () ] : 

O: NO CHANGES REQUIRED 
1: Fxl (force on rear (lbs) [-1500 to 1500))= 
2: Fx2 (force on front(lbs) [-1500 to 1500))= 
3: Bl(dmping cnst rear(lb-sec/in) [Oto 500))= 
4: B2(dmping cnst frnt(lb-sec/in) [Oto 500))= 
5: Kl(sprinq const rear (lb/in) [10 to 1000])= 
6: K2(spring const frnt (lb/in) [10 to 1000])= 
7: Ll (.center to rear· (in) [ 10 to 75)) = 
8: L2 (center to front (in) [10 to 75))= 
9: M (auto mass (lbs) [1500 to 4000])= 

10: X(O) (x init cond (in) [-25 to 15) )= 
11: XDOT(O) (x dot init cond (in/sec) = 
12: T(O) (theta init cond (deg) [-4 to 4])= 
13: THEDOT(O) (theta dot init con) = 
14: CLEAR ALL INITIAL CONDITIONS 

o.oo 
o.oo 
o.oo 
o.oo 

400.00 
400.00 
50.00 
50.00 

3000.00 
14.00 

o.oo 
4.00 
o.oo 

J (moment of inertia) = 15608.81 

ENTER SELECTION AND RETURN > 

Figure 15. Case 2 Parameter Selection Menu 
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lynaMiC SysteMS Analysis or Vehicle Suspension SysteM 

TIMI: 1.88 X: ·8.54 THETA: 3.77 

Fiqure 16. Case 2 : Automobile 
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TABLE 7 

CASE 2 NUMERIC OUTPUT 

SIMULATION HARDCOPY OUTPUT 

Fxl =- a. a Fx2 • a.a Bl = a.a B2 =- a.a 
Kl =- 400.0 K2 =- 400.0 Ll = so.a L2 = so.a 

H Zl Z2 Z3 Z4 

o.oo 14.00 o.oo 4.00 o.oo 
0.10 7.39 -120.63 l.70 -40.99 
0.20 -6.19 -127.38 -2.S6 -34.83 
0.30 -13.93 -13.89 -3.87 ll.39 
0.40 -8.52 112.72 -0.73 44.51 
a.so 4.94 132.91 3.2S 26.43 
0.60 13.73 27.64 3.49 -22.os 
0.70 9.56 -103.73 -0.28 -45.17 
a.so -3.63 -137.17 -3.73 -16.34 
0.90 -13.40 -41.12 -2.89 31.29 
l.00 -10.52 93.75 l.27 42.92 
1.10 2.29 140.12 3.97 5.19 
l.20 12.94 54.22 2.10 -38.51 
1.30 ll.37 -82.86 -2.19 -37.92 
l.40 -0.93 -141.72 -3.96 6.29 
1.50 -12.36 -66.79 -l.18 43.26 
l.60 -12.11 71.19 2.96 30.47 
l.70 -0.44 141.97 3.69 -17.37 
l.80 ll.65 78.73 0.18 -45.23 
l.90 12.74 -58.83 -3.54 -21.07 
2.00 l.80 -140.86 -3.19 27.33 
2.10 -10.84 -89.91 0.83 44.29 
2.20 -13.25 45.91 3.89 10.31 
2.30 -3.15 138.39 2.48 -35.53 
2.40 9.92 100.23 -1.79 -40.50 
2.50 13.63 -32.55 -4.00 l.ll 
2.60 4.47 -134.60 -1.61 41.45 
2.70 -8.91 -109.58 2.63 34.ll 
2.80 -13.88 18.88 3.85 -12.46 
2.90 -5.75 129.53 0.64 -44.70 
3.00 7.81 117.89 -3.30 -25.52 
3.10 13.99 -5 .• 03 -3.44 23.0l 
3.20 6.97 -123.21 0.38 45.08 
3.30 -6.64 -125.07 3.76 15.29 
3.40 -13.97 -8.87 2.82 -32.08 
3.50 -8.12 115.71 -1.37 -42.56 
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