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ABSTRACT 

Due to the complexity of designing digital systems using VLSI 

parts, a tool for aiding in system level design specification and 

verification is needed. Functional level modeling languages and 

simulators provide that tool An example of such a tool is the N.2 

package of software produced by Endot Inc. and soon to be running on 

a VAX computer at the University of Central Florida. 

An overview of the N.2 system is presented in this paper with 

emphasis on the modeling language of N .2, ISP'. A Small Instruction 

set Computer (SIC), originally specified in AHPL, is designed with this 

software using several design methodologies. These range from an 

instruction level implementation to a microcoded register level 

implementation. The ISP' source code is provided for each 

implementation. 

Comments on the ability of the N .2 software to model systems at 

various levels of design abstraction are made. A comparison of the 

functional modeling language of N .2, ISP' to other functional level 

design languages is made. Finally, some areas that warrant further 

investigation are presented. 



ACKNOWLEDGEMENTS 

The author would like to express his appreciation to those whose 

encouragement helped see him through the completion of this paper. 

Those individuals include the author's mother, Anna Mae Patz, and 

father, Dr. Benjamin W. Patz. In a~dition, the author would like to 

thank the Technical Computing Center of Martin Marietta Aerospace in 

Orlando, Florida, for providing the computer resources on which this 

paper was created. 

iii 



TABLE OF CONTENTS 

SECTION 1. INTRODUCTION 

Functional Design Modeling ... . 
N.2 Software Environment . . .. . 

I SP ' . . . . . . . . . . . . . . . 
Eco I og i st . . . . . . . . . . . . 
metaMicro and Linker/Loader .. . 
Simulated Memory Processor ... . 
Simulation ........... . 

A Smalt Instruction Set Computer .. . 

SECTION 2. SIC IMPLEMENTATION 

Overview ......... . 
Class A Implementation of SIC 
Class B Implementation of SIC 
Class C Implementation of SIC 

SECTION 3. COMMENTS AND CONCLUSIONS 

APPENDIX A. SIC AHPL 

APPENDIX 8. "A" MODEL rSP' SOURCE FOR SIC 

APPENDIX C. "A" MODEL METAMICRO SOURCE FOR SIC 

. APPEND I X D. "B" MODEL I SP' SOURCE FOR SIC . . . 

1 

1 
5 
5 

12 
13 
14 
14 
14 

17 

17 
19 
26 
34 

41 

44 

47 

52 

55 

APPENDIX E. "B" MODEL ISP' SOURCE FOR MEMORY AND 1/0 67 

APPENDIX F. "B" MODEL TOPOLOGY FI LE . . . . . 72 

APPENDIX G. "B" MODEL METAMICRO SOURCE FOR SIC 

APPENDIX H. "C" MODEL ISP' SOURCE FOR SIC 

APPENDIX I. "C" MODEL TOPOLOGY FILE 

iv 

74 

77 

105 



LIST OF REFERENCES . . . . . 112 

v 



LIST OF FIGURES 

1. Digital Design Hierarchy . . . . . . . . . . . . . . . 2 

2. N.2 Block Diagram . . . . . . . . . . . . . . . . . . 6 

3. Model Development Flow . . . . . . . . . . . . 19 

4. Class A SIC Faci I ities . . . . . . . . . . 20 

5. Class A SIC Instruction Format . . . . . . . . . 22 

6. Class A SIC Instruction Flow . . . . . . . . 24 

7. Class B Overal I System . . . . . . . . . . . 27 

8. Class B SIC Faci 1 ities . . . . . . . . . . . 28 

s. Class B SIC Instruction Format . . . . . . . . . . 29 

10. Class 8 SIC Flowchart . . . . . . . . . . . . . . 32 

11. Class C SIC System . . . . . . . . . . . . . . . . 35 

12. Class C SIC Microword Format . . . . 36 

13. Class C SIC Microcycle Timing . . . . . . . . . 37 

vi 



LIST OF TABLES 

1. Class A SIC Instruction Set 

2. Additional SIC Instructions 

3. Event Timing Structure of Operate Instructions 

vii 

2 

6 

19 



SECTION 1 

INTRODUCTION 

Due to the complexity of designing digital systems using VLSI 

parts, a design specification and verification tool is needed. Traditional 

hardware support tools, such as gate level modeling software, do not 

provide adequate capabilities early in the design cycle. A functional level 

modeling tool is essential for this task. The N.2 system (Ordy 1983) 

includes such a tool. In this section a description of functional level 

modeling is presented. The N.2 system is then discussed. Finally, a brief 

introduction to a Small Instruction Set Computer (Hill Hn8), which was 

modeled with the N.2 software, is presented. 

Functional Design Modeling 

A traditional breakdown of the hierarchy of digital design is given 

- in Figure 1. The five levels of modeling are described in more detail 

below. 

Behavioral level models are those models that a system level 

designer would use to describe the general function to be performed in a 

given design. There is little or no relationship between this model and 

the hardware that is used to implement it. The behavioral model 
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is simply a discussion of the behavior of the overall system with respect 

to the performance of a certain task. 

Digital Design Hiererch~ 

Functions ond 
BEHAUIORAL ProgroMs to 

FUNCTION AL perf orM tosk 

Instructions 
INSTRUCTION to perf orrri 

Functions A 
B 

Registers £ 
REGISTER to iMpleMent 

Instructions 

Got es 
GATE to iMpleMent 

Registers 
STRUCTURAL 

Trensistors 
PHYSICAL to i Mp 1 erv1en t 

Got es 

Figure 1. Digital Design Hierarchy. 

In order to begin to implement a behavioral level model a set of 

primitive functions, or instructions, is developed which can be combined 

to perform the more complex functions necessary to solve a task. 

Instruction level models are models that execute this set of instructions, 
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and define a machine similar to what an assembly level programmer 

would see. The purpose of the instruction level model is two-fold. First, 

early in the design cycle, it provides a method of examining the 

completeness and performance of an instruction set. Later in the design 

cycle it can act as the core of a software emulation system for the 

development of software for a target machine. 

Where the instruction level model defines the instructions necessary 

to perform functions, the register level model defines the physical 

hardware blocks necessary to perform the instructions. These models 

begin to define the physical structure of a machine in the form of 

memories, registers, busses, and combinatorial function blocks. Memories 

and registers are considered functional primitives, and combinatorial 

blocks are treated as functions that execute with ideal zero delay. 

Registers and memories contain rudimentary timing information in the 

form of clock periods necessary to perform their respective functions. 

The intent of the model is to examine these internal structures of the 

machine. 

An obvious extension of register level models includes more 

accurate timing information. Gate level models provide for this 

extension. At this level of modeling the performance of a macroscopic 

function is almost lost, and the concentration is on the performance of 

microscopic functions. The primitive elements are gates, which are 

combined to form registers and other structures. These gates contain 
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timing information in the form of input-to-output propagation delays, 

which can be nominal or worst case values. 

At the lowest level of modeling is physical modeling. Here timing 

is the primary concern, usually in the form of timing variation over 

temperature and variation of processing parameters. Transistors are the 

primitive elements. Due to the complexity of models at this level, 

typically only a very small portion of the original design is modeled at 

one time. 

It is convenient to map these five levels of design abstraction into 

only two levels: functional, and structural. These two levels answer the 

two fundamental questions of digital design •what is done' and "How 

is it done." This division is convenient also because current software 

tools fall fairly neatly into one or the other of these classes. For 

example, the N .2 software has its primary use at the functional level. 

Simulators like CADA T* perform best at the structural level. 

The purpose of this paper is to examine design at the lower 

reaches of the . functional level and the upper reaches of the structural 

· level. Three divisions are made in the design hierarchy. These divisions 

are labeled simply A, B, and C. The capability of the N .2 software to 

design at each of these three levels is discussed. 

*CADA T is a logic simulator marketed by HHB Softron Inc. 
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N .2 Software Environment 

The N.2 design environment contains six major components which 

work together to produce a model of a multi-processor system. A 

simplified block diagram of these parts is shown in Figure 2. Since the 

intent of this paper was not to examine the syntax or the detailed 

capabilities of each of the N .2 modules, only enough explaination is 

provided to allow for a general understanding of the capabilities of N .2. 

Particular emphasis is placed on the hardware modeling language of 

N.2, ISP', and on the the tool for modeling instruction sets, metaMicro. 

ISP' 

ISP' is the functional modeling language of the N.2 system. Its 

purpose is to allow the designer to create a source code for various 

hardware designs. These designs are later combined and simulated. 

Hardware designs in ISP' are essentially a collection of processors 

that are connected together through ports to · form a network. Each 

processor type is defined in its own ISP' source file. Multiple instances 

of these processors, each using the same ISP' file definitions, may be 

placed in a network. The instantiation of these individual processors and 

their interconnections describe the topology of the network. 



6 

HARDWARE SYSTEM MODELING 

ISP' .. 
) ECOLOGIST 

COMPILER ... 

I . .. . ) ... 
I 
I 
I 

SY STEM 
SIMU LATION 

SIMULATION 

.111'"~ 

--------------------L----· .... --

.. LINKER .. SIMULATED 
METAHICRO " ) MEMOR Y 

~ LOADER PROCESSOR ... ... 

SOFTWARE STSTEM MODELING 

Figure 2. N.2 Block Diagram. 

A processor, as viewed in the ISP' language, is a collection of 

processes. Functionally, processes are defined as a collection of 

· procedures, functions, and commands. Structurally, processes are defined 

in the declaration statements of the ISP' code. The basic constructs are 

defined here in order to better understand any ISP' implementation 

methodology, and in particular the . implementation of the Small 

Instruction Set Computer. 



7 

The two types of processes are the main and the when process. A 

single main process may exist in any ISP' processor. This process repeats 

itself ·continually, restarting itself as soon as it terminates. This type of 

process is useful if a cyclic function; such as instruction fetch, 

instruction execution, instruction fetch, ... 
. 

; IS being performed by a 

processor. The when process, on the other hand, is only activated when 

a particular condition occurs on a port. These conditions are either the 

detection of a low to high transition (lead) or high to low transition 

(trail) of a particular signal. Because of the when process, multiple 

operations may be occurring at the same time. 

The following example demonstrates a process. This particular 

process performs a read from memory. It is activated when the CLOCK 

rises, and the READ line is high. Data is then transferred from memory, 

at the point where the ADDR is currently pointing, and placed on the 

port DATA. 

when (clock: lead (read eql 1)) := 
( 

data = M[addrJ 
) 

In either ease, main or when, each process is a collection of ISP' 

statements and procedure and function calls. Procedures and functions 

are defined in an analogous manner to procedures and functions in a 
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higher level language like Pascal. The ISP' language is therefore 

procedural in nature, yet, due to the when processes, it is also parallel. 

The following procedure could be used by a processor to retrieve a word 

from memory, if the memory possessed an address and a data register. 

get_word := 
( 

MD = MCMAJ 
) 

The structure of a processor is defined by the declaration section 

of the ISP' code. There are three major declaration items in ISP'. States 

represent registers or latches. Ports are pins that form connections to the 

external world, and allow for interprocess communication. Macros and 

formats are ways of giving symbolic names to logical entities which may 

represent only part of a physical entity. They are also used for 

improving the readability and structure of the resulting ISP' code. 

The following ISP' code demonstrates the . declaration of a few of 

the facilities of a computer. First, a word length is defined. Second, 

several registers are defined. Finally these registers are formatted so as to 

make the extraction of the opcode and address easier. 
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macro WORD = 18 &, 
ADDRESS = 13 &; 

state IR <WORD>, 
AC <WORD>, 
PC <ADDRESS> 

format opcode = IR< 17: 15>, 
addr = IR<12:0>; 

When an ISP' simulation is running it is a collection of 

cooperating and competing ISP' processes. The runtime kernel controls 

the scheduling of events and invocation of processes in the simulation. 

Events are of two types, a port changing value, and a scheduled 

wakeup call that occurs after a processor issues a delay command. The 

delay command is the only command in ISP' that can be used to carry 

timing information. This delay is defined in terms of user time units, 

which are specified at the time the processor is instantiated in the 

network. The following example illustrates the use of the delay 

statement. 

when (ck: lead (read eql 1)) := 
( 

) 

delay(3); 
MD = MEMAJ; 

! wait three cycles 
' .get data 
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As opposed to a sequential language, which performs operations 

one after another, ISP ' performs operations in parallel. There are cases, 

however, in which a user would wish to force the order of operations. 

This is done with the use of the special command NEXT. All operations 

up to a next are performed simultaneously, and before all the operations 

following the NEXT. Certain ISP' commands imply a NEXT statement. 

For example, a NEXT is implied before a delay or wait statement, at 

the end of a process, and at the end of a procedure or function. The 

example below illustrates the simultaneaity of two operations. The PC 

register is incremented at the same time that it is transferred to MA. 

Thus if prior to the call to get_ word, PC held the value 5, then after 

get_ word was executed, data would be fetched from memory location 5, 

and PC would have the value 6. 

get_word ·= • 
( 

PC = PC + 1 ; ' inc PC 
MA = PC; next; ! transfer PC .to MA 
MD = MI MAJ ' get data . 

) 

Arithmetic and logical operations in ISP' have been designed· to 

reflect operations in real ALU s. All operations operate on operands of 

specific width and produce a result of a specific width. To store results 

1n a wider storage area leading 1 's or O's must be appended to the 
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structure. This is accomplished with the SXT (sign extend) and EXT 

(zero extend) O.Perators. Arithmetic operations are perf'ormed with 2's 

complement arithmetic. Assuming X, Y and Z are 8, 8 and 16 bits 

respectively, and X and Y both contain IA hex, the following ISP' 

statements leave Z with the values 34 and F4 respectively. 

Z = <X + Y) ext 16; 
Z - <X + Y) sxt 16; 

ISP' allows the user to insert comments throughout his code. A 

commenting convention has been adopted throughout this paper. At the 

beginning of the code a brief description of the processor is given, its 

current version, and a list of any references that would be helpful in 

understanding its function. Each declaration is described following the 

description. A description of every procedure or function is given. In 

large blocks of code, comments are inserted to facilitate the 

understanding of the overall function of that block. The goal of the 

comments is to provide a top down understanding of the code without 

providing excessive detail except in extraordinary situations. 

The ISP' compiler translates the ISP' source code into an object 

file. These object files are linked together by the Ecologist to form a 

simulation program. 



12 

Ecologist 

The combining of ISP' output files is controlled by the designer 

through the topology file. The purpose of the topology file is to resolve 

the ISP' references to ports, memories, and time, and to define the 

interconnection of multiple ISP' processors. Five different sections form 

the topology file. 

The ports of one processor are connected to the ports of another 

processor by signals. If an ISP' model uses ports then there must be a 

signal declaration in the topology file. During simulation, the value of a 

signal is the logical OR of all ports tied to it. Each topology file has 

only one signal declaration section. 

A collection of processor definitions follows the signal declarations. 

Each processor definition references an ISP' output file, and more than 

one processor can reference the same ISP' output file. Thus, multiple 

instantiations of a particular ISP' model can be made. 

If the ISP' model makes a delay call then a time delay declaration 

is required for the model. The time delay declaration is used to give the 

- relative time delays specified in the ISP' source file a physical meaning. 

The connection of the ports of a given model to signals is defined 

in the connection declaration of each processor. Not all ports of a model 

must be connected to signals. 
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Finally, the initial contents of all ISP' memories is determined by 

assigning the ISP' memory name of each model to a memory file. These 

files may be created by the Linker/Loader, and could contain code for 

a processor to execute. A tool for aiding in the generation of this code 

is the metaMicro program. 

metaMicro and the Linker/Loader 

The metaMicro is a microassembler which utilizes a description of 

a processor's instruction set to assemble programs. The Linker /Loader is 

used to allocate this code into program memories. The metaMicro 

program consists of two major sections. 

A declaration section allows a processor to be defined for code 

generation. Included in this section is the instruction length declaration 

and the format of the instruction or microinstruction word. An extended 

macro definition capability can then be used to define mnemonics for 

the instructions. 

Following the declaration section is the ·instruction section. This 

· section contains the instructions that are to be assembled for the target 

machine. For most machines these will be simply a list of macros that 

have been defined in the declaration section. 

The Linker /Loader provides a generalized address resolution system 

which supports relocation of code. The designer also defines the 

allowable memory space for code generation in the Linker/Loader. 
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Simulated Memory Processor 

The simulated memory processor prepares the list of memories 

referenced by the Ecologist and the memory contents created with 

metaMicro for simulation. All of the Linker /Loader output .files are 

converted from their packed format to a page format that the 

simulation program can use. The simulated memory processor also 

produces a symbol table file containing the name of the memory files 

available to the simulation. 

•. 

Simulation 

Combining the output of the Ecologist and the Simulation Memory 

Processor yields the executable simulation of the processor system. A 

runtime kernel controls the execution of the simulation, and allows for 

user intervention. The goals of the simulation include functional 

verification of the design, and perhaps some timing analysis. The 

particular goals depend on the level of design and on the system being 

designed. 

A Small Instruction Set Computer 

A Small Instruction set Computer. (SIC) was modeled using the 

N .2 software. This computer was chosen for two reasons. First, it is 

fairly simple yet displays most of the common features of computers. 
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Second, it is the computer used in the University of Central Florida's 

Computer System Design course, as a model computer. 

The SIC machine is a 6 register computer. A brief description of 

the registers is given below. 

fR - instruction register 
MD - data register 
AC - accumulator 
PC - program counter 
IA - index register A 
18 - index register B 

18 b ts 
18 b ts 
18 b ts 
13 b ts 
13 b ts 
13 b ts 

The word length of the machine is an unusual 18 bits, 13 of 

which can be used for addressing memory. Any of 8192 words of 

memory can be referenced with one of four addressing modes. The 

addressing modes are given below. 

DIRECT 
INDIRECT 

INDEX A 
INDEX B 

- effective address= address part of IR 
- effective address= address pointed to by 

the address part of IR 
- effective address= address part of IR + IA 
- effective address= address part of IR + 18 

The instruction set of the machine includes instructions that 

reference memory (MRI), instructions that perform various operations 

(OPERATE), several input/output instructions (IO), and interrupt 

instructions (INT). These instructions are described in more detail in the 

next section. An AHPL description of the machine is given in Appendix 

A. It is appropriate to point out the difficulty in reading the 
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AHPL code and determining the function it is trying to perform. It will 

become apparent that ISP' code is much easier to understand. 

The shortcomings of the SIC machine include a lack of regular 

structure, for example there are two separate register sizes. Also only one 

register, the accumulator, can be used for the arithmetic operations. The 

machine is complete enough, however, to exercise many of the 

capabilities of the N .2 software. 



SECTION II 

SIC IMPLEMENTATIONS 

Overview 

In order to demonstrate the capabilities of N.2 in modeling at 

various levels of design abstraction, three models of SIC are constructed, 

corresponding to the three classes of the design hierarchy presented in 

the Section I. These models are roughly analogous to those used by 

Motorola (Druian 1983) in developing the MC68000. The different model 

types are denoted by the three letters A, B, and C. 

The Class A model, the most primitive of the three, is a model of 

SIC at the instruction level. Little attention is paid to timing 

information, and no external interface capability is provided. The 

purpose of this type of implementation is to provide a simulation model 

that can be used to exercise the instruction set · of a particular machine 

· in order to examine its richness relative to a target function (e.g., 

general purpose computing, signal processing, etc. ). 

An obvious extension of the Class A model is to model internal 

operations and external interactions in order to increase the detail of the 

timing information. The Class B model accomplishes this by providing a 

pin level model of the SIC machine. The instruction 

17 
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execution is broken down in terms of register transfers. Each transfer is 

assumed to take one clock cycle. To provide for external interactions, 

the 1/0 facilities of SIC are also implemented and a sample I/O model 

is presented. 

The Class C model is developed to further define the inner 

workings of the SIC machine. The register transfer control logic is 

implemented using a microcontroller. Each facility that could be 

controlled by this microcontroller is developed as a separate ISP' 

module. In much the same manner that a breadboard of a design 

would be constructed from off-the-shelf parts, the SIC machine is 

constructed from these many modules. 

Modeling of each SIC model follows the design flow shown in 

Figure 3. A facility specification, functional flow chart, and instruction 

set description are presented for each model. The facility specification is 

used to develop the declaration section of the ISP' code and the 

interconnection topology for the model. The functional flowchart 

determines the overall flow · for the ISP' code. The instruction 

, specification helps determine the functions and procedures of the ISP' 

code as well as aiding in the metaMicro creation of the instruction 

models. 
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ISP· 
----..) SOURCE CODE 

METAM I CRO 
SOURCE CODE 

Figure 3. Model Development Flow. 

Each model is discussed below. Some comments on the design 

process are provided in order to aid future designers in designing N .2 

models. Also a description of the salient features of each model is 

provided. 

Class A Implementation of SIC 

The facilities set implemented in the Class A SIC is shown in 

Figure 4. This includes the major internal registers, the accumulator, 

AC, the memory data register, MD, etc. All the hardware to implement 
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the MRI and OPERATE instructions is included. These facilities define 

the declaration section of the ISP' code for the model. This is shown 

below. Since several of the registers are the same size, either 18 or 13 

bits, constants are used to reference register sizes. This improves program 

readability, and also improves flexibility. 

M 

2 13 x 18 

ALU 

Figure 4. Class A Sic Faci I ities. 

state AC <WORD>, ' accumulator .. 
MD <WORD>, ! memory data register 
IR <WORD>, ' instruction register . 
PC <ADDRESS>, ' program counter 
MA <ADDRESS>, ! memory address register 
IA <ADDRESS>. ! index register A 
18 <ADDRESS>, ! index register B 
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If; ! Ii nk flag 

memory M [0:8191] <WORD>; ' program memory . 

format opcode = IR< 17: 15>, ' operation . 
addr_type = IR< 14: 13>, ' address type 
addr = IR<12:0>, ! address 
op_part = IR<13:0>; ' operate part of instruction . 

From the instruction format shown in Figure 5 and the instruction 

definitions of in Table I, the instruction register IR can be formatted. 

This allows specific bit fields, such as the opcode field, to be referenced 

as primitives. This also improves the readability of the code. A 

flowchart for an instruction cycle is shown in Figure 6. The basic flow 

follows the following steps instruction fetch, instruction type 

determination, instruction execution. Since SICs flow is basically a cyclic 

process, the main block of code is coded in an ISP' main process. 

Each instruction described in Table I is coded as a separate procedure. 

This allows easier debugging of code, as well as improved flexibility. For 

example, a delay associated with the execution of each instruction can 

now be included in each of these procedures. An example of the code is 

given below, while a complete listing is provided in Appendix B. 
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MRI I OPCODE I TYPE I ADDRESS 
17 15 14 13 12 0 

OPERATE I 1 1 1 81 OPERATE INSTRUCTIO N 
17 14 13 8 

Figure 5. Class A Sic Instruction Format. 
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TABLE I 

CLASS A SIC INSTRUCTION SET 

OPCODE MEANING 

ISZ increment memory and skip if zero 
LAC load accumulator 
AND AND memory with accumulator 
TAD twos complement add 
JMS jump to subroutine 
DAC deposit accumulator 
JMP jump 

HLT halt 
NOP no operation 
CLA clear accumulator 
STA store accumulator 
CMA com[plement accumulator 
CLL clear I ink 
STL set I ink 
SKP skip if accumulator >~ 0 
SKZ skip if accumulator = 0 
SZL skip if I ink= 0 
RAR rotate accumulator right 
RAL rotate accumulator left 
OTA deposit accumulator in IA 
OTB deposit accumulator in 18 
DFA deposit IA in accumulator 
DFB deposit 18 in accumulator 
INA increment IA 
INB increment 18 
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FETCH 
INSTRUCT ION 

TO IR 

ADDRESS 
FROM IR 

TO MA 

INDEX 

MODIFY 
ADDRESS 

IN IR 

ADDRESS 
FROM IR 

TO PC 

EXECUTE 
STORE 

INSTRUCTION 

___ .a"----__ ___, 

Figure 6. Class A Sic Instruction Flow. 
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:= <MD = MCMAJ) 
:= (M[MAJ = MD) 

:= <MA = PC; next; 
get_word; 
IR = MD; PC = PC + 1; next) 

The instruction model is developed in metaMicro from the 

instruction definitions given above. Since SIC has a single fixed length 

word instruction this is fairly straightforward. A macro is created to 

create the bit pattern of each instruction. Where there is commonality 

among instructions, sub-macros are referenced. For example, a macro to 

generate the address for the address field of the MRI instructions should 

be developed. The LAC (Load ACcumulator) instruction is presented as 

an example. A complete listing of the metaMicro instruction generation 

code is given in Appendix C. 

lac(a,m) = opcode = 1 ; addr = a; mode(m) $ &, 
mode(m) = 

if 'm eql "d" then {addr_type = direct}; 
if 'm eql " i ,, then {addr_type - indirect}; -
if 'm eql "a" then {addr_type = index_a}; 
if 'm eql "b" then {addr_type - i ndex_b}; &; -

The class A implementation of the SIC machine reveals several 

interesting facts. Instruction set modeling using the N .2 software is very 

easy. The Pascal-like nature of .ISP' makes performing functions a very 

easy task and instruction execution is nothing but the two-step process 

of deciding what function to perform and then performing it. 
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While the detail of this model may not seem great, much can be 

gained from it. The ISP' code makes an excellent instruction level 

description of the SIC machine that can be understood by both a 

system and hardware designer. With the inclusion of some minimal 

timing information, it can be used as a system specification. Because 

of the procedural nature of the code, modifications are easily performed. 

This allows a great amount of experimenting before any hardware is 

designed. With the inclusion of more detailed timing a good estimation 

of the performance of required algorithms can be made. In addition, the 

resultant code is far easier to read than non-procedural code like AHPL. 

Finally, after more detailed models are constructed, information can be 

fed back into this model. This allows the model to be used as a 

software emulator of the hardware in a software design system. 

Class B Implementation of SIC 

The class B model extends the facilities implemented in the class 

A model to include I/O and interrupt capabilities. The overall system is 

shown in Figure 7 and the more detailed SIC machine is shown in 

Figure 8. Since the purpose of the Class B model is to provide a pin 

level description, several models of external processes such as a main 

memory module and an 1/0 process, are developed. 
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For the Class B model the instruction set is enhanced as is the 

handling of the OPERATE instructions. These are processed in three 

event times, instead of one in the Class A model. The format of the 

new instruction set is included in Figure 9, and the new instructions are 

defined in Table II. The event times for the OPERA TE instructions are 

given in Table III. A flowchart for the · handling of the new instructions 

is shown in Figure 10. 

MRI I OPCODE I TYPE I ADDRE SS 
17 15 14 13 12 CD 

OPERATE I 1 1 1 CD I EUENT 1 EUENT 2 EUENT 3 I 
17 14 13 0 

HH I 1 1 1 1 1 I COMMAND MAS K 
17 13 12 8 7 0 

IO I 1 1 1 1 CD 1 I COMMA ND 
17 12 11 8 

Figure 9. Class B SIC Instruction Format. 
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TABLE II 

ADDITIONAL SIC INSTRUCTIONS 

OPCODE MEANING 

LMI load mask register from IR 
LMA load mask register from accumulator 
LAM load accumulator from mask register 
Ml I mask interrupt from IR 
CLI clear interrupt 
EAi enable interrupts 
DAI disable interrupts 

ODn output data to device n 
IDn input data from device n 
ISn input status from device n 
DBn activate output buffer to device n 
IBn activate input buffer to device n 
OCn output command to device n 
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TABLE III 

EVENT TIME STRUCTURE OF OPERATE INSTRUCTIONS 

EVENT BIT FIELD VALUE MEANING 

0 13 0 rotate direction is left 
1 rotate direction is right 

1 12 0 no rotate 
1 rotate AC 

11 : 10 00 no op 
01 set Ii nk 
10 c I ear Ii nk 
1 1 halt 

9:8 00 no op 
01 set AC 
10 clear AC 
1 1 complement AC 

2 7 0 no rotate 
1 rotate AC 

6:4 000 no op 
001 SZL, skip event 3 
010 DFA 
011 DFB 
100 OTA 
101 INA 
110 OTB 
1 1 1 INS 

8 3 0 no rotate 
1 rotate AC 

2 0 no op 
1 skip if AC < 0 

1 0 no op 
1 skip if AC = 0 

0 0 no op 
1 skip if AC > 0 
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In the Class B model it is assumed that each register transfer takes 

exactly one clock time to be performed. Thus each register operation in 

the ISP' source code has a CYCLE ( delay(l)) command following it. 

The multiple event times used to implement the OPERATE instructions 

bring out these register operations more clearly. The complete ISP' 

source code is given in Appendix D. 

As mentioned, models of processes external to SIC also need to be 

created. A synchronous memory module is presented to implement the 

main program memory. This module communicates to the SIC machine 

over four lines, illustrated in the port declarations of that module. 

port ADDR <ADDRSl2E>, ! address bus 
DATA <DATASIZE>, ' data bus . 
write, ' read/write I i ne . 

' read= 0, write - 1 . -
enable; ' enable . 

The ADDR port connects to the MA register to the MABUS and 

contains the address of the word to be referenced in memory. The 

DAT A port connects to the IO BUS of the SIC machine which feeds the 

memory data register and contains the data written/read to/from 

memory. An ENABLE line is used to enable memory, and a WRITE 

line is used to write to memory. 

The 1/0 device developed emulates a hardware multiplier. It 

revceives data over the IOBUS from the SIC machine and stores it in 
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an internal register. Signalling of transfers is accomplished by using the 

lines READY, DATAVALID, and ACCEPT. The purpose of this process 

is to . multiply that last two numbers received, faster than the SIC 

machine could perform the operation, but still in more than one clock 

time. The complete description of both the memory and 1/0 modules is 

given in Appendix E. 

In order to connect these modules to the SIC machine the 

Ecologist is used. A topology file, given in Appendix F, is used to 

declare each of the modules and their port connections. 

Since the instruction set was slightly enhanced, a more complete 

metaMicro description is required. This is given in Appendix G. Note 

the addition of several special commands, which are not part of the 

SIC assembly set, but which do test the use of multiple event times in 

the OPERATE instructions. The Class B model of SIC demonstrates 

N .2's capabilities at modeling near the register level. The ease with 

which the Class A model was enhanced to the Class B implementation 

shows how simpler models can be enhanced to· more complicated ones 

. without the need of a separate design language. 

Class C Implementation of SIC 

So far no mention of the control ~ystem for the SIC machine has 

been made. The C model is designed to address that issue. A micro

controller for the SIC machine was developed. The system is shown in 
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Figure 11. The microword format is shown in Figure 12. 
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MUX 
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REGISTER 
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-
"-
/ 
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MU>< 
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Figure 11. Class C SIC System. 
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MICROWORD 
48 

BITS 

27126 19 ( 1 7 918 0 I 
ALU ALU MISC. 

I~PUTS FUNCTION CONTROL 

ABUS 88US 181 

OBUS ALU s I 

Figure 12. Class C SIC Microword Format. 

Basically, a micro program ROM stores the microprogram word. 

On the leading edge of the clock this word is latched into the pipeline 

register. Two simultaneous processes then begin. The micro sequencer 

generates the next ROM address based on the next address field of the 
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current microword, and on the condition code generated from the SIC 

machine after it executed the last micro instruction. This occurs while 

the SIC machine is executing the present instruction. All registers in the 

SIC machine are latched on the falling edge of the clock, as is the 

address generated by the micro sequencer. This process is illustrated in 

the timing diagram shown in Figure 13. 

SYSTEM 
CLOCK 

Pipeline 
Register 

Condition 
Code 

Sequencer 
Address 

ROM 
output 

ALU 
output 

_} \ __ / 
1 

Ne x t 
Microc!dcle 

• 
1 5© ns 

• 
Miscelloneous ~~~~~~~~~~~~~~~~+~~15~n-s~~ 

Registers ~ 

Figure 13. Class C SIC Microcycle Timing. 
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In order to specify the functions over which the micromachine has 

control, a much more detailed model of SIC is created. This is given in 

Appendix H. Each element of the SIC machine is modeled as an 

independent process. That is, each register, and its associated input and 

output multiplexers, are developed in separate ISP' files. Where more 

than one register is the same, like the IA, IB, and PC registers, multiple 

instances of a single model can be used. 

The timing of the Class C machine consists of assigning a delay to 

each of the subprocesses that make up the machine. These delay 

numbers are specified in nanosecond units. The synchronization of the 

processes is accomplished with a clock generator model. 

Due to the large number of communicating processes, the 

importance of the topology file increases. The topology file is given in 

Appendix I. The ability to connect ports to only part of a signal is 

used freely. 

Two memories exist in the Class C SIC machine, the program 

RAM and the microprogram ROM. The metaMicro code used to set up 

· the program RAM is the same as that used in the B level model. A 

separate description must be developed for the program ROM. Again, 

the instruction length of the micromachine is a constant one word, so 

program deveJopment is fairly straight.forward. The ~1icroprogram i~ not 

presented here. 
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The Class C SIC model was very difficult to construct, and 

probably illustrates the lowest level of modeling that can effectively be 

performed with N .2. If a library of ISP' primitives was present, for 

example a collection of registers, memories, muxes, etc., then modeling 

at this level would become far easier. As it is, however, the time 

required and the potential mistakes induced by creating each of the 

individul registers models makes the net gain from this degree of 

modeling questionable. 

Not far from this level of modeling, is modeling with logic level 

simulators. Since these simulators typically contain registers, 
. 

memories, 

and other primitives of this type, it seems that they should be used to 

perform this detail of simulation. A further advantage of logic level 

simulators is that coupled with a graphics entry front end, they provide 

releasable schematics in addition to simulation capabilities for hardware 

design. 

An advantage that the ISP' modeling language has over logic 

simulators is that each of the ISP' primitives may be of any complexity. 

For example, a complicated processor function, such as multiplication, is 

easily coded in a single ISP' step. To implement complicated functional 

blocks with gates and registers wastes design time, if the intent is only 

to model that functional block for use in a larger simulation. In the 

final analysis, however, it seems that effective Class C models can only 

be developed by including the ability to 
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reference ISP' code by a logic simulator, or by developing a large logic 

level parts library for the ISP' simulator. 



SECTION III 

COMMENTS AND CONCLUSIONS 

The N .2 system clearly provides a useful tool in digital design 

cycle. The major strong points of the software system are summarized 

below, a]ong with a list of its shortcomings. 

The modeling language ISP' provides excellent system modeling 

capabilities at the instruction or register level. A design can be 

partitioned into functional blocks and these blocks combined into a 

simulation. Delays can be included in the block specification to increase 

the accuracy of the simulation. The resultant ISP' code of the machine 

also provides a specification that a system level designer as well as a 

logic designer can understand and use. 

The instruction specification language, metaMicro, allows 

customized assemblers to be developed. This greatly speeds the 

development of sample code and microcode for the target machine. The 

author was unable to locate another functional modeling tool with this 

capability. 

Several enhancements to the capabilities of the N .2 system would 

greatly improve its capabilities. First, to increase the capabilities at the 

more abstract levels of simulation, signals should be data structures. 

41 
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That is, the current 1 or 0 syst em that ISP' uses to reference signal 

values should be replaced with user-definable signal levels. This 

capability is already present in other functional level simulators such as 

HHDL*. 

Second, the instrinsic functions able to be referenced in the ISP' 

code should be increased to include a greater subset of the PAS CAL or 

FOR TRAN function set. The inclusion of trigonometric fuctions along 

with data structured ports would make the design of communication 

systems possible using ISP'. 

Third, to increase to power of the N .2 system at the gate level, a 

parts library needs to be developed. Parts should include registers, 

multiplexers, and various combinational logic primitives. In addition to 

generic primitives, a set of standard TTL parts should also be 

developed. 

Finally, to increase the capabilities of the Ecologist as a binding 

tool for ISP' modules, parameters should be able to be passed to those 

modules. That 1s, parameters other than delay time and signal 

· connections. This would allow for configurable parts such a N bit 

registers or M input gates. 

*HHDL is the hardware design language used with the HELIX simulator 
used at Martin Marietta. This software is produced by Silvar Lisco Inc. 
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In general, the N .2 system provides a useful tool for the 

development of new processor systems early in the design cycle. It is 

limited in its capabilities later in the design cycle and would have to be 

replaced by another design tool. 



APPENDIX A 

SIC AHPL 

The SIC control sequence given here was used to develop the ISP' 

models of the SIC machine. This includes the interrupt, 1/0 and buffer 

sequences, but does not include the DMA. Also the INT and TST 

sequences are also not given. A fully synchronous memory of one clock 

period has been assumed throughout. 

MODULE : SIC 
MEMORY MC8192;18J; ACC18J; MDC18J; IR[18J; PCC13J; MAC13J; 

IAC13J; 18[13J; MR[8J; INTRCBJ; CSR[12J; BWCC13J; 
BCR[4J; BIOR[4J; CC[2J; If; intf; enif 

INPUTS : INTLINE[8J; BCRDYC4J; start; ready; dataval id; accept 
OUTPUTS : BUFRDY[4J; csrdy; ready; dataval id; accept; bufend 
BUSES : ABUS[ 18 J; BBUS[ 18 J; OBUS[ 18 J 
COMBUSES: IOBUSC18J; CSBUSC12J 

1. -><start)/(1) 
2. ->Cv/BCR)/(90) 

. 2. 1 ->< i ntf )/(60) 
2.2 MA <- PC; PC <- INC<PC) 
3. MD <- BUSFN<M; DCD<MA)) 
4. I R < - MD ; i n t f * ( ( v I (MR " I NTR) ) " en i f ) < - 1 
5. -><IRo A IR1 A_l_R2)/~5) 
6. NO DELAY; -)((IR3 A IR4),(IR3 A IR4), IR3)/(13,7,10) 
7 . MA < - I Rs : 1 1 
8. MD <- BUSFN<M;DCD<MA)) 
9. IRs:11 <- MDs:11; -> <13) 
10. NO DELAY; ->CIR4)/(12) 
11. IRs:11 <- ADD<IRs:11;IA); -><13) 

44 
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12. IRs:11 <- ADD<IRs:11;l8) 
13. NO DELAY; ->(IRoA IR1)/(15) 
14. PC<- IRs:11; ->(2) 
15. MA <- I Rs : 1 1 ; -> ( I Ro) I ( 21 ) _ 
16. MD<- BUSFNCM;DCDCMA)); ->CIR1 A IR2)/(18) 
17. AC <- (M!L_! <MD A AC ! ADDiMD;AC)))* 

((IR1 A IR2),(IR1 A IR2),(IR1 A IRz)); 
lf*CIR1 A IR2) <- ADDo<MD;AC); ->C2) 

18. MD <- INC<MD) 
19. MtDCDCMA) <- MD; ->(V/MD)/(24) 
20. PC<- INC<PC); ->(2) 
21 . MD <- <AC ! ( 5 T 0, I NC< PC)))* C I R 2, I R 2) 

22. M*DCD<MA) <- MD; ->CIR2)/C2) 
23. PC <- IR 
24. PC<- INC<PC); ->(2) 
25. NO DELAY; -><IR3)/C50) 
26. NO DELAY; ->CIRs)/(30) 
27. NO DELAY; ->CCIRs A IR7),CIRs A IR1)/(1.29) 
28. NO DELAY __ 
29. AC~ - ( < 18 T 0) ! < 1 a_ T 0) ! AC)* 

((1Ra A IRs),(IRa A I Rs), Cl Ra A IR9) 
I f * C I Rs) <- 0; I f * C IR 7) <- 1 ; -> <33) 

30. -> ( I R 4) I< 32) 
31. If.AC<- AC, If; -><33) 
32. I f, AC <- AC 1 7, I f, AC o : 1 s 
33. NO DELAY; -> CIR10)/(4Q) 
34. NO DELAY; -> CDCDCIR11.IR12)/C35,37,38,39) 
35. NO DELAY; -> CIR13 A lf)/(43) 
36. PC<- INC<PC); ->(2) 
37. AC<- (5 T 0, IA ! 5 T O,JJ3)*CIR13, IR13); ->(43) 
38. I A <- <<AC)! ( I NC< I A)))* <lB.1 3. IR) ; -> < 43) 
39. I B <- ( (AC)! C I NC< I B) ) ) * < I R 1 3, I R) ; -> ( 43) 

· 40. NO DELAY; -> CIR4)/(42) 
41. If. AC <- AC, If; -> < 43) 
42. If. AC <- AC 1 1, If, AC o : 1 s 
43. NO DELAY; -><IR14)/(45) 
44. -)(f,f)/(36,2); 

{f = <AC<O A IR1s) V <AC=O A IR1s) V CAC>O A IR11)} 
45. NO DELAY; ->CIR4)/(47) 
46. If, AC <- AC, If; -> (2) 
47. If.AC<- AC11, lf.AC0:1s 
50. -> <IR4)L.1_INT SEQ) 
51. -><I Rs, IRs)/(70,TST SEQ) 
60. intf ,enif <- 0,0 
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61. I Rs: 11 <- ADDR<PR I< I NTR"'MR))) 
62. MA<- IR5:11; MD<- 5 T O,PC 
63. M * <DCD<MA) <- MD 
64. PC<- IRs:11; -> <24) 
70. CSR<- IRs:11 
71. CSBUS =CSR; c§L.dy = 1; -><accept)/(71) 
72. NO DELAY; -> <IRs)/iZ.4) 
73. NO DELAY; -> <IR10. IR1o)C24,85) 
74. NO DELAY;-> <IR11)/(78) 
75. MD <- AC 
76. -> (ready)/(76) 
77. IOBUS =MD; dataval id= 1; -><accept,accept)/(24,77) 
78. ready = 1; -> (datavall.Q)/(78) 
79. CSR*IR10 <- CSBUS; MD*IR10 <- IOBUS 
80. accept = 1; -> (dataval id)/(80) 
81. NO DELAY;-> <IR10)/(83) 
82. AC <- MD; ->C ..... 24 ...... ) ____ _ 
83. NO DELAY; ->(V/IR12:11ACSRs:11))/(2) 
84. PC<- INCCPC); ->(2) 
85. BIOR * DCD<IR1:s) <- <IR11 A 4 T 0); -><24) 
90. -><V<DCD<CC)ABCR)/(92) 
91. CC<- INC<CC); -><90) 
92. IR<- BADDRCCC); BCR*DCD<CC) <- 4 T 0 
93. MA<- IRs:11 
94. MD<- BUSFNCM;DCDCMA)); IR5:17 <- INCCIR5:11) 
95. MA<- IRs:11; BWC <-MD 
96. MD <- BUSFNCM;DCD<MA)) 
97. MA <- ADDCMD;BWC) 
98. BWC <- INC<BWC); BUFRDY = DCD<CC) 
99. NO DELAY; ->CV/CDCDCCC)ABIOR)/(103) 
100. MD <- BUSFNCM;DCD<MA)) 
1 01 . -> ( ready ) I ( 1 01 ) 
102. IOBUS =MD; datayal jd = 1; -><accept,accept)/(107, 102) 
103. ready = 1; -><dataval id)/(103) 
104. MD <- IOBUS 
105. M * DCD<MA) <- MD 
106. accept = 1; -><dataval id)/(106) 
107. NO DELAY; ->CV/BWC)/(109) 
108. bufend = 1; ->(2) 
109. BUFRDY = DCDCCC) 
110. MA<- BADDR<CC); MD<- BWC; 
111. M*DCD<MA) <-MD 



APPENDIX B 

"A" MODEL ISP' SOURCE FOR SIC 

The following ISP' source code represents the "A• level model for 

SIC. A very limited subset of the SIC features are included. These are 

the MRI and OPERATE instructions. No timing information, or port 

information is contained in this model. 

! **************************************************************** 
' . ! Name 
! Purpose 

' . ' ! Author 
' Version 
! 
! Comments 

' . ' . ' 

ASIC. I SP 
ISP' code for a 
Smal I Instruction set Computer, 
class A implementation 
BJ Patz 
1. 0 

MRI and OPERATE instructions modeled only 
no ports are modeled 
program memory included 

' **************************************************************** 

' . ! declarations 

' . 
macro WORD = 18 &, 

ADDRESS = 13 &, 
ADDR_PART = 12:0 &. 
CYCLE = delay(1') &. 

47 

! basic word size 
! basic address length 
! address part of WORD 
! basic cycle time 
! one cycle per instruction 
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! major instruction breakdown, bits 17:15 

ISZ_r 
LAC_I 
AND_I 
TAD_, 
JMS_I 
DAC_I 
JMP _I 
OP _ID_ 

= 0 &, 
= 1 &, 
= 2 &, 
= 3 &, 
= 4 &, 
= 5 &. 
= 6 &. 
= 7 &, 

! inc and skip on zero 
! load AC 
! and MD with AC 
' twos comp add MD with AC 
! jump to subroutine 
! deposit AC 
! jump 
! operate or 1/0 instruction 

! operate instruction breakdown, bits 12:0 

HLT_I 
NOP_I 
CLA_I 
STA_I 
CMA_I 
CLL_I 
STL_I 
SKP _I 
SKZ_I 
SZL_I 
RAR_I 
RAL_I 
DTA_I 
DTB_I 
DFA_I 
DFB_I 
INA_I 
INB_I 

= OxOcOO &, 
= OxOOOO &, 
= Ox0200 &, 
= Ox0100 &, 
= Ox0300 &. 
= Ox0800 &, 
= Ox0400 &, 
= Ox0003 &. 
= Ox0002 &, 
= Ox0010 &, 
= Ox3000 &. 
= Ox2000 &, 
= Ox0040 &, 
= Ox0060 &, 
= Ox0020 &, 
= Ox0030 &. 
= Ox0050 &, 
= Ox0070 &. 

! adressing modes 

state 

DIRECT = 0 &, 
INDIRECT = 1 &, 
INDEX_A =-2 &, 
INDEX_B = 3 &, 

xw<val) =val ext 18 &; 

AC <WORD>. 
MD <WORD>. 
IR <WORD>, 

! halt 
! no operation 
! clear accumulator 
! set accumulator 
! complement accumulator 
! clear I ink 
! set I ink 
' skip if accum >= 0 
! skip if accum = 0 
! skip if I ink= 0 
! rotate accum right 
' rotate accum left 
' deposit accum to IA 
! deposit accum to 18 
! deposit IA to accum 
! deposit 18 to accum 
! increment I A 
' increment I B 

! direct addressing 
! indirect addressing 
! index A addressing 
! index B addressing 

! accumulator 
! memory data register 
! instruction register 
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! program counter PC <ADDRESS>, 
MA <ADDRESS>, 
IA <ADDRESS>, 
18 <ADDRESS>. 
If; 

' . memory address register 

memory M [0:8191] <WORD>; 

format 

' . 

opcode 
addr_type 
addr 
op_part 

! sub processes 
! 

= IR< 17: 15>, 
= I R< 14: 13>, 
= IR<12:0>, 
= IR< 13: O>; 

' . ' . ! 
! 

' . ! 
' . ' . 

index register A 
index register 8 
Ii nk f I ag 

program memory 

operation 
address type 
address 
operate part of instruction 

! **************************************************************** 
' Memory operations 

get_word 
store_word 

:= <MD = MCMAJ) 
:= <MCMAJ = MD) 

fetch_instruction := <MA= PC; next; 
get_word; 
IR = MD; PC = PC + 1; next) 

load_md := <MA = addr; next; 
get_word) 

! **************************************************************** 
! compute effective address 

effective_address := 
( 

MA= addr; next; 
case addr_type 

esac; 
) 

direct 
indirect 
index_a 
index_b 

• 
' Cget_word; addr = MD<ADDR_PART>) 
(addr = addr + IA) 
Caddr = addr + 18) 

! **************************************************************** 
! perform MRI instructions 
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do_isz := (I oad_md; ! load MD 
MD = MD + 1; next; ' increment MD . 
store_word; ' store MD . 
if <MD eql Q) <PC= PC+1)) ' if MD = 0 then skip . 

do_ lac := (I oad_md; ' load MD 
AC = MD) ! load AC from MD 

do_and := C I oad_rnd; ' load MD 
AC = MD and AC) ' AND AC and MD 

do_tad := (I oad_md; ' load MD 
AC = MD + AC) ' add AC and MD 

do_jrns .-.- (MD= xwCPC); next; 
store_word; ' save PC . 
PC = addr) ' jump to address . 

do_dac ·= <MD = AC; next; ! load MD from AC . 
store_word) ' save AC . 

do_jmp := CPC = addr) ! jump 

! **************************************************************** 
! perform OPERATE instructions 

do_cla 
do_sta 
do_cma 
do_cl I 
do_stl 
do_skp 
do_skz 
do_szl 
do_rar 

do_ral 

do dta 
· do_dtb 

do_df a 
do df b 
do_1 na 
do_i nb 

:= <AC = 0) ! 
:= <AC = not 0) ! 
:= CAC = not AC) ! 
:= (If= 0) ! 
:= (If = 1 ) ! 
:= Cif <AC geq 0) CPC = PC+1)) ! 
:= Cif CAC eql 0) <PC= PC+1)) ! 
:=(if (If eql 0) <PC= PC+1)) ! 
:= <AC= If concat AC<<WORD-1_:0>; 

If= AC<O>) ! 
:= CAC = AC concat If; 

clear AC 
set AC 
complement AC 
c I ear I ink 
set Ii nk 
skip next instruction 
skip next instruction 
skip next instruction 

rotate right 

If= AC<CWORD-1)>) 
:= <IA= AC<addr_part>) 
:= (18 = AC<addr_part>) 
:=<AC= xw(IA)) 

! rotate left 

: = (AC = xw C I B) ) 
:=-<IA= IA+ 1) 
:= (18 = 18 t 1) 

! deposit AC in IA 
' deposit AC 1n 18 
' deposit IA in AC 
' deposit 18 in AC 
! increment I A 
' increment I B 

! ~**************t************ t ************* x *t*************f* ~ ** ~ 
' rneiin program 

' . 
m8. in : = 



51 

( 

fetch_instruction; 

if (opcode neq OP_IO_I) effective_address; 

case opcode 
ISZ I 
LAC_I 
AND_! 
TAD_I 
JMS_I 
DAC I 
JMP I 
OP _IO_ 

esac; 
CYCLE; 

) 

(do isz) 
(do_ lac) 
(do_and) 
Cdo_tad) 
Cdo_jms) 
(do dac) 
(do_jmp) . . 
( 

case op_part 
HLT_I 
NOP _I 
CLA_I 
STA_I 
CMA I 
CLL_ 
STL_ 
SKP_ 
SKZ_ 
SZL 
RAR_ 
RAL_ 
OTA_ 
OTB_ 
DFA_ 
DFB_ 
INA_ 
INB_I 

esac; 
) 

( ; ) 
( ; ) 
Cdo_cla) 
(do_sta) 
(do_cma) 
(do_c 11) 
(do_stl) 
(do_skp) 
(do_skz) 
(do_sz I) 
(do_rar) 
(do_ra I) 
(do_dta) 
Cdo_dtb) 
(do_df a) 

(do_df b) 
Cdo_i na) 
(do_i nb) 

• 



APPENDIX C 

"A" MODEL METAMICRO SOURCE FOR SIC 

The following source code represents the metaMicro code for the 

"A" level model for SIC. M.acros are included for every MRI and 

OPERATE instruction. 

' ************************************************************** 
' . ! Name : ASIC.METAMICRO 
! Purpose 
! 

: metaMicro assembly code generator for SIC 
class A imp1ementation 

! Author 
! Version 

' . ! Comments 

' . 

: BJ Patz 
1 . 0 

! ************************************************************** 
instr 1[1, 1J<18> $ ' 1 word instruction of 18 bits . 

format opcode = I< 17: 15>, ! operation· 
addr_type = I< 14: 13>, ' address type . 
addr = 1<12:0>, ' address . 

rot_d i r = I< 13: 13>, ' rotation direction . 
rot1 = 1<12:12>, ' rotate in event 1 . 
rot2 = 1<7:7>. ' rotate in event 1 . 
rot3 = 1<3:3>. ' rotate in event 1 . 
ev1 1 - I < 11 : 1 O>, ' event time 1 sub event 1 - . 
ev1_2 = 1<9:8>, ! event time 1 sub event 2 
ev2 = 1<6:4>. ' event time 2 only event . 
ev3_1t = 1<2:2>. ' event time 3 less than 0 . 
ev3_eq = 1<1 :1>. ' event time 3 equal 0 . 
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ev3_gt = l<O:O>, ' event time 3 greater than 0 

op_io_int = 1<14:12>, ! operate, 1/0, and interrupt 

o_device = 
o_command = 
o_status = 
o_data = 
o_d i r = 
o_comp = 

buf - io_chan = 

I< 11 : 9>, 
1<8:7>, 
I < 11 : O>, 
1<7:7>, 
1<6:6), 
1<5:0>, 

1<10:9)$ 

' opcodes 

' I /0 device 
! I /0 command 
! I /0 status 
! 1/0 data or status 
! I /0 d i rec t j on 
! 1/0 status compare 

! buffer 1/0 channel 

! constants 

direct 
indirect 
index_a 
index_b 
left 
right 

= 0 &, 
= 1 &, 
= 2 &, 
= 3 &, 
= 0 &, 
= 1 &, 

! the basic op codes 

isz(a,m) =opcode= O; addr = a; mode(m) $ &, 
lac(a,m) = opcode= 1; addr = a; mode(m) $ &, 
and(a,m) = opcode= 2; addr =a; mode(m) $ &, 
tad(a,m) =opcode= 3; addr =a; mode(m) $ &, 
jms(a,m) =opcode= 4; addr =a; mode(m) $ &, 
dac(a,m) = opcode= 5; addr = a; mode(m) $ &, 
jmp(a,m) = opcode= 6; addr = a; mode(m) $ &, 

raf =opcode= 7; rot_dir = left; rot1 = 1; 
rar =opcode= 7; rot_dir = right; rotl = 1; 

nop = opcode = 7; ev1 1 = 0 $ &, 
stl = opcode= 7; ev1=1 ~ 1 $ &, 
cl I = opcode = 7; ev1_1 = 2 $ &, 
hit = opcode = 7; ev1_1 = 3 $ &, 

sta = opcode = 7; ev1_2 = 1 $ &, 
cla = opcode = 7; ev1_2 = 2 $ &, 
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cma = opcode = 7; ev1 _2 = 3 $ &, 

szl = opcode = 7; ev2 = 1 $ &, 
df a = opcode = 7; ev2 = 2 $ &, 
df b = opcode = 7; ev2 = 3 $ &, 
dta: = opcode = 7; ev2 = 4 $ &, 
ina = opcode = 7; ev2 = 7 $ &, 
dtb = opcode = 7; ev2 = 6 $ &, 
inb = opcode = 7; ev2 = 7 $ &, 

skp = opcode = 7; ev3_eq = 1 ; ev3_gt = 1 $ &. 
skz = opcode = 7; ev3_eq = 1 ; $ &. 

' address mode determination 

mode(m) = 
if 'm eq I "d" then {addr _type = direct}; 
if 'm eql "i" then {addr_type = indirect}; 
if 'm eql "a" then {addr_type = index_a}; 
if 'm eq I "b" then {addr _type = i ndex_b}; &; 



APPENDIX D 

"B" MODEL ISP' SOURCE FOR SIC 

The following ISP' source code represents the 'B" level model for 

SIC. The complete instruction set of SIC, as defined by the AHPL code 

in Appendix A, is modeled. Interconnection capabilities to an external 

memory and 1/0 facilities are also provided. 

! **************************************************************** 
' . BS IC. I SP ! Name 

Purpose ' . ' ' 
ISP' code for a Smal I Instruction set Computer, 
class B 

. 
! Author 
' Version 
! 

implementation 
BJ Patz 
1. 0 

! Comments al I instruction groups modeled 

' . 
! ********************************************~******************* 
! 
! declarations 

' . 
macro WORD = 18 &, 

ADDRESS = 13 &, 
ADDR_PART = 12:0 &, 
STATUS = 12 &, 
BUF CHAN = 4 &, 
INT_CHAN = 8 &. 
STAT_PART = 5:0 &, 
CYCLE = delay(l) &, 
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! basic word size 
! basic address length 
! a9dress part of WORD 
! status length 
! number of buffer channels 
! number of interrupt Jines 
! comparable part of STATUS 
! basic cycle time 
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' major instruction breakdown, bi ts 17: 15 . 
ISZ_I = 0 &, ' inc and skip on zero . 
LAC_I = 1 &. ' load AC 
AND_I = 2 &. ' and MD with AC . 
TAD_I = 3 &, ! twos comp add MD with AC 
JMS_I = 4 &. ' jump to subroutine . 
DAC_I = 5 &, ' deposit AC . 
JMP _I = 6 &, ! jump 
DP _ID - = 7 &. ! operate or 1/0 instruction 

! adressing modes 

DIRECT = 0 &, ' direct addressing . 
INDIRECT = 1 &, ' indirect addressing . 
INDEX_A = 2 &. ' index A addressing 
INDEX_B = 3 &. ! index B addressing 

LEFT = 0 &. 
RIGHT = 1 &. 

xw<va I) = val ext 18 &; 

port INTLINE <INT_CHAN>. ' interrupt I i nes . 
BCRDY <BUF_CHAN>. ' buffer channel ready? . 
BUFRDY <BUF_CHAN>. ' buffer ready . 
start. ! start signal 
csrdy, ' status ready . 
ready, ' io ready . 
dataval id, ' io data val id . 
accept, ' io accepted . 
bufend, ' buffer done 
IOBUS <WORD>, ! io info bus, memory data bus 
CS BUS <STATUS>. ' status bus . 
MABUS <ADDRESS>, ' memory address bus . 
mwrite, ' memory write . 
menable; ! memory enable 

state AC <WORD>. ' accumulator . 
MD <WORD>, ! memory data register 
IR <WORD>. ! instruction register 
PC <ADDRESS>. ! program counter 
MA <ADDRESS>, ' memory address register . 
IA <ADDRESS>. ' index register A . 



format 

opcodes 

! 

18 <ADDRESS>, 
If, 
MR <I NT _CHAN> , 
INTR <INT_CHAN>, 
CSR <STATUS>, 
BWC <ADDRESS> , 
BCR <BUF_CHAN>, 
BIOR <BUF_CHAN>, 
CC <1 :O>, 
intf, 
en if; 
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opcode 
addr_type 
addr 

= tR<17:15>, 
= I R< 14: 13> , 
= IR<12:0>, 

rot_d i r 
rot1 
rot2 
rot3 
ev1 1 
ev1 _2 
ev2 
ev3_1 t 
ev3_eq 
ev3_gt 

op_io_int 

o_device 
o_command 
o_status 
o_data 
o_di r 
o_comp 

= I R< 13 : 13>, 
= I R< 1 2 : 12>, 
= IR<7:7>, 
= IR<3:3>, 
= I R< 11 : 1 O>, 
= IR<9:8>, 
= IR<6:4>, 
- IR<2:2>, 
= IR< 1 : 1 >, 
= IR<O:O>, 

= I R< 14: 12> , 

= IR<11:9>, 
= IR<8:7>, 
= IR<11:0>, 
= IR<7:7>, 
= IR<6:6>, 
= IR<5:0>. 

buf_io_chan = IR<10:9>; 

! sub proqesses 

' . 

! index register 8 
! I ink f I ag 
! mask register 
! interrupt register 
' comm status register 
! buffer word count 
! buffer channel register 
! buffer 1/0 direction 
' 2 bit counter 
! interrupt flag 
! interrupt enab I e 

! operation 
! address type 
! address 

! rotation direction 
! rotate ·n event 1 
! rotate n event 1 
! rotate n event 1 
! event t me 1 sub event 1 
! event t me 1 sub event 2 
! event t me 2 only event 
! event t me 3 less than 0 
! event t me 3 equal 0 
' event t me 3 greater than 0 

! operate, 1/0, and interrupt 

! I /0 device 
! 1/0 command 
! I /0 status 
! 1/0 data or status 
! I /0 d i rect ion 
! 1/0 status compare 

! buffer 1/0 channel 
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! **************************************************************** 
! get a word from memory, 1 cycle read 

get_word := 
( 

menable = 1 ;mwrite = O; MABUS= MA; MD= IOBUS; CYCLE; 
menable = O; 

) 

! **************************************************************** 
! store a word. 1 cycle write 

store_word := 
( 

menable = 1 ;mwrite = 1; MABUS - MA; IOBUS =MD; CYCLE; 
menable = O; 

) 

! **************************************************************** 
! fetch an instruction 

fetch_instruction := 
( 

MA = PC; CYCLE; 
get_word; 
IR = MD; PC= PC + 1; CYCLE; 

) 

! **************************************************************** 
! compute effective address 

effective_address := 
( 

MA= addr; CYCLE; 
case addr_type 

esac; 
) 

direct 
indirect 
i ndex_a 
index~b : 

• 
' (get_word; addr = MD<ADDR_PART>;CYCLE) 
Caddr = addr + IA; CYCLE) 
(addr = addr + 18; CYCLE) 

! **************************************************************** 
! load MD from address in IR 
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load_md := 
( 

) 

MA = addr; CYCLE; 
get_word; 

! **************************************************************** 
! perform MR I j nstruct i ans 

do_isz := (I oad_md; ! I oad MD 

do_ lac 

do_and 

do_tad 

do_jms 

do_dac 

do_jmp 

MD = MD + 1 ;- next; ! increment MD 
store_word; ! store MD 
if <MD eq I 0) <PC = PC+ 1)) ! if MD = 0 then skip 

:= Cload_md; ! load MD 
AC = MD) ! load AC from MD 

:= ( load_md; ! load MD 
AC = MD and AC) ! AND AC and MD 

:= (load_md; ! load MD 
AC = MD + AC) ! add AC and MD 

:= <MD= xw<PC); next; 
store_word; 
PC = addr) 

:= CMD = AC; next; 
store_word) 

:= <PC = addr) 

! save PC 
! jump to address 
! load MD from AC 
! save AC 
! Jump 

! **************************************************************** 
! rotate accumulator 

rotate_ac := 
( 

case rot_dir 
left 

esac; 
) 

right 

<AC= AC concat If; If= AC<CWORD-1)>; 
CYCLE) 

CAC = If concat AC<CWORD-1):0>; If= AC<O>; 
CYCLE) 

! **************************************************************** 
! event time 1 for operate instructions 

eventl := 
( 
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case rot1 
0 : ( 

esac; 
) 

case ev1 1 
0 ; ! nop 
1 : < If = 1 ; CYCLE) ! set I ink 
2 : (If= O; CYCLE) ! clear I ink 
3 : ; ! ha It 

esac; 
case ev1_2 

esac; 
) 

0 ; ! nap 
1 <AC = not O; CYCLE) ' set AC 
2 <AC = O; CYCLE) ! clear AC 
3 <AC = not AC; CYCLE) ! comp AC 

1 rotate_ac 

! **************************************************************** 
! event time 2 

event2 := 
( 

case rot2 
0 : ( 

esac; 
) 

case ev2 
0 

esac 
) 

1 : 
2 
3 
4 : 
5 
6 
7 

1 : rotate_ac 

• 
' (if If eql 0 then <PC= PC+ 1; CYCLE) 
<AC= xw<IA); CYCLE) ! DFA 
<AC= xw<IB); CYCLE) ! DFB 
<IA= AC<ADDR_PART>; CYCLE) ! OTA 
( I A = I A + 1 ; CYCLE) ! I NA 
(18 = AC<ADOR~PART>; CYCLE) ' OTB 
( 18 = 18 + 1 ; CYCLE) ! I NA 

! **************************************************************** 
! event time 3 



event3 := 
( 

case rot3 
0 : ( 

) 

if ( 
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(ev3_1t and <AC lss xw(Q))) or ! AC < 0 
(ev3_eq and <AC eql xwCQ))) or ! AC = 0 
(ev3_gt and <AC gtr xw(Q))) ! AC > 0 

) <PC= PC+1; CYCLE) 

1 rotate_ac 
esac; 

) 

**************************************************************** 
! interrupt setup sequence not yet implemented 

int := 
( 

CYCLE 
) 

! **************************************************************** 
interrupt priority logic. pick the most significant bit set 

function pri(a<INT_CHAN>)<2:0> := 
( 

) 

state i <2:0>; 

i = 7; next; 
while <a<i :i> eql Q) (i = i-1); 
pr i = I; 

! **************************************************************** 
! compute interrupt address 

function iaddr<ADDRESS> := 
( 

iaddr = 8 + 2*(priCINTR and MR) ext ADDRESS); 
) 

! **************************************************************** 
! service interrupt 
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int handle := - ( 

) 

intf = O; enif = O; CYCLE: 

addr = iaddr; 
MA= addr; MD= xwCPC); CYCLE; 
store word; 
PC = addr + 1; CYCLE; 

! reset interrupt flag, 
! disable other 
' interrupts 
! get interrupt address 
! store PC for return 

' . ' jump to interrupt 
! address + 1 

! **************************************************************** 
! test sequence not yet implemented 

tst := 
( 

CYCLE 
) 

! **************************************************************** 
! 1/0 instructions 

10 := 
( 

CSR = io_status; CYCLE; ! put status on bus 
CSBUS =CSR; csrdy = 1; wait (accept : lead); 
CSBUS = O; csrdy = O; next; ! release bus 
case io_command 

0 t 1 : ( 
case io_dir 

0 : ( 
~get data and wait unti t ready 

MD = AC; CYCLE; 
wait (ready : lead); 

! put data on bus and wait unti I accepted 

! release bus 

! ready to receive 

IOBUS = MD; dataval id = 1; 
wait (accept : lead); 

IOBUS = O; dataval id = O; 
) 

1 : ( 

ready = 1; wai t<datavar id : lead); 
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case io data 
receive data 

0 <MD = IOBUS; CYCLE) 
! receive status 

esac 
) 

esac 
) 

1 <CSR = CSBUS; CYCLE) 
esac; 
accept = 1 ; 
wait(dataval id : trai I); 
case ·io_data 

esac; 

0 <AC = MD; CYCLE) 
1 : ( 

if < ( i o_comp and 
CSR<STAT_PART>) neq 0) 

<PC = PC + 1; CYCLE) 
) ; 

accept = O; ready = O; 
) 

2 ( ! set buffered 1/0 direction 
BIOR<buf_io_chan:buf_io_chan> = io_dir; CYCLE 

) 

3 ! nop 

! **************************************************************** 
! compute buffer address 

function baddr(c<1 :O>)<ADDRESS> := 
( 

baddr = 32 + 2*c; 
) 

! ********************i******************************************* 
! buffer sequence 

buffer := 
( 

while BCR<CC:CC> eql 0 
( 

CC = CC + 1 ; CYCLE 
) ; 

! find out which channel 
! wants service 



) 
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addr = baddr(CC); BCR<CC:CC> = O; CYCLE; ! get buffer 

' address . 
MA = addr; CYCLE; 
get_word; addr := addr+1; next; ' get negative . 

! word count 
MA= addr; BWC = MD<ADDR_PART>; CYCLE; 
get_word; ' get start . 

' address . 
MA = MD + BWC; CYCLE; 
BWC = BWC + 1; BUFRDY<CC:CC> = 1; CYCLE; ' increment 

! word count 
BUFRDY<CC:CC> = O; 
case BIOR<CC:CC> 

0 : ( 

) 

1 ( 

) 

esac; 

get_word; ! send data 
wait (ready: lead); 
IOBUS =MD; dataval id= 1; wait(accept:lead); 
IOBUS = O; dataval id = 0; ! release bus 

ready= 1; wait(dataval id: lead);! receive data 
MD = IOBUS; CYCLE; 
store_word; 
accept= 1; wait <dataval id:trai I); 
ready = O; accept = O; ! release bus 

if <BWC eql 0) 
( 

· bufend = 1; CYCLE ! buffer empty 

) 

else ( 

) 

bufend = O; 

BUFRDY<CC:CC> = 1; CYCLE; ! store new BWC 
BUFRDY<CC:CC> = O; 
MA= baddr(cc); MD= BWC; CYCLE; 
store_word; 

! **************************************************************** 
! main program 
! 



ma t :.= 

! b f fer command 
! hand le interrupt 

f ietc _ i' struct ion; 

i , 1Copoode neq OP-~ O_~ )i effect iii ve__:address; 

.. . . . 

. . , 

., ., 
- -

1 ope a ' e s 1 c 10 s 

,I t • 1.es seq .ence 

if • 
.• 10 se e ce 

! ter s e ce 

(do isz ) -
(do lac ) -
( o_a ,d) 

(do_tad) 
( o_jms) 
(do _dac ) 
(do_jmp) 

( 

case op_ ii 0 I t -

0,1,2,3: 
1( 

event11 

; 

event2; 
i f (e 2 neq 1 ) event3; 

) 

4 :, ( 
tst; 

,) 

5 ( 

6,7 : 

in • 



esac; 
CYCLE; 

) 

esac; 
) 
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) 



APPENDIX E 

'B" MODEL ISP' SOURCE FOR MEMORY AND IO 

The following ISP' source code represents a synchronous memory 

and an I/O module for the "B" level model of SIC. 

! **************************************************************** 
' . ! Name 
! Purpose 

' . ! 
! Author 
! Version 

' . 

RAM. I SP 
ISP' code for an RAM, used in the 
Smal I Instruction set Computer 
class Band C implementations 
BJ Patz 
1. 0 

! Comments RAM has enable to enabfe input and output 

' . 
! **************************************************************** 
! 
' declarations 

' . 
macro DATASIZE = 18 &, ' basic word size . 

ADDRSIZE = 13 &, ' basic address length . 
RAMDELAY = 50 &; ! RAM read delay 

memory M[0:8191J<DATASIZE>; ! program memory 

ADDA <ADDRSIZE>, ' address bus . port 
DATA <DATASIZE>, ! data bus 
write, ! read/wr i te I i ne 

' read= 0, write= 1 . 
enable; ' enable . 
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' **************************************************************** 
! memory read, and write 

do_read := 
( 

) 

delay<RAMDELAY); 
DATA = MCADDRJ 

do_write := 
( 

M[ADDRJ = DATA 
) 

' **************************************************************** 
! main routines 

when (write trai I ( e nab I e eq I 1 ) ) ·= (do_read) . 
when (write lead C en ab I e eq I 1 ) ) ·= (do_write) . 
when (enable trai I := <DATA = 0) 
when (enable lead <write eql Q))) ·= (do_read) . 
when (enable lead (write eql 1 ) ) ) := (do_write) 
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! *********************************************~****************** 
' . ! Name I 0. I SP 
! Purpose 

Author 
! Version ' . 

10 module used for class B SIC 
BJ Patz 
1.0 

' . ! Comments non-buffered 10 module 
! 

' ! 
' . 

this module only responds to io requests 
and multiplies the last two data words 
it received 

' **************************************************************** 

' . ! declarations 

' . 
macro 

port 

state 

ME = 1 &. ! my device name 
WORD 
STATUS 
BUSY 
DONE 
CYCLE 
BIGCYCLE 

= 1 8 & , ! bas i c word s i ze 
= 12 &, ! status length 
= 1 &, ! busy 
= 0 & • ! not busy 
= delay(1) &, ! basic cycle time 
= delay(5)&; ! command cycle time 

CSBUS <STATUS>. 
IOBUS <WORD>. 
inti ine, 
csrdy, 
ready, 
dataval id, 
accept; 

COMM <STATUS>. 
STAT <STATUS>. 
DATA <WORD>. 
OLD_DATA <WORD); 

! status bus 
! io data bus 
! interrupt I ine, not used 
! status ready 
! i o ready 
! io data val i'd 
! i o accepted 

! SICs command 
! status register 
! data register 
! old data register 

format io_dev = COMM<11 :9>.! io device 
io_command = COMM<8:8). ! command only 
io_data = COMM<7:7>. ! data or status 
io_dir = COMM<S:S>. ! io direction 
io_status = COMM<5:0>; ! io status 
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! **************************************************************** 
! receive data 

receive := 
( 

) 

ready = 1 ; 
wait (datavat id : lead); 
DATA = IDBUS; accept = 1; CYCLE; 
wait Cdataval id : trai I); 
ready = O; accept = O; 

! ready to send 

' data on bus . 
' get data . 
' ok . 
' release bus 

! **************************************************************** 
! send data 

send := 
( 

wa i t < ready : I ead ) ; 
case io_data 

esac; 

0 : <IOBUS =DATA; CYCLE) 
1 : CCSBUS = STAT; CYCLE) 

dataval id = 1; 
wait (accept : lead); 
datava I id = 0; 
case io_data 

0 <IOBUS = Q) 
1 : <CSBUS = 0) 

esac 
) 

' wait for ready . 

' data on bus . 
! status on bus 

' data valid . 
! wait ti I received 

! release bus 

! **************************************************************** 
! ;do something with data received 

do_command := 
( 

) 

STAT= BUSY; 
DATA = DATA * OLD DATA; 
OLD_DATA = DATA; 
BIGCYCLE; 
STAT= DONE; 

! set status to busy 
! perform multiply 
! and save old data 
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! **************************************************************** 
! main program 

main := 
( 

) 

wait (csrdy : I ead); 
COMM = CSBUS; accept = 1; CYCLE; 
accept = O; 

if (io_dev eql ME) 
( 

case io_command 

esac 
) 

0 : (case io_dir 
0 : <receive; do_comrnand) 
1 : (send) 
esac) 

1 (do command) 



APPENDIX F 

"B" MODEL TOPOLOGY FILE 

The following code illustrates the topology file used to define the 

"B' level model SIC network. 

! ****************************************************** 
' . ! Name 
! Purpose 
! 

' ! Author 
! Version 

' 

BSIC.T <topology file) 
topology file for a 
Smal I Instruction set Computer 
class C implementation 
BJ Patz 
1. 0 

' ****************************************************** 
signals inti ine <B>. ' interrupt I i nes . 

bcrdy <4> t ' buffer channel ready . 
buf rdy <4>, ! buffer ready 
start, ! start signal 
csrdy, ' status ready . 
ready, ' io ready · . 
datavaf id, ! io data val id 
accept, ' io accepted . 
bufend, ! buffer done 
iobus <18>. ! iobus 
cs bus <12> ' ' status bus . 
mabus <13>, ' memory address bus . 
mwrite, ! memory write 
menable; ! memory enable 

! sic 
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processor sic = ''bs i c. s i m"; 
time delay 200ns; 
connections 

' 

inti ine - inti ine, 
bcrdy = bcrdy, 
bufrdy = bufrdy, 
start = start, 
csrdy - csrdy, 
ready = ready, 
datava I id= datava I id. 
accept = accept, 
bufend = bufend, 
iobus = iobus, 
csbus = csbus, 
mabus = mabus, 
mwrite = mwrite, 
menable = menable; 

program memory 

processor pram = "ram.sim"; 
time delay 50ns; 
connections addr = mabus, 

data = iobus, 
write = mwrite, 
enable = menable; 

initial m = coreimage; 

! an io process 

processor io = "io.sim"; 
time delay 200ns; 
connections csbus = csbus, 

iobus = iobus, 
inti ine = inti ine<1 :1>, 
csrdy = csrdy, 
ready = ready. 
datava I id = datava I id. 
accept = accept; 



APPENDIX G 

"B" MODEL META!\UCRO SOURCE FOR SIC 

The foil owing metaMicro source code is used for defining the 

executable instructions of the "B" level implementation of SIC. 

************************************************************** 
' . ! Name BSIC.METAMICRO 
' Purpose 

' 
metaMicro assembly code generator for SIC 
class B implementation 

! Author BJ Patz 
! Version 1. 0 

' . ' Comments 

' . 
! ************************************************************** 
instr 1[1, 1J<18> $ ' 1 word instruction of 18 bits . 
format opcode = 1<17:15>. ' operation . 

addr_type = I< 14: 13>. ! address type 
addr = 1<12:0>. ! address 

rot_dir = I <13: 13>. ' rotation direction . 
rot1 = I< 12: 12>. ' rotate ·n event 1 . 
rot2 = 1<7:7>. ! rotate n event 1 
rot3 = 1<3:3>. ' rotate n event 1 . 
ev1 1 = I < 11 : 1 O>, ! event t me 1 sub event 1 -ev1_2 = 1<9:8>. ! event t me 1 sub event 2 
ev2 = 1<6:4>. ! event t me 2 only event 
ev3_1t = 1<2:2>. ' event t me 3 less than 0 . 
ev3_eq = 1<1 :1>. ! event t me 3 equal 0 
ev3_gt = l<O:O>. ' event t me 3 greater than 0 . 
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op_io_int = 1<14:12>. 

o_device - I< 11 : 9>. -
o_command = 1<8:7>. 
o status = I < 11 : O>, 
o_data = 1<7:7>. 
o_di r = 1<6:6>, 
o_comp = 1<5:0>. 

buf io_chan = 1<10:9)$ -

macro 
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! operate. 1/0, and interrupt 
! opcodes 

! I /0 device 
' I /0 command 
' I /0 status 
! 1/0 data or status 
! I /0 d i r ect i on 
' 1/0 status compare 

' buffer 1/0 channel 

! constants 

direct 
indirect 
index_a 
index_b 
left 
right 

= 0 &. 
= 1 &. 
= 2 &, 
= 3 &. 
= 0 &. 
= 1 &, 

! the basic op codes 

isz(a,m) = opcode= O; addr = a; mode(m) $ &, 
lac(a,m) = opcode= 1; addr = a; mode(m) $ &, 
and(a,m) = opcode= 2; addr =a; mode(m) $ &, 
tad(a,m) = opcode= 3; addr = a; mode(m) $ &, 
jms(a,m) = opcode= 4; addr =a; mode(m) $ &, 
dac(a,m) = opcode= 5; addr = a; mode(m) $ &, 
jmp(a,m) = opcode= 6; addr = a; mode(m) $ &, 

ral = opcode = 7; rot_d i r = left; rot1 = 1 ; 
rar = opcode = 7; rot_d i r = r i ght; rot1 - 1 • - ' 
nop = opcode = 7; ev1 - 1 = 0 $ &, 
stl = opcode = 7; ev1 -1 = 1 $ &, 
cl I = opcode = 7; ev1 1 = 2 $ & - ' t 

hit = opcode = 7; ev1 1 = 3 $ &, -
sta = opcode = 7; ev1 _2 = 1 $ &, 
cla = opcode = 7; ev1_2 = 2 $ &, 
cma = opcode = 7; ev1_2 = 3 $ &, 
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szl = opcode = 7; ev2 = 1 $ &, 
dfa = opcode = 7; ev2 = 2 $ &, 
dfb = opcode = 7; ev2 = 3 $ &, 
dta = opcode = 7; ev2 = 4 $ &, 
1na = opcode = 7; ev2 = 7 $ &, 
dtb = opcode = 7; ev2 = 6 $ &, 
inb = opcode = 7; ev2 = 7 $ &, 

skp = opcode = 7; ev3_eq = 1; ev3_gt = 1 $ &, 
skz = opcode = 7; ev3_eq = 1; $ &, 

od(n) = opcode= 7; op_io_int = 5; io_device = n; 
io_command = O; io_dir = 0 $ &, 

id(n) = opcode= 7; op_io_int = 5; io_device = n; 
io_command = O; io_dir = 1 $ &, 

is(n) = opcode= 7; op_io_int = 5; io_device = n; 
io_command = 1; io_dir = 1 $ &, 

ob(n) = opcode = 7; op_io_int = 5; io_device = n; 
io_command = 2; io_dir = 0 $ &, 

ib(n) = opcode= 7; op_io_int = 5; io_device = n; 
io_command = 2; io_dir = 1 $ &, 

oc(n) =opcode= 7; op_io_int = 5; io_device = n; 
io_command = 3; io_dir = 0 $ &, 

! address mode determination 

mode(m) = 
if 'm eql "d" then {addr_type =direct}; 
if '·m eq I " i " then {addr_type = indirect}; 
if 'm eql "a" then {addr_type = i ndex_a}; 
if 'm eql "b" then {addr_type = i ndex_b}; 

f some more advanced opcodes, mainly operate instructions 

aral(n) =opcode= 7; rot_dir = left; rot(n) $ &, 
arar(n) =opcode= 7; rot_dir = right; rot(n) $ &, 
acla = opcode = 7; ev1_2 = 2; ev2 = 4 $ &, 
aclb = opcode = 7; ev1_2 = 1; ev2 = 6 $ &, 

rot(n) = if n = 1 then {rot1 = 1}; 
if n = 2 then {rot1 = 1; rot2 = 1}; 

&, 

if n = 3 then {rot1 = 1; rot2 = 1; rot3 = 1} &; 



APPENDIX H 

"C" MODEL ISP' SOURCE FOR SIC 

The following ISP' source code represents the "C" level model for 

SIC. In this version, all facilities of SIC are modeled as seperate ISP' 

processors. 

! **************************************************************** 
' . ! Name ALU. I SP (a I u) 

' Purpose 
! 

' . 
ISP' code for an alu, used in the 
Smal I Instruction set Computer 
class C implementation 

' . ' . ' . 
Author 
Version 

BJ Patz 
1. 0 

! Comments 2 18 bit inputs are processed. ytelds 19 bit output 

' . 
! **************************************************************** 
! 
! declarations 

' . 
macro WORDIN = 18 &, 

WORDOUT = 19 &, 
ALUDELAY = 50 &, 

! meanings of alu function 

ALU_A = 0 &, 
ALU_B = 1 &, 
ALU_ABAR = 2 &. 
ALU_BBAR = 3 &, 
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! input word size 
! output word size 
! alu delay 

' out = ina . 
' out = inb . 
! out = not 1na 
! out = not inb 
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ALU_ADD = 4 &, ! out = 1na + inb 
ALU_AND = 5 &, ' out = ina and inb . 
ALU_RAL = 6 &, ' out = rotate ina left . 
ALU_RAR = 7 &. ' out = rotate ina right . 

port ALU_FUNC <3>, ' alu command 
INA <WORD IN>. ! input a 
INB <WORD IN>, ' input b . 
If, ' I ink f I ag input 

OUT <WORDOUT>; ' output . 

! **************************************************************** 
' combinatatorial part of alu 

do_alu := 
( 

delay<ALUDELAY); 
case alu_func 

ALU_A 

esac; 
) 

ALU_B 
ALU_ABAR 
ALU_BBAR 
ALU_ADD 
ALU_AND 
ALU_RAL 
ALU_RAR 

(out= 0 concat ina) 
(out = 0 concat inb) 
(out = 0 concat (not ina)) 
(out = 0 concat (not inb)) 
(out = ina + inb) 
(out = ina and inb) 
(out = ina concat If) 
(out = If conca ina) 

! **************************************************************** 
! main routines, when anything changes compute ·ne outputs 

when (INA) := (do_alu) 
when <INS) := (do_alu) 
when <ALU_FUNC) := (do_alu) 
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! **************************************************************** 
! 
! Name : BUSCON . ISP 
! Purpose 

' . ' . ! Author 
! Version 

' ! Comments : 
! 

ISP' code for A,B, and 0 bus control, 
SmaJ I Jnstruction set Computer 
class C implementation 
BJ Patz 
1. 0 

used in the 

! **************************************************************** 
macro BMDELAY = 10 &; ' delay . 

port CON1 <3>, ' a bus control 
CON2 <3>, ' b bus control 
CON3 <6>. ' obus control . 

A_CON <B>, ' a bus control . 
B_CON <B>, ' b bus control 
O_CON <16>, ! o bus control 

' . ' control code meanings . 
' . 
' aO 0 on ABUS . 
' a1 1 on ABUS . 
' a2 a I I 1 's on ABUS 

' a3 . 
! a4 
! a5 IR on the ABUS 

' a6 AC on ABUS . 
' a7 BWC on ABUS . 

! bO 0 on BBUS 
! b1 1 on BBUS 
! b2 a I I 1 's on BBUS 
! b3 
! b4 MD on the BBUS 
! b5 IA on BBUS 
! b6 18 on BBUS 
! b7 PC on BBUS 
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! oO no op 
! ol IA = OBUS 

' o2 IR <addr_part> = OBUS . 
' o3 . 
' o4 . 
' o5 AC = OBUS . 
! 06 If ,AC = OBUS 

' o7 MD = OBUS . 
' 08 IA= OBUS 

' 08 18 = OBUS . 
! 010 PC = OBUS 

' 011 BWC = OBUS 

' 012 MA = OBUS 

' 013 CSR = OBUS . 
' 014 INTR = OBUS and INTR 

' 015 MR = OBUS . 

! **************************************************************** 
! do de mux process 

do_con := 
( 

delayCBMDELAY); 

A_CON := O; 
B_CON := O; 
C_CON := 0; 

A_CON<CON1> = 1; 
B_CDN<CON2> = 1 ; 
O_CON<CON3> = 1 ; 

! **************************************************************** 
! main 

when CCON1) := (do_con) 
when <CON2) := (do_con) 
when <CON3) := <do_con) 
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! **************************************************************** 
' . ' . ! 
' ! 
! 

' . ' 

Name 
Purpose 

Author 
Version 

CCGEN. ISP (condition code generator ) 
: ISP' code for the condition code generator 

Smal I Instruction set Computer 
class C implementation 
BJ Patz 
1. 0 

! Comments 1 8 bit mux, 1 32 bit mux 

' ' **************************************************************** 

' . ! declarations 
! 

MACRO CCDELAY = 10 &; !condition code de lay 

port INA<B>, 
INB<32>, 
COND <12> 
cc; 

! A input I i nes 
! B i nput I i nes 

' . ! 
! 

' . ' . ! 
' . ! 
' . ; ' . ' . ! 
! 

' . ! 
' . ! 
! 
! 

' . 

! condition code se lect from u machine 
! condition code 

condition code meanings 

A b t 0, nop 
Abt 1, accept 
A b t 2, datava Ii d 
A b t 3, ready 
A b t 4, IR * BCR 
A b t 5, BCR <CC> 
A b t 6, BIOR <CC> 
A b t 7, 
A b t 0, true 
8 b t 1, v<BCR) 
8 b t f 
B b t 3, status = 0 
B b t 4, status < 0 
B b t 5, status > 0 
8 b t 6, 
B b t 7, If 
8 b t 8, f 
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! 8 b t 9, IR<17> * IR<16> * IR<15> 

' 8 b t 10, IR<17> * IR<16> . 
' B b t 11, IR<2> . 
! B b t 12, IR<3> 

' B b t 13, IR<4> . 
' B b t 14. IR<5> . 
! B b t 15, IR<6> 

' B b t 16, IR<7> . 
' B b t 17, IR<B> . 
' B b't 18, IR<9> . 
' B b t 19, IR<10> 

' B b t 20 , IR<11> . 
' B b t 21. IR<12> . 
' B b t 22, IR<13> 
! B b t 23. IR<14> 
! B b t 24, IR<15> 

' B b t 25, IR<13> . 
' B b t 26, IR<17> . 
' B b t 27, . 
! B b t 28. 

' B b t 29, . 
' B b t 30, . 
' B b t 31 , . 

' **************************************************************** . 
! cc generator 

do_cc := 
( 

de I ay<CC_DELAY); 
cc= COND<8:8> xor CINA<COND<7:3>> or · INB<COND<2:0>>> 

) 

! **************************************************************** 
! main routines, when anuything changes compute cc 

when (I NA) := (do_cc) 
when Cl NB) := (do_cc) 
when CCONO) := (do_cc) 
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! **************************************************************** 
! 
! Name 
! Purpose 
! 
! 
! Author 
! Version 

' . 

CLKGEN. ISP (clock generator) 
ISP' code for a clock signal generator. 
Smal I Instruction set Computer 
class C implementation 

: BJ Patz 
: 1 . 0 

! **************************************************************** 
! 
! declarations 

' . 
macro HITIME = delay(150); ' time at 1 

LOWTIME = delay<50); ! time at 0 

port elk; ! clock output 

! **************************************************************** 
! main program 

main := 
( 

elk= 1; HITIME; 
elk= O; LOWTIME; 

) 
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! **************************************************************** 
' . ! Name CSGEN. ISP (contro1 signal generator) 
! Purpose 

' . 
fSP' code for the control signal genrator 
Smal I Instruction set Computer 

! class C implementation 
! Author 
! Version 

' . 
BJ Patz 
1 . 0 

. ! Comments 2 16 bit dernuxes 

' . ! **************************************************************** 

' . ! declarations 

' 
macro 

port 

CSDELAY = 10 &, 

CONT <S>, 
OUTA <16>. 
OUTS <16>; 

! control signal meanings 

' . ! A b t 0 no op 

' A b t 1 mem write . 
' A b t 2 mem enable . 
' A b t 3 accept = 1 . 
' A b t 4 datavalid = 1 . 
! A b t 5 dataval id = 0 

' A b t 6 ready = 1 . 
' A b t 7 buf end = 1 . 
' A b't 8 . 
' A b t 9 . 
! A b t 10 IOBUS = MD 
! A b t 11 CSBUS = CSR 
! A b t 12 
! A b t 13 
! A b t 14 
! A b t 15 

' B b t 0 no op . 
! B b .t 1 CSR = CSBUS 

! control delay 

! 9 control bits 
' output signal A 
! output signal B 
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! B b t 2 MD = IOBUS 

' B b t 3 BIOR <CC> = 1 . 
' B b t 4 BCR <CC> = 0 . 
' B b t 5 BCR <CC> = 1 . 
' B b t 6 BUFRDY<CC> = 1 
! B b t 7 CC = CC+1 
! B b t 8 intf = 0 

' B b t 9 enif = 0 . 
' B b t 10 enif = 1 . 
' B bit 11 If = O . 
' B bit 12 If = 1 . 
! B bit 13 If = OBUS<O> 

' B bit 14 If = OBUS<18> . 
' B bit 15 intf = <<v<MR * INTR)ienif) . 

! **************************************************************** 
! de mux code 

do_con := 
( 

delay<CSDELAY); 
OUTA = O; 
OUTB = O; 
OUTA<CONT<3:0>> = 1; 
OUTA<CONT<7:4>> = 1; 

! set enable if write 

if <CONT<3:0> eql 1) <OUTA<2> = 1); 
) 

! **************************************************************** 
!. ma i n rout i nes 

when <CONT) := (do_con) 
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! **************************************************************** 
' . ! Name 
! Purpose 

' . ! 
' . ' . 
' . 

Author 
Version 

! Comments 

' . 

IOHANDLE. ISP Cio handler) 
ISP' code for io for the 
Smal I Instruction set Computer 
class C implementation 
BJ Patz 
1. 0 

! **************************************************************** 
macro INT_CHAN = 8 &, ' number of interrupt I ines . 

STATUS = 12 &; ' size of status word . 

port c I k, ! clock 
INTLINE <INT_CHAN>, ' interrupt I i nes . 
CS BUS <STATUS>, ! status bus 
csrdy, ' status ready . 
IN <STATUS>, ! obus connection 
c1 <4>, ' contra I 1 . 
c2 <8>, ' control 2 . 
accept, ' accept . 
datavai Id. ' dataval id . 
ready, ! ready 
inter_rcvd; ' interrupt received . 

! 

' control meanings . 

! c2 b t 0 intf = 0 
! c2 b t 1 enif = 0 

' c2 b t 2 enif = 1 "' 

' c2 b t 3 l'NTR = not CINTR and IN) . 
' c2 b t 4 MR = IN . 
! c2 b t 5 intf =<CINTR and MR) neq Q) and enif 

' c2 b t 6 CSBUS = CSR,csrdy = 1 . 
' c2 b t 7 CSR = CSBUS . 
! c1 bit 0 accept = 1 
! c1 bit 1 dataval id = 1 
! c1 bit 2 dataval id = 0 

' c1 bit 3 ready = 1 . 
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state MR <I NT _CHAN>. ! mask register 
INTR <INT_CHAN>. ' interrupt register . 
CSR <STATUS>. ! status 
intf, ' intf . 
en if; ' en if . 

! **************************************************************** 
! register ops 

do_int := 
( 

f c2<0> (intf = 0); 
f t2<1> Cenif = 0); 
f c2<2> (enif = 1); 
f c2<3> CINTR = not <INTR and IR)); 
f c2<4> <MR = IN); 
f c2<5> (intf = ((INTR and MR) neq Q) and enif); 
f c2<6> <CSR= CSBUS); 

next; 

inter_rcvd = intf; 
) 

! **************************************************************** 
! main processes 

when (inti ine : lead) CINTR = INTR or inti ine) 

when<clk : trai I) Cdo_int) 

when (c2<7> : lead) 
when (c1<0>) . 
when (c1 <1 > : I ead) 
when (c1<2> : lead) 
when (c1<3>) 

<CSBUS =CSR; csrdy = 1) 
(accept = c1<0>9) 
(datava I id = 1) 
(dataval id = 0) 
(ready = c1<3>) 



88 

! **************************************************************** 
' . ' . Name 

Purpose 
LF. ISP <I ink flag) 

' . t . 
! 

ISP' code for the I ink flag for a 
Smal I Instruction set Computer 
class C implementation 

! Author BJ Patz 
! Version : 1. 0 

' . 
! ****************************************************'*********** 

' ! declarations 
! 

macro 

port 

REGSIZE = 1 &, 
REGDELAY = 10 &; 

c I k, 
c<4> 

! bit 0 clear Ii nk 

' bit 1 set Ii nk . 
' bit 2 Ii nk = i n1 . 
' bit 3 Ii nk = in2 . 

i n1 , i n2, 
out 

state R; 

! register size 
! register delay 

! clock 
! control 

' input bits . 
' outputs . 

' register . 

! **************************************************************** 
,! register output 

do_I ink := 
( 

) 

if c<O> CR= 0); 
if c< 1 > c·R = 1 ) ; 
if c<2> <R = in1); 
if c<3> CR= in2); 

delay CREGDELAY); 
out = R; 

! clear I ink 
! set I ink 
! low b.i t of obus 
! hi bit of obus 
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! **************************************************************** 
! main routines 

when (elk : trai I) := (do_I ink) 
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! **************************************************************** 
' . ! Name REG13. ISP (13 bit register) 
! Purpose 

' . 
ISP' code for a 13 bit register, used 1n the 
Smal I Instruction set Computer 

! 
! Author 
! Version 

' . ! Comments 

' . ! 
' . 

class C implementation 
BJ Patz 
1. 0 

register loads on negative edge 
register has enable 
register has output enable 

! **************************************************************** 
! 
! declarations 

' . 
REGSIZE = 13 &, ' register size • macro 
REGDELAY = 15 &; ! register delay 

c I k, f clock .. port 
en, ! enable 
oe, ' output enable • 
IN <REGSIZE>, ! inputs 
OUT <REGSIZE>; ' outputs .. 

state R <REGSIZE>; ! register 

! **************************************************************** 
! register output 

do_output := 
( 

) 

if oe delay<REGDELAY); 
case oe 

1 <OUT = R) 
0 : <OUT = 0) 

esac 

! output enabled 
! release output 

! **************************************************************** 
! register input 
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do_input :=(if en <R = IN)) ! input enabled 

' **************************************************************** 
! main routines 

when (elk : trai I) 
when (oe) 

:= (do_input; do_output) 
:= (do_output) 
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! ** ****************~********************************************* 
' . ! Name REG18. ISP (18 bi t register) 
! Purpose 

' 
: JSP' code for a 18 b' t register, used in the 

Smal f jnstruction set Computer 
! 
! Author 
! Version 

' . ! Comments 

' . ' . ' . 

class C imp lementat ion 
BJ Patz 
1. 0 

register loads on negative edge 
register has enable 
register has output enable 

! ******l********************************************************* 

' . ! declarations 

' . 
macro REGSl2E = 18 &, ! register size 

REGDELAY = 15 &; ! register delay 

port c I k, ' clock . 
en, ' enable . 
oe, ' output enable . 
IN <REGSIZE>, ! inputs 
OUT <REGSIZE>; ! outputs 

state R <REGSl2E>; ' register . 

! **************************************************************** 
! register output 
. 
do_output := 

( 

) 

if oe delay<REGDELAY); 
case oe 

1 <OUT = R) 
0 : <OUT = 0) 

esac 

! output enabled 
! release output 

! *********************************************************** * * 
! register input 
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do_input := (if en CR= IN)) ! input enabled 

! *******************J*t****************************************** 
! main routines 

when (elk : trai I) 
when (oe) 

:= (do_input; do_output) 
:= (do_output) 
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! **************************************************************** 
' . ! Name REG48. ISP C48 bit register) 
! Purpose 

' . 
ISP' code for a 48 bit register, used in the 
Smal I Instruction set Computer 

! 
! Author 
! Version 

' . 

class C implementation 
BJ Patz 
1. 0 

' Comments register loads on positive edge of clock 

' 
! **************************************************************** 

' . ! declarations 
! 

macro REGSIZE = 48 &, 
REGDELAY = 15 &; 

port c I k, 
IN <REGSl2E>, 
OUT <REGSIZE>; 

' . ! register bit field meanings 
! 

! 47:39 - next address 
! 38:27 - next address control 
! 26:24 - unused 
! 23:21 - a bus control 
! 20:18 - b bus control 
! 17:12 - o bus control 
! 11:9 - alu func 
! 8:0 - misc control 

state R <REGSIZE>; 

' register size . 
' register delay . 
t clock . 
! input to register 

' output of register . 

! **************************************************************** 
! register output 

do_output := 
( 

delay<REGDELAY); 



OUT = R; 
) 
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! **************************************************************** 
! main routines 

when (elk : lead) := (R = IN; do_output) 
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! **************************************************************** 
' . ! Name REG IR. ISP 
! Purpose : ISP' code for an 18 bit register, 

' . ' ' 
and some logic (IR register) used 1n the 
Smal I Instruction set Computer 

. 
! Author 
! Version 

' . ! 
' . ' . ' . 

Comments 

class C implementation 
: BJ Patz 

1 . 0 

register loads on negative edge 
register has enable 
register has output enable 

' **************************************************************** 

' . ! declarations 
! 

macro REGSIZE = 18 &. 
REGDELAY = 15 &; 

port c I k. 
en1 , 
en2, 
oe, 
IN <REGSIZE>. 
OUT <REGSIZE>, 
CONT<18>; 

! 
! control bit meaning 

' . 
IR<x> 
IR<17> * IR<16> 

! register size 
! register delay 

' clock . 
! enab I e a I I bi ts 

' enable only Jow 13 bits 
! output enable 

' inputs . 
! outputs 
! IR bits for control 

! bit x 
! bit 1 
! bit 0 IR<17> * IR<16> * IR<15> 

state R <REGSIZE>; ! register 

! **************************************************************** 
! register output 



do_output := 
( 

) 

if oe delay<REGDELAY); 
case oe 

1 : <OUT = R) 
0 : <OUT = 0) 

esac 
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! output enabled 
! release output 

! **************************************************************** 
! register load, and special output 

do_i nput := 
( 

) 

if en1 <R = IN); 
if en2 <R<12:0> = IN); 
next; 
if (en1 or en2) 

( 

) 

CONT = A; next; 
CONT<O:O> = R<17> and R<16> and R<15>; 
CONT<1 :1> = R<17> and R<16>; 

! **************************************************************** 
! main routines 

when (elk : trai I) 
when (oe) 

:= (do_input; do_output) 
:= (do_output) 
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! **************************************************************** 
! 

' . ' . 
' . ! 
! 
! 

' . ' . ' . ! 
' . 

Name 
Purpose 

Author 
Version 

Comments 

REG13. ISP (13 bit register) 
ISP' code for a 13 bit register, 
MA register. used in the 
Smal I Instruction set Computer 
class C implementation 
BJ Patz 
1 . 0 

register loads on negative edge 
register has enable 

! **************************************************************** 
! 
! declarations 

' . 
macro INSIZE = 19 &. ' al I registers input . 

! from 19 bit bus 
OUTSIZE = 13 &, ' and output . 

' to 18 bit bus . 
REGSIZE - 13 &. ! register size -
REGDELAY = 15 &; ' register delay . 

port c I k, ! clock 
en, ' enable . 
IN <INSIZE>, ! inputs 
OUT <OUTSIZE>; ' outputs . 

state R <REGSl2E>; ! register 

'! **************************************************************** 
! register output 

do_output := 
( 

delay<REGDELAY); 
OUT = R; 

) 

I 

! **************************************************************** 
! register input 



do_input := 
( 

if en <R = IN) 
) 

gg 

! input enabled 

! **************************************************************** 
! main routines 

when (cfk : trai I) := (do_input; do_output) 
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! **************************************************************** 
! 

' . ' . ! 
! 

' . ! 
' . ' ' ! 
' . ' . 

Name 
Purpose 

Author 
Version 

Comments 

REGMD. ISP <18 bit register) 
ISP' code for an 18 bit register, 
and some misc logic <MD register), 
Smal I Instruction set Computer 
class C implementation 
BJ Patz 
1. 0 

register loads on negative edge 
register has enable 
register has output enable 

used in the 

! **************************************************************** 

' . ! declarations 

' . 
macro REGSIZE = 18 &, 

REGDELAY = 15 &; 

port c I k, 
en1, 
en2. 
oe1, 
oe2, 
I N1 <REGSIZE>. 
IN2 <REGSIZE>. 
OUT1 <REGSIZE>, 
OUT2 <REGSIZE>, 

state R <REGSIZE>; 

! register size 
! register delay 

' clock . 
! enable input obus 

' enable input iobus . 
' output enable abus . 
' output enable iobus . 
' obus input . 
' iobus input . 
! abus output 
! iobus output 

! register 

! **************************************************************** 
! register output 

do_output := 
( 

if (oe1 or oe2) (delay<REGDELAY)); 
case oe1 

1 <OUT1 = R) 
0 : COUT1 = Q) 

! output enabled 
! release output 



) 

esac; 
case oe2 

1 : COUT2 = R) 
0 : COUT2 - Q) 

esac; 
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! output enabled 
! release output 

! ********************************"******************************** 
! register input 

do_input := 
( 

if en1 <R = IN1) 
else (if en2 <R = IN2)) 

) 

! **************************************************************** 
! main routines 

when <elk : trai I) 
when (oe) 

:= (do_input; do_output) 
:= (do_output) 
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! **************************************************************** 
! 

' . ' . ' ' . ! 
' . ' . ' . ! 

Name 
Purpose 

Author 
Version 

Comments 

: ROM. ISP (micro program ram) 
ISP' code for an ROM, used in the 
Smal I Instruction set Computer 
class C implementation 
BJ Patz 
1. 0 

9 bit address, 48 bit data 

! **************************************************************** 

' . ! declarations 
! 
macro DATASIZE = 48 &, ' word size . 

ADDRSIZE = 9 &, ! address size 
ROMDELAY = 50 &; ' rom delay . 

port ADDR <ADDRSIZE>, ! address 
DATA <DATASIZE>; ' data . 

memory ROM [0:511J <PATASIZE>; ' rom . 

! **************************************************************** 
! get data when address changes 

when CADDR) := (delay<RDMDELAY); DATA= ROM[ADDRJ) 
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! **************************************************************** 
' . ! 
' . ' . ! 
! 

' . ' 

Name 
Purpose 

Author 
Version 

: USEO. ISP (micro sequencer) 
: ISP' code for a micro sequencer for a 

Sma1 I Instruction set Computer, 
class C implementation 
BJ Patz 
1. 0 

! Comments sequencer has internal memory of last address 
! 
! **************************************************************** 

' ! dec tarations · 
! 

macro ADDRSIZE = 9 &. ' address size . 
SEQDEALY = 50 &; ! sequencer delay 

c I k, ' clock . port 
IN <ADDRSIZE>, ! next address input 
OUT <ADDRSIZE>, ' address to rom . 
branch; ' out = in if branch= 1 . 

state LASTADDR <ADDRSIZE>; ' last address + 1 

! **************************************************************** 
! micro sequencer increment 

do_seq_i nc := 
( 

LAST_ADDR = OUT + 1; 
) 

! **************************************************************** 
! micro sequencer generate address 

do_seq := 
( 

delay<SEQ_DEALY); 
case branch 

esac 

0 <OUT = LAST_ADDR) 
1 : <OUT = IN) 
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) 

! **************************************************************** 
! main routines 

when (elk : trai I) 
when (elk : lead) 
when (IN (elk eql 1)) 
when (branch Cclk eql 1 )) 

:= (do_seq_i nc) 
:= (do_seq) 
:= Cdo_seq) 
:= Cdo_seq) 



APPENDIX l 

"C" MODEL TOPOLOGY FILE 

The following code illustrates the topology file used to define the 

"C" level model SIC network. 

! **************************************************************** 
' . ! Name 
! Purpose 

' . ! 
! Author 
! Version 

' . 

CSIC.T (no pun intended, topology file) 
topology file for a 
Smal I Instruction set Computer 
class C implementation 
BJ Patz 
1. 0 

! **************************************************************** 
signal c I k, ' clock . 

romaddr <S>, ' ram address . 
romdata <48>, ! rom data 
pipe <48>, ' pipeline register . 
ma bus <13>, ! program memory address bus 
a bus <18>, ' a bus . 
bbus <18>, ' bbus . 
ob us <19>, ' ob us . 
iobus <18>, ' iobus . 
If, ' Ii nk flag . 

int I ine <8>, ' interrupt I i nes . 
start, ' start signal . 
csrdy, ! status ready 
ready, ! io ready 
dataval id, ! io data val id 
accept, ' io accepted . 
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cs bus 
i ntf, 
int, 

a_con 
b_con 
o_con 

cont1 
cont2 

cond1 
cond2 
cc; 

<12>, 

<8>, 
<8>, 
<16>, 

<16>, 
<16>, 

<8>, 
<32>, 
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! 

' . ' . 
! 
! 

' . 
' . ! 
! 

' . ' . 

status bus 
interrupt received 
single interrupt I ine 

A bus control 
B bus control 
0 bus control 

misc control 
misc control 

condition code 
condition code 
branch condition 

! **************************************************************** 
! clock generator 

processor c I ock = ''c I kgen. s i m''; 
time delay 1ns; 
connections elk = elk; 

! **************************************************************** 
! pipe! ine register 

processor pipe= "reg48.simtt; 
time delay 1ns; 
connections elk 

1n 
out 

= c I k, 
= romdata, 
= pipe; 

! **************************************************************** 
! microprogram rem 

processor urom = '·'rem. s i m"; 
time delay 1ns; 
connections addr = romaddr, 

data = romdata; 
initial rom = coreimage; 

! **************************************************************** 
! micro sequencer 

processor useq = "useq.sim"; 
time delay 1ns; 
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connections elk =e l k, 
in = pipe <47:39>, 
out = romaddr. 
branch = cc; 

! **************************************************************** 
! ma register 

processor ma = "reg13.sim"; 
time delay 1ns; 
connections elk = elk. 

en = o_con 
oe = HI , 
in = ob us 
out = mabus; 

< 12: 12> t 

<17:0), 

! **************************************************************** 
! md register 

processor md = "regmd.sim"; 
time delay lns; 
connections elk 

en1 
en2 
oe1 
oe2 
in 
out 

= c I k, 
= o_con <7:7>. 
= cont2 <2:2>. 
= b_con <4:4>. 
= cont 1 < 1 0 : 1 0 > , 
= obus <17:0>. 
= bbus; 

! ******************************************~********************* 
! · program memory 

processor pram = "ram.sim"; 
time delay 50ns; 
connections addr = mabus. 

data = iobus, 

initial 

w r i t e = cont 1 < 1 : 1 > , 
enable = cont1<2:2>. 
m = coreimage; 

! **************************************************************** 
! ir register 

processor i r = "reg i r. s·i m"; 
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time delay 1ns; 
connections elk = c I k, 

en1 = o_con <7:7>, 
en2 = cont2 <2:2>, 
cont = cond2 <26:9>, 
tn = ob us <17:0>, 
out = abus; 

! **************************************************************** 
! ac 

processor ac = "reg18.sirn"; 
time delay 1ns; 
connections elk = elk, 

en = o_con <5:5), 
oe = a_con <6:6>, 
in = ob us <17:0>, 
out = abus; 

! **************************************************************** 
' ia 

processor ia = "reg13.sirn"; 
time delay 1ns; 
connections elk = c I k, 

en = o_con <8:8>, 
oe = b_con <5:5>, 
In = ob us <17:0>, 
out = bbus; 

! **************************************************************** 
! ib 

processor ib = "reg13.sirn"; 
time delay lns; 
connections elk = elk, 

en = o_con <9:9>, 
oe = b_con <6:6>, 
in = ob us <17:0>, 
out = bbus; 

! **************************************************************** 
! pc 
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processor pc = "reg13.sim"; 
time delay 1ns; 
connections el k = cJk ~ 

en = o _con < 1 0 : 1 O> , 
oe = b_con <7:7>. 
t n = ob us <17 :0>, 
out = bbus; 

! **************************************************************** 
! alu 

processor alu = "alu.sim"; 
time delay 1ns; 
connections ina = abus, 

inb = bbus, 
If = If, 
out = obus, 
alu_func =pipe <11 :9>; 

' **************************************************************** 
! If 

processore If p = ··If. s i m"; 
time delay 1ns; 
connections elk= elk, 

c 
i n1 
in2 
out 

= 
= 
= 
= 

cont2 <14:11>, 
obus <O:O>, 
ob us < 18: 18>, 
If; 

! **************************************************************** 
! io handler 

processore ioh = "iohandle.sim"; 
time delay 1ns; 
connections elk 

int 
cs bus 
csrdy 
1n 

c2 
cl 
accept 

= c I k, 
= int I i ne. 
= csbus, 
= csrdy. 
= obus <11 :O>. 
= cont2 <15:8>, 
= cont1 <6:3>. 
= accept, 
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datavai Id 
ready 
inter_rcvd 

= datava l id , 
= ready. 
- intf; 

! **************************************************************** 
! an io process 

processor io = "io.sim"; 
time delay 200ns; 
connections csbus = csbus, 

iobus = iobus, 
i n t I i ne = i n t . 
csrdy = csrdy. 
ready = ready, 
datavalid = datavalid. 
accept = accept; 

! **************************************************************** 
! bus connections 

processor buscon = "buscon.sim"; 
time delay 1ns; 
connections con1 

con2 
con3 
a_con 
b_con 
o_con 

= 
= 
= 
= 
= 
= 

pipe <23:21>, 
pipe <20:18>, 
pipe <17:12>, 
a_con, 
b_con. 
o_con; 

! **************************************************************** 
! control code generator 

· processor ccgen = ''ccgen. s i m"; 
time delay 1ns; 
connections cond 

ina 
inb 

= pipe <38:27>. 
= cond1, 
= cond2. 

cc = cc; 

! **************************************************************** 
! control signal generator 

processor csgen = "csgen.sim"; 
time delay 1ns; 
connections cont = ·pipe<B:O>, 



out a = cond 1 , 
outb = cond2; 
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