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ABSTRACT 

Frequency selective surfaces (FSS) have numerous applications in several 

microwave and optical systems. Most frequency selective surface structures have one or 

more dielectric substrates. In this work, instead of traditional dielectric substrates, ferrite 

substrates are used under different dc bias conditions. By using ferrite materials, one can 

change the spectral properties of these structures without physically altering them. An 

applied magnetic field (dc bias) on the ferrite substrate changes its properties and hence 

the electrical dimensions of the elements comprising the periodic structure. Thus by 

simply applying a dc bias, the transmission and reflection properties of the periodic 

structure can be changed. That leads to a tuning mechanism which allows the designer, 

by varying the externally applied dc magnetic field, to obtain a more desirable frequency 

response. 

In this work, the transmission matrices for the ferrite substrate and the air, above 

and below the ferrite substrate are derived. By combining these transmission matrices 

along with the boundary conditions, the spectral domain Green's function is obtained. 

This process is carried out for both the in-plane bias and perpendicular bias of the ferrite. 

The induced current on the conductor patch is solved by the method of moments in the 

spectral domain. Roof toping functions are used as both expansion and test functions. 



Several results are presented to show the tunability of frequency selective surfaces 

with ferrite substrates as a function of the applied dc bias. Other unique characteristics 

of the frequency selective surfaces on femte substrates are also presented and discussed. 

The design procedure for frequency selective surfaces by neural network algorithms 

is introduced. 
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CHAPTER 1 

INTRODUCTION 

Frequency selective surfaces (FSS) have wide applications over much of the 

electromagnetic spectrum. They are mainly used as reflector antenna dichroic surfaces, 

microwave filters or antenna passband radomes in the microwave region. They are also 

used as beam splitters, mirrors for laser applications. Frequency selective surfaces are 

basically composed of periodically arranged metallic patch elements or periodic arrays of 

apertures. They exhibit total reflection or transmission in the neighborhood of the element 

resonance. 

The principle of frequency selective surface, as an investigation of diffraction 

gratings in optics, was first discovered by the American physicist David Rittenhouse in 

1786 [I]. Because of the difficulties of computation, the first application of his discovery 

as a frequency selective surface appeared late in the 1960's. The analysis of frequency 

selective surfaces was first carried out by using the conventional mode-matching 

technique [2], [3]. The so called mode-matching technique makes use of the Floquet 

modes describing the periodic structure, setting up field equations in time domain. By 

using the appropriate boundary conditions, the scattered fields are related to the incident 

fields. This leads to an integral equation, which is then solved by the method of moments. 

The advantage of using mode-matching is that the resultant expressions are physically 



explicit. In the 19801s, the Spectral Domain Method, associated with the Fast Fourier 

Transform (FFT) algorithm was developed [4]-[8]. By applying the Fourier transform, 

the convolution form of the integral equation for the induced current is reduced to an 

algebraic one in the spectral domain. The analysis of frequency selective surfaces 

becomes more computationally efficient by using this approach. 

There are a variety of approaches that can be used with the Spectral Domain 

Method. The most conventional and widely used approach is the Method of Moments 

(MM) [3], [7]-[lo]. The concept of the Method of Moments is to assume that the 

unknown induced current on the metallic patches can be expanded in terms of known 

basis functions such that the integral equation is transformed into a matrix equation. The 

inversion of a matrix is required for this method. Another commonly used approach is 

the Conjugate Gradient Method (CGM) [Ill-[15] and [8]. Usually, the Conjugate 

Gradient Method is computationally simpler than the method of moments. Theoretically, 

the approximate solution will converge to the exact solution in a finite number of steps 

starting with any initial value if the system matrix is positive definite [13]. 

At first, the analysis of frequency selective surfaces was restricted to the free- 

standing case [2], [3], [7], [8], [lo]-[12], [14]-[18]. Then, frequency selective surfaces 

with dielectric substrate were considered [19]-[25]. Later on, the generalized analysis 

method for multilayer cascaded connection surfaces was presented [26]-[29]. C. K. Lee, 

and R. J. Langley used equivalent-circuit models to simulate frequency selective surfaces 

with oblique incident angles [30]. R. J. Rubin, and H. L. Bertoni approximated induced 

current on the patches with roof-top subdomain basis functions [lo]. C. H. Chan used 
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the Fast Fourier Transform algorithm to calculate frequency selective surfaces efficiently 

[31]. T. K. Wu developed and tested a single-screen frequency selective surface for 

triband applications [32]. W. L. KO, and R. Mittra extended the method of analysis 

developed for the planar-array case to the problem of a conformal array arranged on a 

parabolic cylindrical surface with the objective of computing the scattering properties of 

the curved array [33]. P. W. Grounds and K. J. Webb presented the results of an analysis 

of a finite frequency selective surface instead of conventional infinite frequency selective 

surfaces [34]. R. Mittra, C. H. Chan and T. Cwik in their " Techniques for Analyzing 

Frequency Selective Surfaces - A Review " [ l ]  systematically summarized a number of 

typical techniques. 

Due to the recent progress in the growth and deposition of magnetic films on 

semiconductors, there is a renewed interest in the characteristics of microwave structures 

on ferrite substrates [35]-[38]. Y. Liu, et al in [39], G. Y. Li, et a1 in [40] presented the 

analysis results of frequency selective surfaces on ferrite substrate, simultaneously. T. K. 

Chang, R. J. Langley , and E. A. Parker discussed the influence of biased ferrite substrates 

upon the frequency characteristics of frequency selective surfaces by their experiments 

[411. 

Ferrite materials offer a unique design capability due to their gyrotropic nature. 

They have a permeability tensor whose elements can be easily controlled through the use 

of a dc magnetic bias field. The extra degree of freedom offered by the biased ferrite 

substrates can be used to obtain a number of novel characteristics. In this dissertation, 

a systematic analysis of frequency selective surfaces on ferrite substrates is presented. 
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The spectral domain Green's functions for both in-plane bias and perpendicular bias cases 

are derived. Several calculated results are presented to show the tunability of frequency 

selective surfaces with ferrite substrates. Other unique characteristics of the frequency 

selective surfaces on ferrite substrates are also discussed. To verify these models, 

calculated results from this model are compared with the published ones for free-standing 

and frequency selective surfaces on dielectric substrates. 

Chapter 2 of the dissertation gives a general description of the Spectral Domain 

analysis of free-standing frequency selective surfaces. The roof toping subdomain 

functions are introduced. With the model of free-standing analysis, the model of 

frequency selective surfaces with ferrite substrates is then easily derived. In Chapter 3, 

the gyrotropic properties of ferrite material are discussed, including the derivation of the 

permeability tensors, and the different modes of microwave propagation in a ferrite 

medium. Chapter 4 gives the detailed derivation of the Green's functions for the 

frequency selective surfaces on ferrite substrates with both in-plane and perpendicular 

bias. Chapter 5 shows the comparison of the results calculated with the model developed 

in this dissertation to the data from the published papers. Several calculated results are 

presented to demonstrate the tunability of the frequency selective surfaces on ferrite 

substrates as a function of the dc bias field. Other properties of the frequency selective 

surfaces on ferrite substrates are also discussed. In Chapter 6, a frequency selective 

surface design procedure with neural network technique is presented. Chapter 7 includes 

recommendations for future work. 



CHAPTER 2 

FREE-STANDING FREQUENCY SELECTIVE SURFACES 

When a plane wave excites a periodic structure surface, the induced current density 

on the patches as well as the associated scattered fields are all periodic functions with an 

exponential phase factor [44]. The analysis of the frequency selective surface can be done 

for a unit cell. The periodic nature of the current and fields also allows the use of Fourier 

expansion to relate the scattered fields to the surface current density. This mean 

2.1 FORMULATION 

A free-standing frequency selective surface is the simplest case of frequency 

selective surfaces analysis. Some assumptions are made prior to the analysis and they are 

held true for the entire work in this dissertation. First, the frequency selective surface is 

infinite in extent. Second, the metallic patch is infinitesimally thin, therefore, the induced 

current density on the patch has only transverse components. Third, the patch is a perfect 

conductor. The third assumption is made only for convenience. It can be easily modified 

to be used for a patch with finite conductivity. 

The configuration of a free-standing frequency selective surface is shown in Figure 

1. The patches are extended infinitely in both x and y directions. The periodicities are 

"a" and "b" in x and y directions, respectively. 
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Figure 1. Geometry of a free-standing frequency selective surface. 
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that if the analysis is performed in the spectral domain it will dramatically simplify the 

operation. 

Let A be the magnetic vector potential due to the induced current density J on the 

patch. Since J has only transverse components, the magnetic vector potential A will also 

have transverse components. With the assumption of the time convention being exp (jat), 

the relation between A and J has the following form: 

where " *" is the convolution operator, 

with 

being the free space wave number, or propagation constant, o being angular frequency, 

I being the unit dyad, and 

The scattered electric field E' at PO, due to the excitation of incident field El, can 

been derived from A [45] as: 



Fourier transforming equation (5) and substituting equation (1) into it, the relevant spectral 

domain equation is 

where' " -" means the Fourier transformed quantity. The Green's function also becomes 

kx, ky are the transform variables corresponding to the x, y coordinates, respectively. 

Assume the transverse incident wave form 

with 

the position vector in the transverse direction, the wave number vector becomes: 

where p, and E, are the free space permeability and permittivity, respectively, and 4 and 

0 are the polar and azimuthal angles of the incident field, respectively (see Figure 1 .). 

Since the frequency selective surface is doubly periodic, the Fourier transform of 

the induced current J has a discrete spectrum, i.e., J(k,, ky) is nonzero for discrete values 



of kx and k,, namely, k,, and bn, which correspond to the Floquet modes [46]. The 

expressions for the Floquet modes km, and k,, are 

where -ao < m, n < ao. 

To simplify the notation, the subscripts m and n for k, and k, are usually eliminated. 

Also, equation (6) is rewritten in terms of the dyadic Green's function as follows, to 

consist with the following chapters' expressions. 

where 



qo is the characteristic impedance of free space. 

On the patch, the boundary condition 

must be satisfied. Thus, the following expression can be obtained from equation (14) and 

With equation (1 7), the scattering problem of free-standing frequency selective surface is 

ready to be solved by the method of moments. 

2.2 THE METHOD OF MOMENTS 

Before the wide application of high speed computers, one has to make some special 

effort to manipulate solutions analytically into a form to reduce the subsequent 

computations. With the aid of modem computers, one can conveniently use the methods 

which are analytically simple, but require large amounts of computation. Many problems 

of practical interests can now be solved by the use of such methods. 

The method of moments is such an approach that its concept is to reduce a 

functional equation into a matrix one, and then solve the matrix equation with known 
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techniques. A lot of numerical approximation techniques can be interpreted by the 

method of moments. For example, the classical eigenfunction approach corresponds to 

the particular choice of eigenfunctions for expansion and testing. The method of moments 

becomes the Galerkin's method when the test functions are chosen to be the same as the 

basis functions. The method of moments can be performed either in the time domain or 

in the spectral domain. The method of moments in the spectral domain is selected as the 

primary theoretical method in the dissertation. This choice is based upon its great 

versatility and advanced state of development. The method of moments has been applied 

to wider variety of problems than any other techniques. 

To solve equation (17) with the method of moments, the first thing is to 

approximate the induced current density J by the basis functions. In selecting the basis 

functions, the following factors need to be considered. First, the basis functions must 

satisfy the appropriate edge conditions. Second, they must be analytically Fourier 

transformable. Third, the transforms of the basis functions must decay reasonably rapidly 

with large k, and k,. Roof-top subdomain basis functions can satisfy the above selecting 

criteria [lo], [IS], and [a]. 

2.3 BASIS FUNCTIONS AND TEST FUNCTIONS 

In using the method of moments, the appropriate choice of basis function is very 

important. Different basis functions may be used for different geometry patches. Usually, 
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the entire domain basis functions are simpler to use than subdomain basis functions. But 

for some complex shape patches or more accurate solutions, subdomain basis functions 

may be used. The most commonly used subdomain basis functions for frequency 

selective surfaces are the roof-top, the surface patch, the triangular patches and the piece- 

wise sinusoid. As the roof-top functions are with the simplest expressions and spend less 

computer CPU time [8] than other basis functions, it is used here. 

Figure 2 shows how the roof-top functions can be used to represent the surface 

current density. These functions have a triangular distribution in one direction and a 

pulse distribution in the other [lo]: 

and 

where 

A (rn) = 

is the triangle function, 

II (n) = {: 

It -mA€lsA€ 

el sewhere 

elsewhere 



Figure 2. Geometry of roof -toping structure subdomain basis function. 



is the pulse function. 

The functions overlap in such a way that the variation of the x component current 

density is piece-linear in the x direction and a step function in the y direction. Similarly, 

the vkiation of the y component current density is piece-linear in the y direction and a 

step function in the x direction. Every rectangular element AxAy in the discrete unit cell 

is overlapped at least by one x-direction roof-top and at least by one y-direction roof-top. 

The roof-top approximation is consistent with the edge conditions on the patch. 

Assume that the unit cell is divided by M in x direction and N in y direction, then 

The induced current density on one patch can be written as 

Since the distribution of the induced current density on the patches is periodic, it 

can be expressed by a Fourier series, with the following Fourier series pair equations. 



where T is the period. 

Then the Fourier coefficients of the induced current density take the form 

But 

- j  ( * ~ + * ~ )  dXd y= $ A ( p + - $ )  e-jk"Xdx$ I1 (q) e-jkmYdy 

- a - b 
2 -3 

where 



and 

Similarly, 

where 

Then, equation (28) and (29) can be expressed as 



2.4 MATRIX EQUATION OF THE SCATTERED FIELD 

Substituting equation (36) into (17), results in: 

Taking the inverse Fourier transform of equation (37) and changing the order of  the 

summations yields 

Multiplying the test functions to the above equation (38) and taking the complex 

inner products [8], the main expression for the analysis of frequency selective surface can 

be written as 



where 

AxAy - 
Zn@,q),= -- ab ~,cmfl)B~(m,n>T~'(m,n), 

"*" means complex conjugate quantities. Equation (39) can be solved by matrix 

inversion. Since the Galerkin's method is used here, the test functions are chosen to be 

the same as the basis functions. 

Although equation (39) is derived for the free-standing case, it is also suitable for 

the situation of frequency selective surface with substrates. The only parts that need to 

be modified is the Green's function, and the equivalent incident electric fields (see 

Chapter 4). 



2.5 REFLECTION COEFFICIENTS 

Having derived the Green's function for free-standing frequency selective surfaces, 

one can calculate the induced current density on the patches by the method of moments. 

Knowing the current distribution, one may also simulate the scattered fields. While a 

plane wave incident on the structure of Fig. 1, gives rise to an infinite number of scattered 

wave modes, only a finite number of these propagate, the others being evanescent. If the 

frequencies are restricted such that min(a,b)<hl2, only the (0.0) mode can propagate. The 

amplitude of this mode is highly dependent on the polarization of the incident field. Thus 

the incident field is decomposed into TE and TM polarization components. Similarly, the 

scattered field is also decomposed into TE and TM polarization components. 

For the incident wave number 

the vector 

is the unit vector along in the transverse plane, and 

B=sin@f-00s@j, 
is the unit vector perpendicular to A. 

With unit vectors A and B, the incident wave with angle 8 to the z coordinate can 

be decomposed into 



Equations (47) and (48) is also suitable for the scattered fields. 

Because of the presence of the apertures, an incident wave of one polarization will 

excite scattered waves with both polarizations. There are four possible reflection 

coefficient expressions, two for each polarization. 

where equations (49) and (50) are referred to as the co-polarization reflection coefficients, 

and equations (5 1) and (52) are referred to as the cross-polarization reflection coefficients. 
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For the free-standing situation, the structure is symmetric for both sides of the 

frequency selective surface, so the boundary condition on the patch becomes 

where J,, is the (m,n)th component of the induced current density on the patch, 

H& (z=o+) is the transverse part of the (m,n)th component of the scattered magnetic 

field just above the conductor. 

With the known incident magnetic field and the scattered magnetic field expressed 

by equation (53), as well as equations (47)and (48), the reflection coefficients in (49)-(52) 

are easily calculated. 



CHAPTER 3 

PROPERTIES OF FERRITE MATERIALS 

Ferrites are a group of materials with a particular type of crystal structure [35], 

which have the characteristics of low loss, strong magnetic effects at microwave 

frequencies [47] and a permeability of anisotropic behavior when the femte is subject to 

a DC magnetic field [48]. The properties of ferrites will be discussed here by examining 

the propagation of microwave electromagnetic waves in an unbounded ferrite material. 

A brief description of the microscopic view at a ferrite will also be given in this chapter. 

Much of the discussion of this chapter follows that of [48]. 

3.1 PERMEABILITY TENSORS 

The magnetic properties of a material is determined by its magnetic dipole moments, 

including both orbital and spin motions. Although the orbital motion may contribute to 

the total magnetic moment in a free atom, its contribution in the solid is often small and 

sometimes negligible. This means the electron spin is the principal contributor to the 

magnetic properties of the solid. In this section, the permeability tensors of femte 

materials will be derived. 
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Usually, opposite sign electron spins appear by pair in solids. The overall magnetic 

moment is negligible. In a magnetic material, a large amount of the electron spins are 

oriented in a random fashion so that the net magnetic moment is still small. When an 

external magnetic field is applied to the magnetic material, the magnetic dipoles will tend 

to align in tlie same direction as the applied magnetic field to produce a large magnetic 

moment. 

In addition to spin moment, a spinning electron also has a spin angular momentum, 

when a magnetic bias field H ~ = ~ H ,  is present. If the magnetic dipole moment of an 

electron due to its spin is expressed as m and the spin angular momentum as J, they are 

related by the following equation 

m=-yJ ,  ( 5 4 )  

where y is called the gyromagnetic ratio, ~ 1 . 7 5 9 ~  10" C/Kg. A torque will be exerted 

on the magnetic dipole due to its rotation 

Considering that the torque is equal to the magnetic moment cross multiplying magnetic 

flux density and taking equation (54) into account, 

Torque is also equal to the time rate of change of angular momentum. Then the equation 

of motion for the magnetic dipole moment is given as follows: 



= - Y  T = - ~ , ~ ~ X H , .  
dt 

( 5 7 )  

The direction of above vectors are indicated in Figure 3. The magnetic dipole m will 

precesses around the H, vector continuously, if there is no any damping forces. h e  

ac* precession angle will be determined by the initial position of the magnetic dipole. 

In reality, there are damping forces existing which will force the magnetic dipole moment 

to spiral in from its initial angle until m is aligned with H, (0=0). 

Now, considering N unbalanced electron spins (magnetic dipoles) in the unit 

volume, the total magnetization becomes: 

and equation (57) becomes 

where H is the total internal applied field (including bias field and any other applied 

fields). With the increase of the bias field H, the magnetization M will also increase 

until all the magnetic dipole moments are aligned with &, and M reaches its upper limit. 

Then the material is said to be magnetically saturated, and M, is called as the saturation 

magnetization. Figure 4 shows the curve M, versus &. Since ferrite materials can be 

very lossy below saturation at microwave frequencies, they are usually operated in the 

saturated state. The unit for magnetic field H, is Alm with MKS units, Oersted with CGS 

units. 4nx Oersted =1 Alm. The unit for magnetization is weber1m2 with MKS units, 

Gauss for 47134,. 1 Gauss =lo" Weber/m2. In practice, CGS wits are used more often 



Spinning - h 

Figure 3 .  Spinning electron with spin magnetic dipole moment and angular. 



Applied bias field Ho 

Figure 4. Magnetic moment of a ferrite material versus bias field H,. 



than MKS one. 

Assume H to be the applied AC field, H, to be the bias field, the total magnetic 

field then becomes 

where I H I ~ H ,  is assumed. So the total magnetization in the ferrite material must have 

the form 

where M, is the DC saturation magnetization and M is the additional AC magnetization 

caused by H. Equations (60) and (61) are substituted into equation (59) and all products 

of AC terms are considered to be negligible compared with the products involving one 

steady term and one AC term. The results are 

where ~ , = ~ , y ~ ,  is the Larmor, or precession, frequency, and ~ n = ~ O ~ ~ B .  Solving 

equation (62) and (63) for M, and M, gives 



Assume the AC H field has a time convention = j u t ,  the phasor forms simplify equations 

(65) and (66) as follows 

As H and M are linearly related, equations (67) and (68) can be written with a 

susceptibility tensor form as: 

where the elements of [XI are given by 

With equations of (69), (70) and (71), the relation between B and H is 



where the permeability tensor [p] has the form 

The elements of the permeability tensor are then 

(2 bias) . 

A material having a permeability tensor with the form of equation (73) is called 

gyrotropic. 

Similarly, if the ferrite is biased in different directions, the permeability tensors can 

be written as 

[PI =poO p jrc (2 bias), 1: -ex :I 
(9 b i a s )  . 

From equations (74) and (75), the ferrite material has its own resonant frequency. 

The resonant frequency is equal to the precession frequency: 
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This resonant frequency will be useful to explain the physical phenomena of the 

frequency selective surfaces with ferrite substrates. 

3.2 THE INTERACTION OF AN AC SIGNAL WITH A BIASED FERRITE 

Suppose a right-hand circularly polarized field with phasor form 

Applying the above RHCP field to equation (67) and (68), results in the magnetization 

components 

and 

The vector magnetization expression is 

It is seen that the magnetization is also RHCP and rotates around the z-axis with the same 

angular velocity o as the driving field Hr (see Figure 5). Thus, the magnetic flux density 

can be written as 



where pr is the effective permeability for a RHCP wave with the expression 

The magnetic dipole precesses in the same direction as its free precession (see 

Figure 3). 

For a left-hand circularly polarized field, the magnetic field has the phasor form 

Applying equation (85) to equations (67) and (68), gives the magnetization component 

and 

The expression of the vector magnetization is 

It is seen that the magnetization is LHCP and rotates around the z-axis with the same 



Figure 5. Forced precession of  a magnetic dipole with right hand circular polarization 
(RHCP). 



angular velocity a as the driving field H' (see Figure 6). The magnetic flux density can 

be written as 

where is the effective permeability for a LHCP wave with the expression 

The magnetic dipole here precesses in the opposite direction to its free precession (see 

Figure 3). 

It is seen that the affect of a biased ferrite to a circularly polarized wave depends 

on its polarization (RHCP or LHCP). The free precession set up by the bias field 

coincides with the direction of forced precession for a RHCP wave but is opposite to that 

of a LHCP wave. The degree of the deviation between the RHCP and LHCP waves is 

determined by the bias field and the frequency of the AC signal. This effect leads to 

nonreciprocal propagation characteristics. 

3.3 PLANE WAVE PROPAGATION IN FERRITE MEDIUM 

In Section 3.1, the macroscopic expressions (permeability tensors) that describe the 

microscopic phenomena occumng inside a biased ferrite material were derived. With 

expressions (73), (76) and (77), Maxwell's equations can be solved for waves propagating 



Figure 6. Forced precession of a magnetic dipole with left hand circular polarization 
(LHCP). 
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in ferrite medium. To illustrate the important effects of Faraday rotation and 

birefringence, the problems of plane wave propagating either in the direction of bias or 

propagating transverse to the bias field will be investigated. 

3.3.1 FARADAY ROTATION 

Consider the case of an infinite ferrite region with a DC bias field given in z 

direction (in the direction of the wave propagation). The permeability tensor is given by 

equation (73). Maxwell's equations can be written as 

VxJF=- j w  [p]  H 

Then assume that the plane wave propagates in the z direction. The electric and magnetic 

fields are only functions of z with the following forms: 

Expanding equations (91)-(94) and solving them, results in 



For the nontrivial solutions of equations (97) and (98), the determinant of this set of 

equations must be zero: 

There are two possible propagation constants, k+ and k-. 

Applying k+ from equation (100) to equations (97) and (98) results in 

E,=-jE,. 

Then the electric field of equation (95) must have the following form 

This is a right-hand circular polarized (RHCP) plane wave. 

Similarly, the fields related to k- are left-hand circularly polarized (LHCP) wave: 

B-=E, (R+ jp) e -jk-'. (103) 

It is then seen that RHCP and LHCP plane waves are the two modes existing in the 

ferrite medium with the z direction bias. They propagate through the femte medium with 

different propagation constants expressed by equation (100). The physical explanation 

for this effect is that the magnetic bias field creates a preferred direction for the magnetic 



dipole precession, that is to say, it is coincident with the RHCP wave but opposite to that 

of the LHCP wave. 

In general, elliptically polarized waves can be decomposed into RHCP and LHCP 

waveg of unequal amplitude. To simplify the analysis, considering a linearly polarized 

electric field, at ~ 0 ,  is decomposed as a sum of a RHCP and a LHCP wave: 

According to the above analysis, the RHCP component will propagate in the z direction 

with propagation constant k,, and the LHCP component will propagate in the same 

direction but with propagation constant 4. So the total field has the expression 

Equation (105) is still a linearly polarized wave, but its polarization rotates as the wave 

propagates along the z-direction. This effect is called Faraday rotation. 

3.3.2 BIREFRINGENCE 

If a bias field is applied in the x direction (perpendicular to the direction of the 

wave propagation), the permeability tensor expression (76) should be used in Maxwell's 

equations. Solving equations (91)-(94), results in 



The solution for equation (106) is 

with E,=O. Then the electric field is 

Since it is the same as the wave in free-space, and unaffected by the magnetization of the 

femte, it is called the ordinary (0) wave. 

The solution for equation (107) is 

with E,=O. where p, is an effective permeability given by 

This wave is called the extraordinary (E) wave. It is equivalent to a wave propagating 

in the medium with permeability equal to the effective permeability. It is affected by the 

bias of the ferrite. 

It is seen that for a plane wave propagating transverse to the x direction bias field 

of the ferrite medium, the electnc field consists of a y component which is an ordinary 
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wave and a x component which is an extraordinary wave. Such an effect is called 

birefringence. 

In general, the wave in a femte material is composed of the right-hand circularly 

polarized (RHCP) and the left-hand circularly polarized (LHCP) modes when its 

propagation is parallel to the bias field, the ordinary (0) and the extraordinary (E) modes 

when the propagation is perpendicular to the bias field. Two of these modes (RHCP and 

E) are very strongly influenced by the magnetic properties of the medium. The 

propagation constant of the E (RHCP) deviates very much from the propagation constant, 

k,, of the 0. Under this situation, E and RHCP modes almost have the nature of 

magnetostatic wave (with small propagation constant). 



CHAPTER 4 

ANALYSIS OF FREQUENCY SELECTIVE SURFACES WITH 

FERRITE SUBSTRATES 

The general analysis procedure of free-standing frequency selective surface is given 

in Chapter 2. Mathematically, the main difference of analysis between the free-standing 

case and the non free-standing (dielectric or ferrite substrate) case is in their Green's 

functions. 

4.1 DERIVATION OF GREEN'S FUNCTION FOR FERRITE SUBSTRATE 

To derive the dyadic Green's function for frequency selective surface with ferrite 

substrate, the permeability tensor derived in the previous chapter is applied to Maxwell's 

equations as below 

VXE= joeE. (113) 

Since there are different permeability tensor expressions for different bias directions, the 
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Green's function must be derived separately for different bias directions. Without loss of 

generality, the cases with y direction bias (in plane of the FSS) and z direction bias 

(normal to the FSS) are considered. Figure 7(a) shows a y direction biased frequency 

selective surface. 

First consider the y direction bias case. Substituting the y direction bias 

permeability tensor expression (77) in equation (1 12), in the spectral domain, yields: 

Solving By, equations (1 14) and (1 15) result in 

where 



bic j- 

air 

ferrits substrate air 

Figure 7. (a) Geometry of a frequency selective surface on ferrite substrate. 
(b) Sideview of a frequency selective surface on ferr~te substrate. 



and 

The general solution for the differential equation (1 16) is 

where 

are the four roots of equation (1 16). These four roots yield the well-known ordinary (0) 

and extraordinary (E) type solutions. gx, Ef, and E7, can be expressed in the similar way 

as equation (121) 

With equations (1 14) and (1 IS ) ,  the coefficients in equations (123), (124) and (125) can 

be expressed by the ones in equation (121), that is 



The detailed expressions of the elements in equation (126) are as follows 

where a, takes "+" sign, a, takes "0" sign. q ,  have the same form as equation (127) with 

the exception of h, being replaced by h. 

where 

p, takes "+" sign, p, takes "-" sign. p,, have the same form as equation (128) with the 

exceptions of h, being replaced by k- and a,, being replaced by q,,,. 
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where y, takes "-" sign, y, takes "+" sign. Y , , ~  have the same form as equation (130) 

with the exceptions of A,+ being replaced by k- and a,, being replaced by %,4. 

Then, equations (121), (1 22), (123) and (124) can be written as 

or symbolically 

where 



and 

Since equation (132) is applicable to the whole ferrite substrate, the boundaries of ferrite 

at z=0 and F-d must satisfy the equation (132) too. Thus 

V ( - d )  = g X ( - d ) ~ .  (138) 

Combining equations (1 37) and (1 3 8), the fields components relation between r O  and 

z=-d has the form 

where 

is the transmission matrix of the ferrite substrate. Note that the transmission matrix is 

only a function of d, and it is independent of the z coordinate. 

So far, the description of the fields in the femte substrate is given by the 

transmission matrix. The next step is to cascade the ferrite substrate transmission matrix 



with the free space expressions above and below the substrate (see Figure 7 @)). 

It is known that a plane wave in linear and isotropic media can be decomposed into 

TE and 'FM components (461. Since the boundary conditions for the transverse field 

components will be used late, either (TE, TMJ modes or (TE,, 'I%$) modes can be used. 

Here, (TE, TMJ modes are chosen. In free space, the vector potential A defines fields 

and 

where 

For TM, mode 

and w satisfy Laplace's equation 

Applying equation (144) into equation (141) and (142), the following expressions are 

obtained 



In the spectral domain, equations (1 47)-(15 1) have the forms of  

where the subscript z of  Q means the differential to z, 



In the spectral domain, equation (145) becomes 

The general solution of equation (1 58) is 

=G~~'o~+G~~-'o~, 

where G, and G, are the unknown constants determined by the boundary conditions, 

Thus, 



The TE, mode has the similar expressions as follows 

and 

The fields expressions in the spectral domain are 

With the equations (161)-(164) and (169)-(172), the total field components in free space 

can be written as 



or symbolically 

where G,, G,, G, and G, are the unknown constants determined by the boundary 

conditions. Equation (173) is suitable for both above and below the substrate. 

In the case of above the substrate, G,=G,=O, this means that the scattered fields are 

outgoing waves. Equation (1 73) becomes 



For the same reason, G2=G4=0 for the fields below the ferrite substrate. Equation 

(1 73) becomes 

j o e o  jar,  



here the primes for G, and G, represent the unknown constants below the substrate. 

Considering the boundary conditions below 

e( 0 -1 can be written as 

Combining equations (179) and (180) with the boundary condition (177), the dyadic 

Green's function for the frequency selective surface with ferrite substrate is ready to be 

given as 



The detailed expressions for the Green's function is given in Appendix A. 

Similarly, when the ferrite substrate is biased in z direction, permeability tensor 

expression (73) is used. Then Maxwell's equations in spectral domain become 

Solving with equation (182) and (183), the fourth order differential equation is 

obtained 

The general solution for equation (1 84) is 



where 

Again, gx, By, fix are written in the similar forms as equation (185): 

= D ~ ~ ~ ~ + D ~ ~ - ~ ~ + D ~ ~ ~ - ~  
Y + ~ ~ e - ' - ' ,  

EI,=B,~'*'+B~ - A + z + ~ 3  e ".'+B4 e "-' . 

The coefficients in equations (187), (1  88) and (1 89) can be linearly expressed by the ones 

in equation (185) through equations (182) and (183), 

-c1 c2 c3 =4- 

Dl 4 4 D4 

Bl *2 B, B4 

A, A, A3 A4- 

The detailed expression for equation (190) is given in Appendix B. Then the transverse 

fields components can be written as 
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The derivation of the Green's dyad of the z direction bias case is the same as that of y 

direction bias case, with the form shown in equation (181). 

  qua ti on (181) is ready to be solved by the method of moments. The only 

modification to be made is that the incident electric field is replaced by 

where the Er is the reflected electric field from the ferrite substrate by removing the 

patches. 

According to [49], transmission matrix used in the Green's function of a generalized 

anisotropic medium, although rigorous analytically, it introduces a numerical breakdown, 

especially when the layers are electrically thick and the waves are evanescent. A variable 

transformation scheme introduced in [49] was used in this work and applied to the matrix 

in equation (140), to ensure the 4x4 transmission matrix for all the modes is nonsingular. 

Equation for the reflected fields from a dielectric slab (without patches), due to a 

plane wave excitation, exists inliterature [45]. But for the reflected fields from the femte 

substrate with the removal of the patches, such equations are not available because of the 

anisotropic property of the ferrite material. Thus, an alternative way of calculation must 

be used here. 

Rewriting equation (1 83) as follows 



Here for the waves above the slab, G, and G, correspond to the ingoing waves (see 

coordinate system shown in Figure 7 (a), (b)), G, and G, correspond to the outgoing 

waves. For the situation of a plane incident waves on a plain femte slab (without patches 

on it), the incident waves are ingoing waves in equation (193). The reflected waves are 

outgoing waves in equation (193). Thus equation (163) can be written as 

And p( 0-1 has the same form as in equation (179). Using the boundary condition 



the following expression is obtained 

Since the incident field is known as 

where k, and are (0,O) Floquet modes, the Fourier transform of the incident field is 

linearly expressed by delta function, that is 

Therefore, G, and G, in equation (192) can be expressed by the Fourier transformed 

incident field by equations (199) and (200). Equation (196) can be modified as 

where C,, C,, C, and C, are linear functions. With equation (201), G, and G, are ready 



to be solved. Thus, the Fourier transformed reflected fields from the femte slab are 

known. In the time domain, the reflected field is obtained by the following expressions 

4.2 POWER REFLECTION COEFFICIENT 

In the free-standing case, the frequency selective surface reflection coefficient was 

calculated by using the symmetry of the structure and the boundary condition on the 

patch. The structure of a frequency selective surface with a ferrite substrate is 

nonsymmetric in its normal direction (z direction), thus, the method used in free-standing 

case can not be used here. Alternatively, the full wave power reflection coeficient is 

used [14]. The power reflection coefficient is as follows 

B .XH ='*2dsdt ,, 
14 = ~e{$ ~ ' x l Y ~ ' * ( - i ? ) d s ~ , , $ '  

uni t cell 

where the fields superscripts marked with "i" refer to incident fields, the fields 

superscripts marked with "s" refer to scattered fields from the conductor. 



CHAPTER 5 

NUMERICAL RESULTS 

The numerical results of frequency selective surfaces on ferrite substrates are 

illustrated in this chapter by employing the theoretical model developed in Chapter 4. 

The model derived in the previous chapter is quite flexible. It can be used to calculate 

either frequency selective surfaces on dielectric /ferrite substrates or free-standing 

surfaces. In order to verify the validity of this model, the calculated results from this 

model are compared with the published ones [8], [20] in this chapter. Several calculated 

results for the frequency selective surfaces on ferrite substrates, as functions of the applied 

dc bias, the thickness of the substrate, the dielectric constant of the substrate, are 

presented. Other characteristics are also presented and discussed. 

5.1 VERIFICATION 

The model for femte substrate frequency selective surfaces is valid to any dc bias, 

thickness and dielectric constant of the substrate. It can be easily used to calculate the 

frequency selective surfaces with different substrates. Since there was no previous 
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published results related to the ferrite substrate frequency selective surfaces with 

rectangular patches, to prove the validity of this model, some special cases are selected. 

The first verification is the simulation of the free-standing case. It is realized by 

assuming the bias of the ferrite substrate being zero and the dielectric constant er=l -001 

1 will result in a singular coefficient matrix for the method of moments), the 

thickness of the substrate is set to 2.e-8 cm (the thickness can not be zero, with the same 

reason as before). Basically, this situation is equivalent to the free-standing one. The 

unit cell of the frequency selective surfaces is with the rectangular patch as shown in 

Figure 8. The dimension of the unit cell is aa=0.76cm, bb=0.254cm, cc=1.52cm, 

dd=1.35cm. The frequency response of the surface reflection coefficient is compared with 

C. H. Chan's result [8]. They are in very good agreement as shown in Figure 9. 

The second verification is done by using dielectric substrate cases with the 

assumption that the bias of the ferrite substrate is zero. J. P. Montgomery in [20] 

presented both calculated and measured reflection coefficient for frequency selective 

surfaces with rectangular patches on dielectric substrates. His measurement is performed 

with a waveguide simulator. The experiments are conducted at a frequency f4.156 GHq 

with an incident angle of 40". Three sets of results are compared. The parameters for 

these sets are as follows. The first set is aa=0.90lcm, bb=0.444cm, cc=3.58cm, 

dd=1.98cm, d=O.O203cm, &,=2.6. The calculated and experimented reflection coefficients 

from Montgomery is 0.465 and 0.495, respectively. The calculated reflection coefficient 

from this model is 0.420. The second set has the same geometry parameters as the first 



Figure 8. Geometry of a unit cell (patch) for frequency selective surface. 



C. 14. Chm 
Present 

10 12 14 16 

Frequency (GHz) 

Figure 9. Comparison of free-standing case with published data [8] 



set with the exception of d=0.03 17. The calculated and experimented results from 

Montgomery is 0.615 and 0.656, respectively. The calculated result from this model is 

0.6085. The third set is aa=3.58cm, bb= 1.98cm, cc=0.90 1 cm, dd=0.444cm, d=O.O203cm, 

qc2.6. The calculated and experimented results from Montgomery is 0.099 and 0.095, 

respectively. The calculated result from this model is 0.0738. 

5.2 RESULTS FOR FREQUENCY SELECTIVE SURFACES ON 

FERRITE SUBSTRATES 

The computer program of this theoretical model is written by FORTRAN. It is 

suitable for ferrite substrate cases, including different biases (in-plane bias or normal 

bias), different incident wave polarizations (TE mode or TM mode), and different incident 

angles. After some adjustment of the input data, it can also be used to analyze frequency 

selective surfaces on dielectric substrates or free-standing case. 

All the calculations are based upon substrates made from yttrium iron garnet (YIG), 

with saturation magnetization 4 w 1 7 8 0  G. The bias field is changed from 2000 Oe to 

5000 Oe. Two different dielectric constants (~,=12.8 and ~,=15) for the ferrite substrate 

are chosen. For some cases, different thicknesses of the substrate (from d=0.02cm to 

d=O.OScrn) are considered. The dimension of unit cell for all TE incident cases is 

aa=0.76cm, bb=0.254cm, cc=1.52cm, dd=1.35cm, except for the TM incident cases which 



The calculation program of the frequency selective surfaces on ferrite substrates is 

performed on a Sun work station. The unit cell of the frequency selective surfaces is 

discretized into a 16x16 grid with 94 unknowns for TE incident cases. The Floquet 

modes are truncated between -32 and 32. This number of modes yields accurate enough 

results and needs no higher number of modes. To get the power reflection coefficient for 

one frequency point, the total running time is about 1.5 hour for 94 unknowns on Sun 

Sparc Station 1. 

Figures 10 to 13 show the power reflection coefficient frequency responses with the 

different dc biases &, at ~ ~ 4 2 . 8 .  Figures 14 and 15 depict the power reflection 

coefficient frequency responses for the different dc biases H,, with &,=I 5 .  In Figure 16, 

the z-bias cases are presented. Figures 17 to 20 illustrate the power reflection coefficient 

frequency responses with the different thicknesses d, for &,=I 2.8. Figures 21 and 22 

present the power reflection coefficient frequency responses with the different thicknesses 

d, at er=15. Figures 23 to 26 show the power reflection coefficient frequency responses 

with the different dielectric constants e,. Figure 27 shows the comparison of calculation 

results using diferent Floquet modes. 
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Figure 10. TE normal incidence, y-bias, 4nMs= 1780G, er= 12.8, d=O.OZcm, 
with different dc biases. aa=0.76cm, bb=0.254cm9 cc= 1.52cm, dd= 1.35cm. 
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Figure 1 1 .  TE normal incidence, y-bias, 4xM,= 1 780G, &,= 12.8, d=0.04cm, 
with different dc biases. aa=0.76cm, bb=0.254cm, cc= 1.52cm, dd= 1.35cm. 
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Figure 12. TE normal incidence, y-bias, 4rrM,= 1 780G, zr= 1 2.8, d=0.06cm, 
with different dc biases. aa=0.76cm, bb=0.254cm, cc=1.52cm, dd=1.35cm. 
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Figure 13. TE normal incidence, y -bias, 4nMs= 1 780G, cr= 12.8, d=0.08cm, 
with different dc biases. aa=0.76cm, bb=0.254cm, cc=1.52cm, dd=1.35cm. 
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Figure 14. TE normal incidence, y-bias, 4xMS=1780G, &,=I 5, d=0.02cm, 
with different dc biases. aa=0.76cm, bb=0.254cm, cc= 1.52cm, dd=1.35cm. 
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Figure 15. TE normal incidence, y-bias, 4nMs= 1 780G, E ~ =  1 5, d=0.08cm, 
with different dc biases. aa=0.76cm, bb=0.254cm, cc=1.52cm, dd=1.35cm. 
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Figure 16. TE normal incidence, z-bias, 4nMs= 1 780G, cr= 12.8, d=0.02cm, 
with different dc biases. aa=0.76cm, bb=0.254cm, cc=1.52cm, dd=1.35cm. 
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Figure 17. TE normal incidence, y-bias, 4xMs= 1 780G, E,= 12.8, &=20000e, 
with different substrate thicknesses. aa=0.76cm, bb=0.254cm, cc= 1.52cm, 
dd=1.35cm. 



I 0  12 

Frequency (GHz) 

Figure 18. TE normal incidence, y-bias, 4xMs= 1 780G, E ~ =  12.8, %=30000e, 
with different substrate thicknesses. aa=0.76cm, bb=0.254cm, cc=1.52cm, 
dd=1.35cm. 
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Figure 19. TE normal incidence, y-bias, 4xMs= 1780G, er= 12.8, H0=40000e, 
with different substrate thicknesses. aa=0.76cm, bb=0.254cm, cc= 1.52cm, 
dd=1.35cm. 
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Figure 20. TE normal incidence, y -bias, 4rrMs= 1780G, &,= 12.8, H0=50000e, 
with different substrate thicknesses. aa=0.76cm, bb=0.254cm, cc= 1.52cm, 
dd=1.3Scm. 



5.3 DISCUSSION 

The effect of a ferrite substrate on frequency selective surface seems similar to a 

&electric substrate, yet it is different due to some special properties of ferrite materials. 

The ferrite substrate can support surface waves and, under certain conditions, a 

magnetostatic volume wave. The magnetization vector of a ferrite material precesses 

about the DC field, &, when it is put in a bias field. This precession strongly affects the 

RHCP modes (see Chapter 3) when the wave propagating parallel to the bias field and 

E modes when normal to the bias field, resulting in the two very different modes (RHCP 

and LHCP, or, E and 0).  The deviation of the two modes depends not only on the bias 

field but also the frequency of the RF signal. 

The most apparent behavior that ferrite substrate frequency selective surface 

possesses is the tunability of the resonant frequency. For the y direction (in-plane) bias, 

with an increase of the bias field, the resonant frequency also increases, regardless of the 

thickness or dielectric constant. The tendency of the resonance shift is consistent with 

that of the ferrite material itself (see equation (78) in Chapter 3). Apparently, the shift 

of the ferrite material affects the resonance of the frequency selective surface, which 

relates to the geometry of the patch, the thickness and the dielectric constant of the 

substrate. The resonance for normally biased cases is lower than zero bias one for the 

same substrate thickness. From Figures 10 to 13, it can be seen that there is about a 3 

GHz shift with the change of the bias field. It is in agreement with the experimental 
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Figure 2 1 .  TE normal incidence, y -bias, 4xMp= 1 780G, ~ ~ = 1 5 ,  %=20000e, 
with different substrate thicknesses. aa=O. 76cm, bb=0.254cm7 cc= 1.52cm7 
dd=1.3Scm. 
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Figure 22. TE normal incidence, y -bias, 4nMs= 1 780G, EF 1 5, Ho=40000e, 
with different substrate thicknesses. aa=O. 76cm, bb=O. 254cm, cc= 1.52cm, 
dd=1.35cm. 
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Figure 23. TE normal incidence, y-bias, 4xMs=1 780G, d=O.OZcm, H0=20000e, 
with different dielectric constants. aa=0.76cm, bb=0.254cm, cc= 1.52cm, 
dd=1.35cm. 
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Figure 24. TE normal incidence, y-bias, 4nMs=1780G, d=0.02cm, H,=40000e, 
with different dielectric constants. aa=0.76cm, bb=O. 254cm, cc= 1.52cm, 
dd=1.35cm. 
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Figure 25. TE normal incidence, y -bias, 4nM,= 1780G, d=O. Ohm, H0=20000e, 
with different dielectric constants. aa=0.76cm, bb=O. 254cm, cc= 1 .52cm, 
dd=1.35cm. 
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Figure 26. TE normal incidence, y-bias, 4xMs=1 780G, d=0.08cm, Ho=40000e, 
with different dielectric constants. aa=O. 76cm, bb=O. 254cm, cc= 1.52cm, 
dd=1.3Scm. 
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Figure 27. TE normal incidence, y -bi as, 4xMs= 1 7800e, E,= 1 2.8, d=0.02cm, 
H,=50000e, with different calculating modes. aa=0.76cm, bb=0.254cm, 
cc=1.52cm, dd=1.35cm. 
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results reported by T. K. Chang [41]. For the z direction bias cases in Figure 16, there 

is also such resonant frequency shifting. 

Due to the permeability tensor of the ferrite, as well as the tedious matrices 

calculations in deriving the Green's function, the analysis becomes very complex. Thus, 

the change of the induced current on the patch calculated using the method of moments 

is abrupt in some frequency ranges. The second resonance also appears in its frequency 

response besides the main resonance. Such a phenomenon was also reported by T. K. 

Chang et al, in their experiments for other element shapes [41]. This characteristic is 

unique for frequency selective surfaces on ferrite substrates. 

From Figures 17 to 22, the influence of the ferrite substrate thickness to the resonant 

frequency is also apparent. The resonance decreases when the thickness of the substrate 

is increased. This is because that for such thickness level, the evanescent Floquet modes, 

decaying exponentially inside the substrate with distance, still have significant amplitudes, 

which in turn change the resonant frequency. This property is similar to that of the 

dielectric substrate [25].  

The frequency selective surfaces on ferrite substrates seem not to be very sensitive 

to the dielectric constants of the ferrite. This can be seen from Figures 23 through 26. 

The use of femte substrates also changes the shape of the bandpass response itself. 

Usually, the bandwidth of frequency selective surface on ferrite substrates is narrower 

than the free-standing and dielectric substrate cases. The main reason is that the 

permeability tensor changes as a function of the incident wave frequency. Some values 
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of the frequency are in the vicinity of the singularities and an abrupt change of  the 

induced current on the patch may be obtained. This causes the second resonance 

appearing, at the same time the frequency bandpass becomes narrower. 



CHAPTER 6 

DESIGN OF FREQUENCY SELECTIVE SURFACES USING 

NEURAL NETWORK ALGORITHMS 

With the techniques discussed in the previous chapters, one can analyze the 

scattered fields as well as the reflection coefficient frequency response of the frequency 

selective surfaces with a set of given surface geometry parameters. But there is no closed 

form solution that relates a desired frequency response to the corresponding surface, 

directly. Therefore, to design a frequency selective surface for a given frequency 

response, one has to resort to a trial-and-error process. That is to say, one should assume 

a surface configuration (thus a set of parameters) and calculate its frequency response at 

first, then compare it with the desired one. This procedure is too laborious and time- 

consuming. Here, an alternate design procedure, making use of neural network 

algorithms, is presented [42], [43]. The multilayer back-propagation algorithm [50], [51] 

along with an inversion algorithm [52] are used here. 

The multilayer feedforward neural network is a network with at least one hidden 

layer between the input layer and the output layer. Every node is connected to the nodes 

in the adjacent layer by its weights. It is essentially an approximator; a mapping 

approximation from a finite dimensional input space to the output space. It belongs to 
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the class of supervised learning. Such a neural network can be trained, with an iterative 

gradient descent algorithm designed to minimize the mean squared error between the 

desired target values and the actual output values, to learn from examples and to 

generalize from the training set to similar data not contained in the training examples. 

This process is called back-propagation algorithm. After the training, a set of weights for 

the network is obtained. The inversion of the neural network is done by computing 

iteratively an input vector which minimizes the Least-Mean-Square-Error to approximate 

a given output target. With this inversion algorithm, a lot of practical design problems can 

be solved. 

The input of the multilayer feedforward network here are the geometric parameters 

of the frequency selective surfaces. The output is frequency response (or scattered field 

distribution) of the frequency selective surfaces. The general procedure for the design of 

frequency selective surfaces follows next. 

First, the neural network is trained with the backpropagation algorithm. That is, one 

assumes a set of initial weights for the network arbitrarily, propagate the sample inputs 

forward from the input layer to the output layer. Next, one compares the propagated 

output data with sample output data, and a set of error signals is then obtained. The error 

signals are used to modify the weights by the gradient descent method. After the neural 

network is trained, a set of weights are obtained and kept unchanged. The mapping 

between the geometric parameters and the frequency response (or scattered field 

distribution) has thus been decided. For a practical application, a lot of sample patterns 

are needed. 
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Next, the neural network is used to design frequency selective surfaces with the 

inversion algorithm. The gradient descent concept is used again here. For a given 

frequency response (or scattered field distribution), a set of initial neural network input 

data are chosen arbitrarily and propagated forward to the output layer. After comparing 

the output with the desired frequency response (or scattered field distribution), the 

obtained error signals are propagated downward to the input layer. The input data are 

modlfied by the input layer error signals. The modified input data is propagated forward 

again. With several such iterative steps, the output will converge to the desired frequency 

response (or scattered field distribution). 

The neural network dynamics equations (defined in Appendix C) are: 

where h,(l) denotes the net input of jth node at layer 1, 0,(1) denotes the activation of jth 

node at layer 1. L is the number of layer (input layer is not included). 8,(1) denotes the 

bias of node i at layer 1. 

The neural network learning equation is given by: 

where q is the learning rate, error measure or cost function 



t, .is the sample pattern output for output layer node j. 

Figure 28 gives the flow chart of back-propagation algorithm. 

The equation for inversion of a neural network is: 

where c is the stepsize in input space. 

If the input vector is denoted as I's, the inversion process iteratively leads to a 

sequence of input vectors 

1 ( 0 )  , 1 ,  2 , ..., 

The inversion is completed if the distance between the output vector and the target T is 

small enough, i.e. 

where F( ) denotes the mapping from input space to output space, E is the error criterion. 

Figure 29 shows the flow chart of neural network inversion algorithm. Figure 30 

is a unit cell of a (aperture type) frequency selective surface being modeled by the 

algorithms discussed above. The two input nodes of the neural network is assigned for 

the aperture dimension bb and dd. The other two aperture dimension parameters aa and 

cc remain unchanged. The scattered electric field distribution in the cell is chosen as the 

output of the network. There are totally 32 output nodes. The architecture of the neural 
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Figure 28. The flow chart of back-propagation algorithm. 
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Figure 29. The flow chart of neural network inversion algorithm 



Figure 30. Geometry of a unit cell (aperture) for frequency selective surface. 



network used for the designing is a one hidden layer network, with 25 hidden nodes. The 

stepsize chosen here is usually 2. The error criterion is 0.03 for both neural network 

training and inversion. 72 sample patterns are used to train the neural network. 

Figures 31 through 34 are the design results. Here the "desired" ones mean the 

expected electric field distributions and the "designed" ones mean the results designed 

from neural network algorithms. It is apparent that the design results are quite 

satisfactory. 

Although this work on neural network was done on free-standing case, it can be 

extended to the femte substrate case. 
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Figure 3 1.  FSS designed by neural network algorithms, with aa= 1 .O, cc=l .O, 
bbg0.47, dd=0.44. The parameters are divided by the wavelength. 
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Figure 32. FSS designed by neural network algorithms, with aa=l .O, cc=1 .O, 
bb=0.40, dd=0.423. The parameters are divided by the wavelength. 
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Figure 33. FSS designed by neural network algorithms, with aa= 1 .O, cc=l .O, 
bb4.66, dd=0.65. The parameters are divided by the wavelength. 
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Figure 34. FSS designed by neural network algorithms, with aa=l .O, cc=l .O, 
bb4.83, dd=0.65. The parameters are divided by the wavelength. 



CHAPTER 7 

FUTURE WORK 

As discussed previously, the analysis of frequency selective surfaces on ferrite 

substrates is a very exciting topic which may find practical applications in microwave 

communication systems. Based on the theoretical model developed in the previous 

chapters, the following work can be done in the near future: 

1. An investigation of the appearance of side lobes, along with the influence of the 

singularities of the model to the frequency response; 

2. The use of different conductor patch configurations, such as cross-dipole, square loop, 

or skewed structures, to improve the performance of the frequency response; 

3. The use of more than one layer of ferrite substrates for frequency selective surfaces 

or using the structure of the conductor patches being embedded in two ferrite slabs; 

4. Combine of dielectric and ferrite substrates. 



APPENDIX A 

EXPRESSION OF GREEN'S FUNCTIONS FOR FSS 

ON FERRITE SUBSTRATES 



Rewritting equation (1 8 1 ), 

where 

and 



with 



APPENDIX B 

ELEMENT EXPRESSIONS FOR 2-BIAS CASE 



The detailed elements expressions for equation (190) are as follows 

where a, is equal to q. q, have the same form as equation (220) with the exception of 

A+ being replaced by h. 

where p, takes "+" sign, takes "-" sign. Px4 have the same form as equation (221) with 

the exceptions of h, being replaced by h. and a,,, being replaced by q,4. 

where y, takes "+" sign, y, takes "0" sign. y , ,  have the same form as equation (222) with 

the exceptions of being replaced by h- and a,,, being replaced by a3,4. 



APPENDIX C 

DESCRIPTION OF NEURAL NETWORK ALGORITHMS USED 



I DERIVATION OF THE BACK-PROPAGATION ALGORITHM 

To simplify the notation, only one pattern is considered at first. 

Cost function: 

Net input of  node j: 

Activation of node j: 

According to the gradient descent learning algorithm, 

where aE can be written as the product of two parts using chain rule, 
awjl (1-11 

Using equation (224), 



The other part of equation (227) can be written as 

From equation (225), 

Then the expression of aE needs to be derived. Two cases are considered. 
ao,cl, 

Case 1 l=L 

From (223) 

Defining 

as the error at the layer 1. 

Combining equation (229), ( 230) and 231). 

where 



is the error of node j at output layer L. 

Substituting equation (228) and (233) into (227), 

Inserting equation (226) to (23 5) ,  yields 

Case 2 1<L 

Using chain rule to the first factor of equation (229), 

From equation (233), aE is nothing more than S,(1+1), then 
ahk(l+l) 

Putting (238) back to equation (229) and using equation (230), 



According to the definition of (233), equation (239) can be expressed as 

Combining equation (227) and (240). 

Putting equation (241) back to (226), 

It is obvious that equation (236) and (242) have the same form. They follow the 

general delta rule. The error signals are backpropagated from output layer to input layer. 

To update the weights, 

where u is the number of sample patterns. 

I1 INVERSION OF NEURAL NETWORK 

The cost function has the same definition as equation (223). After propagating the 

input data to the output layer, the error signals are propagated back to the input layer. 

The error signals are defined as 



where l=L, L-1, ..., 1,  0. 

Using the gradient descent algorithm, 

where c is the stepsize. 
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