
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1985

Digital Signal Processing Capabilities of the Fujitsu MB8764 Digital Signal Processing Capabilities of the Fujitsu MB8764

Harold B. Creech
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Creech, Harold B., "Digital Signal Processing Capabilities of the Fujitsu MB8764" (1985). Retrospective
Theses and Dissertations. 4809.
https://stars.library.ucf.edu/rtd/4809

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F4809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4809?utm_source=stars.library.ucf.edu%2Frtd%2F4809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

DIGITAL SIGNAL PRcx:ESSilJG CAPABILITIES
OF THE FUJITSU MB8764

BY

HARALD BEAADALL CREECH
B.S.E.E., United States Coast Guard Academy, 1977

RESEARCH REPORT

Subnitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

in the Graduate Studies Program of the College of Engineering
University of Central Florida

Orlando, Florida

Sumner Tenn
1985

ABSTRACT

The Fujitsu MB8764 digital signal processing chip is designed

to operate with a machine cycle of up to 10 MHz. The chip's ability

to perform a 16-by-16 bit multiply and add operation in one

machine cycle makes it a good candidate for real time digital signal

processing. Unlike the Intel 2920 the Fujitsu MB8764 does not have

an onboard analog-to-digital, digital-to-analog converter. There

fore, this paper will be restricted to the operation of this

devire with digital data input and output.

The use of the MB8764 as a digital filter is analyzed.

Perfonnance limitations due to finite word length, memory size

and configuration, and clock rate are considered. The MB8764

capabilities in computing fast Fourier transforms are discussed.

Developnent of a working digital filter with the MB8764 work

station is presented.

ACKNOWlEIQ:MENTS

I would like to thank Barry Mattox and Michael Gorlicki at

Martin Marietta aerospace division for granting me access to the

only MB8764 developnent system in Orlando; to Dr. Fred O. Simons for

advising me in my graduate studies; to my wife, Terry, for giving ne

the tim::: to write this paper; and to Jesus Christ, my savior, who rrakes

all things possible.

iii

TABLE OF CONTENTS

INTRODUCTION
DESCRIPTION OF THE MB8764 •
DESIGNING A DIGITAL FILTER ON THE MB8764

THE MB8764 DEVELOPMENT SYSTEM

COMPUTING THE DISCRETE FOURIER TRANSFORM
ON THE MB8764 • • • • • • • • •

CONCLUSIONS • •
LIST OF REFERENCES

iv

. . . .

1

3

• 18

• 43

• 53

59

62

INTRODUCTION

Many microprocessors are available today that are specifically

designed for digital signal processing. The Fujitsu MB8764 is one of

the newest digital signal processing chips on the market, and has

incorporated recent advances in VLSI teclmology into its design.

Two widely used . chips that may be compared with the Fujitsu MB8764

are the Intel 2920 and the TMS 320.

A comparison between the Intel 2920. and the Fujitsu MB8764

shows the MB8764 to be a much faster chip with a more extensive

instruction set. The Intel 2920 offers 24-bit internal precision

which is much better than the .16-bit precision offered by the

MB8764. The Intel 2920 also offers an .onboard AOC and DAC for

analog input and outputo The MB8764 accepts digital input output

only. Internal RAM and program ROM are much larger in the MB8764

and orily the MB8764 permits the external expansion of them.

'l:he TMS 320 is a much closer match to the ~B8764 than the Intel

2920. The MB8764 is once again the faster machine with a 0.1 µsec

instruction cycle compared to the TMS 320's 0.2 µsec instruction

cycle. Specifications fran the manufacturers show the TMS320 and

MB8764 implementing a second order filter in 2. 2 µsec and 0. 7 µsec

respectively. Both the TMS 320 and the MB876'+ use an assembly

language level instruction set and neither accepts analog inputs.

Internal ~ccuracy of the TMS 320 is 16 bits but its design makes it

· ~ssible to :implement. double-p:rBcision oper_9..tionso The design of

2

the MB8764 makes it :inp:ra.ctical to implement double precision. The

MB8764 offers more than twice as much internal RAM as the TMS 320

but only two-thirds the internal instruction RCM.

The MB8764 can be favorably compared to both of these widely

distributed chips. It excels in the area of execution speed but is

deficient in its internal accuracy.

DESCRIPrICN OF THE MB8764

Introduction

The Fujitsu MB8764 digital signal processing chip is a VLSI,

Cl10S design optimized to provide high-speed prucessing with flexible

memory operation and input/output operation. Internal and external

buses provide 16-bit data transfer, and the ALU provides a 26-bit

result to the accumulator. The instruction list provides the chip

user with a variety of :instructions, rrost of which are specifically

designed to simplify the irnplerrentation of digital signal processing

flll1ctions. Internal rnerrory provides for a program RCM of 1024-by-24

bits, and RAM storage of 256-by-16 bits. Both RCl1 and RAM are

expandable externally. These features are all provided on an 88-pin

chip less than 31 mn squareo Th.is chapter will describe the basic

operation of the blocks that make up the MB8764. Figure 1 is a

block diagram of the MB 8764. The material in this section cones

fran references (1) and (2).

Registers on the chip can be divided into four groups: data

registers, cmmter registers, index/ address registers, and flags

(see Figure 2). The functions of these registers will be explained

in the follc:Ming sections.

3

4

-·
m

pl u XS [YS
SEQUEnCE
conTROL
e1 n~r:

w--~,_ ___ " ,... UP -
us rl ><

tp I •

co ::~ ;m

C 1 ·.~ ~ ::: ,. --... :::
I A02 ;: --,~~....,.__ __
--..-~ ::: - OPE ____,.11!.._pl.______,

AO, I

TBA~ I PCS I
l

.,...__ : pc 1 111.-.~ PGT I+ I D~A I
J.

_ _,. lll~PGM
•• ____ .,..._ __ ____.1-6--J

(OPB !--,:~~· .. ~-
I

.l.
·· ·

I OPR l
l

I I ADM I
I I ~o I l

l
I IR 1 l

..
I OEC I LAO

41

DECODER

IAAM
RRn 1-------------1

AARM BRAM

.....
I A I

I D ~--~ ------i.--; jjj FL 0 . Fi I
'----__.::=======':...... ____ __, ~

RRITHnETIC RHO LOGIC BLOC(

Figure 1. MB8764 Block Diagram.

5

1. Data registers

2.

A ~T1111111111111P1

B /j I I I I .1 I I I I I I I I p I
operation input registers

0 fy I P I a cc um u I at or

El ~Y1111111111111P1 external input register

EO ~Y1111111111111P1 external output register

Control registers

PC g p
t I I I I I I I I : I program counter

PCS g p
I I I I I I I I I : I program counter stack

co jl c I I I I I II I loop counters
Cl to-Pi
X f 1 I I I I P,

XS f I I I I I P,

Y t1 I I I I I P,
YS t 1 I I J J I p I

index f"'egisters
and their stocks

one
PGM

PGT

UP

u

jl I I I I I I p I OMA counter

tfJ
tr:fJ

r c I I I I

ERAn page register

ROM page register

vif"'tuol shift pointer

unit address register

EIA~Y I J 11111111111 P1 external input address register

EA ~I I I I I I I I I I I I I rfi ext erno I address register

1/0 flags
FD-input flag 0
F 1 - input f I ag 1
IF-EI f I ag
OF -EO f I ag
DMM-DMA mode
ROM-address •ode

ALU f lggs

PL-D positive
MI - D neg at i ve
ZR- D zero
OU- D overf I ow
CLP~ c I i pp i ng mode

Figure 2. MB8764 Registers.

Other flogs
UP-vitual pointer

mode

6

Clock Generator

The clock generator requires an external clock source or a

crystal oscillator of 20 MHz or less for its input, and outputs a

50% duty clock source at one-half the input clock frequency. The

output is used to time all internal operations; one internal clock

cycle equals one instruction cycle. The majority of instructions

require one instruction cycle to operate , or 0 • 1 µ sec when using a

20 MHz external clock.

Arithmetic and ·lbgic Block

The aritrunetic and logic block accepts input into registers A,

B, and D. Instructions in the MB8764 are classified as:

1) Arithmetic or logic instruction, and

2) Control instructions.

Arithrretic and logic instructions are executed in the arithmetic and

logic block by the AllJ with the exception of multiplication

instructions. All arithmetic and logic instructions can be executed

together with a control instruction; this type instruction is called

a compolllld instruction. A comPJund instruction that does not

include a multiplication instruction performs: 1) the control

instruction specifiec;l, and 2) the arithmetic and logic instruction

based on the register contents as of the previous instruction cycle.

An example is shcw.n below. (Asswne B register has $0002 in it.)

Step 1 LDI :NOP #$0001 Put $000+ into the A. No math operation.

Step 2 lDI:ADD #$0005 Put $0005 into A. Add $0001 to $0002.
· The D register contains $0003 in step · 3.

7

The rrn.lltiplication of the contents of register A by register B

is performed during each instruction cycle, regardless of the

instruction. A multiplier circuit separate fran the AUJ and using

Booth's second-order algorithm performs the multiplication. Booth's

algorithm is a simple and direct method for multiplication of signed

binary m.unbers (3) • The intermediate results of regfster A

multiplied by register B are stored in temporary storage registers

TRO and TRl. When a rrn.lltiplication instruction is given, the AllJ

completes the multiplication by adding TRO and TRl. The results of

JID.lltiplying two 16-bit registers wa.ild ideally result in a 32-bit

number. The ALU provides a 26-bit result to the D register by

rounding the addition of the two 27-bit registers TRO and TRl and

deleting bit 25.

Inputs
t 0 D'IU r t i p I i er

Mu It i p Ii er
outputs

A

x B

TFiO

TF: 1

15 0
I I 11 I I I I I I I I I I I I I
15 0
I I I I I I I I I I I I I I I I I

2e o
I
~ . 0
I

ALU
TRO+TRl

27 0

I I I I I I I Ir~~~~ il~gl I I I I I I I I : I ~I
operations

ALU resu I ts

i~r:Q: : : ; : ; : : : : : : : : : : : : ~~:i: Transfer· to D

Fi~ 3. Multiplication.

8

r The round-off causes an error less than plus or minus 2-24. It

is necessary to delete bit 25 of the AW result to obtain the

correct two's canplirrent number. An error results only in the case

of -2 x -2 where. zero is input into the D register; the overflow

flag OV is set to show that an overflCM has occurred. A compound

instruction that involves a multiplication instruction performs:

1) The C'Ontrol :instruction specified, and

2) The rrultiplication based ·on the register contents two

instruction cycles befor~.

An example is shown belcw.

Step l, IAB:NOP $01,$02 Data is moved from ARAM to A and BRAM

to B.

Step 2 lAB:NOP $02,$03 New data is rroved into A and B. Step

1 data enters the multiplier circuit.

Step 3 lAB:MUL $03,$04 New data is moved into A and B. Step

1 data multiplication is completed.

In step 4 the register will contain <Astep 1) x (Bstep 1).

Division operations in the MB8764 are carried out in the ALU

without the help of a specialized circuit. It requires 17 machine
··'

cycles to perform division. All other operations performed .in the

·AUJ require one machine cycle.

AI1J operations are fixed po.int with the A and B registers

having a range from -2 to 1.999938965, and the D register having a

range of -4 to 3.999999881. Passing data fn::>m the 26-bit D register

,. to the 16-bit internal bus is done as shown in Figure 4.
·I

9

Figure 4. D Register to Internal Bus Transfer.

If bit location 24 in the D register is not zero an error of +/- 2

occurs , arrl the OV flag is set. The CLP flag, when set, minimizes

the error by forcing data transferred to the internal bus to binary

0111111111111111 in the case of a positive overflav, and to

1000000000000000 in the case of a negative overflav.

Sequence Control Block

The sequence control block controls the execution of the

program code for the MB8764. Execution is carried out in a pipeline

style as shCMn in Figure 5, a timing diagram of a typical

instruction. In the first Jn3.chine cycle, step one, an instruction

fran program ROM is placed into the IRO (Instruction Register zen:>).

During step two preljmjnary operations are perf orned based on the

instruction in IRO. In step three IRl (Instruction Register one)

receives the IRO contents, and signals are passed to complete the

operation based on the IRl contents. When step four begins the

instruction has o:>mpleted execution, and results are in place. The

steps just outlined are stepped through by a cotmt of the internal

clock with interruptions made as necessary for pn::>per program

execution.

A 10-bit PC (Program C.Ounter) :register addresses the program .

ROM thra.lgh the DPR CROM Pointer Register). The program CQll'lter is

reset and held at zero when a pulse is sent an the hardware reset

10

Instruction seQuence

n-2 LAB:NOP $0,$0
n-1 LAB:NOP $1 '$1
n LAB:MLT $2,$2
n+1 LAB:MSM $3,$3

Timing diagram of instruction seQuence

Internal clock

IROM pointern-2 X n-1 X n X n+l X n+2 X n+J X n+4' >C
IRO------- X n-2 X n-1 X n X n+l X n+2 X n+3 >C
I A 1 ------------- X n-2 X n-1 X n X n+ 1 X n+2 >C

MLT MSM
A,B register contents X n-2 X n-1 X n X n+l >C

so,So $1,$1 $2,$2 $3,$3
TAO, TR1 output from multiplier X n-2 X n-1 X n }[

SOxSO $\ x$\ $2,$2
D register X n X n+l >C

Ox0 Sl x$1

Figure 5. Timing Diagram.

11

pin RST. Program execution begins with the first clock µUse after

the RSI' pulse is :removed; with each internal clock period the

program counter is incremented by one, unless interrupted.

Interruptions to the program counter incr'effienting occur when a

multicycle instruction is being executed. A cycle counter within

the sequence control block determines the proper interruption

length. . Interruptions in the PC also occur when input/output

operations arB performed during program operations that use the

external data bus or associated registerso

Program execution can be rranipulated by changing the PC

register value. The follcwing instructions ~ used to contn:>l

program execution through PC register executiono

1) Jump, and jump on condition instructions replace the PC

contents with the address of the instruction to jump too

2) Jump to subroutine instructions load the first a:idress of

the subroutine into the PC register and save the current PC

value in the PCS . (Program Counter Stack Register).

3) Return fran subroutine instructions return the value stored

in the PCS register to the PC register and increment PC.

Nesting of subroutines is not possible using the JSR

instruction, because there is only one stack register. Jump

mstructions can be used for the same end. PC contents can be saved

in RAM at the tine of a jump, mc~ted by one and recalled by

another jump mstruction at the end of the subroutine.

12

Two loop counters, Cl (eight bits) and C2 (four bits) are

located within the sequence control block. They are deCT'erneI1ted by

one with each pass through the loop and are used with a JOC

instruction to control prugram execution.

Program instructions may be obtained from EROM or IRON, with

the status of the IRM pin determining the selection. A switch

between internal ROM and external ROM can only be carried out when

the hardware reset signal is on, thus IROM and EROM carmot be used

in the same program. IRCM is a 1024-by-24 bits ROM, ERCl'1 is

expa.rrlable to 4096-by-24 bits with bank switching. IROM is a mask

ROM programmed to the designer's specification by Fujitsu.

External ROM is not required to be a mask ROM but can be an EPRCM,

allowing for field production of a design.

ROM can be used to store data in any location wtihin the ROM

except location zero. This location must hold an instruction

because the PC accesses it after every RST pulse. RCM data is

limited to 16-bit words because only the 16 least significant digits

of the 24-bit RCM word ar'e read. The 8 high order bits are set to

one. The ROM address is specified by a 10-bit input into the DPR

fran the address calculation block.

Decoder Block

Instructions IRO and IRl introduced in the previous section are

the inputs to the decoder block. . With each increnent of the program

oounter, na.v data is passed fran these registers to the look ahead

carry and decode registers respectively. When an instruction code

13

is loaded into the look ahead decoder Cl.AD) interpretation of the

code begins. The nunber of cycles necessary to complete the

instruction is decoded, .t\LU operations are interpreted , and

effective addresses a:re calculated. With the next clock pulse the

instruction rode noves on to the decode (DEC) register. The

instruction is further decoded and then executed. The time

necessary to romplete the instruction execution in this step

determines the number of clock cycles necessary to execute the

instruction.

RAM

Internal RAM (IRPM) is divided into two equal parts of

128-by-16 bits. ARAM is located in the first 128 addresses, BRAM in

the last 12 8. These RAM areas can be operated independently of one

another or as a single unit calle:i IR.AM. External RAM (ERAM) of

1024-by-16 bits may be accessed from the chip. The ER.AM is

cxmsidered as either an extension of BRAM or IRAM. .Address

selection is rrade through the address calculation block, and memory

data is passed directly to the A register, B register, or IBUS.

Address Calculation Block

The many nodes of merrory access pennitted by the control

conmands are supported by the address calculation block. The two

independent aI"eaS in M1 are accessed by two independent address

indexing sections; this architecture can be seen in Figure 1.

Register X and its stack XS are used for indexing ARAM only.

Indexing calculut:ions are made in the 7-bit adder ADl, and the

<,,

14

result is passed to the ARAM pointer DPA. Register Y ?Jld its stack

YS, both 8-bi t registers, are used for indexing BRAM or IRAM. AD2

is used for indexing calculations, and the result is passed to the

BRAM-IRPM pointer .DPBo The calculation of ERAM addresses follc:Ms

that of .the BRAM addresses except for the final result, which is

passed to the ERAM pointer DPE o Two higher-order bi ts of the ERAM

addresses are provided by a page register PGM.

The virtual shift m:xie is an optional indexing mode which may

be specified at any time within a program. In this node only the

four lc:M-order bits of the Y register are used in indexing an

address. In the computation of the effective address no carry is

made to the fifth bit. This mode provides a 16-bit loop index at a

desired location in IRAM or ERAM.

The address calculation block provides the ROM pointer DPR wi~h

the address of ROM constant data. The table address register TBA, which

can be indexed by the X register, provides the seven low-order bits

to DPR. The table page register FBT provides .the three most significant

·bits to the DPR.

Input/Output Irtterf ace

Data being input to or output from the MB8764 passes through

the chip's input/output interface. The interface allc:Ms the

selection of three different input modes ·and two different output

modes. Im input/output controller operating independently of

internal ·progparn execution regulates the flc:M of data. Eight .

hardware pins, follr" input and follr" output, . connect the controller

15

.with external circuits. Four internal flags also provide an input

to the controller. Two of these internal flags, the IM1 and AIM,

determine the input mxle. These flags can be set or cleared by

program control. The three input modes are:

1) The program read mode, or P mode, DMM=O, AIM=O, .

2) The non-address-attached direct memory access (IMA) read

mode, or D mode, rMM=l, All1=0,

3) The address-attached IMA read mode, A mode, IMM=l, ADM=l.

The program read mode allcws data to be read fran an external

circuit to the El register. There the data rray be manipulated by

the DSP as needed. The non-direct-attached Il1A read node performs

the same function as the program read node but in addition

autanatically transfers the data to the internal RAM address

indicated by the DMC register. In the address-attache::i IMA read

mode an address is transferred to the EIA register along with the

data going to the EI register. The address passed is the address

used for storing the data in IRAM.

In all :input modes three pins, the AIF, RCK, and ACT pins,

control the transfer of information into the MB8764. The Ail' pin

signals to the controller that the external device is ready to pass

information to the MB8764. A zero level on the ACT pin signals that

the MB8764 is ready to aC'Cept information. The RCK pin provides the

write clock for the information transfer.

The two output modes are selected by the value that is entered

into the fifth nost significant bit of the EA register. If the bit

equals zero, the E mode is selected; if one, the I node is selected.

16

The 1 E mode uses an external signal to clock the signal into the

external circuit. The I mode provides a clock signal fran the WCK

pin to the external circuit. The output precess is begun with a

request to output . fr.om the REQ pin. The external circuit prcvides

its response to the request to send data to the BCT pin.

Info:rnation transfer is clocked as discussed earlier. Address

information and/or data can be passed to the external circ.uit. In

the I mode, the .AOF pin contrcls the type of data sent. In the E

mode, the ASL pin is used to prcvide the same function.

I /

Sl1II1IlfilY

The Fujitsu MB8764 performs basic arithmetic functions, with

the exception of division, at a very high rate. Its speed in

processing arithmetic functions is due to:

1) An instruction cycle of O~l µsec (with 20 MHz clock),

2) A parallel pipeline structure with · a multiplier circuit

separate frcm the ALU,

3) kl ability to execute compound staterrents.

Claims to a 0.1 µ se0 nultiplication operation may be misunderstcod.

Actual,.;t:ime from input of the multiplicands into the A and B

registers to the result being placed into the D register is 0. 2 µ sec.

But, due to the pipeline structtwe, multiplication operations can be

carried out one directly after another giving rise to the 0.1 µsec

multiply claim. The ALU prcvides a 26-bit result into the D

17

register but only 16 bits of this result are easily accessed; thus,

tmder normal operations, the internal accuracy of the chip is

limited to 16 bits.

External expansion capabilities of the ROM allav the user to

develop his CMn working device without having Fujitsu create an

internal mask ROM. A limitation when expanding ROM eXternally is

that the chip is unable to access from internal and external ROM in

the same program.

Data transfer within RPM, although adequate, could be made rrore

flexible by allCNJing MOV instructions to specifically address ARAM

and BAAM rather than IMM as a whole.

Input/output operations allow a variety of modes to the user

and require just a few lines of code to implement, thus they do not

slow down program execution appreciably.

DESIGNING A DIGITAL FII..IT'ER
ON THE MB8764

IntrDduction

Digital filters provide advantages over analog filters in sane

applications. They provide the designer with a rrDre reliable and

mon= flexible filter, that is reproducible to exact specifications.

Two characteristics of digital devices limit the implerrentation of

digital filters, finite processing speed and finite word length. A

digital device must OJ:>erate on discrete data at a finite rate of

speed. For adequate perforrrance input data is limited to

frequencies of less than one-fifth the sample rate of the device.

Finite word length limits the poles arrl zeroes of the filter to a

finite number of points. This becomes critical in cases of high

sample frequency to maximum signal frequency ratios.

Just as analog filter designers must consider the arrangement

of discrete components, digital filter designers rrn.ist consider the

digital filter structure. The structure of a digital filter affects

its speed of operation, its sensitivity to finite word length, and

its ease of implementation. A rule of thumb that should be applied

to all IIR (Infinite Inpulse Response) digital filter structures is

to implement the filter in sections no greater than serond-oroer.

This reduces the sensitivity the. device has to errors in the filter

coefficients. A cascade or parallel co:rril:>ination ·of these second

order sections is rrost often used by designers.

18

'I

19

t Nl.Uilerous structures are available to implement second order

sections. The direct structures are most frequently used because of

their simplicity and speed. This chapter will show the capabilities

of the MB8764 to .implement digital filters designed as cascades or

parallels of direct structured biquadratic sections. The advantages

and disadvantages of the various designs as .implemented on the

MB8764 will be discussed.

Implementing a Biquadratic

Four direct structures will be analyzed and judged on their

ability to .implement a biquadratic section on the MB8764. The four

structures are judged by the following points:

1) Time delay between input and output,

2) Length of program, and

3) Memory spare required.

Clock rate for the . MB8764 is assumed to be at its maximum, thus one

instruction cycle equals 0 .1 µ sec. Each strl,lcture' s model, MB87 64

,memory map, and computation loop program are shown in figures 6,7,8,

and 9.

The ID Structure

The lD direct structure computes the output y(k) in tenns of an

effective input m(k). Two equations define its operations:

m(k) = x(k) - b1m(k-1) ~ b2m(k-2)

~ y(k) = aom(k) + alm(k-1) + a2m(k-2)

. . 'I

20

The program for a ID structure requires 18 machine cycles or

1.8 µsec to complete one loop. Input to output delay equals 1.0

µsec. All locations in ARAM are used, with three occupied by active

data. Seven locations in BRAM are used (see Figure 6).

2D Structure

The 2D structure first accepts the' input, then computes output

using results from the previous cycle. The governing equations are:

y(k) = aox(k) + p1 (k-l)

P1(k) = a 1x(k)

P2(k) = a 2x(k)

b1y(k) + p2 (k-1)

b2y(k)

The program requires 17 machine cycles or 1. 9 µsec for computations

between inputs. Output occurs 0.8 µsec after input. Two locations

in ARl\M and seven locations in BRAM are used. ARAM is not cycled

(see Figure 7).

3D Structure

In the 3D structure all possible calculations are performed

· before the input is received. The governing eq~ation is:

.,J

The C'Omputation loop requires 1. 6 µ sec. The delay between input and

output is 0. 8 µsec. Six locations in ARAM are active and cycled

through . the whole ARAM. Six locations· lil BRAM are used

(see Figure 8).

21

4D Structure

The 4D structure is the transpose of the 3D structure. The

governing equations are:

r 0(k) = x(k) + r 1 (k-l)

y(k) = aoro(k) + ql(k-1)

q1(k) = a 1ro(k) + a 2r 0 (k-l)

r 1 Ck) = -b1ro(k) - b 2r 0 (k-l)

This is the slCMTest of the four structures, requiring 2. O µ sec for

the program loop, and 1.1 µsec fran input to output. Six locations

are rotated through AFAM, five locations are used in BRAM.

Structure Ccmparisan Results

The 3D structure offers the fastest processing time of the four

structures and shares the shortest input to output delay with the 2D

structure. The 2D structure uses the least memory locations and

would be the best choice in applications where the designer does not

want to cycle through ARAM. In each of the programs four

instructions are required for input/ output and loop control. These

four instructions require, as a minimum, six instruction cycles to

be processed. A loop has been built into the input data

instructions which causes the program to wait until new input data

is received. The loop allows the speed at which data is input to

control th: program sample rate, thus there is no need to control

sample rate by inserting lines _of code. In the case where program

length corresponds to the input data rate, the loop may be removed,

allowing for a 0. 2 I.I sec faster program loop. Rerroving the loop will

allow the same input to be acted on more than once if timing of the

L1

L2

MODEL:
•<k)

22

MEMORY MAP:
'L '

-~,. ARAl1~ BRAM
-·

T

)

Code
LAB:HOP $n1 'v··, $n1 ·1x···, - ~ .•, - ~
LREi: NOP $ w., f v ., $ n) (x)

-'-~ J} _._ I

LAfi: f1L T $03('r'), $01 (X)

L RE;: r1sr1 $n4 { •r $rr:;. Of1 -) J - ·'

r1ou: ML T D,$FF
NOP:MRD
1..IOC: HOP L2, IF
nou •$800,EA
MOU;HOF' EI, A
MOU: sur1 $00 (y), A

MOU:HOP O,B,$FE
MBA:HOP $00(X),$FE
MOU:NOP $FF,O
n~:v: MSM •$7F,•$00
MOU:HOP D,EO
JMP:HOP L1

(1(1

01
02
03

i \
m (k) \

I'll"'

ao
i 1
a~.
~

t11

b2

00
01
02
03
04

"4.J 7E
7F r---r--17E

GIUj?F
NOTE: f1rr·c1u.1s depict mc•vement c•f var· i at• I e

des: i gnat i or1 e:aus:ed by i r1dex i ng .

Cc•mment s
*a1 inter A; m(k-1) inter B

*02 inter A; rri(k-2) intc1 fi

*01 x m(k-l);-b1 to A;m(k-1) to Ei
*(02 x m(k-2))+(01 x m(k-l));etc
*et ore re~; rJ ! t o f · I o st i n ~; t r ; et c
*(-b1 x rn(k-l))-(b2 x m(k-2))
*loop here unti I input received
*~et output ~ode and 5equence

*input to A
*m(k) found; oo to A
*m(k) to 6 and to BRAM

* "' (k) t o A RAM
*(02 x m(k-2))+(01 x m(k-1)) to 0

*x=x-l;y=y;y(k) calculated
*ouput y(k)
*~tart loop again at L1

Figure 6. ID Filter Structure Model and Program.

Block diagram:

Program:
Code

L 1 JOC : MOF' L 1 , IF

MDU •$800 .. ER

MOU: NOP EI , $00

L A Ei : ti (IP $ 0 0 .• $ 0 0
MOU: tiOP $FF, D
LAB: MSt1 $00, $0 l
MOU:NOP $0,E0,$01
LAB: f1L T $01 , 03
HOP
MOU:MRD $FE,A
LAB:SUM $00,$02
MOIJ: tiOP D, $FF
LAB:MLT $01,$04
ti OP
NDP:MAD
MOU:NOP D,SFE
JMP:tiOP Ll

23

Me11or·y aap:
y<k) ARAM BRAM

00 x(k) 00 00
01 y(k) a, 01

,.. "-' ,.. _, a ... ~ 02
1FT I "'

03
04

P2 (k) 7E
P 1 (k) 7F

Comments
*waits for inpLJt

*sets output mode and sequence
*;.:: (k) t C• AF: AM
*x(k) to A, a0 to B
*p 1(k-1) to D
*calr y(k);x(k) to A;a 1 to B
*y(k) to output and ARAM
* y (k) t c1 fi ; b 1 (k) t ci Ei ; x (k) x a 1

*
*p?(k-1) to A

~

*calc P1(k);x(k) to A;a2 to B
* p 1 (k) t o BF: AM
*y(k) to A;b2 to B;x(k) x 02

*
*calc P2(k)
* P2(k) to BRAM
*start · loop again at L1

Figure 7. 2D Structure MOO.el and Program.

Block Diagram:

00
01
02
03
04
05

?E
7F

24

Mea.ory Map:
r·\

AF:AW \

x (k)

x(k-1)
x (k-2)
~ (k)
~(k-1)

.. , ~)
~ \. ~.-l .

\
•,

\
)

,., .J

BRAM

a(t

a,
a'">
"'

bl

t•2

00
01
02
03
04

,.,,.J

NOTE: Arrows depict movement of variable
de::: i gno +. ion caused b1:1 i nde>=: i ng .

Program:

Ll

L2

Code
LAB:NOP $01(X),$01
LAB:HOP $02(X),$02
LAB:MLT $01(X),$03
LRB:MSM $05(X),$04
LO I : MRD •$0000

'"I IF : MF:D L2
MOU •$800,ER
MOU:NOP El, 6:$FF
MOU:HOP $80,A
MXY:HOP •$7F,•$00
MBA:MSM $0l(X),$FF
MOU:NOP D,E0:$FF
MBA:HOP $01(X),$FF
JMP L1

Comment~;

*x(k-1) to A;a1 to B
*x(k-2) to A·a? to B

J '"

*y(k-1) to A;b1 to Bjx(k-1) x al

*y(k-2) to R;b2 to B;cont calc of y(k)
*y(k) colc made indep of 1 of L2 loops
*waits for input;conl calc of y(k)

*sets output mode and sequence
*x(k) to B and BRAM
*ao to A
*shift x index back
*x(k) from BRAM to ARAM;calc y(k)

*y(k) to output and BRAM
*y{k) from BRAM to ARAM
*start loop again at L1

Figure 8. 3D Structure and Program.

Mode I:
ro(k)

Program:
Code

L 1 JOC: tiOP L I .• IF
MOU: •$600,EA
MOU: MOP E I , A

MOU:NOP $FF,B
NOP:ADD
MOU: tiOP [I, fi, $FE

MOU: tiOP $80, A

MOU:tiOP $FD,O
MBA:MSM $00(X),$FE
MOU:tiOP D,EO
LAB:MSM $00(X),$03
LAB:NOP $01(X),$01
LAB:MLT SOO(X),$01
LAB:MRD $01(X),$02
MOU:MLT D,$FF
nXY:nsn •$FF,•$OO
MOU:tiOP D,SFD
JMP:HOP L1

Figun: 9.

25

Me11ory •ap:
ARAr1 BRAM

00 ro (k)
01 r·o (k-1)

"_,

Coninrent ~;
*wait for input

Q 1 (k)
ro (k)
r 1(k)

"
7[1

7E
7F

*sets output mode and sequence
*x(k) to A

* r 1 (k - 1) t c1 fi

*colc ro(k)
*ro(k) to B and BRAM
*ao to A
*q 1 (k-1) to D
*colc y{k)

*output y(k)

*ro(k) to A;-b1 to B
*ro(k-1) to A; b2 to B
*ro{k) to A;a1 to 6;-b1 x ro(k)
*ro(k-1) to A; 02 to B:calc r1(k)
*r1{k) to BRAM;o1 x ro(k)
*calc Q1(k);shlft x Index back
*ql (k) to BP.AM
*start loop again at L1

4D Structure Model and Program.

26

external input is slower than the program loop execution rate. The

use of an input loop cannot prevent the loss of some data samples in

cases where the device sample rate is slower than the input data

send rate.

Programming a Multiple Biquadratic Section Filter

The 3D structure was f01.md to perform best on the MB8764. A

canparison will now be made between the Nth order filter programmed

as a cascade and a filter programme::l as a parallel combination of 3D

biquadratic sections. The comparison will determine which is rrost

suitable for the MB8764, considering advantages and disadvantages to

each approach. Each program will be judged on the following

aspects:

1) Time delay between input and output,

2) length of program, and

3) Memory space required.

Of course there are countless ways to program the MB8764 to

have it accanplish the calculations necessary. The progr'ams shCMn

are written for maximum speed in the computation loop. As in the 3D

biquadratic section pn::>gramned previously, variables and initial

conditions are assumed to be stored in the IRAM when the loop

begins. Initialization is accomplished outside the loop and thus

not shCMn. It is necessary to set initial oonditians even ~ they

~ zero, because the MB8764 does not set all registers to zero when

pc:Mered up. There is no instruction which clears· all the merrory

locations; therefore they must be accessed one location at a time.

27

Cascade Realization

The cascade model offers a method of splitting a large

order filter into small sections, thus reducing the filter's

sensitivity to coefficient quantization. Figure 10 shows

the model for an Nth order cascade of 3D structure biquad

ratic sections. To achieve the best results with the

cascade model on a fixed-point processor such as the MB8764

the- designer must:

1) Balance the DC gain of the sections (this may

be accomplished by proper pole zero pairing),

2) Scale each section individually to prevent over

flow within the section, and

3) Arrange the sections in the order which

minimizes the output noise.

From a designer's viewpoint cascade realization can be

difficult to implement, because pole zero pairing and section

ordering are intricate steps.

Figure 11 shows the program and Figure 12 shows the

memory map used in implementing a cascade of 3D sections.

The number of lines of code necessary to input initial

code conditions and variables in the worst case is 16n+6,

where n equals the number of biquadratic sections in the

filter. Worst case implies that no variables or initial

conditio~s share the same values. An additional two or

three lines are needed for initialization. The computation

28

loop for the program requires lOn+ll machine cycles to

complete. The delay from time of input to time of output

is 4n+5 machine cycles. Data is shifted through the whole

ARAM, with 3n+3 locations being occupied with active data

at any one time. BRAM data is stationary, and Sn+l

locations are used.

Parallel Realization

The parallel model is easier to design than the cascade

model. Each section in the parallel model acts on the

input x(k) and provides output to a summing junction (see

Figure 13). Therefore, there is no concern about ordering

of sections and no reason to pole zero pair each section.

The steps necessary to implement the parallel form for a

Nth order binomial are:

1) Perform a partial fraction expansion of the Nth

order binomial and group the resulting terms into

biquadratic sections,

2) Individually scale each section to prevent overflow

within the section.

A program implementing a parallel of 3D biquadratic

sections is shown in Figure l~. The program's memory map is

shown in Figure 15. Initial conditions and variable input

into !RAM require 14n+l3 lines of code to enter for the

worst case. The computation loop for the program requires

7n+ll machine cycles to complete. The delay from input

29

instruction to output instruction, independent of the

filters order n, is equal to seven machine cycles. The

ARAM is used just as in the cascade program. BRAM data

is stationary and uses 4n+5 locations.

Comparing the Cascade and Parallel Programs

In ease of design and in theoretical performance, the

parallel model is superior to the cascade model, offering

better signal-to-noise ratio (4) and fewer steps in the

design process (5). But the section of the tyne of filter

to be used is usually based on the performance of the

program that is implementin~ it. The program implementing

a parallel of 3D sections ran faster on the MB8764 for any

number of sections. (For a single section, or s~cond-

order filter the cascade and parallel design are identical.)

The performance of the oarallel example is due to the fact

that it has n-1 less multiplications to perform than the

cascade and that it ·can perform its summations very

efficiently. The fact that all calculations except one

multiplication and one addition are performed prior to

input of x(k) make its input to output delay very short.

Figure 16 is a graph of the implementation time of an Nth

order parallel and cascade of 3D sections.

Both programs are implemented with a minimum of loo~s.

As a consequence much longer programs will be stored in the

instruction ROM. The advantage for minimizing loops is

30

x(k) y (k)
n

input output

Figure 10. Cascade of 3D Sections.

31

Code: Com1J1ent:
L1 LAB:HOP $01(X),$01

LAB:NOP $02(X),$02
LAB:MLT $04(X),$03
LAB:MSM $05(X),$01
LAB:MRD $01(X),$06
LAB:MRO $05(X),$07
MOU:MLT D,$FF
MBA:MSM $03(X),$FF

*-------------1
*pre I iniinary
*calculation
*of
*y1(k)

I

1----.--------
*-------------! begin pre I iminary
*precolc Y1(k)I calculation of y2 (k)

*to 03(:x:) I

L2

*
lt:

*This section is repeated from
LAB:HOP $[3i+1](X),$[5i-2] *i=2 to n-1, where i represents the
LAB:NOP $[3i+2](X),$[5i-1] *biquadratic section being coded, and
LAB:MRD $[3i+1](X),$[5i+1] *n is the total number of biquadrotic
LAB:MRD $[3i+2](X),$[5i+2] *sections. In thi' ~ection Yi(k)
MOU:MLT D,$FF *pre I iminory i~ calculated and the
M6A:MSM $[3i+3](X),$FF *calculations for Yi+l(k) are begun.

*
•:
•: _____________ _

LAB:NOP $[3N+1](X),$[5n-2] *
LAB:HOP $[3H+2](X),$[5n-1] *Calculations for prel iminory Yn(k)
HOP:MRD
NOP:MfiD

MOU:NOP 0,$FF
MAB:HOP $[3H](X),$FF
"I IF : HOP L2
MOU •$800,EA

*con1p I et ed

*
*
*--------------------------~
*u.aa it for input
*set output 1ode and sequence .

Figure 11. Cascade of 3D Sections Program.

MOU:NOP Et,A:$FF
MOU:NOP $80,6

LAB:HOP $03(X),$FF
MOU:MLT $85,B
NOP:SUM
MOU:NOP D,$FF:A

LAB:HOP $[3i](X),$FF
r10 U : ML T $ [5 i], B

MBA:SUM $[3(n-1)](X),$FF
MOU:NOP D,$FF,A

LRB:NOP $[3n](X),$FF
MOU: r-ll T $[Sn], B
MBA:SUM $[3(n-1)](X),$FF
MOU:HOP O,$FF:EO
M6A:NOP $[3n](X),$FF
MXY:NOP $FF,$00
JMP:HOP Ll

32

*x(k) to A and BRAM
*begin calculation of Y1(k)

*continue calculations for Y1(k)

*begin setup for Y2(k) calculations

*
* Y1(k) calculation is completed
~:

* ---------------
*
*This section is repeated for
~: i = 2 t o n- 1 . I t ca I e: u I at e e. t he C• '-' t put

*of each section and places the
*out~ut of the preuio~s section into
*the proper location in ARAM.

*
*---------------
*final calculations to compute
*filter output y(k)
Jt:

*output y(k)

*
*shift X index back 1

*Ju~p back to beginning

Figure 11. Continued. ·

33

RAAM BRAM

00.,._ ____ ____,. 00
01_ ___ ___. 01
0 2 .,__ _____ .._. 02
0 3 ..._____. __ ___. 03
01 .,__ _______ ___. 01
05 .,__ ____ .._. 05
06...._ _____ ___. 06
07 .,__ ___ ___. 07

08 t-------~ OB
09

•
•
•

Sn-5
Sn-1
Sn-3·
Sn-2
Sn-1

F C .,._ ____ __,
FD .,__ ____ ---4

FE ...__ ___ ---4

FF TEMP STO NOTE: Arrows show movement of
variable designation caused
by indexing.

Figure 12. Nth Order Cascade Filter Memory Map.

x(k)

input

•
•
•

• • •

30
n

34

NOTE: Onl~ delayed values of x(k) are used

in the 30 sections to calculate ~Ck>

Figure 13. Parallel of 3D Sections.

y(k)

output

Code:

35

Cow.-.ent s:

*-------------1
* I
*ca I cu I at i or. . I
*of

*y1(k) !---~--------

*-------------! begin
* Y1(k) calculation of u (k)

... .!_

Ll LAB:HOP $0l(X),$01
LAB:NOP $02(X),$02
LAB:MLT $04(X)J$03
LAB:MSM $05(X),$04
LAB:MRD $01(X),$05
LA5:MRD $02(X),$06
MOU:MLT 0,$FF
MBR:MSM $03(X),$FF *to O~i (x) __ __,.;.._.. ________ _

*
*
•:
*This section is repeated from

LAB:HOP $[3i+1](X),$[1i-1] *i=2 to n-1, where i represents the

LAB:NOP $[3i+2](X),$[1i] *biquodratic section being coded, and
LAB:MRD $01(X),$[4i+1] *n is the total number of biquadratic
LAB:MRD $02(X),$[4i+2] *~ectione. In this ~ection Yi(k)
MOU:MLT D,$FF *is calculated and the calculations
MBA:MSM $[3i](X),$FF *for Yi+l(k) are begun.

*
*

LA 6 : N 0 P $ [3 ti+ l](X) , $ [1 n- 1] *
LAB:HOP $[3N+2](X),$[4n] *Calculations for Yn(k)
HOP:MRD *completed
HOP:MRO *
MOU:NOP D,$FF *

Figure 14. Parallel of 3D Sections Program.

MA6:NOP $[3n](X),$FF
LAB:NOP $03(X),$00
LAB:SUM $06(X),$00

*
*
*
Jt:

*
*
~:

36

~um

al I
~ (k) I~;
"'

Only the A register
information is used
in the summation.

LAB:SUM $3[n-1](X),$00 *
NOP: sur1

L 2 ""I I F : H 0 P L 2

MOU •$ti00, EA

MOU: tWF' EI , A: $FF

MBA:NOP $00(X),$FF
MXY:MSM •$7F,•$00
MOU:NOP D,EOJ$FF
... H1P: HOP L 1

*I oe:t yJk).__.~•--'-J m __ m~ __ :.d ______ _

,.. w a i t f c• r i rap u t

*~et output mode and sequence
*x(k) to A and BRAM
*x(k) to ARAr1

*calc Iy(k)'s + x(k) x Do
:+:c11.Jt put ~ (k)

*ju~p back to beginning

Figure 1~. Continued.

37

RRAM BRAM

00 00
01 01
02 02
03 03
01 01
05 05
06 06
07 07
06 08

• •
•

3n 1n+1
1n+2
1n+3
1n+1

I FC

J FF FD
FE ·v FF TEMP STO

NOTE: Arrows show movement of
variable designation caused
by indexing.

Figure 15. Nth Order Parallel Filter Memory Map.

38

Maxi•um sample frequency in KHZ

1000 200 10.0
20~---------------------r---------------~,,__ ______ ___

16

16

14

L 12 .,
"O
L
0
L 10 .,
~

LL. 6

6

4

2

1 2 3 1 5 7 8 9 10

Minimum sample period in µsec

Figure· 16. Nth Order ·Filter Implementation Time
Graph for Parallel and Cascade Filters · on the HB876~.

39

sneed in nrogram execution. For example ~n Nth order

parallel filter with loops requires 6(n-1) additional mac-

hine cycles to execute and saves 7n-29 locations in the

instruction ROM Cn=number of 3D sections).

~B8764 Capabilities in Imnlementing
~ultinle Filter Programs

Designing a program to imnlement more than one filter

with multi?le inputs and outputs is easily accomplished on

the MB8764. Due to limited amount of memory available,

restrictions are placed on the number of and cornnlexity of

filters to be nro~rammed to~ether. Restrictions are ~ls~

nlaced on the sa~nle rate of the filters which must be

inte~er multinles of one another. Table 1 shows the

capability of the M38764 to imnlement multiple filter oro

grams of 3D sections olaced in oarallel. The MBB764

has only one input/output port which must be time-shared

in a m~ltinle filter orogra~. To acco~plish this ti~e-

s~aring, the inputs must be synchronized to occur in a

s~ecific order.

If all filters are of the same frequency, then

pro~ra~~ing multiple filters in · the one nrogram is accom

plished in three steps.

1) Arrange the calculation loons for the programs

you wish to implement into a single list:

2) Remove the jump statement from the bottom of each

program except the last and have that jump

3)

40

statement return to the top of the first

nrogram. This makes the list of calculation

loons into a sin~le loop~

/

Change the addressing within each program to

point to the section of ARA~ and ERA~ in which

initial conditions and variables are located.

Setting initial conditions and variables into !RAM is

accomplished for all filters before the calculation loon

is begun. Filters with sample rates that are integer

multinles of one another are implemented as in the steps

listed above with the addition of a step to install

counters and juMn instructions to control program flow.

Chanter Su~~ary

In this chapter the 3~ biquadratic structure was found

to have the fastest calculation loop of the four direct

structures. The narallel imnle~entation and cascade

inplementation of an Nth filter of 3D structures were

compared. The parallel structure was shown to be

superior in performance (see Table 2). From these nrogram-

min~ examples it can be seen that the MB8764 nerforms

mathematical functions very efficiently but this efficiencv

is reduced considerably when results must be moved out of

the D re~ister to ARAM or when looping is used. For best

performance in speed, programs written for the MB8764

should use a minimum of transfer instructions and should

avoid looping.

41

TABLE 1
CAPABILITY OF THE MB8761 IN PEAFORMMIHG

MULTIPLE FILTER PROGRAMS

f i I ter max 1 of max sa11p re approx memory use
or·der filters fr·equency ... IR0f1 ARRM

2 16 39.06 KHZ 736 96

4 10 10.00 KHZ 670 90

6 8 39.06 KHZ 704 96

6 6 42.71 KHZ 654 90

10 5 43.18 KHZ 650 90

12 4 47. 17 KHZ 6(14 8~

14 4 41. 67 KHZ 668 96

TABLE 2

COMPARISON BETWEEH A PARALLEL AHO CASCADE FILTER
IMPLEMENTATION OF 30 BIQUAORRTIC

SECTIONS OH THE MB8764

Feat ur·e Para Ile I Cascade

BR Rn
128

120
1 _., C•

Ll..I

120

120

112

128

min sample period (11+7ra). 1 µs (11+1 On) . 1 µs

i r1put to output ~elay .7µs (4n+5)>1µs

I F:Dr1 I ocat i onE• used 25+2tn 17+26n

AF:AM I ocat ions used 3n+3 3n+3

BRAM I ocat ions used 4n+4 Sn

note: f Of" . 1 µs moc:h i ne cycle, n= 1 of 3[1 sect.ion~

42

Scalini is necessary in the design of a digital filter

to nrevent overflow within fixed-point machines such as the

MB8764. The design of the ~B8764 also helps to prevent

overflow during intermediate calculations in the arithmetic

and logic block. Internal ALU operations and the D

register provide twice the dynamic range of the ALU inout

registers A and B. Thus the result of an intermediate

operation which overflows in a 16-bit register of the

MB8764 can remain valid in the D register~ allowing sub

sequent operations without overflow. If an overflow should

occur, the MB8764 can minimize the error throu~h the use

of the CLP flag.

-

THE MB8764 nEVELOPMENT SYSTEM

Introduction

Once a program has been designed for a digital device

it is important that it be fully tested. This especially

true for the MB8764 program that is to be in?ut into the

internal mask ROM of the chip, as there is no adjustment

?ossible once the mask is nroduced. Any mistakes in the

mask ROM design must be accepted or the design must be

corrected and a new chip produced. Fujitsu ~98764 pro ~~a~s

can be tested on the ~!B8764 itself with the use of the

MB87902 software development tool kit. The tool kit

supplies a 16 MHz clock to the MB8764 giving it a machine

cycle of 0.125 µsec or 25% slower than the minimum specified

MB8764 machine cycle of 0.1 µsec. The slower clock rate

is required for the MB8764 to make data transfer between

external RA~ and the chip.

This chapter first gives a brief descrintion of the

develooment system for the MB8764 and then follows through

the testing of a fourth-order Butterworth filter program.

The information on the MB8764 development system found in

this chapter is derived from references (6) and (7) and

from experiences the author had when using the development

system.

43

-

44

Descrintion of the MB8764 Development System

The development system for the MB8764 can be divided

into two primary parts, a Fujitsu FM-16S microprocessor and

the Fujitsu FDSP KIT-8764 evaluation board. The micro-

processor is a standard Fujitsu model equipped with the

following hardware:

1) 10 mega-bit internal drive,

2) One Slr;" floppy disk,

3) A CP/M86 board and expansion RAM card,

4) CRT and printer.

Software nrovided includes: 1) Wordstar, a word processing

pro~ram used to create code and data files~ 2) the MB8764

assembler (ASM64) which assembles the wordstar code files

into the RO~ executable code; and 3) the MON64 program which

is actually two ?rograms used to control the FDS? KIT-8764

evaluation board.

The FDSP KIT-8764 evaluation board is nrimarily a

standard MB8764 with support hardware to interface it with

the Fujitsu FM-16S microprocessor. It also ~rovides the

designer with three sockets for EPROM programming and testin~.

The SU?Port hardware includes: ·

1) A 1024-word instruction RAM, accessed by the MB8764

through the MB8764's external instruction port,

2) A 1024-word expansion RAM, which operates as a

standard MB8764 expansion RAM,

• I

I
I/

45

3) Two 512-word data RAMs, one for storing data to be

inout into the MB8764 and the other for storing the

MB8764 output data,

4) An analog interface, which provides 12-bit ADC

and DAC for analog input/output, and

5) An interface circuit, to enable the FM-16S

microprocessor to control the board.

With the development system, a designer may choose the

MB8764 input to be an analog signal a digital signal from

data RAM, or a digital signal from a user supplied device.

The same choices apply to the MB8764 output. If the output

is directed to data RAM then 512 words of output data may

be accessed and viewed on the CRT. Program execution can

be stopped by the microprocessor at almost any point in the

program. While paused the D, A, X, Y and CO registers can

be viewed as well as any addresses in the instruction RAM,

internal RAM, or external RAM. Any ·of the addresses or

registers that can be viewed may also be changed to

another value. If instruction code is altered, the new

program can be loaded back from · the instruction RAM to a

disk file in the microprocessor. When a program passes

all tests, an EPROM is made or a floppy disk created with

the tested program on it. Fujitsu will use this EPROM or

floppy disk to create a custom MB8764 chin with an IROM

loaded with the program sent. If a mask IROM is nqt

'

46

required EPROMs can be manufactured by the development

system and used as external !ROM for the MB8764.

Testing a Program

A fourth-order low pass Butterworth digital filter was

designed with the following specifications:

1) Cutoff frequency - 50 KHZ

2) Max loss in passband - 3 DB

3) Sample frequency - 250 KHZ

Conversion from analog to digital was made via the bilinear

transform. The filter was implemented as a cascade of t~o

biquadratic sections. The figure below shows the model and

· (,. ·., r----i ,r':h--.
' '''~11:· ~
~ ~··-'r,

i I 1-\
! I I ·,

11 / I I •,
~ I / ,1 \ \

•' I L I
' I I \

/ I I \

j 1:1 1 t' ; \ t 1 1
L...!,_J ,• '

l \
,1 \
I

.

r::;:-i___,.~---.. _ __....·...: !" t. .. ;

~·~'r;
l I -\ ~

:-'·· -1! i' \ \ 1 .. - ,,
- .. I I

1

1 ,~ I
/ 1' \ \ 1.--J

/II I \~j I / 1, b • '
I I '
I I .
I I

,i 1, '":'. 11
~ I I I ~ I

I l ·~I: r::...rc;::r b ·~· . Ll-1 .;..

- 1 - ~· - 1 . - - . • -. -. r ' .-. . · -, .-. ' .., ·· 1 .-. ,.., Q ' .., - ··1 r '"• .-, 1' r ,-1;:. r ')-; · : ""• c- .· · ' ·1 :

.-.

H
,. ., , ! (I ..)~• I., ,,:1t1 I 0)'- +I,, Ct.) •. }'- ,., _... , L ... 1.J.::_+ , ·..,.IL 1- 1 ·- 1 ~ •• •.• 0:: • 1 ·- 1 ~ • '-

l '7 ; =· ')r.' • -, . - . 1 ~· .. · '·.. ...
- - ' ,· ~ ,., ,. ' .., - I ' 4-., - '-

~ - (' 3 2 9 (i > 2 + (' 0 6 4 6) z 1 -: ~- . 4 ,,:. ,. } '- + '·· . r:1 t 1 J ..' '-

3u~terworth Filter Model ~~ d :~~a~~on.

The step response and the frequency resPonse of the model

was calculated on an HP 85 computer, and it verified the

model to be valid. The calculated step resnonse data was

47

saved to compare to the output data from the real time

execution of the model on the MB8764.

As assembly level program was written for the filter

and edited in wordstar on the Fujitsu FM-16S microcomputer.

The file created by wordstar was checked for errors and

assembled when all errors had been corrected. Error codes

from the assembler were adequate but documentation of

program format requirements were inadequate with many

errors solved by trial and error. The assembler permits

some use of address .labels and variables in the assembly

level program and converts them to proper values before

converting the program to machine code. Along with a

statement list the assembler provides the designer with a

dictionary list and a symbol list. These nrovide documen

tation on the variables and labels used in the assembly

level program.

Machine code, created upon assembly of the filter

program without error, was stored in a .DEB file. The .DEB

file was loaded into the instruction RA.M of the FDSP KIT-8764

usin~ the DEBGl ?rogram. The DEBGl ?rogram can also be used

to read and write programs between EPROM and instruction RAM

or from instruction RAM back to the FM-16S microprocessor.

With program instructions loaded into the instruction

file program DEBGl was exited, and the DEBG2 program loaded.

The filter program in the instruction RAM was now able to

run on the MB8764 under the control of the DEBG2 program.

48

Because the program called for the step response of the

filter, no input was generated within the program. The

following functions were accomplished through the use of

DEBG2 comJ!lands. Out?ut was specified to be placed into the

output data RAM. Program execution was begun and then

paused to check output data RAM contents, register contents

and IRA.M contents. Corrections were made to program code

until output data results were correct, and the program was

operating properly. A special note is made that attempts

to store data in address FF of !RAM were not successful,

however, when storage was changed to register FC the

program ran correctly. A listing of the filter program

executed is shown in Figure 18. Figure 19 is a comparison

of calculated sten response and MB8764 program step

resnonse.

Sum.~ary

The ~B8764 digital signal nrocessing chip is well

supported by the MB8764 Support Tool development system.

Its ability to run programs at 80% of the maximum internal

clock rate of the MB8764 and to use the MB8764 chip instead

of a software simulation of the chip gives the designer a

chance to evaluate program results in real time. Documenta

tion of assembly language formatting requirements is

inadequate. Including formatting examples would greatly

. improve the documentation.

PRG
ORG

CLR

BUFIL

CREECH,$10
X:V:O

LD 1 : tiOP •$0EiC5

MOU:HDP A,$80
LOI :NOP •$178A

MOU:NOP A_,$81

LD 1 : HOP •$OfiC5

MOU: NOP A, $Ei2

LOI :NOP •$150E
r10U: NOP A.• $83

LDI :HOP •$0422

MOLi: HOP A,$Ei~

LOI :MOP •$1035

MOU:NOP R,$85
LD I : tiOP •$206Ei

MOU:NOP A,$86
LOI :NOP •$1035
MOU:NOP A,$67
LO I: NOP •$1001

MOU: HOP A, $8ci

LOI :NOP •$1007

MOU:HOP A,$89
LO I : NOP •$0000

MOU:HOP A,$01

·MOU: NOP A, $02
MOU:HOP A,$04

~9

*required by a~~e~bler
*assembler required sets code location
*c I ears X ,..Y., Z r·eg ________ _

*

*
Thi E; see:t ion

*
equot ion coeff i~ients.

*
*NOTE:FORMRT REQUIREMENTS ARE STRICT
*R SPACE AFTER A COMMA OR A COLON
*CAUSES ASSEMBLY ERROR.

*
Jt:

•:
*
*
*
* Thi~ ~ection

*
* sets in it i o I

*

Figure 18. Butterworth Filter Program Ready for Assembly.

MOU:HOP R,$05
MOU:NOP A,$07
MOIJ:NOP A,$08

L 1 LAB: HOP $01 (X), $01
LAB:NOP $02(X),$02
LAB:MLT $01(X),$03
LAB:MSM $05(X),$01
LAB:MSM $04(X),$06
LRB:MRD $05(X),$07
f10U: ML T D, $F C
LRB:MSM $07(X),$08
LAB:NOP $0B(X),$09
NOP: MSf1
HOF': f1RD

MOU:NOP D,$FE
MOU •$Ei00 .. EA
LDI :NOP •$4000
MOU:HOP A,$FD
MBA:NOP $00(X),$FD
LRB:NOP $00(X),$00
MOU:NOP $FC,D
HOP:MSM
MOU:NOP D,$FC
MBA:NOP $03(X),$FC
LAB:HOP $03(X),$05
MOU:HOP $FE,D
MXY:MSM •$7F,•$00

50

* condition~ to zero.

*

*calculation loop begins

* c:alc:ulote

*
>t:

pre f i m i nar~
y 1 { k) 1---------------

lcolc:ulate
* I pre I i mi nor~

*pre I i m y 1 (k) t o B Fi A f1 I y 2 (k)

*---------------------!
* I

*

1----------------
Jt: Se. t C• lJ t p U t 111 C• d e.

*simulate~ receipt of on input of 1

*
>t:

*x(k) to A and ao to B

*
* x(k) x oo + {pre I irninary Yt(k))

*
*
Jt:

*y2(k) calculated X index shifted back 1

Figure 18. Continued.

MOU:HOP O,EO:$FE
MBA:NOP $07(X),$FE
HOP
HOP
HOP
NOP
JMP:NOP Ll
EHD

51

*y2(k) output
*~?(k) stored in 06(x) of ARAM
~~

*NOTE:THIS PROGRAM HAS EXTRA LINES OF
*CODE IN IT TO GIUE IT A SAMPLE RATE
*OF 250 KHZ.

*
*returns to start of program loop
*required by assembler

Figure 18. Continued.

1 . 2

1. 0

O.B

0.6

y(k)
0.1

0.2

k=O 5

k

10 15

colc y(k)

52

Note: Calculated y(k) and
MBB761 resultant · y(k) plot
atop each other

20 25 30 35 k= 10

MB8761 y(k)

Figure 19. Impulse Response of Butterworth Filter.

COMPUTING THE DISCRETE FOURIER TRANSFORM
ON THE MB8764

Introduction

The discrete Fourier transform CDFT) can be repre~

sented by the equation:

N-1
X (k) = ~ x (n) Ur/·" , k =O, 1 , 2, ... N-1

n=O

The DFT can be co~puted directly from the equation atov~

or can be computed using the fast Fourier transform CFFT)

algorithm. Implementing a DFT with an FFT algorithm greatly

reduces calculations necessary to perform the DFT. This

reduction, from approximately N2 complex multiplication and

adds~ to Niog 2~ complex multiplications and adds, enables a

computer to perform the transform in much less time.- The

MB8764 which offers a 0.1 µsec rnu~tiply and add is a good

candidate for perfor~ing real time DFTs. This chapter will

· briefly discuss how the MB8764 can be used to perform the

DFT directly and via the FFT algorithm.
,.>

Imolementin~ the DFT

A program which performs the primary computation loop

of a 64-point DFT of complex inputs is shown in Figure 20.

Inputs are assumed to be stored in BRAM. The first loop for

k=O in . the DFT equation is a just summation of the· ~omplex

~nputs because the transform coefficients equal one. The

53

'I

54

remaining loops use complex coefficients which are stored in

table ROM. ' The program can be expanded to perform up to a

512-point DFT but requires input data to be stored in ERAM

. and additional lines of code to page through the table ROM

and RAM. The limit of 512 complex points is set by the

ERAM expansion .limit of 1024 words. Paging of the ROM

is a very complex operation because of the order in which

the transform coefficients are accessed in the DFT equation.

Performing the FFT

The FFT algorithm is developed from the DFT by

decomposing the DFT of N samples into N/2 DFTs of two

samples each. In the process of decomposition, the symmetry

and the periodicity of the DFT is taken advantage of in

order to reduce the number of calculations necessary to

compute the DFT. The required calculations are sometimes

referred to as butterfly computatio~s. · The equations that

must be implemented by each butterfly are:

Xm+l(p) = Xm(p) + cwrN)(Xm(q))

.. JXm+ 1 (p) = Xm (p) (wr N) (Xm.< q))

Where r i .s determined by the location of the butterfly and

wr = e-j(2 11 /N}r = cos(21f./N)r - jsin(2n/N)r .. Given the
N

number of sample points N, values . for cos(2'11/N)r and

sin(2n/N)r r=O to N/2 can be solved for a stored in ROM .

as a table for use by the program (see reference 8).

55

A program to imple~ent the FFT algorithm would consist

of the following sections:

1) ryata innut. Data is in~ut into the MB8764 after

being reverse bit shuffled.

2) Calculation. Calculating the results would

require calucation of (~/2)xlog 2N butterflies · a

routine for the calculation of a butterfly is

shown in Figure 21. Twenty-six machine cycles

are necessary to execute the butterfly routine.

Additional machine cycles are required for loon

commands and indexing. The total number of mac

hine cycles for the calculation of a 64- or

128-noint FFT is approximately 30 x(M/2)xlog2~.

3) Data output. The inplace FFT algorithm would

nrovide results to the same re~isters as the inputs

were received. Outnut in A+iB form would require

no additio~al cycles because it can be nerformed

in the calculation loop. If output is desired in

another form additional ~rogram steps may be

required.

Paging is not necessary if the tiumber of registers in table

ROM is less than 128. - Thus for more than a 128-point FFT

the designer must devise a method to perform the table ROM

paging. The 1024 word limit on ERAM expansion allows the

MB8764 to compute u~ to a 512-point FFT. A 64-noint FFT can

56

be computed with no need for external expansion. For more

than 64 noints external expansion is required.

Summary

The MB8764 will· perform both the DFT and the FFT

algorithm very efficiently for 64 noints and requires no

external expansion. The DFT is not easily expanded up to

the 512 points because it accesses the Table RO~ in a

complex manner. For the 512-point DFT external expansion of

~OM to 2048 words is required. The FFT may also be

expanded to 512 points and requires no external ROM, but

will require some additional programming steps to provide

RAM and ~0:!-1 paging. With a 0.1 µsec instruction cycle

a 64-point DFT can be performed in less than 9.0 msec

and a 64-noint FFT can be computed in less than

600 vsec.

57

-----THIS CALCULATES FOR THE SECOHD THROUGH H-1 LOOP---
-----IHITIALIZE---- $03s1,~et PGT, $00•0,$01•0
MOU:HOP •$3F,CO *loop counter fork initialized

L2 MOU:NOP C0,$01 *k=l to N-1 loop;CO(k) saved
MOU:NOP •$40,CO *loop counter for n initialized

L 1 L T Ei : H 0 P $ 0 0 (X) , $ 0 0 ('r') * n = 0 t o H- 1 I o op

MOU:HOP $00,0
LTB:MSM $01(X),$00(Y)
MOU: NOP $00 ('r') .• Ei

NOP:MRD

MOU:MLT D,$00
LTB:NOP $00(X),$01(Y)
MOU:HOP $01,A
HOP: r1sn
HOP: SUT1
MOU:NOP D,$01

MOU:HOP X,A
r10l.J: NOP $03, fi
MXY:ADO •$00,~$01
MOU:NOP D,X
JCO:HOP Ll
MOU:HOP $00,EO
CLH:NOP Y
LO I : NOP •$0002

MOU:ADD $04,CO
MOU:HOP D,$03
MOU:NOP $03,X
MOLJ:NOP $01,EO
LD I : HOP •$0000
MOU:HOP A,$00
MOU.: NOP A I $01
JCO:NOP L2

*: This sect i cm

* calculates the
* real and imaginary subtotals
* and put~;

* real result in address $00
* imaginary result in $01

*
lt:

*----------------------------
•:Updates the
lt: f: and Y i nde:x:

*registers for each new n

*----------------------------
*jump to Ll 63 times then continue
*output real part X(k)
*clear Y
*Ccrmput e new
*va I ue for·
•:x index

* ~----~~~~~~~----
*output imaginary part X(k)
* i n i t i a I i z i ng
*addre~~ $00 and
*address $01

*loop back to L2 for 62 ti•es

Figure 20. 6~-Point DFT Program.

L1 MOU:tiOP Y,$04
LTB:HOP $00(X),$00(Y)
LTB:HOP $01(X),$01(Y)
LT6:MLT $00(X),$01(Y)
LTB:MRD $01{X),$00(Y)
MOU:MLT D,$00:A
MOU:MSM $05,Y
MOU:NOP 0,$01
MOU:NOP $00(Y),B
nx~·: ADD •$00,•$02
MOIJ:SUB 0,$7E(Y)
MOLl:NOP D,$02
MOU:NOP $01,A
MOU:NOP $01, 6
MOU: ADD Y,$05
MOU:SUB 0,$7F(\')

MOU:NOP D,$03
MOU:HOP $04,Y
MAB:NOP $02,$00(Y)
MAB:NOP $03,$01(Y)

58

* store Y index
*calculate real and i•ag.

*
*ports of Xm(q) x uHr

*
*real part to ARAM and A
*change y index
* i n1ag_t1ar·t to ARAr-1
*real part Xm(p) to B
*incrementing $05 Y inde x
*real part Xm+l(p) to BRAM
*real part Xm+l(q) to ARAM
*i~ag part Xm(q) x uNr to A
*imag part Xm(p) to E

*
*imog part Xrn+l(p) to BRAM
*imag part Xrn+l(q) to ARAM
•change bock Y index
*real port Xm+l(q) to BRAM
*imog part Xm+l(q) to BRAM

*IHDEXING AHO LOOP COMMAHDS

Figure 21. FFT Butterfly Routine for 6~-point FFT.

COUCLUSIONS

The Fujitsu MB8764 digital signal nrocessor was found

to be a powerful processor canable of perform~ng very fast

multiply and sum routines. This sneed enables it to

solve a second-order binomial equation in 1.6 µsec, a

64-point FFT in .6 µsec, and a 64-?oint DFT in 9.0 msec.

An eighth-order digital IIR filter irnnlemented in a

parallel form can operate with a sample rate of 149.25

KHZ. The weakness in the Fu4itsu chip lies in its

internal precision. With only 16 bits internal ?recision,

sample rates greater than five times ""Che maximum signal

frequency may be too great for the internal precision

of the Fuiitsu. Increasing the chips internal precision

to 24 bits is possible by usin~ two worqs for internal

data transfer and coefficient storage, and by shiftin~

the D re~ister so that the lower-order bits can be trans

ferred out. This procedure is cumbersome and would slow

down processing by at least a factor of ten. Double

precision operations are not possible because the D

register carries only 26 bits.

The MB8764 allows for external expansion of ROM and

RAM. When ERAM is used either the instruction cycle must

be 1.25 ~sec or less, or the ERAM speed switching O?tion

must be utilized. This option, selected by an external

59

60

pin, allows ERAM to be accessed at half the rate of the

instruction cycle. A DFT, FFT or digital filter program

which uses ERAM will run faster with the 1.25 µsec machine

cycle than with a 0.1 µsec instruction cycle and the

ERAM show speed option selected. RAM and ROM are divided

into pages with the RAM having 256 words per page. This

paging causes problems in any program that works with more

than a page of data or coefficients. DFT calculations for

more than 64 points, although possible on the MB8764, are

difficult to program and slow to operate because of this

paging oroblem.

The input/output features on the MB8764 can be u~ed

to govern the sample rate of a digital filter. This is

done by using a jump instruction that prevents program

execution from continuing until an input is received. The

address attached input mode allows specific coefficients

of a digital filter to be changed during program execution.

Thus a designer can produce a digital filter that reacts

to various parameters and compensates its transfer function

to accommodate the parameter changes.

Instructions are designed to take advantage of the

separate sides of RAM and their indexes. This makes

programming on the MB876·q·, .. ·most · efficient when ARAM and BRAM
~

). or table ROM and BRAM can be used independently. When . this

sepal;'ation cannot be used . by an application the M;B8764

becomes awkward __ in its internal ·data transfer. Thus the

61

MB8764 is not a general purpose microorocessor but is

snecificallv designed for digital signal processing or

similar arithmetic o~erations.

The MB8764 helps to orevent overflow in preliminary

onerations from occuring by providing two bits to the left

of the decimal point in the D re~ister. The data format

in the input/output and storage registers allows for one

bit to the left of the decimal point. If inout signals

are restricted to +/- one, scaling of the inout signal

is unnecessary.

Snecifications of the MB8764 claim it can implerne~t

a second-order filter in 0.7 µsec. It should be noted

that the second-order filter to which this s~ecification

applies is a second-order FIR filter.

~EFERENCES

1. MB8764 Pro~ramrning Manual. Tokyo, Japan: Fujitsu
Limited.

2. MB8764 Hardware Manual. Tokyo, Japan: Fujitsu
Limited.

3. Booth, Andrew D. "A Signal Binary Multiplication
Technique," Quarterly J. Mechanical Application
Math., Vol. 4, pn. 236-240. Reprinted by Earl
E. Swartzkander, Jr., ed. Benchmark Paners in
Engineerin~ and Computer Science/21 Computer
Arithmetic. Stroudsburg, Pennsylvania: Dowden,
Hutchinson and Ross, 1980.

4. Canright, Robert Eldon, Jr. "Digital Filtering
with the iAPX 86/20." Research Paner, University
of Central Florida, 1983.

5. Phillips, Charles L., and Nagle, H. Troy, Jr. Digital
Control System Analysis and ·nesign. Englewood Cliffs,
New Jersey: Prentice-Hall, 1984.

6. ~B87902 The Fuiitsu MB8764 Sunport Tool Outline.
Tokyo, Japan: Fujitsu Limited.

7. MR87902 Software Develonment Tool Kit for MB8764
Digital Signal Processor Detailed Description.
Tokyo, Japan: Fujitsu Limited, 1984.

8. Onnenheim, Alan V., and Schafer, Ronald W. Di~ital
Si~nal Processing. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1975.

62

	Digital Signal Processing Capabilities of the Fujitsu MB8764
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENTS
	iii

	TABLE OF CONTENTS
	iv

	INTRODUCTION
	01
	02

	DESCRIPTION OF THE MB8764
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17

	DESIGNING A DIGITAL FILTER ON THE MB8764
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42

	THE MB8764 DEVELOPMENT SYSTEM
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52

	COMPUTING THE DISCRETE FOURIER TRANSFORM ON THE MB8764
	53
	54
	55
	56
	57
	58

	CONCLUSIONS
	59
	60
	61

	REFERENCES
	62

