
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1986

Dynamic Systems Analysis of a Vehicle Suspension System Dynamic Systems Analysis of a Vehicle Suspension System

Bruce M. Skeldon
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Skeldon, Bruce M., "Dynamic Systems Analysis of a Vehicle Suspension System" (1986). Retrospective
Theses and Dissertations. 4982.
https://stars.library.ucf.edu/rtd/4982

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F4982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4982?utm_source=stars.library.ucf.edu%2Frtd%2F4982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

DYNAMIC SYSTEMS ANALYSIS OF
A VEHICLE SUSPENSION SYSTEM

BY

BRUCE MARK SKELDON
B.S., University of Notre Dame, 1978

RESEARCH REPORT

Submitted in partial fulfillment of the requirements
for the degree of Master Of Science in Engineering in

the Graduate Studies Program of the College of Engineering
University of Central Florida

Orlando, Florida

summer Term
1986

ABSTRACT

This research report deals with one system in a

Computer Aided Instruction package in the Dynamic Systems

and Control Theory fields for college undergraduate

students. It uses the computer to numerically solve the

two degree of freedom equations of motion for a vehicle

suspension system. Numerical solutions to the system

differential equations are used to drive an animated

display of the vehicle's motion (vertical displacement and

rotation about the center of gravity) on the video display

terminal.

TABLE OF CONTENTS

LIST OF TABLES . . v

LIST OF FIGURES vi

INTRODUCTION 1

Chapter

I.

II.

III.

IV.

v.

VI.

PROBLEM DESCRIPTION • • • .

System Model • . . .
Solve System Equations
Animation • . • • • • •

NUMERICAL SOLUTION OF SYSTEM EQUATIONS

Classical Runge-Kutta Algorithm
Algorithm Verification • .
Runge-Kutta-Gill Algorithm

COMPUTER GRAPHICS

3

3
6
6

8

10
11
16

21

LENIPEN . • . . • • 21
TURBO PASCAL Graphics Commands . . . • . 23
TURBO TOOLBOX Package . . . • • . • 24
Graphics Animation . • . . • . • . . . • 26

SOFTWARE OPTIMIZATION 30

Math Algorithm Selection . • • • . . . • 31
Modified TURBO TOOLBOX Commands . . 31
Considerations for Displaying Automobile 34

RESULTS 36

SUMMARY AND CONCLUSIONS 49

iii

Appendices

1.

2.

3.

ALGORITHM VERIFICATION

Classical Runge-Kutta Program
Runge-Kutta-Gill Program • • . .

SOFTWARE LISTING

USER'S MANUAL AND CASE STUDY

51

52
54

56

80

Getting Started . • • . • . 81
Change Parameters • • . . • • • • . . . 81
Run Simulation • • . . . • • • • . . 82
Plot Output • . • • 83
Numeric Output • . . . • 83

REFERENCES • • • • • • . . • • • • • . . . • . 95

iv

LIST OF TABLES

1. Comparison of Classical Runge-Kutta Algorithm and
Analytical Solution [Zl] . • • • 13

2. Comparison of Classical Runge-Kutta Algorithm and
Analytical Solution [Z2] • • • • . • . . • . • . 14

3. TUTSIM Output 17

4. Comparison of Runge-Kutta-Gill Algorithm and
Analytical Solution [Zl] 19

5. Comparison of Runge-Kutta-Gill Algorithm and
Analytical Solution [Z2] 20

6. Case 1 Numeric output 48

7. Case 2 Numeric Output 94

v

LIST OF FIGURES

1. Free Body Diagram of Forces Acting on an
Automobile • • . • • . . • . • . . • • . . . 4

2. TUTSIM Model . • • • • . • . • • • . . 12

3. X - Y Data Points (19) that Define the Automobile 25

4. Case 1 • Parameter Selection Menu . 39 • • • • •

5. Case 1 Automobile Exceeding Display Limit . . 40

6. Case 1 . Automobile 41 . • • • • • . • • • .
7. Case 1 Plot of X versus TIME . . . • • 42

8. Case 1 Plot of Xdot versus TIME . • . • . . . 43

9. Case 1 Plot of TH versus TIME . . • . • . . . 44

10. Case 1 Plot of THdot versus TIME • . 45

11. Case 1 Plot of Xdot versus x . . • . • • • • . 46

12. Case 1 : Plot of THdot versus TH 47

13. Main Menu . . . • • 85

14. Plot Selection Menu • . . • • • . . • . 85

15. Case 2 Parameter Selection Menu 86

16. Case 2 . Automobile • • 87 . . .
17. Case 2 Plot of X versus TIME 88

~8. Case 2 Plot of Xdot versus TIME 89

19. Case 2 Plot of TH versus TIME . • . . • • . . 90

20. Case 2 Plot of THdot versus TIME 91

vi

21.

22.

Case 2

Case 2

Plot of Xdot versus X

Plot of THdot versus TH

vii

• • • 9 2

• • • 9 3

INTRODUCTION

The Computer Engineering Department is developing a

set of software programs to be used for Computer Aided

Instruction in the control theory and dynamic systems

analysis fields. This research report is a software

program in the dynamic systems analysis field. This

program describes a mechanical system consisting of an

automobile suspension system. Other projects in the

Computer Aided Instruction package include a two tank fluid

system and a pendulum on a cart mechanical system.

The software programs are designed to run on an

IBM AT computer equipped with graphics hardware. The

software design goals were to use a high-level design

language and an off-the-shelf software graphics package to

perform the animation. The TURBO PASCAL language was

chosen as the design language. A high-level language was

chosen over the IBM assembly language so that other

students could design future systems more easily. It was

assumed that more students know a high-level design

language than know the IBM assembly language.

Dynamic systems qnalysis of a vehicle suspension

system is intended to provide a visual representation of

the effects of initial conditions, external loading and

2

choice of system parameters on the motion of a stationary

automobile. Computer graphics are used to perform an

animation of the system as the system equations are solved.

A student can define the automobile with an initial

displacement and an initial angle and then watch the

automobile movement as it reaches steady state. Plots can

be generated to show how the system reached steady state.

Chapter 1 defines the problem statement. Chapter 2

discusses the different numerical methods tested and the

method for algorithm verification. Chapter 3 discusses

different graphics packages that were investigated along

with the animation method selected. Chapter 4 discusses

the various ways the animation process was optimized. A

sample simulation is discussed in Chapter 5.

Software listings are contained in Appendix 1 and

Appendix 2. A user's manual and sample output are

contained in Appendix 3.

CHAPTER I

PROBLEM DESCRIPTION

The design for this research report consists of three

stages. The first stage involves drawing the free body

diagram of the automobile and defining the system

equations. The next stage in the design is the use of a

numerical analysis method to solve the system equations.

The third step consists of taking the output from the

numerical analysis and driving the computer graphics

animation.

System Model

Equations were defined to describe the motion of an

automobile resting on the road with no horizontal motion.

The automobile has two degrees of freedom. There is

movement in the vertical direction and movement about the

center of gravity. The free body diagram in Figure 1

defines the forces acting on the front and rear of the

automobile. The equations are defined assuming small

rotation TH(t). The following definitions apply throughout

this paper:

TH(t)

X(t)

Angular Rotation Of Vehicle (radians)

Vertical Displacement of Vehicle (IN)

3

Fxl External Force on Rear (LBS)

Fx2 External Force on Front (LBS)

Kl Spring Constant on Rear of Vehicle (LBS/IN)

K2 Spring Constant on Front of Vehicle (LBS/IN)

Bl Damping Constant on Rear Shock (LBS-SEC/IN)

B2 Damping Constant on Front Shock (LBS-SEC/IN)

Ll Length of Vehicle from Center to Rear (IN)

L2 Length of Vehicle from Center to Front (IN)

M Mass Of Automobile (SLUGS)

I Moment of Inertia

The two differential equations are derived by first

summing the forces in the X direction and then summing the

5

torques about the center of mass. The positive X direction

is down and the positive TH direction is counter-clockwise.

Adding the forces in the X direction yields the following

equation:

M*X = - fl - f 2 + Fxl + Fx2 ·

where
• •

fl= Kl*(X - Ll*TH) + Bl*(X - Ll*TH)
• • f2 = K2*(X + L2*TH) + B2*(X + L2*TH)

Adding the torques around the center of mass yields

the following equation:

I*TH = -f2*L2 + fl*Ll + Fx2*12 - Fxl*Ll

where fl and f2 are defined above. After combining like

terms the two second-order differential equations that

describe the automobile suspension system are defined as

follows:

X = (l/M)*[Fxl + Fx2 - (Bl+ B2)*X - (Kl+ K2)*X -

(B2*L2 - Bl*Ll)*TH - (K2*L2 - Kl*Ll)*TH]

TH= (l/I)*[Fx2*L2 - Fxl*Ll - (Bl*Ll**2 + B2*L2**2)*TH

- (Kl*Ll**2 + K2*L2**2)*TH - (B2*L2 - Bl*Ll)*X

- (K2*L2 - Kl*Ll)*X]

Solve System Equations

6

The next step in the design was using a numerical

method to solve the two second-order differential equations

derived in the system Model section. By using a numerical

analysis method an infinite combination of initial

conditions, external loading, and system parameters can

be used as inputs and a solution to the equations still

obtained. The numerical method chosen was the fourth­

order Runge-Kutta algorithm. This algorithm is the most

widely used algorithm for solving differential equations.

Animation

The output from the numerical analysis method is

used to drive an animation on the video display terminal.

Output from the numerical analysis can rotate and

translate the automobile depending on the system

parameters. A design was required that can use the

calculated X and TH values from the numerical method to

accuratly redraw the automobile relatively fast.

7

CHAPTER II

NUMERICAL SOLUTION OF SYSTEM EQUATIONS

The fourth-order Runge-Kutta algorithm was chosen as

the numerical analysis method. This algorithm was chosen

because it is the most widely accepted algorithm used for

solving differential equations. Two different fourth-order

Runge-Kutta methods were attempted. The first method tried

is known as the classical fourth-order Runge-Kutta method.

The second fourth-order algorithm tried is known as the

Runge-Kutta-Gill algorithm.

The Runge-Kutta algorithms are used to solve first­

order differential equations or sets of first-order

differential equations. The two differential equations

defined in the problem description section are both second­

order. Therefore, a set of first-order differential

equations must be defined before the Runge-Kutta algorithm

can be applied. The two second-order equations were

converted to four first-order differential equations.

A new state variable, called Zl, was defined and set

equal to x. A second state variable, called Z2, was also

defined and equated to the first derivative of Zl. The two

equations were defined as follows:

8

9

Zl = X

Z2 = Zl = X

The desired two first-order differential equations

were obtained by taking the derivative of both Zl and Z2.

These two first-order equations resulted from the one

second-order equation defining X. The resulting two first­

order equations were defined as follows:

Zl = X = Z2

Z2 = Zl = X

= (l/M)*[Fxl + Fx2 - (Bl+ B2)*Z2 - (Kl+ K2)*Z3

- (B2*L2 - Bl*Ll)*Z4 - (K2*L2 - Kl*Ll)*Z3]

In a similiar manner the new state variables Z3 and

Z4 were derived from the one second-order equation defining

theta (TH). The resulting four first-order differential

equations that were used in the Runge-Kutta algorithm are

defined as follows:

Zl = Z2

Z2 = (l/M)*[Fxl + Fx2 - (Bl+ B2)*Z2 - (Kl+ K2)*Z3 -

(B2*L2 - Bl*Ll)*Z4 - (K2*L2 - Kl*Ll)*Z3)

Z3 = Z4

Z4 = (l/I)*[Fx2*L2 - Fxl*Ll - (Bl*Ll**2 + B2*L2**2)*Z4

- (Kl*Ll**2 + K2*L2**2)*Z3 - (B2*L2 - Bl*Ll)*Z2

- (K2*L2 - Kl*Ll)*Zl)

10

Classical Runge-Kutta Algorithm

As mentioned previously two different fourth-order

Runge-Kutta algorithms were tried. The first method was

the classical Runge-Kutta algorithm. This fourth-order

algorithm defines a new slope as the sum of the old slope

and a weighted sum of four new intermediate slopes. The

intermediate slope values were defined as Kl#, K2#, K3# and

K4# where # is the associated state variable Zl, Z2, Z3 or

Z4. The classical fourth-order Runge-Kutta algorithm for

the Zl state variable is defined as follows:

KlZl = Z2[i]

K2Zl = Z2(i] + 0.5*H*KlZ2

K3Zl = Z2[i] + 0.5*H*K2Z2

K4Zl = Z2[i] + H*K3Z2

Zl(i + l] = Zl(i] + (H/6)*[K1Zl + 0.5*K2Zl +

0.5*K3Zl + K4Zl]

In the above, H is defined as the step size. This

algorithm was expanded to generate similiar equations for

the three other state variables. Refer to Appendix 1 for

the PASCAL program written to test the classical fourth­

order Runge-Kutta algorithm.

This algorithm was tested using a step size of both

H = 0.001 and H = 0.01. There was no difference in output

·between the different step sizes therefore, a step size

of H = 0.01 was used in the final design.

11

Algorithm Verification

An extensive amount of time was spent to assure that

the algorithm solved the set of differential equations

correctly. Two different methods were used to verify the

results. The first method consisted of generating a TUTSIM

(APPLIED i 1985) model to simulate the equations. TUTSIM

is a simulation language that can be used to solve systems

described by differential equations or sets of differential

equations. The TUTSIM model is contained in Figure 2. The

second method consisted of assigning a set of known

parameters and initial conditions and solving the

differential equations. This equation was then used to

generate the analytical solution. The output from the

analytical solution was compared to the output generated by

the Runge-Kutta algorithm for both the Zl and Z2 state

variables. The results are contained in Table 1 and Table

2 respectively. The output consists of the time value (H),

the two state variables of interest Zl and Z2, the

analytical solution (re) and the difference (dif) between

the state variable, Zl or Z2, and the analytical solution

(re). It was shown that for the compared points the

difference was near zero. For the example contained in

Appendix 1 the following values were assigned:

Model Fila: car.silll
Da~e: 6 I 23 I l986
Time: lo : 29
Ti:liinq: 0.0100000 ,DELTA
PlotBlocks and Scales:
Format:

SlockNo, Plot-MINilllWZl,
Hotz: o 0.0000

Yl: 33 -5.0000
Y2: 32 -5. 0000
YJ:
Y4:

0.0000
0.0000
0.0000
0.0000

400.0000
400.0000

50.0000
50.0000

7.7720
lS.000!+03

7.7720
0.0000
s.oooo

lS.000!+03
0.0000
0.0000

l CON
2 CON
3 CON
4 CON
5 CON
6 CON
7 CON
8 CON
g CON

lO CON
ll SUM
l2 SUM
l3 MOL
l4 MOL
lS MOL
16 MOL
17 MOL
lS MOL
l9 MOL
20 MOL
21 MOL
22 MOL
23 StlM
24 StlM
25 StlM
26 StlM
30 SOM

31 Aft
32 INT
33 INT
34 MOL
35 MOL
36 MOL
37 MOL
38 StlM

39 ATT
40 INT
4l INT
42 MOL
43 MOL
44 MOL
45 MOL

12

4.0000 ,RANGE

Plot-MAX.imum:
4.0000
3.0000
5.0000

Comm ant
Tua
x
XlOOT

;FXl
:FX2
;Bl
;B2
:Xl
;IQ
:Ll
iL2
;M
;I

3 4 ;Bl+B2
s 6 :Xl+K2
4 8 ;B2*L2
3 1 ;Bl*Ll
6 a ;C*Ll
s 7 ;Kl*Ll
2 a ;?'X2*L2
l 7 ;FXl.•Ll
1 l4 ;Bl*Ll**2
a l3 ;B2*L2**2
7 16 il0.*Ll**2
8 lS ;X2*L2**2

l3 -l4 ;B2*L2-Bl*U
lS •l6 :c•u-n•u
19 20 ;Bl*Ll**2+B2*L2**2
2l. 22 :n•u••2+ta•L2••2

l 2 -34
•35 -36 -37

30
31 ;Xl.DO'l'
32 ;X
ll 32 ; (Bl+B2) •XlDOT
l2 33 ; (Xl+K2) *X
23 40 ;(B2*L2-Sl*Ll)*TBE20
24 4l ; (1U*L2-Kl*U) *THE
l7 -is -42

-43 -44 -45
38
39 ;TR!.lDOT
40 ;THE
23 40 ;(Bl*Ll**2+B2*L2**2)
26 4l ; (Xl.*Ll*•2+1U*L2*•2)
23 32 ;(B2*L2-Bl*Ll}*XlOOT
24 33 ; (X2•L2-In*Ll} *X

Figure 2. TUTS IM Model

13

TABLE l

COMPARISON OF CLASSICAL RUNGE-KUTTA
ALGORITHM AND ANALYTICAL SOLUTION (ZlJ

H Zl Re Dif

o.oo 5.0000 5.0000 0.0000
0.10 2.6400 2.6400 0.0000
0.20 -2.2122 -2.2122 0.0000
0.30 -4.9761 -4.9761 0.0000
0.40 -3.0424 -3.0424 0.0000 a.so l.7633 1.7633 0.0000
0.60 4.9044 4.9044 0.0000
0.70 3.4157 3.4157 0.0000 a.so -l.2975 -l.2975 0.0000
0.90 -4.7859 -4.7859 0.0000
l.00 -3.7563 -3.7563 0.0000
l.10 0.8193 0.8193 0.0000
l.20 4.6214 4.6214 0.0000
l.30 4.0609 4.0608 0.0000
l.40 -0.3332 -0.3333 0.0001
l.50 -4.4127 -4.4128 0.0000
l.60 -4.3266 -4.3265 0.0000
l.70 -0.1561 -0.1560 0.0001
l.80 4.1618 4.1618 0.0001
l.90 4.5508 4.5508 0.0000
2.00 0.6439 0.6438 0.0001
2.10 -3.8709 -3.8710 0.0001
2.20 -4.7315 -4.7315 0.0000
2.30 -l.1255 -l.1254 0.0001
2.40 3.5430 3.5431 0.0001
2.50 4.8669 4.8668 0.0000
2.60 l.5963 l.5962 0.0001
2.70 -3.1812 -3.1813 0.0001
2.80 -4.9556 -4.9556 0.0000
2.90 -2.0518 -2.0517 0.0001
3.00 2.7889 2.7890 0.0001
3.10 4.9968 4.9969 0.0000
3.20 2.4877 2.4876 0.0001
3.30 -2-. 3698 -2.3700 0.0001
3.40 -4.9902 -4.9903 0.0000
3.50 -2.8998 -2.8997 0.0001
3.60 l.9281 l.9283 0.0002
3.70 4.9358 4.9359 0.0000
3.80 3.2841 3.2839 0.0001
3.90 -l.4679 -l.4681 0.0002
4.00 -4.8342 -4.8342 0.0001

14

TABLE 2

COMPARISON OF CLASSICAL RUNGE-KOTTA
ALGORITHM AND ANALYTICAL SOLUTION (Z2]

H Z2 Re Dif

a.co 0.0000 0.0000 0.0000
0.10 -43.0808 -43.0808 0.0000
0.20 -45.4927 -45.4926 0.0000
0.30 -4.9588 -4.9587 0.0001
0.40 40.2562 40.2563 0.0001
a.so 47.4688 47.4687 0.0001
0.60 9.8701 9.8699 0.0003
0.70 -37.0461 -37.0463 0.0002
0.80 -48.9902 -48.9902 0.0001
0.90 -14.6869 -14.6865 0.0004
l.00 33.4811 33.4814 0.0004
l.lO 50.0424 50.0424 0.0000
l.20 19.3630 19.3625 o.ooos
l.30 -29.5954 -29.5959 o.ooos
l.40 -50.6153 -50.6153 0.0000
l.SO -23.8536 -23.8531 0.0006
l.60 25.4262 25.4269 0.0007
l.70 50.7033 50.7034 0.0001
l.80 28.1158 28.1151 0.0006
l.90 -21.0135 -21.0143 0.0008
2.00 -50.3057 -50.3059 0.0002
2.10 -32.1086 -32.1079 0.0007
2.20 16.3995 16.4004 0.0010
2.30 49.4262 49.4265 0.0003
2.40 35.7939 35.7932 0.0007
2.50 -ll.6284 -ll.6295 O.OOll
2.60 -48.0733 -48.0737 0.0005
2.70 -39.1363 -39.1356 0.0007
2.80 6.7459 6.7472 0.0013
2.90 46.2599 46.2605 0.0006
3.00 42.1038 42.1031 0.0007
J.lO -l.7989 -l.8003 0.0014
J.20 -44.0034 -44.0042 0.0008
3.30 -44.6681 -44.6675 0.0006
3.40 -3.1655 -3.1639 0.0015
3.50 41.3254 41.3264 0.0010
3.60 46.8044 46.8039 0.0005
3.70 8.0994 8.0978 0.0016
3.80 -38.2516 -38.2528 0.0012
3.90 -48.4925 -48.4921 0.0004
4.00 -12.9558 -12.9541 0.0017

Fxl = Fx2 = o

Kl = K2 = 400

Zl[O] = 5

Bl = B2 = 0

Ll = L2 = 50

Z2[0] = Z3[0] = Z4[0] =O

With the above parameters it can be shown that

X(t) = 5 *COS [(Kl+ K2)/M] * t

15

is a solution to the second-order differential equation for

X with the given initial conditions.

The above equation was used to generate the

analytical values for the Zl state variable that was then

compared to the Zl output from the classical Runge-Kutta

algorithm. Tc compare the output for the Z2 state variable

we need the first derivative cf the above equation. The

first derivative results in the following equation:

X(t) = - 5 * [(Kl+ K2)/M] *SIN [(Kl+ K2)/M] * t

This equation was used to generate the analytical

values for the Z2 state variable that were compared to the

Z2 values generated by the classical Runge-Kutta algorithm.

The above choice cf parameters and initial conditions

were selected because they describe a system that is

oscillatory and will never achieve steady state. It was

felt that after an extended period of time, if the

analytical solution still agreed with the output of the

Runge-Kutta algorithm then the algorithm was correctly

solving the set of differential equations.

16

The second method for the algorithm verification

consisted of generating a TUTSIM simulation program and

comparing the output of the TUTSIM simulation to the output

of the Runge-Kutta algorithm. The two differential

equations defined in the problem description section were

used to generate a TUTSIM block diagram. The block diagram

was converted to the TUTSIM model contained in Figure 2.

The TUTSIM simulation output in Table 3 was generated using

the TUTSIM program in Figure 2. The program used the same

set of parameters and the same set of initial conditions

that were used in the analytical solution. The output of

the TUTSIM simulation was similiar to the output of the

Runge-Kutta algorithm. The difference was as much as .04.

This means that the TUTSIM output was also different from

the analytical solution by as much as .04. The outputs

were reasonably close and the TUTSIM output was considered

additional verification of the classical Runge-Kutta

solutions. The TUTSIM model was run using a step size of

both H = 0.001 and H = 0.01. The TUTSIM output is included

in Table 3.

Runge-Kutta-Gill Algorithm

The Runge-Kutta-Gill algorithm was the second

numerical method tried. This method is similiar to the

.classical approach with the differences being the weight

factors assigned to the intermediate slopes. The algorithm

TABLE 3

TUTSIM OUTPUT
Modal Fila: car.Sim
Cata: 5 I 23 / 1986
Time: lS 30
Timinq: 0.0100000 ,O~A
PlotBlocks and Scales:
ror:nat:

Block.No, Plot-MINimum,
Horz: o o. 0000

.
I 4.0000

Plo'C-MAXimwn.;
4.0000

,RANGE

Comment
Time

Yl: 33 -5.0000 5.0000
5.0000

; x
Y2: 32 -5.0000
YJ:
Y4:

0.0000
0.1000000
0.2000000
0.3000000
0.4000000
o.soooooo
0.6000000
0.7000000
0.8000000
0.8999990
0.9999990
1.1000
l.2000
l.3000
l.4000
l.5000
l.6000
l.7000
l.8000
l.9000
2.0000
2.1000
2.2000
2.JOOO
2.4000
2.5000
2.6000
2.1000
2.aooo
2.9000
3.0000
J.lOOO
J.2000
J.JOOO
J.4000
J.5000
3.6000
J.7000
J.aooo
J.9000
4.0000

5.0000
2.6379

-2.2619
-S.Oll7
-2.9932

l.8750
4.9614
3.3275

-l.4741
-4.8754
-3.6385

l.0619
4.7542
3.9238

-0.6414040
-4.5987
-4.l8l4
0.2l560l0
4.4098
4.4094
0.2124470

-4.1890
-4.6060
-0.6396580

3.9376
4.7698
l.0629

-3.6576
-4.8997
-l.4793

3.3508
4.9945
l. 8856

-3.0l94
-5.0536
-2. 2791

2.6658
5.0764
2.6569

-2.2925
-5.0628

0.0000
-43.4192
-45.5661
-4.3478
4l.0306
47.3839

8.6442
-38.3432
-48.8640
-ll.8855

35.3759
49.9954
l7.04ll.

-32.1494
-50.7692
-21.0809

28.6866
51.1793
24.9757

-25. 0120
-51.2222
-28.6974

2l..l516
50.8971
32.2187

-l7.l330
-~0.2055
-35.5142

12.9847
49.l520
JS.5597
-8.7365

-47.7436
-41. 3331

4.4185
45.9897
43.8139
-0.0617771

-43.9023
-45.9837
-4.3025

.
I

Xl.OOT

17

18

used to find the state variable Zl was defined as follows:

KlZl = Z2[i]

K2Zl = Z2[i] + 0.5*H*KlZ2

K3Zl = Z2[i] + c3*H*KlZ2 + cl*H*K2Z2

K4Zl = Z2[i] - (1 I SQRT(2))*H*K2Z2 + c2*H*K3Z2

Zl[i + l] = Zl[i] + (H/6)*[K1Zl + 2*cl*K2Zl +

where

cl= 1 - (1 / SQRT(2))

c2 = 1 + (1 / SQRT(2))

c3 = - 0.5 + (1 / SQRT(2))

2*c2*K3Zl + K4Zl]

The PASCAL program used to run the Runge-Kutta-Gill

algorithm is contained in Appendix 1. The same

verification methods used to verify the classical

Runge-Kutta algorithm were used to verify the Runge-Kutta­

Gill algorithm. The results were similiar to the

results obtained by the classical method and are contained

in tables 4 and 5. Therefore, for reasons that are

discussed in a later section, the classical Runge-Kutta

algorithm was decided upon as the algorithm to solve the

set of four first-order differential equations.

19

TABLE 4

COMPARISON OF RUNGE-KUTTA-GILL
ALGORITHM AND ANALYTICAL SOLUTION [Zl]

H Zl Re Dif

a.co 5.0000 5.0000 0.0000
0.10 2.6400 2.6400 0.0000
0.20 -2.2122 -2.2122 0.0000
0.30 -4.9761 -4.9761 0.0000
0.40 -3.0424 -3.0424 0.0000
a.so l.7633 l.7633 0.0000
0.60 4.9044 4.9044 0.0000
0.70 3.4157 3.4157 0.0000
a.so -1.2975 -l.2975 0.0000
0.90 -4.7859 -4.7859 0.0000
l.00 -3.7563 -3.7563 0.0000
l.10 0.8193 0.8193 0.0000
1.20 4.6214 4.6214 0.0000
l.30 4.0609 4.0608 0.0000
l.40 -0.3332 -0.3333 0.0001
l.SO -4.4127 -4.4128 0.0000
l.60 -4.3266 -4.3265 0.0000
l.70 -0.1561 -0.1560 0.0001
l.80 4.1618 4.1618 0.0001
l.90 4.5508 4.5508 0.0000
2.00 0.6439 0.6438 0.0001
2.10 -3.8709 -3.8710 0.0001
2.20 -4.7315 -4.7315 0.0000
2.30 -1.1255 -l.1254 0.0001
2.40 3.5430 3.5431 0.0001
2.50 4.8669 4.8668 0.0000
2.60 1.5963 l.5962 0.0001
2.70 -3.1812 -3.1813 0.0001
2.80 -4.9556 -4.9556 0.0000
2.90 -2.0518 -2.0517 0.0001
3.00 2.7889 2.7890 0.0001
3.10 4.9968 4.9969 0.0000
3.20 2. 4877. 2.4876 0.0001
3.30 -2.3698 -2.3700 0.0001
3.40 -4.9902 -4.9903 0.0000
3.50 -2.8998 -2.8997 0.0001
3.60 l.9281 l.9283 0.0002
3.70 4.9358 4.9359 0.0000
3.80 3.2841 3.2839 0.0001
3.90 -l.4679 -l.4681 0.0002
4.00 -4.8342 -4.8342 0.0001

20

TABLE 5

COMPARISON OF RUNGE-KUTTA-GILL
ALGORITHM AND ANALYTICAL SOLUTION [Z2]

H Z2 Re Dif

o.oo 0.0000 0.0000 0.0000
0.10 -43.0808 -43.0808 0.0000
0.20 -45.4927 -45.4926 0.0000
0.30 -4.9588 -4.9587 0.0001
0.40 40.2562 40.2563 0.0001
a.so 47.4688 47.4687 0.0001
0.60 9.8701 9.8699 0.0003
0.70 -37.0461 -37.0463 0.0002
0.80 -48.9902 -48.9902 0.0001
0.90 -14.6869 -14.6865 0.0004
l.00 33.4811 33.4814 0.0004
l.10 50.0424 50.0424 0.0000
l.20 19.3630 19.3625 0.0005
l.30 -29.5954 -29.5959 0.0005
l.40 -50.6153 -50.6153 0.0000
l.50 -23.8536 -23.8531 0.0006
l.60 25.4262 25.4269 0.0007
l.70 50.7033 50.7034 0.0001
l.80 28.1158 28.1151 0.0006
l.90 -21.0135 -21.0143 0.0008
2.00 -50.3057 -50.3059 0.0002
2.10 -32.1086 -32.1079 0.0007
2.20 16.3995 16.4004 0.0010
2.30 49.4262 . 49. 4265 0.0003
2.40 35.7939 35.7932 0.0007
2.50 -ll.6284 -ll.6295 0.0011
2.60 -48.0733 -48.0737 0.0005
2.70 -39.1363 -39.1356 0.0007
2.80 6.7459 6.7472 0.0013
2.90 46.2599 46.2605 0.0006
3.00 42.1038 42.1031 0.0007
3.10 -1.7989 -1.8003 0 .. 0014
3.20 -44.0034 -44.0042 0.0008
3.30 -44.6681 -44.6675 0.0006
3.40 -3.1655 -3.1639 0.0015
3.50 41.3254 41.3264 0.0010
3.60 46.8044 46.8039 0.0005
3.70 8.0994 8.0978 0.0016
3.80 -38.2516 -38.2528 0.0012
3.90 -48.4925 -48.4921 0.0004
4.00 -12.9558 -12.9541 0.0017

CHAPTER III

COMPUTER GRAPHICS

Three different graphics packages were investigated

before deciding on the TURBO TOOLBOX graphics package. The

three packages were LENIPEN, TURBO PASCAL and the TURBO

PASCAL TOOLBOX.

LENIPEN

The LENIPEN package consists of software that allows

drawing in a free hand style of pictures on the video

terminal~ The LENIPEN package was designed to interface

directly with the BASIC software package purchased with the

IBM AT. The LENIPEN package could save the graphic screen

in a binary file that could be redisplayed using standard

BASIC commands (BSAVE, BLOAD). The research was

intended to be designed using the TURBO PASCAL language.

In order to use LENIPEN with the TURBO PASCAL language, a

program to read and display the binary file stored using

BASIC was required. This was considered a minor task.

Therefore, the LENIPEN package was investigated further.

The automobile animation design required the ability

to redisplay an automobile depending on the X and TH values

calculated by the Runge-Kutta algorithm. To perform this

21

22

animation the current automobile position must be known and

the new position must be calculated. The LENIPEN package

easily allowed whole screens or "windows" to be saved as

binary files. The original intent for LENIPEN was to draw

the car in different positions and then save the various

displays to different binary files. This process would

only allow a discrete number of new car positions to be

drawn. This was unacceptable for the chosen design. A

possible alternative for performing the automobile

animation using LENIPEN was to determine on a pixel-by­

pixel basis where every point was within the binary file

and then change the binary value to either draw or undraw

the automobile. The amount of time and effort involved in

this task was considered too extensive; therefore, an

alternate approach was desired.

The LENIPEN software also contained a package called

LENIMATION. This package allowed the user to use the

screen for animation. This was similiar to what was

required by this design. Therefore, the LENIMATION package

was investigated. It was determined that the LENIMATION

package would take a finite number of user drawn screens

and display them at an interval defined by the user. The

set of screens was repeated as many times as desired.

This method would be acceptable for animating a bird in

flight where the bird was required to be shown in only a

23

finite number of positions and then repeated. A flying

bird could be animated by displaying the bird with

approximately six different wing and body positions. These

six screens would be displayed in sequence an infinite

number of times. In the vehicle suspension system the

number of different automobile positions was infinite.

Therefore, the entire LENIPEN package was no longer

considered a viable option for this design.

TURBO PASCAL Graphics Commands

The next approach was to use the graphics

capabilities of the TURBO PASCAL language. The package

consists of commands to place the screen in graphics mode,

draw line commands, and draw point commands. These

routines, along with a combination of assembly language

routines, could have been used in the design. It was

decided not to use this method because a design goal of

this research report was to use a high-level design

language and a standard off-the-shelf software graphics

package that other graduate students could easily adapt to

future research reports or thesis work. Therefore, the

TURBO TOOLBOX package was chosen as the graphics software

for the design.

24

TURBO TOOLBOX Package

The graphics design goal was to display an automobile

as accurately and quickly as possible depending on the

calculated X and TH positions. The automobile was defined

by nineteen (19) pairs of X-Y points. Figure 3 shows the

19 X-Y points and their location on the automobile. The

wheels and inner wheels (hubcaps) were defined by 109 and

52 pairs of X-Y points respectively. The WHLX, WHLY, HUBX

and HUBY arrays were the wheel X and Y points and the

hubcap X and Y points and are defined in the software

listing contained in Appendix 2.

Standard TURBO TOOLBOX graphics. routines were used to

display the headings and borders that are contained on the

graphics screen. A modified drawline procedure was used to

draw the lines between the X-Y points. A new X and TH

value was calculated from the Runge-Kutta algorithm. These

new values could both rotate and translate the automobile's

initial position. A capability was needed to perform both

operations simultaneously and then redisplay the new

position. The following equations when appled to all 19

X-Y points would accomplish both functions.

Pxl = centerx + cos(TH) * (Pxl[O] - centerx)

- sin(TH) * (Pyl[O] - centery)

Pyl = centery + X + sin(TH) * (Pxl[O] - centerx)

+ cos(TH) * (Pyl[O) - centery)

2

1

3

19

Figure 3.

17

1S 11

9

10

25

X-Y Data Points (19) that Define the Automobile

26

The values centerx and centery were the center point

of the automobile and the values Pxl[O], Pyl[O] were the

initial values for the automobile xl, yl point. The

rotation was about the center of the automobile and was

performed by adding and/or subtracting the sine and cosine

values of the new angle TH from the initial points. When

the angle was equal to zero no rotation was performed which

was the expected result. The translation was in the

vertical direction and was accomplished by adding the new

value X to the original Y value. For the above equations

the following directions were defined and pertain to the

graphic display. A positive TH rotated the automobile in a

counter clockwise direction. A positive X value lowered

the automobile closer to the road surface.

Graphics Animation

The animation was performed by first drawing the

automobile in RAM memory and then swapping the RAM memory

into the video display area. The initial automobile was

drawn using the user defined ititial conditions set on the

two state variables Zl [X] and Z3 (TH]. The automobile was

then undrawn by either clearing the RAM memory or by first

setting the background color to black and then redrawing

the lines using the previous set of 19 X-Y points. The

automobile was then displayed in its new position by first

calculating the 19 new X-Y points using the new X and TH

27

values and then drawing the lines to connect the points.

The RAM ~emery was agian swapped into the video display

area. This process was repeated for as long as desired and

gave the impression of continuous movement.

The procedure of having the new X and TH values drive

the animation was one of two methods studied.

An alternate approach was tried where the X and TH

data points of the Runge-Kutta algorithm were stored in a

file until the simulation reached a steady state or N

number of data points were calculated. The steady state

condition was assumed when both the old and new X and TH

values differed by .0001 respectively. N was defined as

3000 points. This method had its advantages and

disadvantages over the chosen approach. The advantage of

this method was a faster animation, because all the X and

TH points were already calculated and the only overhead in

the animation process was in the· drawing and undrawing the

lines that outline the automobile. It was later determined

that the actual Runge-Kutta algorithm was not a

significant factor in the animation process. This is left

for discussion in the next section.

A disadvantage to this approach was the simulation

was now a two-step approach, collecting the data

and then performing the animation. A second

28

disadvantage was in trying to display an oscillating system

for an extended period of time. In the oscillating system

the calculation of 3000 data points was time-consuming and

required the user to wait before the animation could be

displayed. This was considered unsatisfactory.

The second disadvantage resulted when the system had

no damping, Bl = B2 = o. In this situation the system

would oscillate forever and never reach steady state. The

chosen number of data points, 3000, allowed the animation

to run for a long time, but a mechanism was needed to

allow the animation to run forever. These two

disadvantages along with determining the math did not

add a significant amount of overhead resulted in deciding

upon the first approach for the final design.

In addition to the software animation, plots were

desired of all state variables versus time and the phase

plots Xdot versus X and THdot versus TH. This was

accomplished using the DRAWAXIS and DRAWPOLYGON procedures

contained within the TURBO TOOLBOX package. It was a

matter of supplying the two plotted data points in an array

to the DRAWPOLYGON procedure. The design defines five

arrays of 800 points each to store the first 800 calculated

points for time, Zl, Z2, Z3 and Z4. The two desired plot

values were used to build an array A that was passed to

DRAWPOLYGON for plotting. It was decided that

29

800 points was sufficient amount of data to generate plots

that accurately described the system.

CHAPTER IV

SOFTWARE OPTIMIZATION

The optimum design was having the graphics emulate

the automobile in real time. This means that if the set of

parameters chosen would reach steady state in N seconds

then the graphical display would be at steady state in N

seconds. This was the design goal.

The graphics software was designed using two

different methods. The first method consisted of using the

math algorithm output for the new X and TH values to

directly drive the animation process. The second method

consisted of saving the X and TH data in files and then

using this data in the animation process after the

simulation reached steady state or 3000 data points were

calculated depending on which occurred first. This design

was considered because it was first believed that the math .

algorithm was a time-consuming process. It was eventually

determined that the math algorithm added ·a minimal amount

of overhead to the animation process. This was determined

by running the animation with no math algorithm and two

hard coded values for x. It was noted that this animation

process took as much time as an animation using the math

30

algorithm. It was determined that a large amount of time

was spent in the drawing, swapping, undrawing and then

swapping portion of the animation. Therefore, a

considerable amount of time went into attempting to

optimize the graphics portion of the software.

Math Algorithm Selection

31

As stated previously, two different Runge-Kutta

algorithms were tested. A comparison of their outputs

contained in tables 1 and 4 indicate that the algorithms

have identical outputs. The difference between the two

algorithms was that the Runge-Kutta-Gill algorithm had

additional math calculations in the calculation of the K3

and K4 terms along with the Z[i+l] term. This additional

math overhead was considered unnecessary considering that

the outputs were identical. It was for this reason that

the classical Runge-Kutt.a algorithm was chosen as the

algorithm to calculate the new X and TH values.

Modified TURBO TOOLBOX Commands

The TURBO TOOLBOX commands CLEARSCREEN and COPYSCREEN

were used in the initial design of the· graphics display.

The TOOLBOX software was investigated and it was determined

that the CLEARSCREEN command was a procedure that consisted

of the TURBO PASCAL FILMEM command. This command will

write into memory a user-specified value. In the TOOLBOX

32

software the FILMEM command stored zeroes in memory. The

zeroes, when displayed, will clear the screen. The

COPYSCREEN command is a procedure that consists of the

TURBO PASCAL MOVEMEM command. This command moves a block

of memory from one address to another address. The

procedure was used to copy data from the RAM memory into

the video display area. This data was then displayed on

the screen. The automobile was limited to where it could

be displayed on the screen. It could never be displayed

below the road surface. It also could not be lifted above

a point that was twenty-five (25) inches above its steady

state position. Therefore, only about one-fourth of the

screen changed when the car was redrawn. It was decided to

use the FILMEM and MOVEMEM commands and only clear or copy

one-fourth of the screen. This was a considerable time

savings and increased the animation speed considerably.

The FILMEM command was chosen to clear the memory to undraw

the car instead of changing the background color to black

and then using DRAWLINEDIRECT to undraw the car because it

was determined to be faster. This was determined by using

both methods to undraw the car using the video display area

only.

The DRAWLINE procedure was also investigated. It was

determined that only a portion of this procedure was

actually required by the graphics in this project. The

33

additional software was considered overhead and

unnecessary. Therefore, a portion of the DRAWLINE

procedure was condensed and placed in the main software

package. The new procedure was called DRAWLINEDIRECTT and

was used to draw all the lines outlining the automobile.

The wheels were first drawn using the DRAWCIRCLE

procedure. There were two problems when using this

procedure. The first problem was the time it takes to draw

a circle using this procedure. Four different circles were

needed every time the automobile was redrawn. Therefore,

this procedure added a considerable amount of time to the

animation process. The second problem was in trying to

draw the wheels when the top portion should be hidden by a

fender. The TOOLBOX procedure only allowed a full circle.

Therefore, a different procedure was needed to draw the

wheels. A pixel-by-pixel outline of the tire was designed

and the X-Y points are stored in the WHL, HUB arrays. The

DP (drawpoint) TOOLBOX procedure was then used to draw the

four circles. This method was much quicker than the

DRAWCIRCLE procedure and easily allowed for drawing any

desired portion of the wheel. The wheels were shown

disappearing into the fenders by not drawing the points if

the Y value from the array was less than the points Pyl7

for the front wheel or Pyl2 for the rear wheel. This was

34

accomplished using the DRAWWHEEL and DRAWHUB procedures in

the main software body.

Considerations for Displaying Automobile

Another consideration in speeding up the animation

was how often the automobile should be displayed. It was

determined that the user could visualize a single pixel

change in the automobiles position. Therefore, the

automobile was redisplayed only when it was determined that

it had changed by at least one pixel. The entire

automobile could not be checked and so two points were

determined to be the guiding factors for the single pixel

change. These two points were chosen as the bottom front

point Pyl9 and the bottom rear point PylO. The initial

PylO and Pyl9 points were calculated using the initial

conditions on Zl [X] and Z3 [TH] and stored as OLDPYlO and

OLDPY19. The math algorithm was then run to generate the

new X and TH values. These new values were used to

calculate PylO and Pyl9. The new PylO and Pyl9 values were

compared to the old values and if the absolute difference

was greater than or equal to one (1) the automobile was

redrawn and the new values for PylO and Pyl9 were stored

for the next comparison. A similiar approach was used to

ensure that the automobile was never displayed if it was

above or below a certain value. The bottom points PylO and

Pyl9 were compared to the value for the road surface. If

35

the values would place the automobile below the road

surface the car was not redisplayed. The top points Py5

and Py6 were compared to a point that was twenty five

pixels above their initial values. The automobile was not

redisplayed if the values for Py5 or Py6 would place the

automobile outside this window.

CHAPTER V

RESULTS

An example of the output from this research report is

contained in this section. This specific example was

chosen to show the effects of initial conditions on the

solution to the system equations. The parameter values

were selected such that the two second-order differential

equations were non-coupled. This was achieved by selecting

Bl = B2 = 5, Kl = K2 = 400, and Ll = L2 = 50. With this

set of parameters the solution for X was not dependent on

the solution for TH and the solution for TH was not

· dependent on the solution for x. The Bl = B2 = 5 parameter

was chosen because the desired output was to achieve steady

state after at least 700 data points were collected. This

was desired for better plots.

The initial conditions were selected on the X [Zl]

and TH [Z3] values such that the car was displaced 14

inches closer to the road, X(O) = 14, and with an initial

angle of 4 degrees, TH(O) = 4/57.3, in the counter­

clockwise direction. The positive X direction is down or

closer to the road and the positive TH direction is

36

counter-clockwise or the front end is closer to the road.

The parameter values for this example are contained in

Figure 4.

37

This set of initial conditions on X and TH positions

the front end of the automobile below the road surface.

This position cannot be displayed and an error message was

displayed. The error message is DISPLAY LIMIT EXCEEDED.

This message was not removed until the automobile was

within the display limits. The limits were defined as the

road surface and twenty-five inches above the starting

center point. The error message was displayed whenever the

automobile was calculated as being beyond the display

limits. Sample animation outputs are contained in Figure 5

and Figure 6.

The simulation/animation was allowed to run and

collect at least 700 data points for the plots. The plot

contained in Figure 7 is X versus TIME and shows X starting

with an initial condition of X = 14 and eventually reaching

a steady state value of X = o. A similiar plot of TH

versus TIME is contained in Figure 9. In Figure 9 the TH

value starts with an initial condition of TH = 4 and

eventually reaches a steady state value of TH = O. The

system exponentially decays in both plots due to the

damping constants Bl and B2. The plots of Xdot and THdot

are included as Figure 8 and Figure 10 respectively. Both

38

plots start from initial conditions of zero and both

eventually reach a steady state of zero. This was expected

because the initial conditions on Xdot and THdot were zero.

The phase plots X versus Xdot and TH versus THdot are

contained in Figure 11 and Figure 12 respectively. Both

plots spiral into the origin from the associated initial

condition. This was the expected result for a system that

achieves a steady state condition of X = O and TH = o when

starting from non zero initial conditions for X and TH.

The numerical output in Table 6 is printed and

displays the first 350 collected data points in H = .1

increments.

39

This section allows you to change certain variables used
in the automobile simulation. The following .variables and
their values are changeable (units are in ()] :

a·: NO CHANGES REQUIRED
1: Fxl (force on rear (lbs) (-1500 to 1500])=
2: Fx2 (force on front(lbs) (-1500 to 1500])=
3: Bl(dmping cnst rear(lb-sec/in) (O to 500])=
4: B2(dmping cnst frnt(lb-sec/in) (0 to 500])=
5: Kl{spring const rear (lb/in) [10 to 1000])=
6: K2(spring const frnt (lb/in) (10 to 1000])=
7: Ll (center to rear (in) (10 to 75])=
8: L2 (center to front (in) (10 to 75])=
9: M (auto mass (lbs) (1500 to 4000])=

10: X(O) (x init cond (in) (-25 to 15])=
11: XDOT(O) (x dot init cond (in/sec) =
12: T (o) (theta init cond (deg) (-4 to 4]) =
13: THEDOT(O) (theta dot init con) =
14: CLEAR ALL INITIAL CONDITIONS

a.co
o.oo
5.00
5.00

400.00
400.00

50.00
so.co

3000.00
14.00

0.00
4.00
a.co

J (moment of inertia) = 15608.81

ENTER SELECTION AND RETURN >

Figure 4. Case 1 Parameter Selection Menu

40

Dyna.Mic SysteMS Analysis ot Vehicle Suspension SysttM

DISPIAY LIMIT llC!IDID

TIPIE: 1.11 X: ?.66 THl.lA: 1.81

Figure 5. Case l Automobile Exceedinq Display Limit

41

Dyna.tic SysteMS Analysis ot Uehicle Suspension SysteM

TIME: 1.77 X: 1.83 THl.'TA: ·1.51

Fiqure 6. Case l Automobile

42

10

0.

o.n ua 3 JC t%0 5.0~ 5.H

Fiqure 7. Case l Plot of X versus TIME

43

10 '

o.n UI t.S2 •.20 S.H S.tl 7.SC

Fiqure a. Case l Plot of Xdot versus TIME

•.17

...
2.S

J .3

. f~r ~; tH£in u~ iir.£ .

5 .OU+-...---.-.-....---..-..--...-....---.-..-...,.....,.~,.....,......,......,.-,.....,..--
0 .00 o.n UI %.S2 JJC t20 s.n s.u C.72

Figure 9. Case l Plot of TH versus TIME

44

45

.-=..----~·--------·--~-----------==---===-----=-=-----------10

J.'7

O.H t.ct •.%0 $.H S.H SJ2

Fiqure 10. Case 1 : Plot of THdot versus TIME

7.SC

46

- . f.&.Q i ilr noot ui x

10 '

·1. tt ·0 .11 ·0 .SS ·0 .n O.OI OJ! 0.71 1.03 t.n 10 1

Figure ll. Case l Plot of Xdot versus X

10

J.'7

J.H

•.1,1~.,... -P-~__,.....,. ~~~~:;:=~:.-...... ...-................. -
·5.00 •J .!S ·2.U ·1.H ·0 .'9 O.H U2 2.J1 Ut ... ,

Figure 12. Case l Plot of THdot versus TH

47

TABLE 6

CASE l NUMERIC OUTPUT

SIMULATION HARDCOPY OUTPUT

Fxl = 0.0
Kl = 400.0

Fx2 s 0.0 Bl a S.O B2 ~ S.O

H

o.oo
0.10
0.20
0.30
0.40
a.so
0.60
0.70
0.80
0.90
1.00
1.10
1.20
l.30
1.40
1.50
l.60
1.70
1.80
l.90
2.00
2.10
2.20
2.30
2.40
2.so
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.40
3.SO

K2 m 400.0 Ll ~ SO.O

Zl

14.00
7.66

-4.70
-11.40
-7.20

2.88
9.19
6.60

-1.52
-7.31
-5.93

0.54
5.75
5.24
0.14

-4.46
-4.56
-0.61

3.40
3.92
0.90

-2.55
-3.32
-1.06

1.87
2.79
1.13

-1.33
-2.32
-1.13

0.92
1.90
1.08

-0.60
-1.54
-1.01

Z2

o.oo
-113.19
-112.45
-12.19

86.77
96.91
19.99

-6S.36
-82.50
-24.49

48.21
69.43
26.59

-34.64
-57.78
-26.95

24.03
47.57
26.13

-lS.87
·-38.74
-24.53

9.69
31.20
22.47
-5.11

-24.83
-20.18

1.79
19.52
17.82

O.S4
-15.13
-15.Sl
-2.10
ll.5S

Z3

4.00
1.81

-1.98
-3.11
-0.77

2.04
2.26
o.os

-1.89
-l.S3

0.40
1.62
0.94

-0.64
-1.31
-0.48

0.73
0.99
0.16

-0.72
-0.70

0.06
0.64
0.46

-0.19
-0.54
-0.27

0.25
0.42
0.12

-0.26
-0.31
-0.02

0.2S
0.21

-0.04

L2 = 50.0

Z4

o.oo
-37.88
-29.89

8.69
32.32
18.10

-13.2S
-25.88
-9.13
14.84
19.50

2.74
-14.45
-13.73

1.47
12.86
8.90

-3.94
-10.69
-5.08
5.10
8.35
2.24

-S.34
-6.13
-0.28
5.00
4.19

-0.96
-4.32
-2.60

1.63
3.50
1.37

-1.90
-2.67

48

CHAPTER VI

SUMMARY AND CONCLUSIONS

This research report consists of a software program

in a Computer Aided Instruction package designed for the

Dynamics Systems and Control Theory fields for

undergraduate students. The system being described is an

automobile with no horizontal motion. This paper defines

the system equations, the numerical analysis method chosen

to solve the equations and the method used to animate the

output on the video display terminal.

The system is designed so that students can change

any system parameter defined in the system equations and

also change any initial condition on the differential

equations that describe the X and TH values. The solutions

to the system equations are used to drive the animation on

the video display terminal. A student is able to visualize

the automobile's position as the system equations are

solved.

Additional features can be incorporated in this

software project. An additional feature would be allowing
I

for a horizontal motion on the automobile. This would

require a new set of system equations that account for the

49

50

road profile and the velocity of the automobile. The

animation would be changed to show the automobile moving

along a road. Another enhancement could be further

optimization of the graphics software. Currently the

graphics is performed mainly by TURBO TOOLBOX commands. In

some instances these commands could be optimized by using

assembly language routines instead of the TURBO TOOLBOX

commands. This would increase the animation speed.

APPENDIX 1

ALGORITHM VERIFICATION

program classical;
var

fzl,fz2,m,bl,b2,b,kl,k2,k,bll,bl2,bl,kll,kl2,kl : real;
j,ll,12,fxll,fxl2,blsql,blsq2,blsq,klsql,klsq2 : real;
klzl,k2zl,k3zl,k4zl,klz2,k2z2,k3z2,k4z2,klsq : real;
klz3,k2z3,k3z3,k4z3,klz4,k2z4,k3z4,k4z4 : real;
h,tl,t2,t3,t4 : real;
i : integer;
zl array[0 .• 1000] of real;
z2 : array(0 •. 1000] of real;
z3 : array[0 .. 1000] of real;
z4 : array[O •• lOOO]of real;

begin
m := 7.772;
j := 15000.0;
fzl := o.o;
fz2 := o.o;
bl := o.o;
b2 : = 0. 0;
kl : = 400. 0;
k2 : = 400. 0;
11 := 50.0;
12 := 50.0;
zl[O] := 5;
Z2[0] := O;
Z3[0] := O;
z4[0] := O;
b := bl + b2;
k := kl + k2;
bll := bl * 11;
bl2 := b2 * 12;
bl := bl2 bll;
kll := kl * 11;
kl2 := k2 * 12;
kl := kl2 - kll;
fxll := fzl * 11;
fxl2 := fz2 * 12;
blsql := bl * sqr(ll);
blsq2 := b2 * sqr(l2);
blsq := blsql + blsq2;
klsql := kl * sqr(ll);
klsq2 := k2 * sqr(l2);
klsq := klsql + klsq2;
h := 0.01;
i := 0;
repeat .

kl z l : = z 2 [i] ;
klz2 := (l/m)*(fzl+fz2 - (b*z2[i]) - (k*zl[i]) -

(b 1 * z 4 [i]) - (kl * z 3 [i])) ;
klz3 := z4 [i];

52

klz4 := (1/j)*(fxl2-fxll-(blsq*z4[i])-(klsq*z3[i])-
(bl*z2[i])-(kl*zl[i]));

tl := zl[i] + 0.S*h*klzl;
t2 := Z2[i) + 0.5*h*klz2;
t3 := z3[i] · + 0.5*h*klz3;
t4 := z4[i] + 0.5*h*klz4;
k2zl := z2[i] + 0.5*h*klz2;
k2z2 := (l/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl*t3));
k2z3 := z4[i]+0.5*h*klz4;
k2z4 := (l/j)*(fxl2 - fxll - (blsq*t4) -(klsq*t3) -

(bl*t2) - (kl*tl));
tl := zl[i] + 0.5*h*k2zl;
t2 := Z2[i] + 0.5*h*k2z2;
t3 := Z3[i) + 0.5*h*k2z3;
t4 := Z4[i) + 0.5*h*k2z4;
k3zl := z2[i] + 0.5*h*k2z2;
k3z2 := (1/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl*t3));
k3z3 := z4[i] + 0.5*h*k2z4;
k3z4 := (l/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -

(bl*t2) - (kl*tl));
tl := zl[i] + h*k3zl;
t2 := Z2[i) + h*k3z2;
t3 := z3[i] + h*k3z3;
t4 := z4[i] + h*k3z4;
k4zl := z2[i] + h*k3z2;
k4z2 := (l/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl*t3));
k4z3 := z4[i] + h*k3z4;
k4z4 := (l/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -

(bl*t2) - (kl*tl));
zl[i+l] := zl[i] + (h/6)*(klzl + 2*k2zl +

2*k3zl + k4zl) ;
z2(i+l] := z2[i] + (h/6)*(klz2 + 2*k2z2 +

2*k3z2 + k4z2);
z3[i+l] := z3[i] + (h/6)*(klz3 + 2*k2z3 +

2*k3z3 + k4z3);
z4[i+l] := z4[i] + (h/6)*(klz4 + 2*k2z4 +

until keypressed;
end.

. 2*k3z4 + k4z4);

53

program gills;
var

54

fzl,fz2,m,bl,b2,b,kl,k2,k,bll,bl2,bl,kll,kl2,kl : real;
j,ll,12,fxll,fxl2,blsql,blsq2,blsq,klsql,klsq2 : real;
klzl,k2zl,k3zl,k4zl,klz2,k2z2,k3z2,k4z2,klsq : real;
klz3,k2z3,k3z3,k4z3,klz4,k2z4,k3z4,k4z4 : real;
h,tl,t2,t3,t4,cl,c2,c3,c4 : real;
i : integer;
zl array(0 •. 2200] of real;
z2 array(0 •. 2200] of real;
z3 array[0 •. 2200] of real;
z4 array[0 .. 2200] of real;

begin
m := 7.772;
j := 15000.0;
fzl := o.o;
fz2 := o.o;
bl : = 0. 0;
b2 : = 0. 0;
kl := 400.0;
k2 : = 400. 0;
11 := 50.0;
12 := 50.0;
zl[O] := 5;
z2[0] := O;
z3[0] := O;
z4(0] := O;
c 1 : = 1/ sqrt (2) ;
c2 := 1 - cl;
c3 := 1 + cl;
c4 := -0.5 + cl;
b := bl + b2;
k := kl + k2;
bll := bl * 11;
bl2 := b2 * 12;
bl := bl2 - bll;
kll := kl * 11;
kl2 := k2 * 12;
kl := kl2 - kll;
fxll := fzl * 11;
fxl2 := fz2 * 12;
blsql := bl * sqr(ll); ·
blsq2 := b2 * sqr(l2);
blsq := blsql + blsq2;
klsql :=kl* sqr(ll);
klsq2 := k2 * sqr(l2);
klsq := klsql + klsq2;
h := 0.01;
i := 0;

55

repeat
klzl ·-.- z2 [i] ;
klz2 ·-.- (l/m)*(fzl+fz2 - (b*z2[i]) - (k*zl[i]) -

(b 1*z4 [i]) - (kl* z 3 [i])) ;
klz3
klz4

·-.-·-.-
z4[i];
(l/j)*(fxl2-fxll-(blsq*z4[i])-(klsq*z3[i])-

(bl*z2[i])-(kl*zl[i]));
tl := zl(i] + 0.5*h*klzl;
t2 := Z2(i] + 0.5*h*klz2;
t3 := z3[i] + 0.5*h*klz3;
t4 := z4(i] + 0.5*h*klz4;
k2zl := z2[i] + 0.5*h*klz2;
k2z2 := (1/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl*t3));
k2z3 := z4[i]+0.5*h*klz4;
k2z4 := (l/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -

(bl*t2) - (kl*tl));
tl := zl(i] + c4*h*klzl + c2*h*k2zl;
t2 := z2[i] + c4*h*klz2 + c2*h*k2z2;
t3 := z3[i] + c4*h*klz3 + c2*h*k2z3;
t4 := z4[i] + c4*h*klz4 + c2*h*k2z4;
k3zl := z2[i] + c4*h*klz2 + c2*h*k2z2;
k3z2 := (l/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl*t3));
k3z3 := z4[i] + c4*h*klz4 + c2*h*k2z4;
k3z4 := (l/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -

(bl*t2) - (kl*tl));
tl := zl[i] - cl*h*k2zl + c3*h*k3zl;
t2 := z2[i] - cl*h*k2z2 + c3*h*k3z2;
t3 := z3[i] - cl*h*k2z3 + c3*h*k3z3;
t4 := z4(i] - cl*h*k2z4 + c3*h*k3z4;
k4zl := z2[i] - cl*h*k2z2 + c3*h*k3z2;
k4z2 := (l/m)*(fzl + fz2 - . (b*t2) - (k*tl) -

(bl*t4) - (kl*t3));
k4z3 := z4[i] - cl*h*k2z4 + c3*h*k3z4;
k4z4 := (l/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -

(bl*t2) - (kl*tl));
zl[i+l] := zl[i] + (h/6)*(klzl + 2*c2*k2zl +

2*c3*k3zl + k4zl) ;
z2[i+l] := z2[i] + (h/6)*(klz2 + 2*c2*k2z2 +

2*c3*k3z2 + k4z2);
z3(i+l] := z3[i] + (h/6)*(klz3 + 2*c2*k2z3 +

2*c3*k3z3 + k4z3);
z4(i+l] := z4[i] + (h/6)*(klz4 + 2*c2*k2z4 +

2*c3*k3z4 + k4z4);
i := i + l;
until keypressed;

end.

APPENDIX 2

SOFTWARE LISTING

program madrsm;

{ Research Report For Bruce M. Skeldon }

{ Dynamic Vehicle Suspension System }

{ The Following modules are included from the graphics }
{toolbox kit. Refer to manuals for specifics }

{$I typedef .sys}
{$I graphix.sys}
{$I kernel.sys}
{$I axis.hgh}
{$i polygon.hgh}

57

{ The following arrays define the points to draw the wheels
and hubcaps. The WHLXX/WHLYY arrays define the wheels. The
HUBXX/HUBYY arrays define the hubcaps. The arrays were used
to speed up drawing the wheels during the simulation. }

type
whlxx =array [1 •. 109] of integer;
whlyy =array [1 .. 109] of integer;
hubxx =array [1 .• 52] of integer;
hubyy =array [l •• 52] of integer;

var

{ The next set of variables are used in the runga math to }
{define the variables in the equation. }

fzl,fz2,m,bl,b2,b,kl,k2,k,bll,bl2,bl,kll,kl2,kl : real;
j,ll,12,fxll,fxl2,blsql,blsq2,blsq,klsql,klsq2 : real;
klsq,klzl,k2zl,k3zl,k4zl,klz2,k2z2,k3z2,k4z2 : real;
klz3,k2z3,k3z3,k4z3,klz4,k2z4,k3z4,k4z4 : real;
h,hh,tl,t2,t3,t4 : real;

{ Variables used for keyboard inputs , counters }

dif ,adminvalue,newzl : real;
i,admininput : integer;
selection : char;
admininputst: string[2];
adminvaluest: string[6];
noexit,adminexit,exitrunga,drawit : boolean;
increment,count,ptr,ercode : integer;

58

{The following arrays are used to store the math output for
plotting/numeric output. Zl = X , Z2 = Xdot , Z3 = THETA,
Z2 = THETA dot , TM = TIME }

zl array[0 .. 800) of real;
z2 array[0 .. 800) of real;
z3 array[0 .• 800] of real;
z4 array[0 .. 800] of real;
tm array[0 •• 800] of real;

{ This defines the PLOTARRAY needed by DRAWPOLYGON }

a PlotArray;

{ These variables store the maximum value of the associated
arrays. They are used during DRAWPOLYGON to label axis }

zlmax,z2max,z3max,z4max,tmmax : real;

{Arrays of two(2) numbers used during the math calculation
ZZx[O) = ZZx[i] , ZZx[l] = ZZx[i + l] }

zzl : array(O •• l] of real;
zz2 array(O •• l) of real;
zz3 array(O •• l] of real;
zz4 array[O •• l] of real;

{These values are used to speed the recalculation of the
x/y points after the math finds new value.

i.e s5 = sin * 5 }

s5,c5,slO,clO,sl5,cl5,s30,c30,s241,c241,c,s real;

{ These points describe the outline of the car as follows:

{ 5 6 }
{ I \ }
{ I \ }
{ 3 \ 8 }
{2 I 4 centerx 7 \ }

' { I centery I 9}
{l I 17 16 13 12 I }
{ \ I \ I I }
{ 19 18 14 11 10 }

. { }

59

pxl,px2,px3,px4,px5,px6,px7,px8,px9,pxlO : integer;
pxll,pxl2,pxl3,pxl4,pxl5,pxl6,pxl7,pxl8,pxl9 :integer;
pyl,py2,py3,py4,py5,py6,py7,py8,py9,pyl0 :integer;
pyll,pyl2,pyl3,pyl4,pyl5,~yl6,pyl7,pyl8,pyl9 : integer;
centerx,centery : integer;

{ Used to store the previous pyl0/pyl9 values so that you }
{know when to redisplay the car.}

oldpylO,oldpyl9 : integer;

const

{ This defines the x points used to draw the wheels. The }
{ values are added to 160 for the front wheel and 425 for }
{the rear wheel. }

whlx:whlxx=(l,l,2,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,
33,34,35,36,
37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,
52,53,54,55,
56,56,57,57,57,56,56,55,54,53,52,51,50,49,48,
47,46,45,44,
46,45,44,43,42,41,40,39,38,37,36,35,23,22,21,
20,19,18,17,
16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,2,1);

{ This defines the y points used to draw the wheels. The }
{road is at y = 138 }

whly:whlyy=(l26,125,124,123,122,121,120,120,119,119,118,
117,117,117,
116,116,116,115,115,115,115,115,115,115,114,
114,114,114,
114,114,114,114,114,114,114,114,114,115,115,
115,115,115,
115,115,116,116,116,117,117,117,118,119,119,
120,120,121,
122,123,124,125,126,127,128,129,130,l31,132,
132,133,133,
134,135,135,135,136,136,136,137,137,137,137,
137,137,137,
137,137,137,137,137,137,137,137,137,136,136,
136,135,135,
135,134,133,133,132,132,131,130,129,128,127);

{ This defines the x points used to draw the hubcaps. The }
{ values are added to 177 for the front and 443 for the }
{ rear. }

hubx:hubxx=(O,O,l,2,3,4,5,6,7,8,9,lO,ll,12,13,14,15,16,
17,18,19,20,
21,22,23,24,24,24,23,22,21,20,l9,18,17,16,
15,14,13,12,
11,10,9,8,7,6,5,4,3,2,l,O);

{ This defines the y points used to draw the hubcaps }

huby:hubyy=(l26,125,124,123,122,122,121,121,121,121,
120,120,120,120,
120,120,120,121,121,121,121,122,122,123,
124,125,126,127,
128,129,130,130,131,131,l31,l31,l32,l32,
132,132,132,132,
132,131,131,131,131,130,l30,l29,l28,l27);

{This procedure gets a user input from the keyboard and }
{verifies that the entry was a real number (ercode = O) }

procedure getnewvalue;
begin

adminvalue := o.o;
write(' ENTER NEW VALUE> ');
readln(adminvaluest);
val(adminvaluest,adminvalue,ercode);
if ercode > o then
begin

admininput := o
end;

end;

60

{ Must calculat the moment of inertia (j) when L or M is }
{changed }

procedure calculatej;
begin

j := (m/12)*(sqr(ll+l2+50) + sqr(40));
end;

{Only allow external forces in the range -1500 to 1500 LBS
Set invalid inputs to a default of O LBS }

procedure checkrangef;
begin

getnewvalue;
if (adminvalue < -1500) or (adminvalue > 1500) then

adminvalue := O;
if admininput = 1 then

fzl := adminvalue
else

fz2 := adminvalue;
end;

{ Only allow damping constants in the range o to 500 LE­
SEC/IN Set invalid inputs to a default of o LB-SEC/IN }

procedure checkrangeb;
begin

getnewvalue;
if (adminvalue < 0) or (adminvalue > 500) then

adminvalue := O;
if admininput = 3 then

bl := adminvalue
else

b2 := adminvalue;
end;

{ Only allow spring constant values in the range 10 to
1000 LB/IN Set invalid inputs to a default of 5 LB/IN }

procedure checkrangek;
begin

getnewvalue;
if (adminvalue < 10) or (adminvalue > 1000) then

adminvalue := 10;
if admininput = 5 then

kl := adminvalue
else

k2 := adminvalue;
end;

61

{ Only allow lengths from the center of the car to the }
{wheels in the range 10 to 75 IN. Set invalid inputs to a}
{default of 10 IN. }

procedure checkrangel;
begin

getnewvalue;
if (adminvalue < 10) or (adminvalue > 75) then

adminvalue := 10;
if admininput = 7 then

11 := adminvalue
else

12 := adminvalue;
calculatej;

end;

{ Only allow car weight in the range 1500 to 4000 LBS. Set
invalid inputs to a default of 2500 LBS. Store mass (m)

in slugs (m/386) .}

procedure checkrangem;
begin

getnewvalue;
if (adminvalue < 1500) or (adminvalue > 4000) then

adminvalue := 2500;
m := adminvalue/386;
calculatej;

end;

62

{Only allow Zl[O](x initial condition) in the range -25 to
15 IN. Set invalid inputs to a default of o IN. The }
positive x direction is down }

procedure checkrangel;
begin

getnewvalue;
if (adminvalue < -25) or (adminvalue > 15) then

adminvalue := O;
zl[O] := adminvalue;

end;

procedure checkrange2;
begin

getnewvalue;
if (adminvalue < -25) or (adminvalue > 15) then

adminvalue := O;
z2(0] := adminvalue;

end;

{Only allow Z3[0](theta initial condition) in the range
- 4 to 4 degrees. Set invalid inputs to a default of o
degrees. Convert degrees to radians }

procedure checkrange3;
begin

getnewvalue;
if (adminvalue < -4) or (adminvalue > 4) then

adminvalue := O;
z3(0] := adminvalue/57.3;

end;

procedure checkrange4;
begin

getnewvalue;
if (adminvalue < -4) or (adminvalue > 4) then

adminvalue := O;
z4(0] := adminvalue;

end;

{ Allow a single entry to clear all initial conditions }

procedure clearinitcon;
begin

zl[O] := O;
z2[0] := O;
z3[0] := O;
z4[0] := O;

end;

63

{Main routine called to change any parameters. Loop asking}
{for new parameter until a o or invalid entry is made. }

procedure admin;
begin

ptr := O;
adminexit := true;
while adminexit do
begin
clrscr;
writeln;
write(' This section allows you to change ');
writeln(' certain variables used');
write(' in the automobile simulation.');
writeln(' The following variables and');
write(' thier values are changable');
writeln(' (units are in()] :');
writeln; '
writeln(' O: NO CHANGES REQUIRED');
write(' 1: Fxl (force on rear (lbs) [-1500 to');
writeln(' 1500])= ',fzl:8:2);
write(' 2: Fx2 (force on front(lbs) (-1500 to');
writeln(' 1500])= ',fz2:8~2);
write(' 3: Bl(dmping cnst rear(lb-sec/in) [Oto');
writeln(' 500])= ',bl:8:2);
write(' . 4: B2(dmping cnst frnt(lb-sec/in) [Oto ');
writeln('500])= ',b2:8:2);
write(' 5: Kl(spring canst rear (lb/in) [10 to ');
writeln('lOOO])= ',kl:8:2);
write(' 6: K2(spring canst frnt (lb/in) [10 to ');
writeln('lOOO])= ',k2:8:2);
write (' 7: Ll (center to rear (in) [10 to') ;
writeln(' 75])= ',11:8:2);
write (' 8: L2 (center to front (in) [10 to') ;
writeln(' 75])= ',12:8:2);
write(' 9: M (auto mass (lbs) [1500 to');
writeln(' 4000])= •,m*386:8:2);
write(' 10: X(O) (x init cond (in) (-25 to');
writeln('l5])= ',zl[O] :8:2);
write(' 11: XDOT(O) (x dot init cond (in/sec) ');

writeln('
write ('
wri teln ('
write('
wri teln ('
writeln ('
writeln;
write ('
wri teln ('
writeln;

64

= ',z2[0] :8:2);
12: T(O) (theta init cond (deg) [-4 to');
4])= ',z3[0)*57.3:8:2);
13: THEDOT(O) (theta dot init con) ');

= I ,z4(Q) :8:2) i
14: CLEAR ALL INITIAL CONDITIONS ');

J (moment of inertia)
= ',j:8:2);

I) ;

write(' ENTER SELECTION AND RETURN> ');
readln(admininputst);

{Get entry from the keyboard and check for noentry (''),
{ o entry or invalid input (ercode). Exit loop on any of}
{ these conditions. }

val(admininputst,admininput,ercode);
if admininputst =''then

adminexit := false;
if admininput = o then

adminexit := false;
if ercode > O then

adminexit := false;

{If an integer was entered use CASE to call the proper
routine }

if adminexit then
begin

case
1
2
3
4
5

admininput of
checkrangef;
checkrangef;
checkrangeb;
checkrangeb;
checkrangek;

6
7 :
8

checkrangek;
checkrangel;
checkrangel;

9
10
11
12
13
14

else

checkrangem;
checkrangel;
checkrange2;
checkrange3;
checkrange4;
clearinitcon;

adminexit := false;
end;

end;
end;

65

end;

{ Need to determine the maximum stored value for all arrays
{to have proper dimensions on the plots. }

procedure calculatemax;
begin

i := 0;
zlmax ·-.- abs(zl[i]);
z2max ·-.- abs(z2[i]);
z3max ·-.- abs (z 3 [i]) ;
z4max ·-.- abs (z 4 [i]) ;
tmmax ·-.- abs(tm[i]);

{Loop from 1 until the number of points saved during the }
{simulation run (ptr max= 800). Store the largest value}

i := 1;
while i < ptr do
begin

if abs(zl[i]) > zlmax then
zlmax := abs(zl[i]);

if abs(z2[i]) > z2max then
z2max := abs(z2[i]);

if abs(z3[i]) > z3max then
z3max := abs(z3[i]);

if abs(z4[i]) > z4max then
z4max := abs(z4[i]);

if abs(tm[i]) > tmmax then
tmmax := abs(tm[i]);

i := i + l;
end;

{Make Zl and Z2 maximum equal to one more than maximum. }
{Convert Z3 and Z4 to radians and store maximum + 1. }

zlmax ·-.- zlmax + l;
z2max ·-.- z2max + l;
z3max ·-.- (z3max)*57.3 + l;
z4max ·- (z4max)*57.3 + l; .-

end;

{ Calculate PLOTARRAY for X vs TIME plot }

procedure pltxt;
begin

while i <= ptr do
begin

a[i+l,l] := tm[i];
a[i+l,2] := zl[i];

i := i + 1;
end;
defineheader(l, 'PLOT OF X VS TIME');
defineworld(l,O,zlmax,tmmax,-zlmax);

end;

{ Calculate PLOTARRAY for Xdot vs TIME plot. }

procedure pltxdt;
begin

while i <= ptr do
begin

a(i+l,1] := tm[i];
a[i+l,2] := z2(i];
i := i + l;

end;
defineheader(l,'PLOT OF Xdot VS TIME');
defineworld(l,O,z2max,tmmax,-z2max);

end;

{ Calculate PLOTARRAY for THETA vs TIME plot. }

procedure pltthetat;
begin

while i <= ptr do
begin

a[i+l,l] := tm[i];
a(i+l,2] := . z3[i]*57.3;
i := i + l;

end;
defineheader(l,'PLOT OF THETA VS TIME');
defineworld(l,O,z3max,tmmax,-z3max);

end;

{ Calculate PLOTARRAY for THETAdot vs TIME plot. }

procedure pltthetadt;
begin

while i <= ptr do
begin

a (i + 1 , 1] : = tm [i] ;
a(i+l,2] := z4[i]*57.3;
i := i + 1;

end;
defineheader(l,'PLOT OF THETAdot VS TIME');
defineworld(l,O,z4max,tmmax,-z4max);

end;

{ Calculate PLOTARRAY for Xdot vs X plot. }

66

procedure pltxdx;
begin

while i <= ptr do
begin

a[i+l,l] := zl[iJ;
a[i+l,2] := z2[iJ;
i := i + l;

end;
defineheader(l, 'PLOT OF Xdot VS X');
defineworld(l,-zlmax,z2max,zlmax,-z2max);

end;

{ Calculate PLOTARRAY for THETAdot vs THETA plot. }

procedure pltthetadtheta;
begin

while i <= ptr do
begin

a[i+l,l] := z3[iJ*57.3;
a[i+l,2] := z4[i]*57.3;
i := i + l;

end;
defineheader(l,'PLOT OF THETAdot VS THETA');
defineworld(l,-z3max,z4max,z3max,-z4max);

end;

67

{ This is the main routine used to draw the various plots }
{ Must first calculate the maximum values stored in the
{arrays for dimensioning. }

procedure pltroutine;
begin

calculatemax;
adminexit := true;

{ The simulation must have been run and stored three }
{ data points before any plotting will take place }

if ptr < 3 then
adminexit := false;

{Loop asking for plot type until o entry or invalid entry }

while adminexit do
begin

clrscr;
writeln;
writeln;
writeln;
writeln;

68

writeln(' The following plots are available : ');
writeln;
writeln (' o NO PLOT DESIRED I) i
writeln(' 1 x vs TIME ') ;
writeln(' 2 Xdot vs TIME ') ;
writeln(' 3 THETA vs TIME ') ;
writeln(' 4 THETAdot vs TIME ') ;
writeln(' 5 Xdot vs x ') ;
writeln (' 6 THETAdot vs THETA ') ;
writeln;
write (' ENTER SELECTION AND RETURN > ') ;
readln(admininputst);

{Get entry from the keyboard and check for noentry (' '), }
{or entry outside the range 1 to 6. Exit loop on any of }
{ these conditions. }

val(admininputst,admininput,ercode);
if admininputst =''then

adminexit := false;
if (admininput < 1) or (admininput > 6) then

adminexit := false;
if adminexit then
begin

{If no errors so far set up graphics and define window }
{plotting. }

entergraphic;
definewindow(l,O,O,xmaxglb,ymaxglb);

{ Use CASE statement to create PLOTARRAY for plots }

1. ·-.-
case

1
2
3
4
5
6

else

O;
admininput of

pltxt;
pltxdt;
pltthetat;
pltthetadt;
pltxdx;
pltthetadtheta;

adminexit := false;
end;

{Select world/window, draw header, drawborder, draw axis, }
{ and draw the plot using a = PLOTARRAY }

selectscreen(l);
selectworld(l);

selectwindow(l);
setheaderon;
drawborder;
drawaxis(s,-s,o,o,o,o,o,o,false);
drawpolygon(a,l,ptr,o,o,o);

{ Loop until keyboard entry causes exit from graphics }

repeat until keypressed;
removeheader(l);
leavegraphic;

end;
end;

end;

{This routine is used to print the variables on the
printer }

procedure hrdcpy;
begin

if ptr > 3 then
begin

adminexit := true;
writeln;
writeln;
write(' INCREMENT NUMBER> ');
readln(admininputst);
val(admininputst,increment,ercode);
if ercode > o then

adminexit := false;
if admininputst =''then

adminexit := false;
if adminexit then
begin

dif := ptr;
i := 0;

69

write(lst,' THIS IS A HARDCOPY OUTPUT');
writeln(lst,' OF THE SIMULATION');
write(lst,' Fxl = ',fzl:3:1,' ');
write(lst,' Fx2 = ',fz2:3:1);
writeln(lst,' Bl= ',bl:4:1,' B2 = ',b2:4:1);
write (1st, ' Kl = ' , kl: 3: 1, ' ') ;
write(lst,K2 = ',k2:3:1);
writeln(lst,' Ll = ',11:4:1,' L2 = ',12:4:1);
count := 3;
repeat

write(lst,' h= •,tm[i]:3:2,' zl= ');
. write(lst,zl[i]:l0:4,' z2= •,z2[i]:l0:4);
write(lst,' z3 = •,z3[i]*57.3:7:4);
writeln(lst,' z4 = •,z4[i]*57.3:7:4);

i := i + increment;
count := count + l;
if count = 63 then
begin

writeln(lst);
writeln(lst);
writeln(lst):
writeln(lst):
count := 2;

end;
dif := dif - increment;

until keypressed or (dif < O);
end;

end;
end;

{This routine calculates the differential equations using
a fourth order RUNGA KUTTA algoithm. The four equations
are :}

70

{ Zl = Z2 }
{ z2 = (l/m) [fxl+fx2-(bl+b2)z2-(kl+k2)zl-(b212-blll)z4- }
{ (k212-klll)z3] }
{ z3 = z4 }
{ z4 = (l/j) [fx212-fxlll-(b212**2-blll**2)z4-(k212**2- }
{ klll**2)Z3} }
{ -(b212-blll)z2-(k212-klll)zl] }

{ Where zl = X, z2 = Xdot, z3 = THETA and z4 = THETAdot }
{ The algoithm used is as follows: }

{ kl = zl(O]
{ k2 = zl[O] + .S*h*kl
{ k3 = Zl(O] + .5*h*k2
{ k4 = zl(O] + k3*h
{Zl(l] = Zl(O] + (h/6) [kl + .5*k2 + .5*k3 + k4]
{Zl(O] = Zl(l]

procedure gills;
begin

klzl := zz2 [OJ:
klz2 := (l/m)*(fzl+fz2-(b*zz2[0])-(k*zzl[O])­

(bl*zz4[0])-(kl*zz3[0]));

}
}
}
}
}
}

kl z 3 : = z z 4 [0] :
klz4:=(1/j)*(fxl2-fxll-(blsq*zz4[0])-(klsq*zz3[0J)-

(bl*zz2[0])-(kl*zzl[O])):
tl := zzl[O) + o.S*h*klzl;
t2 := ZZ2[0) + 0.5*h*klz2;
t3 := zz3[0) + 0.5*h*klz3;
t4 := zz4[0] + 0.5*h*klz4:

k2zl := zz2[0] + 0.5*h*klz2;
k2z2 := (l/m)*(fzl+fz2-(b*t2)-(k*tl)-(bl*t4)

-(kl*t3));
k2z3 := zz4[0] + 0.5*h*klz4;

71

k2z4 := (l/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -
(bl*t2) - (kl*tl));

tl := zzl[O] + 0.5*h*k2zl;
t2 := zz2[0] + 0.5*h*k2z2;
t3 := zz3[0] + 0.5*h*k2z3;
t4 := zz4[0] + 0.5*h*k2z4;
k3zl := zz2[0] + 0.5*h*k2z2;
k3z2 := (1/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl•t3));
k3z3 := zz4[0] + 0.5*h*k2z4;
k3z4 := (l/j)*(fxl2 - fxll - (blsq•t4) - (klsq*t3) -

(bl*t2) - (kl*tl));
tl ·:= zzl[O] + h*k3zl;
t2 := ZZ2(0) + h*k3z2;
t3 := zz3[0] + h*k3z3;
t4 := zz4[0] + h*k3z4;
k4zl := zz2[0] + h*k3z2;
k4z2 := (1/m)*(fzl + fz2 - (b*t2) - (k*tl) -

(bl*t4) - (kl*t3));
k4z3 := zz4[0] + h*k3z4;
k4z4 := (1/j)*(fxl2 - fxll - (blsq*t4) - (klsq*t3) -

(bl•t2) - (kl*tl));
zzl[l] := zzl[O] + (h/6)*(klzl+2*k2zl+2*k3zl+k4zl);
zz2[1] := zz2[0] + (h/6)*(klz2+2*k2z2+2*k3z2+k4z2);
zz3[1] := zz3[0] + (h/6)*(klz3+2*k2z3+2*k3z3+k4z3);
zz4[1J := zz4[0) + (h/6)*(klz4+2*k2z4+2*k3z4+k4z4);
hh := hh + h;
zzl[O) := zzl[lJ;
zz2[0) := zz2[1);
zz3[0] := zz3[1J;
zz4[0) := zz4[1J;

end;

{Display an error message when display is either below the}
road or to high. DRAWIT flag is used to draw/no draw new}
position }

procedure displayerror;
begin

gotoxy(2,7);
write(' DISPLAY LIMIT EXCEEDED ');
drawit := false;

end;

{ Check the range of py6, pylO, py19 and py3 to ensure
that the car is within drawing window. If not display
error. }

procedure rangecheck;
begin

72

if (py6<=50)or(pyl0>=137)or(py19>=137)or(py3<=50) then
displayerror;

gotoxy(l6,22);
write('TIME = ',hh:5:2,' X = •,zz1[1]:6:2);
write(' THETA= •,zz3[1]*57.3:6:2);

end;

{ This procedure is a modified version of the toolbox}
DRAWLINEDIRECT It was modified to add speed to the}
redrawing }

procedure drawlinedirectt(xl,yl,x2,y2:integer);
var x,y,deltax,deltay,xstep,ystep,direction:integer;

begin
x := xl;
y := yl;
xstep :=l;
ystep :=l;
if xl>x2 then xstep :=-1;
if yl>y2 then ystep :=-1;
·deltax:=abs(x2-xl);
deltay:=abs(y2-yl);
if deltax=O then direction:=-1
else direction:=O;
while not ((x=x2) and (y=y2)) do
begin

dp(x,y);
if direction<O then
begin

y:=y+ystep;
direction:=direction+deltax;

end
else
begin

x:=x+xstep;
direction:=direction-deltay;

end;
end;

end;

73

{ This procedure draws both the front and rear wheels using
the wheel arrays. The front wheei is drawn when the y
points are greater than py17+2. The rear wheel is drawn
when the y points are greater than py12+2. This gives
impression that wheel is entering the wheel well }

procedure drawwheel:
begin

i := l:
while i < 110 do
begin

if whly(i] > py17+2 then
dp(whlx[i]+160,whly[i]):

if whly[i] > py12+2 then
dp(whlx[i]+425,whly(i]):

i := i + 1:
end:

end:

{ This procedure draws both the front and rear hubcaps
inner wheel The front hub is drawn when the y points are
greater than pyl7+2. The rear hub is drawn when the y
points are greater than py12+2. }

procedure drawhub:
begin

i := l:
while i < 53 do
begin

if huby[i] > py17+2 then
dp(hubx[i]+l77,huby[i]):

if huby[i] > pyl2+2 then
dp(hubx[i]+443,huby[i]):

i := i + 1: .
end:

end:

procedure drawnewcar:
begin

if drawit then
begin

GrafBase := seg(ScreenGlb~): { selectscreen(2)}
fillchar(mem[GrafBase:$0750],3645,0):
fillchar(mem[GrafBase:$2750],3645,0):
oldpylO := pylO:
oldpyl9 := py19:
s5 := s*S:
c5 := c*S:
pxl := trunc(centerx-c241-s10):
pyl := trunc(newzl-s241+cl0):

px2 := trunc(centerx-c241+s5);
py2 := trunc(newzl-s241-c5);
px4 := . trunc(centerx+c*(-76)+sl0);
py4 := trunc(newzl+s*(-76)-clO);
pxS := trunc(centerx+c*(-36)+s30);
pyS := trunc(newzl+s*(-36)-cJO);
px7 := trunc(centerx+c*(l39)+sl0);
py7 := trunc(newzl+s*(l39)-cl0);
pxS := trunc(centerx+c*(234)+sl0);
pys := trunc(newzl+s*(234)-c10);
px9 := trunc(centerx+c241+s5);
py9 := trunc(~ewzl+s241-c5);
pxll := trunc(penterx+c*(l79)-s15);
pyll := trunc(newzl+s*(l79)+c15);
px12 := trunc(centerx+c*(l59)-s5);
py12 := trunc(newzl+s*(l59)+c5);
pxl3 := trunc(centerx+c*(ll9)-s5);
pyl3 := trunc(newzl+s*(l19)+c5);
pxl4 := trunc(centerx+c*(99)-s15);
pyl4 := trunc(newzl+s*(99)+cl5);
px15 := trunc(centerx+c*(-86)-slS);
pyl5 := trunc(newzl+s*(-86)+cl5);
pxl6 := trunc(centerx+c*(-106)-sS);
pyl6 := trunc(newzl+s*(-106)+c5);
pxl7 := trunc(centerx+c*(-146)-sS);
pyl7 := trunc(newzl+s*(-146)+c5);
pxl8 := trunc(centerx+c*(-166)-slS);
pyl8 := trunc(newzl+s*(-166)+cl5);
drawwheel;
drawhub;

74

drawlinedirectt(pxl5,pyl5,pxl4,pyl4) ;{low mid seg}
drawlinedirectt(pxl9,pyl9,pxl8,pyl8) ;{low frt seg}
drawlinedirectt(pxl9,pyl9,pxl,pyl);
drawlinedirectt(pxl,pyl,px2,py2);
drawlinedirectt(px2,py2,px3,py3);
drawlinedirectt(px3,py3,px4,py4);
drawlinedirectt(px4,py4,px5,py5); {
drawlinedirectt(px5,py5,px6,py6);
drawlinedirectt(px6,py6,px7,py7);
drawlinedirectt(px7,py7,pxs,py8);
drawlinedirectt(pxs,py8,px9,py9);
drawlinedirectt(px9,py9,pxlO,pylO) ;{back grill}
drawlinedirectt(pxlO,pylO,pxll,pyll) ;{low rer seg}
drawlinedirectt(px14,py14,px13,pyl3) ;{rer whl wel}
drawlinedire.ctt(pxl3,pyl3,pxl2,pyl2);
drawlinedirectt(px12,py12,pxll,pyll);
drawlinedirectt(px18,pyl8,pxl7,pyl7) ;{frt whl wel}
drawlinedirectt(pxl7,py17,pxl6,pyl6);
drawlinedirectt(px16,py16,px15,pyl5);
drawlinedirectt(0,138,0,25); {redraw left border }

{ grill }

{ hood
windshield

{ roof }
{rear window }

{ trunk }

}
}

75

drawlinedirectt(639,138,639,25) ;{redrw rigt bordr}
move(mem[Grafbase:$0750],mem[$BS00:$0750],3645);
move(mem[GrafBase:$2750],mem[$B800:$2750],3645);

end;
end;

procedure exitloop;
begin

if abs(zzl[l]) < 0.01 then
zzl[l] := o.o;

if abs(zz3[1]) < 0.0001 then
zz3[1] := o.o;

newzl := centery + zzl[l];
c:=cos(-zz3[1]);
s:=sin(-zz3[1]);
slO := s*lO;
clO := c*lO;
s30 := s*30;
sl5 := s*l5;
c30 := c*30;
cl5 := c*l5;
s241 := s*241;
c241 := c*241;
px3 := trunc(centerx+c*(-23l)+slO);
py3 := trunc(newzl+s*(-231)-clO);
px6 := trunc(centerx+c*(l04)+s30);
py6 := trunc(newzl+s*(l04)-c30);
pxlO := trunc(centerx+c241-sl5);
pylO := trunc(newzl+s24l+cl5);
pxl9 := trunc(centerx+c*(-231)-slS);
pyl9 := trunc(newzl+s*(-23l)+cl5);
rangecheck;
if ptr < 799 then
begin

end;

ptr := ptr + l;
zl[ptr] := zzl[l];
z2 [ptr] := zz2 [l];
z 3 [ptr] : = z z 3 [1] ;
z4 [ptr] := zz4 [l];
tm[ptr] := hh;

if (abs(oldpylO-pylO)>=l)or(abs(oldpyl9-pyl9)>=1) then
drawnewcar;

end;

procedure car;
begin

zzl[O] := zl[O];
zz2[0] := z2[0];

zz3 [O] := z3 [O];
zz4[0] := z4[0];
zzl[l] := zzl[O];
ZZ3(1) := ZZ3(0);
ptr := O;
b :=bl + b2;
k := kl + k2;
bll := bl * 11;
l:>l2 := b2 * 12;
bl := bl2 bll;
kll := kl * 11;
kl 2 : = k2 * 12 ;
kl := kl2 kll;
fxll := fzl * 11;
fxl2 := fz2 * 12;
blsql :=bl* sqr(ll);
blsq2 := b2 * sqr(l2);
blsq := blsql + blsq2;
klsql := kl * sqr(ll);
klsq2 := k2 * sqr(l2);
klsq := klsql + klsq2;
h := 0.01;
hh := o.o;
drawit := true;
c := cos(-z3[0]);
s := sin(-z3[0]);
newzl := centery + zl[O];
pxl := trunc(centerx+c*(-241)-s*(lO));
pyl := trunc(newzl+s*(-24l)+c*(l0));
px2 := trunc(centerx+c*(-241)-s*(-5));
py2 := trunc(newzl+s*(-24l)+c*(-5));
px3 := trunc(centerx+c*(-231)-s*(-10));
py3 := trunc(newzl+s*(-23l)+c*(-10));
px4 := trunc(centerx+c*(-76)-s*(-10));
py4 := trunc(newzl+s*(-76)+c*(-10));
px5 := trunc(centerx+c*(-36)-s*(-30));
py5 := trunc(newzl+s*(-36)+c*(-30));
px6 := trunc(centerx+c*(l04)-s*(-30));
py6 := trunc(newzl+s*(l04)+c*(-30));
px7 := trunc(centerx+c*(l39)-s*(-10));
py7 := trunc(newzl+s*(l39)+c*(-10));
pxa := trunc(centerx+c*(234)-s*(-10));
pya := trunc(newzl+s*(234)+c•(-10));
px9 := trunc(centerx+c*(241)-s*(-5));
py9 := trunc(newzl+s*(24l)+c*(-5));
pxlO j= trµnc(centerx+c*(241)-s*(l5));
pylO := trunc(newzl+s*(24l)+c*(15) .);
pxll := trunc(centerx+c*(l79)-s*(15));
pyll := trunc(newzl+s*(l79)+c*(l5));
pxl2 := trunc(centerx+c*(l59)-s*(5));

76

pyl2 := trunc(newzl+s*(l59)+c*(5));
pxl3 := trunc(centerx+c*(ll9)-s*(5));
pyl3 := trunc(newzl+s*(ll9)+c*(5));
pxl4 := trunc(centerx+c*(99)-s*(l5));
pyl4 := trunc(newzl+s*(99)+c*(l5));
pxl5 := trunc(centerx+c*(-86)-s*(lS));
pylS := trunc(newzl+s*(-86)+c*(l5));
pxl6 := trunc(centerx+c*(-106)-s*(S));
pyl6 := trunc(newzl+s*{-106)+c*(5));
pxl7 := trunc{centerx+c*(-146)-s*(S));
pyl7 := trunc(newzl+s*(-146)+c*(5));
pxl8 := trunc(centerx+c*(-166)-s*(lS));
pyl8 := trunc(newzl+s*(-166)+c*(l5));
pxl9 := trunc(centerx+c*(-231)-s*{lS));
pyl9 := trunc(newzl+s*(-23l)+c*(l5));
oldpylO := pylO;
oldpyl9 := pyl9;
entergraphic;
setwindowmodeoff;
setaspect(l);
setforegroundcolor(l4);
selectscreen(2);
clearscreen;
drawborder;
drawlinedirectt(l,138,640,138);
rangecheck;
if drawit then
begin

drawwheel;
drawhub;

{ road

77

}

drawlinedirectt(pxl5,pyl5,pxl4,pyl4);{1ow midle seg}
drawlinedirectt(pxl9,pyl9,pxl8,pyl8) ;{low frnt seg }

}

drawlinedirectt(pxl9,pyl9,pxl,pyl);
drawlinedirectt(pxl,pyl,px2,py2);
drawlinedirectt(px2,py2,px3,py3);
drawlinedirectt(px3,py3,px4,py4);
drawlinedirectt(px4,py4,px5,py5);
drawlinedirectt(px5,py5,px6,py6);
drawlinedirectt(px6,py6,px7,py7);
drawlinedirectt(px7,py7,px8,py8);
drawlinedirectt(px8,py8,px9,py9);
drawlinedirectt(px9,py9,pxlO,pylO); {back grill }
drawlinedirectt(pxlO,pylO,pxll,pyll) ;{low rear seg }
drawlinedirectt(pxl4,pyl4,pxl3,pyl3) ;{rear whl well}
drawlinedirectt(pxl3,pyl3,pxl2,pyl2);
drawlinedirectt(pxl2,pyl2,pxll,pyll);
drawlinedirectt(pxl8,pyl8,pxl7,pyl7);{frnt whl well}
drawlinedirectt(pxl7,pyl7,pxl6,pyl6);
drawlinedirectt(pxl6,pyl6,pxl5,pyl5);

{ grill }

{ hood }
{ windshield

{ roof }
{ rear window

{ trunk }

}

end;

gotoxy(l4,3);
write('Dynamic Systems Analysis Of Vehicle');
write(' Suspension System');
copyscreen;
repeat

drawit := true;

78

GrafBase := HardwareGrafBase; { selectscreen(l) }
gills;

end;

exitloop;
until keypressed;
leavegraphic;

{ This is the main routine in the simulation system~ It
displays the main menu and calls the various
subsystems.An entry of 'E' will exit back to DOS }

begin
centerx := 316;
centery := 105;
tm[o] : = O;
ptr := O;
m := 3000/386;
j := 15608.81;
fzl := o.o;
fz2 := o.o;
bl := 40.0;
b2 : = 4 0. 0;
kl : = 4 00. 0;
k2 : = 400. 0;
11 := 50.0;
12 := 50.0;
zl[O) := O;
z2[0] := O;
z3[0] := O;
z4[0] := O;
initgraphic;
leavegraphic;
noexit := true;
while noexit do
begin
clrscr;
writeln;
writeln;
writeln;
writeln;
write ('
writeln('SIMULATION
writeln;

WELCOME TO THE AUTOMOBILE ');
SYSTEM');

writeln (' C = CHANGE PARAMETERS');

wri teln ('
writeln ('
wri teln ('
writeln ('
writeln;

79

R = RUN SIMULATION');
P = PLOT OUTPUT');
N = NUMERIC OUTPUT');
E = EXIT TO DOS ');

write ('
readln(selection);
case selection of

ENTER SELECTION AND RETURN> ');

'c' admin;
'C' admin;
'r'
'R' :
'p'
Ip I

In I

IN I
I e I

IE I

end;
end;

end.

car;
car;
pltroutine;
pltroutine;
hrdcpy;
hrdcpy;
noexit := false;
noexit := false;

APPENDIX 3

USER'S MANUAL AND CASE STUDY

USER'S MANUAL AND CASE STUDY

Getting Started

This software package is installed on the two IBM AT

computers in the systems lab. The program is entered by

typing AUTO in response to the DOS prompt after the initial

power up. This will initilize the graphics printing,

change to the AUTO directory and then enter the program.

The Main Menu contained in Figure 13 is displayed. Enter

the letter of the function that is desired. The functions

are described in detail below. An E entry will exit from

the program.

Change Parameters

This section is used to modify the system parameters.

A sample of the Parameter Selection Menu is contained in

Figure 15. To change a parameter value first enter the

selection number 1-14 and then enter the new value. Any

entry other than a 1-14 will exit back to the Main Menu. A

parameter value that is outside the indicated parameter

value range will result in .a default value being assigned

to the parameter. The error default values are:

81

Fxl = Fx2 = o

Bl = B2 = 0

Kl = K2 = 10

Ll = L2 = 10

M = 2500

X(O) = Xdot(O) = 0

TH(O) = THdot(O) = 0

82

Limits were placed on the parameters for two reasons.

The first reason was a real world system was being

simulated therefore, real world values should be used. The

second reason was to keep the automobile in the display

area as much as possible.

The moment of inertia J is displayed but not

changeable because it is dependent on the M, Ll and L2

entries according to the following equation:

J = (M/12) * (D**2 + H**2)

where M is the mass in slugs, D is the total length of the

automobile, D = Ll + L2 + 50, and H is the height of the

automobile, H = 40.

A selection of o will exit back to the Main Menu

while a selection of 14 will clear all initial conditions,

X(O) = Xdot(O) = TH(O) = THdot(O) = o.

Run Simulation

This command will start the animation display. The

automobile is first displayed using the initial conditions

on X and TH. The ani~ation is continued until any key is

entered at the keyboard. The system returns to the Main

Menu after a key is pressed. If plots are desired it is

best to allow the animation to run as long as possible.

This is because the TIME plots are from TIME = o to the

time the simulation was stopped. Figure 16 is a sample

animation display.

Plot output

83

This section allows TIME and phase plots of the four

state variables. Figure 14 is the Plot Selection Menu and

shows what plots are available. To create a plot just

enter the number of the desired plot, 1-6, and return. Any

entry other than a 1-6 will exit back to the Main Menu.

The animation must run and collect at least 3 data points

before any plots can be generated. Figures 17-22 are

sample plot outputs. These plots were generated using the

parameter values displayed in Figure 15. Note that when

Bl = B2 = O the system has no damping and will oscillate

forever. This is shown by the four TIME plots in

Figures 17-20. The values of X and TH oscillate from the

initial condition to the negative of the initial condition.

The two phase plots are circles because the system

oscillates and therefore the X and TH values do not reach a

steady state value.

Numeric Output

This section allows for a hardcopy output of the

simulation. It prompts for an increment number. This

84

number determines how many data points to skip over before

printing the next value. The output contains the system

parameters, the time (H) and the four state variables

Zl-Z4. A sample numeric output is contained in Table 7.

The state variables and their meanings are:

Zl = X

Z2 = Xdot

Z3 = TH

Z4 = THdot

WELCOME TO THE AUTOMOBILE SIMULATION SYSTEM

C = CHANGE PARAMETERS
R = RUN SIMULATION
P = PLOT OUTPUT
N = NUMERIC OUTPUT
E = EXIT TO DOS

ENTER SELECTION AND RETURN >

Figure 13. Main Menu

The following plots are available

0 NO PLOT DESIRED
1 x vs TIME
2 Xdot vs TIME
3 THETA vs TIME
4 THETAdot vs TIME
5 Xdot vs x
6 THETAdot vs THETA

ENTER SELECTION AND RETURN >

Figure 14. Plot Selection Menu

85

86

T~is section allows you to change certain variables used
in the automobile simulation. The · following variables and
their values are changeable [units are in ()] :

O: NO CHANGES REQUIRED
1: Fxl (force on rear (lbs) [-1500 to 1500))=
2: Fx2 (force on front(lbs) [-1500 to 1500))=
3: Bl(dmping cnst rear(lb-sec/in) [Oto 500))=
4: B2(dmping cnst frnt(lb-sec/in) [Oto 500))=
5: Kl(sprinq const rear (lb/in) [10 to 1000])=
6: K2(spring const frnt (lb/in) [10 to 1000])=
7: Ll (.center to rear· (in) [10 to 75)) =
8: L2 (center to front (in) [10 to 75))=
9: M (auto mass (lbs) [1500 to 4000])=

10: X(O) (x init cond (in) [-25 to 15))=
11: XDOT(O) (x dot init cond (in/sec) =
12: T(O) (theta init cond (deg) [-4 to 4])=
13: THEDOT(O) (theta dot init con) =
14: CLEAR ALL INITIAL CONDITIONS

o.oo
o.oo
o.oo
o.oo

400.00
400.00
50.00
50.00

3000.00
14.00

o.oo
4.00
o.oo

J (moment of inertia) = 15608.81

ENTER SELECTION AND RETURN >

Figure 15. Case 2 Parameter Selection Menu

87

lynaMiC SysteMS Analysis or Vehicle Suspension SysteM

TIMI: 1.88 X: ·8.54 THETA: 3.77

Fiqure 16. Case 2 : Automobile

10

t. u. .
00. t.

o .

O.J

0.2

0.0

0.1

O;S

0.1

t.O

u

'

's. .
;o. .
~s.

'

'" .
.~

'
;o.
•

'S.
'

10.
'

:>
'

1.5 'A .

0.00

88

< , ,fiJJ DP K :JS llftE

J ~ ~ ~ ~ ~ ~ I ~ r ~ ~

~ ~ ~ ~ ~ ~ ~ u ~
I

~ ~ ~ ~

I 1 I ' I I I 1 I I I I I ' I ' I I

Ut •.20 S.H S.H

Fiqure 17. Case 2 Plot of X versus TIME

10

l.

o .

0.

0 .

0 .

0 .

0 .

o .

o .

o.

l.

l.

' 19-.
95, .
n
2'·

•
o~ .
n.

• ...
•

721 .
9S.

'
1J.

'

•"
\i

I

0.00

89

·PLDI DF Kaoi us llnE

~ ~ ~ ft
"

ft ~ ~ ~ n ~ ~
I

~ t.I LI \J ~ \J .. L u
I I J l I I I I I I I I I I I I I

l.H UI !.12 J.JC •.to 5.H 5.U CJ2 ,,SC

Fiqure 18. Case 2 Plot of Xdot versus TIME

t1

J.)
'· .
J. .
0. .
'· •
t).

2.J

u
O.t

0.0

0 ..

u
2 .J

J .l

t1

s.o

.
Ill

.
i). .
'· .
:o.
•

~). .
'· .

1A

0.00

n

~

I

90

· PIJI I OF lllE lit US I !ft£

~ ~ • ~ • r ~ f ~ ~ t ~ ~

I

w ~ ~ ~
I

~ ~ ~ ~ ~ ~ M ~ ~

T I I I I l l I I I I I l I 1 I I

o.n Ut JJC ~.:o s.n S.tt 1.H

Fiqure 19. Case 2 : Plot of TH versus TIME

10

).

J.

I.

l.

••
0.

••
1 .

t.

J.

J.

..

.,
t

°" I
u

I

n.
t

"· I
o~

t ,,.
t

s~.
.

n
I

Ot.
I .,
I

n•
0.00

~ ~ ~ ~ ~

' •
I I I I I I

•••• Ut t.5% J.H

Fiqure 20. Case 2

91

~ ' ~ ~
-

~ ~ ~

•

-

~ I ~ ~ I
I I I I I I I I

•.20 S.H CJZ 7.SC

Plot of THdot versus TIME

10 '

1.1

OJ

•••

o.•

OJ

l.1

• ' flUT '' .iGOt ~~ IC

Ul"-...-..... --.-....-...... ..,...~~ -....-..-:;:;;....,..~...,.-~.,.....,.-- t
·I.SO •I.ti •O.t1 •O.SS -0.H O.ot 0.39 0.71 I.OJ s.n 10

Figure 21. Case 2 Plot of Xdot versus X

92

so
J.I

J.O

l.U

l.51

0.71

t.Ov+---+---------.....,.---------1i---
t."
t.n
t.Jl

tW-~:::::=.-..-~:;_.,._.,._-...... -
·5.00 ·) .!5 •l.H •S.n -0.19 O.H t.U l.J1 ··~'

Figure 22. Case 2 Plot of THdot versus TH

93

94

TABLE 7

CASE 2 NUMERIC OUTPUT

SIMULATION HARDCOPY OUTPUT

Fxl =- a. a Fx2 • a.a Bl = a.a B2 =- a.a
Kl =- 400.0 K2 =- 400.0 Ll = so.a L2 = so.a

H Zl Z2 Z3 Z4

o.oo 14.00 o.oo 4.00 o.oo
0.10 7.39 -120.63 l.70 -40.99
0.20 -6.19 -127.38 -2.S6 -34.83
0.30 -13.93 -13.89 -3.87 ll.39
0.40 -8.52 112.72 -0.73 44.51
a.so 4.94 132.91 3.2S 26.43
0.60 13.73 27.64 3.49 -22.os
0.70 9.56 -103.73 -0.28 -45.17
a.so -3.63 -137.17 -3.73 -16.34
0.90 -13.40 -41.12 -2.89 31.29
l.00 -10.52 93.75 l.27 42.92
1.10 2.29 140.12 3.97 5.19
l.20 12.94 54.22 2.10 -38.51
1.30 ll.37 -82.86 -2.19 -37.92
l.40 -0.93 -141.72 -3.96 6.29
1.50 -12.36 -66.79 -l.18 43.26
l.60 -12.11 71.19 2.96 30.47
l.70 -0.44 141.97 3.69 -17.37
l.80 ll.65 78.73 0.18 -45.23
l.90 12.74 -58.83 -3.54 -21.07
2.00 l.80 -140.86 -3.19 27.33
2.10 -10.84 -89.91 0.83 44.29
2.20 -13.25 45.91 3.89 10.31
2.30 -3.15 138.39 2.48 -35.53
2.40 9.92 100.23 -1.79 -40.50
2.50 13.63 -32.55 -4.00 l.ll
2.60 4.47 -134.60 -1.61 41.45
2.70 -8.91 -109.58 2.63 34.ll
2.80 -13.88 18.88 3.85 -12.46
2.90 -5.75 129.53 0.64 -44.70
3.00 7.81 117.89 -3.30 -25.52
3.10 13.99 -5 .• 03 -3.44 23.0l
3.20 6.97 -123.21 0.38 45.08
3.30 -6.64 -125.07 3.76 15.29
3.40 -13.97 -8.87 2.82 -32.08
3.50 -8.12 115.71 -1.37 -42.56

REFERENCES

Basic by Microsoft Corp. Boca Raton, Fla.: IBM Personal
Computer Software Library, 1982.

Bronson, Richard. Matrix Methods An Introduction.
New York : Academic Press, Inc., 1970.

Foley, J.D. and Van Dam, A. Fundamentals of Interactive
Computer Graphics. New York : Academic Press,
Inc., 1985.

Held, Gilbert. IBM PC Users Reference Manual. Hasbrouck
Heights, N.J.: Hayden Book Company, 1984.

LENIPEN The Intellegent Color Graphics System.
Hillside, N.J.: Duncan-Atwell Computerized
Technologies, Inc., 1984.

TURBO PASCAL Reference Manual Version 3.0.
Scotts Valley, ca.: Borland International, 1984.

TURBO GRAPHIX TOOLBOX Graphics Tools for TURBO PASCAL.
Scotts Valley, Ca~: Borland International, 1985.

TUTSIM. Palo Alto, ca.: APPLIED i, 1985.

95

	Dynamic Systems Analysis of a Vehicle Suspension System
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	TABLE OF CONTENTS
	iii
	iv

	LIST OF TABLES
	v

	LIST OF FIGURES
	vi
	vii

	INTRODUCTION
	01
	02

	CHAPTER I. PROBLEM DESCRIPTION
	System Model
	03
	04
	05

	Solve System Equations
	Animation
	06
	07

	CHAPTER II. NUMERICAL SOLUTION OF SYSTEM EQUATIONS
	08
	09
	Classical Runge-Kutta Algorithm
	10

	Algorithm Vreification
	11
	12
	13
	14
	15

	Runge-Kutta-Gill Algorithm
	16
	17
	18
	19
	20

	CHAPTER III. COMPUTER GRAPHICS
	LENIPEN
	21
	22

	TURBO PASCAL Graphics Commands
	23

	TURBO TOOLBOX Package
	24
	25

	Graphics Animation
	26
	27
	28
	29

	CHAPTER IV. SOFTWARE OPTIMIZATION
	30
	Math Algorithm Selection
	Modified TURBO TOOLBOX Commands
	31
	32
	33

	Considerations for Displaying Automobile
	34
	35

	CHAPTER V. RESULTS
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48

	CHAPTER VI. SUMMARY AND CONCLUSIONS
	49
	50

	APPENDICES
	APPENDIX 1. ALGORITHM VERIFICATION
	51
	Classical Runge-Kutta Program
	52
	53

	Runge-Kutta-Gill Program
	54
	55

	APPENDIX 2. SOFTWARE LISTING
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79

	APPENDIX 3. USER'S MANUAL AND CASE STUDY
	80
	Getting Started
	Changing Parameters
	81

	Run Simulation
	82

	Plot Output
	Numeric Output
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94

	REFERENCES
	95

