
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1986

Root Locus Plotter for a Dual Tank System Under Feedback Root Locus Plotter for a Dual Tank System Under Feedback

Control Control

John M. Decatrel
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Decatrel, John M., "Root Locus Plotter for a Dual Tank System Under Feedback Control" (1986).
Retrospective Theses and Dissertations. 4897.
https://stars.library.ucf.edu/rtd/4897

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Frtd%2F4897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4897?utm_source=stars.library.ucf.edu%2Frtd%2F4897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

ROOT LOCUS PLOTTER FOR A DUAL TANK SYSTEM
UNDER FEEDBACK CONTROL

BY

JOHN MARK DECATREL
B.S.E., University of Central Florida, 1984

RESEARCH REPORT

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

in the Graduate Studies Program
of the College of Engineering

University of Central Florida
Orlando, Florida

Summer Term
1986

ABSTRACT

A root locus graphics routine was written in Turbo

Pascal for the analysis and design of a linearized dual tank

control system. The routine ~

1S a subprogram to be

incorporated with an editor written by L. Fadden. This

editor allows for the saving and changing of parameters to

the system.

The dual tank system is a good example for classical

feedback control analysis. A brief description of the

process and system is presented. The system may be

described by linearized differential and algebraic

equations. From these, a characteristic equation is

derived, which gives rise to the root locus. The root locus

is a plot of the poles of the closed loop system. Poles or

roots of the characteristic equation are found using the

Lin-Bairstow algorithm. This method may be used to solve

for the zeros of an nth degree polynomial.

The root locus plotter was exercised by attempting to

optimally tune the system's controller. Corroboration of

the results was provided by step response plots from the

TUTSIM simulation program.

Minor modifications allow the root locus plotter to run

without the editor. Graphics subroutines are provided by

the Turbo Graphix Toolbox. When run under the editor, the

plotter is one interactive design module of the dual tank

system analysis and design program. The subprogram was

designed principally for user ease, error checking, and

effective graphics.

ACKNOWLEDGEMENTS

Thanks to:

Dr. Klee

Dr. Matthews

Dr. Linton

Dr. Bauer

Regina

TABLE OF CONTENTS

LIST OF FIGURES vi

INTRODUCTION 1

Chapter
1. A DUAL TANK SYSTEM 3

2. THE ROOT LOCUS 10

3. THE LIN-BAIRSTOW ROOT SOLVING ALGORITHM 16
Advantages of the Method
The Algorithm
Calculations from Polynomial Coefficients

4. PROGRAM DESCRIPTION 22

5. DISCUSSION OF THE RESULTS . 29

6. SUMMARY AND CONCLUSION 44

Appendices
I. ADDITIONAL FIGURES 46

II. PROGRAM SOURCE CODE LISTING 53

III. "INCLUDE" FILES - NOTES 78

LIST OF REFERENCES 81

v

LIST OF FIGURES

1. Schematic Diagram of Dual Tank System . 4

2. Block Diagram of Dual Tank System .. 6

3. Structure Blocks of Dual Tank System For Tutsim
Simulation • • • • • • • • • • . • • • • • • • 6

4. Flow Chart of Root Solving Method 18

5. Flow Chart for Root Locus Program Numerical
Routines . 23

6. Flow Chart for Root Locus Program Graphics
Routines 24

7. Typical Input Screen - Controller Parameters
Select . 27

8. Reaction Curve Method for Tuning the Controller 31

9. Optimally Tuned Controller Using Proportional
Control Only • . • . • • • • . • • • • • • •

10. Step Response for P-I Controller and Proportional
Controller Tuned Optimally by Reaction Curve

32

Method • . 3 3

11. Optimally Tuned Controller Using Proportional-
Integral Control • • • • • • • • • • • • • • . • . . 36

12. Optimally Tuned Controller Using Proportional-
Integral-Derivative Control . • • • • • . . 38

13. Step Response for P-I-D Controller Tuned Optimally
By Reaction Curve Method . • • • . • • • • • 39

14. Step Response for P-I Controller Gain Set Higher
Than Recommended • • • • . • • • • • • • • • • • • . 40

15. Controller Set for System at Marginal Stability 41

16. Step Response for Marginally Stable System ••... 43

17. System Under Proportional Control for Very High
Gain . • • • • • • • . . . • • • . • 4 7

vi

18. System with Gain Slightly Above Breakaway • 48

19. Step Response for System at Breakaway. Controller
Using Proportional Gain Only • . . • • . • • • . . . 49

20.

21.

System Under P-D Control.
Size . . • • • . • • •

System Under P-D Control.
Step Size • • . • . • • •

Plot Using Fixed Step • • • 50

Plot Using Variable
• • • 51

22. Sample Matlab Input and Output • • . • • • • . . 52

vii

INTRODUCTION

This computer program was developed as a module to be

run with a simulation program by Leon Fadden (1986).

It is a design routine which draws from the linearized model

of a dual tank fluid system. With minor modification the

module can run alone. Both programs are in support of a

manuscript on system analysis being written by Dr. Harold

Klee (University of Central Florida).

The root locus design tool presented herein allows for

prediction of system stability, response characteristics,

and aids in optimum tuning of a proportional-integral-

deri vative (P-I-D) controller. The root solving method used

is based upon the Lin-Bairstow algorithm, which is good for

any order polynomial. Howeve~ the two tank system under

P-I-D control gives rise to a maximum third order character

istic polynomial equation. This algorithm was chosen

because

rapidly,

it is well known in numerical

and is readily understood.

methods,

If the

converges

system is

modified for greater accuracy, or a more complex controller

is incorporated, the characteristic equation may become

higher order. This program would, then, still be useful.

The reader can apply the root solving part of the program

for other problems which contain higher order polynomials.

2

The program was written in Turbo Pascal because of the

language's power, readability, and current popularity. High

resolution monochrome graphics were realized with the aid of

the Turbo Graphix Toolbox. Minor modifications were made to

the Toolbox in order to obtain enhanced results for this

particular application. Some necessary system time response

graphs were obtained using the TUTSIM simulation program

(Applied i 1985).

CHAPTER l A DUAL TANK SYSTEM

The system under investigation consists of a process

which has two fluid holding tanks interconnected by a pipe

(Klee 1986). Such a process might be part of a chemical

batch production unit, or a flow regulating unit for the

coolant of a power plant. The principal components to be

analyzed in a simplified model of the system (Figure 1)

are described as follows.

A constant displacement motor driven pump impels the

inlet fluid into the first tank. Both tanks are

unpressurized, i.e., open to the atmosphere. The inter-

tank flow is a function of the pres-sure head of both tanks.

It is assumed that the bottoms of the tanks as well as the

inter-tank pipe are at ground reference level. This pipe

has an adjustable valve which may be considered a load

variable (e1) or disturbance input.

For design and analysis purposes we may let the two

tank areas vary between simulation runs. At the outlet of

the second tank is a discharge pipe with another hand

actuated valve (92) at some height above the reference.

The discharge flow is a function of the tank 2 fluid level

as well as the outlet valve's opening position. We also

include some direct disturbance flow (FL) to tank 2. This

3

4

Controller

Vm

Transmitter

pump FL

~
Hl

H3 02

1-----1~--Fo

Figure 1 . Schematic Diagram of Dual Tank System

5

will have some impact upon the system equations, however,

the three load variables e1 , e2 , and FL will not influence

the root locus of the system.

The components described so far represent an uncontrol-

led process, which is rarely useful in engineering

operations. We can include certain other components which

allow an operator to control some aspect of the process,

e.g., the height of tank 2. A sensing device or transmitter

is required to detect the height of the tank. The transmit

ter converts the height of fluid in the tank into an

electrical signal (voltage), and provides an amplified

signal to a controller unit (figures 2 and 3).

The controller considered herein is of the

proportional-integral-derivative (P-I-D) type such as is

commonly found in practice. It operates upon an error

signal, i.e., the difference between some reference height

and the height returned by the transmitter. Heights are

first converted to analog electrical signals which can be

recognized by the controller. Depending upon parameters

set to adjust controller action, a voltage signal will be

sent to the pump's motor. The inlet flow through the pump

is considered to be a manipulated or controlled variable.

Common configurations of controller parameters and their

characteristics are as follows. For proportional control

only, the response for this particular system is second

(feet)

s

units
converter

6

(%) (%) (cfm)

81 82 FL
(volts) (cfm) ~_._--Lo..-""'"--. --- -------

Vm Fl

controller pump process

V2

(volts)

transmitter

(feet)

H

Figure 2 • Block Diagram of Dual Tank System

- 0 - 1 var 2 50

pls gai gai gai gai gai

units PID Km K Ta Tb

gai

Ta+ Tb
52.5

2

gai

Figure 3 . Structure Blocks of Dual Tank System for TUTSIM
Simulation

7

order. That is, the Laplace transformed transfer function

has a second order characteristic polynomial in the

denominator. This implies that the system may be

overdamped or underdamped. An increase in gain speeds up

the response and pushes the system closer towards

oscillation. The major drawback to proportional control is

that the steady state step response is offset from the

changed set point (servo action). Using the final value

theorem upon the tranfer function, the step response is

r = K • c c

1 + K c [l]

where c is the magnitude of the step change in input and Kc

is the controller gain. Off set is obvious from Eq. [1]

above.

The addition of integral action eliminates steady state

offset, however response speed is reduced (Weber 1973). The

open loop transfer function acquires an additional pole and

the system becomes third order. Setting controller

parameters such that the · proportional gain is low and

integral action low (long reset time), the system behaves

like a second order system. As integral action increases

the system becomes more sluggish. Increasing the gain adds

oscillations, and the system tends towards instability.

If derivative action is added the system remains third

order, however response speed is improved. The system

8

becomes more stable allowing for a higher maximum gain and

shorter reset time.

Changes to controller modes, e.g.; proportional to

proportional-integral, are not additive. This makes tuning

the controller for optimum response a complex task. Certain

methods have been developed for achieving this, including

the Ziegler-Nichols reaction curve method and the continuous

cycling method (Weber 1973). Each method has its drawbacks.

The most common method of tuning a controller in practice is

.bY operator

insight as

controller

trial and error. The root locus

to what the response will be

settings. This alleviates the

gives some

for various

problem of

experimenting on a real process, which may be time

consuming, expensive, and potentially disastrous.

The system model used with this design tool must be

linear. The real system undoubtedly incorporates many non-

linearities. By "linear" it is meant that the response to

the sum of two signals is the same as the sum of the

responses to each signal ·input. A linearized model is

usually valid for relatively small changes about a set of

design conditions. A model type (linear or non-linear) may

be identified by the nature of its describing differential

and algebraic equations.

Design conditions are found by setting all external

inputs to desired values (Klee 1986). Then the internal,

9

dependent variables may be found by taking the system

·differential equations and rewriting them for steady state

behavior. The resulting values determine the quiescent

operating point about which new equations for the linearized

model may be developed.

10

CHAPTER 2 THE ROOT LOCUS

The root locus is a graphical path drawn on the complex

s-plane. Each point along the path indicates a pole of the

closed loop (Laplace domain) transfer function for a system

with fixed controller parameters. As a controller parameter

is perturbed (typically the controller gain) the poles of

the system transfer function change. A pole is a value of s

on the complex plane which causes the denominator of the

transfer function to go to zero, hence it causes the

transfer function to go to infinity.

When set equal to zero, the denominator is called the

characteristic equation of the system. The following

discussion shows how the characteristic equation arises from

time domain, linearized model equations. Whether or not

load disturbance variables are introduced the characteristic

equation does not change. For simplicity, load variables

are assumed to be fixed at system design conditions, hence

they do not appear in the following equations which use

deviation variables.

starting with the process equations (Klee 1986), by

conservation of mass for tank 1 and tank 2:

A1H1 (t) + F2 (t) = F1 (t)

A2H2 (t) + F0 (t) = F2 (t)

10

11

Symbol definitions are found in Table I. Succeeding

variables are functions of time unless otherwise noted.

From Bernoulli's equation the inter-tank flow is

F = c (H - H)112
2 l l 2

and the discharge flow is

Fo = c2 (H2 - H3) 1/2.

Using deviation variables (LX is a relatively

[2]

[3]

small

deviation from design point X) it follows from eqs.[2] and

[3] that

and

Al LH1 + LF2 = 6F1

A2 LH2 + 6Fo = LF2.

Since F2 is a function of H1 and H2 ,

6F2 = aF26H1 + aF26H2

aH1 aH2 .

[4]

[5]

It is necessary to substitute functions of H1 and H2 for

F
0

and F
2

into eqs. [4] and [5]. Taking the partials of F2

and evaluating at design conditions yields

a linear approximation which we define as l/Rl where R1 is

called the fluid resistance. Similarly

-F 2

2(Hl - H2)

= -1

Rl .

CONSTANT

Al

A2

Rl' R2

cl, c2

Kc

KP

Kt

T.
1

Td

TA' TB

TIME VARYING

Hl

H2

Fl

F2

FO

12

TABLE I

PROCESS AND SYSTEM SYMBOLS

DESCRIPTION

area of tank 1

area of tank 2

linearized fluid resistances

valve constants

controller gain

process gain

transmitter gain

controller integral (reset) time

controller derivative time

process time constants

DESCRIPTION

tank 1 fluid level

tank 2 fluid level

input flow to tank 1

inter-tank flow

discharge flow from tank 2

13

Eq. [5] can be rewritten as

6F2 = 6.Hl - c,.H2

Rl

[6]

By a parallel argument, for F
0

a function of H
2

and H
3

(H
3

constant) it follows that

Substituting Eq.

~FO = aFO 6H2

aH2

aF
0 = FO = l

aH2 2(H2 - H) 3

6.Fo = 6.H2
-
R2 .

[6] into [4]

A16H1+ 6Hl - ~H2 = f).Fl

Rl

Substituting eqs.(6] and [7] into (5]

A2~H2 + f).H2 = ~Hl - 6H2

R2 Rl

[7]

(8)

[9]

Rearranging eqs.(8] and (9) into standard form where the

dependent variables are on the left-hand side

A1R16.H1 + ~Hl - 6.H2 = R16.F1

and A2 R1R2 6.H2 + 6H2 - R2 6.Hl = 0

[10]

[ll]

which are a pair of coupled first order linear differential

equations (Eq. (11) also is homogeneous).

14

If the tanks are initially at design conditions (zero

initial conditions), the Laplace transforms of eqs.[10] and

[11] are

(A1R1s + l)~Hl (s) - AH2'(s) = R1~:.Fl (s)

and -R2AH1 (s) + [A2RlR2s +, (Rl + R2) JAH2 (s) = o.

Note that we have moved from the time domain to the complex

s domain.

Solving for ~H2 (s), the controlled variable by Cramer's

rule is

A1R1s + 1

-R
6.H2 (s) 2 =

A1R1s + 1 -1

-R 2

=

A1A2R1R2s 2 + [A1 (R1 + R2) + A2R2]s + 1

Dividing both sides by AFl(s) gives the transfer function of

the process, Gp(s). The denominator of the above equation

is the characteristic polynomial of the process. Since it

is second order it can be rewritten for convenience as

2 = A1A2R1R2s

+ [A1 (R1 + R2) + A2R2]s + 1 .

If we let KP= R2 (the process gain), then

Gp(s) = KP

(TAs + 1) (TBS + 1) .

15

Looking at the open loop system transfer function G(s), we

have

[12]

and are, respectively, the controller and

process transfer functions. Other terms are defined in

Table I.

The closed loop system transfer function is

= G (s) [13]

1 + G (s)

assuming no change of load variables from design

conditions. The transfer function for a P-I-D controller is

Gc(s) = Kc [1 + 1 + Tds]

T.s
1

Therefore substituting eqs.(12] and (14] into Eq. (13]

6.H2 (s) = K0 (Tds + l)Tis + 1

6.H2s(s) (TAs + 1) (TBS + l)Tis + Ko [(Tds + l)Tis + 1]

where K0 = KtKcKmKp is the loop gain.

The characteristic equation of the system, which comes

the denominator of Eq. (15] · can be rewritten as

s3 (TA + TB +
2 (K0 + l)s + KO + K0Td)s + =

TATB TATB TATBTi

(14]

[15]

from

o.

The roots of this equation yield points which may be plotted

on the complex s plane. As Kc varies the roots change and a

locus of points may be drawn.

CHAPTER 3 THE LIN-BAIRSTOW ROOT SOLVING ALGORITHM

Advantages of the Method

The roots of any order polynomial may be solved for by

using this algorithm (Mccalla 1967) even though the highest

order characteristic equation generated by the model is

third order. However, a more complex controller could be

incorporated. The model might be expanded. Each of these

changes would probably induce a higher order characteristic

equation. This root solving method would, then, still be

useful. Furthermore, most linear systems could employ the

algorithm.

In addition to its general utility, the instructional

value of Lin-Bairstow's method contributed to its selection.

It is very efficient since it converges to each root

quadratically. A root locus usually involves the

calculation of complex roots. The Lin-Bairstow method has

an advantage of not requiring any complex arithmetic. It

requires only real arithmetic to calculate a complex zero

and, simultaneously, its conjugate.

The Algorithm

A polynomial of any order greater than two can be

factored into products of quadratic factors and perhaps one

linear factor, all of which involve only real

16

17

coefficients (Mccalla 1967). The roots of the quadratic

may, of course, be complex. The main idea of the algorithm

is to provide an efficient way of extracting the quadratic

factors iteratively, and if necessary, the linear factor.

Flow chart Figure 4 provides an overview of the method.

Suppose that some polynomial Pn(x) of order n is

divided by an arbitrary quadratic factor x2 + rx + s. We

obtain a polynomial Pn_
2

(x) two orders lower and a remainder

term Rx + S. If the remainder term were zero then our

trial factor would be an exact factor of Pn(x).

operative constraints are that

and

R(r, s) = o

S(r, s) = o.

Therefore,

[16]

[17]

The remainder coefficients are written as functions of r and

s since variations in these produce different remainders.

Equations [16] and (17] are two non linear equations in two

unknowns. Newton's method may now be applied. For suff i-

ciently close initial estimates the method will converge

(Dorn 1972).

Using a first order Taylor series approximation about

an initial r and s, and in terms of differentials

dR = R(r + dr, s + ds) - R(r, s)

= R dr + R ds + • • • r s
[18]

and
dS = S(r + dr, s + ds) - S(r, s)

[19]

19

where " • . • " indicates higher order terms which may be

dropped. Now if r 0 and s 0 are estimates for the factor

x2 + r 0x + s 0 such that

and

R(r
0

, s
0

) 1= o

S(r
0

, s
0

) I= o,

dr and ds must be found such that these constraints are

true: R(ro, so> + dR = 0

and S(ro, so> + dS = o,

or dR = - R(ro, so>

and dS = - S(ro, so>.

Therefore from Eqs. [18], [19], [20], and [21]

and

Rrdr + Rsds = - R(r 0 , s 0)

Srdr + S
6
ds = - S(r 0 , s 0).

[20]

[21]

[22]

[23]

The last two equations are called "differential-correction"

equations.

By solving for dr and ds we can satisfy our original

constraints

and

R(r 0 + dr, s 0 + ds) = o

S(r 0 + dr, s 0 + ds) = o.

Since r 0 + dr = r 1 is a first order approximation

[24]

[25]

to the

zero of R, we can refine our solution using the above

technique iteratively, starting from r 1 • A similar

procedure is needed for finding the zero of s. If the

initial guess ro and s 0 is sufficiently close we can

20

converge towards the roots of eqs. (22] and [23] to within

some arbitrarily small number epsilon.

Calculations from Polynomial Coefficients

In order to solve for dr and ds in eqs. [24] and [25]

it is necessary to obtain six numbers from the original

polynomial. Suppose it is given that

Pn(x) = xn + alxn-1 + a2xn-2 + .•. + an-lx +an

= (x2 + rx + s) (xn-2 + blxn-3 + b2xn-4 + ...

+ b 3x + b 2) + Rx + S. n- n-
The a's are coefficients of the original polynomial, and b's

are coefficients of the reduced polynomial. It is shown

that (Mccalla 1967) after quadratic factor division:

R = bn-1 = a - rbn-2 -n-1

bn = an - rbn-1 - sb 2 n-
s = b + rbn-1· n

Furthermore, using the notation

and

it is also shown

pk

qk

Rr

Pk = abk

ar
qk = abk

as
that (Mccalla 19 67) :

= -bk-1 - rpk-1 -spk-1

= -bk-2 - rqk-1 -sqk-2

= 8bn-l = Pn-1

ar-

sbn-3 [2 6]

[27]

-spk-2

[28]

21

Rs = abn-1 = qn-1

as
Sr = Pn + rp 1 + b n- n-1

SS = qn + rq 1. n-

Eqs. [26] I [27], and [28] through [31]

obtained from recursion formulas

differential correction equations.

[29]

[30]

[31]

are the six numbers

for solving the

CHAPTER 4 PROGRAM DESCRIPTION

The root locus plotter can be divided into two major

sections. The first is concerned with obtaining variable

controller parameters from the editor, calculating a system

characteristic polynomial, and iteratively finding the roots

of the characteristic as the controller gain is varied. The

roots are then stored in real number arrays for plotting.

The second section makes use· of the Turbo Graphix

Toolbox for IBM monochrome high resolution graphing of the

root locus. Procedures needed from the utility package are

accessed via "include files," which are compiled integrally

with the main program. The procedures used feature

windowing; axis drawing; drawing of points, lines, and

numbers; an automatic world coordinate system; and a virtual

memory screen. A few of the Turbo Graphix routines were

modified slightly for improved results.

Figures 5 and 6 are macroscopic flow charts which

provide an overview of program control flow. For a closer

look at how the program is structured, and for details

regarding subroutines the reader may ref er to the commented

program source code in Appendix II.

Certain problems unique to this application were

encountered. When a fixed step size is specified for the

22

23

return initialize
arrays (Figure 6)

N

reset
parameters

calculate
step
size

construct
polynomial;

obtain
roots

fill
root

arrays

plotter
parameters

construct
polynomial;

obtain
roots

fill
root

arrays

to plotter
graphics
(Figure 6)

call by editor

parameters

interactive
changes

to plotter
graphics

(Figure 6)

Figure 5 . Flow Chart for Root Locus Program Numerical Routines

return to
numerical
routines
(Figure 5)

N

y

24

from numerical
routines (Figure 5)

initialize
windows,
headers

draw
axis

display
parameter
variables

from numerical
routines
(Figure 5)

return to
editor

Figure6. Flow Chart for .Root Locus Program Graphics Routines

25

controller gain Kc' the spacing of points on the root locus

varies. A moderate step size should be selected to produce

a quick but smooth curve. However when the roots break away

from or reenter the real axis, point spacing suddenly

widens. Therefore it was necessary to incorporate a

variable step size option.

This requires two passes to find the roots. The first

pass uses a fixed step size and stores the calculated points

(roots) in a two dimensional plot array. (The imaginary

part of the root corresponds to the root locus' vertical

axis.) A second pass examines the spacing between any two

points found in the first pass. A linear interpolation is

made to find the desired step size:

fixed step size
desired step size

= first pass point spacing
desired point spacing

The procedure which handles this calculation is

"getstepsize." The effect of this linear interpolation is to

moderate the step size as needed for most points, but near.

the break away, spacing change is too large for this method

alone. Therefore the step size is additionally decreased by

a factor of one-fifth. A counter ensures that this reduced

step size is used five times. A similar procedure is used

for re-entry. Since either fixed or variable step size

options may be selected by the user, they may be compared

for best results.

26

Another problem encountered was that the Graphix

Toolbox was not able to produce round, even numbers for axi

numbering in spite of a variable axis density scheme

provided. It was necessary to incorporate a "world" finding

routine into the plotter program. This routine,

"findXlimYlim," determines the order of magnitude and size

limits of the roots to be plotted for a simulation. The

values obtained are rounded off. Thus the Toolbox routine

"Findworld" was bypassed. Furthermore, the axis drawing

routine was modified in order to yield nice, even numbers on

the axes for most cases.

The user may elect to temporarily pause plotting. A

memory based virtual screen is used to save the display, and

auxiliary windows pop up which contain certain variables and

parameters.

Occasionally due to certain odd controller parameters

entered by the user, the root solving algorithm does not

converge to within user specifications. A diagnostic

warning is displayed, and ·the user may elect to abort

further calculations, or continue with unpredictable plotter

results. Error checking is incorporated for all user

input to ensure that entries are reasonable and within

range. Figure 7 shows two typical input screens.

The plotter program, including Turbo Graphix "include"

files, yields an instruction code segment of more than forty

27

CONTROLLER

Change a parameter. Select one.

1. Kc
2. Td
3. Ti

- I no change

?

OPTIONS

Vary step size?

Yes No

Figure 7. Typical Input Screen - Controller Parameters Select

28

kilobytes. When coupled with the calling editor and other

subprograms the code is larger than the Turbo Pascal

compiler can handle easily. A Turbo Extender shell program

(TurboPower 1986) was used to assist in compilation of the

entire program. Note again tnat the plotter subprogram can

run alone with minor modifications, and will compile using

only Turbo Pascal.

Heap and stack memory management was necessary, but

this was easily implemented with standard Turbo Pascal

functions. Since the compiler window procedure does not

work with the Toolbox window routines the Toolbox was,

again, modified.

CHAPTER 5 DISCUSSION OF THE RESULTS

The following illustrates how the root locus plotter

may be used to analyze and design for the dual tank system.

sample graphs of the plotter are provided. The TUTSIM

simulation program is also used to validate or extend

plotter results.

In order to find some unique combination of controller

parameters it is necessary to specify some goal to be

achieved with respect to the system. One such goal is to

tune the controller optimally by the quarter decay ratio

method, as first published by Ziegler and Nichols (Weber

1973) •

By quarter decay it is meant that the step response

should exhibit damped oscillations (underdamped response)

such that the second peak is one-quarter of the height of

the first peak (overshoot). While there is no unique

combination of P-I-D controller parameters which yield such

behavior, a logical set of values may be found by first

examining pure proportional control.

Suppose the system under feedback control is brought to

design conditions. The controller is switched to manual

mode, which breaks open the feedback loop. A unit step

voltage directly to the pump motor will produce
I

a typical

29

30

second order response at the transmitter output since the

process under consideration is second order. An optional

controller chart recorder can graph the output (Figure 8).

Extend a tangent line of maximum slope down to the time

axis. The time intercepted is, in effect, a delay. The

open loop system can be approximated by a first order

transfer function in series with a pure delay element. The

slope line and delay time found as detailed above

characterize the approximate model. Such a simplified model

can mathematically be shown to have the quarter decay

response characteristic desired (Smith 1985) when the

controller is tuned as follows (thus closing the loop):

Kc = _!
SL

where S is the slope of the tangent line and L is the delay

time described above. For our system, values of S =

0.013/min, L = 3.57 min, and Kc = 21.55 were found.

Having found some particular value to set the

proportional control, the root locus plotter may be employed

for further analysis. Figure 9 shows the root locus

stopped at this value. The locus appears to be heading

straight up as the gain increases. This observation is

confirmed by Figure 17. Using a simulation with Kc = 21.55,

a closed loop step response was graphed (Figure 10) . A

decay ratio smaller than 0.25 is evident, therefore the

recommended setting is too conservative. It turns out that

1

0.

0

Transmitter

output

(volts)

31

Time

(min)

Figure 8 • Reaction Curve Method for Tuning the Controller

50

32

· , · Root Lom· Plotter

0.00

1.00 9.99 ---2.00

3.00

I 9.39 ---

·1".05,·2.~9

stop/sta~t: space-ha~ Esc too,..._ ________ ___,. __ ..,........,__.,..__,,_.,.._...,.._~__,.--~~-
·2 .00 ·1.82 ·1.6~ ·1.~6 ·1.28 ·1.11 ·0.93 ·0.75 ·0.57 ·0.39 10·1

Figure 9 • Optimally Tuned Controller Using Proportional Control Only

33

2 Tank 2

change in height

(feet)

Kc 19.39 V/V

Ti 11. 9 min

r P - I control
1

t
L. Proportional control

Kc = 21.55 V/V

0 Time

(min)

FigurelO. Step Response for P - I Controller and Proportional
Controller Tuned Optimally by Reaction Curve Method

250

34

a small increase in gain yields the desired response. It

should be noted that the goal of quarter decay ratio is more

useful in controlling load changes than set point changes.

For set point changes this method produces too much

overshoot, but it prevents load changes from deviating too

far from design without being too oscillatory (Smith 1985).

Another method which has the same quarter decay goal

and may employ the root locus principally is the continuous

cycling or ultimate gain method. The method dictates that

the closed loop system be placed under proportional control

only. Increase the controller gain until the system step

response oscillates continuously. This point corresponds to

the vertical axis· crossing of the root locus. At that point

read the ultimate gain Kcu and the natural frequency wnu·

Controller parameters for optimum control may be calculated

as follows (Weber 1971).

p Kc = 0.5 Kcu

P-I Kc = 0.45 Kcu

T. = 2 TI
1 1.2 wnu

P-I-D Kc = 0.6 Kcu

T. = 2 TI
1

2.0 wnu

=2TI
8.0 wnu •

Unfortunately, for the dual tank system this method does not

work. As already mentioned, increasing the gain for the

35

system under proportional control causes a vertical locus.

The system never becomes unstable, which is characteristic

of a second order process under proportional control. Most

real world processes are of higher order, and some value of

gain will cause instability.

One inportant item yielded by the root locus plotter is

the damping ratio. Standard second order response curves

are available for specified damping factors, which allow the

designer to predict what the response will be, i.e., how

fast the oscillations will die out. Many higher order

systems are characterized by two poles which dominate the

response, and can be approximated by a second order system.

Another item is the natural frequency, wn, which

indirectly gives the period of oscillation. Figure 10 also

indicates the step response for a P-I controller tuned at

the Ziegler-Nichols optimum. It is evident from the corres

ponding root locus (Figure 11) that the system is far from

unstable, but that increasing the gain will eventually cause

more oscillations since the path is turning back towards the

Y axis. A natural frequency of w = 0.2343 predicts that
n .

the period of oscillation is

T = 2 TI

(1- z2
) wn

= 6.28 = 27.7 min
0.968 (0.234)

0.00

36

. · Root Locus Plotter

I 9.2s •••
·0.SS, 2.27

·OJ5, 0.00

1.00 9. 99 ·--2.00

3.00
·0.5*,·2.27

stop/sta~t: space-ha~ Esc U0+--------...--.-------------------
·2.00 ·1.SO ·1.60 ·1.~0 ·1.20 ·1.00 ·0.SO ·0.60 ·0.~0 ·0.20 1o·i

Figure 11. Optimally Tuned Controller Using Proportional - Integral
Control

37

which agrees well with the time response (Figure 10). (z is

the damping ratio.) Three peaks are found over a 75-minute

interval. Notice that the addition of integral control adds

a third pole which moves horizontally along the horizontal

axis. The contribution to the response is a negative

exponential which dies out more quickly as the gain increases.

The addition of derivative action to P-I control

reveals that the system has 3 poles and remains third order

(Figure 12). The locus reveals a greater degree of

stability as the path continues to move away from the jw

axis. Compared to P-I control an increased value of gain is

permitted for optimum tuning (Kc= 25.85). Figure 13 shows

the corresponding step response which has less initial over

shoot, and a faster settling out to steady state. Note that

the step input has been arbitrarily delayed for 10 minutes

for better graphics. The faster settling time could be

predicted from the root locus plot, by noting a higher

damping factor (0.32). If we increase the gain of the

optimally tuned P-I controller to that of the P-I-D

controller, i.e., .from Kc = 19. 3 to Kc = 25. 8, the response

becomes too oscillatory, as shown by Figure 14.

The system model was further exercised and certain

unique conditions were observed. A controller setting was

quickly determined by using the root locus to find a point

of marginal stability (Figure 15). The corresponding step

0.00

0.75 1.79 ---1.50

us

38

Root LOCY$ f lott~r

·2.09, 0.00

I o.32 ... ·0.75, 2.

·0.15, ·U~
stop/sta~t: space-ha~ Esc

3.00 1
10

•
·3.00 ·2.70 ·2.~0 ·2.10 ·1.SO ·1.50 ·1.20 ·0.90 ·0.60 ·0.30

Figurel2. Optimally Tuned Controller Using Proportional - Integral -
Derivative Control

39

2 Tank 2

change in height

(feet)

Kc 25.85 V/V

Ti 7.14 min

min

1

0 Time 50

(min)

Figure 13. Step Response for P - I - D Controller Tuned Optimally
by Reaction Curve Method

40

2

Kc = 25.85

Ti = 11.90

1

Td = 0.0

(\ l\
11 11 ('i (\ I I \ l \ / \/ .,._...,-... ______ _,....

I .I v

~/

0

0 Time

(min)

Figure l4. Step Response. for P - I Controller Gain Set ~igher
Than Recommended

1.50

41

Root LOCYS Plotter

·2.10, 0.00

I e.ee ---

·0.00,·0 82

stop/sta~t: space-ha~ Esc
2.00 ----------------------.....-----

·3.00 ·2.69 ·2.38 ·2.08 ·1.77 ·1.~6 ·1.15 ·O.S~ ·0.53 ·0.23 10·1

Figure 15. Controller Set for System at Marginal Stability

42

response agreed nicely,

oscillations (Figure 16).

producing relatively constant

At the point of breakaway the

response is critically damped. Using the root locus, this

condition was easily found (Figures 18 and 19). For certain

systems any overshoot might be unacceptable. The root locus

could then be used to find controller settings for the

fastest response with no overshoot, as done above.

Another item of interest concerns the plotter's

variable step size feature. Although proportional-

derivative control is seldom used in practice because of the

resulting offset, the root locus plot is interesting as it

forms a complete loop (Figure 20). Note how much improved

the plotter draws Figure 21 which incorporates a variable

step size. At breakaway and reentry, point spacing suddenly

increases. A fixed Kc is especially undesirable for this

Standard root locus plotters, such as found in the plot.

Matlab Control System Toolbox (Figure 22), do not

incorporate automatic variable spacing (Moler 1985).

Several of the plots made. with the root locus were run on

Matlab for validation, and there were no discrepancies found

between the two plotter routines.

43

.r:i.. .-

Tank 2 / \ { \ (\
I I J 1, . I

Height }
1

1 1'
1
1
1

t'I
1
1

II 1, ~
(feet) / I\ I I

J \ I I I
I '1 I 1, I I
I I 1

1

\ t \
I \ I \ ,1 \

) \I / Kc = 0\883 t
1 i l Ti = 210 1' I

l I\ I Td = 0 ·f I \
,' '1 J \ I ',
I
I \ I '1 I I

I
'1 I I I II

I 1, I I

/ \ I \ f \
I \/ \,} \,

1' I, J' 1 ••• 1 1_,
I •

0 ~~~....&..-----J~---'----'----'-----L-----JL---..L.---..J_--

2

1

0 Time

Figure 16. Step Response for Marginally Stable System

CHAPTER 6 SUMMARY AND CONCLUSION

A subprogram was written for the IBM PC/AT to be used

as one design tool which is called by an editor program.

The editor allows for making, changing,

configurations of the dual tank system.

and saving various

This design tool is

the first in a series of several subprograms to be developed

by other students. The entire software is written in

support of a manuscript on system analysis to be later

published as a textbook.

In writing the subprogram my intent was to make the

numerical routine modular in the event that the reader

wishes to use a Turbo Pascal root finder for some other

application. The graphics routines which use the Turbo

Graphix Toolbox are set apart, and not essential to the

first part of the subprogram. The reader may wish to

incorporate his own graphics routines · to plot points

residing in arrays, since the Toolbox carries a large

overhead in subroutines (about 2500 total source lines of

code) not used for this application. With minor · changes

the subprogram can run alone without a calling editor.

44

45

Although the subprogram source code (excluding Graphix

Toolbox subroutines) is about 1200 lines, its real-time

execution is very fast. It is even necessary to incorporate

delays in order to allow the user to pause the graphing. The

goal in writing the program was to allow for user ease,

error checking, and informative graphics. Code

minimization was of minor concern.

Rudimentary differential equations for the system led

to a derivation of the characteristic equation. Although

the system under consideration gave rise to a maximum of

third degree polynomials, it was instructive to obtain a

higher capability root solving method and make it available

in Turbo Pascal. Since the roots of the characteristic

equation were almost always small numbers the initial guess

of (r0 , s 0 = o, o)guaranteed convergence.

The root locus plotter was exercised by attempting to

optimally tune the system's controller according to - the

quarter decay ratio method. It was demonstrated how the

root locus could be used to obtain quick information about

the time response of a system. Principal items obtained

included the relative stability, damping ratio, and the

frequency of oscillations of the system.

APPENDIX I ADDITIONAL FIGURES

47

·j • • • • · 1 ~ • ', 1 • ' , · R,oot ~o~us P !!otter ·. ,i '. ! · • 1 • • , 1

0'1)(1

uo

uo stop/staI't: space-bat'
·2.01) ·UZ ·U~ ·1.H ·US ·1.11 ·1Ln ·OJ~ ·0.5i ·0J9 1o"i

Figure 17. System Under Proportional Control for Very High Gain

48

· · · Root Locus PI otter · . · ,

I i.00
·1.05, 0.51 I

stop/staft: space-ha~ Esc
tOO;---r--,---,----r---r--.,-..,.--r---,----r-r--..,..-..,..--,....~__,.-,..._.,._ __ _

·2.00 ·1 .S2 ·1.6~ ·1.~6 ·1.2S ·1.11 ·0.93 ·0.75 ·0.57 ·0.39 10·1

Figure 18. System with Gain Slightly Above Breakaway

49

2

Tank 2

Height

(feet)

1
l offset i

r slight underdamping

f

0
0 Time

(min)

Figure 19. Step Response for System at Breakaway. Controller
Using Proportional Gain Only

1

250

uo

50

Root Locus Plotter

I OVl'dP

stop/stal't: space-Lal' Esc
2. oor-.,...-..,--,---r~-r--i--.,--~~--r---r---r-,--......--.-----

• 1. 00 ·0.90 ·0.80 ·0.70 ·0.60 ·0.50 ·O.~O ·0.30 ·0.20 ·0.11

Figure 20. System Under P - D Control. Plot Using Fixed Step Size

o.so

51

· · ·Root Locus Plotter

I OVk'dP

0.00+---------------- "----

o.so

1.00

1.SO

stop/stak't! space-bak'
2 .00+-..,--.....,..---.-............... -....--....-........ --------------

·1.00 ·0.90 ·0.80 ·0.70 ·0,60 ·O.SO ·O.~O ·0.30 ·0.20 ·0.11

Figure 21. System Under P - D Control. Plot Using Variable ·step Size

6 x 10""3

4 •

,., " .
0 •

_., .
"'

-4 •

-6

I l

. •

52

I I I I I

r

I I I I I

-0. 04 -0. 035 -0. 03 -0. 025 -0. 02 -0. 015 -0. 01 -0. 005

num •

1.4600 1.4600 0.2920

I den

den •

26000 1040

Ir• rlocus<num,den,k>;
I r

r •

-0.0344
-0.0346
-0.0348
-0.0350
-0.0351
-0.0333

I pl ct <r, ·• · >
I

-0.0056
-0.0036
-0.0026 + 0.0023i
-0.0025 + 0.0036i
-0.0024 + 0.0044i
-0.0024 + 0.0031i

Figure 22. Sample Matlab Input and Output

0.0000
-0.0018

0

-0.0026 - 0.0023i
-0.0023 - 0.00361
-0.0024 - 0.0044i
-0.0024 - 0.0031i

.

.

.

.

.

0

APPENDIX II PROGRAM SOURCE CODE LISTING

54

{ a comment generally refers to the procedure
directly following that comment}

procedure RootLoci (Kc, Ti, Td, areal, area2: real);

type
stringy= string[78];
Onedim =Array[1 •• 100] of real;
dummypointer = ~dummy;
dummy = record { used to release heap pointer}

end;

var heapaddress: dummypointer;
apoints, bpoints, cpoints: PlotArray;
II, JJ, !max : integer;
xlim, ylim, Xlo, Ylo: real;
eps, ro, so; Rl, R2, Kp, Km, Kt,
Kcsaved, Kcf inalsaved, stepsizesaved, Tisaved,
Tdsaved: real;
alpha, alphasaved: real;
Kstore, Kstore2: Onedim;
linerequested, abort, firstRun, modify, exit,
thirdorder: boolean;
message: stringy;

{ check that the response to an option message
displayed is yes or no only}

procedure check response(message: stringy;
- requestnum: integer);

var inp: char;
ValidChar: boolean;

begin
GotoXY (3 5 , 2) ;
Textcolor(Lightred);
write(I OPTIONS ');
Textcolor(Yellow);
Window(1, 1, 80, 25);
GotoXY(34,13);
writeln(message);
GotoXY(37,23);

Textcolor(Lightgreen);
write (' Y '.) ;
Textcolor(Cyan);
write (' es ') ;
Textcolor(Lightgreen);
write (' N ') ;

Textcolor(Cyan);
write ('o') ;

repeat
read (kbd, inp);
inp := upcase(inp);
case inp of
'N': exit :=true;

55

'Y': case requestnum of
l: modify := true;

else

2: linerequested := true;
3: abort := true;
4: ;
end {case}

begin
Sound (880);
Delay (200);
No sound

end {else}
end; {case}

validchar := inp in ['N','Y']
until validchar;
Textcolor(Yellow);
Window(4, 23, 78, 24);
ClrScr;
Window(1, 1, 80, 25)

end; {check response}

{ display a warning or error, such as invalid
input}

procedure display_error(message: stringy);

begin
Sound (880);
Delay (200);
Nosound;
Window(3, 4, 78, 21);
ClrScr;
Window(l, 1, 80, 25);
GotoXY(3,5);
TextBackground(red);
TextColor(white);
write(message);
TextBackground(.black);
Textcolor(Yellow);
Delay(3000);
Window(3, 4, 78, 21);
ClrScr;

Window(1, 1, so, 25)
end; {display error}

56

{ large supervisory routine, which does numerical
calculations, and stores required root locus
poi~ts in plot arrays. All succeeding procedures
are directly or indi~ectly controlled by this
routine until graphics procedures are reached}

proc~dure getpoints;
type TwoDimArray =array[1 •• 1200, 1 •• 2] of real;

OneDimArray =array [1 •• 3] of real;

const TwoDimMax = 1200;
OneDimMax = 3;

var infile: text;
delta_r, delta_s, r, s,
capR, caps, Rr, Rs, Sr, Ss: real;
Kcfinal, stepsize, rholim: real;
n, 1, capN, JJMax: integer;
a, b,imagroot, realroot: OneDimArray;
fwpo1nts: TwoDimArray;
ap, bp, cp: PlotArray;
in_range, breakaway: boolean;

{ The next five routines are within getpoints.
All are involved with initialization of arrays
which if not performed can yield undesirable side
effects}

procedure zeroout(var thisarray: OneDimArray);
var I: integer;

begin
for I := 1 to OneDimMax do

thisArray[I] := o.o
end;

procedure initializelDArrays;

begin
zeroout (a);
zeroout (b);
zeroout (imagroot);
zeroout (realroot)

end;

57

procedure zero(var thisarray: TwoDimArray);
var I,J: integer;

begin
for J := 1 to 2 do
for I := 1 to TwoDimMax do

thisArray[I,J] := o.o
end;

procedure NullOut(var thisarray: plotArray);
var I,J: integer;

begin
for J := 1 to 2 do
for I := 1 to MaxPlotGlb do

thisArray[I,J] := o.o
end;

procedure initializePlotArrays;

begin
NullOut (apoints) ;
NullOut (bpoints) ;
NullOut (cpoints);
NullOut (ap) ;
NullOut (bp);
NullOut (cp);

end;

{ get auxiliary system parameters from a disk file
if root locus procedure is called from editor}

procedure get_parameters;

begin
assign (infile,'RLINPUT.DTA');
reset (infile);
read (infile, eps, ro, so);
read (infile, areal, area2, Rl, R2, Kp, Km, Kt);
read (infile, Kc, Kcfinal, stepsize, Td, Ti);
{initialize " saved" variables}
Kcsaved := Kc;
Kcfinalsaved := Kcfinal;
stepsizesaved := stepsize;
Tdsaved := Td;

58

Tisaved := Ti
end; {get_parameters}

{ if repeating the root locus procedure, then
reset the controller. parameters to what they were
when first called from editor}

procedure reset_parameters;

begin
Kc := Kcsaved;
Kcfinal := Kcfinalsaved;
stepsize := stepsizesaved;
Ti := Tisaved;
Td := Tdsaved

end; {reset parameters}

{ display the menu which allows user to change
various controller parameters}

procedure submenu;
var selecting, validnum: boolean;

selection: char;

{within submenu}

procedure display_old(parameter: real);

begin
GoToXY(20, 13);
TextBackground(blue);
TextColor(lightgray);
write(parameter:9:3);
TextBackground(black);
TextColor(yellow);

end;

procedure display_new(parameter: real);

begin
GotoXY(20, 13);
TextBackground(blue);
TextColor(yellow);
write(parameter:9:3);
TextBackground(black);

end;

59

{ error checking to ensure that all inputs for
controller parameters are within a valid range}

procedure check real(var number: real);

begin
Textcolor(lightgreen);
GotoXY(38, 23);
write ('? ') ;
Textcolor(yellow);
{$I-}
readln(number);
{$I+}
if ((IOresult <> O) or

(number < o) or (number > 1E5) or
(Ti= O.O)) then

display_error
(' ' +
'Invalid number. Please re-enter.')
else

validnum := true;
GotoXY(38, 23);
write (' ')

end; {check real}

{gets user parameter changes from the keyboard}

procedure obtain(var param, paramsaved: real;
message: stringy; Y: integer);

var tempparam: real;

begin
validnum := false;
tempparam := param;

repeat
GoToXY(25, Y);
display_old(tempparam);
write(message);
check real(param)

until validnum;
paramsaved := param;
display_new(paramsaved);
Delay(1000);

end; {obtain}

60

{display prompt for user}

procedure writehere(message: stringy; X, Y: integer);
begin

.GoToXY (X, Y) ;
write(message);

end;

begin {submenu}
selecting := true;
while selecting do begin

Window (3, 4, 7S, 21);
ClrScr;
Window(1, 1, so, 25);
GotoXY (3 O , 2) ;
Textcolor(lightred);
writehere('CONTROLLER', 35, 2);
Textcolor(yellow);
writehere
('Change a parameter. Select one.•, 25, 5);
writehere(1 1. Kc', 3S, 12);
writehere(1 2. Td', 3S, 13);
writehere('3. Ti', 3S, 14);
writehere(' I no change', 34, 21);
Textcolor(lightgreen);
writehere('? ', 3S, 23);
Textcolor(yellow);
read (kbd, selection);
Window (3, 4, 7S, 21);
ClrScr;
Window(1, 1, so, 25);
writehere(' •, 3S, 23);

case selection of
'l': begin

obtain(Kc, Kcsaved,
' initial Kc (Return: no change)', 13);

obtain(Kcfinal, Kcfinalsaved,
' final Kc? 14);

obtain(stepsize, stepsizesaved,
' step size? ', 15);

end;
'2 ' .: obtain (Td, Tdsaved, '
'3': obtain(Ti, Tisaved, '
#13: selecting := false;

else
sound (660);
delay (250);
no sound

Td
Ti

13) i
13) i

61

end {case}
end; {while}
writehere('
end; {submenu}

' 35, 2)

{from the various controller parameters and other
sy~tem parameters construct the characteristic
polynomial for the closed loop system}

procedure construct_polynomial;
const Tlarge:integer = 100;
var tauAtauB, tauAplustauB, KO: real;

begin
tauAtauB := areal * area2 * Rl * R2;
tauAplustauB := areal * (Rl + R2) + area2 * R2;
KO := Kp * Km * Kc * Kt;
a·[l] := (tauAplustauB + (KO * Td)) / tauAtauB;
a[2] := (KO + 1) / tauAtauB;
a[3] :=KO/ (tauAtauB *Ti);

if (Ti >= Tlarge) then
begin

capN := 2;
thirdorder := false

end
else

begin
capN := 3;
thirdorder := true

end;{else}
end; {construct_polynomial}

{ this routine and its subroutines implement the Lin
Bairstow algorithm, as described in the text Ch. 3}

procedure roots_driver;

const lmax: integer = 20;
var k, m, j: integer;

stop, continue: boolean;
st, steps: string[6);

procedure init~next_factor;

begin
n:= capN - (2 * m);

1 := 0;
r := ro;
s : = so;

end; {init next factor}

62

function testdisc (capR, caps: real): integer;

var disc: real;

begin
disc := capR * capR - 4.0 * caps;
if disc < o then

testdisc := -1
else

if disc = o then
testdisc := o

else
testdisc := 1

end; {testdisc}

procedure quadroots (R, S:real);

var rad: real;

begin
case testdisc(R, S) of
-1: begin

rad:= sqrt (4.0 * s - R * R);
realroot [J] := -R / 2.0;
realroot [J+l] := -R / 2.0;
imagroot [J] := rad /2.0;
imagroot [J+l] := -rad / 2.0

end;
o: begin

realroot [J] := -R /2.0;
realroot [J+l] := -R / 2.0;
imagroot [J] := o.o;
imagroot [J+l] := o.o

end;
1: begin

rad:= sqrt (R * R - 4.0 * S);
realroot [J] := (-R + rad) / 2.0;
realroot [J+l] := (-R - rad) / 2.0;
imagroot [J] := O;
imagroot [J+l] := o

end
end {case}

end; {quadroots}

63

procedure reduce_polynomial;

begin
b[l] := a[l] - r;
b[2] := a[2] .- (r * b[l]) - s;
for k := 3 to n do

b[k] := a[k] - (r * b[k-1]) - s * b[k-2];
capR := b[n-1];
caps:= b[n] + (r * b[n-1]);

end; {reduce polynomial}

procedure partials;

var p, q: array [1 •• 6] of real;

begin
p[l] := -1.0;
p[2] := r - b[l];
for k := 3 to n do

p[k] := -b[k-1] - r * p[k-1] - s * p[k-2];
Rr := p[n-1];
Sr:= p[n]+ (r * p[n-1]) + b[n-1];
q[lJ := o.o;
q[2] := -1.0;
for k := 3 to n do

q[k] := -b[k-2] - r * q[k-1] - s * q[k-2];
Rs := q[n-1);
Ss := q[n] + r * q[n-1]

end; {partials}

procedure differential_corrections;

var denom: real;

begin
denom := Rr * Ss - Rs * Sr;
delta_r := (-capR * _Ss + caps * Rs)/ denom;
delta s := (-Rr * caps + Sr * capR)/ denom;
r:= r-+ delta r;
s := s+ delta-s;

end; {diff'l corrections}

procedure replace_polynomial;

var newN: integer;

64

begin
m := m+l;
j := j+2;
newN := capN - (2* m);
for k:= 1 to newN do
a[k] := b[k];

end; {replace polynomial}

begin {roots driver}
abort := false;
k := O; m := O; j := l; stop := false;
continue := false;

while not stop do
begin

init next factor;
if n-< 2 then

begin
realroot [J] := -a[l];
stop := true

end
else
if n = 2 then

begin
quadroots(a[l],a[2]);
stop := true

end
else

begin
repeat

reduce polynomial;
partials;
differential corrections;
1 := l+l; -
stop:= (1 > lmax);
continue := not stop and

((abs(delta r) > eps)
or (abs(delta_s) > eps));

until not continue;
if not stop then

begin
quadroots(r, s);
replace polynomial;

end {if not stop}
else if (1 > lmax) then {stop true }

begin
str(1:3,st);
str(eps:6,steps);

65

message := 'roots have not'+
' converged after ' + st +
' iterations to within '+ steps;
display_error(message);
check_response(' Abort? •, 3);
quadroots(r, s);
replace polynomial

end {else}
end {else begin repeat}

end {while}
end; {roots_driver}

{ det.ermine a world coordinate system. Bypass the Turbo
Graphix procedure in order to condition the limits
obtained. Scan the array of points for max & min
values}

procedure FindXlimYlim(A:TwoDimArray; NPoints:integer);
var j:integer;

begin
NPoints :=abs(NPoints);
if NPoints >= 2 then

begin
Xlim :=A[1, l];
Ylim :=A[1, 2];
Xlo := Xlim;
Ylo := Ylim;
for j := 2 to NPoints do

begin
if A [j, l] > Xlim then

Xlim : = A [j , l]
else

if A[j, l] < Xlo then
Xlo := A[j, l];

if A[j, 2] > Ylim then
Ylim :=A[j, 2]

else
if A[j, 2] < Ylo then

Ylo : = A [j , 2]
end; {for}

end {if NPoints}
else error (7,4);

end; {FindXlimYlim}

{after calculating the roots of a polynomial for
some Kc, store that point in an array}

I

66

procedure f illarrays

begin

(var Aarray, Barray, Carray: plotarray;
var Karray: Onedim);

II := II + l;
Aarray [II,l] := realroot [l];
Aarray [II,2] := imagroot [l);
JJ := JJ + l;
fwpoints[JJ,l] := Aarray[II,l);
fwpoints[JJ,2) := Aarray[II,2);

Barray [II,1] := realroot [2);
Barray [II,2] := imagroot [2);
JJ := JJ + 1;
fwpoints[JJ,l) := Barray [II,l);
fwpoints[JJ,2] := Barray [II,2);
if thirdorder then

begin
Carray [II,1] := realroot [3);
Carray [II,2] := imagroot [3);
JJ := JJ + l;
fwpoints [JJ,l) := Carray [II,l);
fwpoints [JJ-,2) := Carray [II,2];

end; {if}
Karray[II] := Kc

end; {fillarrays}

{ensure that user requirements are not too large
or too small for the arrays}

procedure test range;
var st: string[S);

begin
if (II > MaxPlotGlb) or (II < 1) then

begin
II := MaxPlotGlb + l;
str (II: 8, st) ;
in range := false;
message := · ' # of points to be plotted, '+ st
+ #13#10 + 'is too large.'+
'Please change requirements•;
display error(message);
Delay(30.00)

end {if}
end; {testrange}

67

{if a fixed increment is used for Kc, then pass l
obtains the re·quired array of points. Otherwise
these points are necessary for comparison when
calculating a variable step size}

procedure passl;

begin
Window(3, 4, 78, 21);
ClrScr;
Window(l, 1, 80, 25);
GotoXY (3 5 , 2) ;
Textcolor(lightred);
write('CALCULATING');
GoToXY(29, 12);
Textcolor(yellow);
TextBackground(black);
write('#of points to be plotted:');
TextColor(Brown);
repeat

construct_polynomial;
roots driver;
if (not abort) then
begin

fillarrays(ap, bp, cp, Kstore);
GoToXY(39,13);
write(II:3);
test range;
Kc :~ Kc + stepsize

end {if not abort}
until (Kc> Kcfinal) or abort or (not in_range);
TexTColor(Yellow);

end; {passl}

{if a variable step size is required, a scan is made
of the distance between points obtained in pass 1.
for each pair of adjacent points a linear inter
polation is made to obtain the desired step size.
New points are calculated and stored in separate
arrays}

procedure pass2;
var count, count2, 1m1n: integer;

maskbreakout, maskbreakin: boolean;

{within pass2. Does linear interpolation as per
text Ch. 4. Upon break away or reentry at x axis,
the step size is additionally reduced for a few

steps}

procedure getstepsize;
const small = lE-6;

68

var aNum, deltaAl, deltaA2, deltaA: real;
i: integer;
stopcondition, breakout, breakin: boolean;

begin
i := imin;

repeat
if (i < Imax) then

stopcondition := (Kstore[i-1] <= Kc) and
(Kc < Kstore[i])

else
begin
stopcondition := (Kstore[i-1] <=Kc);
end;

i := i + l;
until stopcondition;

i := i - l;
1m1n := i;
deltaAl := ap[i, l] - ap[i-1, l];
deltaA2 := ap[i, 2] - ap[i-1, 2];
deltaA :=sqrt(sqr(deltaAl) + sqr(deltaA2));
stepsize := stepsizesaved *

(rholim / deltaA) * (1.0/60.0);

breakout := (abs(ap[i, 2]) > small) and
(abs(ap[i-1, 2]) <small);

breakin := (abs(ap[i, 2]) < small) and
(abs(ap[i-1, 2]) >small);

if not maskbreakout then
if breakout then

· count := 5;
if count > o then

begin
count := count - l;
maskbreakout := true;
stepsize := stepsize/ 5

end;

if not maskbreakin then
if breakin then

count2 := 10;
if count2 > o then

begin

69

count2 := count2 - l;
maskbreakin := true;
stepsize := stepsize/ 3

end;
e·nd; { get step size}

begin {pass 2}
maskbreakout := false;
maskbreakin := false;
count := O;
count2 := O;
II : = l;
imin := 2;
Kc := Kcsaved;
rholim :=sqrt(sqr(Xlim-Xlo) + sqr(Ylim-Ylo));
TextColor(Brown);

repeat
getstepsize;
Kc := Kc + stepsize;
construct_polynomial;
roots driver;
if not abort then

begin
fillarrays(apoints, bpoints,

cpoints, Kstore2);
GoToXY(39,13);
write (I I : 3) ;
test range

end {if not abort}
until (Kc> Kcfinal) or abort or (not in_range);

TextColor(Yellow)
end; { pass2}

begin {getpoints}
·initializelDArrays;
initializePlotArrays;
zero(fwpoints);
repeat

in range := true;
if-firstRun then

begin
get_parameters;
firstRun := false

end
else

reset_parameters;
submenu;

modify := false;
Window (3, 4, 78, 21);
ClrScr;
Window (1, 1, so, 25);

70

check_response('Vary step size? •, l);
linerequested := false;
check_response('Lines instead of points? •, 2);
II := O; {index associated with plotarrays}
JJ := O; {index associated with fwpoints array only}
passl;
if (not abort) and (in range) then

begin
Imax := II;
JJmax := JJ; {was set in fillarrays,

now used -to find Xlim, Ylim}
findXlimYlim(fwpoints, JJmax);
if modify then

pass2
else

begin
apoints := ap;
bpoints := bp;
cpoints := cp;
Kstore2 := Kstore

end {else}
end {if not abort}

until in range
end; {getpoints}

(* * * g r a p h i c s r o u t i n e s * * *)

{initializes the root locus graph by using initial
ization procedures from the Turbo Graphix Toolbox.
Incorporates a round off procedure to make the
graph limits round numbers}

procedure initializeGraph;
var

XMinAdj, YMinAdj, XMaxAdj, YMaxAdj: integer;

function round off(number:real): real;
var firstDigit, exponent, stringnum: string[S];

num, code, digit: integer;
·temp: real ;

begin

71

·str(number: 8, firstDigit);
str(number:S, exponent);
if number >= o then begin

delete(firstDigit, 2, 7);
val(firstDigit, digit, code);
num := 1 + digit end
else begin
delete(firstDigit, 3, 6);
val(firstDigit, digit, code);
num · := -1 + digit end;
delete(exponent, 1, 4);
str(num, stringnum);
val(stringnum + exponent, temp, code);
round off := temp;

end;

begin
DefineWindow (1, o, o, XMaxGlb, YMaxGlb);
DefineHeader (1, 'Root Locus Plotter');
XMinAdj := 4;
YMinAdj := 16;
XMaxAdj := XMaxGlb-2;
YMaxAdj := YMaxGlb-14;

DefineWindow (2, XMinAdj, YMinAdj, XMaxAdj, YmaxAdj);
DefineWindow (3, XMinAdj, YMinAdj + 4,

XMinAdj + 10, YMinAdj + 26);
DefineHeader (3, 'Kc');
DefineWindow (4, trunc(XMaxAdj/2.0) - 3, YMinAdj +4,

trunc(XMaxAdj/2.0) + 5,
YMinAdj + 26);

DefineHeader (4, 'damping');
DefineWindow (5, XMinAdj, YMinAdj + 28, XMinAdj + 10,

YMinAdj + 50);
DefineHeader (5, 'Wn');
DefineWindow (6, XMinAdj, YMinAdj + 52, XMinAdj + 10,

YMinAdj + 74);
DefineHeader (6, 'Ti');
DefineWindow (7, XMinAdj, YMinAdj +100, XMinAdj + 10,

YMinAdj + 122);
DefineHeader (7, 'Td');
SelectWindow (1);
SetHeaderOn;
DrawBorder;
!Max := II;

{final value II was set by fill arrays,
used for repeat control below}

if linerequested then

72

begin
.II := 2;

{reset plot array index to beginning,
#2 required for D~awLine. Now first
two points equal to remove side effects.}

apoints[1, 1] ·-.- apoints[2, 1];
apoints[1, 2] ·-.- apoints[2, 2];
bpoints[1, l] ·-.- bpoints[2, l];
bpoints[1, 2] ·-.- bpoints[2, 2];
cpoints[1, l] ·-.- cpoints[2, 1];
cpoints[1, 2] ·-.- cpoints[2, 2]

end
else

II ·-.- l;

if (abs(Ylo) < eps) and (abs(Ylim) < eps) then
begin

Ylo := -1.0;
Ylim := 1.0

end;
Xlo :=round off(Xlo);
Ylo :=round-off(Ylo);

· Ylim :=round off(Ylim);
Defineworld(1, Xlo, Ylo, Xlim, Ylim);

SelectWindow (3);
SetHeaderToBottom;
SetHeaderOn;
DrawBorder;
SelectWindow (4);
SetHeaderToBottom;
SetHeaderon;
DrawBorder;
SelectWindow (5);
SetHeaderToBottom;
SetHeaderOn;
DrawBorder;

end; {initializeGraph}

{next two subroutines are from the Toolbox, and are
used to draw point positions which pop up when the
plotting is temporarily stopped by the user}

function StringNumber(Xl:real;
MaxExponent:integer):wrkstring;

var y:wrkstring;

73

begin
str(Xl*exp(-MaxExponent*ln(l0.0)):5:2,y);
StringNumber:=y;

end;

function GetExponent(Xl:real):integer;

begin
GetExponent:=O;
if Xl<>O.O then

if abs(Xl)>=l.O then GetExponent:=
trunc(ln(abs(Xl))/ln(lO.O))

else GetExponent:=
-trunc(abs(ln(abs(Xl)))/ln(lO.O)+l.O);

end;

{when use·r pauses graphing, various numbers and
windows display from a virtual memory screen.
The user may resume graphing, whereupon these
items vanish, or he may elect to terminate
the graph prematurely (esc)}

procedure pop up;
var stal, sta2: string[5];

sta: string[13];
cposY, aposX, bposX, bposY: real;
maxexponentX, maxexponentY: integer;

begin
CopyScreen;
SelectWindow(6);
SetHeaderon;
DrawBorder;
GoToXY (7, 10);
write (Ti:5:2);
SelectWindow(7);
SetHeaderOn;
DrawBorder;
GoToXY (7, 16);
write (Td:5:2);
SelectWindow(2);
maxexponentX := GetExponent(Xlo);
maxexponentY := GetExponent(Ylo);

stal := StringNumber(apoints[II, l], maxexponentX);
sta2 := StringNumber(apoints[II, 2], maxexponentY);
sta := stal + 1 , 1 + sta2;

74

aposx := apoints[II, l] - 0.25 *
exp(maxexponentX * ln(lO.O));

drawtextW(aposX, -apoints(II, 2], 1, sta);

stal := StringNumber(bpoints[II, l], maxexponentX);
sta2 := StringNumber(bpoints(II, 2], maxexponentY);
sta := stal + 1 , 1 + sta2;
bposx := bpoints[II, l] - 0.25 *

exp(maxexponentx * ln(lO.O));
bposY ~~ bpoints[II, 2] - 0.25 *

exp(maxexponentY * ln(lO.O));
drawtextW(bposx, -bposY, 1, sta);

stal := StringNumber(cpoints[II, l], maxexponentX);
sta2 := stringNumber(-cpoints(II, 2], maxexponentY);
sta := stal + 1 , 1 + sta2;
{rev~rses maxexponent to base 10 number};
~posY := -cpoints(II, 2] - 0.25 *

exp(maxexponentY * ln(lO.O));
drawtextW(cpoints(II, l], -cposY, 1, sta);

GotoXY(39,23);
write('Esc')

end;

{actually plots the points which were stored in arrays.
Also writes design information into auxiliary windows}

procedure graphit;
var theta, zeta, Wn, Temp: real;

maxexponentx: integer;
ch: char;

{controlled by graphit. Checks the keyboard
at each plot iteration to see if the user
wishes to pause and view auxiliary information,
or abort}

procedure check_keyboard_buffer;
var stopped: boolean;

begin
if KeyPressed then

begin
read(kbd, ch);
if (ch = #32) then
. begin

stopped := true;

Sound (880);
Delay (200);
NoSound;

75

pop up;
while stopped do

begin
read (kbd, ch);
if (ch = #32) and (II < Imax) then

stopped := false
else

if (ch = #27) then
begin

II := IMax + l;
stopped := false

end
end; {while}

if ch = #32 then
SwapScreen

end {if ch}
end {if KeyPressed}

end; {check keyboard buffer}

{write root locus variables while plotting}

procedure write_to_subwindows;

begin
GoToXY (7, 4);
Write (.Kstore2 [II]:5:3);

if (apoints[II, l] < lE-6) and
(apoints[II, 2] < lE-6) then

zeta := 1.0
else

begin
theta := ArcTan
(apoints[II,2] / apoints[II,l]);
zeta := cos (theta)

end;

Wn :=sqrt(sqr(apoints[II,2]) +
sqr(apoints[II,l]));

GoToXY (37,4);
if zeta < l then

begin
write (zeta:5:2);
GoToXY(7,7);
write(Wn:7:4)

end

else
begin

write(•ovrdp');
GotoXY(7,7);
write ('ovrdp')

end

76

end; {write to sub windows}

begin {graphit}
initializeGraph;
with World[l] do

begin
Temp := Yl;
Yl := Y2;
Y2 := Temp

end; {with}
Selectworld (l);
SelectWindow (l);

{invert world coord
to Cartesian type coord}

DrawAxis(B,7,0,0,0,0, -1, o, false);
GotoXY (7,23);
writeln
('stop/start: space-bar');
SelectWindow(2);
maxexponentX := GetExponent(XLo);
Temp := 0.1 *

exp(maxexponentX * ln(lO.O));
Drawline(Temp, O, -Temp, O); {cross hair, origin}

repeat
if linerequested then

begin
Dr~wLine (apoints[

.apoints [
DrawLine (bpoints[

bpoints[
if thirdorder .then

OrawLine (cpoints[
-cpoints[
cpoints[

II-1, l], -apoints[II-1, 2],
II, · l], -apoints[II, 2]);
II-1, l], -bpoints[II-1, 2],
II, l], -bpoints[II, 2]);

end
else

II-1, l],
II-1, 2],
II, l], -cpoints[II, 2])

begin
DrawPoint (apoints[II,i], -apoints[II,2]);
DrawPoint (bpoints[II,l], -bpoints[II,2));
if thirdorder then

DrawPoint (cpoints[II,l], -cpoints[II,2])
end; {else}

write to subwindows;
Delay-(1000);

77

check keyboard buffer;
II : =-II + 1; -

until II > IMax;

if ch <> #27 then
repeat until KeyPressed;

end; {graphit}

begin {root loci}
firstRun := true;
putframe;
repeat

mark(heapaddress);
getpoints;
if not abort then

begin
InitGraphic;
Clearscreen;
HiResColor(Yellow);
graphit;
LeaveGraphic

end;
exit := false;
ClrScr;
putframe;
check response('Continue root locus? ',4);
release(heapaddress)

until exit
end; {root loci}

APPENDIX III "INCLUDE" FILES - NOTES

79

I. Since nesting is not allowed, Include Files used in

this subprogram were compiled as part of the editor program

(Fadden 1986) • Include Files required are:

Turbo Graphix Toolbox files (Borland 1985)

TYPEDEF.SYS

KERNEL.SYS

GRAPHIX.SYS

WINDOWS.SYS

AXIS.HGH

4X6.FON

BXS.FON

Editor files (Fadden 1986)

TEXTBOX.INC

PUTFRAME.INC

II. The following changes were made to Turbo Graphix

Toolbox version 1.05:

A. file TYPEDEF.SYS

change MaxPlotGlb = 400.

B. files TYPEDEF.SYS, KERNEL.SYS,

WINDOWS.SYS, AXIS.HGH

change Window to WWindow

C. file AXIS.HGH

1. change line 193 to

NPoints := Delta div 29

GRAPHIX.SYS,

80

2. change line 199 to

for i := l to NPoints - l do

3. change line 201 to

xs := xs + 29 + Balance

Applied i.
Alto,

LIST OF REFERENCES

Tutsim User's Manual for IBM PC Computer.
ca.: Applied i, 1985.

Palo

Borland Inte~national, Inc. Turbo Pascal Reference Manual.
Scotts Valley, ca.: Borland International, Inc., 1985.

Borland International, Inc.
Handbook. Scotts Valley,
Inc., 1985.

Turbo Graphix Toolbox owner's
ca.: Borland International,

Dorn, William s. and McCracken, Daniel D. Numerical Methods
with Fortran IV Case Studies. New York: John Wiley
and Sons, 1972.

~

Fadden, Leon. "Editor Design in the Context of Control
System Simulation." M.S.E. thesis, University of
Central Florida, 1986.

Klee, Harold I. University of Central Florida, Orlando, Fl.
Unpublished textbook manuscript, 1986.

Moler, c., Little, J., Bangert, s., and Kleiman, s.
PC-MATLAB for MS-DOS Personal Comouters. Portola Valley,
Ca.: The Mathworks, Inc., 1985.

Mccalla, Thomas R. Introduction to Numerical Methods and
Fortran Programming. New York: John Wiley and Sons,
1967.

Smith, Carlos A.; Corripio, Armando B.
Practice of Automatic Process Control.
Wiley and Sons, 1985.

Principles and
New York: John

TurboPower Software. Turbo Extender User's Manual and
Reference Guide.
1986.

Campbell, Ca.: TurboPower Software,

Weber, Thomas
Control.

w. An Introduction to Process Dynamics And
New York: John Wiley and Sons, 1973.

81

	Root Locus Plotter for a Dual Tank System Under Feedback Control
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii
	iii

	ACKNOWLEDGEMENTS
	iv

	TABLE OF CONTENTS
	v

	LIST OF FIGURES
	vi
	vii

	INTRODUCTION
	01
	02

	CHAPTER 1. A DUAL TANK SYSTEM
	03
	04
	05
	06
	07
	08
	09

	CHAPTER 2. THE ROOT LOCUS
	10
	11
	12
	13
	14
	15

	CHAPTER 3. THE LIN-BAIRSTOW ROOT SOLVING ALGORITHM
	Advantages of the Method
	The Algorithm
	16
	17
	18
	19

	Calculations from Polynomial Coefficients
	20
	21

	CHAPTER 4. PROGRAM DESCRIPTION
	22
	23
	24
	25
	26
	27
	28

	CHAPTER 5. DISCUSSION OF THE RESULTS
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43

	CHAPTER 6. SUMMARY AND CONCLUSION
	44
	45

	APPENDIX I. ADDITIONAL FIGURES
	46
	47
	48
	49
	50
	51
	52

	APPENDIX II. PROGRAM SOURCE CODE LISTING
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77

	APPENDIX III. "INCLUDE" FILES - NOTES
	78
	79
	80

	LIST OF REFERENCES
	81

