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ABSTRACT 

A root locus graphics routine was written in Turbo 

Pascal for the analysis and design of a linearized dual tank 

control system. The routine ~ 

1S a subprogram to be 

incorporated with an editor written by L. Fadden. This 

editor allows for the saving and changing of parameters to 

the system. 

The dual tank system is a good example for classical 

feedback control analysis. A brief description of the 

process and system is presented. The system may be 

described by linearized differential and algebraic 

equations. From these, a characteristic equation is 

derived, which gives rise to the root locus. The root locus 

is a plot of the poles of the closed loop system. Poles or 

roots of the characteristic equation are found using the 

Lin-Bairstow algorithm. This method may be used to solve 

for the zeros of an nth degree polynomial. 

The root locus plotter was exercised by attempting to 

optimally tune the system's controller. Corroboration of 

the results was provided by step response plots from the 

TUTSIM simulation program. 

Minor modifications allow the root locus plotter to run 

without the editor. Graphics subroutines are provided by 



the Turbo Graphix Toolbox. When run under the editor, the 

plotter is one interactive design module of the dual tank 

system analysis and design program. The subprogram was 

designed principally for user ease, error checking, and 

effective graphics. 
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INTRODUCTION 

This computer program was developed as a module to be 

run with a simulation program by Leon Fadden (1986). 

It is a design routine which draws from the linearized model 

of a dual tank fluid system. With minor modification the 

module can run alone. Both programs are in support of a 

manuscript on system analysis being written by Dr. Harold 

Klee (University of Central Florida). 

The root locus design tool presented herein allows for 

prediction of system stability, response characteristics, 

and aids in optimum tuning of a proportional-integral-

deri vative (P-I-D) controller. The root solving method used 

is based upon the Lin-Bairstow algorithm, which is good for 

any order polynomial. Howeve~ the two tank system under 

P-I-D control gives rise to a maximum third order character

istic polynomial equation. This algorithm was chosen 

because 

rapidly, 

it is well known in numerical 

and is readily understood. 

methods, 

If the 

converges 

system is 

modified for greater accuracy, or a more complex controller 

is incorporated, the characteristic equation may become 

higher order. This program would, then, still be useful. 

The reader can apply the root solving part of the program 

for other problems which contain higher order polynomials. 
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The program was written in Turbo Pascal because of the 

language's power, readability, and current popularity. High 

resolution monochrome graphics were realized with the aid of 

the Turbo Graphix Toolbox. Minor modifications were made to 

the Toolbox in order to obtain enhanced results for this 

particular application. Some necessary system time response 

graphs were obtained using the TUTSIM simulation program 

(Applied i 1985). 



CHAPTER l A DUAL TANK SYSTEM 

The system under investigation consists of a process 

which has two fluid holding tanks interconnected by a pipe 

(Klee 1986). Such a process might be part of a chemical 

batch production unit, or a flow regulating unit for the 

coolant of a power plant. The principal components to be 

analyzed in a simplified model of the system (Figure 1) 

are described as follows. 

A constant displacement motor driven pump impels the 

inlet fluid into the first tank. Both tanks are 

unpressurized, i.e., open to the atmosphere. The inter-

tank flow is a function of the pres-sure head of both tanks. 

It is assumed that the bottoms of the tanks as well as the 

inter-tank pipe are at ground reference level. This pipe 

has an adjustable valve which may be considered a load 

variable (e1 ) or disturbance input. 

For design and analysis purposes we may let the two 

tank areas vary between simulation runs. At the outlet of 

the second tank is a discharge pipe with another hand 

actuated valve (92 ) at some height above the reference. 

The discharge flow is a function of the tank 2 fluid level 

as well as the outlet valve's opening position. We also 

include some direct disturbance flow (FL) to tank 2. This 

3 
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Figure 1 . Schematic Diagram of Dual Tank System 
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will have some impact upon the system equations, however, 

the three load variables e1 , e2 , and FL will not influence 

the root locus of the system. 

The components described so far represent an uncontrol-

led process, which is rarely useful in engineering 

operations. We can include certain other components which 

allow an operator to control some aspect of the process, 

e.g., the height of tank 2. A sensing device or transmitter 

is required to detect the height of the tank. The transmit

ter converts the height of fluid in the tank into an 

electrical signal (voltage), and provides an amplified 

signal to a controller unit (figures 2 and 3). 

The controller considered herein is of the 

proportional-integral-derivative (P-I-D) type such as is 

commonly found in practice. It operates upon an error 

signal, i.e., the difference between some reference height 

and the height returned by the transmitter. Heights are 

first converted to analog electrical signals which can be 

recognized by the controller. Depending upon parameters 

set to adjust controller action, a voltage signal will be 

sent to the pump's motor. The inlet flow through the pump 

is considered to be a manipulated or controlled variable. 

Common configurations of controller parameters and their 

characteristics are as follows. For proportional control 

only, the response for this particular system is second 
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Simulation 
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order. That is, the Laplace transformed transfer function 

has a second order characteristic polynomial in the 

denominator. This implies that the system may be 

overdamped or underdamped. An increase in gain speeds up 

the response and pushes the system closer towards 

oscillation. The major drawback to proportional control is 

that the steady state step response is offset from the 

changed set point (servo action). Using the final value 

theorem upon the tranfer function, the step response is 

r = K • c c 

1 + K c [l] 

where c is the magnitude of the step change in input and Kc 

is the controller gain. Off set is obvious from Eq. [ 1] 

above. 

The addition of integral action eliminates steady state 

offset, however response speed is reduced (Weber 1973). The 

open loop transfer function acquires an additional pole and 

the system becomes third order. Setting controller 

parameters such that the · proportional gain is low and 

integral action low (long reset time), the system behaves 

like a second order system. As integral action increases 

the system becomes more sluggish. Increasing the gain adds 

oscillations, and the system tends towards instability. 

If derivative action is added the system remains third 

order, however response speed is improved. The system 
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becomes more stable allowing for a higher maximum gain and 

shorter reset time. 

Changes to controller modes, e.g.; proportional to 

proportional-integral, are not additive. This makes tuning 

the controller for optimum response a complex task. Certain 

methods have been developed for achieving this, including 

the Ziegler-Nichols reaction curve method and the continuous 

cycling method (Weber 1973). Each method has its drawbacks. 

The most common method of tuning a controller in practice is 

.bY operator 

insight as 

controller 

trial and error. The root locus 

to what the response will be 

settings. This alleviates the 

gives some 

for various 

problem of 

experimenting on a real process, which may be time 

consuming, expensive, and potentially disastrous. 

The system model used with this design tool must be 

linear. The real system undoubtedly incorporates many non-

linearities. By "linear" it is meant that the response to 

the sum of two signals is the same as the sum of the 

responses to each signal ·input. A linearized model is 

usually valid for relatively small changes about a set of 

design conditions. A model type (linear or non-linear) may 

be identified by the nature of its describing differential 

and algebraic equations. 

Design conditions are found by setting all external 

inputs to desired values (Klee 1986). Then the internal, 
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dependent variables may be found by taking the system 

·differential equations and rewriting them for steady state 

behavior. The resulting values determine the quiescent 

operating point about which new equations for the linearized 

model may be developed. 
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CHAPTER 2 THE ROOT LOCUS 

The root locus is a graphical path drawn on the complex 

s-plane. Each point along the path indicates a pole of the 

closed loop (Laplace domain) transfer function for a system 

with fixed controller parameters. As a controller parameter 

is perturbed (typically the controller gain) the poles of 

the system transfer function change. A pole is a value of s 

on the complex plane which causes the denominator of the 

transfer function to go to zero, hence it causes the 

transfer function to go to infinity. 

When set equal to zero, the denominator is called the 

characteristic equation of the system. The following 

discussion shows how the characteristic equation arises from 

time domain, linearized model equations. Whether or not 

load disturbance variables are introduced the characteristic 

equation does not change. For simplicity, load variables 

are assumed to be fixed at system design conditions, hence 

they do not appear in the following equations which use 

deviation variables. 

starting with the process equations (Klee 1986), by 

conservation of mass for tank 1 and tank 2: 

A1H1 (t) + F2 (t) = F1 (t) 

A2H2 (t) + F0 (t) = F2 (t) 

10 
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Symbol definitions are found in Table I. Succeeding 

variables are functions of time unless otherwise noted. 

From Bernoulli's equation the inter-tank flow is 

F = c (H - H )112 
2 l l 2 

and the discharge flow is 

Fo = c2 (H2 - H3) 1/2. 

Using deviation variables (LX is a relatively 

[2] 

[3] 

small 

deviation from design point X) it follows from eqs.[2] and 

[3] that 

and 

Al LH1 + LF2 = 6F1 

A2 LH2 + 6Fo = LF2. 

Since F2 is a function of H1 and H2 , 

6F2 = aF26H1 + aF26H2 

aH1 aH2 . 

[4] 

[5] 

It is necessary to substitute functions of H1 and H2 for 

F
0 

and F
2 

into eqs. [4] and [5]. Taking the partials of F2 

and evaluating at design conditions yields 

a linear approximation which we define as l/Rl where R1 is 

called the fluid resistance. Similarly 

-F 2 

2(Hl - H2) 

= -1 

Rl . 



CONSTANT 

Al 

A2 

Rl' R2 

cl, c2 

Kc 

KP 

Kt 

T. 
1 

Td 

TA' TB 

TIME VARYING 

Hl 

H2 

Fl 

F2 

FO 

12 

TABLE I 

PROCESS AND SYSTEM SYMBOLS 

DESCRIPTION 

area of tank 1 

area of tank 2 

linearized fluid resistances 

valve constants 

controller gain 

process gain 

transmitter gain 

controller integral (reset) time 

controller derivative time 

process time constants 

DESCRIPTION 

tank 1 fluid level 

tank 2 fluid level 

input flow to tank 1 

inter-tank flow 

discharge flow from tank 2 
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Eq. [5] can be rewritten as 

6F2 = 6.Hl - c,.H2 

Rl 

[6] 

By a parallel argument, for F
0 

a function of H
2 

and H
3 

(H
3 

constant) it follows that 

Substituting Eq. 

~FO = aFO 6H2 

aH2 

aF
0 = FO = l 

aH2 2(H2 - H ) 3 

6.Fo = 6.H2 
-
R2 . 

[6] into [4] 

A16H1+ 6Hl - ~H2 = f).Fl 

Rl 

Substituting eqs.(6] and [7] into (5] 

A2~H2 + f).H2 = ~Hl - 6H2 

R2 Rl 

[7] 

(8) 

[9] 

Rearranging eqs.(8] and (9) into standard form where the 

dependent variables are on the left-hand side 

A1R16.H1 + ~Hl - 6.H2 = R16.F1 

and A2 R1R2 6.H2 + 6H2 - R2 6.Hl = 0 

[10] 

[ll] 

which are a pair of coupled first order linear differential 

equations (Eq. (11) also is homogeneous). 
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If the tanks are initially at design conditions (zero 

initial conditions), the Laplace transforms of eqs.[10] and 

[11] are 

(A1R1s + l)~Hl (s) - AH2'(s) = R1~:.Fl (s) 

and -R2AH1 (s) + [A2RlR2s +, (Rl + R2) JAH2 (s) = o. 

Note that we have moved from the time domain to the complex 

s domain. 

Solving for ~H2 (s), the controlled variable by Cramer's 

rule is 

A1R1s + 1 

-R 
6.H2 (s) 2 = 

A1R1s + 1 -1 

-R 2 

= 

A1A2R1R2s 2 + [A1 (R1 + R2 ) + A2R2 ]s + 1 

Dividing both sides by AFl(s) gives the transfer function of 

the process, Gp(s). The denominator of the above equation 

is the characteristic polynomial of the process. Since it 

is second order it can be rewritten for convenience as 

2 = A1A2R1R2s 

+ [A1 (R1 + R2 ) + A2R2 ]s + 1 . 

If we let KP= R2 (the process gain), then 

Gp(s) = KP 

(TAs + 1) (TBS + 1) . 
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Looking at the open loop system transfer function G(s), we 

have 

[12] 

and are, respectively, the controller and 

process transfer functions. Other terms are defined in 

Table I. 

The closed loop system transfer function is 

= G (s) [13] 

1 + G (s) 

assuming no change of load variables from design 

conditions. The transfer function for a P-I-D controller is 

Gc(s) = Kc [ 1 + 1 + Tds ] 

T.s 
1 

Therefore substituting eqs.(12] and (14] into Eq. (13] 

6.H2 (s) = K0 (Tds + l)Tis + 1 

6.H2s(s) (TAs + 1) (TBS + l)Tis + Ko [ (Tds + l)Tis + 1] 

where K0 = KtKcKmKp is the loop gain. 

The characteristic equation of the system, which comes 

the denominator of Eq. (15] · can be rewritten as 

s3 (TA + TB + 
2 (K0 + l)s + KO + K0Td)s + = 

TATB TATB TATBTi 

(14] 

[15] 

from 

o. 

The roots of this equation yield points which may be plotted 

on the complex s plane. As Kc varies the roots change and a 

locus of points may be drawn. 



CHAPTER 3 THE LIN-BAIRSTOW ROOT SOLVING ALGORITHM 

Advantages of the Method 

The roots of any order polynomial may be solved for by 

using this algorithm (Mccalla 1967) even though the highest 

order characteristic equation generated by the model is 

third order. However, a more complex controller could be 

incorporated. The model might be expanded. Each of these 

changes would probably induce a higher order characteristic 

equation. This root solving method would, then, still be 

useful. Furthermore, most linear systems could employ the 

algorithm. 

In addition to its general utility, the instructional 

value of Lin-Bairstow's method contributed to its selection. 

It is very efficient since it converges to each root 

quadratically. A root locus usually involves the 

calculation of complex roots. The Lin-Bairstow method has 

an advantage of not requiring any complex arithmetic. It 

requires only real arithmetic to calculate a complex zero 

and, simultaneously, its conjugate. 

The Algorithm 

A polynomial of any order greater than two can be 

factored into products of quadratic factors and perhaps one 

linear factor, all of which involve only real 

16 
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coefficients (Mccalla 1967). The roots of the quadratic 

may, of course, be complex. The main idea of the algorithm 

is to provide an efficient way of extracting the quadratic 

factors iteratively, and if necessary, the linear factor. 

Flow chart Figure 4 provides an overview of the method. 

Suppose that some polynomial Pn(x) of order n is 

divided by an arbitrary quadratic factor x2 + rx + s. We 

obtain a polynomial Pn_
2

(x) two orders lower and a remainder 

term Rx + S. If the remainder term were zero then our 

trial factor would be an exact factor of Pn(x). 

operative constraints are that 

and 

R( r, s) = o 

S( r, s) = o. 

Therefore, 

[16] 

[17] 

The remainder coefficients are written as functions of r and 

s since variations in these produce different remainders. 

Equations [16] and (17] are two non linear equations in two 

unknowns. Newton's method may now be applied. For suff i-

ciently close initial estimates the method will converge 

(Dorn 1972). 

Using a first order Taylor series approximation about 

an initial r and s, and in terms of differentials 

dR = R( r + dr, s + ds) - R( r, s) 

= R dr + R ds + • • • r s 
[18] 

and 
dS = S( r + dr, s + ds) - S( r, s) 

[19] 
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where " • . • " indicates higher order terms which may be 

dropped. Now if r 0 and s 0 are estimates for the factor 

x2 + r 0x + s 0 such that 

and 

R( r
0

, s
0

) 1= o 

S( r
0

, s
0

) I= o, 

dr and ds must be found such that these constraints are 

true: R( ro, so> + dR = 0 

and S( ro, so> + dS = o, 

or dR = - R( ro, so> 

and dS = - S( ro, so>. 

Therefore from Eqs. [18], [19], [20], and [21] 

and 

Rrdr + Rsds = - R( r 0 , s 0 ) 

Srdr + S
6
ds = - S( r 0 , s 0). 

[20] 

[ 21] 

[22] 

[23] 

The last two equations are called "differential-correction" 

equations. 

By solving for dr and ds we can satisfy our original 

constraints 

and 

R( r 0 + dr, s 0 + ds) = o 

S( r 0 + dr, s 0 + ds) = o. 

Since r 0 + dr = r 1 is a first order approximation 

[24] 

[25] 

to the 

zero of R, we can refine our solution using the above 

technique iteratively, starting from r 1 • A similar 

procedure is needed for finding the zero of s. If the 

initial guess ro and s 0 is sufficiently close we can 
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converge towards the roots of eqs. (22] and [23] to within 

some arbitrarily small number epsilon. 

Calculations from Polynomial Coefficients 

In order to solve for dr and ds in eqs. [24] and [25] 

it is necessary to obtain six numbers from the original 

polynomial. Suppose it is given that 

Pn(x) = xn + alxn-1 + a2xn-2 + .•. + an-lx +an 

= (x2 + rx + s) ( xn-2 + blxn-3 + b2xn-4 + ... 

+ b 3x + b 2 ) + Rx + S. n- n-
The a's are coefficients of the original polynomial, and b's 

are coefficients of the reduced polynomial. It is shown 

that (Mccalla 1967) after quadratic factor division: 

R = bn-1 = a - rbn-2 -n-1 

bn = an - rbn-1 - sb 2 n-
s = b + rbn-1· n 

Furthermore, using the notation 

and 

it is also shown 

pk 

qk 

Rr 

Pk = abk 

ar 
qk = abk 

as 
that (Mccalla 19 67) : 

= -bk-1 - rpk-1 -spk-1 

= -bk-2 - rqk-1 -sqk-2 

= 8bn-l = Pn-1 

ar-

sbn-3 [ 2 6] 

[27] 

-spk-2 

[28] 
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Rs = abn-1 = qn-1 

as 
Sr = Pn + rp 1 + b n- n-1 

SS = qn + rq 1. n-

Eqs. [ 26] I [27], and [28] through [31] 

obtained from recursion formulas 

differential correction equations. 

[29] 

[30] 

[31] 

are the six numbers 

for solving the 



CHAPTER 4 PROGRAM DESCRIPTION 

The root locus plotter can be divided into two major 

sections. The first is concerned with obtaining variable 

controller parameters from the editor, calculating a system 

characteristic polynomial, and iteratively finding the roots 

of the characteristic as the controller gain is varied. The 

roots are then stored in real number arrays for plotting. 

The second section makes use· of the Turbo Graphix 

Toolbox for IBM monochrome high resolution graphing of the 

root locus. Procedures needed from the utility package are 

accessed via "include files," which are compiled integrally 

with the main program. The procedures used feature 

windowing; axis drawing; drawing of points, lines, and 

numbers; an automatic world coordinate system; and a virtual 

memory screen. A few of the Turbo Graphix routines were 

modified slightly for improved results. 

Figures 5 and 6 are macroscopic flow charts which 

provide an overview of program control flow. For a closer 

look at how the program is structured, and for details 

regarding subroutines the reader may ref er to the commented 

program source code in Appendix II. 

Certain problems unique to this application were 

encountered. When a fixed step size is specified for the 

22 
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return initialize 
arrays (Figure 6) 

N 

reset 
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step 
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Figure 5 . Flow Chart for Root Locus Program Numerical Routines 
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routines 
(Figure 5) 

N 

y 
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routines (Figure 5) 

initialize 
windows, 
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draw 
axis 

display 
parameter 
variables 

from numerical 
routines 
(Figure 5) 

return to 
editor 

Figure6. Flow Chart for .Root Locus Program Graphics Routines 
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controller gain Kc' the spacing of points on the root locus 

varies. A moderate step size should be selected to produce 

a quick but smooth curve. However when the roots break away 

from or reenter the real axis, point spacing suddenly 

widens. Therefore it was necessary to incorporate a 

variable step size option. 

This requires two passes to find the roots. The first 

pass uses a fixed step size and stores the calculated points 

(roots) in a two dimensional plot array. (The imaginary 

part of the root corresponds to the root locus' vertical 

axis.) A second pass examines the spacing between any two 

points found in the first pass. A linear interpolation is 

made to find the desired step size: 

fixed step size 
desired step size 

= first pass point spacing 
desired point spacing 

The procedure which handles this calculation is 

"getstepsize." The effect of this linear interpolation is to 

moderate the step size as needed for most points, but near. 

the break away, spacing change is too large for this method 

alone. Therefore the step size is additionally decreased by 

a factor of one-fifth. A counter ensures that this reduced 

step size is used five times. A similar procedure is used 

for re-entry. Since either fixed or variable step size 

options may be selected by the user, they may be compared 

for best results. 
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Another problem encountered was that the Graphix 

Toolbox was not able to produce round, even numbers for axi 

numbering in spite of a variable axis density scheme 

provided. It was necessary to incorporate a "world" finding 

routine into the plotter program. This routine, 

"findXlimYlim," determines the order of magnitude and size 

limits of the roots to be plotted for a simulation. The 

values obtained are rounded off. Thus the Toolbox routine 

"Findworld" was bypassed. Furthermore, the axis drawing 

routine was modified in order to yield nice, even numbers on 

the axes for most cases. 

The user may elect to temporarily pause plotting. A 

memory based virtual screen is used to save the display, and 

auxiliary windows pop up which contain certain variables and 

parameters. 

Occasionally due to certain odd controller parameters 

entered by the user, the root solving algorithm does not 

converge to within user specifications. A diagnostic 

warning is displayed, and ·the user may elect to abort 

further calculations, or continue with unpredictable plotter 

results. Error checking is incorporated for all user 

input to ensure that entries are reasonable and within 

range. Figure 7 shows two typical input screens. 

The plotter program, including Turbo Graphix "include" 

files, yields an instruction code segment of more than forty 
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CONTROLLER 

Change a parameter. Select one. 

1. Kc 
2. Td 
3. Ti 

- I no change 

? 

OPTIONS 

Vary step size? 

Yes No 

Figure 7. Typical Input Screen - Controller Parameters Select 
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kilobytes. When coupled with the calling editor and other 

subprograms the code is larger than the Turbo Pascal 

compiler can handle easily. A Turbo Extender shell program 

(TurboPower 1986) was used to assist in compilation of the 

entire program. Note again tnat the plotter subprogram can 

run alone with minor modifications, and will compile using 

only Turbo Pascal. 

Heap and stack memory management was necessary, but 

this was easily implemented with standard Turbo Pascal 

functions. Since the compiler window procedure does not 

work with the Toolbox window routines the Toolbox was, 

again, modified. 



CHAPTER 5 DISCUSSION OF THE RESULTS 

The following illustrates how the root locus plotter 

may be used to analyze and design for the dual tank system. 

sample graphs of the plotter are provided. The TUTSIM 

simulation program is also used to validate or extend 

plotter results. 

In order to find some unique combination of controller 

parameters it is necessary to specify some goal to be 

achieved with respect to the system. One such goal is to 

tune the controller optimally by the quarter decay ratio 

method, as first published by Ziegler and Nichols (Weber 

1973) • 

By quarter decay it is meant that the step response 

should exhibit damped oscillations (underdamped response) 

such that the second peak is one-quarter of the height of 

the first peak (overshoot). While there is no unique 

combination of P-I-D controller parameters which yield such 

behavior, a logical set of values may be found by first 

examining pure proportional control. 

Suppose the system under feedback control is brought to 

design conditions. The controller is switched to manual 

mode, which breaks open the feedback loop. A unit step 

voltage directly to the pump motor will produce 
I 

a typical 

29 
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second order response at the transmitter output since the 

process under consideration is second order. An optional 

controller chart recorder can graph the output (Figure 8). 

Extend a tangent line of maximum slope down to the time 

axis. The time intercepted is, in effect, a delay. The 

open loop system can be approximated by a first order 

transfer function in series with a pure delay element. The 

slope line and delay time found as detailed above 

characterize the approximate model. Such a simplified model 

can mathematically be shown to have the quarter decay 

response characteristic desired (Smith 1985) when the 

controller is tuned as follows (thus closing the loop): 

Kc = _! 
SL 

where S is the slope of the tangent line and L is the delay 

time described above. For our system, values of S = 

0.013/min, L = 3.57 min, and Kc = 21.55 were found. 

Having found some particular value to set the 

proportional control, the root locus plotter may be employed 

for further analysis. Figure 9 shows the root locus 

stopped at this value. The locus appears to be heading 

straight up as the gain increases. This observation is 

confirmed by Figure 17. Using a simulation with Kc = 21.55, 

a closed loop step response was graphed (Figure 10) . A 

decay ratio smaller than 0.25 is evident, therefore the 

recommended setting is too conservative. It turns out that 
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Figure 8 • Reaction Curve Method for Tuning the Controller 
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· , · Root Lom· Plotter 

0.00 

1.00 9.99 ---2.00 

3.00 

I 9.39 ---

·1".05,·2.~9 

stop/sta~t: space-ha~ Esc too,..._ ________ ___,. __ ..,........,__.,..__,,_.,.._...,.._~__,.--~~-
·2 .00 ·1.82 ·1.6~ ·1.~6 ·1.28 ·1.11 ·0.93 ·0.75 ·0.57 ·0.39 10·1 

Figure 9 • Optimally Tuned Controller Using Proportional Control Only 
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2 Tank 2 

change in height 

(feet) 

Kc 19.39 V/V 

Ti 11. 9 min 

r P - I control 
1 

t 
L. Proportional control 

Kc = 21.55 V/V 

0 Time 

(min) 

FigurelO. Step Response for P - I Controller and Proportional 
Controller Tuned Optimally by Reaction Curve Method 

250 



34 

a small increase in gain yields the desired response. It 

should be noted that the goal of quarter decay ratio is more 

useful in controlling load changes than set point changes. 

For set point changes this method produces too much 

overshoot, but it prevents load changes from deviating too 

far from design without being too oscillatory (Smith 1985). 

Another method which has the same quarter decay goal 

and may employ the root locus principally is the continuous 

cycling or ultimate gain method. The method dictates that 

the closed loop system be placed under proportional control 

only. Increase the controller gain until the system step 

response oscillates continuously. This point corresponds to 

the vertical axis· crossing of the root locus. At that point 

read the ultimate gain Kcu and the natural frequency wnu· 

Controller parameters for optimum control may be calculated 

as follows (Weber 1971). 

p Kc = 0.5 Kcu 

P-I Kc = 0.45 Kcu 

T. = 2 TI 
1 1.2 wnu 

P-I-D Kc = 0.6 Kcu 

T. = 2 TI 
1 

2.0 wnu 

=2TI 
8.0 wnu • 

Unfortunately, for the dual tank system this method does not 

work. As already mentioned, increasing the gain for the 
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system under proportional control causes a vertical locus. 

The system never becomes unstable, which is characteristic 

of a second order process under proportional control. Most 

real world processes are of higher order, and some value of 

gain will cause instability. 

One inportant item yielded by the root locus plotter is 

the damping ratio. Standard second order response curves 

are available for specified damping factors, which allow the 

designer to predict what the response will be, i.e., how 

fast the oscillations will die out. Many higher order 

systems are characterized by two poles which dominate the 

response, and can be approximated by a second order system. 

Another item is the natural frequency, wn, which 

indirectly gives the period of oscillation. Figure 10 also 

indicates the step response for a P-I controller tuned at 

the Ziegler-Nichols optimum. It is evident from the corres

ponding root locus (Figure 11) that the system is far from 

unstable, but that increasing the gain will eventually cause 

more oscillations since the path is turning back towards the 

Y axis. A natural frequency of w = 0.2343 predicts that 
n . 

the period of oscillation is 

T = 2 TI 

(1- z2
) wn 

= 6.28 = 27.7 min 
0.968 (0.234) 
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. · Root Locus Plotter 

I 9.2s ••• 
·0.SS, 2.27 

·OJ5, 0.00 

1.00 9. 99 ·--2.00 

3.00 
·0.5*,·2.27 

stop/sta~t: space-ha~ Esc U0+--------...--.-------------------
·2.00 ·1.SO ·1.60 ·1.~0 ·1.20 ·1.00 ·0.SO ·0.60 ·0.~0 ·0.20 1o·i 

Figure 11. Optimally Tuned Controller Using Proportional - Integral 
Control 
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which agrees well with the time response (Figure 10). (z is 

the damping ratio.) Three peaks are found over a 75-minute 

interval. Notice that the addition of integral control adds 

a third pole which moves horizontally along the horizontal 

axis. The contribution to the response is a negative 

exponential which dies out more quickly as the gain increases. 

The addition of derivative action to P-I control 

reveals that the system has 3 poles and remains third order 

(Figure 12). The locus reveals a greater degree of 

stability as the path continues to move away from the jw 

axis. Compared to P-I control an increased value of gain is 

permitted for optimum tuning (Kc= 25.85). Figure 13 shows 

the corresponding step response which has less initial over

shoot, and a faster settling out to steady state. Note that 

the step input has been arbitrarily delayed for 10 minutes 

for better graphics. The faster settling time could be 

predicted from the root locus plot, by noting a higher 

damping factor (0.32). If we increase the gain of the 

optimally tuned P-I controller to that of the P-I-D 

controller, i.e., .from Kc = 19. 3 to Kc = 25. 8, the response 

becomes too oscillatory, as shown by Figure 14. 

The system model was further exercised and certain 

unique conditions were observed. A controller setting was 

quickly determined by using the root locus to find a point 

of marginal stability (Figure 15). The corresponding step 
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Root LOCY$ f lott~r 

·2.09, 0.00 

I o.32 ... ·0.75, 2. 

·0.15, ·U~ 
stop/sta~t: space-ha~ Esc 

3.00 1 
10

• 
·3.00 ·2.70 ·2.~0 ·2.10 ·1.SO ·1.50 ·1.20 ·0.90 ·0.60 ·0.30 

Figurel2. Optimally Tuned Controller Using Proportional - Integral -
Derivative Control 



39 

2 Tank 2 

change in height 

(feet) 

Kc 25.85 V/V 

Ti 7.14 min 

min 

1 

0 Time 50 

(min) 

Figure 13. Step Response for P - I - D Controller Tuned Optimally 
by Reaction Curve Method 
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2 

Kc = 25.85 

Ti = 11.90 

1 

Td = 0.0 

(\ l\ 
11 11 ('i (\ I I \ l \ / \/ .,._...,-... ______ _,.... 

I .I v 

~/ 

0 

0 Time 

(min) 

Figure l4. Step Response. for P - I Controller Gain Set ~igher 
Than Recommended 
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Root LOCYS Plotter 

·2.10, 0.00 

I e.ee ---

·0.00,·0 82 

stop/sta~t: space-ha~ Esc 
2.00 ...... ----------------------.....-----

·3.00 ·2.69 ·2.38 ·2.08 ·1.77 ·1.~6 ·1.15 ·O.S~ ·0.53 ·0.23 10·1 

Figure 15. Controller Set for System at Marginal Stability 
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response agreed nicely, 

oscillations (Figure 16). 

producing relatively constant 

At the point of breakaway the 

response is critically damped. Using the root locus, this 

condition was easily found (Figures 18 and 19). For certain 

systems any overshoot might be unacceptable. The root locus 

could then be used to find controller settings for the 

fastest response with no overshoot, as done above. 

Another item of interest concerns the plotter's 

variable step size feature. Although proportional-

derivative control is seldom used in practice because of the 

resulting offset, the root locus plot is interesting as it 

forms a complete loop (Figure 20). Note how much improved 

the plotter draws Figure 21 which incorporates a variable 

step size. At breakaway and reentry, point spacing suddenly 

increases. A fixed Kc is especially undesirable for this 

Standard root locus plotters, such as found in the plot. 

Matlab Control System Toolbox (Figure 22), do not 

incorporate automatic variable spacing (Moler 1985). 

Several of the plots made. with the root locus were run on 

Matlab for validation, and there were no discrepancies found 

between the two plotter routines. 
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Figure 16. Step Response for Marginally Stable System 



CHAPTER 6 SUMMARY AND CONCLUSION 

A subprogram was written for the IBM PC/AT to be used 

as one design tool which is called by an editor program. 

The editor allows for making, changing, 

configurations of the dual tank system. 

and saving various 

This design tool is 

the first in a series of several subprograms to be developed 

by other students. The entire software is written in 

support of a manuscript on system analysis to be later 

published as a textbook. 

In writing the subprogram my intent was to make the 

numerical routine modular in the event that the reader 

wishes to use a Turbo Pascal root finder for some other 

application. The graphics routines which use the Turbo 

Graphix Toolbox are set apart, and not essential to the 

first part of the subprogram. The reader may wish to 

incorporate his own graphics routines · to plot points 

residing in arrays, since the Toolbox carries a large 

overhead in subroutines (about 2500 total source lines of 

code) not used for this application. With minor · changes 

the subprogram can run alone without a calling editor. 

44 
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Although the subprogram source code (excluding Graphix 

Toolbox subroutines) is about 1200 lines, its real-time 

execution is very fast. It is even necessary to incorporate 

delays in order to allow the user to pause the graphing. The 

goal in writing the program was to allow for user ease, 

error checking, and informative graphics. Code 

minimization was of minor concern. 

Rudimentary differential equations for the system led 

to a derivation of the characteristic equation. Although 

the system under consideration gave rise to a maximum of 

third degree polynomials, it was instructive to obtain a 

higher capability root solving method and make it available 

in Turbo Pascal. Since the roots of the characteristic 

equation were almost always small numbers the initial guess 

of (r0 , s 0 = o, o)guaranteed convergence. 

The root locus plotter was exercised by attempting to 

optimally tune the system's controller according to - the 

quarter decay ratio method. It was demonstrated how the 

root locus could be used to obtain quick information about 

the time response of a system. Principal items obtained 

included the relative stability, damping ratio, and the 

frequency of oscillations of the system. 
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Figure 17. System Under Proportional Control for Very High Gain 
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· · · Root Locus PI otter · . · , 
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Figure 18. System with Gain Slightly Above Breakaway 
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Figure 20. System Under P - D Control. Plot Using Fixed Step Size 
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0.0000 
-0.0018 

0 

-0.0026 - 0.0023i 
-0.0023 - 0.00361 
-0.0024 - 0.0044i 
-0.0024 - 0.0031i 

. 

. 

. 

. 

. 

0 



APPENDIX II PROGRAM SOURCE CODE LISTING 



54 

{ a comment generally refers to the procedure 
directly following that comment} 

procedure RootLoci (Kc, Ti, Td, areal, area2: real); 

type 
stringy= string[ 78]; 
Onedim =Array[ 1 •• 100] of real; 
dummypointer = ~dummy; 
dummy = record { used to release heap pointer} 

end; 

var heapaddress: dummypointer; 
apoints, bpoints, cpoints: PlotArray; 
II, JJ, !max : integer; 
xlim, ylim, Xlo, Ylo: real; 
eps, ro, so; Rl, R2, Kp, Km, Kt, 
Kcsaved, Kcf inalsaved, stepsizesaved, Tisaved, 
Tdsaved: real; 
alpha, alphasaved: real; 
Kstore, Kstore2: Onedim; 
linerequested, abort, firstRun, modify, exit, 
thirdorder: boolean; 
message: stringy; 

{ check that the response to an option message 
displayed is yes or no only} 

procedure check response( message: stringy; 
- requestnum: integer); 

var inp: char; 
ValidChar: boolean; 

begin 
GotoXY ( 3 5 , 2 ) ; 
Textcolor( Lightred); 
write( I OPTIONS '); 
Textcolor( Yellow); 
Window( 1, 1, 80, 25); 
GotoXY( 34,13); 
writeln( message); 
GotoXY( 37,23); 

Textcolor( Lightgreen); 
write ( ' Y '.) ; 
Textcolor( Cyan); 
write ( ' es ' ) ; 
Textcolor( Lightgreen); 
write ( ' N ' ) ; 



Textcolor( Cyan); 
write ( 'o' ) ; 

repeat 
read (kbd, inp); 
inp := upcase( inp); 
case inp of 
'N': exit :=true; 
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'Y': case requestnum of 
l: modify := true; 

else 

2: linerequested := true; 
3: abort := true; 
4: ; 
end {case} 

begin 
Sound (880); 
Delay (200); 
No sound 

end {else} 
end; {case} 

validchar := inp in ['N','Y'] 
until validchar; 
Textcolor( Yellow); 
Window(4, 23, 78, 24); 
ClrScr; 
Window( 1, 1, 80, 25) 

end; {check response} 

{ display a warning or error, such as invalid 
input} 

procedure display_error( message: stringy); 

begin 
Sound (880); 
Delay (200); 
Nosound; 
Window(3, 4, 78, 21); 
ClrScr; 
Window(l, 1, 80, 25); 
GotoXY( 3,5); 
TextBackground( red); 
TextColor( white); 
write( message); 
TextBackground( .black); 
Textcolor( Yellow); 
Delay( 3000); 
Window( 3, 4, 78, 21); 
ClrScr; 



Window( 1, 1, so, 25) 
end; {display error} 
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{ large supervisory routine, which does numerical 
calculations, and stores required root locus 
poi~ts in plot arrays. All succeeding procedures 
are directly or indi~ectly controlled by this 
routine until graphics procedures are reached} 

proc~dure getpoints; 
type TwoDimArray =array[ 1 •• 1200, 1 •• 2] of real; 

OneDimArray =array [1 •• 3] of real; 

const TwoDimMax = 1200; 
OneDimMax = 3; 

var infile: text; 
delta_r, delta_s, r, s, 
capR, caps, Rr, Rs, Sr, Ss: real; 
Kcfinal, stepsize, rholim: real; 
n, 1, capN, JJMax: integer; 
a, b,imagroot, realroot: OneDimArray; 
fwpo1nts: TwoDimArray; 
ap, bp, cp: PlotArray; 
in_range, breakaway: boolean; 

{ The next five routines are within getpoints. 
All are involved with initialization of arrays 
which if not performed can yield undesirable side 
effects} 

procedure zeroout( var thisarray: OneDimArray); 
var I: integer; 

begin 
for I := 1 to OneDimMax do 

thisArray[I] := o.o 
end; 

procedure initializelDArrays; 

begin 
zeroout (a); 
zeroout (b); 
zeroout (imagroot); 
zeroout (realroot) 

end; 
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procedure zero( var thisarray: TwoDimArray); 
var I,J: integer; 

begin 
for J := 1 to 2 do 
for I := 1 to TwoDimMax do 

thisArray[I,J] := o.o 
end; 

procedure NullOut( var thisarray: plotArray); 
var I,J: integer; 

begin 
for J := 1 to 2 do 
for I := 1 to MaxPlotGlb do 

thisArray[I,J] := o.o 
end; 

procedure initializePlotArrays; 

begin 
NullOut (apoints) ; 
NullOut (bpoints) ; 
NullOut (cpoints); 
NullOut (ap) ; 
NullOut (bp); 
NullOut (cp); 

end; 

{ get auxiliary system parameters from a disk file 
if root locus procedure is called from editor} 

procedure get_parameters; 

begin 
assign (infile,'RLINPUT.DTA'); 
reset (infile); 
read (infile, eps, ro, so); 
read (infile, areal, area2, Rl, R2, Kp, Km, Kt); 
read (infile, Kc, Kcfinal, stepsize, Td, Ti); 
{initialize " saved" variables} 
Kcsaved := Kc; 
Kcfinalsaved := Kcfinal; 
stepsizesaved := stepsize; 
Tdsaved := Td; 
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Tisaved := Ti 
end; {get_parameters} 

{ if repeating the root locus procedure, then 
reset the controller. parameters to what they were 
when first called from editor} 

procedure reset_parameters; 

begin 
Kc := Kcsaved; 
Kcfinal := Kcfinalsaved; 
stepsize := stepsizesaved; 
Ti := Tisaved; 
Td := Tdsaved 

end; {reset parameters} 

{ display the menu which allows user to change 
various controller parameters} 

procedure submenu; 
var selecting, validnum: boolean; 

selection: char; 

{within submenu} 

procedure display_old( parameter: real); 

begin 
GoToXY( 20, 13); 
TextBackground( blue); 
TextColor( lightgray); 
write( parameter:9:3); 
TextBackground( black); 
TextColor( yellow); 

end; 

procedure display_new( parameter: real); 

begin 
GotoXY( 20, 13); 
TextBackground( blue); 
TextColor( yellow); 
write( parameter:9:3); 
TextBackground( black); 

end; 
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{ error checking to ensure that all inputs for 
controller parameters are within a valid range} 

procedure check real( var number: real); 

begin 
Textcolor( lightgreen); 
GotoXY( 38, 23); 
write ( '? ' ) ; 
Textcolor( yellow); 
{$I-} 
readln( number); 
{$I+} 
if ( (IOresult <> O) or 

(number < o ) or (number > 1E5) or 
(Ti= O.O)) then 

display_error 
( ' ' + 
'Invalid number. Please re-enter.') 
else 

validnum := true; 
GotoXY( 38, 23); 
write ( ' ') 

end; {check real} 

{gets user parameter changes from the keyboard} 

procedure obtain( var param, paramsaved: real; 
message: stringy; Y: integer); 

var tempparam: real; 

begin 
validnum := false; 
tempparam := param; 

repeat 
GoToXY( 25, Y); 
display_old( tempparam); 
write( message); 
check real( param) 

until validnum; 
paramsaved := param; 
display_new( paramsaved); 
Delay( 1000); 

end; {obtain} 
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{display prompt for user} 

procedure writehere( message: stringy; X, Y: integer); 
begin 

.GoToXY ( X, Y) ; 
write( message); 

end; 

begin {submenu} 
selecting := true; 
while selecting do begin 

Window (3, 4, 7S, 21); 
ClrScr; 
Window( 1, 1, so, 25); 
GotoXY ( 3 O , 2 ) ; 
Textcolor( lightred); 
writehere( 'CONTROLLER', 35, 2); 
Textcolor( yellow); 
writehere 
( 'Change a parameter. Select one.•, 25, 5); 
writehere( 1 1. Kc', 3S, 12); 
writehere( 1 2. Td', 3S, 13); 
writehere( '3. Ti', 3S, 14); 
writehere( ' I no change', 34, 21); 
Textcolor( lightgreen); 
writehere( '? ', 3S, 23); 
Textcolor( yellow); 
read (kbd, selection); 
Window (3, 4, 7S, 21); 
ClrScr; 
Window( 1, 1, so, 25); 
writehere( ' •, 3S, 23); 

case selection of 
'l': begin 

obtain( Kc, Kcsaved, 
' initial Kc (Return: no change)', 13); 

obtain( Kcfinal, Kcfinalsaved, 
' final Kc? 14); 

obtain( stepsize, stepsizesaved, 
' step size? ', 15); 

end; 
'2 ' .: obtain ( Td, Tdsaved, ' 
'3': obtain( Ti, Tisaved, ' 
#13: selecting := false; 

else 
sound (660); 
delay (250); 
no sound 

Td 
Ti 

13) i 
13) i 
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end {case} 
end; {while} 
writehere( ' 
end; {submenu} 

' 35, 2) 

{from the various controller parameters and other 
sy~tem parameters construct the characteristic 
polynomial for the closed loop system} 

procedure construct_polynomial; 
const Tlarge:integer = 100; 
var tauAtauB, tauAplustauB, KO: real; 

begin 
tauAtauB := areal * area2 * Rl * R2; 
tauAplustauB := areal * (Rl + R2) + area2 * R2; 
KO := Kp * Km * Kc * Kt; 
a·[l] := (tauAplustauB + (KO * Td)) / tauAtauB; 
a[2] := (KO + 1) / tauAtauB; 
a[3] :=KO/ (tauAtauB *Ti); 

if (Ti >= Tlarge) then 
begin 

capN := 2; 
thirdorder := false 

end 
else 

begin 
capN := 3; 
thirdorder := true 

end;{else} 
end; {construct_polynomial} 

{ this routine and its subroutines implement the Lin
Bairstow algorithm, as described in the text Ch. 3} 

procedure roots_driver; 

const lmax: integer = 20; 
var k, m, j: integer; 

stop, continue: boolean; 
st, steps: string[ 6); 

procedure init~next_factor; 

begin 
n:= capN - (2 * m); 



1 := 0; 
r := ro; 
s : = so; 

end; {init next factor} 
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function testdisc (capR, caps: real): integer; 

var disc: real; 

begin 
disc := capR * capR - 4.0 * caps; 
if disc < o then 

testdisc := -1 
else 

if disc = o then 
testdisc := o 

else 
testdisc := 1 

end; {testdisc} 

procedure quadroots (R, S:real); 

var rad: real; 

begin 
case testdisc(R, S) of 
-1: begin 

rad:= sqrt (4.0 * s - R * R); 
realroot [J] := -R / 2.0; 
realroot [J+l] := -R / 2.0; 
imagroot [J] := rad /2.0; 
imagroot [J+l] := -rad / 2.0 

end; 
o: begin 

realroot [J] := -R /2.0; 
realroot [J+l] := -R / 2.0; 
imagroot [J] := o.o; 
imagroot [J+l] := o.o 

end; 
1: begin 

rad:= sqrt (R * R - 4.0 * S); 
realroot [J] := (-R + rad) / 2.0; 
realroot [J+l] := (-R - rad) / 2.0; 
imagroot [J] := O; 
imagroot [J+l] := o 

end 
end {case} 

end; {quadroots} 
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procedure reduce_polynomial; 

begin 
b[l] := a[l] - r; 
b[2] := a[2] .- (r * b[l]) - s; 
for k := 3 to n do 

b[k] := a[k] - (r * b[k-1]) - s * b[k-2]; 
capR := b[n-1]; 
caps:= b[n] + (r * b[n-1]); 

end; {reduce polynomial} 

procedure partials; 

var p, q: array [1 •• 6] of real; 

begin 
p[l] := -1.0; 
p[2] := r - b[l]; 
for k := 3 to n do 

p[k] := -b[k-1] - r * p[k-1] - s * p[k-2]; 
Rr := p[n-1]; 
Sr:= p[n]+ (r * p[n-1]) + b[n-1]; 
q[lJ := o.o; 
q[2] := -1.0; 
for k := 3 to n do 

q[k] := -b[k-2] - r * q[k-1] - s * q[k-2]; 
Rs := q[n-1); 
Ss := q[n] + r * q[n-1] 

end; {partials} 

procedure differential_corrections; 

var denom: real; 

begin 
denom := Rr * Ss - Rs * Sr; 
delta_r := (-capR * _Ss + caps * Rs)/ denom; 
delta s := (-Rr * caps + Sr * capR)/ denom; 
r:= r-+ delta r; 
s := s+ delta-s; 

end; {diff'l corrections} 

procedure replace_polynomial; 

var newN: integer; 
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begin 
m := m+l; 
j := j+2; 
newN := capN - (2* m); 
for k:= 1 to newN do 
a[k] := b[k]; 

end; {replace polynomial} 

begin {roots driver} 
abort := false; 
k := O; m := O; j := l; stop := false; 
continue := false; 

while not stop do 
begin 

init next factor; 
if n-< 2 then 

begin 
realroot [J] := -a[l]; 
stop := true 

end 
else 
if n = 2 then 

begin 
quadroots(a[l],a[2]); 
stop := true 

end 
else 

begin 
repeat 

reduce polynomial; 
partials; 
differential corrections; 
1 := l+l; -
stop:= (1 > lmax); 
continue := not stop and 

((abs(delta r) > eps) 
or (abs(delta_s) > eps)); 

until not continue; 
if not stop then 

begin 
quadroots(r, s); 
replace polynomial; 

end {if not stop} 
else if (1 > lmax) then {stop true } 

begin 
str( 1:3,st); 
str(eps:6,steps); 
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message := 'roots have not'+ 
' converged after ' + st + 
' iterations to within '+ steps; 
display_error( message); 
check_response( ' Abort? •, 3); 
quadroots( r, s); 
replace polynomial 

end {else} 
end {else begin repeat} 

end {while} 
end; {roots_driver} 

{ det.ermine a world coordinate system. Bypass the Turbo 
Graphix procedure in order to condition the limits 
obtained. Scan the array of points for max & min 
values} 

procedure FindXlimYlim( A:TwoDimArray; NPoints:integer); 
var j:integer; 

begin 
NPoints :=abs( NPoints); 
if NPoints >= 2 then 

begin 
Xlim :=A[ 1, l]; 
Ylim :=A[ 1, 2]; 
Xlo := Xlim; 
Ylo := Ylim; 
for j := 2 to NPoints do 

begin 
if A [ j, l] > Xlim then 

Xlim : = A [ j , l] 
else 

if A[ j, l] < Xlo then 
Xlo := A[ j, l]; 

if A[ j, 2] > Ylim then 
Ylim :=A[ j, 2] 

else 
if A[ j, 2] < Ylo then 

Ylo : = A [ j , 2] 
end; {for} 

end {if NPoints} 
else error (7,4); 

end; {FindXlimYlim} 

{after calculating the roots of a polynomial for 
some Kc, store that point in an array} 

I 
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procedure f illarrays 

begin 

( var Aarray, Barray, Carray: plotarray; 
var Karray: Onedim); 

II := II + l; 
Aarray [II,l] := realroot [l]; 
Aarray [II,2] := imagroot [l); 
JJ := JJ + l; 
fwpoints[JJ,l] := Aarray[II,l); 
fwpoints[JJ,2) := Aarray[II,2); 

Barray [II,1] := realroot [2); 
Barray [II,2] := imagroot [2); 
JJ := JJ + 1; 
fwpoints[JJ,l) := Barray [II,l); 
fwpoints[JJ,2] := Barray [II,2); 
if thirdorder then 

begin 
Carray [II,1] := realroot [3); 
Carray [II,2] := imagroot [3); 
JJ := JJ + l; 
fwpoints [JJ,l) := Carray [II,l); 
fwpoints [JJ-,2) := Carray [II,2]; 

end; {if} 
Karray[ II] := Kc 

end; {fillarrays} 

{ensure that user requirements are not too large 
or too small for the arrays} 

procedure test range; 
var st: string[S); 

begin 
if ( II > MaxPlotGlb) or ( II < 1) then 

begin 
II := MaxPlotGlb + l; 
str ( II: 8, st) ; 
in range := false; 
message := · ' # of points to be plotted, '+ st 
+ #13#10 + 'is too large.'+ 
'Please change requirements•; 
display error( message); 
Delay(30.00) 

end {if} 
end; {testrange} 
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{if a fixed increment is used for Kc, then pass l 
obtains the re·quired array of points. Otherwise 
these points are necessary for comparison when 
calculating a variable step size} 

procedure passl; 

begin 
Window( 3, 4, 78, 21); 
ClrScr; 
Window(l, 1, 80, 25); 
GotoXY ( 3 5 , 2 ) ; 
Textcolor( lightred); 
write('CALCULATING'); 
GoToXY(29, 12); 
Textcolor( yellow); 
TextBackground( black); 
write( '#of points to be plotted:' ); 
TextColor( Brown); 
repeat 

construct_polynomial; 
roots driver; 
if (not abort) then 
begin 

fillarrays( ap, bp, cp, Kstore); 
GoToXY( 39,13); 
write( II:3); 
test range; 
Kc :~ Kc + stepsize 

end {if not abort} 
until (Kc> Kcfinal) or abort or (not in_range); 
TexTColor( Yellow); 

end; {passl} 

{if a variable step size is required, a scan is made 
of the distance between points obtained in pass 1. 
for each pair of adjacent points a linear inter
polation is made to obtain the desired step size. 
New points are calculated and stored in separate 
arrays} 

procedure pass2; 
var count, count2, 1m1n: integer; 

maskbreakout, maskbreakin: boolean; 

{within pass2. Does linear interpolation as per 
text Ch. 4. Upon break away or reentry at x axis, 
the step size is additionally reduced for a few 



steps} 

procedure getstepsize; 
const small = lE-6; 
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var aNum, deltaAl, deltaA2, deltaA: real; 
i: integer; 
stopcondition, breakout, breakin: boolean; 

begin 
i := imin; 

repeat 
if (i < Imax) then 

stopcondition := ( Kstore[ i-1] <= Kc ) and 
( Kc < Kstore[ i]) 

else 
begin 
stopcondition := ( Kstore[ i-1] <=Kc); 
end; 

i := i + l; 
until stopcondition; 

i := i - l; 
1m1n := i; 
deltaAl := ap[ i, l] - ap[ i-1, l]; 
deltaA2 := ap[ i, 2] - ap[ i-1, 2]; 
deltaA :=sqrt( sqr( deltaAl) + sqr( deltaA2) ); 
stepsize := stepsizesaved * 

( rholim / deltaA) * ( 1.0/60.0 ); 

breakout := ( abs( ap[ i, 2]) > small) and 
(abs( ap[ i-1, 2]) <small); 

breakin := ( abs( ap[ i, 2]) < small) and 
(abs( ap[ i-1, 2]) >small); 

if not maskbreakout then 
if breakout then 

· count := 5; 
if count > o then 

begin 
count := count - l; 
maskbreakout := true; 
stepsize := stepsize/ 5 

end; 

if not maskbreakin then 
if breakin then 

count2 := 10; 
if count2 > o then 

begin 
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count2 := count2 - l; 
maskbreakin := true; 
stepsize := stepsize/ 3 

end; 
e·nd; { get step size} 

begin {pass 2} 
maskbreakout := false; 
maskbreakin := false; 
count := O; 
count2 := O; 
II : = l; 
imin := 2; 
Kc := Kcsaved; 
rholim :=sqrt( sqr( Xlim-Xlo) + sqr( Ylim-Ylo) ); 
TextColor( Brown); 

repeat 
getstepsize; 
Kc := Kc + stepsize; 
construct_polynomial; 
roots driver; 
if not abort then 

begin 
fillarrays( apoints, bpoints, 

cpoints, Kstore2); 
GoToXY( 39,13); 
write ( I I : 3 ) ; 
test range 

end {if not abort} 
until (Kc> Kcfinal) or abort or (not in_range); 

TextColor( Yellow) 
end; { pass2} 

begin {getpoints} 
·initializelDArrays; 
initializePlotArrays; 
zero( fwpoints); 
repeat 

in range := true; 
if-firstRun then 

begin 
get_parameters; 
firstRun := false 

end 
else 

reset_parameters; 
submenu; 



modify := false; 
Window (3, 4, 78, 21); 
ClrScr; 
Window (1, 1, so, 25); 
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check_response( 'Vary step size? •, l); 
linerequested := false; 
check_response( 'Lines instead of points? •, 2); 
II := O; {index associated with plotarrays} 
JJ := O; {index associated with fwpoints array only} 
passl; 
if (not abort) and ( in range) then 

begin 
Imax := II; 
JJmax := JJ; {was set in fillarrays, 

now used -to find Xlim, Ylim} 
findXlimYlim( fwpoints, JJmax); 
if modify then 

pass2 
else 

begin 
apoints := ap; 
bpoints := bp; 
cpoints := cp; 
Kstore2 := Kstore 

end {else} 
end {if not abort} 

until in range 
end; {getpoints} 

(* * * g r a p h i c s r o u t i n e s * * *) 

{initializes the root locus graph by using initial
ization procedures from the Turbo Graphix Toolbox. 
Incorporates a round off procedure to make the 
graph limits round numbers} 

procedure initializeGraph; 
var 

XMinAdj, YMinAdj, XMaxAdj, YMaxAdj: integer; 

function round off( number:real): real; 
var firstDigit, exponent, stringnum: string[S]; 

num, code, digit: integer; 
·temp: real ; 

begin 
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·str( number: 8, firstDigit); 
str( number:S, exponent); 
if number >= o then begin 

delete( firstDigit, 2, 7); 
val( firstDigit, digit, code); 
num := 1 + digit end 
else begin 
delete( firstDigit, 3, 6); 
val( firstDigit, digit, code); 
num · := -1 + digit end; 
delete( exponent, 1, 4); 
str( num, stringnum); 
val( stringnum + exponent, temp, code); 
round off := temp; 

end; 

begin 
DefineWindow (1, o, o, XMaxGlb, YMaxGlb); 
DefineHeader (1, 'Root Locus Plotter'); 
XMinAdj := 4; 
YMinAdj := 16; 
XMaxAdj := XMaxGlb-2; 
YMaxAdj := YMaxGlb-14; 

DefineWindow (2, XMinAdj, YMinAdj, XMaxAdj, YmaxAdj); 
DefineWindow (3, XMinAdj, YMinAdj + 4, 

XMinAdj + 10, YMinAdj + 26); 
DefineHeader (3, 'Kc'); 
DefineWindow (4, trunc( XMaxAdj/2.0) - 3, YMinAdj +4, 

trunc( XMaxAdj/2.0) + 5, 
YMinAdj + 26 ); 

DefineHeader (4, 'damping'); 
DefineWindow (5, XMinAdj, YMinAdj + 28, XMinAdj + 10, 

YMinAdj + 50); 
DefineHeader (5, 'Wn'); 
DefineWindow (6, XMinAdj, YMinAdj + 52, XMinAdj + 10, 

YMinAdj + 74); 
DefineHeader (6, 'Ti'); 
DefineWindow (7, XMinAdj, YMinAdj +100, XMinAdj + 10, 

YMinAdj + 122); 
DefineHeader (7, 'Td'); 
SelectWindow (1); 
SetHeaderOn; 
DrawBorder; 
!Max := II; 

{final value II was set by fill arrays, 
used for repeat control below} 

if linerequested then 
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begin 
.II := 2; 

{reset plot array index to beginning, 
#2 required for D~awLine. Now first 
two points equal to remove side effects.} 

apoints[ 1, 1] ·-.- apoints[ 2, 1]; 
apoints[ 1, 2] ·-.- apoints[ 2, 2]; 
bpoints[ 1, l] ·-.- bpoints[ 2, l]; 
bpoints[ 1, 2] ·-.- bpoints[ 2, 2]; 
cpoints[ 1, l] ·-.- cpoints[ 2, 1]; 
cpoints[ 1, 2] ·-.- cpoints[ 2, 2] 

end 
else 

II ·-.- l; 

if ( abs( Ylo) < eps) and ( abs( Ylim) < eps) then 
begin 

Ylo := -1.0; 
Ylim := 1.0 

end; 
Xlo :=round off( Xlo); 
Ylo :=round-off( Ylo); 

· Ylim :=round off( Ylim); 
Defineworld( 1, Xlo, Ylo, Xlim, Ylim); 

SelectWindow (3); 
SetHeaderToBottom; 
SetHeaderOn; 
DrawBorder; 
SelectWindow (4); 
SetHeaderToBottom; 
SetHeaderon; 
DrawBorder; 
SelectWindow (5); 
SetHeaderToBottom; 
SetHeaderOn; 
DrawBorder; 

end; {initializeGraph} 

{next two subroutines are from the Toolbox, and are 
used to draw point positions which pop up when the 
plotting is temporarily stopped by the user} 

function StringNumber(Xl:real; 
MaxExponent:integer):wrkstring; 

var y:wrkstring; 
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begin 
str(Xl*exp(-MaxExponent*ln(l0.0)):5:2,y); 
StringNumber:=y; 

end; 

function GetExponent(Xl:real):integer; 

begin 
GetExponent:=O; 
if Xl<>O.O then 

if abs(Xl)>=l.O then GetExponent:= 
trunc(ln(abs(Xl))/ln(lO.O)) 

else GetExponent:= 
-trunc(abs(ln(abs(Xl)))/ln(lO.O)+l.O); 

end; 

{when use·r pauses graphing, various numbers and 
windows display from a virtual memory screen. 
The user may resume graphing, whereupon these 
items vanish, or he may elect to terminate 
the graph prematurely (esc)} 

procedure pop up; 
var stal, sta2: string[ 5]; 

sta: string[ 13]; 
cposY, aposX, bposX, bposY: real; 
maxexponentX, maxexponentY: integer; 

begin 
CopyScreen; 
SelectWindow( 6); 
SetHeaderon; 
DrawBorder; 
GoToXY (7, 10); 
write (Ti:5:2); 
SelectWindow( 7); 
SetHeaderOn; 
DrawBorder; 
GoToXY (7, 16); 
write (Td:5:2); 
SelectWindow( 2); 
maxexponentX := GetExponent( Xlo); 
maxexponentY := GetExponent( Ylo); 

stal := StringNumber( apoints[ II, l], maxexponentX); 
sta2 := StringNumber( apoints[ II, 2], maxexponentY); 
sta := stal + 1 , 1 + sta2; 
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aposx := apoints[II, l] - 0.25 * 
exp( maxexponentX * ln(lO.O)); 

drawtextW( aposX, -apoints(II, 2], 1, sta); 

stal := StringNumber( bpoints[ II, l], maxexponentX); 
sta2 := StringNumber( bpoints( II, 2], maxexponentY); 
sta := stal + 1 , 1 + sta2; 
bposx := bpoints[II, l] - 0.25 * 

exp( maxexponentx * ln(lO.O)); 
bposY ~~ bpoints[II, 2] - 0.25 * 

exp( maxexponentY * ln(lO.O)); 
drawtextW( bposx, -bposY, 1, sta); 

stal := StringNumber( cpoints[ II, l], maxexponentX); 
sta2 := stringNumber( -cpoints( II, 2], maxexponentY); 
sta := stal + 1 , 1 + sta2; 
{rev~rses maxexponent to base 10 number}; 
~posY := -cpoints(II, 2] - 0.25 * 

exp( maxexponentY * ln(lO.O)); 
drawtextW( cpoints( II, l], -cposY, 1, sta); 

GotoXY( 39,23); 
write( 'Esc') 

end; 

{actually plots the points which were stored in arrays. 
Also writes design information into auxiliary windows} 

procedure graphit; 
var theta, zeta, Wn, Temp: real; 

maxexponentx: integer; 
ch: char; 

{controlled by graphit. Checks the keyboard 
at each plot iteration to see if the user 
wishes to pause and view auxiliary information, 
or abort} 

procedure check_keyboard_buffer; 
var stopped: boolean; 

begin 
if KeyPressed then 

begin 
read( kbd, ch); 
if ( ch = #32) then 
. begin 

stopped := true; 



Sound (880); 
Delay (200); 
NoSound; 
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pop up; 
while stopped do 

begin 
read (kbd, ch); 
if (ch = #32) and (II < Imax) then 

stopped := false 
else 

if (ch = #27) then 
begin 

II := IMax + l; 
stopped := false 

end 
end; {while} 

if ch = #32 then 
SwapScreen 

end {if ch} 
end {if KeyPressed} 

end; {check keyboard buffer} 

{write root locus variables while plotting} 

procedure write_to_subwindows; 

begin 
GoToXY ( 7, 4); 
Write (.Kstore2 [II]:5:3); 

if ( apoints[ II, l] < lE-6) and 
( apoints[ II, 2] < lE-6) then 

zeta := 1.0 
else 

begin 
theta := ArcTan 
( apoints[ II,2] / apoints[ II,l]); 
zeta := cos (theta) 

end; 

Wn :=sqrt( sqr( apoints[ II,2]) + 
sqr( apoints[ II,l])); 

GoToXY ( 37,4); 
if zeta < l then 

begin 
write (zeta:5:2); 
GoToXY( 7,7); 
write( Wn:7:4) 

end 



else 
begin 

write( •ovrdp'); 
GotoXY( 7,7); 
write ( 'ovrdp') 

end 
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end; {write to sub windows} 

begin {graphit} 
initializeGraph; 
with World[ l] do 

begin 
Temp := Yl; 
Yl := Y2; 
Y2 := Temp 

end; {with} 
Selectworld (l); 
SelectWindow (l); 

{invert world coord 
to Cartesian type coord} 

DrawAxis( B,7,0,0,0,0, -1, o, false); 
GotoXY ( 7,23); 
writeln 
('stop/start: space-bar'); 
SelectWindow( 2); 
maxexponentX := GetExponent( XLo); 
Temp := 0.1 * 

exp( maxexponentX * ln(lO.O)); 
Drawline( Temp, O, -Temp, O); {cross hair, origin} 

repeat 
if linerequested then 

begin 
Dr~wLine (apoints[ 

.apoints [ 
DrawLine (bpoints[ 

bpoints[ 
if thirdorder .then 

OrawLine (cpoints[ 
-cpoints[ 
cpoints[ 

II-1, l], -apoints[ II-1, 2], 
II, · l], -apoints[ II, 2]); 
II-1, l], -bpoints[ II-1, 2], 
II, l], -bpoints[ II, 2]); 

end 
else 

II-1, l], 
II-1, 2], 
II, l], -cpoints[ II, 2]) 

begin 
DrawPoint (apoints[II,i], -apoints[II,2]); 
DrawPoint (bpoints[II,l], -bpoints[II,2)); 
if thirdorder then 

DrawPoint (cpoints[II,l], -cpoints[II,2]) 
end; {else} 

write to subwindows; 
Delay-(1000); 
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check keyboard buffer; 
II : =-II + 1; -

until II > IMax; 

if ch <> #27 then 
repeat until KeyPressed; 

end; {graphit} 

begin {root loci} 
firstRun := true; 
putframe; 
repeat 

mark( heapaddress); 
getpoints; 
if not abort then 

begin 
InitGraphic; 
Clearscreen; 
HiResColor(Yellow); 
graphit; 
LeaveGraphic 

end; 
exit := false; 
ClrScr; 
putframe; 
check response( 'Continue root locus? ',4); 
release( heapaddress) 

until exit 
end; {root loci} 



APPENDIX III "INCLUDE" FILES - NOTES 
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I. Since nesting is not allowed, Include Files used in 

this subprogram were compiled as part of the editor program 

(Fadden 1986) • Include Files required are: 

Turbo Graphix Toolbox files (Borland 1985) 

TYPEDEF.SYS 

KERNEL.SYS 

GRAPHIX.SYS 

WINDOWS.SYS 

AXIS.HGH 

4X6.FON 

BXS.FON 

Editor files (Fadden 1986) 

TEXTBOX.INC 

PUTFRAME.INC 

II. The following changes were made to Turbo Graphix 

Toolbox version 1.05: 

A. file TYPEDEF.SYS 

change MaxPlotGlb = 400. 

B. files TYPEDEF.SYS, KERNEL.SYS, 

WINDOWS.SYS, AXIS.HGH 

change Window to WWindow 

C. file AXIS.HGH 

1. change line 193 to 

NPoints := Delta div 29 

GRAPHIX.SYS, 
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2. change line 199 to 

for i := l to NPoints - l do 

3. change line 201 to 

xs := xs + 29 + Balance 



Applied i. 
Alto, 
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