
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1987

Design of a Processing Element for the Systolic Array Design of a Processing Element for the Systolic Array

Implementation of a Kalaman Filer Implementation of a Kalaman Filer

John P. Condorodis
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Condorodis, John P., "Design of a Processing Element for the Systolic Array Implementation of a Kalaman
Filer" (1987). Retrospective Theses and Dissertations. 5028.
https://stars.library.ucf.edu/rtd/5028

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Frtd%2F5028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/5028?utm_source=stars.library.ucf.edu%2Frtd%2F5028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

THE DESIGN OF A PROCESSING ELEMENT FOR THE SYSTOLIC
ARRAY IMPLEMENTATION OF A KALMAN FILTER

BY

JOHN P. CONDORODIS
B.E.E., Georgia Institute of Technology, 1984

RESEARCH PAPER

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

in the Graduate Studies Program of the
College of Engineering

University of Central Florida
Orlando, Florida

Spring Term
1987

ABSTRACT

The Kalman filter is an important component of optimal estimation theory. It has

applications in a wide range of high performance control systems including

navigational, fire control, and targeting systems. The Kalman filter, however, has not

been utilized to its full potential due to the limitations of its inherent computational

intensiveness which requires "off-line" processing or allows only low bandwidth real

time applications.

The recent advances in VLSI circuit technology have created the opportunity to

design algorithms and data structures for direct implementation in integrated circuits.

A systolic architecture is a concept which allows the construction of massively parallel

systems in integrated circuits and has been utilized as a means of achieving high data

rates. A systolic system consists of a set of interconnected processing elements, each

capable of performing some simple operation.

The design of a processing element in an orthogonal systolic architecture will be

investigated using the state of the art in VLSI technology. The goal is to create a high

speed, high precision processing element which is adaptive to a highly configurable

systolic architecture. In order to achieve the necessary high computational throughput,

the arithmetic unit of the processing element will be implemented using the

Logarithmic Number System. The Systolic architecture approach will be used in an

attempt to implement a Kalman filtering system with both a high sampling rate and a

small package size. The design of such a Kalman filter would enable this filtering

technology to be applied to the areas of process control, computer vision, and robotics.

ACKNOWLEDGMENTS

I would like to thank my committee chairman, Dr. George M. Papadourakis, for

his valuable guidance and assistance in the writing of this research paper. In the past

months he has provided me with a great deal of support and encouragement which

helped in the completion of my masters.

I would also like to thank Dr. Christian S. Bauer, Dr Darrell G. Linton, and Tom

R. Hoffman for serving on my committee and providing me with many useful

comments.

Finally, I would like to thank my parents, my brother, and my sister for their

support, encouragement, and a great deal of understanding which they have given me

during the completion of my masters.

iii

TABLE OF CONTENTS

LIST OF TABLES . •

LIST OF FIGURES

CHAPTER I, INTRODUCTION • .

The Kalman Filter . . . • . . .

The Systolic Architecture . •

The Processing Element • . •

CHAPTER II, PRELIMINARY DESIGN INFORMATION

Kalman Filter Equations •

Systolic Architectures . • . . • . •

Proposed Systolic Architecture • . .

Equations for Proposed Architecture

Matrix Operations • . .
VLSI Technology • . • . . . • . .

Logarithmic Number System . . •

Floating Point to LNS Conversion

LNS to Floating-Point Conversion . •

Conversion Chip • . • . . . •

CHAPTER III, PROCESSING ELEMENT DESIGN .

The LNS ALU . • . . . • . •

Description of Arithmetic Algorithms

Memory Reduction Technique

ALU Components . . . •

ALU Data Paths . • . • . •

ALU Layout and Timing

PE Interface Structure

. . .
Internal Interfaces

External Interface

PE Control Structure
iv

. . .

.

• Vl

•• Vll

1

1

2

4

6

6
. . 9

. . 13

. 15

. 16

. 17

. . 18

. . 20

22

. 24

. 27

. 27

. 29

. . . . 33

. . 35

. 37

.. 42

· · 46
. · 46

48

· · 51

Counter/Comparator Block . .

Control Words . . • .

Memory Organization .

External Control . . •

Self Test

Programming the PE Microcode Controller

System Clock . • •

PE Simulation

Chip Layout and Key Parameters •.

Chip I/0 . . • . • . •

Chip Size and Speed . . •

CHAPTER IV, CONCLUSION

Alternative PE Designs

Areas of Future Research

REFERENCES •

V

. 51

. 52

.. 54

. 56

. 57

57

. 58

. 59

.. 65

. 65

. 66

. 69

. 69

. 70

. 72

LIST OF TABLES

1. Filter Variables . • . • . •

2. Geometric Configurations and Corresponding Functions
3. The Required Functions of the Systolic Architecture . .

4. Conversion Chip Speed Estimate

5. Logic for the Addition and Subtraction Functions . .

6. Memory Requirements for One LOG Function .
7. ALU Component and Function Timing

8. OP-CODES for Internal Bus Switches

9. OP-CODES for Memory Bus Switches

10. OP-CODES for External Bus Switches
11. OP-CODES for PE Control

12. Chip I/0 Description •

vi

8
. 11

.. 16
. 26

. . 32

. . 35
. . . 44

... 47

.. 48
. 49

.. 56

66

LIST OF FIGURES

1. Conventional vs. Systolic Processor Architectures
2. Typical Systolic Architecture Configurations . . .
3. Systolic Pipelined Orthogonal Array
4. Floating Point to LNS Conversion Block Diagram . .
5. LNS to FLP Conversion Algorithm Block Diagram
6. Block Diagram of Conversion Chip Layout
7. Block Diagram of Proposed PE •
8. Multiplication/Division Data Path . •
9. Addition/Subtraction Data Path
10. Square/Square Root Data Path
11. ALU Block Diagram • . • . .

12. ALU Floorplan • . • . • . .
13. Block Diagram of PE Bus Structure .
14. Block Diagram of PE Control Structure
15. Flow Diagram of First Microcode Function .
16. Flow Diagram for Second Microcode Function
17. Chip Layout . . . • . • • •

vii

. 10
. . 12

. 14

. 21

. 23

. . . . 25

. . . 28

. 38

. 40
. . 41

. 43

. . . 45

50
. . . 55
.. 62

. 64
.. 68

CHAPTER I, INTRODUCTION

The Kalman filter is an important tool used in many modem control systems.

However, the amount of intensive calculations required to implement the filter have

limited the Kalman filter's applications. Systolic architectures off er a method of

increasing the speed of the matrix arithmetic required in the construction of a Kalman

filter. The current state of the art in very large scale integrated (VLSI) circuits has

made feasible the design of high performance computational systems on a single

silicon chip. The design of a processing element utilizing VLSI technology should

allow the construction of a systolic architecture capable of implementing a Kalman

filter.

The Kalman Filter

Measuring the state variables of a system for use in the control of the system is a

fairly simple idea; however, this task is complicated if noise is present in the system.

The presence of noise in the system requires the estimation of states (Graham and

Kadela 1985). The Kalman filter is one of the most popular state estimators used in

system control and it is well-suited to the problem of monitoring measurement

consistency and the related statistics (Papadourakis and Taylor 1986).

In 1960 Kalman developed the linear estimation theory that is now referred to as

the Kalman filter (Kalman 1960). The theory was developed further over time to give

more insight into the linear estimation problem. The earliest applications of the

2

Kalman filter dealt with satellite orbit determination, tracking, and navigation

problems. The filter has also found applications in the areas of anti-aircraft gun fire

control, ship navigational control, and seismic data processing in oil exploration

(Papadourakis 1986).

Unfortunately, the intensive matrix calculations required to implement the Kalman

filter have limited its applications. For example, many real-time applications exceed

the throughput capability of the conventionally designed Kalman filter. A possible

method of solving the required calculations at a rate applicable to real-time processing

is to use a parallel processing architecture. The systolic architecture's approach to

parallel processing offers a feasible method of performing the high speed matrix

multiplications necessary for a Kalman filter. A possible implementation of the

systolic arrays approach was presented by Graham and Kadela who have summarized

the necessary matrix calculations necessary to implement the filter (Graham and

Kadela 1985).

The Systolic Architecture

Systolic architectures offer a method of optimizing -an algorithm for direct layout

in integrated circuits. The systolic architectural concept was developed by Kung and

associates at Carnegie-Mellon University. In a systolic system, data flows from the

computer memory in a rhythmic fashion, passing through many processing elements

before it returns to memory, much as blood circulates to and from the heart. Many

versions of systolic processors are currently being designed by various universities and

3

industrial organizations which will result in cost-effective, high-performance, special

purpose systems for a wide range of potential applications (Briggs and Hwang 1984).

A systolic array architecture consists of a network of processors which

communicate with their neighboring processors. The processing elements of a systolic

array may be arranged in several geometric configurations which allow it to perform

different functions. Systolic arrays are configurable for a wide range of applications

including matrix multiplication, fast Fourier transforms, and pattern matching.

The basic principle of a systolic system is quite simple. Replacing a single

processing element with an array of processing elements will result in a higher

computational throughput without an increase in memory bandwidth (Kung 1982).

The method used to implement this principle is to make exhaustive use of data brought

out of memory before it is returned to memory. The information in a systolic system

flows rhythmically between neighboring elements in a pipelined method. The data

from memory passes through the systolic system, making it available for each of the

array's processing elements.

Systolic architectures can be used to speed up compute-bound computation in a

relatively simple and inexpensive manner. The systolic array architecture thus offers a

viable method of constructing a low-cost compact processor capable of performing the

calculations required to implement a Kalman filter. To construct the desired systolic

array it would be necessary to design a processing element capable of high speed

computations and data routing between neighboring processing elements.

4

The Processing Element

The processing element (PE) is essentially an arithmetic logic unit (ALU) with

attached working registers and local memory (Briggs and Hwang 1984). The PE is

normally designed to perform some simple operations along with the ability to network

to other PEs.

The construction of a PE capable of high speed calculations and data routing

between neighboring elements will require a departure from the normal PE design.

The ALU must be able to perform multiplication, division, addition, and subtraction at

a very high speed. The PE must also be capable of shifting data to neighboring PEs to

allow the configuration of various algorithms. The first step in the design of a suitable

PE will be the determination of an acceptable numbering system for use in the

construction of the ALU.

The Logarithmic Number System (LNS) has been extensively studied by various

authors with regards to applications in the digital signal processing environment. In

particular, Kurokawa demonstrated that LNS gives superior filtering performance

compared to that of floating point systems of equivalent word length and range

(Kurokawa 19_80). The numbers in LNS are a signed radix raised to some signed

exponent. The multiplication and division operations are simply an addition or

subtraction of the exponents.

5

LNS offers the advantage of providing a considerable improvement in

multiplication and division performance over other numbering systems. The major

disadvantage of LNS is that the addition and subtraction operations require the use of a

memory look-up table. The memory required to implement an LNS based ALU has

been found to increase drastically as word length is enlarged. The amount of memory

required to utilize large word lengths of 16 bits or more have limited the practical

applications of LNS. However, the current advances in VLSI technology have made

feasible the construction of a 20 bit ALU based on LNS. A LNS based ALU will

have the speed and accuracy required to design an advanced PE capable of performing

Kalman filtering calculations.

CHAPTER II, PRELIMINARY DESIGN INFORMATION

In order to construct a high speed processing element capable of being used to

implement a Kalman filter it is necessary to have some preliminary information. The

designer must have an understanding of the Kalman filter matrix equations, the type of

systolic architecture that will be utilized, the VLSI technology that will be used to

produce the design, and the Logarithmic Number system (LNS).

Kalman Filter Equations

The application of optimal estimation is predicated on the description of a

physical system under consideration by means of mathematical models. The early

work in the area of control and estimation theory involved system description and

analysis in the frequency domain. In early 1960 the system description was made in

the time domain using state-space notation which offers the advantage of mathematical

and notational convenience. This method also has the advantage of producing a

system description closer to physical reality than any of the frequency oriented

techniques. The time domain approach is particularly useful in providing a statistical

description of the system behavior. Initially, the work done in the time domain was

concerned with continuous systems, but recently work has been extended to the

discrete case (Papadourakis and Taylor 1985). The Kalman filter is one of the most

popular state estimators used in system control which utilizes the discrete case models.

6

7

The availability of discrete case models has allowed the use of digital computers

to simulate the system. However, even though the equations are straightforward in

solution their are computationally intensive. Many authors have studied methods of

simplifying the matrix computations required to implement the Kalman filter. In

particular Graham and Kadela have summarized the matrix equations necessary to

perform Kalman ·filtering. The equations developed by Graham and Kadela where also

shown to reduce the amount of matrix multiplication by 25% (Graham and Kadela

1985).

A discrete dynamic system can be represented as the following equations,

x(k+l) = F(k)*x(k) + G(k)*w(k) (1)

and

z(k) = H(k)*x(k) + v(k) (2)

where the variables are defined in Table 1. The random variables x (0), v, and w have

known covariance statistics P (0), R, and Q. The problem is to find the best estimate i

for x given m measurements such that the sum of the squares of the estimation is a

minimum.

For the time-invariant system, the estimate at time k is defined by

i (k + 1 I k) = x (k I k - 1) + K* (z (k) - H* x (k I k - 1)) (3)

where K is a gain or weighting matrix that meets the minimization criteria. A new

update is determined by using the state transition matrix to get

8

TABLE 1

Fil., TER VARIABLES

VARIABLE IDENTITY SIZE

k 0,1,2 ... lxl
X state estimate vector nxl
p state estimate covariance matrix nxn
F state transition matrix nxn
G system disturbance distribution nxs
Q system disturbance covariance sxs
H measurement matrix rxn
R measurement noise covariance rxr
K gain matrix nxr
V plant noise (white Gaussian) rxl
w system noise (white Gaussian) sxl
z measurement vector rxl

i(k + 1 lk) = F*:i(k lk - 1) + F*K*(z(k) - H*i(k lk - 1)). (4)

The error covariance for the updated estimate is given by

P(k + 1 lk) = F*P(k lk)*FT + G*Q*GT, (5)

and it can be shown that

P(k lk) = P(k lk - 1) - K*H*P(k lk - 1). (6)

Equations (5) and (6) can be merged together to yield

P(k) = F*P(k - l)*FT -F*K*H*P(k - l)*FT + G*Q*GT. (7)

The gain matrix K is found by taking the partial derivative of the sum of the squares

of the estimation error with respect to K and setting it equal to zero. The resulting

9

solution for K is

K = P (k - l)*HT* (H*P (k - l)*HT + R)-1. (8)

Equations (4), (7), and (8) define the recursive optimal estimation filter.

However, the recursion must first be initialized by estimating x (0) and P (0). This

produces the first estimate as x(k + 1 lk) = F*x(k lk) or x(l 10) = F*x(0). Once the first

measurement is completed, equations (4), (7), and (8) are considered valid and may

used to implement a Kalman filter.

Systolic Architectures

A systolic structure consists of many processing elements connected to their

neighboring processing elements in a regular fashion. The crux of the systolic

architecture approach is to ensure that once a data item is brought out of memory it

can be used effectively at each cell it passes (Manno 1986). Figure 1 shows the

difference between a conventional processor and a systolic array processor. Suppose

each PE in Figure 1 operates with a clock rate of 100 ns. The conventional memory

processor organization has at most a performance of 5 million operations per second.

With the same clock rate, the systolic array will result in a performance of 30 million

operations per second. The ability to use each data item a number of times is only

one advantage of the systolic architecture. Other advantages include modular

expansion, regular data flow, and use of uniform processing elements.

10

Memory .-

--

-- PE ...

(a) The conventional processor

Memory _.-

--

-- PE PE PE PE PE PE -

(b) A systolic processor arrray

Figure 1. Conventional vs. Systolic Processor Architectures.

11

The systolic architecture can be designed to implement different algorithms by

using various geometric configurations. A systolic architecture can · also be designed to

allow reconfigurability for different algorithms, so that_ only one implementation need

be constructed. Figure 2 illustrates a few typical configurations of systolic

architectures. A summary of the computational functions performed by the displayed

configurations can be seen in Table 2.

TABLE 2

GEOMETRIC CONFIGURATIONS AND CORRESPONDING ·FUNCTIONS

PROCESSOR ARRAY STRUCTURE

linear arrays

orthogonal arrays

hexagonal arrays

trees

triangular arrays

COMPUTATIONAL FUNCTION

Fourier transform, sorts,
priority queue

orthogonal matrix arithmetic,
graph algorithms involving
adjacency matrices

band matrix arithmetic, transitive
closure, pattern matching, relational

database operations

searching algorithms, parallel function
evaluation, recurrence evaluation

inversion of triangular matrix,
formal language recognition

12

(a) One-dimensional linear array

(b) Two-dimensional square array
(c) Two-dimensional hexagonal array

(d) Binary tree (~) Triangular array

Figure 2. Typical Systolic Architecture Configurations.

Proposed Systolic Architecture

The desired systolic architecture must perform matrix arithmetic operations. The

orthogonal array architecture from Table 2 will meet the basic needs for the

implementation of the Kalman filter. There are many algorithms available for

performing matrix operations using an orthogonal array architecture. A well known

matrix multiplication algorithm was developed by Kung to calculate a result in 4n-1

computational units, where the matrices are n x n in size (Kung 1982). Until recently

Kung's algorithm was one of the fastest available to perform matrix multiplication.

However, a new algorithm which uses extensive pipelining was developed by

Papadourakis reducing the matrix multiplication time to 2n computational units

(Papadourakis 1986).

The new algorithm assumes that matrix A is partially loaded inside the array, B is

then piped in to interact with A so operations can take place before A is completely

loaded as shown in Figure 3. During each computational cycle the cells in the array

are able to perform two distinct operations; the multiplication step and the loading

operation. The multiplication operation involves each PE taking the sum of partial

products from the left neighbor and adding it to its partial product of (ab) before

passing the sum to the right neighbor for the next multiplication step. The data stream

of B is also piped one row deeper into the array. While some of the PEs execute the

multiplication step the loading of the remaining elements of matrix A can be

performed simultaneously. This algorithm will allow the multiplication of two n x n

0

0

•

bin

zout • Z;n +a• bin

bout a bin

Figure 3. Systolic Pipelined Orthogonal Array.

14

matrices in a computational time of 2n units, compared to 4n-1 units for Kung's

algorithm. The new algorithm will be used along with an orthogonal array architecture

to implement the Kalman filter.

15

Equations for Proposed Architecture

The Kalman filter equations are inherently parallel, but they must be rearranged

to take advantage of the pipelined systolic architecture. Equations (4), (7), and (8) can

be used in a systolic architecture when expressed as

x = F*x + F*K* [z - H*x],

p = F*P*FT - F*K*H*P*FT + G*Q*GT,

and

(9)

(10)

(11)

Graham and Kadela manipulated equations (9), (10), and (12) usmg commutative,

associative, and distributive laws to yield a 25% reduction in the amount of required

matrix multiplication. The resulting Kalman filter equations are

and

a= F*K,

x = F*x + a* [z - H*x],

P = [F - a*H]*P*FT + G*Q*GT,

b = P*HT,

K = b* [R + H*br1
•

(13)

(14)

(15)

(16)

(17)

The above equations can be used in the systolic architecture implementation of a

Kalman filter.

16

Matrix Operations

The Kalman filter equations can be analyized to determine the matrix operations

that must be performed by the systolic architecture. The required functions that the

systolic architecture must perform are shown in Table 3.

TABLE 3

THE REQUIRED FUNCTIONS OF THE SYSTOLIC ARCHITECTURE

SYSTOLIC ARRAY FUNCTIONS

• Matrix Addition
• Matrix Subtraction
• Matrix Multiplication
• Matrix Transpose
• Matrix Inverse

The only operation which is currently difficult to perform using a systolic architecture

is the matrix inversion. Graham and Kadela have applied an iterative technique to

implement matrix inversion for the Kalman filter. The algorithm is given by

D (k+l) = D (k)* (2*/ - A*D (k)) (18)

where A is the original matrix and D is the resulting inverse (Graham and Kadela

1985). However, this approach requires three to four iterations to arrive at a result. In

an attempt to increase the speed of the Kalman filter equations future research should

be directed towards deriving a more efficient inversion algorithm. A possibility may be

a recently developed algorithm which uses the square root function to perform an

17

inversion in (3n-2) computational units. This algorithm would greatly increase the

speed of the Kalman filter equations, however, it is beyond the scope of this paper to

discuss.

VLSI Technology

In order to determine how complex a PE can be designed on a single chip it is

important to have an understanding of VLSI technology in general and its relation to

the proposed design. Very Large Scale Integration (VLSI) refers to integrated circuits

that have a minimum of approximately 10,000 transistors (Abidin, 1984). There are

basically three ways to design VLSI circuits; either gate array, standard cell or full

custom layouts can be generated. The design of the systolic array PE and all support

hardware will be implemented using standard cells. The standard cells approach has

been chosen for its advantages of allowing the construction of high gate count circuits

and providing short tum around time from design to production.

In order to design devices of VLSI complexity it is necessary to use an integrated

computer aided design (CAD) system. The CAD system usually consist of specialized

computers and software to perform the necessary tasks that will unburden the designer.

The design of the hardware presented in this paper was performed using the VTitools

CAD system from VLSI Technology, Inc. (VTI). The VTltools system is basically a

software package which runs on an Apollo work station. The software used for the PE

design was installed on a Domain series 3000 work station. The VTltools system

allowed the standard cells approach to be utilized in the design of the proposed PE.

18

A major factor in the size of a VLSI chip is the fabrication technology that is

used to produce the chip. The technology is defined by the size of the smallest

possible transistor with the dimension given in microns. The current state of the art in

VLSI technology allows the construction of 2 micron transistors. The PE designed in

this paper will use the VTI 2 micron fabrication technology to calculate all size

estimations for the proposed circuit. The fabrication technology is critically in the

design of an integrated circuit because there is a limit to the chip size which can be

produced using current technology. The present limits in VLSI technology will allow

the construction of a 400 x 400 mil chip, where a mil is 1/1000000 of an inch (Hoffman

1987). At the present time research is being conducted to both reduce the size of

transistors below 2 microns and increase total allowable chip size. The introduction of

these new technologies would allow larger circuits to be place on a single chip.

An important point to make is that the designs presented in this paper have only

been generated on the VTitools system to produce size and speed estimates. The

proposed designs would still require a great deal of test to verify algorithms and circuit

layout before a chip could be produced. The VTI system is capable of simulating the

proposed PE and this may be an area for future research.

Logarithmic Number System

The Logarithmic Number System (LNS) has been shown to have superior filtering

performance compared to a floating-point system of equivalent word length and range.

LNS has the ability to perform very fast addition, subtraction, multiplication, division,

19

squaring, and square roots, along with being easy to implement. The numbers in LNS

are represented as a signed radix raised to some sign exponent. However, if the radix

is fixed, a number can be uniquely represented by its signed exponent alone. All the

arithmetic in the system can be performed using only the exponent (Taylor 1985).

The multiplication and division functions are simply an addition or subtraction

operation on the ' exponents. The calculation of the square and square root for a

number consists merely of shifting the exponent left or right respectively by one bit

position. An important point to make here is that LNS performs a very quick square

root calculation, a function that is critical to a newly developed inversion algorithm.

As stated earlier, the new inversion algorithm would significantly increase the speed of

the Kalman filter equations. The addition and subtraction operations are more

complicated, requiring the use of a look-up table to calculate a Logarithmic base two

function. A look-up table is used to compute the base two logarithmic functions

because of the availability of efficient and fast memories. The look-up table will be

constructed using a Read Only Memory (ROM).

LNS is an · ideal numbering system to be used in the implementation of the

systolic array Kalman filter. However, to use the LNS approach in. the design of an

ALU, it would be necessary to convert between LNS and a more acceptable number

system. The Floating Point Number System (FLP) is a commonly used number

system and will be used to demonstrate the LNS conversion algorithms. The

following sections will develop architectures to allow conversions between both 20-bit

20

LNS numbers and 20-bit FLP (13-bit mantissa; 7-bit exponent) numbers. Block

diagrams will also be developed for the conversion algorithms.

Floating Point to LNS Conversion

A floating point number (FLP) is represented as m.re1 , where m is a 13-bit signed

mantissa and e1 is a signed 7-bit exponent. The format of the FLP is assumed to be

normalized. The conversion consists of transforming the pair (m,e1) to a single number

ex. The relationship between the two formats is given by

(19)

where log2m < O, because m is normalized to lie in the range l<m<.5.

The log function is implemented using a look-up table ROM of size 4K x 12 (48

Kbits). The ROM requires 12-bit addressing and produces a 12-bit output. The result

of the conversion is calculated by adding the exponent to the output of the look-up

ROM. The addition operation is an 18-bit add where the exponent is the MSBs of one

input and the ROM output is the LSBs of the other input. The sign bits for both the

mantissa and the exponent are passed through the conversion to produce a 20-bit

logarithmic number of the following format.

I mantissa sign exponent sign 18-bit exponent I

A block diagram for the proposed conversion algorithm can be seen in Figure 4.

21

MANTISSA SIGN

SIGN

48 Kb1t
MANTISSA LNS

ROM

lB-b1t
.___ a

acll: 0J

...___ _____ .?---r--------------------lb
b c 17: 12:J ADDER

Figure 4. Floating Point to LNS Conversion Block Diagram.

22

LNS to Floating-Point Conversion

The LNS to FLP conversion algorithm consists of transforming a single number

(ex) into a pair of numbers (m ,e1), where

el = ceiling (ex),

m = F (ceiling (ex) - ex),

and

F (k) = 2k (or antilog).

(19)

(20)

(21)

The computation of ceiling (ex) - ex is nothing more than 1.0 - exF, where exF is the

fractional part of ex. The calculation of (1.0 - exF) is the same as computing the two's

complement of exF, ie exF + 1. This computation can be avoided by programming a

look-up table ROM in such a way that the ROM contains F(x + 1) rather than F(x)

(Taylor et al. 1987).

The LNS to FLP conversions calculation of the exponent is done by finding the

nearest integer to ex which can be computed using an incrementor. The mantissa

calculation requires a table look-up using the F (x + 1) ROM. A block diagram for the

described LNS to FLP conversion algorithm can be seen in Figure 5.

MANTISSA SIGf

L> Ii

c11:0J

6-b,t

CEILING
BLOCK

48 t<b,t
MANTISSA

ROM

Figure 5. LNS to FLP Conversion Algorithm Block Diagram.

23

24

Conversion Chip

The cost of building a VLSI chip depends on the number of chips produced. A

mask of the chip is generated from which any number of chips can be copied. The

cost of a chip mask is very expensive, typically around $50,000. The cost of using the

mask to make a chip is relatively small, so the more chips produced the lower the unit

cost.

Since it would be quite expensive to build masks for both a FLP to LNS

conversion chip and a LNS to FLP conversion chip only one chip will be designed

which contains both algorithms. This is possible due to the use of the 2 micron VLSI

technology. The desired chip will require 96 Kbits of ROM, a 6-bit incrementor, an

18 bit fast adder, and some related control logic. The VTitools system was used to

generate a conversion chip of size 178 x 156 mils which is well within the limits of

current technology. A block diagram of the chip layout with relative component sizes

can be seen in Figure 6. The CAD system was also used to compute time estimates

for the two conversions which can be seen in Table 4. It should be noted that the

conversion chip will be run at the same clock rate as the processing elements in the

systolic array. The conversion chip will simple have registers on its inputs and outputs

which are clocked at the system clock rate. This timing scheme will allow the

conversion chip to be added to the systolic array without creating a noticeable timing

difference in computational times due to its pipeline structure.

25

156 m 1 Is

~ ~

112 m, le

I LNS-FLP
0

CEILING

N D u
ROM 87 m, Is

T p
ILOO<

u p
48 Kb1ts

178 T ~ u

D T
m, Is

p LOGIC

~ ~ A
112 m, Is l&-b1t p

D
1e ,., ra

A
12 ., ,.

s D
FLP-LNS ADIER

5

ROM 87 m, Is

48 Kb,ts
e ., ,.

e a1 I

Figure 6. Block Diagram of Conversion Chip Layout.

26

TABLE 4

CONVERSION CHIP SPEED ESTIMATE

CONVERSION OPERATION TIME

FLP->LNS: 58ns

18-bit add 20ns
ROM look-up 38ns

LNS->FLP: 38ns

6-bit increment 1 lns
ROM look-up 38ns

CHAPTER III, PROCESSING ELEMENT DESIGN

The major component of a systolic array is the Processing Element (PE). The

purpose of this chapter is to investigate the design a high speed PE for use in the

systolic array implementation of a Kalman filter.

The desired PE must use LNS to allow high speed arithmetical operations. The

cell should also be capable of switching data to other cells will the ALU performs

computations. The cell must contain the necessary hardware in the form of memory

and a controller to allow programmability and reconfigurability. The PE should also

be designed to take full advantage of parallel communications, both internally and

externally. The proposed PE will contain a LNS ALU, ROM look-up tables, on board

RAM, a control unit, internal and external data routing switches, and multiple internal

and external buses. A block diagram of the proposed PE is shown in Figure 7.

The LNS ALU

A major component of the proposed PE will be the LNS based ALU. The ALU

provides the high speed arithmetic calculations needed to implement the Kalman filter.

The unit will compute six arithmetic functions, consisting of X +Y, X-Y, X*Y, x !Y, X 2
,

and .../X"'. Memory reduction techniques will be utilized to greatly reduce the amount of

look-up table memory that is necessary to construct a LNS based ALU. The following

sections will give a general overview of the LNS ALU (Taylor et al. 1987).

27

' -

~

EXTERNAL BLISSES

BUS
SWITO-f

-

El.JS
SWIT01

I
ON BOARD

RAM

MICRODE PROGRAMMABLE

-

CONTROL

UNIT

1'

INTERNAL
BLISSES

LNS-FLP FLP-LNS

ROM ROM

r----------........ -B
u -- LNS s
,., ALU u
)(

----.. ~

Figure 7. Block Diagram of Proposed PE.

T u
5 - M
u
)(-

28

/

BUS
SWITOi

- ~

aJ5
SWIT01 -

'

29

Description of Arithmetic Algorithms

The numbers in LNS are represented as X = (-l)srx.rex where r = 2 and ex is a 19-

bit two's complement number with a 6-bit integer part ex1, a 12-bit fraction part exF,

and a sign bit Se • Srx represents the sign of the radix, and Se the sign of the exponent.
X X

The LNS numbers are represented in the following word format.

18-bit exponent magnitude I

In describing the arithmetic algorithms for the ALU ex and ey will be used to

represent the numbers X = 2e" and Y = 2e., respectively. The result of the arithmetic

operation will be ez which represents the number Z = 2ez.

An important operation in the ALU is the multiplication function. The result of a

multiplication is simply the addition of the exponents. The multiplication of two

numbers X and Y may be written as

(22)

where

The next function to be discussed is the division operation. The division

algorithm is almost identical to the multiplication algorithm since the function can be

computed by subtracting the exponents. The division of two numbers can be

expressed as

30

(24)

where

(25)

The addition function is not as easy to implement as was multiplication or

division. The adc;iition operation requires a memory look-up to determine the LOG 2 of

an input. The sum of two numbers X and Y is defined as

S e S e
Z = X + Y = (-1) r.c.r " + (-1) ry .r 1 (26)

and

(27)

where Srz = F l(ex,ey,Srx,Sry) and the function F 1 is defined in Table 5. The resulting

sum is represented as

(28)

However, to reduce memory requirements ez is actually implemented as

e . - e
ez = emax + LOG 2(1 + r mm max) (29)

where e max = max (ex ,ey) and e min = min (ex ,ey).

The subtraction algorithm is similar to the addition operation as it also requires a

table look-up in memory. The difference of two numbers X and Y is expressed as

(30)

31

and

(31)

where Srz = F2(ex,ey,Srx,Sry) and the function F2 is defined in Table 5. The resulting

difference is represented as

(32)

Here again, as in addition, ez is represent as

(33)

to reduce the memory requirements.

The look-up tables used in the addition and subtraction algorithms can be

combined into one table by the following definitions. First a term D is introduced

which is defined as

-D = emin - emax. (34)

The addition and subtraction functions can now be shown to involve either of two

operations, LOGr (1 + r-D) or LOGr (1 - r-D). These two functions are implemented usin:g

a table look-up ROM, with D as the address input. The ROM actually holds two

tables, one for the F 1 function and one for the F 2 function. The two tables can be

referred to as LU = O and LU = 1 for addition (function F 1) and subtraction (function

F2) respectively. The logic for the addition and subtraction functions can be seen in

Table 5.

32

TABLE 5

LOGIC FOR THE ADDITION AND SUBTRACTION FUNCTIONS

OPERATION Srx Sry ex>ey srz LU OUTPUT

add 0 0 yes 0 0 ex+ ROM out
add 0 0 no 0 0 ey + ROM out
subtract 0 1 yes 0 1 ex+ ROM out
subtract 0 1 no 1 1 ey + ROM out
subtract 1 0 yes 1 1 ex+ ROM out
subtract 1 0 no 0 1 ey + ROM out
add 1 1 yes 1 0 ex+ ROM out
add 1 1 no 1 0 ey + ROM out

The remaining two functions that the ALU can perform are the square and square

root operations. These functions are fairly trivial to implement requiring only a shift

left or shift right by one bit. The square of the number X can be expressed as

(34)

The square root of the number X is represented as

(35)

The square and square root operations are simply to implement in the LNS ALU,

however, it should be noted that a larger than 20 bit register should exist so that

accuracy is not lost when squaring or talcing the square root of numbers.

33

Memory Reduction Technique

The addition and subtraction operations in LNS require a look-up table to

evaluate the two functions LOG 2(1 + 2-v) and LOG 2(1 - 2-v). If the 19-bit address D was

used in a "brute force" memory scheme to produce a 19-bit output the memory

requirements would be extremely high (.5 Mbits x 19). A memory of this size would

be difficult to build even using current VLSI technology. However, a preliminary

paper by Taylor et al. presented a number of techniques that can be employed to

reduce the memory to a practical size (Taylor et al 1987).

The first technique is to ensure that D is always positive by comparing ex with ey.

In other words D = max(ex,ey) - min(ex,ey). In the actual hardware a comparator is not

used, instead ex - ey and ey - ex are evaluated in parallel and the appropriate one

chosen to save time. The result of ensuring that D>O is that F 1 is always less than one

and therefore only needs a 12-bit wide output instead of a 19-bit wide output.

Taylor et al also determined that for some values of D the result of F l(D) and

F 2(D) would be smaller than what could be represented in a 20-bit ALU. The value of

D determined to produce this case is 12.5 for a 20-bit system. Therefore, for all values

of D >12.5 the value is known to be zero and need not be looked up. Another

advantage is that to represent numbers less than 12.5, the address input D need only

have four bits to the left of the fraction point. This produces a 16-bit address (4-bit

integer, 12-bit fraction) instead of a 19-bit address. This method alone will reduce the

memory requirements by a factor of eight (Taylor et al. 1987).

34

A third technique is to break up the address space in such a way so as to have

smaller sized memory spaces rather than one or two large ones. The graphs of the

LOG 2 functions are ones that become extremely flat, almost a straight line, for large

values of the variable D. Therefore, it makes sense to partion D-space into smaller

parts so that intervals of D that are more to the right (i.e. large D) use smaller ROMs

than intervals to the left. Using this method various points along the D axis have

entirely different mapping ratios. The mapping ratio around a point is defined as the

density of points on the D axis divided by the density of points on the F l(D) or F 2(D)

axis. Points are then chosen on the D axis such that the mapping ratio is close to

some power of two. This will allow the elimination of LOG 2(mapping ratio) number of

bits from the address width of D. The two functions F l(D) and F2(D) will have the

same mapping ratios and thus the same address width.

The ROM size can be reduced even further since the F 1 (D) and F 2(D) functions

monotonically decrease. The most significant bits of the 12 bits can be reduced in

certain ranges of D . The ranges of D along with the needed ROM size was

determined using the techniques presented by Taylor et al. and can be seen in Table

6. The range of D was broken up into 10 ROMs with values of D>9.0 implemented in

random logic.

The memory requirements for each LOG 2 function was determined to be 77 Kbits

using memory reduction techniques that were discussed previously. The total memory

requirements for both functions F 1 and F 2 are 154 Kbits, which is well within the size

35

TABLE 6

MEMORY REQUIREMENTS FOR ONE LOG 2 FUNCTION

ROM# ORANGE F(D) WIDTH ROM SIZE TOTAL BIT SIZE

1 0.0-0.5 11 2K x 11 22 Kbits
2 0.5-1.0 11 lK x 11 11 Kbits
3 1.0-2.0 12 2K x 12 24 Kbits
4 2.0-3.0 11 lK x 11 11 Kbits
5 3.0-4.0 10 512 X 10 5 Kbits
6 4.0-5.0 9 256 X 9 2.3 Kbits
7 5.0-6.0 8 128 X 8 1 Kbits
8 6.0-7.0 7 64 X 7 .45 Kbits
9 7.0-8.0 6 32 X 6 .2 Kbits
10 8.0-9.0 5 16 X 5 .08 Kbits

that can be constructed using VLSI technology. The memory reductions techniques

will thus allow the construction of a 20-bit LNS ALU for use in the systolic array

implementation of the Kalman filter.

ALU Components

The basic LNS processor is an asynchronous device that will perform six

operations: multiplication, division, addition, subtraction, square, and square root. The

ALU accepts a 3-bit op-code and two 20-bit LNS operands, ex and ey. The single

operand operations are performed on ex only. The processors output is a 21-bit LNS

number and a system overflow flag. The main components of the ALU are four 19-bit

two's complement adders/subtractors, a 20-bit shift register, and look-up table memory

implemented in ROM.

36

The 19-bit ·adders are all implemented as carry look-ahead adders to allow for

minimum computation times. The use of look-ahead carry adders requires some extra

room on the VLSI chip, but produces a significant computational time savings to be

advantages. The adders will accept two 19-bit two's complement operands and

produce the two's complement sum or difference as output. In order to save space

two of the addets which compute difference only are modeled as pure subtractors

which saves some control logic. The third and fourth adders are selectable between

addition or subtraction, where the subtraction simply inverts the desired input and

forces the carry in input to one.

The shift register accepts a 20-bit input and shifts it right or left by one bit

depending on the control signal. If the register shifts right it fills with the sign bit,

while a shift left fills with zero. The shift register is used to perform the square and

square root computations.

The look-up table _ memory is actually composed of two sets of ten ROMs and

some random logic. The two sets of look-up tables are used to obtain the values of

the two functions LOG 2(1 + 2-D) and LOG 2(1 - 2-v). The correct set of ROMs is

determined by the select signal LU which specifies which LOG 2 function is being

evaluated. The random logic determines which interval the input D belongs in and

selects the appropriate ROM. The select lines to the ROMs are simply a function of

the bits of the address D .

37

The ALU contains some other miscellaneous logic in terms of multiplexers to

switch input data to the correct hardware and logic gates that are used to implement

control signals for select lines and enables. Having defined the major components of

the ALU, the next section will show the hardware used to implement the various

arithmetic functions and control logic.

ALU Data Paths

Similarities were found in many of the arithmetic functions performed by the

ALU. In an attempt to save hardware and reduce chip size, functions that were similar

in nature where combined into single data paths. The result of this methodology was

the creation of three separate data paths and some control logic. The first path

implements the multiplication and division functions, the second path is used for

addition and subtraction, and the third data path performs the square and square root

functions. The data paths are also designed to allow parallel computation, otherwise

more than one data path can be functional at any point in time.

The multiplication and division data path is quite simple m construction, using

only a 19-bit adder/subtractor. The data path either adds or subtracts ex and ey

depending on the op-code. A block diagram of the multiplication and division data

path can be seen in Figure 8.

The addition and subtraction data path is rather complex requiring the use of

look-up tables to compute a LOG 2 function. The path also contains three adders and a

two-to-one mux. The first two adders are used to compute the two differences ex - ey

ex

19

e~

19

a 19-b,t

ADDER

sum

b

ADD/SUB SELEC

DATA PATH

SELECT LINE

Figure 8. Multiplication/Division Data Path.

38

ez

19

39

and ey - ex in parallel. A two-to-one mux then selects the desired value depending on

which result is negative. This allows the sign bits to be gated to form a select for the

multiplexer. The third adder is used to add the look-up table value to ex to produce

the result. A block diagram of the addition and subtraction data path is shown in

Figure 9.

The final data path contains the square and square root calculations. The only

component in the data flow is a 20-bit shift register. The register simply shifts the ex

input right or left to implement the square or square root functions respectively. A

block diagram of the square and square root data path is shown in Figure 10.

In order to implement the various arithmetic functions into a single unit it 1s

necessary to construct some type of control logic. There are two major tasks that the

control logic must perform: selecting the desired arithmetic function and handling an

arithmetic overflow. The basic job of selecting which function to perform is handled

by using three control lines, one to each data path. The signals are generated outside

the ALU by the PE control unit. The control signals simply enable the different data

paths. The overflow logic handles the case where the resulting number is larger than

the system can output. In this case the logic simple outputs the largest representable

number and sets the overflow flag.

/
19

/
19

a

MAX
e e

X y

19-b,t

/
/

19

-
d, .f~ ~

b
M

SUBTRACT u
X

.,__...,.a

19-b,t -
.__ __ _.b

SUBTRACT

DATA PATH
SELECT LINE

19-b,t
ez a

/
sum /19 - b

ADDER
I ADD/SUBTRACT

ROM
D ---

RANGE
TABLES

Figure 9. Addition/Subtraction Data Path.

40

e
X

19

20-b,t

SHIFT
REGISTER

a z -------------~

RIGHT/LEFT

SHIFT SELECT

DATA PATH

SELECT LINE

Figure 10. Square/Square Root Data Path.

20

41

42

There will also be some miscellaneous control logic necessary for determining

which look-up table to address or which of the difference calculations in the

addition/subtraction database to choose. This logic is easily implemented using simple

logic gates. At this point it should be noted that this paper will not present the actual

ALU schematics, but instead is written more to show the feasibility of this type of

ALU.

The previously defined arithmetic data paths and control logic are used to

construct a block diagram of the LNS ALU. The block diagram of the ALU is

displayed in Figure 11.

ALU Layout and Timing

The VTitools CAD system was used to produce speed and size estimates for the

LNS ALU. However, the ALU was not effectively simulated since only size and

speed models were used for the look-up table ROMs.

The VTitools system was used to determine the time required to compute each of

the arithmetic functions in the ALU. The decode and control logic was found to have

an overhead on each function of approximately lOns. The control logic used will be

discussed in a later chapter and is only mentioned here for the calculation of ALU

timing. The individual components in each functions data path were then analyzed to

determine their delay. The delays were then totaled to arrive at a final value for each

function. The results of the timing analysis are shown in Table 7.

ex

e
~

SHIFT

REG

ADD

SUB

SUB

43

DATA PATH SELECT LINES

OVER t--------- 1------4---+---..,__ __ ___.

FLOW

OUER
....,_ __ ----t 1-------+---+----~

FLOW

MAX

M ez
ADD u OVER

X FLOW

D
RANGE

F
LOGIC

ROM ~ C

Figure 11. ALU Block Diagram.

44

TABLE 7

ALU COMPONENT AND FUNCTION TIMING

ITEM FUNCTION

MULT DIV ADD SUB SQUARE SQUARE ROOT

control lOns lOns lOns lOns lOns l0ns
19-bit add 22ns 22ns 22ns 22ns
19 bit sub 22ns 22ns
20-bit shift 5ns 5ns
ROM table 28ns 28ns

total 32ns 32ns 82ns 82ns 15ns 15ns

The ALU size was computed by capturing the schematics of the major hardware

components and performing a route. The VTI route command will produce a floorplan

for the entered circuit with dimensions given in mils. A diagram of the generated

floorplan along with the corresponding dimensions is shown in Figure 12.

45

210 m, Is
~ ~

() ()
101 m1 Is 101 m, Is

2 Fl F2
5
5

ROM ROM
m
i 203 m, Is 203 m, Is

I
s

~~~?.i _A_D_D ___ A_D_D___, _A_D_D___, i i II ~I __ 
Figure 12. ALU Floorplan. 



46 

PE Interface Structure 

An important part of designing a high speed PE is the creation of a highly 

parallel interface structure. The proposed PE will be used in an orthogonal array 

architecture and must be capable of parallel communication to each of its neighboring 

cells. The following sections will discuss a design which will support the required PE 

parallelism in the interface structure. 

Internal Interfaces 

To support the maximum amount of parallelism the proposed PE must be capable 

of routing data to three main areas, the ALU inputs, a data storage memory, or to an 

external bus. The PE will contain eleven internal buses which will allow 

communication to any of the ALU inputs or the storage memory. The data paths for 

each ALU function will have their own internal bus for both input and output. Two 

buses will be dedicated to routing data to and from the storage memory. Since the 

storage memory will be a dual port RAM one bus will be connected to each port. The 

remaining bus will be used as an ALU bypass bus to allow data to pass straight 

through the PE. The internal buses will all have a width . of 20 bits to correspond to 

the previously designed LNS ALU. 

The PE will use internal bus switches on each of the ALU outputs to allow data 

to be routed back to a desired ALU input, to the storage memory, or simply pass 

through to the one of the output buses. The bus switches will each be controlled by 

the use of a 3-bit op-codes which are shown in Table 8. 



TABLE 8 

OP-CODES FOR INTERNAL BUS SWITCHES 

OP-CODE 

000 
001 
010 
011 
100 
101 
110 
111 

FUNCTION 

pass data through PE 
route data to square/square root input 
route data to ex mult/div input 
route data to e, mult/div input 
route data to ex add/sub input 
route data to e, add/sub input 
route data to storage memory port 1 
route data to storage memory port 2 

47 

The storage memory will also contain two internal bus switches to allow data 

routing to any of the ALU input buses. The memory switches are also capable of 

connecting to the PE bypass bus. One memory switch is assigned to each port on the 

memory storage RAM. A 3-bit op-code is used to control each storage memory bus 

switch, were the values and corresponding functions can be seen in Table 9. It should 

be noted that the memory switch has an unused op-code which could be utilized in the 

future if modifications were made to the PE. The internal bus structure having been 

designed, it will next be necessary to interface the PE to the outside world. 



48 

TABLE 9 

OP-CODES FOR MEMORY BUS SWITCHES 

OP-CODE FUNCTION 

000 switch port to square/square root input 
001 switch port to ex mult/div input 
010 switch port to ey mult/div input 
011 switch port to ex add/sub input 
100 · switch port to ey add/sub input 
101 switch port to bypass bus 
110 do not switch data to any bus 
111 do not switch data to any bus 

External Interface 

The proposed PE is to be configured in a orthogonal array structure. In order to 

communicate to any of its neighboring cells in parallel the PE must contain four 

external data buses. The data buses will be controlled using external bus switches 

which will allow the data to be connected to many of the internal PE buses. 

A separate bus switch will be allocated to each external bus. The switch is a 

bidirectional data switch that will simply connect the external bus to the desired 

internal bus. The external bus switches are controlled by a 4-bit op-code which is 

described in Table 10. The external bus switches each contain a latch to trap data. 

The data that is sent or received by the switch will be latched and thus present for 

one full clock cycle. It should be mentioned that at the present time there are four 

extra op-codes which could be used in the future if more external buses were added to 



49 

the PE. The external buses all have a width of 20 bits to agree with the already 

defined internal bus structure. A block the diagram of the combined internal and 

external bus organization is shown in Figure 13. 

TABLE 10 

OP-CODES FOR EXTERNAL BUS SWITCHES 

OP-CODE 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

FUNCTION 

switch data to bypass bus 
switch to square/square root input 
switch to square/square root output 
switch to ex mult/div input 
switch to ey mult/div input 
switch to ez mult/div output 
switch to ex add/sub input 
switch to ey add/sub input 
switch to ez add/sub output 
switch to memory bus port 1 
switch to memory bus port 2 
no data enters PE 
no data enters PE 
no data enters PE 
no data enters PE 
no data enters PE 



50 

EXTERNAL 1' BUSES 
E. B. S~ 

INTERNAL BUSES 

~ I 1. e. J 
ALU - I 

-
] 

E. B. Sr ~ y I. B. S. ' l E. B. 

y I. B. S. 

t1. B. • 

I 

MEM t1. B. S ,__ 

E. B. 

~ 

Figure 13. Block Diagram of PE Bus Structure. 



51 

PE Control Structure 

Another important aspect of the proposed PE is the control structure. A well 

designed control structure will allow the PE to support a maximum amount of 

parallelism. The control structure will also define how generic the PE is, in other 

words, the number of different algorithms that can be implemented using the PE. 

The control of the proposed PE will be performed by the use of a microcode 

control unit. The use of a microcode controller will allow the required flexibility to be 

designed into the control structure. The microcode unit will be simplified by using 

straight line code which does not require condition statements. The controller will 

simply be a lK x 23 bit memory in which the control bits will be stored. The control 

structure will include four counter/comparator blocks which will allow the user to 

define the sections of memory that should be run in loops. 

Counter/Comparator Block 

The counter/comparator blocks will be used to define algorithms for the PE. The 

counter/comparator block is loaded with the starting and ending addresses which it will 

loop through in the microcode memory. The corresponding memory locations are then 

loaded with the necessary control bits which will perform the desired PE function. A 

control bit is used to enable the counter whenever a programmed algorithm is to be 

executed. The counter simply produces the read address for the microcode memory. 

The resulting memory output data is then used to determine the PE function. The 

counter will continue to increment the read address until the ending address loaded 



52 

into the comparator is reached. The counter is then reset to the starting address 

beginning the loop over. 

The reading of data from the microcode memory will take approximately 38 ns, 

which would be a rather large overhead for all the PE functions. In order to reduce 

this overhead a negative clock will be used to clock the counters and microcode 

memory. The read operation occurs asynchronously so the delay due to the counter 

will not affect the memory operation. The negative clocking of the counter will allow 

the control data to be used to set up the PE before the system clock occurs. The 

system clock is used to clock the registers in the PE and the data storage memory. It 

should be noted that the negative clock will be generated internally to the PE by using 

the entered system clock. The use of these counter/comparator block scheme will 

allow the PE to be configured for a variety of algorithms and greatly reduce the 

amount of external PE control. 

Control Words 

The control of the PE will require the use of two consecutive words in the 

microcode memory. The first word will be used to control the external bus switching 

and the ALU. The second word will control internal bus switching and the storage 

memory. 

The first control word will contain the 4-bit op-code for the external bus switches 

along with the read/write enable for the storage memory, the 3-bit memory address, 

and the 3-bit op-code for the ALU. The bus switch will use its 4-bit op-code to 



53 

perform the desired switching function. The external bus switch op-codes were 

defined previously in Table 10. The read/write enable and memory address is used if 

the bus switch is connected to one of the memory ports. Finally, the ALU op-code 

defines the arithmetic operation that will be performed by the PE. Each ALU control 

bit is assigned to enable a specific functional data path, which allows multiple paths to 

be run in parallel. The first ALU bit is assigned to the multiple/divide path, the 

second to the add/subtract path, and the third to the square/square root path. Using 

this design layout the first control word will having the following format: 

SWITCH 1 SWITCH 2 SWITCH 3 SWITCH 4 MEMORY ALU 
4-bit code 4-bit code 4-bit code 4-bit code cntl 3-bit code 

The second control word is used to provide instructions to the internal bus 

switches, the memory bus switches, and the storage memory. The three internal ALU 

bus switches each have a corresponding 3-bit op-code which was defined in Table 8. 

The next six bits of the control word are used for the control of memory bus switches, 

which were defined in Table 9. The memory functions require four control bits to be 

used for each port to read and write to memory along with supplying the address. The 

word format for the second control word is as follows: 

SWITCH 1 SWITCH 2 SWITCH 3 MEMORY 
3-bit code 3-bit code 3-bit code 3-bit code l 3-bit code I cntl I cntl 



54 

Memory Organization 

In order to produce the required control bits the microcode controller needs two 

consecutive 23-bit memory words. If the system has to perform two consecutive 

memory reads there will be a memory access time worth of delay before the PE can 

perform an operation. In order to alleviate any delays the microcode memory will be 

organized as two' 512 x 23 bit word memories. The read address generated by the 

counter/comparator will be sent to both memories so that both control words will be 

available at the same time. A memory scheme of this nature will ensure an efficiently 

operating PE. However, it may be necessary to write to each memory independently 

in certain situations. In order to access the microcode memories independently, 

separate enable bits will be connected to each memory. The enable bits will both be 

set to allow the memories to be accessed during the running of microcode. 

The PE will also contain a dual port RAM to be used as a data storage memory. 

The RAM will be organized as a 16 x 20 bit memory. The first eight words will be 

used for the temporary storage of data. The remaining words can be used to 

implement a PE self test which will be described in a later section. The dual port 

RAM will allow the PE to perform both a read and a write operation in one system 

clock cycle. The storage memory will be connected to the rest of the PE with two 

buses, one bus being dedicated to each RAM port. Using the described memory 

organization and control word scheme a block diagram of the PE control structure was 

generated and is displayed in Figure 14. 



!us.I 
4 

3 

23 

ALU 

4 

CONTROL 

WORD 1 
MEMORY 

4 

I. B. 

I. 8. 

I. 8. 

C/C 
4 

CONTROL 

WOAD 2 
MEMORY 

3 
M.8. 

4 
MEM 

23 

Figure 14. Block Diagram of PE Control Structure. 

55 

4 

E.8.S. 



56 

External Control 

The PE will be externally controlled by a master controller in the systolic array. 

The controller will require the ability to select which counter/comparator to run, to set 

up start and end addresses for the microcode, and to program the microcode controller. 

A proposed control scheme that will meet these requirements will contain four control 

bits and the two memory enable bits. The functions performed by the four control bits 

are described in Table 11. 

TABLE 11 

OP-CODES FOR PE CONTROL 

OP-CODE 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

FUNCTION 

null process (self test) 
run counter 1 microcode 
run counter 2 microcode 
run counter 3 microcode 
run counter 4 microcode 
load counter 1 start address 
load counter 2 start address 
load counter 3 start address 
load counter 4 start address 
load counter 1 end address 
load counter 2 end address 
load counter 3 end address 
load counter 4 end address 
pass data to right 
read from memory 
write to memory 

The memory enable bits are used to determine which memory the user wishes to 

access during the reading or writing of microcode to memory. 



57 

Self Test 

One of the operations the PE is capable of performing is the null operation, where 

the PE simply sits idle. However, it would be a waste of processor time to do nothing 

during the null mode. A possible function that could be performed during this 

available time is a PE self test. The extra eight words in the storage memory could be 

used to store data that would be entered into the ALU. The results of the ALU would 

then be compared to the known results also stored in memory. If the two values did 

not agree an error flag would be set. The addition of this test to the PE would require 

a 20-bit comparator and some random logic. The addition of this extra hardware is 

worth the assurance it will give that the PE is functional. 

The PE will output two status flags to inform the master controller of its status. 

The previously described self test will produce an error flag that will indicate whether 

the PE is operational. It should be noted that the self test only checks the operation of 

the ALU and some internal buses. The PE will also output an ALU overflow flag that 

will indicate whether an arithmetic overflow has occurred. The master controller will 

be able to use these status flags to determine the accuracy of implemented algorithms 

in the systolic _array. 

Programming the PE Microcode Controller 

The PE microcode controller is simply a pair of memories that store control bits. 

The memories can be written to by setting the correct op-code defined in Table 11 and 

enabling the desired memory. The data that the user wishes to store in memory is 



58 

entered on the external bus that would normally connect to the PE' s neighboring left 

cell. In this way the PEs in the systolic array can be programmed a column at a time. 

The user may find it useful to write a basic compiler that would take defined words 

and translate them into the corresponding control bits that would implement the desired 

function. The user could then have PE functions such as multiplication, addition, and 

square root already defined so that a user not familiar with the PE design could still 

write microcode for the processor. This may be an interesting topic for later research, 

but will not be discussed in the scope of this paper. 

System Clock 

The final item to consider in the design of the PE control structure is the matter 

of system timing. The PEs in the systolic array should all be clocked simultaneously 

by a systei:n clock. The LNS conversion chi.p will also be clocked by the same system 

clock to create a totally synchronize systolic array. The use of a system clock simply 

means that the PE and conversion chip will contain registers on both their inputs and 

outputs which will be clocked at the system rate. In the design of this PE a system 

clock of 100 ns was assumed to allow time for the worst case ALU functions of 

additional and subtraction (82ns) along with a system overhead margin. The major 

components of the PE have now been defined, the final task will be to integrate them 

into a working VLSI chip. 



59 

PE Simulation 

The design of the PE is now complete, however, the PE must be tested to 

determine its effectiveness in implementing the Kalman filter equations. The PE will 

be tested by implementing in microcode two functions that are used repeatedly in the 

Kalman filter equations. The first function is 

Zow = A*Bin + Zin, (36) 

and 

BoUl = Bin (37) 

where A is assumed to already be present in the PE. The values of Zin and Bin are 

present on two of the PE' s external buses. The second operation which will be 

implemented is 

Aow = Ai, (38) 

and 

(39) 

where A 1 is stored in the PE memory and Ain is present on one of the external buses. 

The control words necessary to perform these operations will be shown, along with the 

number of system clock cycles that are required to compute the function. It is 

assumed that the control words are stored in the microcode memory and that a 

counter/comparator is assigned to each function. 



60 

The control words specified will be of the format described earlier. The external 

bus switches are numbered one through four starting on the top of the PE and moving 

clockwise around the four sides. The internal bus switches are numbered one through 

three, where the first is placed on the multiple/divide output bus, the second on the 

add/subtract output bus, and the third on the square/square root output bus. The 

memory switches · are assigned to port 1 and port 2 of the storage memory respectively. 

The op-codes that will be used in the control words were previously defined in tables 8 

through 10. 

The first function, described in equations (36) and (3 7) will take two system 

clocks to perform. The microcode for control words one and two will be displayed. 

During the first clock B;" will be placed on the e" input of the multiple/divide path and 

simultaneously shifted out of the PE. The A value will also be read from memory and 

placed on the ey input of the multiple/divide path while the Z,n value is stored in 

memory. The control words read from the microcode memory during the first clock 

should be as follows: 

CONTROL WORD 1 
SWITCH 1 SWITCH 2 SWITCH 3 SWITCH 4 MEMORY ALU 

0011 1111 0011 1001 1001 000 

CONTROL WORD 2 
SWITCH 1 SWITCH 2 SWITCH 3 MEMORY 

000 000 000 111 I 010 I 0000 I 0000 



61 

The second clock will allow Zin to be added to the result of A*Bin and shifted out of 

the PE on an external bus. The control words that would be placed in the microcode 

memory are as follows: 

CONTROL WORD 1 
SWITCH 1 SWITCH 2 SWITCH 3 SWITCH 4 MEMORY ALU 

1111 1000 1111 1111 0000 000 

CONTROL WORD 2 
SWITCH 1 SWITCH 2 SWITCH 3 MEMORY 

100 000 000 100 I 111 I 0001 I 0000 

A flow diagram showing the implementation of the first functions microcode in the PE 

is displayed in Figure 15. The data flows internal and external to the PE are shown 

along with the corresponding clock times. 

The second function which is described in equations (38) and (39) will also take 

two system clock cycles to execute. The first clock will allow A 1 to be shifted out of 

the PE and Ain to be stored in the storage memory. The microcode used to perform 

these functions is shown below. 

CONTROL WORD 1 
SWITCH 1 SWITCH 2 SWITCH 3 SWITCH 4 MEMORY ALU 

1001 1111 0000 1111 0011 000 



62 

Bout 

elk 1 

Bin 
ALU 

elk 1 
elk 2 

A 
elk 1 ex RESULT ALU 

STORAGE z e add elk 2 
elk 2 · 

MEMORY 

elk 1 
z,n 

Figure 15. Flow Diagram of First Microcode Function. 



63 

CONTROL WORD 2 
SWITCH 1 SWITCH 2 SWITCH 3 MEMORY 

000 000 000 111 I 101 I 0000 I 1100 

In the first clock cycle A1 was read from memory location 3 while Ain was stored in 

memory location 4. This is due to the fact that a read and write operation cannot be 

made in the same clock cycle to the same address using the defined control structure. 

In order to allow this code to be repeatable the value of Ain must be moved from 

memory location 4 to memory location 3. The second clock cycle uses the following 

control words to perform the required memory move operation. 

CONTROL WORD 1 
SWITCH 1 SWITCH 2 SWITCH 3 SWITCH 4 MEMORY ALU 

1111 1111 1111 1111 0000 000 

CONTROL WORD 2 
SWITCH 1 SWITCH 2 SWITCH 3 MEMORY 

000 000 000 101 I 101 I 0100 I 1011 

A flow diagram which describes data paths and clock cycles for the second function is 

shown in Figure 16. 

The above examples of microcode demonstrate the ability of the PE to implement 

functions necessary for the Kalman filter equations. The microcode was assumed to 

already be present in memory since the task of loading microcode is more a function 

of the systolic array controller. The user would then simply enable the correct counter 



64 

A1n STORGAE 

' ~ MEMORY 
elk 1 

ADDRESS 4 

A elk 2 

STORAGE RESULT ' ~ MEMORY ' , 
ADDRESS 3 elk 1 

Figure 16. Flow Diagram for Second Microde Function. 



65 

which is assigned to the desired function. It should be noted that the microcode used 

to implement the desired functions is not the only microcode implementation that 

would work. It is possible to use different microcode to perform the same functions. 

The examples were given to show the ability of the PE to perform the operations, and 

not to illustrate the absolute method of implementing the function. 

Chip Layout and Key Parameters 

The final chip layout was performed using the VTitools CAD system. The first 

step was to determine the total 1/0 to the PE. The next step was to place the PE's 

major components such as the ALU and memories in a position that would minimize 

internal routing. After the PE had been routed an accurate measurement of chip size 

and speed could be calculated using the CAD system. 

Chip 1/0 

The PE chip was found to have a total of 89 1/0 paths. The majority of the 1/0 

is allocated to bus connections between neighboring cells. The remaining 1/0 was 

comprised of control lines and status flags. A complete breakdown of the chip 1/0 is 

shown in Table 12. 



66 

TABLE 12 

CHIP I/O DESCRIPTION 

NO. OF PINS FUNCTION 

20 top cell interface bus 
20 right cell interface bus 
20 bottom cell interface bus 
20 left cell interface bus 

4 PE op-code control word 
2 memory enable lines 
1 PE error status flag 
1 ALU overflow flag 
1 1 OOns system clock 

Chip Size and Speed 

The final layout of the PE chip produced a core limited design. In other words, 

the size of the chip was limited by the logic contained within it and not by the number 

of I/O pads. The VTitools system was able to produce a chip size of 392 x 360 mils. 

This size is within the limits of 400 mils on a side that was given as the maximum 

practical size for a VLSI chip. The rather large amounts of memory defined the 

majority of the chip layout. Another factor in the large size of the chip was the high 

degree of bus routing due the eleven internal buses. If the size of the chip was 

determined to be too large for some reason, a reduction could be realized by limiting 

the number of internal buses. The removal of internal buses would cause a decrease in 

the ability of the PE to perform parallel operations and the PE' s degree of 



67 

reconfigurability. However, as stated early the final layout is within the limits allowed 

by current VLSI technology. A diagram of the chip layout with dimensions given in 

mils is displayed in Figure 17. 

The VTitools system was also used to determine if the final design would be able 

to run on the proposed 1 OOns system clock. A check of chip speed is necessary since 

it is impossible to arrive at an accurate number for wire delays until the chip is routed. 

A high level simulation of the chip model with capacitance added in for the calculated 

wire delays verified that the PE is capable of operating at the 1 OOns rate of the system 

clock. It should be noted that before this chip is ready for production a great deal of 

testing would still be needed to verify functionality of all the desired operations. 



3 
6 
0 

m 
i 

I 
s 

( 

392 mi Is 

) 
210m1ls /\. 

LNS 

ALU 

2 
5 

6 

m , 
I 
s 

BUS 
ROUTING 

-

( ) 
132 m, Is / \. 

l 
1) 

' MICROCODE 3 

6 

MEMORY m 
1 

I 
s,l/ 

I I 

BUS 
I R. L. 

11.B.S. 
I 

I I 

E. B. S. I M. B. s. I 
.,..___..... I 

COUNTER 
COMPARATOR . 
BLOCK -----.----

• 
DECODERS 

R. L. 

I 

DATA 
f"EM 

Figure 17. Chip Layout. 

68 



69 

CHAPTER IV, CONCLUSION 

The theory of optimal filtering, and especially Kalman filtering, has been 

extensively researched since its introduction in the early 1960s. The goal of this paper 

was to show how the recent developments in the area of logarithmic number systems 

(LNS) and very large scale integrated (VLSI) circuits could be used in the systolic 

array implementation of the Kalman filter. 

A suitable systolic architecture was developed along with the implementation of 

the Kalman filter equations using LNS arithmetic. A processing element (PE) to be 

used in the systolic array was designed and its ability to perform Kalman filter related 

functions demonstrated. The only subjects yet to be covered are alternative PE designs 

and possible topics for future research. 

Alternative PE Designs 

There are always methods of improving an existing design; the question is what 

are advantages and disadvantages of the design change. The PE design could benefit 

from enhancements to its storage memory. The current design only allows one read 

and write operation per system clock. However, since. the read operation occurs 

asynchronously it should be possible to perform two read operations from the same 

port in one system clock. This enhancement would be useful in reducing the number 

of clock cycles needed to perform various Kalman filter functions. 



70 

The extra memory operation could be implemented in a variety of ways. The 

negative and positive clocks could be used to generate different read enables. Another 

possible approach would be to subcycle the memory to allow the extra operations to be 

performed. A third method would use a 3-port memory to allow additional read and 

write operations, but would also require the addition of another memory bus and 

memory switch. All of the design implementations mentioned have their advantages 

and disadvantages. The design approaches presented are also not the only methods of 

allowing extra memory operations to occur. The use of the PE would have to be 

investigated in more detail to determine the most viable design enhancement. 

Although a possible design change has been mentioned for the PE storage 

memory, that does not mean that it is the only design enhancement that may be useful. 

The designer of the systolic array in which the PE will be used should study the 

design and determine what other changes would benefit the array implementation. It 

should be noted that typically a design of this nature would go through many reviews 

by more than one designer in an attempt to produce the most useful end product. 

Areas of Future Research 

This paper attempts to give a good overview of the design for a PE to be used in 

the systolic array implementation of the Kalman filter. However, it is impossible to 

cover all the areas involved with the degree of detail that they warrant. Throughout 

the paper various areas that would benefit from future research were mentioned; 

however, there are three areas that should be stressed. 



71 

The first area of possible research concerns a new floating-point- to-logarithmic 

algorithm that would allow the accuracy of the result to be increased to 32 bits without 

increasing memory look-up table size. The new method would require the addition of 

32-bit adders and some extra control logic. The use of this new algorithm and a 

redesign of the current PE could result in a 32-bit high speed ALU (Taylor 1983). 

Another area of research concerns the implementation of the systolic array and 

the control structure that will utilize the designed PE. One of the more difficult 

Kalman filter operations that must be performed in the array is a matrix inversion. A 

new algorithm that uses the square root function has been proposed and should be 

investigated in detail. This algorithm should be very useful due to the relative ease in 

which the LNS ALU performs the square root operation. 

The third area to consider for future research concerns the design of a compiler 

for the generation of PE microcode. A microcode compiler would allow users that are 

not extensively A compiler would also benefit the system designer by not requiring 

him to perform the actual coding process. 



REFERENCES 

Abidin, Randolph L., "The Design of Standard Cell VLSI Circuits," University of 
Central Florida, 1984. 

Briggs, Faye A., and Hwang, Kai. Computer Architecture and Parallel Processing. 
New 'York: McGraw-Hill Book Company, 1984. 

Graham James H., and Kadela Thaddeus F., "Parallel Algorithms and Architectures 
for Optimal State Estimation," IEEE Transactions Computers, Vol. C-34, 
November 1985, pp. 1061-1068. 

Hoffman, Tom. General Electric Company, Daytona Beach, Florida. Interview, 6 
March 1987. 

Kalman, R.E., "A New Approach to Linear Filtering and Prediction Problems," 
Journal of Basic Engineering, Vol. 82, March 1960, pp. 35-45. 

Kung, H. T. "Why Systolic Architectures?" Computer, January 1982, pp. 37-46. 

Kurokawa, T., Payne, J.A., and Lee, S.C., "Error Analysis of . Recursive Digital 
Filters Implemented with Logarithmic Number Systems," 
IEEE Transacations ASSP, Vol. ASSP-28, December 1980, pp. 706-715. 

Liu, Philip S., and Young, Tzay Y., "VLSI Array Design Under Constraint · of 
Limited 1/0 Bandwidth," IEEE Transacations Computers, Vol. C-32, 
December 1984, pp. 1160-1170. 

Manno, Steven V., "The Application of Systolic Architecture m VLSI Design," 
University of Central Florida, 1986. 

Papadourakis, George M., "Adaptive Optimal Filtering using the Logarithmic Number 
System." Ph.D. dissertation, University of Florida, 1986. 

Papadourakis, George M., and Taylor, Fred J., "Implementation of Kalman Filter 
using Systolic Arrays," University of Central Florida and University of 
Florida, 1986. 

72 



73 

Taylor, Fred J., "An Extended Precision Logarithmic Number System," 
IEEE Transacations ASSP, Vol. ASSP-31, February 1983, pp. 232-234. 

Taylor, Fred J., "A Hybrid Floating-Point Logarithmic Number System Processor," 
IEEE Transacations Circuits and Systems, Vol. CAS-32, January 1985, 
pp. 92-95. 

Taylor, Fred J., Gill, R., Joseph, J., and Radke, J., "A 20-bit VLSI Arithmetic 
Processor based on the Logarithmic Number System," Department of 
Electrical Engineering, University of Florida and Honeywell Inc. Systems 
& Research Center, Preliminary Paper, 1987. 


	Design of a Processing Element for the Systolic Array Implementation of a Kalaman Filer
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii
	iia

	ACKNOWLEDGMENTS
	iii

	TABLE OF CONTENTS
	iv
	v

	LIST OF TABLES
	vi

	LIST OF FIGURES
	vii

	CHAPTER I, INTRODUCTION
	01
	02
	03
	04
	05

	CHAPTER II, PRELIMINARY DESIGN INFORMATION
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26

	CHAPTER III, PROCESSING ELEMENT DESIGN
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68

	CHAPTER IV, CONCLUSION
	69
	70
	71

	REFERENCES
	72
	73


