
University of Central Florida University of Central Florida 

STARS STARS 

Retrospective Theses and Dissertations 

1985 

Digital Signal Processing Capabilities of the Fujitsu MB8764 Digital Signal Processing Capabilities of the Fujitsu MB8764 

Harold B. Creech 
University of Central Florida 

 Part of the Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/rtd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, 

please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Creech, Harold B., "Digital Signal Processing Capabilities of the Fujitsu MB8764" (1985). Retrospective 
Theses and Dissertations. 4809. 
https://stars.library.ucf.edu/rtd/4809 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F4809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4809?utm_source=stars.library.ucf.edu%2Frtd%2F4809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


DIGITAL SIGNAL PRcx:ESSilJG CAPABILITIES 
OF THE FUJITSU MB8764 

BY 

HARALD BEAADALL CREECH 
B.S.E.E., United States Coast Guard Academy, 1977 

RESEARCH REPORT 

Subnitted in partial fulfillment of the requirements 
for the degree of Master of Science in Engineering 

in the Graduate Studies Program of the College of Engineering 
University of Central Florida 

Orlando, Florida 

Sumner Tenn 
1985 



ABSTRACT 

The Fujitsu MB8764 digital signal processing chip is designed 

to operate with a machine cycle of up to 10 MHz. The chip's ability 

to perform a 16-by-16 bit multiply and add operation in one 

machine cycle makes it a good candidate for real time digital signal 

processing. Unlike the Intel 2920 the Fujitsu MB8764 does not have 

an onboard analog-to-digital, digital-to-analog converter. There

fore, this paper will be restricted to the operation of this 

devire with digital data input and output. 

The use of the MB8764 as a digital filter is analyzed. 

Perfonnance limitations due to finite word length, memory size 

and configuration, and clock rate are considered. The MB8764 

capabilities in computing fast Fourier transforms are discussed. 

Developnent of a working digital filter with the MB8764 work 

station is presented. 
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INTRODUCTION 

Many microprocessors are available today that are specifically 

designed for digital signal processing. The Fujitsu MB8764 is one of 

the newest digital signal processing chips on the market, and has 

incorporated recent advances in VLSI teclmology into its design. 

Two widely used . chips that may be compared with the Fujitsu MB8764 

are the Intel 2920 and the TMS 320. 

A comparison between the Intel 2920. and the Fujitsu MB8764 

shows the MB8764 to be a much faster chip with a more extensive 

instruction set. The Intel 2920 offers 24-bit internal precision 

which is much better than the .16-bit precision offered by the 

MB8764. The Intel 2920 also offers an .onboard AOC and DAC for 

analog input and outputo The MB8764 accepts digital input output 

only. Internal RAM and program ROM are much larger in the MB8764 

and orily the MB8764 permits the external expansion of them. 

'l:he TMS 320 is a much closer match to the ~B8764 than the Intel 

2920. The MB8764 is once again the faster machine with a 0.1 µsec 

instruction cycle compared to the TMS 320's 0.2 µsec instruction 

cycle. Specifications fran the manufacturers show the TMS320 and 

MB8764 implementing a second order filter in 2. 2 µsec and 0. 7 µsec 

respectively. Both the TMS 320 and the MB876'+ use an assembly 

language level instruction set and neither accepts analog inputs. 

Internal ~ccuracy of the TMS 320 is 16 bits but its design makes it 

· ~ssible to :implement. double-p:rBcision oper_9..tionso The design of 
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the MB8764 makes it :inp:ra.ctical to implement double precision. The 

MB8764 offers more than twice as much internal RAM as the TMS 320 

but only two-thirds the internal instruction RCM. 

The MB8764 can be favorably compared to both of these widely 

distributed chips. It excels in the area of execution speed but is 

deficient in its internal accuracy. 



DESCRIPrICN OF THE MB8764 

Introduction 

The Fujitsu MB8764 digital signal processing chip is a VLSI, 

Cl10S design optimized to provide high-speed prucessing with flexible 

memory operation and input/output operation. Internal and external 

buses provide 16-bit data transfer, and the ALU provides a 26-bit 

result to the accumulator. The instruction list provides the chip 

user with a variety of :instructions, rrost of which are specifically 

designed to simplify the irnplerrentation of digital signal processing 

flll1ctions. Internal rnerrory provides for a program RCM of 1024-by-24 

bits, and RAM storage of 256-by-16 bits. Both RCl1 and RAM are 

expandable externally. These features are all provided on an 88-pin 

chip less than 31 mn squareo Th.is chapter will describe the basic 

operation of the blocks that make up the MB8764. Figure 1 is a 

block diagram of the MB 8764. The material in this section cones 

fran references (1) and (2). 

Registers on the chip can be divided into four groups: data 

registers, cmmter registers, index/ address registers, and flags 

(see Figure 2). The functions of these registers will be explained 

in the follc:Ming sections. 

3 
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1. Data registers 

2. 

A ~T1111111111111P1 

B /j I I I I .1 I I I I I I I I p I 
operation input registers 

0 fy I I I I I I I I I I I I I I I I I I I I I I I P I a cc um u I at or 

El ~Y1111111111111P1 external input register 

EO ~Y1111111111111P1 external output register 

Control registers 

PC g p 
t I I I I I I I I : I program counter 

PCS g p 
I I I I I I I I I : I program counter stack 

co jl c I I I I I II I loop counters 
Cl to-Pi 
X f 1 I I I I P, 

XS f I I I I I P, 

Y t1 I I I I I P, 
YS t 1 I I J J I p I 

index f"'egisters 
and their stocks 

one 
PGM 

PGT 

UP 

u 

jl I I I I I I p I OMA counter 

tfJ 
tr:fJ 

r c I I I I 

ERAn page register 

ROM page register 

vif"'tuol shift pointer 

unit address register 

EIA~Y I J 11111111111 P1 external input address register 

EA ~I I I I I I I I I I I I I rfi ext erno I address register 

1/0 flags 
FD-input flag 0 
F 1 - input f I ag 1 
IF-EI f I ag 
OF -EO f I ag 
DMM-DMA mode 
ROM-address •ode 

ALU f lggs 

PL-D positive 
MI - D neg at i ve 
ZR- D zero 
OU- D overf I ow 
CLP~ c I i pp i ng mode 

Figure 2. MB8764 Registers. 

Other flogs 
UP-vitual pointer 

mode 
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Clock Generator 

The clock generator requires an external clock source or a 

crystal oscillator of 20 MHz or less for its input, and outputs a 

50% duty clock source at one-half the input clock frequency. The 

output is used to time all internal operations; one internal clock 

cycle equals one instruction cycle. The majority of instructions 

require one instruction cycle to operate , or 0 • 1 µ sec when using a 

20 MHz external clock. 

Arithmetic and ·lbgic Block 

The aritrunetic and logic block accepts input into registers A, 

B, and D. Instructions in the MB8764 are classified as: 

1) Arithmetic or logic instruction, and 

2) Control instructions. 

Arithrretic and logic instructions are executed in the arithmetic and 

logic block by the AllJ with the exception of multiplication 

instructions. All arithmetic and logic instructions can be executed 

together with a control instruction; this type instruction is called 

a compolllld instruction. A comPJund instruction that does not 

include a multiplication instruction performs: 1) the control 

instruction specifiec;l, and 2) the arithmetic and logic instruction 

based on the register contents as of the previous instruction cycle. 

An example is shcw.n below. (Asswne B register has $0002 in it.) 

Step 1 LDI :NOP #$0001 Put $000+ into the A. No math operation. 

Step 2 lDI:ADD #$0005 Put $0005 into A. Add $0001 to $0002. 
· The D register contains $0003 in step · 3. 
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The rrn.lltiplication of the contents of register A by register B 

is performed during each instruction cycle, regardless of the 

instruction. A multiplier circuit separate fran the AUJ and using 

Booth's second-order algorithm performs the multiplication. Booth's 

algorithm is a simple and direct method for multiplication of signed 

binary m.unbers ( 3) • The intermediate results of regfster A 

multiplied by register B are stored in temporary storage registers 

TRO and TRl. When a rrn.lltiplication instruction is given, the AllJ 

completes the multiplication by adding TRO and TRl. The results of 

JID.lltiplying two 16-bit registers wa.ild ideally result in a 32-bit 

number. The ALU provides a 26-bit result to the D register by 

rounding the addition of the two 27-bit registers TRO and TRl and 

deleting bit 25. 

Inputs 
t 0 D'IU r t i p I i er 

Mu It i p Ii er 
outputs 

A 

x B 

TFiO 

TF: 1 

15 0 
I I 11 I I I I I I I I I I I I I 
15 0 
I I I I I I I I I I I I I I I I I 

2e o 
I I I I I I I I I I I I I I I I I I I I I I I I I I I 
~ . 0 
I I I I I I I I I I I I I I I I I I I I I I I I I I I 

ALU 
TRO+TRl 

27 0 

I I I I I I I Ir~~~~ il~gl I I I I I I I I : I ~I 
operations 

ALU resu I ts 

i~r:Q: : : ; : ; : : : : : : : : : : : : ~~:i: Transfer· to D 

Fi~ 3. Multiplication. 
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r The round-off causes an error less than plus or minus 2-24. It 

is necessary to delete bit 25 of the AW result to obtain the 

correct two's canplirrent number. An error results only in the case 

of -2 x -2 where. zero is input into the D register; the overflow 

flag OV is set to show that an overflCM has occurred. A compound 

instruction that involves a multiplication instruction performs: 

1) The C'Ontrol :instruction specified, and 

2) The rrultiplication based ·on the register contents two 

instruction cycles befor~. 

An example is shown belcw. 

Step l, IAB:NOP $01,$02 Data is moved from ARAM to A and BRAM 

to B. 

Step 2 lAB:NOP $02,$03 New data is rroved into A and B. Step 

1 data enters the multiplier circuit. 

Step 3 lAB:MUL $03,$04 New data is moved into A and B. Step 

1 data multiplication is completed. 

In step 4 the register will contain <Astep 1) x (Bstep 1). 

Division operations in the MB8764 are carried out in the ALU 

without the help of a specialized circuit. It requires 17 machine 
··' 

cycles to perform division. All other operations performed .in the 

·AUJ require one machine cycle. 

AI1J operations are fixed po.int with the A and B registers 

having a range from -2 to 1.999938965, and the D register having a 

range of -4 to 3.999999881. Passing data fn::>m the 26-bit D register 

,. to the 16-bit internal bus is done as shown in Figure 4. 
·I 
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Figure 4. D Register to Internal Bus Transfer. 

If bit location 24 in the D register is not zero an error of +/- 2 

occurs , arrl the OV flag is set. The CLP flag, when set, minimizes 

the error by forcing data transferred to the internal bus to binary 

0111111111111111 in the case of a positive overflav, and to 

1000000000000000 in the case of a negative overflav. 

Sequence Control Block 

The sequence control block controls the execution of the 

program code for the MB8764. Execution is carried out in a pipeline 

style as shCMn in Figure 5, a timing diagram of a typical 

instruction. In the first Jn3.chine cycle, step one, an instruction 

fran program ROM is placed into the IRO (Instruction Register zen:>). 

During step two preljmjnary operations are perf orned based on the 

instruction in IRO. In step three IRl (Instruction Register one) 

receives the IRO contents, and signals are passed to complete the 

operation based on the IRl contents. When step four begins the 

instruction has o:>mpleted execution, and results are in place. The 

steps just outlined are stepped through by a cotmt of the internal 

clock with interruptions made as necessary for pn::>per program 

execution. 

A 10-bit PC (Program C.Ounter) :register addresses the program . 

ROM thra.lgh the DPR CROM Pointer Register). The program CQll'lter is 

reset and held at zero when a pulse is sent an the hardware reset 
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Instruction seQuence 

n-2 LAB:NOP $0,$0 
n-1 LAB:NOP $1 '$1 
n LAB:MLT $2,$2 
n+1 LAB:MSM $3,$3 

Timing diagram of instruction seQuence 

Internal clock 

IROM pointern-2 X n-1 X n X n+l X n+2 X n+J X n+4' >C 
IRO------- X n-2 X n-1 X n X n+l X n+2 X n+3 >C 
I A 1 ------------- X n-2 X n-1 X n X n+ 1 X n+2 >C 

MLT MSM 
A,B register contents X n-2 X n-1 X n X n+l >C 

so,So $1,$1 $2,$2 $3,$3 
TAO, TR1 output from multiplier X n-2 X n-1 X n }[ 

SOxSO $\ x$\ $2,$2 
D register X n X n+l >C 

$Ox$0 Sl x$1 

Figure 5. Timing Diagram. 
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pin RST. Program execution begins with the first clock µUse after 

the RSI' pulse is :removed; with each internal clock period the 

program counter is incremented by one, unless interrupted. 

Interruptions to the program counter incr'effienting occur when a 

multicycle instruction is being executed. A cycle counter within 

the sequence control block determines the proper interruption 

length. . Interruptions in the PC also occur when input/output 

operations arB performed during program operations that use the 

external data bus or associated registerso 

Program execution can be rranipulated by changing the PC 

register value. The follcwing instructions ~ used to contn:>l 

program execution through PC register executiono 

1) Jump, and jump on condition instructions replace the PC 

contents with the address of the instruction to jump too 

2) Jump to subroutine instructions load the first a:idress of 

the subroutine into the PC register and save the current PC 

value in the PCS . (Program Counter Stack Register). 

3) Return fran subroutine instructions return the value stored 

in the PCS register to the PC register and increment PC. 

Nesting of subroutines is not possible using the JSR 

instruction, because there is only one stack register. Jump 

mstructions can be used for the same end. PC contents can be saved 

in RAM at the tine of a jump, mc~ted by one and recalled by 

another jump mstruction at the end of the subroutine. 
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Two loop counters, Cl (eight bits) and C2 (four bits) are 

located within the sequence control block. They are deCT'erneI1ted by 

one with each pass through the loop and are used with a JOC 

instruction to control prugram execution. 

Program instructions may be obtained from EROM or IRON, with 

the status of the IRM pin determining the selection. A switch 

between internal ROM and external ROM can only be carried out when 

the hardware reset signal is on, thus IROM and EROM carmot be used 

in the same program. IRCM is a 1024-by-24 bits ROM, ERCl'1 is 

expa.rrlable to 4096-by-24 bits with bank switching. IROM is a mask 

ROM programmed to the designer's specification by Fujitsu. 

External ROM is not required to be a mask ROM but can be an EPRCM, 

allowing for field production of a design. 

ROM can be used to store data in any location wtihin the ROM 

except location zero. This location must hold an instruction 

because the PC accesses it after every RST pulse. RCM data is 

limited to 16-bit words because only the 16 least significant digits 

of the 24-bit RCM word ar'e read. The 8 high order bits are set to 

one. The ROM address is specified by a 10-bit input into the DPR 

fran the address calculation block. 

Decoder Block 

Instructions IRO and IRl introduced in the previous section are 

the inputs to the decoder block. . With each increnent of the program 

oounter, na.v data is passed fran these registers to the look ahead 

carry and decode registers respectively. When an instruction code 
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is loaded into the look ahead decoder Cl.AD) interpretation of the 

code begins. The nunber of cycles necessary to complete the 

instruction is decoded, .t\LU operations are interpreted , and 

effective addresses a:re calculated. With the next clock pulse the 

instruction rode noves on to the decode (DEC) register. The 

instruction is further decoded and then executed. The time 

necessary to romplete the instruction execution in this step 

determines the number of clock cycles necessary to execute the 

instruction. 

RAM 

Internal RAM (IRPM) is divided into two equal parts of 

128-by-16 bits. ARAM is located in the first 128 addresses, BRAM in 

the last 12 8. These RAM areas can be operated independently of one 

another or as a single unit calle:i IR.AM. External RAM (ERAM) of 

1024-by-16 bits may be accessed from the chip. The ER.AM is 

cxmsidered as either an extension of BRAM or IRAM. .Address 

selection is rrade through the address calculation block, and memory 

data is passed directly to the A register, B register, or IBUS. 

Address Calculation Block 

The many nodes of merrory access pennitted by the control 

conmands are supported by the address calculation block. The two 

independent aI"eaS in M1 are accessed by two independent address 

indexing sections; this architecture can be seen in Figure 1. 

Register X and its stack XS are used for indexing ARAM only. 

Indexing calculut:ions are made in the 7-bit adder ADl, and the 



<,, 

14 

result is passed to the ARAM pointer DPA. Register Y ?Jld its stack 

YS, both 8-bi t registers, are used for indexing BRAM or IRAM. AD2 

is used for indexing calculations, and the result is passed to the 

BRAM-IRPM pointer .DPBo The calculation of ERAM addresses follc:Ms 

that of .the BRAM addresses except for the final result, which is 

passed to the ERAM pointer DPE o Two higher-order bi ts of the ERAM 

addresses are provided by a page register PGM. 

The virtual shift m:xie is an optional indexing mode which may 

be specified at any time within a program. In this node only the 

four lc:M-order bits of the Y register are used in indexing an 

address. In the computation of the effective address no carry is 

made to the fifth bit. This mode provides a 16-bit loop index at a 

desired location in IRAM or ERAM. 

The address calculation block provides the ROM pointer DPR wi~h 

the address of ROM constant data. The table address register TBA, which 

can be indexed by the X register, provides the seven low-order bits 

to DPR. The table page register FBT provides .the three most significant 

·bits to the DPR. 

Input/Output Irtterf ace 

Data being input to or output from the MB8764 passes through 

the chip's input/output interface. The interface allc:Ms the 

selection of three different input modes ·and two different output 

modes. Im input/output controller operating independently of 

internal ·progparn execution regulates the flc:M of data. Eight . 

hardware pins, follr" input and follr" output, . connect the controller 
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.with external circuits. Four internal flags also provide an input 

to the controller. Two of these internal flags, the IM1 and AIM, 

determine the input mxle. These flags can be set or cleared by 

program control. The three input modes are: 

1) The program read mode, or P mode, DMM=O, AIM=O, . 

2) The non-address-attached direct memory access (IMA) read 

mode, or D mode, rMM=l, All1=0, 

3) The address-attached IMA read mode, A mode, IMM=l, ADM=l. 

The program read mode allcws data to be read fran an external 

circuit to the El register. There the data rray be manipulated by 

the DSP as needed. The non-direct-attached Il1A read node performs 

the same function as the program read node but in addition 

autanatically transfers the data to the internal RAM address 

indicated by the DMC register. In the address-attache::i IMA read 

mode an address is transferred to the EIA register along with the 

data going to the EI register. The address passed is the address 

used for storing the data in IRAM. 

In all :input modes three pins, the AIF, RCK, and ACT pins, 

control the transfer of information into the MB8764. The Ail' pin 

signals to the controller that the external device is ready to pass 

information to the MB8764. A zero level on the ACT pin signals that 

the MB8764 is ready to aC'Cept information. The RCK pin provides the 

write clock for the information transfer. 

The two output modes are selected by the value that is entered 

into the fifth nost significant bit of the EA register. If the bit 

equals zero, the E mode is selected; if one, the I node is selected. 
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The 1 E mode uses an external signal to clock the signal into the 

external circuit. The I mode provides a clock signal fran the WCK 

pin to the external circuit. The output precess is begun with a 

request to output . fr.om the REQ pin. The external circuit prcvides 

its response to the request to send data to the BCT pin. 

Info:rnation transfer is clocked as discussed earlier. Address 

information and/or data can be passed to the external circ.uit. In 

the I mode, the .AOF pin contrcls the type of data sent. In the E 

mode, the ASL pin is used to prcvide the same function. 

I / 

Sl1II1IlfilY 

The Fujitsu MB8764 performs basic arithmetic functions, with 

the exception of division, at a very high rate. Its speed in 

processing arithmetic functions is due to: 

1) An instruction cycle of O~l µsec (with 20 MHz clock), 

2) A parallel pipeline structure with · a multiplier circuit 

separate frcm the ALU, 

3) kl ability to execute compound staterrents. 

Claims to a 0.1 µ se0 nultiplication operation may be misunderstcod. 

Actual,.;t:ime from input of the multiplicands into the A and B 

registers to the result being placed into the D register is 0. 2 µ sec. 

But, due to the pipeline structtwe, multiplication operations can be 

carried out one directly after another giving rise to the 0.1 µsec 

multiply claim. The ALU prcvides a 26-bit result into the D 
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register but only 16 bits of this result are easily accessed; thus, 

tmder normal operations, the internal accuracy of the chip is 

limited to 16 bits. 

External expansion capabilities of the ROM allav the user to 

develop his CMn working device without having Fujitsu create an 

internal mask ROM. A limitation when expanding ROM eXternally is 

that the chip is unable to access from internal and external ROM in 

the same program. 

Data transfer within RPM, although adequate, could be made rrore 

flexible by allCNJing MOV instructions to specifically address ARAM 

and BAAM rather than IMM as a whole. 

Input/output operations allow a variety of modes to the user 

and require just a few lines of code to implement, thus they do not 

slow down program execution appreciably. 



DESIGNING A DIGITAL FII..IT'ER 
ON THE MB8764 

IntrDduction 

Digital filters provide advantages over analog filters in sane 

applications. They provide the designer with a rrDre reliable and 

mon= flexible filter, that is reproducible to exact specifications. 

Two characteristics of digital devices limit the implerrentation of 

digital filters, finite processing speed and finite word length. A 

digital device must OJ:>erate on discrete data at a finite rate of 

speed. For adequate perforrrance input data is limited to 

frequencies of less than one-fifth the sample rate of the device. 

Finite word length limits the poles arrl zeroes of the filter to a 

finite number of points. This becomes critical in cases of high 

sample frequency to maximum signal frequency ratios. 

Just as analog filter designers must consider the arrangement 

of discrete components, digital filter designers rrn.ist consider the 

digital filter structure. The structure of a digital filter affects 

its speed of operation, its sensitivity to finite word length, and 

its ease of implementation. A rule of thumb that should be applied 

to all IIR (Infinite Inpulse Response) digital filter structures is 

to implement the filter in sections no greater than serond-oroer. 

This reduces the sensitivity the. device has to errors in the filter 

coefficients. A cascade or parallel co:rril:>ination ·of these second 

order sections is rrost often used by designers. 

18 
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t Nl.Uilerous structures are available to implement second order 

sections. The direct structures are most frequently used because of 

their simplicity and speed. This chapter will show the capabilities 

of the MB8764 to .implement digital filters designed as cascades or 

parallels of direct structured biquadratic sections. The advantages 

and disadvantages of the various designs as .implemented on the 

MB8764 will be discussed. 

Implementing a Biquadratic 

Four direct structures will be analyzed and judged on their 

ability to .implement a biquadratic section on the MB8764. The four 

structures are judged by the following points: 

1) Time delay between input and output, 

2) Length of program, and 

3) Memory spare required. 

Clock rate for the . MB8764 is assumed to be at its maximum, thus one 

instruction cycle equals 0 .1 µ sec. Each strl,lcture' s model, MB87 64 

,memory map, and computation loop program are shown in figures 6,7,8, 

and 9. 

The ID Structure 

The lD direct structure computes the output y(k) in tenns of an 

effective input m(k). Two equations define its operations: 

m(k) = x(k) - b1m(k-1) ~ b2m(k-2) 

~ y(k) = aom(k) + alm(k-1) + a2m(k-2) 
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The program for a ID structure requires 18 machine cycles or 

1.8 µsec to complete one loop. Input to output delay equals 1.0 

µsec. All locations in ARAM are used, with three occupied by active 

data. Seven locations in BRAM are used (see Figure 6). 

2D Structure 

The 2D structure first accepts the' input, then computes output 

using results from the previous cycle. The governing equations are: 

y(k) = aox(k) + p1 (k-l) 

P1(k) = a 1x(k) 

P2(k) = a 2x(k) 

b1y(k) + p2 (k-1) 

b2y(k) 

The program requires 17 machine cycles or 1. 9 µsec for computations 

between inputs. Output occurs 0.8 µsec after input. Two locations 

in ARl\M and seven locations in BRAM are used. ARAM is not cycled 

(see Figure 7). 

3D Structure 

In the 3D structure all possible calculations are performed 

· before the input is received. The governing eq~ation is: 

.,J 

The C'Omputation loop requires 1. 6 µ sec. The delay between input and 

output is 0. 8 µsec. Six locations in ARAM are active and cycled 

through . the whole ARAM. Six locations· lil BRAM are used 

(see Figure 8). 
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4D Structure 

The 4D structure is the transpose of the 3D structure. The 

governing equations are: 

r 0(k) = x(k) + r 1 (k-l) 

y(k) = aoro(k) + ql(k-1) 

q1(k) = a 1ro(k) + a 2r 0 (k-l) 

r 1 Ck) = -b1ro(k) - b 2r 0 (k-l) 

This is the slCMTest of the four structures, requiring 2. O µ sec for 

the program loop, and 1.1 µsec fran input to output. Six locations 

are rotated through AFAM, five locations are used in BRAM. 

Structure Ccmparisan Results 

The 3D structure offers the fastest processing time of the four 

structures and shares the shortest input to output delay with the 2D 

structure. The 2D structure uses the least memory locations and 

would be the best choice in applications where the designer does not 

want to cycle through ARAM. In each of the programs four 

instructions are required for input/ output and loop control. These 

four instructions require, as a minimum, six instruction cycles to 

be processed. A loop has been built into the input data 

instructions which causes the program to wait until new input data 

is received. The loop allows the speed at which data is input to 

control th: program sample rate, thus there is no need to control 

sample rate by inserting lines _of code. In the case where program 

length corresponds to the input data rate, the loop may be removed, 

allowing for a 0. 2 I.I sec faster program loop. Rerroving the loop will 

allow the same input to be acted on more than once if timing of the 



L1 

L2 

MODEL: 
•<k) 
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MEMORY MAP: 
'L ' 

-~,. ARAl1~ BRAM 
-· 

T 

) 

Code 
LAB:HOP $n1 'v··, $n1 ·1x···, - ~ .•, - ~ .... 
LREi: NOP $ w., f v ., $ n ) ( x ) 

-'-~ J} _._ I 

LAfi: f1L T $03('r'), $01 (X) 

L RE;: r1sr1 $n4 { •r $rr:;. Of1 - ) J - ... . ·' 

r1ou: ML T D,$FF 
NOP:MRD 
1..IOC: HOP L2, IF 
nou •$800,EA 
MOU;HOF' EI, A 
MOU: sur1 $00 ( y), A 

MOU:HOP O,B,$FE 
MBA:HOP $00(X),$FE 
MOU:NOP $FF,O 
n~:v: MSM •$7F,•$00 
MOU:HOP D,EO 
JMP:HOP L1 

(1(1 

01 
02 
03 

i \ 
m ( k) \ 

I'll"' 

ao 
i 1 
a~. 
~ 

t11 

b2 

00 
01 
02 
03 
04 

"4.J 7E 
7F r---r--17E 

GIUj?F 
NOTE: f1rr·c1u.1s depict mc•vement c•f var· i at• I e 

des: i gnat i or1 e:aus:ed by i r1dex i ng . 

Cc•mment s 
*a1 inter A; m(k-1) inter B 

*02 inter A; rri(k-2) intc1 fi 

*01 x m(k-l);-b1 to A;m(k-1) to Ei 
*(02 x m(k-2))+(01 x m(k-l));etc 
*et ore re~; rJ ! t o f · I o st i n ~; t r ; et c 
*(-b1 x rn(k-l))-(b2 x m(k-2)) 
*loop here unti I input received 
*~et output ~ode and 5equence 

*input to A 
*m(k) found; oo to A 
*m(k) to 6 and to BRAM 

* "' ( k ) t o A RAM 
*(02 x m(k-2))+(01 x m(k-1)) to 0 

*x=x-l;y=y;y(k) calculated 
*ouput y(k) 
*~tart loop again at L1 

Figure 6. ID Filter Structure Model and Program. 



Block diagram: 

Program: 
Code 

L 1 JOC : MOF' L 1 , IF 

MDU •$800 .. ER 

MOU: NOP EI , $00 

L A Ei : ti (IP $ 0 0 .• $ 0 0 
MOU: tiOP $FF, D 
LAB: MSt1 $00, $0 l 
MOU:NOP $0,E0,$01 
LAB: f1L T $01 , 03 
HOP 
MOU:MRD $FE,A 
LAB:SUM $00,$02 
MOIJ: tiOP D, $FF 
LAB:MLT $01,$04 
ti OP 
NDP:MAD 
MOU:NOP D,SFE 
JMP:tiOP Ll 
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Me11or·y aap: 
y<k) ARAM BRAM 

00 x(k) 00 00 
01 y(k) a, 01 

,.. "-' ,.. _, a ... ~ 02 
1FT I "' 

03 
04 

P2 (k) 7E 
P 1 ( k) 7F 

Comments 
*waits for inpLJt 

*sets output mode and sequence 
*;.:: ( k ) t C• AF: AM 
*x(k) to A, a0 to B 
*p 1(k-1) to D 
*calr y(k);x(k) to A;a 1 to B 
*y(k) to output and ARAM 
* y ( k ) t c1 fi ; b 1 ( k ) t ci Ei ; x ( k ) x a 1 

* 
*p?(k-1) to A 

~ 

*calc P1(k);x(k) to A;a2 to B 
* p 1 ( k ) t o BF: AM 
*y(k) to A;b2 to B;x(k) x 02 

* 
*calc P2(k) 
* P2(k) to BRAM 
*start · loop again at L1 

Figure 7. 2D Structure MOO.el and Program. 



Block Diagram: 

00 
01 
02 
03 
04 
05 

?E 
7F 
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Mea.ory Map: 
r·\ 

AF:AW \ 

x (k) 

x(k-1) 
x (k-2) 
~ ( k) 
~(k-1) 

.. , ~ ) 
~ \. ~.-l . 

\ 
•, 

\ 
) 

,., .J 

BRAM 

a(t 

a, 
a'"> 
"' 

bl 

t•2 

00 
01 
02 
03 
04 

,.,,.J 

NOTE: Arrows depict movement of variable 
de::: i gno +. ion caused b1:1 i nde>=: i ng . 

Program: 

Ll 

L2 

Code 
LAB:NOP $01(X),$01 
LAB:HOP $02(X),$02 
LAB:MLT $01(X),$03 
LRB:MSM $05(X),$04 
LO I : MRD •$0000 

'"I IF : MF:D L2 
MOU •$800,ER 
MOU:NOP El, 6:$FF 
MOU:HOP $80,A 
MXY:HOP •$7F,•$00 
MBA:MSM $0l(X),$FF 
MOU:NOP D,E0:$FF 
MBA:HOP $01(X),$FF 
JMP L1 

Comment~; 

*x(k-1) to A;a1 to B 
*x(k-2) to A·a? to B 

J '" 

*y(k-1) to A;b1 to Bjx(k-1) x al 

*y(k-2) to R;b2 to B;cont calc of y(k) 
*y(k) colc made indep of 1 of L2 loops 
*waits for input;conl calc of y(k) 

*sets output mode and sequence 
*x(k) to B and BRAM 
*ao to A 
*shift x index back 
*x(k) from BRAM to ARAM;calc y(k) 

*y(k) to output and BRAM 
*y{k) from BRAM to ARAM 
*start loop again at L1 

Figure 8. 3D Structure and Program. 



Mode I: 
ro(k) 

Program: 
Code 

L 1 JOC: tiOP L I .• IF 
MOU: •$600,EA 
MOU: MOP E I , A 

MOU:NOP $FF,B 
NOP:ADD 
MOU: tiOP [I, fi, $FE 

MOU: tiOP $80, A 

MOU:tiOP $FD,O 
MBA:MSM $00(X),$FE 
MOU:tiOP D,EO 
LAB:MSM $00(X),$03 
LAB:NOP $01(X),$01 
LAB:MLT SOO(X),$01 
LAB:MRD $01(X),$02 
MOU:MLT D,$FF 
nXY:nsn •$FF,•$OO 
MOU:tiOP D,SFD 
JMP:HOP L1 

Figun: 9. 
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Me11ory •ap: 
ARAr1 BRAM 

00 ro ( k) 
01 r·o ( k-1) 

"_, 

Coninrent ~; 
*wait for input 

Q 1 ( k) 
ro ( k) 
r 1(k) 

" 
7[1 

7E 
7F 

*sets output mode and sequence 
*x(k) to A 

* r 1 ( k - 1 ) t c1 fi 

*colc ro(k) 
*ro(k) to B and BRAM 
*ao to A 
*q 1 ( k-1 ) to D 
*colc y{k) 

*output y(k) 

*ro(k) to A;-b1 to B 
*ro(k-1) to A; b2 to B 
*ro{k) to A;a1 to 6;-b1 x ro(k) 
*ro(k-1) to A; 02 to B:calc r1(k) 
*r1{k) to BRAM;o1 x ro(k) 
*calc Q1(k);shlft x Index back 
*ql (k) to BP.AM 
*start loop again at L1 

4D Structure Model and Program. 
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external input is slower than the program loop execution rate. The 

use of an input loop cannot prevent the loss of some data samples in 

cases where the device sample rate is slower than the input data 

send rate. 

Programming a Multiple Biquadratic Section Filter 

The 3D structure was f01.md to perform best on the MB8764. A 

canparison will now be made between the Nth order filter programmed 

as a cascade and a filter programme::l as a parallel combination of 3D 

biquadratic sections. The comparison will determine which is rrost 

suitable for the MB8764, considering advantages and disadvantages to 

each approach. Each program will be judged on the following 

aspects: 

1) Time delay between input and output, 

2) length of program, and 

3) Memory space required. 

Of course there are countless ways to program the MB8764 to 

have it accanplish the calculations necessary. The progr'ams shCMn 

are written for maximum speed in the computation loop. As in the 3D 

biquadratic section pn::>gramned previously, variables and initial 

conditions are assumed to be stored in the IRAM when the loop 

begins. Initialization is accomplished outside the loop and thus 

not shCMn. It is necessary to set initial oonditians even ~ they 

~ zero, because the MB8764 does not set all registers to zero when 

pc:Mered up. There is no instruction which clears· all the merrory 

locations; therefore they must be accessed one location at a time. 
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Cascade Realization 

The cascade model offers a method of splitting a large

order filter into small sections, thus reducing the filter's 

sensitivity to coefficient quantization. Figure 10 shows 

the model for an Nth order cascade of 3D structure biquad

ratic sections. To achieve the best results with the 

cascade model on a fixed-point processor such as the MB8764 

the- designer must: 

1) Balance the DC gain of the sections (this may 

be accomplished by proper pole zero pairing), 

2) Scale each section individually to prevent over

flow within the section, and 

3) Arrange the sections in the order which 

minimizes the output noise. 

From a designer's viewpoint cascade realization can be 

difficult to implement, because pole zero pairing and section 

ordering are intricate steps. 

Figure 11 shows the program and Figure 12 shows the 

memory map used in implementing a cascade of 3D sections. 

The number of lines of code necessary to input initial 

code conditions and variables in the worst case is 16n+6, 

where n equals the number of biquadratic sections in the 

filter. Worst case implies that no variables or initial 

conditio~s share the same values. An additional two or 

three lines are needed for initialization. The computation 
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loop for the program requires lOn+ll machine cycles to 

complete. The delay from time of input to time of output 

is 4n+5 machine cycles. Data is shifted through the whole 

ARAM, with 3n+3 locations being occupied with active data 

at any one time. BRAM data is stationary, and Sn+l 

locations are used. 

Parallel Realization 

The parallel model is easier to design than the cascade 

model. Each section in the parallel model acts on the 

input x(k) and provides output to a summing junction (see 

Figure 13). Therefore, there is no concern about ordering 

of sections and no reason to pole zero pair each section. 

The steps necessary to implement the parallel form for a 

Nth order binomial are: 

1) Perform a partial fraction expansion of the Nth 

order binomial and group the resulting terms into 

biquadratic sections, 

2) Individually scale each section to prevent overflow 

within the section. 

A program implementing a parallel of 3D biquadratic 

sections is shown in Figure l~. The program's memory map is 

shown in Figure 15. Initial conditions and variable input 

into !RAM require 14n+l3 lines of code to enter for the 

worst case. The computation loop for the program requires 

7n+ll machine cycles to complete. The delay from input 
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instruction to output instruction, independent of the 

filters order n, is equal to seven machine cycles. The 

ARAM is used just as in the cascade program. BRAM data 

is stationary and uses 4n+5 locations. 

Comparing the Cascade and Parallel Programs 

In ease of design and in theoretical performance, the 

parallel model is superior to the cascade model, offering 

better signal-to-noise ratio (4) and fewer steps in the 

design process (5). But the section of the tyne of filter 

to be used is usually based on the performance of the 

program that is implementin~ it. The program implementing 

a parallel of 3D sections ran faster on the MB8764 for any 

number of sections. (For a single section, or s~cond-

order filter the cascade and parallel design are identical.) 

The performance of the oarallel example is due to the fact 

that it has n-1 less multiplications to perform than the 

cascade and that it ·can perform its summations very 

efficiently. The fact that all calculations except one 

multiplication and one addition are performed prior to 

input of x(k) make its input to output delay very short. 

Figure 16 is a graph of the implementation time of an Nth 

order parallel and cascade of 3D sections. 

Both programs are implemented with a minimum of loo~s. 

As a consequence much longer programs will be stored in the 

instruction ROM. The advantage for minimizing loops is 
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x(k) y ( k) 
_n_ 

input output 

Figure 10. Cascade of 3D Sections. 
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Code: Com1J1ent: 
L1 LAB:HOP $01(X),$01 

LAB:NOP $02(X),$02 
LAB:MLT $04(X),$03 
LAB:MSM $05(X),$01 
LAB:MRD $01(X),$06 
LAB:MRO $05(X),$07 
MOU:MLT D,$FF 
MBA:MSM $03(X),$FF 

*-------------1 
*pre I iniinary 
*calculation 
*of 
*y1(k) 

I 

1----.--------
*-------------! begin pre I iminary 
*precolc Y1(k)I calculation of y2 (k) 

*to 03(:x:) I 

L2 

* 
lt: 

*This section is repeated from 
LAB:HOP $[3i+1](X),$[5i-2] *i=2 to n-1, where i represents the 
LAB:NOP $[3i+2](X),$[5i-1] *biquadratic section being coded, and 
LAB:MRD $[3i+1](X),$[5i+1] *n is the total number of biquadrotic 
LAB:MRD $[3i+2](X),$[5i+2] *sections. In thi' ~ection Yi(k) 
MOU:MLT D,$FF *pre I iminory i~ calculated and the 
M6A:MSM $[3i+3](X),$FF *calculations for Yi+l(k) are begun. 

* 
•: 
•: _____________ _ 

LAB:NOP $[3N+1](X),$[5n-2] * 
LAB:HOP $[3H+2](X),$[5n-1] *Calculations for prel iminory Yn(k) 
HOP:MRD 
NOP:MfiD 

MOU:NOP 0,$FF 
MAB:HOP $[3H](X),$FF 
"I IF : HOP L2 
MOU •$800,EA 

*con1p I et ed 

* 
* 
*--------------------------~ 
*u.aa it for input 
*set output 1ode and sequence . 

Figure 11. Cascade of 3D Sections Program. 



MOU:NOP Et,A:$FF 
MOU:NOP $80,6 

LAB:HOP $03(X),$FF 
MOU:MLT $85,B 
NOP:SUM 
MOU:NOP D,$FF:A 

LAB:HOP $[3i](X),$FF 
r10 U : ML T $ [ 5 i ], B 

MBA:SUM $[3(n-1)](X),$FF 
MOU:NOP D,$FF,A 

LRB:NOP $[3n](X),$FF 
MOU: r-ll T $[Sn], B 
MBA:SUM $[3(n-1)](X),$FF 
MOU:HOP O,$FF:EO 
M6A:NOP $[3n](X),$FF 
MXY:NOP $FF,$00 
JMP:HOP Ll 
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*x(k) to A and BRAM 
*begin calculation of Y1(k) 

*continue calculations for Y1(k) 

*begin setup for Y2(k) calculations 

* 
* Y1(k) calculation is completed 
~: 

* ---------------
* 
*This section is repeated for 
~: i = 2 t o n- 1 . I t ca I e: u I at e e. t he C• '-' t put 

*of each section and places the 
*out~ut of the preuio~s section into 
*the proper location in ARAM. 

* 
*---------------
*final calculations to compute 
*filter output y(k) 
Jt: 

*output y(k) 

* 
*shift X index back 1 

*Ju~p back to beginning 

Figure 11. Continued. · 
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RAAM BRAM 

00.,._ ____ ____,. 00 
01 ...._ ___ ___. 01 
0 2 .,__ _____ .._. 02 
0 3 ..._____. __ ___. 03 
01 .,__ _______ ___. 01 
05 .,__ ____ .._. 05 
06...._ _____ ___. 06 
07 .,__ ___ ___. 07 

08 t-------~ OB 
09 

• 
• 
• 

Sn-5 
Sn-1 
Sn-3· 
Sn-2 
Sn-1 

F C .,._ ____ __, 
FD .,__ ____ ---4 

FE ...__ ___ ---4 

FF TEMP STO NOTE: Arrows show movement of 
variable designation caused 
by indexing. 

Figure 12. Nth Order Cascade Filter Memory Map. 



x(k) 

input 

• 
• 
• 

• • • 

30 
n 
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NOTE: Onl~ delayed values of x(k) are used 

in the 30 sections to calculate ~Ck> 

Figure 13. Parallel of 3D Sections. 

y(k) 

output 
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Cow.-.ent s: 

*-------------1 
* I 
*ca I cu I at i or. . I 
*of 

*y1(k) !---~--------

*-------------! begin 
* Y1(k) calculation of u .... ( k) 

... .!_ 

Ll LAB:HOP $0l(X),$01 
LAB:NOP $02(X),$02 
LAB:MLT $04(X)J$03 
LAB:MSM $05(X),$04 
LAB:MRD $01(X),$05 
LA5:MRD $02(X),$06 
MOU:MLT 0,$FF 
MBR:MSM $03(X),$FF *to O~i ( x ) __ __,.;.._.. ________ _ 

* 
* 
•: 
*This section is repeated from 

LAB:HOP $[3i+1](X),$[1i-1] *i=2 to n-1, where i represents the 

LAB:NOP $[3i+2](X),$[1i] *biquodratic section being coded, and 
LAB:MRD $01(X),$[4i+1] *n is the total number of biquadratic 
LAB:MRD $02(X),$[4i+2] *~ectione. In this ~ection Yi(k) 
MOU:MLT D,$FF *is calculated and the calculations 
MBA:MSM $[3i](X),$FF *for Yi+l(k) are begun. 

* 
* 

LA 6 : N 0 P $ [ 3 ti+ l ]( X ) , $ [ 1 n- 1 ] * 
LAB:HOP $[3N+2](X),$[4n] *Calculations for Yn(k) 
HOP:MRD *completed 
HOP:MRO * 
MOU:NOP D,$FF * 

Figure 14. Parallel of 3D Sections Program. 



MA6:NOP $[3n](X),$FF 
LAB:NOP $03(X),$00 
LAB:SUM $06(X),$00 

* 
* 
* 
Jt: 

* 
* 
~: 
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~um 

al I 
~ ( k) I~; 
"' 

Only the A register 
information is used 
in the summation. 

LAB:SUM $3[n-1](X),$00 * 
NOP: sur1 

L 2 ""I I F : H 0 P L 2 

MOU •$ti00, EA 

MOU: tWF' EI , A: $FF 

MBA:NOP $00(X),$FF 
MXY:MSM •$7F,•$00 
MOU:NOP D,EOJ$FF 
... H1P: HOP L 1 

*I oe:t yJk).__.~•--'-J ....... m __ m~ __ :.d ______ _ 

,.. w a i t f c• r i rap u t 

*~et output mode and sequence 
*x(k) to A and BRAM 
*x(k) to ARAr1 

*calc Iy(k)'s + x(k) x Do 
:+:c11.Jt put ~ ( k) 

*ju~p back to beginning 

Figure 1~. Continued. 
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RRAM BRAM 

00 00 
01 01 
02 02 
03 03 
01 01 
05 05 
06 06 
07 07 
06 08 

• • 
• 

3n 1n+1 
1n+2 
1n+3 
1n+1 

I FC 

J FF FD 
FE ·v FF TEMP STO 

NOTE: Arrows show movement of 
variable designation caused 
by indexing. 

Figure 15. Nth Order Parallel Filter Memory Map. 
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Maxi•um sample frequency in KHZ 

1000 200 10.0 
20~---------------------r---------------~,,__ ______ ___ 

16 

16 

14 

L 12 ., 
"O 
L 
0 
L 10 ., 
~ 

LL. 6 

6 

4 

2 

1 2 3 1 5 7 8 9 10 

Minimum sample period in µsec 

Figure· 16. Nth Order ·Filter Implementation Time 
Graph for Parallel and Cascade Filters · on the HB876~. 
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sneed in nrogram execution. For example ~n Nth order 

parallel filter with loops requires 6(n-1) additional mac-

hine cycles to execute and saves 7n-29 locations in the 

instruction ROM Cn=number of 3D sections). 

~B8764 Capabilities in Imnlementing 
~ultinle Filter Programs 

Designing a program to imnlement more than one filter 

with multi?le inputs and outputs is easily accomplished on 

the MB8764. Due to limited amount of memory available, 

restrictions are placed on the number of and cornnlexity of 

filters to be nro~rammed to~ether. Restrictions are ~ls~ 

nlaced on the sa~nle rate of the filters which must be 

inte~er multinles of one another. Table 1 shows the 

capability of the M38764 to imnlement multiple filter oro

grams of 3D sections olaced in oarallel. The MBB764 

has only one input/output port which must be time-shared 

in a m~ltinle filter orogra~. To acco~plish this ti~e-

s~aring, the inputs must be synchronized to occur in a 

s~ecific order. 

If all filters are of the same frequency, then 

pro~ra~~ing multiple filters in · the one nrogram is accom

plished in three steps. 

1) Arrange the calculation loons for the programs 

you wish to implement into a single list: 

2) Remove the jump statement from the bottom of each 

program except the last and have that jump 
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statement return to the top of the first 

nrogram. This makes the list of calculation 

loons into a sin~le loop~ 

/ 

Change the addressing within each program to 

point to the section of ARA~ and ERA~ in which 

initial conditions and variables are located. 

Setting initial conditions and variables into !RAM is 

accomplished for all filters before the calculation loon 

is begun. Filters with sample rates that are integer 

multinles of one another are implemented as in the steps 

listed above with the addition of a step to install 

counters and juMn instructions to control program flow. 

Chanter Su~~ary 

In this chapter the 3~ biquadratic structure was found 

to have the fastest calculation loop of the four direct 

structures. The narallel imnle~entation and cascade 

inplementation of an Nth filter of 3D structures were 

compared. The parallel structure was shown to be 

superior in performance (see Table 2). From these nrogram-

min~ examples it can be seen that the MB8764 nerforms 

mathematical functions very efficiently but this efficiencv 

is reduced considerably when results must be moved out of 

the D re~ister to ARAM or when looping is used. For best 

performance in speed, programs written for the MB8764 

should use a minimum of transfer instructions and should 

avoid looping. 
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TABLE 1 
CAPABILITY OF THE MB8761 IN PEAFORMMIHG 

MULTIPLE FILTER PROGRAMS 

f i I ter max 1 of max sa11p re approx memory use 
or·der filters fr·equency ... IR0f1 ARRM 

2 16 39.06 KHZ 736 96 

4 10 10.00 KHZ 670 90 

6 8 39.06 KHZ 704 96 

6 6 42.71 KHZ 654 90 

10 5 43.18 KHZ 650 90 

12 4 47. 17 KHZ 6(14 8~ 

14 4 41. 67 KHZ 668 96 

TABLE 2 

COMPARISON BETWEEH A PARALLEL AHO CASCADE FILTER 
IMPLEMENTATION OF 30 BIQUAORRTIC 

SECTIONS OH THE MB8764 

Feat ur·e Para Ile I Cascade 

BR Rn 
128 

120 
1 _., C• 

Ll..I 

120 

120 

112 

128 

min sample period ( 11+7ra). 1 µs ( 11+1 On) . 1 µs 

i r1put to output ~elay .7µs (4n+5)>1µs 

I F:Dr1 I ocat i onE• used 25+2tn 17+26n 

AF:AM I ocat ions used 3n+3 3n+3 

BRAM I ocat ions used 4n+4 Sn 

note: f Of" . 1 µs moc:h i ne cycle, n= 1 of 3[1 sect.ion~ 
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Scalini is necessary in the design of a digital filter 

to nrevent overflow within fixed-point machines such as the 

MB8764. The design of the ~B8764 also helps to prevent 

overflow during intermediate calculations in the arithmetic 

and logic block. Internal ALU operations and the D 

register provide twice the dynamic range of the ALU inout 

registers A and B. Thus the result of an intermediate 

operation which overflows in a 16-bit register of the 

MB8764 can remain valid in the D register~ allowing sub

sequent operations without overflow. If an overflow should 

occur, the MB8764 can minimize the error throu~h the use 

of the CLP flag. 
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THE MB8764 nEVELOPMENT SYSTEM 

Introduction 

Once a program has been designed for a digital device 

it is important that it be fully tested. This especially 

true for the MB8764 program that is to be in?ut into the 

internal mask ROM of the chip, as there is no adjustment 

?ossible once the mask is nroduced. Any mistakes in the 

mask ROM design must be accepted or the design must be 

corrected and a new chip produced. Fujitsu ~98764 pro ~~a~s 

can be tested on the ~!B8764 itself with the use of the 

MB87902 software development tool kit. The tool kit 

supplies a 16 MHz clock to the MB8764 giving it a machine 

cycle of 0.125 µsec or 25% slower than the minimum specified 

MB8764 machine cycle of 0.1 µsec. The slower clock rate 

is required for the MB8764 to make data transfer between 

external RA~ and the chip. 

This chapter first gives a brief descrintion of the 

develooment system for the MB8764 and then follows through 

the testing of a fourth-order Butterworth filter program. 

The information on the MB8764 development system found in 

this chapter is derived from references (6) and (7) and 

from experiences the author had when using the development 

system. 

43 
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Descrintion of the MB8764 Development System 

The development system for the MB8764 can be divided 

into two primary parts, a Fujitsu FM-16S microprocessor and 

the Fujitsu FDSP KIT-8764 evaluation board. The micro-

processor is a standard Fujitsu model equipped with the 

following hardware: 

1) 10 mega-bit internal drive, 

2) One Slr;" floppy disk, 

3) A CP/M86 board and expansion RAM card, 

4) CRT and printer. 

Software nrovided includes: 1) Wordstar, a word processing 

pro~ram used to create code and data files~ 2) the MB8764 

assembler (ASM64) which assembles the wordstar code files 

into the RO~ executable code; and 3) the MON64 program which 

is actually two ?rograms used to control the FDS? KIT-8764 

evaluation board. 

The FDSP KIT-8764 evaluation board is nrimarily a 

standard MB8764 with support hardware to interface it with 

the Fujitsu FM-16S microprocessor. It also ~rovides the 

designer with three sockets for EPROM programming and testin~. 

The SU?Port hardware includes: · 

1) A 1024-word instruction RAM, accessed by the MB8764 

through the MB8764's external instruction port, 

2) A 1024-word expansion RAM, which operates as a 

standard MB8764 expansion RAM, 
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3) Two 512-word data RAMs, one for storing data to be 

inout into the MB8764 and the other for storing the 

MB8764 output data, 

4) An analog interface, which provides 12-bit ADC 

and DAC for analog input/output, and 

5) An interface circuit, to enable the FM-16S 

microprocessor to control the board. 

With the development system, a designer may choose the 

MB8764 input to be an analog signal a digital signal from 

data RAM, or a digital signal from a user supplied device. 

The same choices apply to the MB8764 output. If the output 

is directed to data RAM then 512 words of output data may 

be accessed and viewed on the CRT. Program execution can 

be stopped by the microprocessor at almost any point in the 

program. While paused the D, A, X, Y and CO registers can 

be viewed as well as any addresses in the instruction RAM, 

internal RAM, or external RAM. Any ·of the addresses or 

registers that can be viewed may also be changed to 

another value. If instruction code is altered, the new 

program can be loaded back from · the instruction RAM to a 

disk file in the microprocessor. When a program passes 

all tests, an EPROM is made or a floppy disk created with 

the tested program on it. Fujitsu will use this EPROM or 

floppy disk to create a custom MB8764 chin with an IROM 

loaded with the program sent. If a mask IROM is nqt 

' 
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required EPROMs can be manufactured by the development 

system and used as external !ROM for the MB8764. 

Testing a Program 

A fourth-order low pass Butterworth digital filter was 

designed with the following specifications: 

1) Cutoff frequency - 50 KHZ 

2) Max loss in passband - 3 DB 

3) Sample frequency - 250 KHZ 

Conversion from analog to digital was made via the bilinear 

transform. The filter was implemented as a cascade of t~o 

biquadratic sections. The figure below shows the model and 
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3u~terworth Filter Model ~~ d :~~a~~on. 

The step response and the frequency resPonse of the model 

was calculated on an HP 85 computer, and it verified the 

model to be valid. The calculated step resnonse data was 
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saved to compare to the output data from the real time 

execution of the model on the MB8764. 

As assembly level program was written for the filter 

and edited in wordstar on the Fujitsu FM-16S microcomputer. 

The file created by wordstar was checked for errors and 

assembled when all errors had been corrected. Error codes 

from the assembler were adequate but documentation of 

program format requirements were inadequate with many 

errors solved by trial and error. The assembler permits 

some use of address .labels and variables in the assembly 

level program and converts them to proper values before 

converting the program to machine code. Along with a 

statement list the assembler provides the designer with a 

dictionary list and a symbol list. These nrovide documen

tation on the variables and labels used in the assembly 

level program. 

Machine code, created upon assembly of the filter 

program without error, was stored in a .DEB file. The .DEB 

file was loaded into the instruction RA.M of the FDSP KIT-8764 

usin~ the DEBGl ?rogram. The DEBGl ?rogram can also be used 

to read and write programs between EPROM and instruction RAM 

or from instruction RAM back to the FM-16S microprocessor. 

With program instructions loaded into the instruction 

file program DEBGl was exited, and the DEBG2 program loaded. 

The filter program in the instruction RAM was now able to 

run on the MB8764 under the control of the DEBG2 program. 



48 

Because the program called for the step response of the 

filter, no input was generated within the program. The 

following functions were accomplished through the use of 

DEBG2 comJ!lands. Out?ut was specified to be placed into the 

output data RAM. Program execution was begun and then 

paused to check output data RAM contents, register contents 

and IRA.M contents. Corrections were made to program code 

until output data results were correct, and the program was 

operating properly. A special note is made that attempts 

to store data in address FF of !RAM were not successful, 

however, when storage was changed to register FC the 

program ran correctly. A listing of the filter program 

executed is shown in Figure 18. Figure 19 is a comparison 

of calculated sten response and MB8764 program step 

resnonse. 

Sum.~ary 

The ~B8764 digital signal nrocessing chip is well 

supported by the MB8764 Support Tool development system. 

Its ability to run programs at 80% of the maximum internal 

clock rate of the MB8764 and to use the MB8764 chip instead 

of a software simulation of the chip gives the designer a 

chance to evaluate program results in real time. Documenta

tion of assembly language formatting requirements is 

inadequate. Including formatting examples would greatly 

. improve the documentation. 



PRG 
ORG 

CLR 

BUFIL 

CREECH,$10 
X:V:O 

LD 1 : tiOP •$0EiC5 

MOU:HDP A,$80 
LOI :NOP •$178A 

MOU:NOP A_,$81 

LD 1 : HOP •$OfiC5 

MOU: NOP A, $Ei2 

LOI :NOP •$150E 
r10U: NOP A.• $83 

LDI :HOP •$0422 

MOLi: HOP A,$Ei~ 

LOI :MOP •$1035 

MOU:NOP R,$85 
LD I : tiOP •$206Ei 

MOU:NOP A,$86 
LOI :NOP •$1035 
MOU:NOP A,$67 
LO I: NOP •$1001 

MOU: HOP A, $8ci 

LOI :NOP •$1007 

MOU:HOP A,$89 
LO I : NOP •$0000 

MOU:HOP A,$01 

·MOU: NOP A, $02 
MOU:HOP A,$04 

~9 

*required by a~~e~bler 
*assembler required sets code location 
*c I ears X ,..Y., Z r·eg ________ _ 

* 

* 
Thi E; see:t ion 

* 
equot ion coeff i~ients. 

* 
*NOTE:FORMRT REQUIREMENTS ARE STRICT 
*R SPACE AFTER A COMMA OR A COLON 
*CAUSES ASSEMBLY ERROR. 

* 
Jt: 

•: 
* 
* 
* 
* Thi~ ~ection 

* 
* sets in it i o I 

* 

Figure 18. Butterworth Filter Program Ready for Assembly. 



MOU:HOP R,$05 
MOU:NOP A,$07 
MOIJ:NOP A,$08 

L 1 LAB: HOP $01 (X), $01 
LAB:NOP $02(X),$02 
LAB:MLT $01(X),$03 
LAB:MSM $05(X),$01 
LAB:MSM $04(X),$06 
LRB:MRD $05(X),$07 
f10U: ML T D, $F C 
LRB:MSM $07(X),$08 
LAB:NOP $0B(X),$09 
NOP: MSf1 
HOF': f1RD 

MOU:NOP D,$FE 
MOU •$Ei00 .. EA 
LDI :NOP •$4000 
MOU:HOP A,$FD 
MBA:NOP $00(X),$FD 
LRB:NOP $00(X),$00 
MOU:NOP $FC,D 
HOP:MSM 
MOU:NOP D,$FC 
MBA:NOP $03(X),$FC 
LAB:HOP $03(X),$05 
MOU:HOP $FE,D 
MXY:MSM •$7F,•$00 
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* condition~ to zero. 

* 

*calculation loop begins 

* c:alc:ulote 

* 
>t: 

pre f i m i nar~ 
y 1 { k) 1---------------

lcolc:ulate 
* I pre I i mi nor~ 

*pre I i m y 1 ( k ) t o B Fi A f1 I y 2 ( k ) 

*---------------------! 
* I 

* 

1----------------
Jt: Se. t C• lJ t p U t 111 C• d e. 

*simulate~ receipt of on input of 1 

* 
>t: 

*x(k) to A and ao to B 

* 
* x(k) x oo + {pre I irninary Yt(k)) 

* 
* 
Jt: 

*y2(k) calculated X index shifted back 1 

Figure 18. Continued. 



MOU:HOP O,EO:$FE 
MBA:NOP $07(X),$FE 
HOP 
HOP 
HOP 
NOP 
JMP:NOP Ll 
EHD 
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*y2(k) output 
*~?(k) stored in 06(x) of ARAM 
~~ 

*NOTE:THIS PROGRAM HAS EXTRA LINES OF 
*CODE IN IT TO GIUE IT A SAMPLE RATE 
*OF 250 KHZ. 

* 
*returns to start of program loop 
*required by assembler 

Figure 18. Continued. 
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O.B 

0.6 

y(k) 
0.1 

0.2 

k=O 5 

k 

10 15 

colc y(k) 
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Note: Calculated y(k) and 
MBB761 resultant · y(k) plot 
atop each other 

20 25 30 35 k= 10 

MB8761 y(k) 

Figure 19. Impulse Response of Butterworth Filter. 



COMPUTING THE DISCRETE FOURIER TRANSFORM 
ON THE MB8764 

Introduction 

The discrete Fourier transform CDFT) can be repre~ 

sented by the equation: 

N-1 
X ( k) = ~ x ( n) Ur/·" , k =O, 1 , 2, ... N-1 

n=O 

The DFT can be co~puted directly from the equation atov~ 

or can be computed using the fast Fourier transform CFFT) 

algorithm. Implementing a DFT with an FFT algorithm greatly 

reduces calculations necessary to perform the DFT. This 

reduction, from approximately N2 complex multiplication and 

adds~ to Niog 2~ complex multiplications and adds, enables a 

computer to perform the transform in much less time.- The 

MB8764 which offers a 0.1 µsec rnu~tiply and add is a good 

candidate for perfor~ing real time DFTs. This chapter will 

· briefly discuss how the MB8764 can be used to perform the 

DFT directly and via the FFT algorithm. 
,.> 

Imolementin~ the DFT 

A program which performs the primary computation loop 

of a 64-point DFT of complex inputs is shown in Figure 20. 

Inputs are assumed to be stored in BRAM. The first loop for 

k=O in . the DFT equation is a just summation of the· ~omplex 

~nputs because the transform coefficients equal one. The 
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remaining loops use complex coefficients which are stored in 

table ROM. ' The program can be expanded to perform up to a 

512-point DFT but requires input data to be stored in ERAM 

. and additional lines of code to page through the table ROM 

and RAM. The limit of 512 complex points is set by the 

ERAM expansion .limit of 1024 words. Paging of the ROM 

is a very complex operation because of the order in which 

the transform coefficients are accessed in the DFT equation. 

Performing the FFT 

The FFT algorithm is developed from the DFT by 

decomposing the DFT of N samples into N/2 DFTs of two 

samples each. In the process of decomposition, the symmetry 

and the periodicity of the DFT is taken advantage of in 

order to reduce the number of calculations necessary to 

compute the DFT. The required calculations are sometimes 

referred to as butterfly computatio~s. · The equations that 

must be implemented by each butterfly are: 

Xm+l(p) = Xm(p) + cwrN)(Xm(q)) 

.. JXm+ 1 ( p) = Xm ( p) ( wr N) ( Xm.< q) ) 

Where r i .s determined by the location of the butterfly and 

wr = e-j(2 11 /N}r = cos(21f./N)r - jsin(2n/N)r .. Given the 
N 

number of sample points N, values . for cos(2'11/N)r and 

sin(2n/N)r r=O to N/2 can be solved for a stored in ROM . 

as a table for use by the program (see reference 8). 
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A program to imple~ent the FFT algorithm would consist 

of the following sections: 

1) ryata innut. Data is in~ut into the MB8764 after 

being reverse bit shuffled. 

2) Calculation. Calculating the results would 

require calucation of (~/2)xlog 2N butterflies · a 

routine for the calculation of a butterfly is 

shown in Figure 21. Twenty-six machine cycles 

are necessary to execute the butterfly routine. 

Additional machine cycles are required for loon 

commands and indexing. The total number of mac

hine cycles for the calculation of a 64- or 

128-noint FFT is approximately 30 x(M/2)xlog2~. 

3) Data output. The inplace FFT algorithm would 

nrovide results to the same re~isters as the inputs 

were received. Outnut in A+iB form would require 

no additio~al cycles because it can be nerformed 

in the calculation loop. If output is desired in 

another form additional ~rogram steps may be 

required. 

Paging is not necessary if the tiumber of registers in table 

ROM is less than 128. - Thus for more than a 128-point FFT 

the designer must devise a method to perform the table ROM 

paging. The 1024 word limit on ERAM expansion allows the 

MB8764 to compute u~ to a 512-point FFT. A 64-noint FFT can 
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be computed with no need for external expansion. For more 

than 64 noints external expansion is required. 

Summary 

The MB8764 will· perform both the DFT and the FFT 

algorithm very efficiently for 64 noints and requires no 

external expansion. The DFT is not easily expanded up to 

the 512 points because it accesses the Table RO~ in a 

complex manner. For the 512-point DFT external expansion of 

~OM to 2048 words is required. The FFT may also be 

expanded to 512 points and requires no external ROM, but 

will require some additional programming steps to provide 

RAM and ~0:!-1 paging. With a 0.1 µsec instruction cycle 

a 64-point DFT can be performed in less than 9.0 msec 

and a 64-noint FFT can be computed in less than 

600 vsec. 
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-----THIS CALCULATES FOR THE SECOHD THROUGH H-1 LOOP---
-----IHITIALIZE---- $03s1,~et PGT, $00•0,$01•0 
MOU:HOP •$3F,CO *loop counter fork initialized 

L2 MOU:NOP C0,$01 *k=l to N-1 loop;CO(k) saved 
MOU:NOP •$40,CO *loop counter for n initialized 

L 1 L T Ei : H 0 P $ 0 0 ( X ) , $ 0 0 ( 'r' ) * n = 0 t o H- 1 I o op 

MOU:HOP $00,0 
LTB:MSM $01(X),$00(Y) 
MOU: NOP $00 ( 'r') .• Ei 

NOP:MRD 

MOU:MLT D,$00 
LTB:NOP $00(X),$01(Y) 
MOU:HOP $01,A 
HOP: r1sn 
HOP: SUT1 
MOU:NOP D,$01 

MOU:HOP X,A 
r10l.J: NOP $03, fi 
MXY:ADO •$00,~$01 
MOU:NOP D,X 
JCO:HOP Ll 
MOU:HOP $00,EO 
CLH:NOP Y 
LO I : NOP •$0002 

MOU:ADD $04,CO 
MOU:HOP D,$03 
MOU:NOP $03,X 
MOLJ:NOP $01,EO 
LD I : HOP •$0000 
MOU:HOP A,$00 
MOU.: NOP A I $01 
JCO:NOP L2 

*: This sect i cm 

* calculates the 
* real and imaginary subtotals 
* and put~; 

* real result in address $00 
* imaginary result in $01 

* 
lt: 

*----------------------------
•:Updates the 
lt: f: and Y i nde:x: 

*registers for each new n 

*----------------------------
*jump to Ll 63 times then continue 
*output real part X(k) 
*clear Y 
*Ccrmput e new 
*va I ue for· 
•:x index 

* ~----~~~~~~~----
*output imaginary part X(k) 
* i n i t i a I i z i ng 
*addre~~ $00 and 
*address $01 

*loop back to L2 for 62 ti•es 

Figure 20. 6~-Point DFT Program. 



L1 MOU:tiOP Y,$04 
LTB:HOP $00(X),$00(Y) 
LTB:HOP $01(X),$01(Y) 
LT6:MLT $00(X),$01(Y) 
LTB:MRD $01{X),$00(Y) 
MOU:MLT D,$00:A 
MOU:MSM $05,Y 
MOU:NOP 0,$01 
MOU:NOP $00(Y),B 
nx~·: ADD •$00,•$02 
MOIJ:SUB 0,$7E(Y) 
MOLl:NOP D,$02 
MOU:NOP $01,A 
MOU:NOP $01, 6 
MOU: ADD Y,$05 
MOU:SUB 0,$7F(\') 

MOU:NOP D,$03 
MOU:HOP $04,Y 
MAB:NOP $02,$00(Y) 
MAB:NOP $03,$01(Y) 

-------------------
-------------------
-------------------
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* store Y index 
*calculate real and i•ag. 

* 
*ports of Xm(q) x uHr 

* 
*real part to ARAM and A 
*change y index 
* i n1ag_t1ar·t to ARAr-1 
*real part Xm(p) to B 
*incrementing $05 Y inde x 
*real part Xm+l(p) to BRAM 
*real part Xm+l(q) to ARAM 
*i~ag part Xm(q) x uNr to A 
*imag part Xm(p) to E 

* 
*imog part Xrn+l(p) to BRAM 
*imag part Xrn+l(q) to ARAM 
•change bock Y index 
*real port Xm+l(q) to BRAM 
*imog part Xm+l(q) to BRAM 

*IHDEXING AHO LOOP COMMAHDS 

Figure 21. FFT Butterfly Routine for 6~-point FFT. 



COUCLUSIONS 

The Fujitsu MB8764 digital signal nrocessor was found 

to be a powerful processor canable of perform~ng very fast 

multiply and sum routines. This sneed enables it to 

solve a second-order binomial equation in 1.6 µsec, a 

64-point FFT in .6 µsec, and a 64-?oint DFT in 9.0 msec. 

An eighth-order digital IIR filter irnnlemented in a 

parallel form can operate with a sample rate of 149.25 

KHZ. The weakness in the Fu4itsu chip lies in its 

internal precision. With only 16 bits internal ?recision, 

sample rates greater than five times ""Che maximum signal 

frequency may be too great for the internal precision 

of the Fuiitsu. Increasing the chips internal precision 

to 24 bits is possible by usin~ two worqs for internal 

data transfer and coefficient storage, and by shiftin~ 

the D re~ister so that the lower-order bits can be trans

ferred out. This procedure is cumbersome and would slow 

down processing by at least a factor of ten. Double 

precision operations are not possible because the D 

register carries only 26 bits. 

The MB8764 allows for external expansion of ROM and 

RAM. When ERAM is used either the instruction cycle must 

be 1.25 ~sec or less, or the ERAM speed switching O?tion 

must be utilized. This option, selected by an external 
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pin, allows ERAM to be accessed at half the rate of the 

instruction cycle. A DFT, FFT or digital filter program 

which uses ERAM will run faster with the 1.25 µsec machine 

cycle than with a 0.1 µsec instruction cycle and the 

ERAM show speed option selected. RAM and ROM are divided 

into pages with the RAM having 256 words per page. This 

paging causes problems in any program that works with more 

than a page of data or coefficients. DFT calculations for 

more than 64 points, although possible on the MB8764, are 

difficult to program and slow to operate because of this 

paging oroblem. 

The input/output features on the MB8764 can be u~ed 

to govern the sample rate of a digital filter. This is 

done by using a jump instruction that prevents program 

execution from continuing until an input is received. The 

address attached input mode allows specific coefficients 

of a digital filter to be changed during program execution. 

Thus a designer can produce a digital filter that reacts 

to various parameters and compensates its transfer function 

to accommodate the parameter changes. 

Instructions are designed to take advantage of the 

separate sides of RAM and their indexes. This makes 

programming on the MB876·q·, .. ·most · efficient when ARAM and BRAM 
~ . . .. . 

). or table ROM and BRAM can be used independently. When . this 

sepal;'ation cannot be used . by an application the M;B8764 

becomes awkward __ in its internal ·data transfer. Thus the 
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MB8764 is not a general purpose microorocessor but is 

snecificallv designed for digital signal processing or 

similar arithmetic o~erations. 

The MB8764 helps to orevent overflow in preliminary 

onerations from occuring by providing two bits to the left 

of the decimal point in the D re~ister. The data format 

in the input/output and storage registers allows for one 

bit to the left of the decimal point. If inout signals 

are restricted to +/- one, scaling of the inout signal 

is unnecessary. 

Snecifications of the MB8764 claim it can implerne~t 

a second-order filter in 0.7 µsec. It should be noted 

that the second-order filter to which this s~ecification 

applies is a second-order FIR filter. 
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