
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1985

Using N.2 to Model a Microprocessor System Using N.2 to Model a Microprocessor System

Benjamin J. Patz
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Patz, Benjamin J., "Using N.2 to Model a Microprocessor System" (1985). Retrospective Theses and
Dissertations. 4812.
https://stars.library.ucf.edu/rtd/4812

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F4812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4812?utm_source=stars.library.ucf.edu%2Frtd%2F4812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

USING N.2 TO MODEL
A MICROPROCESSOR SYSTEM

BY

BENJAMIN JOSEPH PATZ
B.S., Rensselaer Polytechnic Institute, 1983

RESEARCH REPORT .

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

in the Graduate Studies Program of the College of Engineering
University of Central Florida

Orlando, Florida

Summer Term
1985

ABSTRACT

Due to the complexity of designing digital systems using VLSI

parts, a tool for aiding in system level design specification and

verification is needed. Functional level modeling languages and

simulators provide that tool An example of such a tool is the N.2

package of software produced by Endot Inc. and soon to be running on

a VAX computer at the University of Central Florida.

An overview of the N.2 system is presented in this paper with

emphasis on the modeling language of N .2, ISP'. A Small Instruction

set Computer (SIC), originally specified in AHPL, is designed with this

software using several design methodologies. These range from an

instruction level implementation to a microcoded register level

implementation. The ISP' source code is provided for each

implementation.

Comments on the ability of the N .2 software to model systems at

various levels of design abstraction are made. A comparison of the

functional modeling language of N .2, ISP' to other functional level

design languages is made. Finally, some areas that warrant further

investigation are presented.

ACKNOWLEDGEMENTS

The author would like to express his appreciation to those whose

encouragement helped see him through the completion of this paper.

Those individuals include the author's mother, Anna Mae Patz, and

father, Dr. Benjamin W. Patz. In a~dition, the author would like to

thank the Technical Computing Center of Martin Marietta Aerospace in

Orlando, Florida, for providing the computer resources on which this

paper was created.

iii

TABLE OF CONTENTS

SECTION 1. INTRODUCTION

Functional Design Modeling
N.2 Software Environment

I SP '
Eco I og i st
metaMicro and Linker/Loader .. .
Simulated Memory Processor
Simulation

A Smalt Instruction Set Computer .. .

SECTION 2. SIC IMPLEMENTATION

Overview
Class A Implementation of SIC
Class B Implementation of SIC
Class C Implementation of SIC

SECTION 3. COMMENTS AND CONCLUSIONS

APPENDIX A. SIC AHPL

APPENDIX 8. "A" MODEL rSP' SOURCE FOR SIC

APPENDIX C. "A" MODEL METAMICRO SOURCE FOR SIC

. APPEND I X D. "B" MODEL I SP' SOURCE FOR SIC . . .

1

1
5
5

12
13
14
14
14

17

17
19
26
34

41

44

47

52

55

APPENDIX E. "B" MODEL ISP' SOURCE FOR MEMORY AND 1/0 67

APPENDIX F. "B" MODEL TOPOLOGY FI LE 72

APPENDIX G. "B" MODEL METAMICRO SOURCE FOR SIC

APPENDIX H. "C" MODEL ISP' SOURCE FOR SIC

APPENDIX I. "C" MODEL TOPOLOGY FILE

iv

74

77

105

LIST OF REFERENCES 112

v

LIST OF FIGURES

1. Digital Design Hierarchy 2

2. N.2 Block Diagram 6

3. Model Development Flow 19

4. Class A SIC Faci I ities 20

5. Class A SIC Instruction Format 22

6. Class A SIC Instruction Flow 24

7. Class B Overal I System 27

8. Class B SIC Faci 1 ities 28

s. Class B SIC Instruction Format 29

10. Class 8 SIC Flowchart 32

11. Class C SIC System 35

12. Class C SIC Microword Format 36

13. Class C SIC Microcycle Timing 37

vi

LIST OF TABLES

1. Class A SIC Instruction Set

2. Additional SIC Instructions

3. Event Timing Structure of Operate Instructions

vii

2

6

19

SECTION 1

INTRODUCTION

Due to the complexity of designing digital systems using VLSI

parts, a design specification and verification tool is needed. Traditional

hardware support tools, such as gate level modeling software, do not

provide adequate capabilities early in the design cycle. A functional level

modeling tool is essential for this task. The N.2 system (Ordy 1983)

includes such a tool. In this section a description of functional level

modeling is presented. The N.2 system is then discussed. Finally, a brief

introduction to a Small Instruction Set Computer (Hill Hn8), which was

modeled with the N.2 software, is presented.

Functional Design Modeling

A traditional breakdown of the hierarchy of digital design is given

- in Figure 1. The five levels of modeling are described in more detail

below.

Behavioral level models are those models that a system level

designer would use to describe the general function to be performed in a

given design. There is little or no relationship between this model and

the hardware that is used to implement it. The behavioral model

2

is simply a discussion of the behavior of the overall system with respect

to the performance of a certain task.

Digital Design Hiererch~

Functions ond
BEHAUIORAL ProgroMs to

FUNCTION AL perf orM tosk

Instructions
INSTRUCTION to perf orrri

Functions A
B

Registers £
REGISTER to iMpleMent

Instructions

Got es
GATE to iMpleMent

Registers
STRUCTURAL

Trensistors
PHYSICAL to i Mp 1 erv1en t

Got es

Figure 1. Digital Design Hierarchy.

In order to begin to implement a behavioral level model a set of

primitive functions, or instructions, is developed which can be combined

to perform the more complex functions necessary to solve a task.

Instruction level models are models that execute this set of instructions,

3

and define a machine similar to what an assembly level programmer

would see. The purpose of the instruction level model is two-fold. First,

early in the design cycle, it provides a method of examining the

completeness and performance of an instruction set. Later in the design

cycle it can act as the core of a software emulation system for the

development of software for a target machine.

Where the instruction level model defines the instructions necessary

to perform functions, the register level model defines the physical

hardware blocks necessary to perform the instructions. These models

begin to define the physical structure of a machine in the form of

memories, registers, busses, and combinatorial function blocks. Memories

and registers are considered functional primitives, and combinatorial

blocks are treated as functions that execute with ideal zero delay.

Registers and memories contain rudimentary timing information in the

form of clock periods necessary to perform their respective functions.

The intent of the model is to examine these internal structures of the

machine.

An obvious extension of register level models includes more

accurate timing information. Gate level models provide for this

extension. At this level of modeling the performance of a macroscopic

function is almost lost, and the concentration is on the performance of

microscopic functions. The primitive elements are gates, which are

combined to form registers and other structures. These gates contain

4

timing information in the form of input-to-output propagation delays,

which can be nominal or worst case values.

At the lowest level of modeling is physical modeling. Here timing

is the primary concern, usually in the form of timing variation over

temperature and variation of processing parameters. Transistors are the

primitive elements. Due to the complexity of models at this level,

typically only a very small portion of the original design is modeled at

one time.

It is convenient to map these five levels of design abstraction into

only two levels: functional, and structural. These two levels answer the

two fundamental questions of digital design •what is done' and "How

is it done." This division is convenient also because current software

tools fall fairly neatly into one or the other of these classes. For

example, the N .2 software has its primary use at the functional level.

Simulators like CADA T* perform best at the structural level.

The purpose of this paper is to examine design at the lower

reaches of the . functional level and the upper reaches of the structural

· level. Three divisions are made in the design hierarchy. These divisions

are labeled simply A, B, and C. The capability of the N .2 software to

design at each of these three levels is discussed.

*CADA T is a logic simulator marketed by HHB Softron Inc.

5

N .2 Software Environment

The N.2 design environment contains six major components which

work together to produce a model of a multi-processor system. A

simplified block diagram of these parts is shown in Figure 2. Since the

intent of this paper was not to examine the syntax or the detailed

capabilities of each of the N .2 modules, only enough explaination is

provided to allow for a general understanding of the capabilities of N .2.

Particular emphasis is placed on the hardware modeling language of

N.2, ISP', and on the the tool for modeling instruction sets, metaMicro.

ISP'

ISP' is the functional modeling language of the N.2 system. Its

purpose is to allow the designer to create a source code for various

hardware designs. These designs are later combined and simulated.

Hardware designs in ISP' are essentially a collection of processors

that are connected together through ports to · form a network. Each

processor type is defined in its own ISP' source file. Multiple instances

of these processors, each using the same ISP' file definitions, may be

placed in a network. The instantiation of these individual processors and

their interconnections describe the topology of the network.

6

HARDWARE SYSTEM MODELING

ISP' ..
) ECOLOGIST

COMPILER ...

I) ...
I
I
I

SY STEM
SIMU LATION

SIMULATION

.111'"~

--------------------L----· --

.. LINKER .. SIMULATED
METAHICRO ") MEMOR Y

~ LOADER PROCESSOR

SOFTWARE STSTEM MODELING

Figure 2. N.2 Block Diagram.

A processor, as viewed in the ISP' language, is a collection of

processes. Functionally, processes are defined as a collection of

· procedures, functions, and commands. Structurally, processes are defined

in the declaration statements of the ISP' code. The basic constructs are

defined here in order to better understand any ISP' implementation

methodology, and in particular the . implementation of the Small

Instruction Set Computer.

7

The two types of processes are the main and the when process. A

single main process may exist in any ISP' processor. This process repeats

itself ·continually, restarting itself as soon as it terminates. This type of

process is useful if a cyclic function; such as instruction fetch,

instruction execution, instruction fetch, ...
.

; IS being performed by a

processor. The when process, on the other hand, is only activated when

a particular condition occurs on a port. These conditions are either the

detection of a low to high transition (lead) or high to low transition

(trail) of a particular signal. Because of the when process, multiple

operations may be occurring at the same time.

The following example demonstrates a process. This particular

process performs a read from memory. It is activated when the CLOCK

rises, and the READ line is high. Data is then transferred from memory,

at the point where the ADDR is currently pointing, and placed on the

port DATA.

when (clock: lead (read eql 1)) :=
(

data = M[addrJ
)

In either ease, main or when, each process is a collection of ISP'

statements and procedure and function calls. Procedures and functions

are defined in an analogous manner to procedures and functions in a

8

higher level language like Pascal. The ISP' language is therefore

procedural in nature, yet, due to the when processes, it is also parallel.

The following procedure could be used by a processor to retrieve a word

from memory, if the memory possessed an address and a data register.

get_word :=
(

MD = MCMAJ
)

The structure of a processor is defined by the declaration section

of the ISP' code. There are three major declaration items in ISP'. States

represent registers or latches. Ports are pins that form connections to the

external world, and allow for interprocess communication. Macros and

formats are ways of giving symbolic names to logical entities which may

represent only part of a physical entity. They are also used for

improving the readability and structure of the resulting ISP' code.

The following ISP' code demonstrates the . declaration of a few of

the facilities of a computer. First, a word length is defined. Second,

several registers are defined. Finally these registers are formatted so as to

make the extraction of the opcode and address easier.

g

macro WORD = 18 &,
ADDRESS = 13 &;

state IR <WORD>,
AC <WORD>,
PC <ADDRESS>

format opcode = IR< 17: 15>,
addr = IR<12:0>;

When an ISP' simulation is running it is a collection of

cooperating and competing ISP' processes. The runtime kernel controls

the scheduling of events and invocation of processes in the simulation.

Events are of two types, a port changing value, and a scheduled

wakeup call that occurs after a processor issues a delay command. The

delay command is the only command in ISP' that can be used to carry

timing information. This delay is defined in terms of user time units,

which are specified at the time the processor is instantiated in the

network. The following example illustrates the use of the delay

statement.

when (ck: lead (read eql 1)) :=
(

)

delay(3);
MD = MEMAJ;

! wait three cycles
' .get data

10

As opposed to a sequential language, which performs operations

one after another, ISP ' performs operations in parallel. There are cases,

however, in which a user would wish to force the order of operations.

This is done with the use of the special command NEXT. All operations

up to a next are performed simultaneously, and before all the operations

following the NEXT. Certain ISP' commands imply a NEXT statement.

For example, a NEXT is implied before a delay or wait statement, at

the end of a process, and at the end of a procedure or function. The

example below illustrates the simultaneaity of two operations. The PC

register is incremented at the same time that it is transferred to MA.

Thus if prior to the call to get_ word, PC held the value 5, then after

get_ word was executed, data would be fetched from memory location 5,

and PC would have the value 6.

get_word ·= •
(

PC = PC + 1 ; ' inc PC
MA = PC; next; ! transfer PC .to MA
MD = MI MAJ ' get data .

)

Arithmetic and logical operations in ISP' have been designed· to

reflect operations in real ALU s. All operations operate on operands of

specific width and produce a result of a specific width. To store results

1n a wider storage area leading 1 's or O's must be appended to the

11

structure. This is accomplished with the SXT (sign extend) and EXT

(zero extend) O.Perators. Arithmetic operations are perf'ormed with 2's

complement arithmetic. Assuming X, Y and Z are 8, 8 and 16 bits

respectively, and X and Y both contain IA hex, the following ISP'

statements leave Z with the values 34 and F4 respectively.

Z = <X + Y) ext 16;
Z - <X + Y) sxt 16;

ISP' allows the user to insert comments throughout his code. A

commenting convention has been adopted throughout this paper. At the

beginning of the code a brief description of the processor is given, its

current version, and a list of any references that would be helpful in

understanding its function. Each declaration is described following the

description. A description of every procedure or function is given. In

large blocks of code, comments are inserted to facilitate the

understanding of the overall function of that block. The goal of the

comments is to provide a top down understanding of the code without

providing excessive detail except in extraordinary situations.

The ISP' compiler translates the ISP' source code into an object

file. These object files are linked together by the Ecologist to form a

simulation program.

12

Ecologist

The combining of ISP' output files is controlled by the designer

through the topology file. The purpose of the topology file is to resolve

the ISP' references to ports, memories, and time, and to define the

interconnection of multiple ISP' processors. Five different sections form

the topology file.

The ports of one processor are connected to the ports of another

processor by signals. If an ISP' model uses ports then there must be a

signal declaration in the topology file. During simulation, the value of a

signal is the logical OR of all ports tied to it. Each topology file has

only one signal declaration section.

A collection of processor definitions follows the signal declarations.

Each processor definition references an ISP' output file, and more than

one processor can reference the same ISP' output file. Thus, multiple

instantiations of a particular ISP' model can be made.

If the ISP' model makes a delay call then a time delay declaration

is required for the model. The time delay declaration is used to give the

- relative time delays specified in the ISP' source file a physical meaning.

The connection of the ports of a given model to signals is defined

in the connection declaration of each processor. Not all ports of a model

must be connected to signals.

13

Finally, the initial contents of all ISP' memories is determined by

assigning the ISP' memory name of each model to a memory file. These

files may be created by the Linker/Loader, and could contain code for

a processor to execute. A tool for aiding in the generation of this code

is the metaMicro program.

metaMicro and the Linker/Loader

The metaMicro is a microassembler which utilizes a description of

a processor's instruction set to assemble programs. The Linker /Loader is

used to allocate this code into program memories. The metaMicro

program consists of two major sections.

A declaration section allows a processor to be defined for code

generation. Included in this section is the instruction length declaration

and the format of the instruction or microinstruction word. An extended

macro definition capability can then be used to define mnemonics for

the instructions.

Following the declaration section is the ·instruction section. This

· section contains the instructions that are to be assembled for the target

machine. For most machines these will be simply a list of macros that

have been defined in the declaration section.

The Linker /Loader provides a generalized address resolution system

which supports relocation of code. The designer also defines the

allowable memory space for code generation in the Linker/Loader.

14

Simulated Memory Processor

The simulated memory processor prepares the list of memories

referenced by the Ecologist and the memory contents created with

metaMicro for simulation. All of the Linker /Loader output .files are

converted from their packed format to a page format that the

simulation program can use. The simulated memory processor also

produces a symbol table file containing the name of the memory files

available to the simulation.

•.

Simulation

Combining the output of the Ecologist and the Simulation Memory

Processor yields the executable simulation of the processor system. A

runtime kernel controls the execution of the simulation, and allows for

user intervention. The goals of the simulation include functional

verification of the design, and perhaps some timing analysis. The

particular goals depend on the level of design and on the system being

designed.

A Small Instruction Set Computer

A Small Instruction set Computer. (SIC) was modeled using the

N .2 software. This computer was chosen for two reasons. First, it is

fairly simple yet displays most of the common features of computers.

15

Second, it is the computer used in the University of Central Florida's

Computer System Design course, as a model computer.

The SIC machine is a 6 register computer. A brief description of

the registers is given below.

fR - instruction register
MD - data register
AC - accumulator
PC - program counter
IA - index register A
18 - index register B

18 b ts
18 b ts
18 b ts
13 b ts
13 b ts
13 b ts

The word length of the machine is an unusual 18 bits, 13 of

which can be used for addressing memory. Any of 8192 words of

memory can be referenced with one of four addressing modes. The

addressing modes are given below.

DIRECT
INDIRECT

INDEX A
INDEX B

- effective address= address part of IR
- effective address= address pointed to by

the address part of IR
- effective address= address part of IR + IA
- effective address= address part of IR + 18

The instruction set of the machine includes instructions that

reference memory (MRI), instructions that perform various operations

(OPERATE), several input/output instructions (IO), and interrupt

instructions (INT). These instructions are described in more detail in the

next section. An AHPL description of the machine is given in Appendix

A. It is appropriate to point out the difficulty in reading the

16

AHPL code and determining the function it is trying to perform. It will

become apparent that ISP' code is much easier to understand.

The shortcomings of the SIC machine include a lack of regular

structure, for example there are two separate register sizes. Also only one

register, the accumulator, can be used for the arithmetic operations. The

machine is complete enough, however, to exercise many of the

capabilities of the N .2 software.

SECTION II

SIC IMPLEMENTATIONS

Overview

In order to demonstrate the capabilities of N.2 in modeling at

various levels of design abstraction, three models of SIC are constructed,

corresponding to the three classes of the design hierarchy presented in

the Section I. These models are roughly analogous to those used by

Motorola (Druian 1983) in developing the MC68000. The different model

types are denoted by the three letters A, B, and C.

The Class A model, the most primitive of the three, is a model of

SIC at the instruction level. Little attention is paid to timing

information, and no external interface capability is provided. The

purpose of this type of implementation is to provide a simulation model

that can be used to exercise the instruction set · of a particular machine

· in order to examine its richness relative to a target function (e.g.,

general purpose computing, signal processing, etc.).

An obvious extension of the Class A model is to model internal

operations and external interactions in order to increase the detail of the

timing information. The Class B model accomplishes this by providing a

pin level model of the SIC machine. The instruction

17

18

execution is broken down in terms of register transfers. Each transfer is

assumed to take one clock cycle. To provide for external interactions,

the 1/0 facilities of SIC are also implemented and a sample I/O model

is presented.

The Class C model is developed to further define the inner

workings of the SIC machine. The register transfer control logic is

implemented using a microcontroller. Each facility that could be

controlled by this microcontroller is developed as a separate ISP'

module. In much the same manner that a breadboard of a design

would be constructed from off-the-shelf parts, the SIC machine is

constructed from these many modules.

Modeling of each SIC model follows the design flow shown in

Figure 3. A facility specification, functional flow chart, and instruction

set description are presented for each model. The facility specification is

used to develop the declaration section of the ISP' code and the

interconnection topology for the model. The functional flowchart

determines the overall flow · for the ISP' code. The instruction

, specification helps determine the functions and procedures of the ISP'

code as well as aiding in the metaMicro creation of the instruction

models.

FACILITIES
DEFINITIONS

INSTRUCTION
FLOW

INSTRUCTION
DEFINITIONS

19

ISP·
----..) SOURCE CODE

METAM I CRO
SOURCE CODE

Figure 3. Model Development Flow.

Each model is discussed below. Some comments on the design

process are provided in order to aid future designers in designing N .2

models. Also a description of the salient features of each model is

provided.

Class A Implementation of SIC

The facilities set implemented in the Class A SIC is shown in

Figure 4. This includes the major internal registers, the accumulator,

AC, the memory data register, MD, etc. All the hardware to implement

20

the MRI and OPERATE instructions is included. These facilities define

the declaration section of the ISP' code for the model. This is shown

below. Since several of the registers are the same size, either 18 or 13

bits, constants are used to reference register sizes. This improves program

readability, and also improves flexibility.

M

2 13 x 18

ALU

Figure 4. Class A Sic Faci I ities.

state AC <WORD>, ' accumulator ..
MD <WORD>, ! memory data register
IR <WORD>, ' instruction register .
PC <ADDRESS>, ' program counter
MA <ADDRESS>, ! memory address register
IA <ADDRESS>. ! index register A
18 <ADDRESS>, ! index register B

21

If; ! Ii nk flag

memory M [0:8191] <WORD>; ' program memory .

format opcode = IR< 17: 15>, ' operation .
addr_type = IR< 14: 13>, ' address type
addr = IR<12:0>, ! address
op_part = IR<13:0>; ' operate part of instruction .

From the instruction format shown in Figure 5 and the instruction

definitions of in Table I, the instruction register IR can be formatted.

This allows specific bit fields, such as the opcode field, to be referenced

as primitives. This also improves the readability of the code. A

flowchart for an instruction cycle is shown in Figure 6. The basic flow

follows the following steps instruction fetch, instruction type

determination, instruction execution. Since SICs flow is basically a cyclic

process, the main block of code is coded in an ISP' main process.

Each instruction described in Table I is coded as a separate procedure.

This allows easier debugging of code, as well as improved flexibility. For

example, a delay associated with the execution of each instruction can

now be included in each of these procedures. An example of the code is

given below, while a complete listing is provided in Appendix B.

22

MRI I OPCODE I TYPE I ADDRESS
17 15 14 13 12 0

OPERATE I 1 1 1 81 OPERATE INSTRUCTIO N
17 14 13 8

Figure 5. Class A Sic Instruction Format.

23

TABLE I

CLASS A SIC INSTRUCTION SET

OPCODE MEANING

ISZ increment memory and skip if zero
LAC load accumulator
AND AND memory with accumulator
TAD twos complement add
JMS jump to subroutine
DAC deposit accumulator
JMP jump

HLT halt
NOP no operation
CLA clear accumulator
STA store accumulator
CMA com[plement accumulator
CLL clear I ink
STL set I ink
SKP skip if accumulator >~ 0
SKZ skip if accumulator = 0
SZL skip if I ink= 0
RAR rotate accumulator right
RAL rotate accumulator left
OTA deposit accumulator in IA
OTB deposit accumulator in 18
DFA deposit IA in accumulator
DFB deposit 18 in accumulator
INA increment IA
INB increment 18

EXECUTE
OPERATE

INSTRUCTION

START

OPERATE

INDIRECT

FETCH
NEW ADDRESS

TO IR

EXECUTE
READ

INSTRUCTION

24

FETCH
INSTRUCT ION

TO IR

ADDRESS
FROM IR

TO MA

INDEX

MODIFY
ADDRESS

IN IR

ADDRESS
FROM IR

TO PC

EXECUTE
STORE

INSTRUCTION

___ .a"----__ ___,

Figure 6. Class A Sic Instruction Flow.

get_word
store_word

fetch_inst ruction

25

:= <MD = MCMAJ)
:= (M[MAJ = MD)

:= <MA = PC; next;
get_word;
IR = MD; PC = PC + 1; next)

The instruction model is developed in metaMicro from the

instruction definitions given above. Since SIC has a single fixed length

word instruction this is fairly straightforward. A macro is created to

create the bit pattern of each instruction. Where there is commonality

among instructions, sub-macros are referenced. For example, a macro to

generate the address for the address field of the MRI instructions should

be developed. The LAC (Load ACcumulator) instruction is presented as

an example. A complete listing of the metaMicro instruction generation

code is given in Appendix C.

lac(a,m) = opcode = 1 ; addr = a; mode(m) $ &,
mode(m) =

if 'm eql "d" then {addr_type = direct};
if 'm eql " i ,, then {addr_type - indirect}; -
if 'm eql "a" then {addr_type = index_a};
if 'm eql "b" then {addr_type - i ndex_b}; &; -

The class A implementation of the SIC machine reveals several

interesting facts. Instruction set modeling using the N .2 software is very

easy. The Pascal-like nature of .ISP' makes performing functions a very

easy task and instruction execution is nothing but the two-step process

of deciding what function to perform and then performing it.

26

While the detail of this model may not seem great, much can be

gained from it. The ISP' code makes an excellent instruction level

description of the SIC machine that can be understood by both a

system and hardware designer. With the inclusion of some minimal

timing information, it can be used as a system specification. Because

of the procedural nature of the code, modifications are easily performed.

This allows a great amount of experimenting before any hardware is

designed. With the inclusion of more detailed timing a good estimation

of the performance of required algorithms can be made. In addition, the

resultant code is far easier to read than non-procedural code like AHPL.

Finally, after more detailed models are constructed, information can be

fed back into this model. This allows the model to be used as a

software emulator of the hardware in a software design system.

Class B Implementation of SIC

The class B model extends the facilities implemented in the class

A model to include I/O and interrupt capabilities. The overall system is

shown in Figure 7 and the more detailed SIC machine is shown in

Figure 8. Since the purpose of the Class B model is to provide a pin

level description, several models of external processes such as a main

memory module and an 1/0 process, are developed.

27

- .. . occert
dotovol d I/O --- l/O .. I I I • I/O

reody
..._ .. .

~' ,r-. 'I''' , ',f'

... ,I ... ~ ~
INTLINE

SIC ... ,,,
CSBUS

... ,, ,i,.

.... ~ '"
.. ,,

IOBUS "I'

MABUS

I

'"'
' 1-lri ts ' MEMORY
' enobls '

Figure 7. Class B Overal I System.

-----tmM

c
c

R

28

M

2 13 x 18
IOBUS

ALU

OBUS

Figure 8. Class B SIC Faci I ities.

29

For the Class B model the instruction set is enhanced as is the

handling of the OPERATE instructions. These are processed in three

event times, instead of one in the Class A model. The format of the

new instruction set is included in Figure 9, and the new instructions are

defined in Table II. The event times for the OPERA TE instructions are

given in Table III. A flowchart for the · handling of the new instructions

is shown in Figure 10.

MRI I OPCODE I TYPE I ADDRE SS
17 15 14 13 12 CD

OPERATE I 1 1 1 CD I EUENT 1 EUENT 2 EUENT 3 I
17 14 13 0

HH I 1 1 1 1 1 I COMMAND MAS K
17 13 12 8 7 0

IO I 1 1 1 1 CD 1 I COMMA ND
17 12 11 8

Figure 9. Class B SIC Instruction Format.

30

TABLE II

ADDITIONAL SIC INSTRUCTIONS

OPCODE MEANING

LMI load mask register from IR
LMA load mask register from accumulator
LAM load accumulator from mask register
Ml I mask interrupt from IR
CLI clear interrupt
EAi enable interrupts
DAI disable interrupts

ODn output data to device n
IDn input data from device n
ISn input status from device n
DBn activate output buffer to device n
IBn activate input buffer to device n
OCn output command to device n

31

TABLE III

EVENT TIME STRUCTURE OF OPERATE INSTRUCTIONS

EVENT BIT FIELD VALUE MEANING

0 13 0 rotate direction is left
1 rotate direction is right

1 12 0 no rotate
1 rotate AC

11 : 10 00 no op
01 set Ii nk
10 c I ear Ii nk
1 1 halt

9:8 00 no op
01 set AC
10 clear AC
1 1 complement AC

2 7 0 no rotate
1 rotate AC

6:4 000 no op
001 SZL, skip event 3
010 DFA
011 DFB
100 OTA
101 INA
110 OTB
1 1 1 INS

8 3 0 no rotate
1 rotate AC

2 0 no op
1 skip if AC < 0

1 0 no op
1 skip if AC = 0

0 0 no op
1 skip if AC > 0

FETCH
INSTRUCTION

TO IR

PUT STATUS
ON BUS

ANO WAIT

EXECUTE
UNBUFFERED
OPERATION

32

EXECUTE
MRI

INSTRUCTION

EXECUTE
OPERATE

INSTRUCT ION

EXECUTE
INT

INSTRUCTION

EXECUTE
INT

INSTRUCTION

EXECUTE
BUFFER

OPERATION

Figure 10. Class B SIC Flowchart.

33

In the Class B model it is assumed that each register transfer takes

exactly one clock time to be performed. Thus each register operation in

the ISP' source code has a CYCLE (delay(l)) command following it.

The multiple event times used to implement the OPERATE instructions

bring out these register operations more clearly. The complete ISP'

source code is given in Appendix D.

As mentioned, models of processes external to SIC also need to be

created. A synchronous memory module is presented to implement the

main program memory. This module communicates to the SIC machine

over four lines, illustrated in the port declarations of that module.

port ADDR <ADDRSl2E>, ! address bus
DATA <DATASIZE>, ' data bus .
write, ' read/write I i ne .

' read= 0, write - 1 . -
enable; ' enable .

The ADDR port connects to the MA register to the MABUS and

contains the address of the word to be referenced in memory. The

DAT A port connects to the IO BUS of the SIC machine which feeds the

memory data register and contains the data written/read to/from

memory. An ENABLE line is used to enable memory, and a WRITE

line is used to write to memory.

The 1/0 device developed emulates a hardware multiplier. It

revceives data over the IOBUS from the SIC machine and stores it in

34

an internal register. Signalling of transfers is accomplished by using the

lines READY, DATAVALID, and ACCEPT. The purpose of this process

is to . multiply that last two numbers received, faster than the SIC

machine could perform the operation, but still in more than one clock

time. The complete description of both the memory and 1/0 modules is

given in Appendix E.

In order to connect these modules to the SIC machine the

Ecologist is used. A topology file, given in Appendix F, is used to

declare each of the modules and their port connections.

Since the instruction set was slightly enhanced, a more complete

metaMicro description is required. This is given in Appendix G. Note

the addition of several special commands, which are not part of the

SIC assembly set, but which do test the use of multiple event times in

the OPERATE instructions. The Class B model of SIC demonstrates

N .2's capabilities at modeling near the register level. The ease with

which the Class A model was enhanced to the Class B implementation

shows how simpler models can be enhanced to· more complicated ones

. without the need of a separate design language.

Class C Implementation of SIC

So far no mention of the control ~ystem for the SIC machine has

been made. The C model is designed to address that issue. A micro

controller for the SIC machine was developed. The system is shown in

35

Figure 11. The microword format is shown in Figure 12.

CONTOITION
MUX
-

... 1 ...

MICRO L " SEQUENCER I' '

.,,
'~

MICROPROGRAM
ROM ALU

ANO

DATA

BRANCH
'~ CONTROL

PIPELINE I

REGISTER
, I'

-
"-
/

NEXT
ADDRESS CONTROL

MU><

-

Figure 11. Class C SIC System.

147 39138
NEXT

ADDRESS

ADDRESS
CONTROL

ALU
INPUTS

ALU
FUNCTION

MISC
CONTROL

FULL

ADDRESS
CONTROL

36

MICROWORD
48

BITS

27126 19 (1 7 918 0 I
ALU ALU MISC.

I~PUTS FUNCTION CONTROL

ABUS 88US 181

OBUS ALU s I

Figure 12. Class C SIC Microword Format.

Basically, a micro program ROM stores the microprogram word.

On the leading edge of the clock this word is latched into the pipeline

register. Two simultaneous processes then begin. The micro sequencer

generates the next ROM address based on the next address field of the

37

current microword, and on the condition code generated from the SIC

machine after it executed the last micro instruction. This occurs while

the SIC machine is executing the present instruction. All registers in the

SIC machine are latched on the falling edge of the clock, as is the

address generated by the micro sequencer. This process is illustrated in

the timing diagram shown in Figure 13.

SYSTEM
CLOCK

Pipeline
Register

Condition
Code

Sequencer
Address

ROM
output

ALU
output

_} \ __ /
1

Ne x t
Microc!dcle

•
1 5© ns

•
Miscelloneous ~~~~~~~~~~~~~~~~+~~15~n-s~~

Registers ~

Figure 13. Class C SIC Microcycle Timing.

38

In order to specify the functions over which the micromachine has

control, a much more detailed model of SIC is created. This is given in

Appendix H. Each element of the SIC machine is modeled as an

independent process. That is, each register, and its associated input and

output multiplexers, are developed in separate ISP' files. Where more

than one register is the same, like the IA, IB, and PC registers, multiple

instances of a single model can be used.

The timing of the Class C machine consists of assigning a delay to

each of the subprocesses that make up the machine. These delay

numbers are specified in nanosecond units. The synchronization of the

processes is accomplished with a clock generator model.

Due to the large number of communicating processes, the

importance of the topology file increases. The topology file is given in

Appendix I. The ability to connect ports to only part of a signal is

used freely.

Two memories exist in the Class C SIC machine, the program

RAM and the microprogram ROM. The metaMicro code used to set up

· the program RAM is the same as that used in the B level model. A

separate description must be developed for the program ROM. Again,

the instruction length of the micromachine is a constant one word, so

program deveJopment is fairly straight.forward. The ~1icroprogram i~ not

presented here.

39

The Class C SIC model was very difficult to construct, and

probably illustrates the lowest level of modeling that can effectively be

performed with N .2. If a library of ISP' primitives was present, for

example a collection of registers, memories, muxes, etc., then modeling

at this level would become far easier. As it is, however, the time

required and the potential mistakes induced by creating each of the

individul registers models makes the net gain from this degree of

modeling questionable.

Not far from this level of modeling, is modeling with logic level

simulators. Since these simulators typically contain registers,
.

memories,

and other primitives of this type, it seems that they should be used to

perform this detail of simulation. A further advantage of logic level

simulators is that coupled with a graphics entry front end, they provide

releasable schematics in addition to simulation capabilities for hardware

design.

An advantage that the ISP' modeling language has over logic

simulators is that each of the ISP' primitives may be of any complexity.

For example, a complicated processor function, such as multiplication, is

easily coded in a single ISP' step. To implement complicated functional

blocks with gates and registers wastes design time, if the intent is only

to model that functional block for use in a larger simulation. In the

final analysis, however, it seems that effective Class C models can only

be developed by including the ability to

40

reference ISP' code by a logic simulator, or by developing a large logic

level parts library for the ISP' simulator.

SECTION III

COMMENTS AND CONCLUSIONS

The N .2 system clearly provides a useful tool in digital design

cycle. The major strong points of the software system are summarized

below, a]ong with a list of its shortcomings.

The modeling language ISP' provides excellent system modeling

capabilities at the instruction or register level. A design can be

partitioned into functional blocks and these blocks combined into a

simulation. Delays can be included in the block specification to increase

the accuracy of the simulation. The resultant ISP' code of the machine

also provides a specification that a system level designer as well as a

logic designer can understand and use.

The instruction specification language, metaMicro, allows

customized assemblers to be developed. This greatly speeds the

development of sample code and microcode for the target machine. The

author was unable to locate another functional modeling tool with this

capability.

Several enhancements to the capabilities of the N .2 system would

greatly improve its capabilities. First, to increase the capabilities at the

more abstract levels of simulation, signals should be data structures.

41

42

That is, the current 1 or 0 syst em that ISP' uses to reference signal

values should be replaced with user-definable signal levels. This

capability is already present in other functional level simulators such as

HHDL*.

Second, the instrinsic functions able to be referenced in the ISP'

code should be increased to include a greater subset of the PAS CAL or

FOR TRAN function set. The inclusion of trigonometric fuctions along

with data structured ports would make the design of communication

systems possible using ISP'.

Third, to increase to power of the N .2 system at the gate level, a

parts library needs to be developed. Parts should include registers,

multiplexers, and various combinational logic primitives. In addition to

generic primitives, a set of standard TTL parts should also be

developed.

Finally, to increase the capabilities of the Ecologist as a binding

tool for ISP' modules, parameters should be able to be passed to those

modules. That 1s, parameters other than delay time and signal

· connections. This would allow for configurable parts such a N bit

registers or M input gates.

*HHDL is the hardware design language used with the HELIX simulator
used at Martin Marietta. This software is produced by Silvar Lisco Inc.

43

In general, the N .2 system provides a useful tool for the

development of new processor systems early in the design cycle. It is

limited in its capabilities later in the design cycle and would have to be

replaced by another design tool.

APPENDIX A

SIC AHPL

The SIC control sequence given here was used to develop the ISP'

models of the SIC machine. This includes the interrupt, 1/0 and buffer

sequences, but does not include the DMA. Also the INT and TST

sequences are also not given. A fully synchronous memory of one clock

period has been assumed throughout.

MODULE : SIC
MEMORY MC8192;18J; ACC18J; MDC18J; IR[18J; PCC13J; MAC13J;

IAC13J; 18[13J; MR[8J; INTRCBJ; CSR[12J; BWCC13J;
BCR[4J; BIOR[4J; CC[2J; If; intf; enif

INPUTS : INTLINE[8J; BCRDYC4J; start; ready; dataval id; accept
OUTPUTS : BUFRDY[4J; csrdy; ready; dataval id; accept; bufend
BUSES : ABUS[18 J; BBUS[18 J; OBUS[18 J
COMBUSES: IOBUSC18J; CSBUSC12J

1. -><start)/(1)
2. ->Cv/BCR)/(90)

. 2. 1 ->< i ntf)/(60)
2.2 MA <- PC; PC <- INC<PC)
3. MD <- BUSFN<M; DCD<MA))
4. I R < - MD ; i n t f * ((v I (MR " I NTR)) " en i f) < - 1
5. -><IRo A IR1 A_l_R2)/~5)
6. NO DELAY; -)((IR3 A IR4),(IR3 A IR4), IR3)/(13,7,10)
7 . MA < - I Rs : 1 1
8. MD <- BUSFN<M;DCD<MA))
9. IRs:11 <- MDs:11; -> <13)
10. NO DELAY; ->CIR4)/(12)
11. IRs:11 <- ADD<IRs:11;IA); -><13)

44

45

12. IRs:11 <- ADD<IRs:11;l8)
13. NO DELAY; ->(IRoA IR1)/(15)
14. PC<- IRs:11; ->(2)
15. MA <- I Rs : 1 1 ; -> (I Ro) I (21) _
16. MD<- BUSFNCM;DCDCMA)); ->CIR1 A IR2)/(18)
17. AC <- (M!L_! <MD A AC ! ADDiMD;AC)))*

((IR1 A IR2),(IR1 A IR2),(IR1 A IRz));
lf*CIR1 A IR2) <- ADDo<MD;AC); ->C2)

18. MD <- INC<MD)
19. MtDCDCMA) <- MD; ->(V/MD)/(24)
20. PC<- INC<PC); ->(2)
21 . MD <- <AC ! (5 T 0, I NC< PC)))* C I R 2, I R 2)

22. M*DCD<MA) <- MD; ->CIR2)/C2)
23. PC <- IR
24. PC<- INC<PC); ->(2)
25. NO DELAY; -><IR3)/C50)
26. NO DELAY; ->CIRs)/(30)
27. NO DELAY; ->CCIRs A IR7),CIRs A IR1)/(1.29)
28. NO DELAY __
29. AC~ - (< 18 T 0) ! < 1 a_ T 0) ! AC)*

((1Ra A IRs),(IRa A I Rs), Cl Ra A IR9)
I f * C I Rs) <- 0; I f * C IR 7) <- 1 ; -> <33)

30. -> (I R 4) I< 32)
31. If.AC<- AC, If; -><33)
32. I f, AC <- AC 1 7, I f, AC o : 1 s
33. NO DELAY; -> CIR10)/(4Q)
34. NO DELAY; -> CDCDCIR11.IR12)/C35,37,38,39)
35. NO DELAY; -> CIR13 A lf)/(43)
36. PC<- INC<PC); ->(2)
37. AC<- (5 T 0, IA ! 5 T O,JJ3)*CIR13, IR13); ->(43)
38. I A <- <<AC)! (I NC< I A)))* <lB.1 3. IR) ; -> < 43)
39. I B <- ((AC)! C I NC< I B))) * < I R 1 3, I R) ; -> (43)

· 40. NO DELAY; -> CIR4)/(42)
41. If. AC <- AC, If; -> < 43)
42. If. AC <- AC 1 1, If, AC o : 1 s
43. NO DELAY; -><IR14)/(45)
44. -)(f,f)/(36,2);

{f = <AC<O A IR1s) V <AC=O A IR1s) V CAC>O A IR11)}
45. NO DELAY; ->CIR4)/(47)
46. If, AC <- AC, If; -> (2)
47. If.AC<- AC11, lf.AC0:1s
50. -> <IR4)L.1_INT SEQ)
51. -><I Rs, IRs)/(70,TST SEQ)
60. intf ,enif <- 0,0

46

61. I Rs: 11 <- ADDR<PR I< I NTR"'MR)))
62. MA<- IR5:11; MD<- 5 T O,PC
63. M * <DCD<MA) <- MD
64. PC<- IRs:11; -> <24)
70. CSR<- IRs:11
71. CSBUS =CSR; c§L.dy = 1; -><accept)/(71)
72. NO DELAY; -> <IRs)/iZ.4)
73. NO DELAY; -> <IR10. IR1o)C24,85)
74. NO DELAY;-> <IR11)/(78)
75. MD <- AC
76. -> (ready)/(76)
77. IOBUS =MD; dataval id= 1; -><accept,accept)/(24,77)
78. ready = 1; -> (datavall.Q)/(78)
79. CSR*IR10 <- CSBUS; MD*IR10 <- IOBUS
80. accept = 1; -> (dataval id)/(80)
81. NO DELAY;-> <IR10)/(83)
82. AC <- MD; ->C 24) ____ _
83. NO DELAY; ->(V/IR12:11ACSRs:11))/(2)
84. PC<- INCCPC); ->(2)
85. BIOR * DCD<IR1:s) <- <IR11 A 4 T 0); -><24)
90. -><V<DCD<CC)ABCR)/(92)
91. CC<- INC<CC); -><90)
92. IR<- BADDRCCC); BCR*DCD<CC) <- 4 T 0
93. MA<- IRs:11
94. MD<- BUSFNCM;DCDCMA)); IR5:17 <- INCCIR5:11)
95. MA<- IRs:11; BWC <-MD
96. MD <- BUSFNCM;DCD<MA))
97. MA <- ADDCMD;BWC)
98. BWC <- INC<BWC); BUFRDY = DCD<CC)
99. NO DELAY; ->CV/CDCDCCC)ABIOR)/(103)
100. MD <- BUSFNCM;DCD<MA))
1 01 . -> (ready) I (1 01)
102. IOBUS =MD; datayal jd = 1; -><accept,accept)/(107, 102)
103. ready = 1; -><dataval id)/(103)
104. MD <- IOBUS
105. M * DCD<MA) <- MD
106. accept = 1; -><dataval id)/(106)
107. NO DELAY; ->CV/BWC)/(109)
108. bufend = 1; ->(2)
109. BUFRDY = DCDCCC)
110. MA<- BADDR<CC); MD<- BWC;
111. M*DCD<MA) <-MD

APPENDIX B

"A" MODEL ISP' SOURCE FOR SIC

The following ISP' source code represents the "A• level model for

SIC. A very limited subset of the SIC features are included. These are

the MRI and OPERATE instructions. No timing information, or port

information is contained in this model.

! **
' . ! Name
! Purpose

' . ' ! Author
' Version
!
! Comments

' . ' . '

ASIC. I SP
ISP' code for a
Smal I Instruction set Computer,
class A implementation
BJ Patz
1. 0

MRI and OPERATE instructions modeled only
no ports are modeled
program memory included

' **

' . ! declarations

' .
macro WORD = 18 &,

ADDRESS = 13 &,
ADDR_PART = 12:0 &.
CYCLE = delay(1') &.

47

! basic word size
! basic address length
! address part of WORD
! basic cycle time
! one cycle per instruction

48

! major instruction breakdown, bits 17:15

ISZ_r
LAC_I
AND_I
TAD_,
JMS_I
DAC_I
JMP _I
OP _ID_

= 0 &,
= 1 &,
= 2 &,
= 3 &,
= 4 &,
= 5 &.
= 6 &.
= 7 &,

! inc and skip on zero
! load AC
! and MD with AC
' twos comp add MD with AC
! jump to subroutine
! deposit AC
! jump
! operate or 1/0 instruction

! operate instruction breakdown, bits 12:0

HLT_I
NOP_I
CLA_I
STA_I
CMA_I
CLL_I
STL_I
SKP _I
SKZ_I
SZL_I
RAR_I
RAL_I
DTA_I
DTB_I
DFA_I
DFB_I
INA_I
INB_I

= OxOcOO &,
= OxOOOO &,
= Ox0200 &,
= Ox0100 &,
= Ox0300 &.
= Ox0800 &,
= Ox0400 &,
= Ox0003 &.
= Ox0002 &,
= Ox0010 &,
= Ox3000 &.
= Ox2000 &,
= Ox0040 &,
= Ox0060 &,
= Ox0020 &,
= Ox0030 &.
= Ox0050 &,
= Ox0070 &.

! adressing modes

state

DIRECT = 0 &,
INDIRECT = 1 &,
INDEX_A =-2 &,
INDEX_B = 3 &,

xw<val) =val ext 18 &;

AC <WORD>.
MD <WORD>.
IR <WORD>,

! halt
! no operation
! clear accumulator
! set accumulator
! complement accumulator
! clear I ink
! set I ink
' skip if accum >= 0
! skip if accum = 0
! skip if I ink= 0
! rotate accum right
' rotate accum left
' deposit accum to IA
! deposit accum to 18
! deposit IA to accum
! deposit 18 to accum
! increment I A
' increment I B

! direct addressing
! indirect addressing
! index A addressing
! index B addressing

! accumulator
! memory data register
! instruction register

49

! program counter PC <ADDRESS>,
MA <ADDRESS>,
IA <ADDRESS>,
18 <ADDRESS>.
If;

' . memory address register

memory M [0:8191] <WORD>;

format

' .

opcode
addr_type
addr
op_part

! sub processes
!

= IR< 17: 15>,
= I R< 14: 13>,
= IR<12:0>,
= IR< 13: O>;

' . ' . !
!

' . !
' . ' .

index register A
index register 8
Ii nk f I ag

program memory

operation
address type
address
operate part of instruction

! **
' Memory operations

get_word
store_word

:= <MD = MCMAJ)
:= <MCMAJ = MD)

fetch_instruction := <MA= PC; next;
get_word;
IR = MD; PC = PC + 1; next)

load_md := <MA = addr; next;
get_word)

! **
! compute effective address

effective_address :=
(

MA= addr; next;
case addr_type

esac;
)

direct
indirect
index_a
index_b

•
' Cget_word; addr = MD<ADDR_PART>)
(addr = addr + IA)
Caddr = addr + 18)

! **
! perform MRI instructions

50

do_isz := (I oad_md; ! load MD
MD = MD + 1; next; ' increment MD .
store_word; ' store MD .
if <MD eql Q) <PC= PC+1)) ' if MD = 0 then skip .

do_ lac := (I oad_md; ' load MD
AC = MD) ! load AC from MD

do_and := C I oad_rnd; ' load MD
AC = MD and AC) ' AND AC and MD

do_tad := (I oad_md; ' load MD
AC = MD + AC) ' add AC and MD

do_jrns .-.- (MD= xwCPC); next;
store_word; ' save PC .
PC = addr) ' jump to address .

do_dac ·= <MD = AC; next; ! load MD from AC .
store_word) ' save AC .

do_jmp := CPC = addr) ! jump

! **
! perform OPERATE instructions

do_cla
do_sta
do_cma
do_cl I
do_stl
do_skp
do_skz
do_szl
do_rar

do_ral

do dta
· do_dtb

do_df a
do df b
do_1 na
do_i nb

:= <AC = 0) !
:= <AC = not 0) !
:= CAC = not AC) !
:= (If= 0) !
:= (If = 1) !
:= Cif <AC geq 0) CPC = PC+1)) !
:= Cif CAC eql 0) <PC= PC+1)) !
:=(if (If eql 0) <PC= PC+1)) !
:= <AC= If concat AC<<WORD-1_:0>;

If= AC<O>) !
:= CAC = AC concat If;

clear AC
set AC
complement AC
c I ear I ink
set Ii nk
skip next instruction
skip next instruction
skip next instruction

rotate right

If= AC<CWORD-1)>)
:= <IA= AC<addr_part>)
:= (18 = AC<addr_part>)
:=<AC= xw(IA))

! rotate left

: = (AC = xw C I B))
:=-<IA= IA+ 1)
:= (18 = 18 t 1)

! deposit AC in IA
' deposit AC 1n 18
' deposit IA in AC
' deposit 18 in AC
! increment I A
' increment I B

! ~**************t************ t ************* x *t*************f* ~ ** ~
' rneiin program

' .
m8. in : =

51

(

fetch_instruction;

if (opcode neq OP_IO_I) effective_address;

case opcode
ISZ I
LAC_I
AND_!
TAD_I
JMS_I
DAC I
JMP I
OP _IO_

esac;
CYCLE;

)

(do isz)
(do_ lac)
(do_and)
Cdo_tad)
Cdo_jms)
(do dac)
(do_jmp) . .
(

case op_part
HLT_I
NOP _I
CLA_I
STA_I
CMA I
CLL_
STL_
SKP_
SKZ_
SZL
RAR_
RAL_
OTA_
OTB_
DFA_
DFB_
INA_
INB_I

esac;
)

(;)
(;)
Cdo_cla)
(do_sta)
(do_cma)
(do_c 11)
(do_stl)
(do_skp)
(do_skz)
(do_sz I)
(do_rar)
(do_ra I)
(do_dta)
Cdo_dtb)
(do_df a)

(do_df b)
Cdo_i na)
(do_i nb)

•

APPENDIX C

"A" MODEL METAMICRO SOURCE FOR SIC

The following source code represents the metaMicro code for the

"A" level model for SIC. M.acros are included for every MRI and

OPERATE instruction.

' **
' . ! Name : ASIC.METAMICRO
! Purpose
!

: metaMicro assembly code generator for SIC
class A imp1ementation

! Author
! Version

' . ! Comments

' .

: BJ Patz
1 . 0

! **
instr 1[1, 1J<18> $ ' 1 word instruction of 18 bits .

format opcode = I< 17: 15>, ! operation·
addr_type = I< 14: 13>, ' address type .
addr = 1<12:0>, ' address .

rot_d i r = I< 13: 13>, ' rotation direction .
rot1 = 1<12:12>, ' rotate in event 1 .
rot2 = 1<7:7>. ' rotate in event 1 .
rot3 = 1<3:3>. ' rotate in event 1 .
ev1 1 - I < 11 : 1 O>, ' event time 1 sub event 1 - .
ev1_2 = 1<9:8>, ! event time 1 sub event 2
ev2 = 1<6:4>. ' event time 2 only event .
ev3_1t = 1<2:2>. ' event time 3 less than 0 .
ev3_eq = 1<1 :1>. ' event time 3 equal 0 .

52

macro

53

ev3_gt = l<O:O>, ' event time 3 greater than 0

op_io_int = 1<14:12>, ! operate, 1/0, and interrupt

o_device =
o_command =
o_status =
o_data =
o_d i r =
o_comp =

buf - io_chan =

I< 11 : 9>,
1<8:7>,
I < 11 : O>,
1<7:7>,
1<6:6),
1<5:0>,

1<10:9)$

' opcodes

' I /0 device
! I /0 command
! I /0 status
! 1/0 data or status
! I /0 d i rec t j on
! 1/0 status compare

! buffer 1/0 channel

! constants

direct
indirect
index_a
index_b
left
right

= 0 &,
= 1 &,
= 2 &,
= 3 &,
= 0 &,
= 1 &,

! the basic op codes

isz(a,m) =opcode= O; addr = a; mode(m) $ &,
lac(a,m) = opcode= 1; addr = a; mode(m) $ &,
and(a,m) = opcode= 2; addr =a; mode(m) $ &,
tad(a,m) =opcode= 3; addr =a; mode(m) $ &,
jms(a,m) =opcode= 4; addr =a; mode(m) $ &,
dac(a,m) = opcode= 5; addr = a; mode(m) $ &,
jmp(a,m) = opcode= 6; addr = a; mode(m) $ &,

raf =opcode= 7; rot_dir = left; rot1 = 1;
rar =opcode= 7; rot_dir = right; rotl = 1;

nop = opcode = 7; ev1 1 = 0 $ &,
stl = opcode= 7; ev1=1 ~ 1 $ &,
cl I = opcode = 7; ev1_1 = 2 $ &,
hit = opcode = 7; ev1_1 = 3 $ &,

sta = opcode = 7; ev1_2 = 1 $ &,
cla = opcode = 7; ev1_2 = 2 $ &,

54

cma = opcode = 7; ev1 _2 = 3 $ &,

szl = opcode = 7; ev2 = 1 $ &,
df a = opcode = 7; ev2 = 2 $ &,
df b = opcode = 7; ev2 = 3 $ &,
dta: = opcode = 7; ev2 = 4 $ &,
ina = opcode = 7; ev2 = 7 $ &,
dtb = opcode = 7; ev2 = 6 $ &,
inb = opcode = 7; ev2 = 7 $ &,

skp = opcode = 7; ev3_eq = 1 ; ev3_gt = 1 $ &.
skz = opcode = 7; ev3_eq = 1 ; $ &.

' address mode determination

mode(m) =
if 'm eq I "d" then {addr _type = direct};
if 'm eql "i" then {addr_type = indirect};
if 'm eql "a" then {addr_type = index_a};
if 'm eq I "b" then {addr _type = i ndex_b}; &;

APPENDIX D

"B" MODEL ISP' SOURCE FOR SIC

The following ISP' source code represents the 'B" level model for

SIC. The complete instruction set of SIC, as defined by the AHPL code

in Appendix A, is modeled. Interconnection capabilities to an external

memory and 1/0 facilities are also provided.

! **
' . BS IC. I SP ! Name

Purpose ' . ' '
ISP' code for a Smal I Instruction set Computer,
class B

.
! Author
' Version
!

implementation
BJ Patz
1. 0

! Comments al I instruction groups modeled

' .
! **~*******************
!
! declarations

' .
macro WORD = 18 &,

ADDRESS = 13 &,
ADDR_PART = 12:0 &,
STATUS = 12 &,
BUF CHAN = 4 &,
INT_CHAN = 8 &.
STAT_PART = 5:0 &,
CYCLE = delay(l) &,

55

! basic word size
! basic address length
! a9dress part of WORD
! status length
! number of buffer channels
! number of interrupt Jines
! comparable part of STATUS
! basic cycle time

56

' major instruction breakdown, bi ts 17: 15 .
ISZ_I = 0 &, ' inc and skip on zero .
LAC_I = 1 &. ' load AC
AND_I = 2 &. ' and MD with AC .
TAD_I = 3 &, ! twos comp add MD with AC
JMS_I = 4 &. ' jump to subroutine .
DAC_I = 5 &, ' deposit AC .
JMP _I = 6 &, ! jump
DP _ID - = 7 &. ! operate or 1/0 instruction

! adressing modes

DIRECT = 0 &, ' direct addressing .
INDIRECT = 1 &, ' indirect addressing .
INDEX_A = 2 &. ' index A addressing
INDEX_B = 3 &. ! index B addressing

LEFT = 0 &.
RIGHT = 1 &.

xw<va I) = val ext 18 &;

port INTLINE <INT_CHAN>. ' interrupt I i nes .
BCRDY <BUF_CHAN>. ' buffer channel ready? .
BUFRDY <BUF_CHAN>. ' buffer ready .
start. ! start signal
csrdy, ' status ready .
ready, ' io ready .
dataval id, ' io data val id .
accept, ' io accepted .
bufend, ' buffer done
IOBUS <WORD>, ! io info bus, memory data bus
CS BUS <STATUS>. ' status bus .
MABUS <ADDRESS>, ' memory address bus .
mwrite, ' memory write .
menable; ! memory enable

state AC <WORD>. ' accumulator .
MD <WORD>, ! memory data register
IR <WORD>. ! instruction register
PC <ADDRESS>. ! program counter
MA <ADDRESS>, ' memory address register .
IA <ADDRESS>. ' index register A .

format

opcodes

!

18 <ADDRESS>,
If,
MR <I NT _CHAN> ,
INTR <INT_CHAN>,
CSR <STATUS>,
BWC <ADDRESS> ,
BCR <BUF_CHAN>,
BIOR <BUF_CHAN>,
CC <1 :O>,
intf,
en if;

57

opcode
addr_type
addr

= tR<17:15>,
= I R< 14: 13> ,
= IR<12:0>,

rot_d i r
rot1
rot2
rot3
ev1 1
ev1 _2
ev2
ev3_1 t
ev3_eq
ev3_gt

op_io_int

o_device
o_command
o_status
o_data
o_di r
o_comp

= I R< 13 : 13>,
= I R< 1 2 : 12>,
= IR<7:7>,
= IR<3:3>,
= I R< 11 : 1 O>,
= IR<9:8>,
= IR<6:4>,
- IR<2:2>,
= IR< 1 : 1 >,
= IR<O:O>,

= I R< 14: 12> ,

= IR<11:9>,
= IR<8:7>,
= IR<11:0>,
= IR<7:7>,
= IR<6:6>,
= IR<5:0>.

buf_io_chan = IR<10:9>;

! sub proqesses

' .

! index register 8
! I ink f I ag
! mask register
! interrupt register
' comm status register
! buffer word count
! buffer channel register
! buffer 1/0 direction
' 2 bit counter
! interrupt flag
! interrupt enab I e

! operation
! address type
! address

! rotation direction
! rotate ·n event 1
! rotate n event 1
! rotate n event 1
! event t me 1 sub event 1
! event t me 1 sub event 2
! event t me 2 only event
! event t me 3 less than 0
! event t me 3 equal 0
' event t me 3 greater than 0

! operate, 1/0, and interrupt

! I /0 device
! 1/0 command
! I /0 status
! 1/0 data or status
! I /0 d i rect ion
! 1/0 status compare

! buffer 1/0 channel

58

! **
! get a word from memory, 1 cycle read

get_word :=
(

menable = 1 ;mwrite = O; MABUS= MA; MD= IOBUS; CYCLE;
menable = O;

)

! **
! store a word. 1 cycle write

store_word :=
(

menable = 1 ;mwrite = 1; MABUS - MA; IOBUS =MD; CYCLE;
menable = O;

)

! **
! fetch an instruction

fetch_instruction :=
(

MA = PC; CYCLE;
get_word;
IR = MD; PC= PC + 1; CYCLE;

)

! **
! compute effective address

effective_address :=
(

MA= addr; CYCLE;
case addr_type

esac;
)

direct
indirect
i ndex_a
index~b :

•
' (get_word; addr = MD<ADDR_PART>;CYCLE)
Caddr = addr + IA; CYCLE)
(addr = addr + 18; CYCLE)

! **
! load MD from address in IR

59

load_md :=
(

)

MA = addr; CYCLE;
get_word;

! **
! perform MR I j nstruct i ans

do_isz := (I oad_md; ! I oad MD

do_ lac

do_and

do_tad

do_jms

do_dac

do_jmp

MD = MD + 1 ;- next; ! increment MD
store_word; ! store MD
if <MD eq I 0) <PC = PC+ 1)) ! if MD = 0 then skip

:= Cload_md; ! load MD
AC = MD) ! load AC from MD

:= (load_md; ! load MD
AC = MD and AC) ! AND AC and MD

:= (load_md; ! load MD
AC = MD + AC) ! add AC and MD

:= <MD= xw<PC); next;
store_word;
PC = addr)

:= CMD = AC; next;
store_word)

:= <PC = addr)

! save PC
! jump to address
! load MD from AC
! save AC
! Jump

! **
! rotate accumulator

rotate_ac :=
(

case rot_dir
left

esac;
)

right

<AC= AC concat If; If= AC<CWORD-1)>;
CYCLE)

CAC = If concat AC<CWORD-1):0>; If= AC<O>;
CYCLE)

! **
! event time 1 for operate instructions

eventl :=
(

60

case rot1
0 : (

esac;
)

case ev1 1
0 ; ! nop
1 : < If = 1 ; CYCLE) ! set I ink
2 : (If= O; CYCLE) ! clear I ink
3 : ; ! ha It

esac;
case ev1_2

esac;
)

0 ; ! nap
1 <AC = not O; CYCLE) ' set AC
2 <AC = O; CYCLE) ! clear AC
3 <AC = not AC; CYCLE) ! comp AC

1 rotate_ac

! **
! event time 2

event2 :=
(

case rot2
0 : (

esac;
)

case ev2
0

esac
)

1 :
2
3
4 :
5
6
7

1 : rotate_ac

•
' (if If eql 0 then <PC= PC+ 1; CYCLE)
<AC= xw<IA); CYCLE) ! DFA
<AC= xw<IB); CYCLE) ! DFB
<IA= AC<ADDR_PART>; CYCLE) ! OTA
(I A = I A + 1 ; CYCLE) ! I NA
(18 = AC<ADOR~PART>; CYCLE) ' OTB
(18 = 18 + 1 ; CYCLE) ! I NA

! **
! event time 3

event3 :=
(

case rot3
0 : (

)

if (

61

(ev3_1t and <AC lss xw(Q))) or ! AC < 0
(ev3_eq and <AC eql xwCQ))) or ! AC = 0
(ev3_gt and <AC gtr xw(Q))) ! AC > 0

) <PC= PC+1; CYCLE)

1 rotate_ac
esac;

)

**
! interrupt setup sequence not yet implemented

int :=
(

CYCLE
)

! **
interrupt priority logic. pick the most significant bit set

function pri(a<INT_CHAN>)<2:0> :=
(

)

state i <2:0>;

i = 7; next;
while <a<i :i> eql Q) (i = i-1);
pr i = I;

! **
! compute interrupt address

function iaddr<ADDRESS> :=
(

iaddr = 8 + 2*(priCINTR and MR) ext ADDRESS);
)

! **
! service interrupt

62 ·

int handle := - (

)

intf = O; enif = O; CYCLE:

addr = iaddr;
MA= addr; MD= xwCPC); CYCLE;
store word;
PC = addr + 1; CYCLE;

! reset interrupt flag,
! disable other
' interrupts
! get interrupt address
! store PC for return

' . ' jump to interrupt
! address + 1

! **
! test sequence not yet implemented

tst :=
(

CYCLE
)

! **
! 1/0 instructions

10 :=
(

CSR = io_status; CYCLE; ! put status on bus
CSBUS =CSR; csrdy = 1; wait (accept : lead);
CSBUS = O; csrdy = O; next; ! release bus
case io_command

0 t 1 : (
case io_dir

0 : (
~get data and wait unti t ready

MD = AC; CYCLE;
wait (ready : lead);

! put data on bus and wait unti I accepted

! release bus

! ready to receive

IOBUS = MD; dataval id = 1;
wait (accept : lead);

IOBUS = O; dataval id = O;
)

1 : (

ready = 1; wai t<datavar id : lead);

63

case io data
receive data

0 <MD = IOBUS; CYCLE)
! receive status

esac
)

esac
)

1 <CSR = CSBUS; CYCLE)
esac;
accept = 1 ;
wait(dataval id : trai I);
case ·io_data

esac;

0 <AC = MD; CYCLE)
1 : (

if < (i o_comp and
CSR<STAT_PART>) neq 0)

<PC = PC + 1; CYCLE)
) ;

accept = O; ready = O;
)

2 (! set buffered 1/0 direction
BIOR<buf_io_chan:buf_io_chan> = io_dir; CYCLE

)

3 ! nop

! **
! compute buffer address

function baddr(c<1 :O>)<ADDRESS> :=
(

baddr = 32 + 2*c;
)

! ********************i***
! buffer sequence

buffer :=
(

while BCR<CC:CC> eql 0
(

CC = CC + 1 ; CYCLE
) ;

! find out which channel
! wants service

)

64

addr = baddr(CC); BCR<CC:CC> = O; CYCLE; ! get buffer

' address .
MA = addr; CYCLE;
get_word; addr := addr+1; next; ' get negative .

! word count
MA= addr; BWC = MD<ADDR_PART>; CYCLE;
get_word; ' get start .

' address .
MA = MD + BWC; CYCLE;
BWC = BWC + 1; BUFRDY<CC:CC> = 1; CYCLE; ' increment

! word count
BUFRDY<CC:CC> = O;
case BIOR<CC:CC>

0 : (

)

1 (

)

esac;

get_word; ! send data
wait (ready: lead);
IOBUS =MD; dataval id= 1; wait(accept:lead);
IOBUS = O; dataval id = 0; ! release bus

ready= 1; wait(dataval id: lead);! receive data
MD = IOBUS; CYCLE;
store_word;
accept= 1; wait <dataval id:trai I);
ready = O; accept = O; ! release bus

if <BWC eql 0)
(

· bufend = 1; CYCLE ! buffer empty

)

else (

)

bufend = O;

BUFRDY<CC:CC> = 1; CYCLE; ! store new BWC
BUFRDY<CC:CC> = O;
MA= baddr(cc); MD= BWC; CYCLE;
store_word;

! **
! main program
!

ma t :.=

! b f fer command
! hand le interrupt

f ietc _ i' struct ion;

i , 1Copoode neq OP-~ O_~)i effect iii ve__:address;

.. . . .

. . ,

., .,
- -

1 ope a ' e s 1 c 10 s

,I t • 1.es seq .ence

if •
.• 10 se e ce

! ter s e ce

(do isz) -
(do lac) -
(o_a ,d)

(do_tad)
(o_jms)
(do _dac)
(do_jmp)

(

case op_ ii 0 I t -

0,1,2,3:
1(

event11

;

event2;
i f (e 2 neq 1) event3;

)

4 :, (
tst;

,)

5 (

6,7 :

in •

esac;
CYCLE;

)

esac;
)

66

)

APPENDIX E

'B" MODEL ISP' SOURCE FOR MEMORY AND IO

The following ISP' source code represents a synchronous memory

and an I/O module for the "B" level model of SIC.

! **
' . ! Name
! Purpose

' . !
! Author
! Version

' .

RAM. I SP
ISP' code for an RAM, used in the
Smal I Instruction set Computer
class Band C implementations
BJ Patz
1. 0

! Comments RAM has enable to enabfe input and output

' .
! **
!
' declarations

' .
macro DATASIZE = 18 &, ' basic word size .

ADDRSIZE = 13 &, ' basic address length .
RAMDELAY = 50 &; ! RAM read delay

memory M[0:8191J<DATASIZE>; ! program memory

ADDA <ADDRSIZE>, ' address bus . port
DATA <DATASIZE>, ! data bus
write, ! read/wr i te I i ne

' read= 0, write= 1 .
enable; ' enable .

67

68

' **
! memory read, and write

do_read :=
(

)

delay<RAMDELAY);
DATA = MCADDRJ

do_write :=
(

M[ADDRJ = DATA
)

' **
! main routines

when (write trai I (e nab I e eq I 1)) ·= (do_read) .
when (write lead C en ab I e eq I 1)) ·= (do_write) .
when (enable trai I := <DATA = 0)
when (enable lead <write eql Q))) ·= (do_read) .
when (enable lead (write eql 1))) := (do_write)

6Q

! ***~******************
' . ! Name I 0. I SP
! Purpose

Author
! Version ' .

10 module used for class B SIC
BJ Patz
1.0

' . ! Comments non-buffered 10 module
!

' !
' .

this module only responds to io requests
and multiplies the last two data words
it received

' **

' . ! declarations

' .
macro

port

state

ME = 1 &. ! my device name
WORD
STATUS
BUSY
DONE
CYCLE
BIGCYCLE

= 1 8 & , ! bas i c word s i ze
= 12 &, ! status length
= 1 &, ! busy
= 0 & • ! not busy
= delay(1) &, ! basic cycle time
= delay(5)&; ! command cycle time

CSBUS <STATUS>.
IOBUS <WORD>.
inti ine,
csrdy,
ready,
dataval id,
accept;

COMM <STATUS>.
STAT <STATUS>.
DATA <WORD>.
OLD_DATA <WORD);

! status bus
! io data bus
! interrupt I ine, not used
! status ready
! i o ready
! io data val i'd
! i o accepted

! SICs command
! status register
! data register
! old data register

format io_dev = COMM<11 :9>.! io device
io_command = COMM<8:8). ! command only
io_data = COMM<7:7>. ! data or status
io_dir = COMM<S:S>. ! io direction
io_status = COMM<5:0>; ! io status

70

! **
! receive data

receive :=
(

)

ready = 1 ;
wait (datavat id : lead);
DATA = IDBUS; accept = 1; CYCLE;
wait Cdataval id : trai I);
ready = O; accept = O;

! ready to send

' data on bus .
' get data .
' ok .
' release bus

! **
! send data

send :=
(

wa i t < ready : I ead) ;
case io_data

esac;

0 : <IOBUS =DATA; CYCLE)
1 : CCSBUS = STAT; CYCLE)

dataval id = 1;
wait (accept : lead);
datava I id = 0;
case io_data

0 <IOBUS = Q)
1 : <CSBUS = 0)

esac
)

' wait for ready .

' data on bus .
! status on bus

' data valid .
! wait ti I received

! release bus

! **
! ;do something with data received

do_command :=
(

)

STAT= BUSY;
DATA = DATA * OLD DATA;
OLD_DATA = DATA;
BIGCYCLE;
STAT= DONE;

! set status to busy
! perform multiply
! and save old data

71

! **
! main program

main :=
(

)

wait (csrdy : I ead);
COMM = CSBUS; accept = 1; CYCLE;
accept = O;

if (io_dev eql ME)
(

case io_command

esac
)

0 : (case io_dir
0 : <receive; do_comrnand)
1 : (send)
esac)

1 (do command)

APPENDIX F

"B" MODEL TOPOLOGY FILE

The following code illustrates the topology file used to define the

"B' level model SIC network.

! **
' . ! Name
! Purpose
!

' ! Author
! Version

'

BSIC.T <topology file)
topology file for a
Smal I Instruction set Computer
class C implementation
BJ Patz
1. 0

' **
signals inti ine . ' interrupt I i nes .

bcrdy <4> t ' buffer channel ready .
buf rdy <4>, ! buffer ready
start, ! start signal
csrdy, ' status ready .
ready, ' io ready · .
datavaf id, ! io data val id
accept, ' io accepted .
bufend, ! buffer done
iobus <18>. ! iobus
cs bus <12> ' ' status bus .
mabus <13>, ' memory address bus .
mwrite, ! memory write
menable; ! memory enable

! sic

72

73

processor sic = ''bs i c. s i m";
time delay 200ns;
connections

'

inti ine - inti ine,
bcrdy = bcrdy,
bufrdy = bufrdy,
start = start,
csrdy - csrdy,
ready = ready,
datava I id= datava I id.
accept = accept,
bufend = bufend,
iobus = iobus,
csbus = csbus,
mabus = mabus,
mwrite = mwrite,
menable = menable;

program memory

processor pram = "ram.sim";
time delay 50ns;
connections addr = mabus,

data = iobus,
write = mwrite,
enable = menable;

initial m = coreimage;

! an io process

processor io = "io.sim";
time delay 200ns;
connections csbus = csbus,

iobus = iobus,
inti ine = inti ine<1 :1>,
csrdy = csrdy,
ready = ready.
datava I id = datava I id.
accept = accept;

APPENDIX G

"B" MODEL META!\UCRO SOURCE FOR SIC

The foil owing metaMicro source code is used for defining the

executable instructions of the "B" level implementation of SIC.

**
' . ! Name BSIC.METAMICRO
' Purpose

'
metaMicro assembly code generator for SIC
class B implementation

! Author BJ Patz
! Version 1. 0

' . ' Comments

' .
! **
instr 1[1, 1J<18> $ ' 1 word instruction of 18 bits .
format opcode = 1<17:15>. ' operation .

addr_type = I< 14: 13>. ! address type
addr = 1<12:0>. ! address

rot_dir = I <13: 13>. ' rotation direction .
rot1 = I< 12: 12>. ' rotate ·n event 1 .
rot2 = 1<7:7>. ! rotate n event 1
rot3 = 1<3:3>. ' rotate n event 1 .
ev1 1 = I < 11 : 1 O>, ! event t me 1 sub event 1 -ev1_2 = 1<9:8>. ! event t me 1 sub event 2
ev2 = 1<6:4>. ! event t me 2 only event
ev3_1t = 1<2:2>. ' event t me 3 less than 0 .
ev3_eq = 1<1 :1>. ! event t me 3 equal 0
ev3_gt = l<O:O>. ' event t me 3 greater than 0 .

74

op_io_int = 1<14:12>.

o_device - I< 11 : 9>. -
o_command = 1<8:7>.
o status = I < 11 : O>,
o_data = 1<7:7>.
o_di r = 1<6:6>,
o_comp = 1<5:0>.

buf io_chan = 1<10:9)$ -

macro

75

! operate. 1/0, and interrupt
! opcodes

! I /0 device
' I /0 command
' I /0 status
! 1/0 data or status
! I /0 d i r ect i on
' 1/0 status compare

' buffer 1/0 channel

! constants

direct
indirect
index_a
index_b
left
right

= 0 &.
= 1 &.
= 2 &,
= 3 &.
= 0 &.
= 1 &,

! the basic op codes

isz(a,m) = opcode= O; addr = a; mode(m) $ &,
lac(a,m) = opcode= 1; addr = a; mode(m) $ &,
and(a,m) = opcode= 2; addr =a; mode(m) $ &,
tad(a,m) = opcode= 3; addr = a; mode(m) $ &,
jms(a,m) = opcode= 4; addr =a; mode(m) $ &,
dac(a,m) = opcode= 5; addr = a; mode(m) $ &,
jmp(a,m) = opcode= 6; addr = a; mode(m) $ &,

ral = opcode = 7; rot_d i r = left; rot1 = 1 ;
rar = opcode = 7; rot_d i r = r i ght; rot1 - 1 • - '
nop = opcode = 7; ev1 - 1 = 0 $ &,
stl = opcode = 7; ev1 -1 = 1 $ &,
cl I = opcode = 7; ev1 1 = 2 $ & - ' t

hit = opcode = 7; ev1 1 = 3 $ &, -
sta = opcode = 7; ev1 _2 = 1 $ &,
cla = opcode = 7; ev1_2 = 2 $ &,
cma = opcode = 7; ev1_2 = 3 $ &,

76

szl = opcode = 7; ev2 = 1 $ &,
dfa = opcode = 7; ev2 = 2 $ &,
dfb = opcode = 7; ev2 = 3 $ &,
dta = opcode = 7; ev2 = 4 $ &,
1na = opcode = 7; ev2 = 7 $ &,
dtb = opcode = 7; ev2 = 6 $ &,
inb = opcode = 7; ev2 = 7 $ &,

skp = opcode = 7; ev3_eq = 1; ev3_gt = 1 $ &,
skz = opcode = 7; ev3_eq = 1; $ &,

od(n) = opcode= 7; op_io_int = 5; io_device = n;
io_command = O; io_dir = 0 $ &,

id(n) = opcode= 7; op_io_int = 5; io_device = n;
io_command = O; io_dir = 1 $ &,

is(n) = opcode= 7; op_io_int = 5; io_device = n;
io_command = 1; io_dir = 1 $ &,

ob(n) = opcode = 7; op_io_int = 5; io_device = n;
io_command = 2; io_dir = 0 $ &,

ib(n) = opcode= 7; op_io_int = 5; io_device = n;
io_command = 2; io_dir = 1 $ &,

oc(n) =opcode= 7; op_io_int = 5; io_device = n;
io_command = 3; io_dir = 0 $ &,

! address mode determination

mode(m) =
if 'm eql "d" then {addr_type =direct};
if '·m eq I " i " then {addr_type = indirect};
if 'm eql "a" then {addr_type = i ndex_a};
if 'm eql "b" then {addr_type = i ndex_b};

f some more advanced opcodes, mainly operate instructions

aral(n) =opcode= 7; rot_dir = left; rot(n) $ &,
arar(n) =opcode= 7; rot_dir = right; rot(n) $ &,
acla = opcode = 7; ev1_2 = 2; ev2 = 4 $ &,
aclb = opcode = 7; ev1_2 = 1; ev2 = 6 $ &,

rot(n) = if n = 1 then {rot1 = 1};
if n = 2 then {rot1 = 1; rot2 = 1};

&,

if n = 3 then {rot1 = 1; rot2 = 1; rot3 = 1} &;

APPENDIX H

"C" MODEL ISP' SOURCE FOR SIC

The following ISP' source code represents the "C" level model for

SIC. In this version, all facilities of SIC are modeled as seperate ISP'

processors.

! **
' . ! Name ALU. I SP (a I u)

' Purpose
!

' .
ISP' code for an alu, used in the
Smal I Instruction set Computer
class C implementation

' . ' . ' .
Author
Version

BJ Patz
1. 0

! Comments 2 18 bit inputs are processed. ytelds 19 bit output

' .
! **
!
! declarations

' .
macro WORDIN = 18 &,

WORDOUT = 19 &,
ALUDELAY = 50 &,

! meanings of alu function

ALU_A = 0 &,
ALU_B = 1 &,
ALU_ABAR = 2 &.
ALU_BBAR = 3 &,

77

! input word size
! output word size
! alu delay

' out = ina .
' out = inb .
! out = not 1na
! out = not inb

78

ALU_ADD = 4 &, ! out = 1na + inb
ALU_AND = 5 &, ' out = ina and inb .
ALU_RAL = 6 &, ' out = rotate ina left .
ALU_RAR = 7 &. ' out = rotate ina right .

port ALU_FUNC <3>, ' alu command
INA <WORD IN>. ! input a
INB <WORD IN>, ' input b .
If, ' I ink f I ag input

OUT <WORDOUT>; ' output .

! **
' combinatatorial part of alu

do_alu :=
(

delay<ALUDELAY);
case alu_func

ALU_A

esac;
)

ALU_B
ALU_ABAR
ALU_BBAR
ALU_ADD
ALU_AND
ALU_RAL
ALU_RAR

(out= 0 concat ina)
(out = 0 concat inb)
(out = 0 concat (not ina))
(out = 0 concat (not inb))
(out = ina + inb)
(out = ina and inb)
(out = ina concat If)
(out = If conca ina)

! **
! main routines, when anything changes compute ·ne outputs

when (INA) := (do_alu)
when <INS) := (do_alu)
when <ALU_FUNC) := (do_alu)

79

! **
!
! Name : BUSCON . ISP
! Purpose

' . ' . ! Author
! Version

' ! Comments :
!

ISP' code for A,B, and 0 bus control,
SmaJ I Jnstruction set Computer
class C implementation
BJ Patz
1. 0

used in the

! **
macro BMDELAY = 10 &; ' delay .

port CON1 <3>, ' a bus control
CON2 <3>, ' b bus control
CON3 <6>. ' obus control .

A_CON , ' a bus control .
B_CON , ' b bus control
O_CON <16>, ! o bus control

' . ' control code meanings .
' .
' aO 0 on ABUS .
' a1 1 on ABUS .
' a2 a I I 1 's on ABUS

' a3 .
! a4
! a5 IR on the ABUS

' a6 AC on ABUS .
' a7 BWC on ABUS .

! bO 0 on BBUS
! b1 1 on BBUS
! b2 a I I 1 's on BBUS
! b3
! b4 MD on the BBUS
! b5 IA on BBUS
! b6 18 on BBUS
! b7 PC on BBUS

80

! oO no op
! ol IA = OBUS

' o2 IR <addr_part> = OBUS .
' o3 .
' o4 .
' o5 AC = OBUS .
! 06 If ,AC = OBUS

' o7 MD = OBUS .
' 08 IA= OBUS

' 08 18 = OBUS .
! 010 PC = OBUS

' 011 BWC = OBUS

' 012 MA = OBUS

' 013 CSR = OBUS .
' 014 INTR = OBUS and INTR

' 015 MR = OBUS .

! **
! do de mux process

do_con :=
(

delayCBMDELAY);

A_CON := O;
B_CON := O;
C_CON := 0;

A_CON<CON1> = 1;
B_CDN<CON2> = 1 ;
O_CON<CON3> = 1 ;

! **
! main

when CCON1) := (do_con)
when <CON2) := (do_con)
when <CON3) := <do_con)

81

! **
' . ' . !
' !
!

' . '

Name
Purpose

Author
Version

CCGEN. ISP (condition code generator)
: ISP' code for the condition code generator

Smal I Instruction set Computer
class C implementation
BJ Patz
1. 0

! Comments 1 8 bit mux, 1 32 bit mux

' ' **

' . ! declarations
!

MACRO CCDELAY = 10 &; !condition code de lay

port INA,
INB<32>,
COND <12>
cc;

! A input I i nes
! B i nput I i nes

' . !
!

' . ' . !
' . !
' . ; ' . ' . !
!

' . !
' . !
!
!

' .

! condition code se lect from u machine
! condition code

condition code meanings

A b t 0, nop
Abt 1, accept
A b t 2, datava Ii d
A b t 3, ready
A b t 4, IR * BCR
A b t 5, BCR <CC>
A b t 6, BIOR <CC>
A b t 7,
A b t 0, true
8 b t 1, v<BCR)
8 b t f
B b t 3, status = 0
B b t 4, status < 0
B b t 5, status > 0
8 b t 6,
B b t 7, If
8 b t 8, f

82

! 8 b t 9, IR<17> * IR<16> * IR<15>

' 8 b t 10, IR<17> * IR<16> .
' B b t 11, IR<2> .
! B b t 12, IR<3>

' B b t 13, IR<4> .
' B b t 14. IR<5> .
! B b t 15, IR<6>

' B b t 16, IR<7> .
' B b t 17, IR .
' B b't 18, IR<9> .
' B b t 19, IR<10>

' B b t 20 , IR<11> .
' B b t 21. IR<12> .
' B b t 22, IR<13>
! B b t 23. IR<14>
! B b t 24, IR<15>

' B b t 25, IR<13> .
' B b t 26, IR<17> .
' B b t 27, .
! B b t 28.

' B b t 29, .
' B b t 30, .
' B b t 31 , .

' ** .
! cc generator

do_cc :=
(

de I ay<CC_DELAY);
cc= COND<8:8> xor CINA<COND<7:3>> or · INB<COND<2:0>>>

)

! **
! main routines, when anuything changes compute cc

when (I NA) := (do_cc)
when Cl NB) := (do_cc)
when CCONO) := (do_cc)

83

! **
!
! Name
! Purpose
!
!
! Author
! Version

' .

CLKGEN. ISP (clock generator)
ISP' code for a clock signal generator.
Smal I Instruction set Computer
class C implementation

: BJ Patz
: 1 . 0

! **
!
! declarations

' .
macro HITIME = delay(150); ' time at 1

LOWTIME = delay<50); ! time at 0

port elk; ! clock output

! **
! main program

main :=
(

elk= 1; HITIME;
elk= O; LOWTIME;

)

84

! **
' . ! Name CSGEN. ISP (contro1 signal generator)
! Purpose

' .
fSP' code for the control signal genrator
Smal I Instruction set Computer

! class C implementation
! Author
! Version

' .
BJ Patz
1 . 0

. ! Comments 2 16 bit dernuxes

' . ! **

' . ! declarations

'
macro

port

CSDELAY = 10 &,

CONT <S>,
OUTA <16>.
OUTS <16>;

! control signal meanings

' . ! A b t 0 no op

' A b t 1 mem write .
' A b t 2 mem enable .
' A b t 3 accept = 1 .
' A b t 4 datavalid = 1 .
! A b t 5 dataval id = 0

' A b t 6 ready = 1 .
' A b t 7 buf end = 1 .
' A b't 8 .
' A b t 9 .
! A b t 10 IOBUS = MD
! A b t 11 CSBUS = CSR
! A b t 12
! A b t 13
! A b t 14
! A b t 15

' B b t 0 no op .
! B b .t 1 CSR = CSBUS

! control delay

! 9 control bits
' output signal A
! output signal B

85

! B b t 2 MD = IOBUS

' B b t 3 BIOR <CC> = 1 .
' B b t 4 BCR <CC> = 0 .
' B b t 5 BCR <CC> = 1 .
' B b t 6 BUFRDY<CC> = 1
! B b t 7 CC = CC+1
! B b t 8 intf = 0

' B b t 9 enif = 0 .
' B b t 10 enif = 1 .
' B bit 11 If = O .
' B bit 12 If = 1 .
! B bit 13 If = OBUS<O>

' B bit 14 If = OBUS<18> .
' B bit 15 intf = <<v<MR * INTR)ienif) .

! **
! de mux code

do_con :=
(

delay<CSDELAY);
OUTA = O;
OUTB = O;
OUTA<CONT<3:0>> = 1;
OUTA<CONT<7:4>> = 1;

! set enable if write

if <CONT<3:0> eql 1) <OUTA<2> = 1);
)

! **
!. ma i n rout i nes

when <CONT) := (do_con)

86

! **
' . ! Name
! Purpose

' . !
' . ' .
' .

Author
Version

! Comments

' .

IOHANDLE. ISP Cio handler)
ISP' code for io for the
Smal I Instruction set Computer
class C implementation
BJ Patz
1. 0

! **
macro INT_CHAN = 8 &, ' number of interrupt I ines .

STATUS = 12 &; ' size of status word .

port c I k, ! clock
INTLINE <INT_CHAN>, ' interrupt I i nes .
CS BUS <STATUS>, ! status bus
csrdy, ' status ready .
IN <STATUS>, ! obus connection
c1 <4>, ' contra I 1 .
c2 <8>, ' control 2 .
accept, ' accept .
datavai Id. ' dataval id .
ready, ! ready
inter_rcvd; ' interrupt received .

!

' control meanings .

! c2 b t 0 intf = 0
! c2 b t 1 enif = 0

' c2 b t 2 enif = 1 "'

' c2 b t 3 l'NTR = not CINTR and IN) .
' c2 b t 4 MR = IN .
! c2 b t 5 intf =<CINTR and MR) neq Q) and enif

' c2 b t 6 CSBUS = CSR,csrdy = 1 .
' c2 b t 7 CSR = CSBUS .
! c1 bit 0 accept = 1
! c1 bit 1 dataval id = 1
! c1 bit 2 dataval id = 0

' c1 bit 3 ready = 1 .

87

state MR <I NT _CHAN>. ! mask register
INTR <INT_CHAN>. ' interrupt register .
CSR <STATUS>. ! status
intf, ' intf .
en if; ' en if .

! **
! register ops

do_int :=
(

f c2<0> (intf = 0);
f t2<1> Cenif = 0);
f c2<2> (enif = 1);
f c2<3> CINTR = not <INTR and IR));
f c2<4> <MR = IN);
f c2<5> (intf = ((INTR and MR) neq Q) and enif);
f c2<6> <CSR= CSBUS);

next;

inter_rcvd = intf;
)

! **
! main processes

when (inti ine : lead) CINTR = INTR or inti ine)

when<clk : trai I) Cdo_int)

when (c2<7> : lead)
when (c1<0>) .
when (c1 <1 > : I ead)
when (c1<2> : lead)
when (c1<3>)

<CSBUS =CSR; csrdy = 1)
(accept = c1<0>9)
(datava I id = 1)
(dataval id = 0)
(ready = c1<3>)

88

! **
' . ' . Name

Purpose
LF. ISP <I ink flag)

' . t .
!

ISP' code for the I ink flag for a
Smal I Instruction set Computer
class C implementation

! Author BJ Patz
! Version : 1. 0

' .
! **'***********

' ! declarations
!

macro

port

REGSIZE = 1 &,
REGDELAY = 10 &;

c I k,
c<4>

! bit 0 clear Ii nk

' bit 1 set Ii nk .
' bit 2 Ii nk = i n1 .
' bit 3 Ii nk = in2 .

i n1 , i n2,
out

state R;

! register size
! register delay

! clock
! control

' input bits .
' outputs .

' register .

! **
,! register output

do_I ink :=
(

)

if c<O> CR= 0);
if c< 1 > c·R = 1) ;
if c<2> <R = in1);
if c<3> CR= in2);

delay CREGDELAY);
out = R;

! clear I ink
! set I ink
! low b.i t of obus
! hi bit of obus

89

! **
! main routines

when (elk : trai I) := (do_I ink)

90

! **
' . ! Name REG13. ISP (13 bit register)
! Purpose

' .
ISP' code for a 13 bit register, used 1n the
Smal I Instruction set Computer

!
! Author
! Version

' . ! Comments

' . !
' .

class C implementation
BJ Patz
1. 0

register loads on negative edge
register has enable
register has output enable

! **
!
! declarations

' .
REGSIZE = 13 &, ' register size • macro
REGDELAY = 15 &; ! register delay

c I k, f clock .. port
en, ! enable
oe, ' output enable •
IN <REGSIZE>, ! inputs
OUT <REGSIZE>; ' outputs ..

state R <REGSIZE>; ! register

! **
! register output

do_output :=
(

)

if oe delay<REGDELAY);
case oe

1 <OUT = R)
0 : <OUT = 0)

esac

! output enabled
! release output

! **
! register input

91

do_input :=(if en <R = IN)) ! input enabled

' **
! main routines

when (elk : trai I)
when (oe)

:= (do_input; do_output)
:= (do_output)

92

! ** ****************~***
' . ! Name REG18. ISP (18 bi t register)
! Purpose

'
: JSP' code for a 18 b' t register, used in the

Smal f jnstruction set Computer
!
! Author
! Version

' . ! Comments

' . ' . ' .

class C imp lementat ion
BJ Patz
1. 0

register loads on negative edge
register has enable
register has output enable

! ******l***

' . ! declarations

' .
macro REGSl2E = 18 &, ! register size

REGDELAY = 15 &; ! register delay

port c I k, ' clock .
en, ' enable .
oe, ' output enable .
IN <REGSIZE>, ! inputs
OUT <REGSIZE>; ! outputs

state R <REGSl2E>; ' register .

! **
! register output
.
do_output :=

(

)

if oe delay<REGDELAY);
case oe

1 <OUT = R)
0 : <OUT = 0)

esac

! output enabled
! release output

! *** * *
! register input

93

do_input := (if en CR= IN)) ! input enabled

! *******************J*t**
! main routines

when (elk : trai I)
when (oe)

:= (do_input; do_output)
:= (do_output)

g4

! **
' . ! Name REG48. ISP C48 bit register)
! Purpose

' .
ISP' code for a 48 bit register, used in the
Smal I Instruction set Computer

!
! Author
! Version

' .

class C implementation
BJ Patz
1. 0

' Comments register loads on positive edge of clock

'
! **

' . ! declarations
!

macro REGSIZE = 48 &,
REGDELAY = 15 &;

port c I k,
IN <REGSl2E>,
OUT <REGSIZE>;

' . ! register bit field meanings
!

! 47:39 - next address
! 38:27 - next address control
! 26:24 - unused
! 23:21 - a bus control
! 20:18 - b bus control
! 17:12 - o bus control
! 11:9 - alu func
! 8:0 - misc control

state R <REGSIZE>;

' register size .
' register delay .
t clock .
! input to register

' output of register .

! **
! register output

do_output :=
(

delay<REGDELAY);

OUT = R;
)

95

! **
! main routines

when (elk : lead) := (R = IN; do_output)

96

! **
' . ! Name REG IR. ISP
! Purpose : ISP' code for an 18 bit register,

' . ' '
and some logic (IR register) used 1n the
Smal I Instruction set Computer

.
! Author
! Version

' . !
' . ' . ' .

Comments

class C implementation
: BJ Patz

1 . 0

register loads on negative edge
register has enable
register has output enable

' **

' . ! declarations
!

macro REGSIZE = 18 &.
REGDELAY = 15 &;

port c I k.
en1 ,
en2,
oe,
IN <REGSIZE>.
OUT <REGSIZE>,
CONT<18>;

!
! control bit meaning

' .
IR<x>
IR<17> * IR<16>

! register size
! register delay

' clock .
! enab I e a I I bi ts

' enable only Jow 13 bits
! output enable

' inputs .
! outputs
! IR bits for control

! bit x
! bit 1
! bit 0 IR<17> * IR<16> * IR<15>

state R <REGSIZE>; ! register

! **
! register output

do_output :=
(

)

if oe delay<REGDELAY);
case oe

1 : <OUT = R)
0 : <OUT = 0)

esac

97

! output enabled
! release output

! **
! register load, and special output

do_i nput :=
(

)

if en1 <R = IN);
if en2 <R<12:0> = IN);
next;
if (en1 or en2)

(

)

CONT = A; next;
CONT<O:O> = R<17> and R<16> and R<15>;
CONT<1 :1> = R<17> and R<16>;

! **
! main routines

when (elk : trai I)
when (oe)

:= (do_input; do_output)
:= (do_output)

98

! **
!

' . ' .
' . !
!
!

' . ' . ' . !
' .

Name
Purpose

Author
Version

Comments

REG13. ISP (13 bit register)
ISP' code for a 13 bit register,
MA register. used in the
Smal I Instruction set Computer
class C implementation
BJ Patz
1 . 0

register loads on negative edge
register has enable

! **
!
! declarations

' .
macro INSIZE = 19 &. ' al I registers input .

! from 19 bit bus
OUTSIZE = 13 &, ' and output .

' to 18 bit bus .
REGSIZE - 13 &. ! register size -
REGDELAY = 15 &; ' register delay .

port c I k, ! clock
en, ' enable .
IN <INSIZE>, ! inputs
OUT <OUTSIZE>; ' outputs .

state R <REGSl2E>; ! register

'! **
! register output

do_output :=
(

delay<REGDELAY);
OUT = R;

)

I

! **
! register input

do_input :=
(

if en <R = IN)
)

gg

! input enabled

! **
! main routines

when (cfk : trai I) := (do_input; do_output)

100

! **
!

' . ' . !
!

' . !
' . ' ' !
' . ' .

Name
Purpose

Author
Version

Comments

REGMD. ISP <18 bit register)
ISP' code for an 18 bit register,
and some misc logic <MD register),
Smal I Instruction set Computer
class C implementation
BJ Patz
1. 0

register loads on negative edge
register has enable
register has output enable

used in the

! **

' . ! declarations

' .
macro REGSIZE = 18 &,

REGDELAY = 15 &;

port c I k,
en1,
en2.
oe1,
oe2,
I N1 <REGSIZE>.
IN2 <REGSIZE>.
OUT1 <REGSIZE>,
OUT2 <REGSIZE>,

state R <REGSIZE>;

! register size
! register delay

' clock .
! enable input obus

' enable input iobus .
' output enable abus .
' output enable iobus .
' obus input .
' iobus input .
! abus output
! iobus output

! register

! **
! register output

do_output :=
(

if (oe1 or oe2) (delay<REGDELAY));
case oe1

1 <OUT1 = R)
0 : COUT1 = Q)

! output enabled
! release output

)

esac;
case oe2

1 : COUT2 = R)
0 : COUT2 - Q)

esac;

101

! output enabled
! release output

! ********************************"********************************
! register input

do_input :=
(

if en1 <R = IN1)
else (if en2 <R = IN2))

)

! **
! main routines

when <elk : trai I)
when (oe)

:= (do_input; do_output)
:= (do_output)

102

! **
!

' . ' . ' ' . !
' . ' . ' . !

Name
Purpose

Author
Version

Comments

: ROM. ISP (micro program ram)
ISP' code for an ROM, used in the
Smal I Instruction set Computer
class C implementation
BJ Patz
1. 0

9 bit address, 48 bit data

! **

' . ! declarations
!
macro DATASIZE = 48 &, ' word size .

ADDRSIZE = 9 &, ! address size
ROMDELAY = 50 &; ' rom delay .

port ADDR <ADDRSIZE>, ! address
DATA <DATASIZE>; ' data .

memory ROM [0:511J <PATASIZE>; ' rom .

! **
! get data when address changes

when CADDR) := (delay<RDMDELAY); DATA= ROM[ADDRJ)

103

! **
' . !
' . ' . !
!

' . '

Name
Purpose

Author
Version

: USEO. ISP (micro sequencer)
: ISP' code for a micro sequencer for a

Sma1 I Instruction set Computer,
class C implementation
BJ Patz
1. 0

! Comments sequencer has internal memory of last address
!
! **

' ! dec tarations ·
!

macro ADDRSIZE = 9 &. ' address size .
SEQDEALY = 50 &; ! sequencer delay

c I k, ' clock . port
IN <ADDRSIZE>, ! next address input
OUT <ADDRSIZE>, ' address to rom .
branch; ' out = in if branch= 1 .

state LASTADDR <ADDRSIZE>; ' last address + 1

! **
! micro sequencer increment

do_seq_i nc :=
(

LAST_ADDR = OUT + 1;
)

! **
! micro sequencer generate address

do_seq :=
(

delay<SEQ_DEALY);
case branch

esac

0 <OUT = LAST_ADDR)
1 : <OUT = IN)

104

)

! **
! main routines

when (elk : trai I)
when (elk : lead)
when (IN (elk eql 1))
when (branch Cclk eql 1))

:= (do_seq_i nc)
:= (do_seq)
:= Cdo_seq)
:= Cdo_seq)

APPENDIX l

"C" MODEL TOPOLOGY FILE

The following code illustrates the topology file used to define the

"C" level model SIC network.

! **
' . ! Name
! Purpose

' . !
! Author
! Version

' .

CSIC.T (no pun intended, topology file)
topology file for a
Smal I Instruction set Computer
class C implementation
BJ Patz
1. 0

! **
signal c I k, ' clock .

romaddr <S>, ' ram address .
romdata <48>, ! rom data
pipe <48>, ' pipeline register .
ma bus <13>, ! program memory address bus
a bus <18>, ' a bus .
bbus <18>, ' bbus .
ob us <19>, ' ob us .
iobus <18>, ' iobus .
If, ' Ii nk flag .

int I ine <8>, ' interrupt I i nes .
start, ' start signal .
csrdy, ! status ready
ready, ! io ready
dataval id, ! io data val id
accept, ' io accepted .

105

cs bus
i ntf,
int,

a_con
b_con
o_con

cont1
cont2

cond1
cond2
cc;

<12>,

<8>,
<8>,
<16>,

<16>,
<16>,

<8>,
<32>,

106

!

' . ' .
!
!

' .
' . !
!

' . ' .

status bus
interrupt received
single interrupt I ine

A bus control
B bus control
0 bus control

misc control
misc control

condition code
condition code
branch condition

! **
! clock generator

processor c I ock = ''c I kgen. s i m'';
time delay 1ns;
connections elk = elk;

! **
! pipe! ine register

processor pipe= "reg48.simtt;
time delay 1ns;
connections elk

1n
out

= c I k,
= romdata,
= pipe;

! **
! microprogram rem

processor urom = '·'rem. s i m";
time delay 1ns;
connections addr = romaddr,

data = romdata;
initial rom = coreimage;

! **
! micro sequencer

processor useq = "useq.sim";
time delay 1ns;

107

connections elk =e l k,
in = pipe <47:39>,
out = romaddr.
branch = cc;

! **
! ma register

processor ma = "reg13.sim";
time delay 1ns;
connections elk = elk.

en = o_con
oe = HI ,
in = ob us
out = mabus;

< 12: 12> t

<17:0),

! **
! md register

processor md = "regmd.sim";
time delay lns;
connections elk

en1
en2
oe1
oe2
in
out

= c I k,
= o_con <7:7>.
= cont2 <2:2>.
= b_con <4:4>.
= cont 1 < 1 0 : 1 0 > ,
= obus <17:0>.
= bbus;

! **~*********************
! · program memory

processor pram = "ram.sim";
time delay 50ns;
connections addr = mabus.

data = iobus,

initial

w r i t e = cont 1 < 1 : 1 > ,
enable = cont1<2:2>.
m = coreimage;

! **
! ir register

processor i r = "reg i r. s·i m";

108

time delay 1ns;
connections elk = c I k,

en1 = o_con <7:7>,
en2 = cont2 <2:2>,
cont = cond2 <26:9>,
tn = ob us <17:0>,
out = abus;

! **
! ac

processor ac = "reg18.sirn";
time delay 1ns;
connections elk = elk,

en = o_con <5:5),
oe = a_con <6:6>,
in = ob us <17:0>,
out = abus;

! **
' ia

processor ia = "reg13.sirn";
time delay 1ns;
connections elk = c I k,

en = o_con <8:8>,
oe = b_con <5:5>,
In = ob us <17:0>,
out = bbus;

! **
! ib

processor ib = "reg13.sirn";
time delay lns;
connections elk = elk,

en = o_con <9:9>,
oe = b_con <6:6>,
in = ob us <17:0>,
out = bbus;

! **
! pc

109

processor pc = "reg13.sim";
time delay 1ns;
connections el k = cJk ~

en = o _con < 1 0 : 1 O> ,
oe = b_con <7:7>.
t n = ob us <17 :0>,
out = bbus;

! **
! alu

processor alu = "alu.sim";
time delay 1ns;
connections ina = abus,

inb = bbus,
If = If,
out = obus,
alu_func =pipe <11 :9>;

' **
! If

processore If p = ··If. s i m";
time delay 1ns;
connections elk= elk,

c
i n1
in2
out

=
=
=
=

cont2 <14:11>,
obus <O:O>,
ob us < 18: 18>,
If;

! **
! io handler

processore ioh = "iohandle.sim";
time delay 1ns;
connections elk

int
cs bus
csrdy
1n

c2
cl
accept

= c I k,
= int I i ne.
= csbus,
= csrdy.
= obus <11 :O>.
= cont2 <15:8>,
= cont1 <6:3>.
= accept,

110

datavai Id
ready
inter_rcvd

= datava l id ,
= ready.
- intf;

! **
! an io process

processor io = "io.sim";
time delay 200ns;
connections csbus = csbus,

iobus = iobus,
i n t I i ne = i n t .
csrdy = csrdy.
ready = ready,
datavalid = datavalid.
accept = accept;

! **
! bus connections

processor buscon = "buscon.sim";
time delay 1ns;
connections con1

con2
con3
a_con
b_con
o_con

=
=
=
=
=
=

pipe <23:21>,
pipe <20:18>,
pipe <17:12>,
a_con,
b_con.
o_con;

! **
! control code generator

· processor ccgen = ''ccgen. s i m";
time delay 1ns;
connections cond

ina
inb

= pipe <38:27>.
= cond1,
= cond2.

cc = cc;

! **
! control signal generator

processor csgen = "csgen.sim";
time delay 1ns;
connections cont = ·pipe<B:O>,

out a = cond 1 ,
outb = cond2;

111

LIST OF REFERENCES

Drongowski, Paul J., Martinez, M., and Yatin, T. A Guide for
WrittinQ N.mPC Hardware Models. Cleveland, Ohio : Case
Western Reserve University, 1984.

Druian, Roy L. "Functional Models for VLSI Designy" 20th
ACM/IEEE Design Automation Conference Proceedings. June
1983.

Hi I I, Frederick J. and Peterson, G. R. Diqjtal Systems;
Hardware Organization and Desjqn. 2nd ed. New York : John
Wiley and Sons, 1978.

Ordy, Greg M. and Rose, C. W. "The N.2 System," 20th ACM/IEEE
Design Automation Conference Proceedings. June 1983.

Ordy, Greg. N.mPC : Ecoloaist User's Manual. Cleveland, Ohio
Case Western Reserve University, 1978.

Parke, Frederic I. "An Introduction to the N.mPC Design
Environment," 16th ACM/IEEE Design Automation Conference
Proceedings. June 1979.

Rogers, L. R. and Ordy G. M. The MetaMicro User's Manual.
Yersjon 3. 1. Cleveland, Ohio: Case Western Reserve
University, July 1980.

Straubs, Ralph, ISP' User's Manual. Cleveland, Ohio : Case Western
Reserve University, 1978.

112

	Using N.2 to Model a Microprocessor System
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENTS
	iii

	TABLE OF CONTENTS
	iv
	v

	LIST OF FIGURES
	vi

	LIST OF TABLES
	vii

	SECTION 1. INTRODUCTION
	Functional Design Modeling
	001
	002
	003
	004

	N .2 Software Environment
	ISP'
	005
	006
	007
	008
	009
	010
	011

	Ecologist
	012

	metaMicro and the Linker/Loader
	013

	Simulated Memory Processor
	Simulation
	A Small Instruction Set Computer
	014
	015
	016

	SECTION II. SIC IMPLEMENTATIONS
	Overview
	017
	018

	Class A Implementation of SIC
	019
	020
	021
	022
	023
	024
	025

	Class B Implementation of SIC
	026
	027
	028
	029
	030
	031
	032
	033

	Class C Implementation of SIC
	034
	035
	036
	037
	038
	039
	040

	SECTION III. COMMENTS AND CONCLUSIONS
	041
	042
	043

	APPENDIX A. SIC AHPL
	044
	045
	046

	APPENDIX B. "A" MODEL ISP' SOURCE FOR SIC
	047
	048
	049
	050
	051

	APPENDIX C. "A" MODEL METAMICRO SOURCE FOR SIC
	052
	053
	054

	APPENDIX D. "B" MODEL ISP' SOURCE FOR SIC
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066

	APPENDIX E. "B" MODEL ISP' SOURCE FOR MEMORY AND IO
	067
	068
	069
	070
	071

	APPENDIX F. "B" MODEL TOPOLOGY FILE
	072
	073

	APPENDIX G. "B" MODEL METAMICRO SOURCE FOR SIC
	074
	075
	076

	APPENDIX H. "C" MODEL ISP' SOURCE FOR SIC
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104

	APPENDIX l. "C" MODEL TOPOLOGY FILE
	105
	106
	107
	108
	109
	110
	111

	LIST OF REFERENCES
	112

