
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1986

Multiprocessor scheduling with practical constraints Multiprocessor scheduling with practical constraints

Kenneth Burton Donovan
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Donovan, Kenneth Burton, "Multiprocessor scheduling with practical constraints" (1986). Retrospective
Theses and Dissertations. 4901.
https://stars.library.ucf.edu/rtd/4901

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Frtd%2F4901&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4901?utm_source=stars.library.ucf.edu%2Frtd%2F4901&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

MULTIPROCESSOR SCHEDULING WITH PRACTICAL CONSTRAINTS

by

KENNETH BURTON DONOVAN

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

the Department of Computer Science
the University of Central Florida

Orlando, Florida

May 1986

Major Professor: Dr. Amar Mukherjee

ABSTRACT

The problem of scheduling tasks onto multiprocessor systems has

increasing practical importance as more applications are -being

addressed with multiprocessor systems. Actual applications and

multiprocessor systems have many characteristics which become

constraints to the general scheduling problem of minimizing the

schedule length. These practical constraints include precedence

relations and communication delays between tasks, yet few researchers

have considered both these constraints when developing schedulers.

This work examines a more general multiprocessor scheduling

problem, which includes these practical scheduling constraints, and

develops a new scheduling heuristic using a list scheduler with

dynamically computed priorities. The dynamic priority heuristic is

compared against an op ti ma 1 schedu 1 er and against other researchers 1

approaches for thousands of randomly generated scheduling problems. The

dynamic priority heuristic produces schedules with lengths which are

10% to 20% over optimal on the average. The dynamic priority heuristic

performs better than other researchers' approaches for scheduling

problems with the practical constraints. We conclude that it is

important to consider practical constraints in the design of a

scheduler and that a simple heuristic can still achieve good

performance in this area.

ACKNOWLEDGMENTS

I would like those who helped me - my family, my teachers, my work

colleagues and my friends. I am very grateful to General Electric,

espec i a 11 y a 11 my managers who were fl ex i b 1 e with finances and work

schedules to support my graduate studies. Dr. Mukherjee and my graduate

committee have provided continual assistance as I developed an initial

concept into a complete dissertation. And with my wife Martha, who has

offered support and encouragement in all my efforts, I share this

accomplishment which came from us both.

i i i

LIST OF TABLES

LIST OF FIGURES

TABLE OF CONTENTS

CHAPTER 1 PRACTICAL MULTIPROCESSOR SCHEDULING
1 • 1 Scope_
1 • 2 Prob 1 em Area and Ex amp 1 e
1 . 3 Contents

CHAPTER 2 REVIEW OF RELATED WORK
2.1 Overview
2.2 Graph Theory Approach
2.3 Integer Programming Approaches
2.4 Heuristic Approaches ..

v

vi

1
1
2

23

28
28
31
33
36

CHAPTER 3 SCHEDULING ALGORITHMS 46
3. 1 Formal Definition of the Scheduling Problem 47
3.2 Optimal Scheduling Algorithm 61
3.3 Constraint Relaxing Heuristic 73
3.4 Dynamic Priority Heuristic 79

CHAPTER 4 SCHEDULING ALGORITHM RESULTS AND ANALYSES
4.1 Empirical Procedure
4.2 Optimal Scheduler Performance
4.3 Comparison of Heuristics ...

87
87
89

109

CHAPTER 5 SUMMARY AND CONCLUSIONS 119
5.1 Dissertation Summary 119
5.2 Applicability of Optimal and Heuristic Schedulers 122
5.3 Considerations for Future Research . 124

LIST OF REFERENCES 126

iv

LIST OF TABLES

1. Image Generation Tasks' Communication and Memory Requirements 9

2 .· Processor Execution Performance of Each Task 17

3. !PC for Normal and Pipeline Configuration 18

4. Scheduling Constraints Addressed by Previous Researchers

5. Sequence of Events for Example Problem

v

29

51

LIST OF FIGURES

1. Example Geometry of Perspective Image Generation

2. Eight Tasks of Image Generation

3. Multiprocessor Architecture for Image Generation

4. A Feasible Schedule for the Example Problem

5. A Better Schedule which Exploits Parallelism .

6. Graph Theory Scheduling Approach

7. Kartashev's Combined Resource Diagram

8. Four States of a Processor

9. Optimal Scheduler Procedure

10. M-ary Allocation Tree of N Tasks

11.

12.

Find Next Allocation Subroutine

Find Next Sequence Subroutine

13. Next Sequence Subroutine ...

14. Constraint Relaxing Heuristic Procedure

15. Modified Next Sequence Subroutine

16. Dynamic Priority Heuristic Procedure

17. GET HIGH PRIORITY Subroutine for Dynamic Priority

18. Random Instances Created by Random Instance Generator

19. Optimal Scheduler Solution of Example Problem

vi

5

6

15

22

24

32

42

49

63

65

67

70

72

76

78

83

85

90

92

LIST OF FIGURES

20. Set Optimal Schedule Length Results

21. Set Optimal Schedule Node Results

95

96

22. Set 2 Optimal Results - More Communication Time 97

23. Set 3 Optimal Results - Less Execution Variance . 98

24. Set 4 Optimal Results - More Communication, Less Execution 99

25. Four Communication Configurations

26. Communication Configuration Schedule Length Comparison

27. Set 1 Heuristic Schedule Length Results

28. Set 2 Heuristic Schedule Length Results

29. Set 3 Heuristic Schedule Length Results

30. Set 4 Heuristic Schedule Length Results

vii

105

108

112

11 3

114

11 5

CHAPTER l PRACTICAL MULTIPROCESSOR SCHEDULING

1 . 1 Scope

Multip·rocessor systems ar.e being considered for an increasing

number ·Of problem applications which demand large amounts of processing

power. This trend is driven by the lower cost of individual processors

which makes multiprocessor systems economical. However, the problem of

scheduling processing tasks onto a multiprocessor system can severely

limit the effective processing power of such systems. Thus,

multiprocessor scheduling is becoming more important for actual systems.

The system designer must deal with the scheduling problem in a

practical environment where the interaction between processing tasks

can be complex. The classical work on the scheduling problem is not

generally applicable because it does not consider many of the practical

constraints found in real systems, such as task precedence,

communication, or task deadlines. Some researchers are developing

actual multiprocessor schedulers, but their ad hoc approach gives

little direction for other systems.

In this dissertation, we formulate the practical multiprocessor

scheduling problem in a systematic way and we develop schedulers which

consider the practical constraints. We develop an optimal scheduling

algorithm <with exponential time complexity) as a reference point and

measure its performance, via simulation, over a variety of scheduling

2

problem examples. We also develop and evaluate two heuristic approaches

which consider the practical constraints. Our problem formulation and

scheduler investigation should provide some guidance for the designers

of future multiprocessor sys terns and schedu 1 ers. The ana 1 ys is in the

results section indicates which constraints are critical and should be

considered when developing a multiprocessor schedule. The results also

show that our heuristic which considers different practical constraints

performs better than "optima 111 schedulers which do not account for

practical constraints.

1 .2 Problem Area and Example

Our problem area is scheduling tasks onto processors to satisfy

the requirements of a given application. In Section 1.2.l we discuss

the types of applications we are concerned with and how we will

represent an application as a collection of task modules with some

constraints. In Section 1.2.2 we discuss multiprocessor architectures

and how we wi 11 represent any architecture as a co 11 ecti on of

processors with some constraints. Finally, in Section 1.2.3, we show

how to formulate the scheduling problem in terms of the application and

architecture representations.

3

1.2.1 Classes of Applications under Consideration

The problem of multiprocessor sc~heduling occurs in a variety of

applications. Weather prediction, ballistic missile defense, image

generation, and image processing are among those commonly identified.

We are primarily concerned with these kinds of problems which require

11 supersystem 11 processing power in excess of one bi 11 ion operations per

second <Transactions of Computers 1982; Computer 1980). These systems

achieve this processing power through tightly coupled networks of

processors in a variety of intercommunication configurations. The

successful use of such a system depends on properly scheduling each

processor to complete its work in coordination with the rest of the

system. Because of this tight coupling between processors, inefficient

scheduling techniques can cause many processors to become idle and

severe 1 y degrade sys tern performance. Therefore, the schedu 1 i ng prob 1 em

is especially critical for these applications.

These app 1 i ca ti ens are norma 11 y represented as a co 11 ecti on of

processes or task modules. Each task· requires an amount of execution

time, memory, and communication with other tasks. Precedence relations

and deadlines govern the period during which the task must complete its

processing.

We are concerned with deterministic scheduling in which the

application has already been divided into a set of tasks and all of the

task constraints < i . e., execution requirement, precedence, etc.) can be

determined a priori. The assumption that this kind of information wi 11

4

be obtainable is one reason that the class of applications is limited

to supersystem-type problems. Such applications can justify the

overhead costs involved in gathering this information which may require

data flow analysis and test runs of the tasks. These types of

applications are often scheduled deterministically in order to

guarantee average and worst case behavior.

1.2.1.1 Example: Image Generation Application. We now define a

simplified version of the image generation application to illustrate

the constraints of the scheduling problem. We will refer to this

example throughout the dissertation. The example function produces a

perspective view of a data base of three-dimensional features, as shown

in Figure 1. The inputs are the view window position and orientation,

the sun illumination angle, and the data base features. For this

example the features will be composed of planar faces where the face

position is defined by the vertices of the face in Cartesian space. The

output is a TV raster line display <Sl2x512 pixels) which represents

the perspective s eerie from the view window position. The view window

and possibly the data base features can move, so a new image must be

computed at a 60 hertz TV field rate <every 16 milliseconds).

The image generation function is represented as eight tasks as

shown in Figure 2. Task 1 (Tl) ·searches through the data base to select

the features which are potentially visible, as shown in Figure la. T2

then checks all faces of the selected features to determine which faces

are potentially visible (i.e., T2 eliminates faces on the "back side"

Illumination
Source

Eyepoint ~

~'
............

5

~~TV View Display / ·

............ ~-----::"J"----7

\ "' ,, / ~ //

TV
Row

\ ' ' "">', / \ '\. ' / , Feature
\ ' 'y'>-- _ __ 'i?.· Not Visible

\ ~ / --- /
?{/~ . /
/~~ " // . /

........ '. / /
z . \ ',' // //

. ___ ___ '~---/
x

Step A: Select Visible Features.

TV Column TV Column

Step B: Project Visible
Faces into TV
Display Coordinates.

Step C: Color Visible
Portions of
Visible Features.

Figure 1. Example Geometry of Perspective Image Generation.

PRIORITIZE
FEATURES

Task 3

,. ,.

PRIORITIZE
FACES

Task 4

' , r

SELECT VISIBLE
DATA BASE FEATURES

Task 1

,

PROJECT FACE
VERTICES TO

DISPLAY COORD.
Task 5

! ,

CALCULATE VISIBLE..__ _ __.-.,. COLOR VISIBLE
PORTION OF

FACE
COVERAGE OF

EACH FACE
Task 7 Task 8

,,

SELECT VISIBLE
FACES

Task 2

-

,,
CALCULATE
FACE COLOR

COEFFICIENTS
Task 6

TV DISPLAY
OUTPUT

Figure 2. Eight Tasks of Image Generation.

6

7

of the feature). T3 prioritizes the features by distance so that closer

features appear in front of more distant features. Figure lb shows this

where the verti ca 1 box is c 1 oser than the hor i zonta 1 box and therefore

the verti ca 1 box has higher priority. T4 performs a s i mi 1 ar

prioritization on the individual faces of each feature. TS projects the

face vertices from the data base coo rd i na te sys tern < X, Y, Z) to the

display coordinate system (pixel row and column). T7 · uses the face

vertex positions to determine which pixels are covered by the face. T7

also resolves overlapping faces using the priority defined by T4 <e.g.,

in Figure lb portions of the horizontal box overlap with the vertical

box, but the faces _of the vertical box have higher priority and will be

used to cover those pixels). T6 calculates the color coefficients for

each face. These coefficients are then used by T8 to determine the

shade of color for each pixel covered by a face. The color coefficients

determine the fading and shading of the face due to distance and

illumination angle. The output of TB is the color intensities <R,G,B)

for each pixel in the video memory.

The eight tasks of the image generation application have

precedence constraints as indicated by the directed arcs in Figure 2.

For example, T3 cannot start until Tl finishes, T4 cannot start until

both T3 and T2 finish, etc. We use the double lines between T7 and T8

to indicate that tasks 7 and 8 can be executed in a pipeline fashion.

This is where T8 can start working on an output of T7 before T7 has

finished all outputs.

8

Each task has an execution time constraint which is the time

needed to execute the task. This is a function of both the number of

processing steps to be performed and the rate of execution. Since the

rate of execution can vary for different processors, we wi 11 defer

defining the execution times of the example · unti 1 the next section on

processor architecture.

Each task has a requirement to use one or more processors

concurrently. For this example, only one processor is required for each

task. More than one processor could be specified for a single task when

a task represents a special function which requires multiple

processors. An example is a producer/consumer relationship between two

processing functions. This can be modeled as a single "task" which

requires two processors simultaneously.

Each task also has a deadline. The image generation function has a

cycle time requirement of 16 millisec, which is represented by placing

a 16 millisec external deadline on the last task, T8. Deadlines can

then be propagated i nterna 11 y throughout the precedence tree by using

the minimum execution times of each task. Other applications could have

multiple external deadlines, such as when some intermediate results are

required by another system at a particular time.

Another constraint on the· tasks is the intertask communication

requirement, or ITC. The ITC for the image generation tasks is given in

Table la. T2 and T3 must receive 500 words from Tl, T4 must receive

2000 words to T2, etc. This communication transfer wi 11 be defined to

9

TABLE l

.IMAGE GENERATION TASKS' COMMUNICATION AND MEMORY REQUIREMENTS

A) INTERTASK COMMUNICATION 8) TASK MEMORY
<WORDS) REQUIREMENTS

(WORDS>

FROM TO TASK MEMORY
TASK 2 3 4 5 6 7 8 TASK REQUIRED

l 500 500 0 0 0 0 0 1 lk
2 0 2000 2000 2000 0 0 2 3k
3 500 0 0 0 0 3 lOk
4 0 1000 0 0 4 lOk
5 - 1000 0 0 5 lOk
6 0 1000 6 15k
7 - 2000 7 Sk
8 8 Sk

10

occur after the sender completes execution and immediately before the

receiver starts execution. This implies that the sender is always of

higher precedence than the receiver <i.e., the sender must be executed

prior to the receiver>. A zero ITC is allowed between two precedence

re 1 ated tasks, as in the case of output dependence where both tasks

output to the same data area.

The amount of communication time required is related to the number

of words in the ITC and the communication rate between processors. We

normally define the communication rates so that if two tasks are

coresident (i.e . , they execute in the same processor) then no

communication time is required. This is because the two tasks share the

same processor memory and have immediate access to the data to be

communicated. If the tasks are not coresident then the data must be

transferred by the receiving processor from the sending processor

according to the available communication rate. The communication rate

will be discussed in the next section on processor architecture.

The final constraint we will consider for application tasks is the

task memory requirement. This is shown in Table lb where Tl requires lk

words, etc. This requirement can reflect the memory space needed for

program code and/or data storage, depending on the application and

architecture. For this example the figures given include both code and

data since the processors defined in the next section have a single

memory for both. The sum of the memory requirements of coresident tasks

cannot exceed the processor memory capacity.

11

1. 2 . 1. 2 App 1 i cat i on Rep re sen tat i on . Fr om the pre v i ou s d i s cu s s i on , we
will represent any application in the following terms:

o An application is a collection of tasks. Each task represents a
processing function, similar to the concept of a subroutine.

o The application tasks have several constraints:

task precedence - a task cannot begin execution unti 1 all
tasks of higher precedence are completed.

task execution time - a task wi 11 requ.i re a fixed amount of
time to execute on a given processor. Execution shall be
nonpreempti ve. The size of task execution ti me may vary
between different processors.

number of task processors - a task will normally require one
processor for execution. If more than one processor is
required, the specified number of processors must be
dedicated simultaneously to the given task.

intertask communication requirement <ITC) - the number of
words which must be shared between two tasks. If tasks are
not coresident then a period of communication time wi 11 be
required between the processors executing the tasks.

task memory size the number of words which must be
allocated from a processor's memory space for the task. For
the set of tasks scheduled on a given processor, the sum of
the task memory sizes must fit within the processor memory
capacity.

task deadline - the time limit for a task to complete
execution. The time is measured from the start of the
highest precedence task. The schedule length must be less
than or equa 1 to the deadline of the 1 as t task to comp 1 ete
execution.

This representation has intuitive appeal because these factors are

considered in any system design process. As we will see in Chapter 2,

however, current research in multiprocessor scheduling generally makes

simplifying assumptions which eliminate some of these constraints. This

representation does restrict the class of applications which will be

12

able to take advantage of our scheduling work. The primary restriction

is that all constraints must be deterministic to allow for a

determi ni sti c scheduling. We wi 11 see that most researchers in this

area make a similar assumption. However, this assumption does require

that the information defining the task constraints be gathered

analytically or empirically. This process can be costly and

time-consuming. Thus the class of applications is narrowed to those

which can afford such overhead, and supersystem-type problems generally ·

meet this condition.

1 .2.2 Computer Architectures under Consideration

There is a wide variety of computer architectures used to solve

supersystem problems. Architectures are always composed of general

purpose processors <e.g., a 16-bit floating point processor with a 16 k

word memory), special purpose processors <e.g., a 64-point Fast Fourier

Transform with a 256 k word staging memory), and communication paths

between processors. Architectures can be application specific <e.g., a

computer image generator), algorithm type specific <e.g., a vector

processor), or general purpose (e.g., a reconfigurable architecture).

We desire a model which can represent, at the system level, any type of

architecture used to solve the targeted class of applications.

We represent an architecture by the performance of the individual

processors on each task, the processor memory capacity, the 11 di stance"

(in time units) of communicating between each pair of processors, and

the overhead time required when changing communication configurations.

13

These characteristics or constraints effectively define any computer

system for purposes of scheduling. The execution time required by a

given task can vary on different processors to differentiate between

general and special purpose processors in the system. The special

purpose processor wi 11 norma 11 y have exce 11 ent performance with tasks

for which it was intended and arbitrarily poor performance otherwise.

The communication "distances" are specified for each pair of

processors and represent the number of time uni ts required per word

during a communication between the pair of processors. The distance

values can be used to represent the presence <or absence) of

communication paths and the efficiencies of dedicated paths versus the

penalties of shared paths. A reconfigurable architecture would have a

different set of communication distances for each possible

configuration. By manipulating the distance values, many different

architectures can be simulated because the primary difference between

pipeline, array, and vector architectures is the time required for

communication.

The final architecture constraint is the configuration overhead

time. This reconfiguration time is used to model the overheads of

setting up a pipe 1 i ne or, for the case of a reconfi gurab 1 e

architecture, establishing the communication paths of a new

configuration.

We will generally assume that these constraints are known, which

is the case when the application is to be implemented on a specific

14

architecture. Natural extensions can be made to develop architecture

designs which would be well-suited for a given subset of problems. One

example extension would be to determine the minimum number of

processors needed to maintain a feasible schedule. Another extension is

to i n v e s t i gate d i ff ere n t c ommu n i cat i on path s < e . g . , s tar , s hared bu s ,

cluster) to determine which type works best for a given subset of

problems.

1.2.2.1 Example: Image generation architecture. The image generation

application introduced in the last section is to be scheduled on the

architecture shown in Figure 3. We will use this example to illustrate

how we wi 11 represent an architecture in terms of processor

performance, memory capacity, interprocessor communication distance and

configuration change overhead.

The architecture has three processors which operate in either an

independent or pipeline mode. These processors must use the inputs from

the Data Memory to create the 512x512 pi xe 1 video memory i mag.e of the

TV display. The 512x512 pixel video memory is also located in the Data

Memory so that the TV Driver can access the data and drive the raster

scan display.

The three processors are identical except for the hardware assist

functions. Processor 1 <Pl) and P2 are equipped with a divide function

and P3 is equipped with a dot produc.t function. Each 32-bi t processor

has a 64K word memory which holds the program code and working storage

of all tasks to be executed on the processor. The basic execution rate

MEMORY
1

COMMON
DATA

MEMORY

MEMORY
2

TV
DRIVER

MEMORY
3

TIME MULTIPLEXED
BUS (1 WORD/PROC
PER MICROSEC)

Figure 3. Multiprocessor Architecture for Image Generation.

15

16

is 5 mi 11 ion operations per second <MOPS) and the performance of the

processors for each of the eight tasks is shown in Table 2. The

di ff ere nee in performance between Pl and P3 is due to the code mix of

the tasks with respect to the hardware assist functions.

This performance table immediately shows that all tasks cannot

execute on a single processor because the sum of execution times on any

processor exceeds the deadline of 16 millisec Cor 16000 microsec).

Si nee more than one processor wi 11 be required to execute the eight

tasks and the tasks have communication requirements, the interprocessor

communication <IPC> time or distance becomes relevant. For the

independent mode, we wi 11 assume that any processor can communicate

with any other processor on the shared bus at a rate of one word every

one mi crosec. Therefore, if X words are to be read by a task start; ng

on Pl from a task which completed on P2, Pl must spend X microsec

receiving the data from P2. The independent operation w.i th the shared

bus is shown in Table 3a by the IPC matrix where each processor is 1

microsec away from its neighbors.

As noted in the previous section, T7 and T8 can operate in a

pipeline fashion where each output of T7 is allowed to be processed by

TB. Table 3b shows the effective communication configuration used to

implement the pipeline where the IPC has gone to zero. This reflects a

configuration in which data is passed between processors over the bus

during the task execution, so the time period used to transfer the

block of data between T7 and T8 is not needed.

17

TABLE 2

PROCESSOR EXECUTION PERFORMANCE OF EACH TASK

TASK PROCESSOR 1 PROCESSOR 2 PROCESSOR 3
<MICROS EC) <MICROS EC) <MICROS EC)

1 5000 5000 1500
2 1500 1500 3000
3 3000 3000 1500
4 2500 2500 7500
5 3000 3000 6000
6 500 500 3000
7 4500 4500 4500
8 4500 4500 4500

TOTAL 24500 24500 31500

18

TABLE 3

!PC FOR NORMAL AND PIPELINE CONFIGURATION

A) !PC <MICROSEC) FOR 8) IPC<MICROSEC) FOR
INDEPENDENT PIPELINE
CONFIGURATION CONFIGURATION

TO PROCESSOR TO PROCESSOR
FROM 1 2 3 FROM 1 2 3

PROCESSOR PROCESSOR
1 0 1 1 1 0 0 0
2 l 0 1 2 0 0 0
3 1 . 1 0 3 0 0 0

19

The example system does have an overhead penalty for entering the

pipeline mode. The time required to effect such a configuration change

for this sys tern will be 500 mi crosec. This models the ti me lost to

achieve synchronous pipeline operation and to fill the pipeline. The

scheduler must decide whether to put T7 and T8 on the same processor,

on two different processors in the independent configuration, or on a

set of processors in a pipeline configuration <and incur the

configuration change overhead).

1 . 2 . 2 . 2 Arch i t e ct u re Represent at i on . Fr om the pre v i ou s d i s cu s s i on , we

will represent any architecture in the following terms:

o An architecture is a collection of processors.

o The architecture made up of processors has several constraints:

processor performance - the performance of each processor is
rated in terms of the time to execute each task. A special
purpose processor wi 11 perform wel 1 with those tasks which
use the special function.

interprocessor communication <IPC) the amount of time
required to transfer one word between two · processors. The
IPC is defined with different values for each configuration.

configuration change - the time overhead caused by changing
the configuration, which changes the IPC.

processor memory capacity - the amount of memory available
to each processor to satisfy the task memory requirements.
We will assume that all tasks are loaded into the processor
memory prior to the beginning of the application run.

Therefore the sum of the task memory requirements cannot
exceed a processor's memory capacity.

This representation captures all of the architecture factors which

influence scheduling. · The class of architectures covered is generally

20

unrestricted si nee any architecture can be defined in these terms for

scheduling purposes.

1 .2.3 The Multiprocessor Scheduling Problem under Consideration

For a given application and architecture which can be represented

in the terms defined in the previous sections, we wish to develop a

scheduling which satisf~es all of the application and architecture

constraints. We assume all constraints are known a priori so we can

define a deterministic schedule. The schedule is to be nonpreemptive

and is established prior to the start of execution by assigning each

task to run on a particular processor.

Given a schedule and the task constraints <execution time,

precedence, etc.) we can compute the exact start ti me of each task,

and, therefore, we know the schedule length. The application

requirements may be such that the goal is to find any feasible

scheduling, rather than an optimal feasible scheduling which minimizes

the schedule length.

We conclude this chapter by illustrating the scheduling problem

for the image generation example and then more formally defining the

scheduling problem in terms of the application and architecture

constraints.

1.2.3.1 Example: Image Generator Scheduling. The image generator

schedu 1 i ng ex amp 1 e dea 1 s with eight tasks to be· executed by a three

21

processor system in 16 millisec. Even this simplified problem is

nontrivial and we could not guarantee an optimal solution without

exercising our optimal scheduler developed later. These example

schedules shown were developed manually, although the third schedule

, does minimize the schedule length, and is, therefore, optimal.

The simplest solution which minimizes communication time <to zero)

is to schedule all tasks on a single processor. However this is not a

f ea s i b 1 e s ch e du 1 e s i n c e the exec u ti on ti me on any s i n g 1 e pro c e s so r i s

greater than 23 millisec <reference Table 2 for task execution times on

each processor).

A second schedule, shown in Figure 4, was developed by scheduling

tasks on those processors which have the best performance and which

minimize communication time. This schedule is feasible since it

finishes within 16 millisec. Examining this schedule in more detail, we

see that task 1 <Tl) is executed on Processor 3 <P3) to take advantage

of P3' s performance of 1500 mi crosec. Si nee T2 and T3 can be executed

in parallel, and T2 runs faster on Pl than on P3, T2 is scheduled on Pl

while T3 is placed on P3. However 500 microsec must be spent

transferring data from Pl to P3. <reference Figure 2 for task

precedence and Table 1 for ITC.) T4, TS and T6 are also scheduled to

run on Pl to reduce execution and communication times. The schedule

concludes by changing the configuration to pipeline T7 and T8. This

allows the two tasks to execute concurrently, but a 500 microsec change

overhead is incurred and 1000 units of communication time is required

for TB to get data computed by T6.

t
(MILLI SEC)

1 2 3 4 5 6 7 8 9 10 11 12 .13 14 15 16
I I I I I I I I I i I I

l 3 R

'
T2

'
T4 T5 T6 E 17 c

5 0 2 4 8 1500 2500 3000 N 4500 I'

F
I I
G I
u I R
E I

6

Tl T3

'
Ta .

1500 1500 8 4500

KEY: T1 = TASK l; 1~2 = Conune from T1 to T2

Figure 4. A Feasible Schedule for the Example Problemo

N
N

23

A third schedule is shown in Figure 5. This schedule is the

shortest of the three. It has more execution time and communication

time than either the first or second schedule. However it provides a

better balance of running tasks on different processors to take

advantage of performance, while reducing the communication overhead

. which does occur.

1.2.3.2 Summary of the multiprocessor 1 scheduling problem. From the

discussion in the previous sections of the applications and

architectures under consideration, the scheduling problem is stated as

fol lows:

Given a set of tasks, a set of processors, and the following
constraints:

1) task execution time per processor
2) task precedence relations
3) intertask communication requirement
4) task memory requirement and processor capacity
5) task execution deadlines
6) interprocessor communication cost
7) number of coprocessors required per task
8) configuration change overhead

a.) Find a feasible schedule of the tasks on the processors,
where a feasible schedule assigns each task to a processor,
assigns at most one task to a processor at a time, and
satisfies all constraints.

b.) Find an optimal feasible schedule which minimizes the
schedule length.

1 .3 Contents

The remaining chapters provide the background for this problem and

describe the work which was performed. Chapter 2· reviews the re 1 ated

t
(MILLISEC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
I I I I I I I I I A I I I

I 1 3
I

' i T2 T4 R I
E I

2 1500 4 2500 c I
0

2 N 4 0

'
F

~ T5 I T7
G

5 3000 u 7 4500
R

·2 E

Tl
II

13
, _

T6 Ta

1500 1500 6 3000 4500

KEY: T1 = TASK 1
1---2 = COMMUNICATION OF T1 TO T

2

Figure 5. A Better Schedule with Exploits Parallelism.

............
-

25

work to see how others have approached this problem. We show that the

body of reported work has considered only subsets of the general

scheduling problem that we define.

Chapter 3 contains a formal definition of the scheduling problem

and describes the three algorithms which we developed to solve the

scheduling problem. The first algorithm considers all of the task and

processor constraints. It is optimal in that it guarantees to find the

feasible schedule with the shortest schedule length, or report failure

if no feasible schedule exists. However, this optimal algorithm

exhibits the exponential time complexity of the NP-hard scheduling

problem and is not applicable for scheduling large numbers

of tasks or processors.

The second algorithm is intended to simulate other scheduling

algorithms which do not consider all the scheduling constraints. This

"constraint relaxing" heuristic first develops a schedule without

considering one or more of the scheduling constraints. Then the true

performance of the "relaxed" schedule is computed by applying the

relaxed schedule to the real problem, i.e., with all of the scheduling

constraints. This algorithm is based on the optimal algorithm so that

the relaxed schedule is "optimal" <for the problem with the relaxed

constraint). However, the true _performance is generally not optimal

because some of the constraints had been ignored when creating the

schedule.

26

The third algorithm is the dynamic priority heuristic which

considers all the practical scheduling constraints. The heuristic is

based on priority list scheduling. The priorities are dynamically

computed to guide the scheduler toward the "right" scheduling choices.

--- This dynamic priority heuristic offers the polynomial time complexity

needed for scheduling large numbers of tasks and processors.

Chapter 4 discusses the performance of these three algorithms. A

problem generator is described which automatically creates scheduling

problems to be solved. The optimal algorithm is evaluated for a variety

of scheduling problems. The results indicate the problem sizes which

can be solved using ·the optimal scheduler and also characterize the

relationship between schedule constraints and optimal schedule length.

The constraint relaxing algorithm is evaluated to measure the

performance of schedules which do not consider all practical

constraints. The constraints of task precedence, communication delay,

and variable task execution times are each relaxed. The schedule

1 ength s are compared to the true op ti ma 1 s chedu 1 e 1 engths to quantify

the effectiveness of other researchers' ~pproaches when applied to

scheduling problems with practical constraints.

The dynamic priority heuristic is measured against the previous

two to determine how well it ·solves the multiprocessor scheduling

problem. Although this heuristic is quite simple, it performs well

because it considers the practical constraints. The performance of the

dynamic priority heuristic is better than the constraint relaxing

27

algorithm over a variety of scheduling problems. While the heuristic

could be improved upon for a given application, it verifies that

successful schedulers must consider the practical scheduling

constraints in a systematic way.

Chapter 5 concludes this work with a discussion of the key

characteristics of the scheduling problem and algorithms. We also

suggest some direction for future work in this area of multiprocessor

scheduling with practical constraints.

CHAPTER 2 REVIEW OF RELATED WORK

2. 1 Overview

This chapter reviews related research to show how others have

attacked this problem of scheduling multi processor systems. Previous

authors have provided a tutorial and bibliography of research

approaches in this area, for example Chu (1980). Our primary concern is

the types of constraints the different research approaches have

considered. In par ti cu-1 ar, we wi 11 show that researchers have genera 11 y

considered either precedence or communication constraints, but not

both. We begin by a summary of how the previous work relates to our

problem of multiprocessor scheduling with the practical constraints

introduced in Chapter 1. We then provide an overview of representative

work in each of three approaches to the scheduling problem:

o Graph Theory

o Integer Programming

o Heuristics

Other approaches, such as analytical models <e.g., queueing theory)

are not relevant because they do not consider communication or

precedence constraints between tasks.

Table 4 shows how the reviewed work relates to our proposed

research. Each previous work is summarized according to how the work

dealt with the eight scheduling constraints listed in 1 .2.3.2.

28

TABLE 4

SCHEDULING CONTRAINTS ADDRESSED BY PREVIOUS RESEARCHERS

PREVIOUS RESEARCHERS (section reviewed)
INT PROG AUTO-DESIGN

SCHEDULE GRAPH INTEGER WITH PRACTICAL LOAD TASK
CONSTRAINTS THEORY PROGRAMMING HEURISTIC SCHEDULER BALANCING ARCHITECT.

(2.2) (2.3) (2.3) (2.4.1) (2.4.2) (2e4.J)

EXECUTE OPT OPT OPT HEUR HEUR HEUR TIME

PRECEDENCE HEUR HEUR

TASK OPT OPT OPT HEUR HEUR COMMUNo
TASK OPT OPT HEUR MEMORY

DEADLINES HEUR HEUR

COMMUN. OPT OPT OPT HEUR HEUR DISTANCE .
PROC
PER TASK
CONFIG.
OVERHEAD

KEY: OPT - Researcher considered constraint using optimal approach.
HEUR - Researcher considered constraint using heuristic approach.

DYNAMIC HI-SPEED
ARCHITEC- MULTI ...

TURE PROCESSOR
(2.4.4) (2.4.4)

HEUR HEUR

HEUR

HEUR HEUR

HEUR

HEUR

HEUR HEUR

HEUR HEUR

30

The graph theory approach attempts to allocate the tasks onto

processors by minimizing the execution and communication required using

graph partitioning. This approach assumes all tasks are independent, so

the task precedence constraint is not considered. This approach a 1 so

does not consider the actua 1 sequencing of the tasks on the processors,

so is unable to consider deadline constraints or reconfiguration.

The integer programming approach deals with the classic task

s~heduling problem, with complications such as interprocessor

communication and task memory. As with the graph theory approach, the

integer programming formulation develops a partitioning of tasks onto

processors in order to minimize the execution and communication

required. This approach can consider interprocessor communication

distances and memory constraints. However, it does not consider

precedence or other sequence-related constraints.

The heuristic group of papers deal with a larger set of the

scheduling constraints. One paper describes good heuristics for solving

the schedu 1 i ng prob 1 em with precedence constraints. Two of the papers

discuss how to schedule tasks onto a general multiprocessor system with

the communication constraint. The last two papers discuss how to

execute a given set of algorithms on reconfigurable architectures.

Between the five papers, all of our practical constraints are addressed

in some fashion. However none of the papers address all of the

constraints in a systematic fashion.

31

Our own work, defined in Chapter 3, investigates optimal and

heuristic algorithms which consider all constraints. Note that none of

the related work covers all of our constraints, and that the previous

work with op ti ma 1 schedu 1 es covers on 1 y a sma 11 subset. Our work, which

considers all of the constraints in a systematic fashion, wii-1 be

discussed in the next chapters. The rest of this chapter briefly

reviews representative works in each of the three areas of previous

research to identify the constraints addressed by the previous

researchers.

- 2. 2 Graph Theory Approach

This approach selects a task allocation which produces a minimal

cutset in a network fl ow graph <Stone 1977; 1978). The network f 1 ow

graph represents the execution and commun i ca ti on cos ts of "fl ow

requirement" as weighted edges connecting processors and tasks.

Figure 6a shows three tasks, A, B, and C, where A and B both have a

communication requirement with C. Figure 6b shows the addition to the

graph of two processor nodes, Pl and P2. The weighted edges connecting

task nodes with processor nodes specify the task execution time on the

other processor. Therefore, an execution requirement of 8 for task Bon

processor P2 is represented by an edge from B to Pl with weight 8.

The minimal cutset <shown as 1 in Figure 6b) partitions the tasks

onto the processors contained in the cutset. In this case, all of the

tasks would be assigned to Pl with a total cost of 23.

a) Process Conununication Requirements.

CUTSET 2
', __ 1_0 __

·-----~

P2

b) Process Communication and Execution Requirements.
Two Cutsets are shown in dashed lines.

'OPTIMAL' CUTSET 1 'SUB-OPTIMAL' CUTSET 2

10 16 2 3 (ti me) 10 18 23 (time)

:~ bMzizlzm/J :~I BAI~
10 16 23 8 11

c) Sub-optimal Cutset Produces Shorter Schedule Length
because of Concurrencyo

Figure 6. Graph Theory Scheduling Approach.

32

33

This approach has serious drawbacks. The flow graph does not

include precedence relationships between tasks to model the delay of a

task waiting for another task. This approach also does not minimize the

schedule length, or time to complete all processors. Figure 6c shows a

11 nonoptimal 11 cutset which reduces schedule time by increasing

concurrency.

2.3 Integer Programming Approaches

The research using this approach generally assumes a known

multiple instruction, multiple data <MIMD) architecture and a set of

tasks to be scheduled <allocated) onto the architecture. The problem is

to allocate tasks onto processors to minimize the schedule time. The

approaches develop an allocation by weighing requirements for task

execution, intertask communication and processor load balancing.

The problem of task allocation, or task scheduling, has been

investigated for over 20 years and the general problem is NP-hard

<Coffman 1973). Thus, the work has concentrated on solving sub-problems

< e . g . , task w i th e qua 1 e x e cut i on ti mes or tasks i n spec i a 1 precedence

graphs) which allow a solution in polynomial time, measuring the

effectiveness of heuristic methods <e.g., largest processing time first

for independent tasks, 1 i st scheduling), or the effect of allowing

preemption or processor sharing.

Practical work in this area followed the development of multiple

processor systems for distributed information processing <Chen 1980;

34

Chu 1980) and for tightly coupled multiprocessor system <Efe 1982; Ma

1984). This work considers both processor execution time and

interprocessor communication <IPC> time because communication can

become the bottleneck in a real system.

This approach chooses a task allocation which minimizes a cost

objective function. The cost objective function includes execution time

and communication time, along with other application unique parameters

such as storage cost for information systems. The objective function is

then minimized using a branch and bound technique <BB).

Chen (1980) used this approach to design a distributed information

system for a banking system. The input specification defined four

cities as nodes which generated transactions, the transaction traffic,

transaction processing and data base requirements, etc. Chen's integer

programming model used BB to optimize an objective function with nine

cost components <execution, storage, data base update, etc.) and eight

constraints <communication line capacity, existence of data base,

existence of a tasks on a computer, etc.). The solution output defined

the optimal configuration of communication lines between cities,

existence of computer and/or data base at cities, and the capacity of

the system components.

Ma < 1981; 1982; 1984) u·sed the BB integer programming technique to

allocate tasks to a distributed computing system. The inputs are a

known MIMD system, a set of tasks, the execution requirement of each

task, and the amount of intertask communication. The cost function, F,

35

is a summation over the task execution times and the intertask

communication. The objective is to find an allocation of tasks onto

processors which minimizes the sum of the execution times and the

communication times. This approach considers variable task execution

times, nonhomogeneous processors, variable task communication times and

nonhomogeneous communication rates, or "costs", between processors. The

constraints include:

a. the memory capacity of each processor must not be exceeded by

the memory requirements of the tasks allocated to it.

b. a task preference matrix specifies which tasks can execute on

each processor.

c. a task exclusive matrix specifies which tasks cannot be

allocated to the same processor.

The output of the Ma's model is a task allocation which minimizes the

cost objective function.

The main weakness in both these 1 i near programming mode 1 s is the

exclusion of constraints on task dynamics such as precedence

constraints or deadlines for tasks or task threads. As we showed with

the graph theory approach, the mode 1 tends to group tasks on a few

processors in order to minimize execution time and communication time.

Thus, overhead is reduced at the expense of reducing concurrency. Ma

attempts to compensate by introducing preference and exclusion matrices

which force concurrency despite higher communication cost.

36

Unfortunately, these matrices must be manually created which

effectively requires part of the allocation to be specified manually,

using ad hoc criteria.

2.4 Heuristic Approaches

In this section we examine five heuristics for the general

multiprocessor scheduling problem. These heuristics consider at least

task precedence or task communication in developing a task allocation.

2.4. 1 Critical Path Extension Heuristic

Kasahara (1984) proposes an extension to the critical path

heuristic called CP/MISF <critical path/most immediate successors

first). This heuristic uses a list scheduling approach with the task

priorities computed based on a critical path determination. If two or

more tasks have the same cri ti ca 1 path priority, a further

prioritization is made based on the number of immediate successors

<descendants). A task with more immediate successors is given higher

pr i or i t y . Th i s he u r i s t i c i s e v a 1 u ate d and the wo r s t case error < i . e .

the percentage over optimal length for the heuristic schedule length)

is shown to be better than the standard critical path error. The

average performance is a 1 so. eva 1 ua ted and shown to be in the range of

5% longer than optimal. Kasahara then develops a better heuristic

scheduler by using the CP/MISF in a heuristic tree search algorithm

<branch and bound type).

37

This approach is effective for .the scheduling problem with preced

ence and execution time constraints only . However many constraints, such

as communication time and nonhomogeneous processors, are not addressed

by Kasahara. This work is well supported and our own research approach

described in Chapters 3 and 4 uses similar evaluation techniques.

2o4o2 Load Balancing Heuristics

The heuristic methods of Efe (1982} and Stankovic <1985) choose a

task allocation by trading the communication cost against the execution

load balancing Ci .eo, the execution load of each processor>. Efe

proposes a deterministic scheduler which computes the schedule before

task execution begins. Stankovic proposes a realtime scheduler which

accepts rand om task arr i v a l s and s ch e du 1 e s the tasks onto av a i l ab 1 e

processors. Both techniques consider the same set of constraints as

discussed later. Efe's approach is reviewed here.

A two-stage heuristic iterates until a "sufficient" solution is

found. The first stage clusters the tasks to reduce intertask

communication. The second stage reassigns certain tasks from overloaded

processors to underloaded processors. The resulting allocation of tasks

strikes a balance between the communication and processor load

balancing.

The first stage, called the task clustering algorithm, is a

heuristic which assigns tasks to processors so that intertask

communication is reduced. A local search technique is used which

38

iteratively clusters tasks with the most intertask communication. When

the number of · clusters will fit on the available processors, the

clusters are assigned accordingly. Some provision is made for reserving

certain processors for special tasks <similar to the preference matrix

of Ma discussed in 2.3).

The second stage evaluates the load balancing by comparing each

processor load to the theoretical average determined by the total

serial task execution time and the number of processors. The processors

which have acceptable 1 oads are removed from the a 11 oca ti on prob 1 em

along with the tasks assigned to those processors. The underloaded and

overloaded processors will then be adjusted to get closer to the

theoretical average.

A new problem is defined which consists of the underloaded

processors, overloaded processors, task clusters from the underloaded

processors, and ind iv i dua 1 tasks from the over 1 oaded processors. The

communication costs between an "underloaded cluster" and an "overloaded

task" are then increased to encourage the migration of tasks to the

underloaded processor. The size of the communication increase is

proportional to the load difference between the processors. The new

<hopefully reduced) problem is then used for another iteration of the

heuristic. The heuristic terminates when all processors are acceptably

balanced or the same assignment is found by two successive passes. The

heuristic may not terminate.

39

The weakness of Efe's approach is that the model does not provide

for delays from precedence constraints and communication. Also, the

authors do not support the heuristic approaches by either theoretical

ana 1 ys is or empi ri ca 1 data. Stankovic' s mode 1 is better supported and

does provide for communication delays, however precedence constraints

are also not considered.

2.4.3 Automated Design of Task-specific Architectures

Ward (1982) proposes a procedure for automatically designing a

special purpose architecture which can execute a particular set of

algorithms. The target applications are those where the high frequency

of execution and the high speed requirements justify a special purpose

machine. The goal is to automate the initial design process, and no

attempt is made to produce machines capable of adapting to different

algorithms.

The four steps in Ward's approach are:

1. Extract parallel tasks from sequential programs and determine

firing conditions.

2. Allocate tasks to processors to meet time requirement.

3. Specify architecture using components from knowledge base.

4. Compile and load tasks into architecture.

40

The tasks are assigned to processors to maximize parallelism,

i.e., so no two tasks on the same processor are ready for execution at

the same time. Then the number of processors is reduced to minimize the

system size and to reduce interprocessor communication. After the final

assignment of tasks to processors, the architectural requirements such

as memory size, processing power, and interprocessor communication are

established. From this estimate, a knowledge base of architectural

components is referenced to select processors and communication links.

The final step is to compile and load the tasks and their

execution order. The operation of the architecture is similar to a data

flow machine. A task is enabled and ready to execute when all

predecessor tasks have executed. The task then executes and, when

finished, enables its successors or descendants. The author does not

report on the effectiveness of this technique.

2.4.4 Reconfigurable Architecture Heuristics

A class of architectures is being developed called reconfigurable

or dynamic architectures. 11 Reconfigurable 11 refers to the ability of a

multi processor system to change the way subsets of processors

communicate and interact. These architectures are of speci a 1 interest

because the researchers ~ho develop the architectures are forced to

consider the scheduling or mapping of tasks onto their architectures in

order to justify the reconfiguration capability.

41

We are interested in architectures which reconfigure ; n order to

improve the performance of the active algorithms <or tasks). We are not

interested in reconfigurable system for improving reliability. We also

do not include systems such as ETH's Empress <Buehrer 1982) which is a

multiprocessor machine, but which does not allow for different

configurations, such as pipeline or SIMD. We shall review the works of

researchers who propose reconfigurable architectures and who deal with

the problem of how to prepare algorithms to be executed on their

architectures. We consider two reconfigurable architectures, proposed

by Kuck <1978) and Kartashev (1982).

Kartashev's reconfigurable architecture is called the Dynamic

Computer <DC) <Vick 1980; Kartashev 1981; 1982a; 1982b). The problem of

mapping an application onto the DC architecture is dealt with in two

steps. The first step is to decompose the application into tasks or

programs and measure the program resource. This is done using a

P-resource (program resource) diagram which shows the memory

requirement of the program and the required word width <in bi ts) for

each major program phase or interval. The diagram also shows the

execution time requirement of each interval.

The second step is to fit the P-resource diagrams of all the

programs into a combined schedule or combined resource diagram. This is

done using a first-fit, priority heuristic. The combined resource

diagram also indicates the changes in the reconfigurable communication

bus which are needed to effect different word width computers. Figure 7

is an example of the combined resource diagram and shows the fit of ten

PROCESSOR
BITS

80 ..,--------ir-------r-----r-----.-------------
PS

64 Pl P3 P6

PS

pg

0 100 200 300 400 t(millisec)

Figure 7. Kartashev's Combined Resource Diagram.

42

43

different programs <Pl ,P2, ... ,PlO) onto a set of processors. Each

processor is 16-bits, so the system shown in Figure 7 has five

processors < 80 bi ts). The bi ts required by each program defines which

processors will execute the program in whole or in part.

The collection of Kartashevs' work is fairly complete, from the

architecture description to the procedure for mapping pro.grams onto the

architecture. However, the concentration in developing the schedule is

on fitting different word width computers together, rather than using

the DC in its various modes: pipeline, master/slave, etc. Also, the

performance of the heuristic for performing the schedule is not

measured or evaluated by the author.

Kuck' s architecture is ca 11 ed simply "a high-speed multi processor"

<Kuck 1979; Padua 1980). The system is composed of multiple processor

clusters <PCs) connected by a global alignment network and a global

shared memory. Each PC can operate independently, can synchronize with

other PCs via the global network, or can operate as a slave, with some

other PCs, under control of a global control unit. Processors within a

PC can operate independently, synchronized with other processors

through the local network, or as a slave under control of the array

control unit. Each processor has program and data memory.

This architecture can operate as an SEA <Single Execution on an

Array of Data) by forcing all processors to execute the same

instruction on data in their local memory. It can operate as an MEA

<Multiple Execution, Array) by dividing into multiple SEAs - either to

44

perform multiple pipelined operations on the same array or to

concurrently process multiple arrays. It can also operate as a MES

<Multiple Execution, Scalar) which is a data flow type machine <Empress

operates in MES mode exclusively>. Reference <Kuck 1978) for further

detail on Kuck's machine taxonomy.

Kuck's approach to mapping an algorithm onto the architecture has

three steps. The first step is to convert the algorithm to a DAG

<Directed Acyclic Graph) of Pi-blocks where a Pi-block is a simple

computational node. The Pi-block is a statement or small group of

statements which are "strongly connected," i.e., the data dependence

between statements is cyclic. Practically, this means that the

statements in a Pi-block have to be executed sequentially to ensure

determinancy. Since all cycle dependencies are in Pi-blocks, any

algorithm can be represented as a DAG of Pi-blocks.

The second step is to analyze the dependency of Pi-blocks which

are within iteration control constructs (i.e., DO FOR loops> to

increase parallelism. The techniques include rearranging the loop

control structures, identifying potential concurrency within a loop,

and "pipelining." Pipelining breaks a loop into smaller loops which are

chained together (i.e., the ith iteration of loop j cannot start until

the ith iteration of loop j-1 has completed). An evaluation is also

made to determine whether the pipeline approach wi 11 be dominated by

bottlenecks, where most processors in the pipeline are idle because of

unequal Pi-block execution times.

45

The third step is to assign Pi-blocks to processors. This is

similar to the task allocation in a distributed computer system problem

as discussed earlier. Kuck does not add to this body of knowledge; he

does riote that the problem is NP-complete and that it is a common

problem in scheduling theory.

The lack of discussion on the multiprocessor scheduling problem by

Kuck is indicative of the need for a systematic investigation of the

multiprocessor scheduling for practical systems such as Kuck's high

speed multiprocessor.

CHAPTER 3 SCHEDULING ALGORITHMS

As shown in Chapter 2, the previous work in this area has developed

optimal algorithms for only a subset of constraints. We also reviewed

some heuristic approaches which do consider a more complete set of con

straints, yet these heuristics cannot be properly evaluated since there

is no comparable optimal algorithm.

In this chapter we develop an optimal algorithm and heuristic

algorithms to _solve the multiprocessor scheduling problem. We begin with

a formal definition of the scheduling problem in terms of the con

straints discussed in Chapter 1. We then describe the optimal algorithm

and sketch the procedures which are used to implement the algorithm. The

optimal algorithm has exponential time complexity and we discuss the

theoretical worst case complexity. We then describe the constraint re

laxing heuristic which is used to evaluate the performance of the other

researchers' scheduling approaches. Finally, we introduce the dynamic

priority scheduling heuristic which considers the key practical con

straints when developing the multiprocessor schedule. The optimal

algorithm and the two heuristics will be evaluated in Chapter 4 and used

to investigate key characteristics of the scheduling problem.

46

47

3.1 Formal Definition of the Scheduling Problem

We define the scheduling problem as follows:

Given a set of tasks, a set of processors, and the following

constraints:

1) task execution time per processor
2) task precedence relations
3) intertask communication requirement
4) task memory requirement
S> task execution deadlines
6> interprocessor communication cost
7) number of coprocessors required per task
8) configuration change overhead

a.) Find a feasible schedule of the tasks on the processors, where a
feasible . schedule assigns each task to a processor, assigns at most
one task to a processor at a time, and satisfies all constraints.

b.) Find an optimal feasible schedule which minimizes the schedule
length.

The processor scheduling problem can be formulated as a combination

allocating/sequencing problem. In our formulation, the function to be

minimized is the schedule length and the system of constraints account

for the application and architecture constraints listed above.

3. 1 .1 Schedule and Schedule Length

Define the scheduling problem as having a set of m processors,

P = (Pl,P2, ... ,Pm), and a .set of n tasks, T = (Tl, ... ,Tn). Any schedule

can be modeled as an allocation of tasks and a sequence of scheduling

events. The a 1 location defines which tasks execute on which processors

and the sequence defines the order that the tasks process on the

processors. For our system, we consider several phases of the task

48

processing: execution, communication, and configuration. So any

processor can be in one of four states: executing a task, communicating

with another processor due an intertask communication requirement,

reconfiguring due to a change in communication configuration, or

idling. This definition is quite general since most other processor

functions, such as operating system overhead, can be included as part

of the task proce·ssing time. Figure 8 illustrates this state definition

as applied to our example in Chapter 1.

The scheduling events wi 11 define any change between the four

states listed above. Thus, a schedule, SCHED, is defined by the

sequence, SEQ, and the task allocation, ALL:

SCHED = <SEQ, ALL)

where SEQ is a sequence of z events

SEQ = < E 1 , E2, . . . Ez)

and ALL is an assignment of the n tasks onto processors and

configurations

ALL= (Al,A2, ... An).

Each event, Eq, is a two tuple, Eq = <ETYPEi, ETIMD, where ETIME

is the time of the event and ETYPEi is one of the six task events which

indicate the start or finish of one of the task processor states:

S-RFIGi = start . reconfiguration required for Ti

F-RFIGi =finish 11 11 11 11

S-COMMi = start communication of Ti

F-COMMi = finish 11
"

I I
I D

STATE 1 L
I E
I
I

I
I

1

i
2

2 3 4
I

3

T2

' 1500 4

P IC I
R 101 0 ;M 1
C IM I.

I I
I I
I I

5
I

14

2500
p
R
0
c

6 7
I

I
I

I

I ...
I
I
I
I

FOUR STATES:

t
(MILLISEC)

8 9 10 11 12 13 14 15 16
I I I

R

T5 rr 6
E
c

8
0

3000 N

p I Pl RI I
R 1 R1 EI D
o-......... lo•cl L
c :c:o1 E

I I NI
I I I

I I I I
-

T7

4500

I P I
I R I
I I I...-.•----- 0 ----.. -1
I C I
I I
I I

I
END OF SCHEDULE----...... 1

I

PROC - PROCESSING STATE

COMM - COMMUNICATION STATE

RECON - RECONFIGURING STATE

IDLE - IDLE STATE

Figure 8. Four States of a Processor <From Figure 4).

..........._
-

50

S-EXECi = start execution of Ti

F-EXECi =finish 11 11

We will use the notation t<ETYPEi) to indicate the time that ETYPEi

occurred and INDEX<ETYPEi) to indicate the event sequence index of

ETYPEi. In a similar fashion, we use t<Eq) to indicate the time of event

q and we use TYPE< Eq> to indicate the type of event Eq. Note that the

idle state is not explicitly represented but is easily computed as the

absence of any other state. Each of the six event types is recorded for

each task, so z = 6*n. The schedu 1 i ng events for a given task wi 11

always occur in the order shown above, i.e., t<S-RFIGi) ~ t<F-RFIGi)

< t<S-COMMi), etc. Multiple events can occur at the same time, such as

when two tasks start execution simultaneously, i.e., t<S-EXECi) =

t<S-EXECj), or when a task has no communication requirement, i.e.,

t<S-COMMi) = t<F-COMMi). As an example, Table 5 gives sequence events

from the schedule shown in Figure 5 of Chapter 1.

Each allocation defines which processor<s>, Pk, a task is assigned

to and which communication configuration, R, is to be used for that

task:

Ai = <Pk,R)

Normally a task requires only one processor and Pk identifies that pro

cessor. For cases where a group of coprocessors are required, we will

i den ti fy the set as Pk where Pk is the first processor of the set,

ordered by processor index. We will use ALLOC<Pk) to indicate the set of

tasks which are assigned to Pk. The communication configuration R is a

TABLE 5

SEQUENCE OF EVENTS FOR EXAMPLE PROBLEM

EVENT - <STATE, TIME) EVENT - <STATE, TIME)

ql - <S-RFIGl, 0) q25 - (S-COMM4, 3500)
q2 - <F-RFIGl, 0) q26 - <S-COMMS, 3500)
q3 - <S-COMMl, 0) q27 - (S-COMM6, 3500)
q4 - <F-COMMl, 0) q28 - (F-COMM4, 4000)
qS - (S-EXECl, 0) q29 - <S-EXEC4, 4000)
q6 - <F-EXECl, 1500) q30 - <F-COMM5, 5500)
q7 - <S-RFIG2, 1500) q31 - <F-COMM6, 5500)
q8 - <S-RFIG3, 1500) q32 - <S-EXEC5, 5500)
q9 - <F-RFIG2, 1500) q33 - <S-EXEC6, 5500)
qlO - <F-RFIG3, 1500) q34 - <F-EXEC4, 6500)
qll - (S-COMM2, 1500) q35 - <F-EXEC5, 8500)
q12 - <S-COMM3, 1500) q36 - (F-EXEC6, 8500)
q13 - <F-COMM3, 1500) q37 - <S-RFIG7, 8500)
q14 - <S-EXEC3, 1500) q38 - <S-RFIG8, 8500)
q15 - <F-COMM2, 2000) q39 - (F-RFIG7, 9000)
q16 - <S-EXEC2, 2000) q40 - (F-RFIG8, 9000)
q17 - <F-EXEC3, 3000) q41 - <S-COMM7, 9000)
q18 - <F-EXEC2, 3500) q42 - <S-COMM8, 9000)
q19 - <S-RFIG4, 3500) q43 - <F-COMM7, 10000>
q20 - < S-RFIGS, 3500) q44 - <F-COMM8, 10000)
q21 - <S-RFIG6, 3500) q45 - <S-EXEC7, 10000)
q22 - <F-RFIG4, 3500) q46 - <S-EXEC8, 10000)
q23 - <F-RFIG5, 3500) q47 - (F-EXEC7, 14500)
q24 - <F-RFIG6, 3500) q48 - (F-EXEC8, 14500)

KEY TO STATES
S-RFIGi = Start Reconfig. for Task i
F-RFIGi = Finish Reconfig. for Task i
S-COMMi = Start Communication for Task i
F-COMMi = Finish Communication for Task
S-EXECi ·=Start Execution for Task i
F-EXECi = Finish Execution for Task i

51

52

selection of one of the f allowable configurations. Continuing our

example from Figure 5, the allocation for that schedule is given by:

ALL = < A 1 , A2, A3, A4, AS, A6, A 7, AS)
= ((3,l), (1,1), (3,1), (1,1), (2,1), (3,1), (2,2), (3,2))

The schedule is defined to start at time zero, t<El) = O, so the

schedule length is found by the time of the last event, t<Ez). In our

scheduling problem we are trying to minimize the schedule length t<Ez)

while obeying all scheduling constraints. The next section defines

those constraints.

3. 1.2 Scheduling Constraints

The scheduling constraints serve as the rules by which a feasible

schedule can be constructed and therefore serve as the rules for finding

a sequence of events and an allocation of tasks. The task and processor

characteristics used to define the scheduling constraints are listed

below. Note the one-to-one correspondence to the application and archi

tecture constraints discussed in . 1 .2.1 and 1 .2.2 respectively. The

application characteristics are:

Q<i ,k) = task execution time of Ti on Pk.

PREC<i ,j) = precedence relation between Ti and Tj
1 if Ti precedes Tj <denoted Ti < * Tj >
2 if Ti and Tj can execute as pipeline

tasks (denoted Ti <*> Tj)
and O o'therwise.

C<i ,j) = number of words to be communicated from Ti to Tj

DEAD(i) = deadline time for Ti.

MREQ<i> = memory space required for Ti.

NUMP(i) = number of processors required for Ti.

D<k,l ,r) = time units per communication word between Pk and Pl
at communication configuration r.

MCAP<k> = memory space capacity of Pk:

REC<a,b) = overhead time to change from configuration a to b.

53

The constraints of the scheduling problem can now be represented

using these task and processor characteristics. For the following

equations we define Ti to be mapped onto Pk using configuration "a"

<Ai= <Pk,a)) and Tj to be mapped onto Pl using configuration "b."

1 .) Execution time constraints for all Ti

t<F-EXECi) - t<S-EXECi) = Q<i ,k)

2.) Precedence constraint for all Ti

t<S-RFIGi) > t<F-EXECj) for all Tj <*Ti. Note that
t<S-EXECi) > t<F-EXECj) because t<S-EXECi) > t<S-RF!Gi)

3.) Communication constraint for all Ti

t<F-COMMi) = t<S-EXECi)
t<F-COMMi) - t<S-COMMi) = SUM [C<i ,j) * D<k, 1 ,a) J

for all Tj <*Ti.
where SUM [J denotes the summation of elements
within the square -brackets.

4.) Deadline constraint for all Ti

t<F-EXECi) < t<DEAD(i))

5.) Memory constraint for all Pk

MCAP(k) ~ SUM [MREQ(i) J for all Ti allocated to Pk

6.) Processors required for Ti

a.) Exclusive use of processor<s> Pk

t<F-EXECj) ~ t<S-RFIGi) or
t<S-RF!Gj) > t<F-EXECi) for all Tj ~Ti and

Tj allocated to Pk

b.) Number of processors

SIZE <Ti) = NUMP(i) where SIZE<Ti) is the number of
processors allocated for Ti

7.) Reconfiguration overhead for all Ti

t<F-RFIGi) = t<S-COMMi)

54

t<F-RFIGi) - t<S-RFIGi) = REC<a' ,a) where a' was the previous
commun i ca ti on configuration. a 1 is determined by the most
recent reconfiguration state for some Tj with maximum
t<S-RFtGj) and with t<S-RFIGj) < t<S-RFIGi>. For the very
first task, a' will be set to a.

In general, these constraint defi ni ti ons correspond to the

intuitive descriptions offered in l .2 where the image generation

example was illustrated. Constraint 4 and 7 include two additional

relationships, t<F-RFIGi) = t<S-COMMi) and t<F-COMMi) = t<S-EXECi).

These constraints state. that a task wi 11 immediate 1 y transition from

configuring to communicating to executing without any idle time or use

of the processor by another task. The rationale behind this constraint

is that all of the task phases <configuring, communicating, and

executing) are part of the overall task processing and our system does

not permit interruptions of the task processing.

A final constraint is that the schedule will not permit all

processors to be idle at the same time. Clearly, any schedule with a

period of time during which all processors are idle can be improved by

eliminating that period of time. Thus all reasonable schedules will not

permit all of the processors to be idle.

55

3.1 .3 Reduced Schedule Representation

The constraints listed in 3. 1 .2 introduce redundancy into the

earlier schedule definition of 3. 1. 1. Some of the event times are

constrained to be equal and the difference in time between many of the

events are known from the task characteristics. In this section we will

examine different representations of the schedule which reduce the

amount of redundancy.

We can combine constraints 1, 3, and 6 to be

F-EXECi - S-RFIGi = REC<a 1 ,a) + SUM [C<i ,j)*D<k, l ,a)] + Q<i ,k)

For conveni enc.e, 1 et F-TASKi represent the finish event for task

<F-TASKi = F-EXECi) and let S-TASKi represent the start event for task

i <S-TASKi = S-RFIGi). We can formulate an equal representation of a

feasible schedule SCHED by

SCHED 1 = <SEQ'' ALL)

where SEQ' =(El', E2 1
, • En 1

) represents the sequence of task

f i n i she s and the i r f i n i s h t i me s , i . e . , E q 1 = < i , t) · i den ti fl e s the

finish time for some Ti. This representation is equal in that the exact

values of SCHED can be reconstructed from SCHED'. This is clearly true

since, given the time of F-TASKi and the allocation, we can compute the

time of the start of execution, and then the start of any

communication, and finally the start of any reconfiguration. For our

example:

SEQ' = < (1, 1500), (3,3000), (2,3500), (4,6500), (5,8500), (6,8500),
(7,14500), (8, 14500))

56

which is the subset of events from SEQ

(q6, ql7, ql8, q34, q35, q36, q47, q48)

A further reduction is possible if we are satisfied with a

representation which allows us to reconstruct an equivalent feasible

schedule. An equivalent feasible schedule must be feasible and must

have the same schedule length. Obyiously the ordering and time of

internal events could be rearranged without changing the schedule

1 ength. One such rearrangement is when there is 11 s1ack 11 ti me on a

processor and the task processing can be arb i trari 1 y moved within the

slack window, subject to the scheduling constraints. Another

rearrangement is when the processing periods of two tasks on the same

processor could b·e interchanged. Our reduced representation will allow

only the former rearrangement because it defines the order of execution

of all tasks. An equivalent schedule can be represented by

SCHED' I = <SEQ' I' ALL)

where SEQ''= (ql, q2, ... qn) is the finish order of all tasks, i.e.,

task ql finishes first, task q2 finishes second, etc. Our example case

would simply be SEQ'• = (1,3,2,4,5,6, 7 ,8).

For systems which can be modeled without reconfiguration

capabi 1 i ty or overhead, we can further reduce our equi va 1 ent schedule

representation by partitioning the finish order of tasks by processor,

i.e., order the task finishes on each processor. This partitioning also

i ndi ca tes the a 11 oca ti on, so the reduced schedu 1 e SCH ED 1 1 1 can now be

represented by the set of processor-partitioned sequences:

s· I I = SEQ' I I = (PSEQl' PSEQ2, ... PSEQm)

57

where PSEQl is the set of tasks which execute on Pl ordered by their

execution finish time. For our example:

5 1
I I : ('(2,4), (5,7>, <1,3,6,8))

This last reduced representation of a schedule wi 11 be important

for measuring the performance of schedulers which do not consider all

of the scheduling constraints . Because they do not consider all of the

constraints, they are unable to accurately report the start and finish

times of the tasks for the schedules they produce. However, we will be

able to find out the schedule length by knowing the order of task

execution for each processor. Given that processor ordering, we can

simulate the schedule events <with all constraints considered> and use

the resulting schedule to measure the schedule length.

3. 1 .4 Feasible Allocation Bounds

An allocation is defined in 3.1.l as an assignment of tasks onto

processors and communication configurations. A feasible schedule

requires the combination of the sequence and allocation. Our scheduling

algorithms will search for a schedule incrementally, and at each step

verify that no constraints have been violated. Our optimal algorithm

will first try to find an allocation which has the potential to permit

a feasible schedule. The allocation will then be examined for any

sequences of events which produce a feasible schedule. In this section,

we define those constraints which we will be able to use to identify an

allocation, or subset of an allocation, which cannot render a feasible

58

schedule for any sequence. Obviously these will become the "bounding 11

tests of a branch and bound search. If a subset of an a 1 location is

shown to violate a constraint, then all allocations containing that

subset can be eliminated from consideration.

By examining the constraints listed in 3.1.2, we find that the

memory constraint (constraint 5) and the number of processors per task

<constraint 7b) are the only constraints independent of task

sequencing. These two can therefore be used to test al locations or

subsets for violations.

We can also develop a bound using the deadline constraints.

Although the actual finish time of a given task cannot in general be

determined during the allocation phase, we can use the precedence

relations <which must be obeyed by any sequence) to determine the

minimum time for the task finish. This minimum is then compared to the

task deadline to check for violations. Define MINFINi to be the minimum

finish time for Ti using a procedure which propagates the minimum

finish ti me from the 1 owes t l eve 1 of the precedence tree < i . e., no

antecedents) to the current task. The procedure is to find the minimum

finish of the current task, Ti, allocated onto Pk is given below:

PROCEDURE COMPUTE.MINFIN
MINFINi = Q< i ,k)
COMMi = 0
DO FOR ALL Tj (* Ti

COMMi = COMMi + C(i ,j) * D(k,1 ,a)
DO FOR ALL Tj <* Ti

MINFINi =MAX [MINFINi, <MINFINj + Q<i ,k) + COMMi)]

59

This procedure depends on the existence of MINFINj, which means

that all antecedents of Ti must be allocated before Ti. We will

guarantee that by first ordering the tasks by pair-wise precedence

(i.e., if Ti <* Tj then i < j) and then al locating the tasks in that

order. If at any point we find that MINFINi > DEAO(i) then the

allocation cannot lead to a feasible schedule.

Most tasks wi 11 not have an exp 1 i cit deadline. For the image

generator example of 1.2, only the last task, TS, had a deadline which

corresponded to the 16 millisec cycle time requirement. Obviously all of

the tasks cou 1 d be assigned the 16 mi 11 i sec dead 1 i ne s i nee they had to

complete before TB. In fact, if we knew the allocation of all of the

tasks, we could compute the communication and execution times and then

propagate internal deadlines for all tasks. This propagation would start

at the task<s> at the highest level <no descendants) and use the maximum

start time for Ti to determine the deadline of all antecedents. Thus,

PROCEDURE PROPAGATE.DEAD
MAXDEAD = schedule length deadline for all tasks
DO FOR ALL Ti , i = n , n-1 , ... , 1

DEAO(i) =MIN [DEAO(i), MAXDEAD]
DO FOR ALL ANTECEDENTS Tj, Tj <* Ti

DEAO(j) =MIN [OEAO(j), DEAO(i) - Q<i ,k) - COMMiJ

Unfortunately, this procedure cannot be used while an allocation is

being constructed because all of the tasks must be allocated for it to

work. Therefore the calculation of MINFINi above is not very useful.

However, we can modify the deadline propagation procedure so that as we

build the allocation in precedence order we can test MINFINi against

some deadline constraints. To do this, we must make the 'best-case'

60

assumptions about the allocation of tasks. We use the minimum possible

execution time for each task <minimum over all processors) and the

minimum amount of communication time, representing these as MINQi and

MINCOMMi respectively. The revised deadline propagation procedure is

then:

PROCEDURE PROPAGATE.DEAD'
MAXDEAD =schedule length deadline for all tasks
DO FOR ALL Ti , i = n , n-1 , . . . , l

DEAD(i) =MIN [DEAD(i), MAXDEAD]
DO FOR ALL ANTECEDENTS Tj, Tj <*Ti

DEAD(j) =MIN [DEAD(j), DEAO(i) - MINQi - MINCOMMi]

This can be used to check MINFINi against DEAD(i) while building

an allocation. Note that MINCOMMi will normally be zero because the

best-case assumption is that tasks would be coresident and not require

communication. After the allocation is completed, the procedure

PROPAGATE DEAD can be used to see if the allocation violates the

stricter deadline constraint.

3. 1 .4 Feasible Sequence Bounds

We can use the constraints to define bounds while searching for

sequences of a given allocation. Most of the constraints will form the

rules for determining the set of possible sequences and do not have to

be explicitly checked. For instance we will only consider sequencing a

task when all of its antecedents have completed execution, so the

precedence constraint cannot be violated. The length of execution,

communication, and reconfiguration will all be computed from the

characteristics so that the corresponding constraint is not violated.

61

The key constraint which could be violated is the deadline

constraint. When examining possible sequences of a given allocation, it

is best to detect a deadline constraint violation as soon as possible.

The deadline calculation from procedure PROPAGATE DEAD can be used to

check each task as it is scheduled. If a task violates its deadline,

then no further development of that sequence is necessary.

3.2 Optimal Scheduling Algorithm

3.2. 1 Scheduling Algorithm Overview

Th 1 s a 1 gori thm uses a branch and bound technique to search the

solution space of all possible reasonable schedules. The algorithm

search e s u n ti 1 a f ea s i b 1 e s ch e du 1 e i s d i s covered < i . e . , meets a 11

problem constraints). This feasible schedule is then recorded and the

algorithm continues to search for a feasible schedule with a smaller

schedule length. This process is repeated until no more feasible

schedules can be found.

The last feasible schedule to be found has the minimal schedule

1 ength and is therefore optima 1. If no feas i b 1 e schedu 1 e is found, then

none exists for the scheduling problem. The algorithm is guaranteed to

find an op ti ma 1 schedu 1 e . because the branch and bound search wi 11 not

prune a branch of possible schedules unless each of those schedules on

the branch cannot be feasible. Therefore all feasible schedules are

guaranteed to be inspected.

62

Our branch and bound algorithm is actually a two-phase process, as

illustrated in Figure 9. The outer phase searches for feasible alloca

t ions using the subroutine FIND NEXT ALLOCATION. As discussed in 3.1.4,

we define an infeasible allocation to be an allocation which violates a

schedule constraint regardless of the sequencing. A feasible allocation

is any allocation which we cannot prove to be violating a schedule con

straint. For each feasible allocation found by the algorithm outer

phase, the inner phase uses FIND NEXT SEQUENCE to search for all

feasible schedules using that allocation. It is possible <and very

likely in fact) that a feasible allocation will not render a feasible

schedule. If a feasible sequence of the allocation is found, the

combination is recorded as a feasible schedule.

The schedule length of that feasible schedule is then used by

UPDATE TASK DEAD to define stricter task deadlines. This will have the

effect of eliminating from future consideration any feasible schedules

which have a longer schedule length. Once a feasible schedule is found

and recorded, the inner phase continues to search for sequences of the

allocation which are feasible <and must have shorter schedule length).

When a 11 sequences are exhausted, the outer phase ca 11 s FIND NEXT

ALLOCATION to find another f eas i b 1 e a 11 oca ti on and the process

continues. When all feasible allocations have been exhausted, the

executive program termi n·ates by reporting the most recently found <and

shortest schedule length) schedule. If no feasible schedule was found,

then none exists and the program reports failure.

procedure OPTIMALoSCHEDULER <PROBLEM,SCHED>
;variable definition

PROBLEM - input definition of application and
architecture characteristics/constraints

FEAS.ALL - boolean denoting feasible allocation
ALL allocation mapping
FEASoSEQ boolean denoting feasible sequence
SEQ sequencing of allocation
SCHED.FOUND - boolean denoting feasible schedule found
SCHED complete schedule = <ALL,SEQ>

;subroutines called
!NIT.ALLOCATION

FINOoNEXT.ALLOCATION -

!NIT.SEQUENCE

FINOoNEXT.SEQUENCE

UPDATE.TASK.DEAD
REPORT

set SCHED.FOUND =false
call !NIT.ALLOCATION
set FEAS.ALL = true

initialize allocation variables for the
current scheduling problem

searches forward until a new feasible
allocation is found

initialize sequence variables for the
current allocation

searches forward to find a new feasible
sequence for the current allocation

sets new deadline= schedule length - l
reports the optimal feasible schedule

or reports no feasible schedules exist

do while <FEAS.ALL> ;outer phase - get feas. alloc.
call FIND.NEXT.ALLOCATION (ALL, FEAS.ALL)
if <FEAS.ALL)

;inner phase - get feas. seq. of alloc.
call !NIT.SEQUENCE
do while <FEAS.SEQ>

call FIND.NEXT.SEQUENCE<ALL,SEQ,FEAS.SEQ)
if <FEAS.SEQ>

set SCHED.FOUND = true
set SCHED = <ALL,SEQ> ;record feasible schedule
call UPDATE.TASK.DEAD <t<SEQ<Z>>

end do ;end inner phase
end do ;end outer phase
if <SCHEO.FOUND> then call REPORT <SCHEO)
else call REPORT <fals~>

end procedure

Figure 9. Optimal Scheduler Procedure.

63

64

There are many feasible allocations <up to nm)and each feasible

allocation can produce many feasibl~ sequences <up to nl>. The subrou

tines that the executive calls to find the next feasible allocation or

the next feasible sequence are responsible for searching efficiently

through the allocation and sequencing possibilities. These subroutines

are discussed next.

3.2.2 Allocation Branch and Bound

Each time FIND NEXT ALLOCATION is called, it must search for a

feasible allocation among the set of all possible allocations of tasks

onto processors. We represent this set of possible allocations as an

"allocation tree," as shown in Figure 10. The tree is structured

assuming that task 1 is allocated, then task 2, etc. Each of the levels

of the tree represent the different allocation choices for a specific

task, given the allocations of the all the previous tasks. FIND NEXT

ALLOCATION must search the tree in a methodical fashion until it finds

a feasible allocation. When FIND NEXT ALLOCATION is called again, it

must resume the search from the previous tree location. This search

must continue until all feasible allocations are discovered. Since each

of the n tasks can be allocated to any of the m processors, there are a

total of nm possible allocations. Fortunately, we can employ the

scheduling constraints discussed in 3.1.4 to eliminate, or prune, parts

of the tree and thus reduce our search space.

We will search the tree in a depth-first fashion. At each level the

allocation choices will be evaluated and the task will be allocated to a

65

ROOT
TASK I ••• • • Cl

I I
1 Til • e e

Tlj Tlm •••

I
I

I I I I I I I
2 T21. .. T2j T2m T21 T2j T2m T21 T2j T2m

I
• • •
e •
• I • • •

I I
n Tnl Tnj Tnm

Note: Tij indicates that task i is assigned to processor j

Figure 10. M-ary Allocation Tree of N Tasks.

66

processor such that none of the allocation constraints are violated.

This process continues from level to level until either all of the tasks

are allocated or the task at the current level cannot be allocated with

out violating the allocation constraints. If the task at the current

level cannot be allocated then all of the allocation possibilities below

that point are ignored and the subroutine backtracks to level which has

feasible allocation possibilities. The program then continues forward

unti 1 it must back track again, or a 11 of the tasks are succe s sfu·11 y

allocated.

If all of the tasks are successfully allocated then the feasible

allocation is returned to the executive. The executive will then use

FIND NEXT SEQUENCE to search for any f eas i b 1 e s chedu 1 es -using that

allocation. When all sequences are exhausted the executive recalls FIND

NEXT ALLOCATION which back tracks from the current task 1eve1 < 1eve1 n

since all tasks are allocated) to level n-1 and continues to search for

another feasible allocation. FIND NEXT ALLOCATION will eventually

finish searching the allocation tree and will report that no additional

feasible allocations exist.

The subroutine FI ND NEXT ALLOCATION is given in Figure 11. The

outer do while loop performs the depth first forward search, advancing

form one task level to the next as long as the allocation remains

feasible. The subroutine INIT ASSIGN is called when each level is

entered from "above," e.g., if task 5 is to be allocated after task 4

has been allocated, then INIT ASSIGN (5) is called. INIT ASSIGN serves

to initialize the status of the current node of the tree so that all

subroutine FIND.NEXT.ALLOCATION <ALL, FEAS.ALL)
;variable definition

N - number of tasks in scheduling problem
FEAS.ALL - boolean denoting feasible allocation
ALL - allocation mapping
TASK index of the last task to be allocated

initialized to 0 by !NIT.ALLOCATION
NEW boolean value for each task which

initialized true by !NIT.ALLOCATION

;subroutines called
!NIT.ASSIGN - prepare for first assign of a task in

a forward search
NEXT.ASSIGN - allocate task #TASK+l. Iff allocation is

feasible, set FEAS.ALL=true

do while < <TASK . lt. N) .and. FEAS.ALL)

if (NEW<TASK))
call !NIT.ASSIGN <TASK) ;this is a forward search
set NEW<TASK) =false ;init task 1 s allocation state

call NEXT.ASSIGN <TASK, ALL, FEAS.ALL)

do while (not.FEAS.ALL .and. (TASK .gt. Q))

NEW<TASK) = true ;flag this task for forward search
;backtrack to previous level if infeasible

set TASK = TASK - 1
call NEXT.ASSIGN <TASK, ALL, FEAS.ALL)

end do
set TASK = TASK +

end do
return

Figure 11. Find Next Allocation Subroutine.

67

68

allocations for that node will be considered. NEXT ASSIGN (5) is then

called to perform the actual allocation using the best allocation at

that level 5, where 11 best 11 is defined using the minimum execution and

communication times computed for that allocation.

During a backtrack operation, a task level will be entered from

"below," e.g., level 6 has no feasible options so it backtracks to

1eve1 5. At this point we ca 11 NEXT ASSIGN s i nee we want to advance to

the next best al location at the current level, e.g., level 5. If the

next best allocation is not feasible, we continue to backtrack. If it

is feasible, we resume the forward sear~h from that point.

3.2.3 Sequencing Branch and Bound

Each time FIND NEXT SEQUENCE is called, it must search for a

feasible sequence among the set of all possible sequences of events for

the given al location of tasks onto processors. The structure of FIND

NEXT SEQUENCE for controlling the search of sequences is similar to the

control structure of FIND NEXT ALLOCATION. For this case, the search

tree is the set of all possible scheduling events within the

allocation. There are 2*n levels, or events, where each event is either

a task start or a task finish. Again, the search is depth-first with

the subroutines NEXT SEQ and . BACK SEQ doing the investigation.

As with the allocation processing, we will search the sequence

tree in a depth-first fashion. At each event level the sequencing

choices will be evaluated and one chosen. Multiple event options will

69

be available only if more than one event is ready to occur at the same

time, e.g., two tasks are ready to start execution at the same time. A

choice between options must be made if they are mutually exclusive,

e.g., the two ready tasks are allocated to the same processor. One

option must be chosen and then the next event must be found. This

process continues from event to event until either the 1 ast event is

successfully scheduled (i.e., all tasks have started and finished) or

the current event is not feasible because it violates a scheduling

constraint, in particular the deadline constraint. If the event at the

current level has no feasible options, then we backtrack to an event

which has feasiqle options. The program then continues forward until it

must backtrack again, or all of the events are scheduled.

If all of the events are successfully scheduled then the feasible

sequence and a 11 ocati on is returned to the executive. The executive

wi 11 then record the feasible schedule and use the schedu 1 e 1 ength to

def i n e new , s ma l 1 er task dead l i n e v a 1 u e s . The exec u ti v e then rec a 11 s

FIND NEXT SEQUENCE which backtracks from the current event level <level

2*n since each task must start and finish) to level 2n-l and continues

to search for another feasible sequence. FIND NEXT SEQUENCE . will

eventua 11 y finish searching the SEQUENCE tree and wi 11 report that no

additional feasible sequences exist.

The subroutine FIND NEXT SEQUENCE is given in Figure 12. The outer

DO WHILE loop performs the depth first forward search, advancing from

one event level to the next as long as the sequence remains feasible.

FIND NEXT SEQUENCE calls NEXT SEQ to move forward a single event. NEXT

subroutine FIND.NEXT.SEQUENCE <ALL,SEQ,FEAS.SEQ>
;variable definition

'

N - number of tasks in scheduling problem
ALL - allocation mapping
FEAS.SEQ boolean denoting feasible sequence
·sEQ - sequencing of allocation
EVENT index of the last event to be scheduled

initialized to 0 by !NIT.SEQUENCE
LAST.EVENT global boolean set true when all tasks

have finished
BACK.START boolean set true by subroutine BACK.SEQ

iff the last event backtracked was a task start

;subroutines called
NEXT.SEQ - determine next event to occur. Iff event is

feasible, set FEAS.SEQ=true
BACK.SEQ - backtrack event #EVENT and undo its effects

LAST.EVENT= false
do while (not.LAST.EVENT .and. FEAS.SEQ

call NEXT.SEQ <EVENT, FEAS.SEQ)

do while (<EVENT .gt. Q) .and. (not. FEAS.SEQ))
call BACK.SEQ <EVENT,BACKSTART)
set EVENT = EVENT - 1
if <BACKSTART) then call NEXT.SEQ <EVENT,FEAS.SEQ)

end do

set EVENT = EVENT + 1
end do

return

Figure 12. Find Next Sequence Subroutine.

70

71

SEQ considers only the precedence feasible sequences when selecting the

next event in a forward search. This is accomplished by maintaining an

event-based simulation of the states of all tasks. Only tasks which

have their precedence relations satisfied can ever be scheduled. As

shown in Figure 13, NEXT SEQ first checks all of the idle processors to

see if there is a ready start event, i .e., a task ready to begin

execution. If a start event is found, it is recorded and the subroutine

returns to FIND NEXT SEQ. If more than one start event option is

available, then the "best" one is chosen which has the smallest

execution time. If no start event is found, NEXT SEQ determines which

currently executing task will finish next. The simulated clock is

advanced to the time of this next finish event and the finish event is

recorded. This subroutine is ca 11 ed repeatedly in a forward search to

record the next scheduling event and advance the simulation clock.

· If any of the options is infeasible <i.e., a task cannot be

started bee au se it wi 11 not finish before its dead 1 i ne) then none of

the options need be considered and backtracking is required. <Obviously

the task which violates the deadline constraint will always violate the

constraint for any future scheduling.) When backtracking is required,

the inner DO WHILE loop of FIND NEXT SEQ is activated to repeated 1 y

call BACK SEQ EVENT. BACK SEQ EVENT simply reverses the effect of the

previous scheduling event a·nd reverses the clock. If the backtracking

event was a start, then BACK SEQ EVENT returns a flag so that any other

feasible options at that start event can be investigated. The outer

loop of FIND NEXT SEQ will resume the forward search at that point.

subroutine NEXT.SEQ <EVENT, FEAS.SEQ)
;variable definition

EVENT index of current event
FEAS.SEQ boolean set false if constraint violated
FOUND.EVENT - boolean set true if an event is found
PROC local index to check all processors

;subroutines called
FIND.START

FIND . FINISH -

checks if a ready t~sk is available to be
started on the processor
called if no starts available. Finds the
next task finish and advances clock to finish

set FEAS.SEQ = true
set FOUND.EVENT= false

do for PROC = 1 to M
call FIND.START <EVENT, PROC, FOUND.EVENT, FEAS.SEQ)

if (not FOUND.EVENT and FEAS.SEQ)
call FIND.FINISH <EVENT, FOUND.EVENT, FEAS.SEQ)

return

Figure 13. Next Sequence Subroutine.

72

73

3.3 Constraint Relaxing Heuristic

The scheduling algorithm described in 3.2 is guaranteed to find

the optimal schedule, but the exponential time complexity of the

scheduling problem limits the algorithm to small problems. The

execution ti me performance of the OPTIMAL SCHEDULER is reported in

detail in Chapter 4. It is sufficient here to note that a prob 1 em with

only sixteen tasks and three processors may require evaluating over ten

million schedule nodes, representing several hours of ~omputing time.

This time would grow to days and years with small increases to the

numbers of tasks or processors. Thus, in order to schedule large

numbers of tasks and processors, we must relax our goal of optimality

and look for heuristics which will produce a "reasonably good" schedule.

Heuristic scheduling approaches are difficult to compare without a

known baseline. Our technique for comparison is to develop a benchmark

set of schedules with known optimal schedules. We will then compare our

heuristic to that benchmark. We also need to show how our heuristic

compares to other researchers' approaches. Since their specific results

are not generally available and reproducible, and since they did not

evaluate their algorithms against an optimal baseline, we have

developed the constraint relaxing algorithm to empirically evaluate

their approaches.

The key about other researchers' approaches is that they do not

consider one or more of the practical scheduling constraints, as shown

in Chapter 2. We will refer to a constraint not consid.ered as a relaxed

74

constraint. We can model their scheduling approach using our optimal

algorithm, with the corresponding constraints relaxed, and call the

resulting schedule a relaxed schedule. Our optimal algorithm will

obviously produce a relaxed schedule at least as good as any other

scheduler implementation. We can then measure the true length of the

relaxed schedule by simulating that schedule with the actual scheduling

problem with a 11 constraints. The resulting 1 ength from the re 1 axed

schedule is a good measure of the scheduling approach which does not

consider the specific constraint. The constraints we will allow to be

relaxed are communication requirements, precedence relations, and

variable task execution times.

3.3. 1 Constraint Relaxing Heuristic Overview

The constraint relaxing heuristic works in three steps:

1. Relax selected constraints of actual problem

2. Find schedule for relaxed problem

3. Use relaxed schedule for actual problem with all constraints

reintroduced

Note that the re 1 axed s chedu 1 e found in step 2 wi 11 provide the

allocation of tasks to processors and the sequencing of tasks within a

processor. Step 3 wi 11 then use the re 1 axed schedu 1 e to determine the

actual start and finish times for each task and the actual schedule

length. As noted in 3.1.3, we can evaluate the schedule length by

75

reconstructing the actual events given the order of the events. We will

'perform an event-based s i mu 1 a ti on of the task executions and use the

defined order of events to resolve any conflicting event options. The

resulting schedule length will be the measure for evaluating the

relaxed schedule.

We find the relaxed schedule using the optimal schedule algorithm

with the selected constraints neutralized. For example, the precedence

constraints might be eliminated or the task executions times might be

set to a constant. Another researcher 1 s scheduling algorithm could be

used here in place of our own optimal scheduling algorithm. But for

comparison purposes, .our optimal algorithm produces a relaxed schedule

which is at least as good <short schedule length) as an algorithm from

the previous research which does not consider the relaxed constraint.

The CONSTRAINT RELAXING procedure is shown in Figure 14. The

executive first relaxes the selected set of constraints by calling SAVE

CONSTRAIN. SAVE CONSTRAIN s imp 1 y saves a copy of the prob 1 em and then

neutralizes the selected set of · constraints. The executive then calls

the normal OPTIMAL SCHEDULER procedure to find the optimal relaxed

schedule. The ori gi na 1 constraints are restored by RESTORE CONSTRAIN

and the the re 1 axed s chedu 1 e is eva 1 ua ted for the fu 11 y constrained

scheduling problem. The evaluation is performed using the allocation

. developed for the relaxed schedule. The schedule events are determined

by calling FIND NEXT SEQUENCE once. There is only one possible sequence

to "search" since the sequence is defined by the relaxed schedule.

procedure CONSTRAINT.RELAXING <PROBLEM,SCHED)
PROBLEM - input definition of application and

architecture characteristics/constraints
RELAX.PROBLEM - problem definition with relaxed constraint

removed
RELAX.SCHED - the optimal schedule for the realxed problem
ALL allocation mapping
FEAS.SEQ boolean denoting feasible sequence
SEQ sequencing of allocation
SCHED.FOUND - boolean denoting feasible schedule found
SCHED complete schedule = <ALL,SEQ>

;subroutines called
SAVE.CONSTRAIN

OPTIMAL SCHEDULER
!NIT.SEQUENCE

FIND.NEXT.SEQUENCE

REPORT

record original constraints and remove
constraints to be relaxed
finds optimal schedule for relaxed prob.
initialize sequence variables for the

current allocation
searches forward to find a new feasible

sequence for the current allocation
reports the optimal feasible schedule

or reports no feasible schedules exist

first find the optimal schedule for the relaxed problem

call SAVE.CONSTRAIN (PROBLEM, RELAX.PROBLEM)
call OPTIMAL.SCHEDULER <RELAX.PROBLEM, RELAX.SCHED)

now evaluate the relaxed schedule on fully constrained problem

call RESTORE.CONSTRAIN <PROBLEM, RELAX.PROBLEM)
call SET.ALLOCATION <RELAX.SCHED, ALL)
call !NIT.SEQUENCE -
call FIND.NEXT.SEQUENCE'<ALL,SEQ,FEAS.SEQ)
if <FEAS.SEQ) then call REPORT <SCHED>
else call REPORT (false)

end procedure

Figure 14. Constraint Relaxing Heuristic Procedure.

76

77

3.3.2 Constraint Relaxing Subroutines

Three new subroutines defined for this heuristic are READ

CONSTRAIN, SAVE CONSTRAIN, and RESTORE CONSTRAIN. These subroutines sim

ply provide the logic to determine which constraints should be relaxed,

relax the selected constraints, and restore the selected constraints.

We also modify FIND NEXT SEQ to force the task execution order of

the rel axed s chedu 1 e to be repeated. Ac tua 11 y, we imp 1 ement this by

modifying NEXT SEQ (from the optimal scheduler, Figure 13) so that when

the next start event must be in accordance with the order of the

relaxed schedule. The modified version of NEXT SEQ is given in

Figure 15. The only modification is that the subroutine GET HIGH

PRIORITY is called before searching for start events. GET HIGH PRIORITY

uses the task execution order from the relaxed schedule to control when

ready tasks are allowed to begin execution. In effect, the order of the

relaxed schedule becomes another precedence constraint because tasks

are restricted to execute in the order of the relaxed schedule.

3.3.3 Constraint Relaxing Scheduler Time Complexity

The time complexity of this algorithm can be developed by examining

the major components called by the CONSTRAIN executive:

o READ, SAVE, RESTORE CONSTRAIN = O(n)

o Find relaxed schedule = O<OPTIMAL SCHEDULER)

o Evaluate relaxed schedule = O<nlogn)

subroutine NEXT.SEQ <EVENT, FEAS.SEQ)
;variable definition

EVENT index of current event
FEAS.SEQ boolean set false if constraint violated
FOUND.EVENT - boolean set true if an event is found
PROC local index to check all processors

;subroutines called
FIND.START checks if a ready task is available to be

started on the processor
FIND.FINISH - called if no starts available. Finds the

next task finish and advances clock to finish
GET.HIGH.PRIORITY - get highest priority task for each proc.

set FEAS.SEQ = true
set FOUND.EVENT= false

call GET.HIGH.PRIORITY

do for PROC = 1 to M
call FIND.START <EVENT, PROC, FOUND.EVENT, FEAS.SEQ)

if <not FOUND.EVENT and FEAS.SEQ)
call FIND.FINISH <EVENT, FOUND.EVENT, FEAS.SEQ)

return

Figure 15. Modified Next Sequence Subroutine.

78

79

For our case, the OPTIMAL SCHEDULER is exponential so the overall

complexity is exponential. However, we could have found a nonoptimal

relaxed schedule using a heuristic, such as the heuristics of previous

researchers. Si nee a 1 most every heuristic is at 1 east 0(n 1 ogn) , the

overall complexity would be governed by the complexity of the heuristic.

3.4 Dynamic Priority Heuristic

This heuristic is based ·on the simple list scheduler with some

modifications to dynamically adjust the priority list order. In a list

scheduler, tasks are scheduled during actual application processing.

Idle processors request a task for execution and the scheduler selects

one of the ready tasks <tasks with all · precedence relations satisfied)

for that processor. The selected ready task is scheduled onto that

processor for execution. When the task finishes execution, the processor

becomes idle again and requests another task for execution. This is

called list scheduling since the scheduler selects a ready task for an

idle processor based on a schedule list which prioritizes the tasks.

This heuristic develops a schedule by simulating the operation of

a 1 i st scheduler. We use the same event-based simulation used by the

optimal scheduler <reference 3.2.3) and by the constraint relaxing

heuristic (reference 3.3.2). For our heuristic, the event-based

simulation keeps track of the start and finish of tasks. Each time a

task finishes, the list scheduler will assign one of the ready tasks to

the idle processor. We record the order of execution of the simulated

operation and that order serves as the schedule.

80

This dynamic priority heuristic prioritizes the schedule list in

an attempt to produce a short schedule length. The priority of each

task is developed using the different constraints defined in 3.1, such

as task execution, task communication, deadlines, etc. The priority is

dynamic because the priority of a given task will depend on the

previous scheduling activity up to the moment the task is scheduled.

We also introduce a lookahead extension which allows the scheduler

to accommodate high priority tasks which are "almost ready." This

mechanism allows the scheduler to anticipate that a high priority task

will be ready to execute soon. The scheduler can then reserve a

processor for the high priority task so that the high priority task can

begin execution as soon as it becomes ready.

3.4.l Dynamic Priority Heuristic Overview

The dynamic priority heuristic performs an event-based simulation

of the tasks executing on the set of processors. The priority of each

ready task is computed for every idle processor and the task with the

highest priority is scheduled onto the corresponding processor. The

task with the highest priority and the processor it is scheduled on are

removed from the set of ready tasks and set of idle processors,

respectively. The scheduling process repeats for the remaining ready

tasks and idle processors until no more ready tasks or idle processors

are available. The simulation then advances to the next event.

81

The task priority is computed as a weighted sum of factors derived

from the practi ca 1 constraints defined in 3. l. Some of these factors

give priority to one task over another and some of these factors give

priority to one processor over another for a specific task. The factors

are:

o Task execution time
- variable per processor. Favors processors which

execute the task faster <called TASK EXEC)
- variable between tasks. Favors tasks which

require longer execution <called PROC EXEC)

o Precedence relations
- precedence level - favors tasks at a higher level

of precedence (i.e., fewer ancestors)
- descendant degree - favors tasks with a large

number of immediate descendants

o Intertask/interprocessor communication - favors
processors which reduce the task's
communication requirement

o Task execution deadline - favors tasks which have
immediate deadlines

o Task memory requirement - favors processors which
have a lot of available memory

Note that the CP/MISF <critical path/most immediate successors first)

heuristic described by Kasahara <reference section 2.4. l) is a subset

of our dynamic priority heuristic. Our task execution deadline priority

is equivalent to Kasahara's critical path priority and our descendant

degree priority is equivalent to Kasahara's MISF priority. Our

heuristic provides for additional constraints <e.g. communication and

memory) as well as nonhomogeneous processors. The key difference which

allows these additional constraints to be accommodated by our heuristic

82

is the dynamic priority computation which continually adjusts to the

previously allocated tasks.

The lookahead extension is implemented by adding the almost ready

tasks to the set of ready tasks discussed above. An almost ready task

must have all precedence relations satisfied except for one or more ex-

ecuting antecedents. These execution antecedents must complete execution

during a defined lookahead time window. Thus, an almost ready task is

guaranteed to become ready during the time period defined by the look

ahead window. If an almost ready task has a sufficiently high priority,

then an idle processor will be forced to remain idle (i.e., reserved for

the almost ready task) until the almost ready task becomes ready.

If an almost ready task is chosen as the highest priority task on a

given processor, that processor is "assigned" the almost ready task

which forces the processor to be idle until the next scheduling event

<since the almost ready task can't begin execution yet>.

The factors which control the lookahead extension are:

o Lookahead window - period of time used in lookahead
computation

o Lookahead weight - fractional weight to reduce the priority
of almost ready tasks in comparison to ready tasks

The dynamic priority scheduler procedure is shown in Figure 16.

The procedure first ca 11 s I NIT SEQUENCE to in i ti a 1 i ze the event-based

simulation. Then !NIT PRIOR is called to compute the initial task

priorities. INIT PRIOR computes the priorities of all tasks which have

no antecedents and are therefore ready to start at the first event.

procedure DYNAMIC.PRIORITY <PROBLEM,SCHED>
PROBLEM input definition of application and

architecture characteristics/constraints
ALL allocation mapping
FEAS.SEQ boolean denoting feasible sequence
SEQ sequencing of allocation
SCHED complete schedule = <ALL,SEQ>

;subroutines called
!NIT.SEQUENCE

INIT.PRIOR
FIND.NEXT.SEQUENCE

REPORT

call !NIT.SEQUENCE
ca 11 I NIT. PRIOR

initialize sequence variables for the
current allocation

initialize task priority parameters
searches forward to find a new feasible

sequence for the current allocation
reports the optimal feasible schedule

or reports no feasible schedules exist

call FIND.NEXT.SEQUENCE' <ALL,SEQ,FEAS.SEQ>
if <FEAS.SEQ> then

set SCHED = <ALL,SEQ)
call REPORT <SCHED)

else call REPORT (false)

end procedure

Figure 16. Dynamic Priority Heuristic Procedure.

83

84

INIT PRIOR also computes some of the priority factors <those that have

a constant value regardless of the sequence of events) for all tasks.

The procedure then ca 11 s FI ND NEXT SEQUENCE, once, to find the task

allocation and schedule. As for the constraint relaxing heuristic, FIND

NEXT SEQUENCE performs the event-based simulation and is modified by

using the NEXT SEQ version shown in Figure 15. For this dynamic

priority heuristic: however, the GET HIGH PRIORITY subroutine makes all

of the allocation and scheduling decisions based on task priorities,

rather than on a relaxed schedule.

3.4.2 Dynamic Priority Subroutines

The dynamic priority procedure requires two new subroutines: !NIT

PR I 0 R and GET H I G H PR I 0 R ITY . IN IT PR I 0 R deter mi n e s the i n i t i a 1 task

priority as described above. The GET HIGH PRIORITY subroutine is shown

in Figure 17. It first determines the set of ready tasks, almost ready

tasks, and idle processors. It then enters a loop in which either all

of the ready tasks are allocated to a processor, or all of the

processors have tasks allocated to them. At each iteration of the loop,

a 11 of the ready and a 1 most ready tasks are eva 1 ua ted for a 11 of the

idle processors. The highest priority combination of task and processor

is determined and that task is assigned to that processor. The task and

processor are then e 1 i mi na ted from their respective sets and the 1 oop

continues until one of the sets is empty.

subroutine GET.HIGH.PRIORITY
;variable definition

WINDOW size of lookahead window
READY set of tasks currently ready
ALMOST set of tasks becoming ready during window
IDLE.PROC set of idle processors
HIGH.TASK ready or almost ready task with hi priority
HIGH.PROC processor on wich HIGH.TASK has priority

;subroutines called
FIND.READY.TASKS
FIND.IDLE.PROC
FIND.HIGH.TASK

ASSIGN.HIGH

find set of ready and almost ready tasks
find set of idle processors
find highest priority ready or almost
ready task for all idle processors
reserve the HIGH.PROC for the HIGH.TASK

<HIGH.PROC is idled if HIGH.TASK almost ready)

call FIND.READY.TASKS <WINDOW, READY, ALMOST)
ca 11 FI ND. IDLE .. PROC (IDLE. PROC>

do while < <IDLE.PROC not empty) and <READY not empty))
call FIND.HIGH.TASK <HIGH.TASK,HIGH.PROC, READY, ALMOST, IDLE)
call ASSIGN.HIGH <HIGH.TASK, HIGH.PROC)
set IDLE.PROC = IDLE.PROC - HIGH.PROC
if <HIGH.TASK member READY) then set READY= READY - HIGH.TASK
else set ALMOST= ALMOST - HIGH.TASK

return

Figure 17. GET HIGH PRIORITY Subroutine for Dynamic Priority.

85

86

3.4 .. 3 Dynamic Priority Time and Space Complexity

The time complexity of this heuristic is driven by the subroutine

GET HIGH PRIORITY which computes the priority for each ready and almost

ready task and idle processor. At any given time, n tasks could be

ready and m processors could be idle, requiring O<n*m) calculations to

determine the highest task for one processor. This is then repeated for

each idle processor, requiring 0 <n*m 2
). The event simulator calls

GET HIGH PRIORITY as each task is scheduled, giving a total complexity

of O<n 2 *m 2
). This type of polynomial complexity is acceptable in

order to schedule large numbers of tasks and processors in a reasonable

amount of computational time.

The space complexity of this heuristic is largely determined by

the space required to store the input definition of the problem,

O«n+m) 2
). The list scheduler simulation maintains the status of each

processor using O<m> space and maintains the status of each task using

Q(n) space. The priority calculation equations use a constant space

s i nee the task priorities are computed in sequence and on 1 y the ·highest

is saved. For an application of this heuristic to a realtime scheduler,

some of the priority components could be precomputed and stored for

each task and processor, thus trading off O<n*m> space for reduced

computation time.

CHAPTER 4 SCHEDULING ALGORITHM RESULTS AND ANALYSES

The three algorithms discussed in Chapter 3 were coded in FORTRAN

77 and executed on a VAX computer. This chapter discusses the results

gathered by exercising these algorithms on a variety of test cases. The

results are used to characterize and compare the scheduling performance

and time complexity of the different algorithms.

4. 1 Empirical Procedure

The results are gathered by using a given scheduling algorithm to

schedule a set of scheduling instances. Each scheduling instance

specifies all of the task and processor characteristics <execution

time, deadlines, communication distances, etc.) needed for the

schedu l i ng prob 1 em. For each s chedu 1 i ng instance, the tot a 1 s chedu 1 e

length is recorded if a feasible schedule is found. The number of

scheduling nodes examined is also recorded to measure the computation

time required for the schedule. A scheduling node is either an

allocation or sequence node in the respective search trees.

A large set of instances is required to develop a good measure of

the algorithm performance for comparison or prediction purposes. We

developed an "instance generator" which randomly creates scheduling

instances from user-supplied bounds for each of the problem

characteristics: task execution length, amount of communication,

87

88

probability of precedence links, and so on. The instance generator

random l y as s i g n s spec i f i c v a 1 u e s w i th a u n i form d i s tr i but i on b e't ween

the user-supplied upper and lower bounds. Thus the random execution

time will fall 'between the execution bounds and the random

communication time will fall between the communication bounds, etc.

The random precedence relationships are created by randomly

defining direct precedence links between tasks. The user-supplied

precedence percentage defines the probab i 1 i ty that a precedence 1 ink

will be specified between each Ti and Tj for i = l ... N-1 and j = i+l

N. To keep the tasks in precedence related order, a task Ti can be

the antecedent of Tj (ioe . , Ti<* Tj) only if i < j. Thus the

precedence matrix is always upper triangular and all precedence

relationships are acyclic. Once this initial precedence matrix is

created, a 11 redundant precedence 1 inks are removed so that Ti <* Tj

implies that there is no Ti <* Tk and Tk <* Tj for a.11 i. As an

example, if Tl <* T2 and T2 <*TS and Tl<* TS, then Tl<* TS is

redundant and is removed. The fi na 1 precedence matrix defines those

pairs of tasks which have a direct precedence relationship and which

may have intertask communication <using the communication bounds to

determine the amount of communication).

An example execution .time, communication time, and precedence

percentage is given by:

Execution time: lower bound = 200, upper bound = 8500

Communication time: lower bound = 500, upper bound = 4000

Precedence: percentage = 60%

89

Two example scheduling instances created using these controls are given

in Figure 18. Note that all execution times are between the bounds

(200, 8500), the precedence matrix is upper tr i angu 1 ar, and the

communication values are within the communication bounds <S00,4000).

The tasks with communication correspond to the precedence matrix since

communication occurs only between tasks with direct precedence links.

This generator was set up to produce many random instances for a

specific number of tasks and processors. Most of the following results

examine the importance of a particular variable for a range of tasks

and processors and each samp 1 e point represents the performance for a

particular number of tasks and processors. For a given sample point,

several instances are generated and evaluated using the scheduler. The

average of the results is used to characterize that sample point. When

comparing two different scheduling algorithms, the exact same set of

cases is used for each algorithm by manipulating the random number

generator seed value.

4.2 Optimal Scheduler Performance

4.2. 1 Optimal Scheduling Example

This section uses the image generator scheduling problem discussed

in Chapter 1 to illustrate the operation of the optimal scheduler. We

give some of the allocations and sequences which were examined by the

scheduler to determine the optimal schedule. The optimal schedule

length is shown to be 14500 time units. This is the same length as the

Of TASKS<N> • 8 II OF PROCS<M> • 3 I OF TASKS<N> • 8 # OF PROCS<H> m 3

· Q MATRIX PROCESSOR Q MATRIX PROCESSOR
1 2 3 1 2 3

TASK TASK
1 1948 1488 499 1 6635 8238 7110
2 5085 1542 5786 2 1672 4838 6478
3 3848 3451 3478 3 2223 7539 1130
4 4423 3990 1531 4 2470 2005 7194
s 5771 3150 960 5 249 1447 7241
6 2523 4539 5326 ·6 6778 1140 4735
7 3897 5722 8360 7 5504 4332 2159
8 5338 4448 4349 8 4242 4385 5532

PRECEDENCE MATRIX FOR Na 8 PRECEDENCE MATRIX FOR Nm 8
1 2 3 4 s 6 1 8 1 2 3 4 5 6 7 8

1 0 1 0 0 0 0 0 0 1 0 0 l 1 0 0 0 0
2 . 0 0 1 0 0 0 0 0 2 0 0 0 1 0 0 0 0
3 0 0 0 1 1 0 0 0 3 0 0 0 0 0 1 0 1
4 0 0 0 0 0 1 0 0 4 0 0 0 0 1 0 0 0
5 0 0 0 0 0 0 0 1 5 0 0 0 0 0 1 0 1
6 0 0 0 0 0 0 1 1 6 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0

COMMUNICATION MATRIX FOR N- 8 COMMUNICATION MATRIX FOR N• 8
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 3750 0 0 0 0 0 0 1 0 0 2085 2572 0 0 0 0
2 0 0 3536 0 0 0 0 0 2 0 0 0 2415 0 0 0 0
3 0 0 0 2572 1746 0 0 0 3 0 0 0 0 0 1603 0 1545
4 0 0 0 0 0 1598 0 0 4 0 0 0 0 810 0 0 0 s 0 0 0 0 0 0 0 1901 5 0 0 0 0 0 2557 0 836
6 0 0 0 0 0 0 3633 3181 6 0 0 0 0 0 0 2239 0
7 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0

DISTANCE MATRIX DISTANCE MATRIX
1 2 3 1 2 3

1 0 1 l 1 0 1 1
2 1 0 1 2 1 0 1
3 1 1 0 3 1 1 0

Figure 18. Random Instances Created by Random Instance Generator.

91

schedule given in Figure 5 of Chapter l, although the two optimal

schedules differ in the allocation of tasks 5, 6, 7, and 8.

The optimal scheduler begins by finding the first feasible

allocation. There are a total of 10,935 possible allocations (3 8 *5/3)

for the 3 processors, 8 tasks and 2 configurations for tasks 7 and 8

<actually only 5/3 configurations since, in the pipeline mode, task 7

and 8 must be on different processors). The first allocation is built

by placing each task on the processor which gives the shortest

execution and commun i ca ti on ti me. The first a 11 oca ti on can be

represented using the notation of 3.1, where an allocation is a mapping

for each task to a processor and configuration:

A=< (3,1), (1,1), (3,1>, (1,1>, (1,1), (1,1>, (1,2), (1,2))

This allocation is feasible and a feasible sequence is immediately

found which is shown in Figure 19a. The s chedu 1 i ng a 1 gor i thm records

this feasible schedule of 16,000 time units and establishes a new

deadline of 15,999 time units. No further sequences of this allocation

<e.g., rearranging the execution order of tasks 4, 5, and 6) are

feasible since the resulting schedule length is at least 16,000 units.

When all of the sequences of feasible allocation #1 are exhausted,

a new feasible allocation is found. New feasible allocations are found

by allocating tasks 7 and 8 .to different processors, but this does not

improve the schedule length. The ninth feasible allocation allocates

task 6 to a different processor (P2) which leads to a feasible sequence

with length 14,500 as shown in Figure 19b. This feasible schedule is

recorded and the dead 1 i ne . is reduced to 14, 999.

1
I

Tl

lSOO

1
I

Tl

1500

2 3 4 s 6
I I I I I

I
3 : 11

~: T2 ~ : T4

2' 4 I
I lSOO ! 2SOO .

T3

1500

t
(MILLISEC)

7 8 9 10 11 12 13 14 lS 16
I I I I I I I I

T6 R TS T7
s E

8 c
3000 0 4SOO

N 6 F Ta I ~ G
u 8 4SOO
R
E I

I
I
!

a) Schedule resulting from first feasible allocation.

2 l 4 s 6
I I I I I

i' 3 I

Tl
T2

' !
T4

2• I 1500 4 I 2500

2 ~6
~

I
15
10 6 ,o

T3

lSOO
b) Optimal Schedule.

7 a
I I

Ts

3000

t
(MILLISEC)

9 10 11 12 13 14 lS 16
I I I I I I I

R T7
E
c
0 4500
N
F Ta
I
G
u 4500
R
E I

I
I
I
I

Figure 19. Optimal Scheduler Solution of Example Problem.

92

--

--

93

No other feasible sequences can be found with a schedule length

less than 14,500, so this is optimal. A total of 190 feasible

allocations were found and tested, but only allocations #1 and #9 led

to feasible schedules as shown. In order to find those 190 feasible

allocations, a total of · 462 allocation nodes were searched in the

forward direction. Note that a full allocation tree of 10,935 leaf

nodes (3a.5/3) has an additional 5,466 internal nodes <2* <3 1 +

+ 31
)). Thus, by pruning the allocation tree using the available

constraints, only 462 I 16,401 or 3% of the tree nodes were searched.

For the two feasible sequences, 2,272 sequencing nodes were

checked. These sequences included permuting tasks on the same processor

<such as tasks 4, 5 and 6 on Pl of allocation #1) and introducing idle

ti mes before starting any task <e.g. , de 1 ayi ng the start of task 2

until task 3 finishes in case a dependent of task 3 should precede task

2). For allocation #1 there are a total of 174 million sequences for

the tasks ((2*5)[<2*1)[(2*2)[) where each task can be preceded by

idle ti me. Most of the sequences are never considered because they

violate precedence rules. Our algorithm had to consider only a small

fraction (2,272 I 174 million) by enforcing the precedence rules and

checking task deadlines as tasks were scheduled.

The total number of nodes our algorithm searches is therefore

2,734 (462 allocation + 2,272 sequence). This is a good measure of the

computational time required since the computations required at each

node are roughly constant. <There are some search functions dependent

on the number of tasks and processors but these functions are not a

94

significant component overall.) A larger scheduling problem searching

4 million nodes requires about 1/2 hour run time (15 minutes CPU) on

the VAX 8600 under VMS. This equates to 450 microsec per node <225 CPU

mi crosec). Note that only forward nodes are counted and every forward

node is subsequently backtracked. Thus the time per node includes both

the forward and backtrack computations.

4.2.2 Optimal Scheduler Evaluation

The optimal scheduler was exercised for a variety of random cases.

This section presents the statistics gathered for over 2000 test

problems. These statistics will serve as an optimal baseline against

which we compare our priority scheduling algorithm and the versions of

the constraint relaxing algorithm corresponding to other researchers'

approaches. The comparison is done later in 4.3. This section examines

the optimal results themselves to characterize how the general

characteristics of sets of random cases affect the average schedule

length and average schedu 1 i ng ti me · < i . e., number of nodes searched to

find the schedule).

The statistics shown in figures 20 through 24 record the average

schedule length and average scheduling nodes as a function of m, the

number of processors (independent axis), n, the number of tasks (family

of curves) and p, the precedence percentage (different graphs within a

figure). The execution and communication bounds are fixed for any

figure. Each graph is a set of sample points linearly connected

according to the number of tasks in the sample. The schedule length,

SET CHARACTERISTICS KEY TO SYMBOLS
execution bounds (200,8500) n = # of tasks SL = schedule length
cormlunication bounds (500,4000) m = # of processors

n n SL 70 20\ SL 70 SL 70 SL 70

60 60
20\

60 60
-- ...

16 n
50 50 16 50 50 n

40
12 °'-- 40 12 40 40 16~

....

Lk 12~ 30
80 ~ 30 30 30

8

20 -~ 20 20-8~ 20 8~-0
10 10 10 10

0 0 0 0
1 2 3 4 5 6 m 1 2 3 4 5 6 m 1 2 3 4 5 6 m 1 2 3 4 5 6 m

a) 80% Precedence b) 70% Precedence c) 60% Precedence d) 50% Precedence

n
SL 40 SL 40 n SL 40 SL 40

16°'o n n

30 30 12 30 12 30 16.

20 20 20 20 12

8~ 8

10 10 10 10 8

0 0 0 0
1 2 3 4 5 6 m 1 2 3 4 5 6 m 1 2 3 4 5 6 m 1 2 3 4 5 6 m

e) 40% Precedence f) 30% Precedence g) 20% Precedence h) 10% Precedence

Figure 20. Set 1 Optimal Schedule Length Results.

SET CHARACTERISTICS KEY TO SYMBOLS
execution bounds (200,8500) n = I of tasks SN = schedule nodes
cornnunication bounds (500,4000) m = # of processors

log(SN) l og(SN) l og(SN) log(SN)
6 6 6 6 -5 • 5 5 5

2~ if°'
4 4 4 4

16 16
12 12 12 12

3-

8~
3 3 3-

8 2 2 8 2 2

1 1 1 1
1 2 3 4 5 6 m 1 2 3 4 5 6 m 1 2 3 4 5 6 m 1 2 3 4 5 6 m

a) 80% Precedence b) 70% Precedence c) 60% Precedence d) 50~ Precedence

log(SN) ~og(SN~ log (SN) log(SN~
6 6 6 12

16~
16

5 5 5 5
12

4
12 4

12
4 4 8~

3 3 8 3 3
8

8
2 2 2 2

1 1 1 1
1 2 3 4 5 6 m 1 2 3 4 5 6 m 1 2 3 4 5 6 m 1 2 3 4 5 6 m

e) 40% Precedence f) 30% Precedence g) 20% Precedence h) 10% Precedence

Figure 21. Set l Optimal Schedule Node Results.

SET CHARACTERISTICS
execution bounds (200,8500)
comm uni cation bounds (2000 9 5000)

SL
70

60

50

16~

12°""' ~
40 '-"'-0----()

30 8~
20

10

1 2 3 4 5 6 m

a) Scedule Length for
80% Precedence

log(SN)
7

6

5

2 3 4 5 6 m

d) Schedule Nodes for
80% Precedence

KEY TO SYMBOLS
n = # of tasks SL = optimal schedule 1ength
m' = # of processors SN = # nodes to compute schedule

SL
70

60 !!.

50 16~-
4012~

8~
30

20

10

2 3 4 5 6 m

b) Schedule Length for
60% Precedence

log(SN)
7

6

5 !!.
16

4
12

3

2

SL
70

60

10

0
2 3 4 5 6 m

c) Schedule Length for
40% Precedence

log(SN)
7

2

97

2 3 4 5 6 m 2 3 4 5 6 m

e) Schedule Nodes for
60% Precedence

f) Schedule Nodes for
40% Precedence

Figure 22. Set 2 Optimal Results - More Communication Time.

SET CHARACTERISTICS
execution bounds (2000,6700)
corrrnunication bounds (500,4000)

SL
70

60

50

40

30

20

10

16~

14 0-.o--o---o

aO-O-O---O

2 3 4 5 6 m

a) Scedule Length for
80% Precedence

log(SN)
7

6

5

4

3

2

2 3 4 5 6 m

d) Schedule Nodes for
80% Precedence

KEY TO SYMBOLS
n = * of tasks SL = optimal schedule length
m = # of processors SN = # nodes to compute schedule

SL
70

60

50
16~

-
40 12~
30

20
8~

10

2 3 4 5 6 m

b) Schedule Length for
60% Precedence

1 og(SN)
7

6

5

4

3

2

•

SL
70

60

50 ~

16Q
40 .. "0-----
12~ - -

30 ~~

20
8 0-o--o---o

10

0
2 3 4 5 6 m

c) Schedule Length for
40% Precedence

l og(SN)
7

4

3

98

2 3 4 5 6 m 2 3 4 5 6 m

e) Schedule Nodes for
60% Pree edence

f) Schedule Nodes for
40% Precedence

Figure 23. Set 3 Optimal Results - Less Execution Variance.

SET CHARACTERISTICS
execution bounds (2000,6700)
communication bounds (2000,5000)

SL
70

60

50

40

30

20

10

16~

12 0-0--o---o

2 3 4 5 6 m

a) Scedule Length for
80% Precedence

1 og(SN)
7

6

5

4

16/ 12

8

3

2

2 3 4 5 6 m

d) Schedule Nodes for
80% Precedence

99

KEY TO SYMBOLS
n = #of tasks SL =optimal schedule length
m = # of processors SN = # nodes to compute schedule

SL
70

60

50

40

30

20

10

16~

--....
12~

2 3 4 5 6 m

b) Schedule Length for
60% Precedence

log(SN)
7

6

5

4

3

2

2 3 4 5 6 m

e) Schedule Nodes for
60% Precedence

SL
70

60

50 !!. 160-.o___
40 -~
12~

30 ~

20 8~

10

0
2 4 5 6 m

c) Schedule Length for
40% Precedence

log(SN)
7

6

5

4

3

2

2 3 4 5 6 m

f). Schedule Nodes for
40% Precedence

Figure 24. Set 4 Optimal Results - More Communication, Less Execution.

100

SL, is shown in thousands of time units. The number of scheduling nodes

is shown on a logarithmic sea 1 e because of the exponenti a 1 character.

The graphed value for the number of scheduling nodes, SN, is defined by

SN = log 10 <number of nodes). Thus SN = 6 corresponds to 1 mi 11 ion

nodes searched.

The sample point is the average value for 10 random cases created

using the specified number of tasks, number of processors, precedence

percentage, execution bounds, and communication bounds. Some sample

points are the average of fewer than ten cases, and this is indicated

on the graphs using a dotted line and solid sample point. This

condition occurs when the computational time required to find the

schedule for all ten cases exceeded our computational limits. The

partial results are therefore given as an approximation to the full set

of ten cases.

All scheduling cases used nonhomogeneous processors with a simple

cross bar type communication network <unit distance between processors

and zero distance within a processor). The memory constraints were

defined so that 70% of the tasks could be allocated to a single

processor. The dead 1 i ne for a 11 tasks was set equa 1 to the combined

average sequential execution time of all tasks.

The first set of results <Set 1) are given in figures 20 and 21.

Figure 20a-h shows the average schedule length for scheduling instances

with task execution bounds of (200,8500), communication bounds of <SOO,

4000) and precedence percentages ranging from 80% to 10% for a-h,

101

respectively. The results are to be expected that more processors and

more task concurrency <smaller precedence percentages) lead to shorter

average schedule length. Even the cases which are highly precedent

constrained <e.g., 80% precedence in Figure 20h) show schedule length

improvements with more processors. This is because the processors are

nonhomogeneous, so adding processors may result in a particular task

executing faster on the added processor. This type of allocation based

on minimizing each task's execution time is partially offset by the

added communication between processors, but provides a net decrease in

the schedule length.

We found the variance in schedule length <within a sample of 10

cases) to be about 10% of the schedule length. This small variance is

representative of all the optimal results reported here. A small

variance indicates that a fairly good estimate can be developed based

on the general application characteristics <execution time variance,

communication variance, precedence, etc.) without detailed

characteristics of each task. Although all of our scheduling algorithms

require the detailed task characteristics to develop the schedule, some

applications could benefit from a good estimated schedule length.

The computational time measure for the Set l schedules are given

in Figure 21 a-h. The average number of computa ti ona 1 <or schedule)

nodes are given for each sample point of ten schedules. For the

different degrees of precedence, one can use this information to

estimate the largest size problem which can be solved using a specific

amount of computer resources. For a given precedence percentage, the

102

schedu 1 i ng nodes increase by near 1 y . an order of magnitude when the

tasks increase by four. We imposed a computa ti ona 1 1 i mi t of 4 mi 11 ion

nodes because of the 1 arge number of cases we processed < i . e., up to

40 million nodes for the ten schedules in one sample point). One can

predict, for example, that to schedule twenty tasks on three processors

with 30% precedence would require an average of ten million nodes. This

is near the practical limit. However, the actual scheduling times

varied widely about the average, with the variance frequently exceeding

the mean. Thus the hypothesized case with twenty tasks on three

processors with 30% precedence might require 100 million nodes or only

500,000.

The Set 2 problem characteristics are identical to Set 1 except

the task communication is increased relative to the task execution

time. In Set 2 the communication bounds are <2000,5000) so the average

communication is 3,500 and the variation in communication is 1:2.5. For

Set 1 the average c ommu n i cat i on was on 1 y 2 , 2 5 0 and the var i at i on was

greater <1:8). Figure 22 shows the schedule lengths for 80%, 60%, and

40% precedence. The schedule lengths are approximately 10% longer for

two processors due to the increase in average communication. Also note

that the schedule length does not decrease as quickly as more

processors are added. This is because the added communication

discourages scheduling tasks on a different processor just to reduce

the task execution time. The number of nodes required to schedule Set 2

is given in Figure 22 and is almost the same as the nodes required for

Set 1. This indicates that the scheduling computation time is not very

103

sensitive to different degrees of communication variation (1 :2.5 versus

1 : 8).

The third set of results characterize a smaller execution time

variation (2000,6700) but the same communication variation <500,4000)

as Set 1 . The average execution is the same but Set 3 has a 1 : 3. 3

variation instead of the 1 :42 variation of Set 1. The Set 3 schedule

length results in Figure 23 show that the length for 2 processors are

about the same as for Set 1, but the schedule length does not decrease

rapidly with more processors. This is caused by the smaller variation

in task execution lengths which has an equalizing effect on the

processors. The number of scheduling nodes for Set 3 are nearly the

same as for sets 1 and 2.

The last set of optimal results uses the larger average

communication of Set 2, communication bounds of (2000,5000), and the

smaller execution variation of Set 3, execution bounds of (2000,6700).

The results shown in Figure 24 confirms the earlier observations. The

schedule length does not reduce as quickly when the communication

increases and task execution variance decreases. The number of

scheduling nodes recorded in Figure 24 is approximately the same for

all sets and is thus relatively insensitive to changes in task

execution and communication time on average.

104

4.2.3 Optimal Scheduler Application as a Design Tool

One of the uses of an optimal scheduler is to evaluate how well

specific classes of applications will execute on different

multiprocessor architectures. This section illustrates this technique

by comparing four multiprocessor architectures: crossbar, ring, tree,

and star. We determine the average schedule length on each architecture

as a measure of their relative ability to support intertask

communication. For our test cases we used sixteen tasks and four

homogeneous processors. The execution bounds are <200,8500), the

communication bounds are (2000,5000), and the precedence values are 60%

and 40%. The memory constraint was set to force a distribution of tasks

onto all processors. A maximum of 1/3 the tasks could reside on any

single processor.

These four communication architectures or configurations are shown

in Figure 25a-d for four processors. Next to each configuration is the

interprocessor communication <IPC) matrix which is referred to as the

distance matrix, D<k,1,r) in · chapter 3. D<k,l,r) defines the

communication di stance (in time uni ts per word) from Pk to Pl using

configuration r. The values of D are computed using the "distance

weight" of each communication link between Pk and Pl and the delay

added by intervening processors. The distance weight of the links are

defined to keep the hardware complexity comparable in all

architectures. Thus, the crossbar network with twice as many links has

slower links <distance = 2) than the others (distance= 1). The delay

added by an intervening processor was defined to reflect the nature of

105

1 2 3 4 1 2 3 4

1 0 2 2 2 1 0 1 1 4

2 2 0 2 2 2 1 0 4 1

3 2 2 0 2 3 1 4 0 1

4 2 2 2 a 4 4 1 1 0

a) Crossbar and IPC Matrix b) Ring and IPC Matrix

l 2 3 4 1 2 3 4

l 0 1 l 2 1 0 1 1 1

2 l 0 2 5 2 1 0 3 3

3 l 2 0 1 3 1 3 0 3

4 2 5 l 0 4 1 3 3 0

c) Tree and IPC Matrix d) Star and IPC Matrix

Figure 25. Four Communication Configurations.

106

the specific architecture and varies as discussed below. The distance

matrix is alway~ symmetric and the diagonal is zero since communication

between tasks on the same processor is assumed instantaneous <e.g.,

shared memory).

For the crossbar architecture, each processor has a direct link to

all others so each di stance between processors is 2. For the other

architectures, the distance between processors directly connected is 1

and the distance between other processors is the sum of links and delay

from intervening processors. For the ring network which generally

consists of independent processors, each intervening processor

introduces two units of delay, e.g., 0(1 ,3,ring) = 1. The tree

architecture is typically designed to efficiently spawn tasks to and

retrieve results from immediate descendants. Therefore we defined zero

units delay for an intervening processor directly connecting the source

and destination processors. If the source and destination are not

immediate, then each intervening processor adds one unit of delay. Thus

0(2,4,tree) = 5 because of the delay of three links and two intervening

processors. The last architecture, the star, uses one unit of delay

when passing through the center processor, so the distance is 3 between

any two outside processors. Note that the average communication

distance is the same for all configurations (24/16 = 1.5). We verified

this empirically by randomly scheduling the sixteen tasks onto the

processors of the different configurations. When tasks are randomly

placed on the processors, all four architectures yield equivalent

average schedule lengths.

107

Figure 26 shows the comparison of the average optimal schedule

lengths for the four different architectures. Results were gathered by

optimal ly scheduling a set of 10 cases on each of the four

architectures and on a fifth "baseline" architecture, which is our ·

standard crossbar with unit distance between processors <average

communication distance of 0.75). Clearly the schedule lengths from each

of the four architectures will be at least as long as the baseline. The

results for each of the four architectures is represented as a

percentage longer than the baseline schedule length to simplify the

comparison. These res u 1 ts show that the tree and ring off er average

schedule lengths -nearly as good as the baseline, even though the

average communication distance is twice the baseline. This means that

the optimal scheduler is able to schedule tasks so that most

interprocessor communication uses the direct communication links with a

distance of 1. The star also performs well, but there is some

degradation because the fast local links exist only for the center

processor. The crossbar with distance weight of 2 performs very poorly,

20% to 35% longer than the baseline.

These results show that, although all four architectures ·are

equivalent for a random scheduling of tasks, a good scheduler can

exploit local communication links. A given amount of hardware

complexity is better utilized to provide fast local communication links

<such as for a tree or ring) even though some paths between processors

are quite long <e.g., distances of 4 and 5). This type of local

communication is better than guaranteeing a more average performance

Schedule Length
(% over Optimal Crossbar)

3

20

10

Notes: Optimal Crossbar has unit
distances and average
distance of 0.75.
Evaluated configurations have
average distance of 1.5.

40% precedence

60% precedence

CROSS
BAR

RING TREE STAR

Figure 26. Communication Configuration Schedule Length Comparison.

108

109

such as in the star or crossbar. At the same time, even if the tasks

are randomly scheduled, the tree and ring will perform at least as well

as the others.

4. 3 Comparison of Heuri sti·cs

This section examines how the constraint relaxing algorithm and

priority algorithm compare to each other and to the optimal algorithm.

These algorithms were run on a subset of the cases reported in 4.2.2.

The exact same set of scheduling problems is used when comparing the

performance at a given sample point. Therefore, the nonoptimal

algorithms will always produce average schedule lengths <and individual

schedule lengths) which are at least as long as the optimal schedule.

The average schedule lengths of the nonoptimal algorithms are reported

using the percentage over average optimal schedule length.

Three versions of the constraint relaxing heuristic are evaluated,

as discussed in 3.3. These versions are denoted COMM, PREC, and EXEC in

the following discussion. The COMM version does not consider intertask

communication when developing the relaxed schedule and represents the

expected results of Kartashev 1 s scheduling approach <reference 2.4.3).

The PREC version does not consider task precedence when developing the

relaxed schedule, but the communication time which should occur between

actual precedence-related tasks is considered. Therefore PREC will tend

to cluster tasks with large communication requirements on the same

processor. The PREC results represent the expected performance of the

graph theory technique (reference 2.2) and integer programming

110

techniques <reference 2.3). Note that PREC minimizes the schedule

length of the relaxed schedule (i.e., maximum sum of execution and

communication on individual processors) rather than minimizing the

overall sum of execution and communication times on all processors. The

third version of the constraint relaxing heuristic, called EXEC, does

not consider varying task execution time when developing the relaxed

schedule <a constant value is used). This version may be considered for

systems with nearly fixed length tasks, but does not directly

correspond to an approach suggested by the reviewed researchers.

Two versions of the dynamic priority algorithm were also

evaluated. The results labeled PRIOR represent the priority algorithm

performance without the lookahead ex tens ion. The same set of priority

weights was used for all PRIOR results reported here. The weight values

used are given by <see 3.4 for definition of weighting functions):

1) task execution weight - 4
2) processor execution weight - 40
3) precedence weight - 32
4) descendence weight - 4
5) communication weight - 32
6) deadline weight - 16
7) memory weight - 64

While the priority weights could be adjusted to optimize the

performance for each schedule, a more realistic approach i s to use a

standard set of weights for all schedules or perhaps to select a set of

weights based on the genera 1 characteristics (e.g. , execution variance,

ratio of communication to execution, etc.). In fact, we generally found

that the above weights gave good results for a 11 the cases we attempted

111

and that varying the weights did not provide significantly better

results. The apparent explanation why a single weight set works well is

that the weights are applied to the problem specific characteristics

<e.g., ratio of a task's execution to the average task execution).

Therefore the unique characteristics of the prob 1 em are accounted for

even though the weights remain the same.

The second version of the priority algorithm we evaluated is the

lookahead extension. The results of the lookahead extension are not

shown because the extension did not offer a significant improvement

over the PRIOR results. This disappointing result is discussed later.

The results of the algorithms are shown in figures 27 to 30. Each

.of the figures corresponds to the op ti ma 1 results of one of the four

sets discussed in 4.2.2. The measure for schedule length is the percent

longer than optimal schedule length, as discussed earlier. For these

figures, the important result is the comparison of the different

algorithms. Therefore, each curve represents the performance of one

particular algorithm for a given number of processors (independent

axis) and other problem characteristics fixed for the graph <number of

tasks, precedence, execution bounds, etc.).

Figure 27 corresponds to the Set 1 optimal results for 60% and 40%

respectively. The Set 1 characteristics are a large variation in

execution bounds <200,8500) and a fairly small amount of communication

<500,4000). The results show that all of the algorithms degrade as the

number of processors increase. While the optimal algorithm was

SET CHARACTERISTICS
execution bounds (200,8500)
CO!llllunication bounds (500 . 4000)

2 3 4 5 6 m

a) n=8, 60% precedence

2 3 4 5 6 m

a) n=8, 40% precedence

KEY TO SYMBOLS
n = II of tasks
m = # of processors

SLO = % over optimal
schedule length

2 3 4 5 6 m

b} n =12, 60% precedence

2 3 4 5 6 m

b) n=l2, 40% precedence

112

KEY TO ALGORITHMS

~
=DYNAMIC PRIORITY
= RELAXED COMMUNICATION
= RELAXED PRECEDENCE

()= RELAXED EXECUTION

SLO
70

60

~o

40

30

20

10

0
2 3 4

c} n=l6 , 60% precedence

SLO
70

60

50

40

30

20

10

6 m

o..__ _______ _
2 3 4 5 6 m

c) n=l6. 40% precedence

Figure 27. Set 1 Heuristic Schedule Length Results.

SET CHARACTERISTICS
execution bounds (200 8500)
c011111unication bounds (2000,sooo)

2 3 4

a) n=8, 60% precedence

SLO
70

60

50

40

30

20

10

6 m

2 3 4 5 6 m

a) n=8, 40% precedence

KEY TO SYMBOLS
n = # of tasks
m = I of processors

SLO = % over optimal
schedule length

2 4 5 6 m

b) n=l2, 60% precedence

SLO
70

60

50

40

30

20

10

2 3 4

b) n=l2, 40% precedence

.0

6 m

113

KEY TO ALGORITHMS
• = DYNAMIC PRIORITY

8 = RELAXED COMMUN !CATION
= RELAXED PRECEDENCE

Q = RELAXED EXECUTION

SLO
70

60

50

40

30

20

10

0
2 3 4 5 6 m

c) n=l 6, 60% precedence

SLO
70

60

50

40

30

20

10

2 3 4 5 6 m

c) n=l6, 40% precedence

Figure 28. Set 2 Heuristic Schedule Length Results.

SET CHARACTERISTICS
execution bounds (2000,6700)
colllllunication bounds (500,4000)

SLO
70

60

50

40

30

20

10

2 3 4

a) n=8. 60% precedence

6 m

2 3 4 5 6 m

a) n=8. 40% precedence

KEY TO SYMBOLS
n = I of tasks
m = # of processors

SLO = % over optimal
schedule length

2 3 4

b) n=l2. 60% precedence

6 m

2 3 4 5 6 m

b) n=l2, 40% precedence

KEY TO ALGORITHMS
A= DYNAMIC PRIORITY

114

8 = RELAXED COMMUNICATION
= RELAXED PRECEDENCE

Q = RELAXED EXECUTION

SLO
70

60

50

40

30

20

10

0
2 3 4

c) n=l6, 6Q% precedence

SLO
70

60

50

40

30

20

10

6 m

0----------2 3 4 5 6 m

c) n=l6, 40% precedence

Figure 29. Set 3 Heuristic Schedule Length Results.

SET CHARACTERISTICS
execution bounds (2000,6700)
co11111unication bounds (2000,5000)

2 3 4 5 6 m

a) n=8, 60% precedence

2 3 4 5 6 m

a) n=8, 40% precedence

KEV TO SYMBCX..S
n = I of tasks
m = I of processors

SLO = % over optimal
schedule length

2 3 4 5 6 m

b) n=l2, 60% precedence

2 3 4 5 6 m

b) n=l2, 40% precedence

11 5

KEY TO ALGORITHMS
• = DYNAMIC PRI~ITY

8 = RELAXED COMMUNICATION
= RELAXED PRECEDENCE

Q = RELAXED EXECUTION

SLO
70

60

50

40

30

20

10

0
2 3 4 5 6 m

c) n=l6, 60% precedence

SLO
70

60

50

40

30

20

10

2 3 4

c) n=l6, 40% precedence

6 m

Figure 30. Set 4 Heuristic Schedule Length Results.

11 6

consistently ab 1 e to reduce the s chedu 1 e 1 ength with more processors,

these algorithms are not as successful so the percentage· over optimal

increases. The priority algorithm produces the best schedules, in the

range of 10% to 30% over optimal. Note that the performance of PRIOR is

nearly the same for the 60% and 40% precedence cases. The next best

algorithm is COMM, but COMM degrades noticeably as the precedence

decreases from 60% to 40%. As the precedence percentage decreased, the

possible concurrency increases and COMM does not perform well with a

lot of concurrency. The performance of COMM degrades because, not

considering communication, it tends to spread tasks over many

processors which increases the communication time. The EXEC and PREC

versions of the constraint relaxing algorithm fare the worst and

degrade very rapidly as the number of processors increase.

Figure 28 corresponds to the Set 2 optimal results. Set 2 has a

larger amount of communication <2000,5000). The PRIOR algorithm

continues to perform the best with performance slightly poorer than for

Set 1. The COMM a 1 gori thm is again second with s i mi 1 ar performance to

Set 1 . The EXEC and PREC a 1 gor ithms cont i nue to perform very poor 1 y.

The same performance trends are shown for the Set 3 and Set 4 results

given in figures 29 and 30 respectively.

In summary, the dynamic pr .iority algorithm <PRIOR> performs the

best relative to the constraint relaxing versions. PRIOR's absolute

performance is in the range of 10% to 40% over optimal schedule length.

The performance of PRIOR does degrade as the . number of processors

increase, as does the performance of a 11 the other nonopti ma 1

117

algorithms. <As the number of processors increase, the optimal

schedu 1 es tend to decrease much faster than the nonopti ma 1 schedu 1 es.)

The average performance of the priority algorithm is fairly constant

over a variety of the other scheduling problem characteristics such as

the number of tasks, amounts of communication and execution, and

precedence percentage. Again note that the same set of priority weights

were used for all results shown.

The priority algorithm lookahead extension did not offer a

significant average performance increase. The average performance

decreas.ed marked 1 y as the lookahead became 1 arger than approximately

one half the average task execution length. For window sizes smaller

than this, the 1 ookahead extension had a sma 11 impact on the average

schedule length, in the range of +/- 2% <measuring the difference

between the lookahead percent over optima 1 and the PRIOR percent over

optimal). We examined specific scheduling problems and thei .r solutions

to determine the reason the lookahead extension did not improve

scheduling performance. The reason is th~t there were few situations in

which the schedule length could be reduced by changing the sequence of

an 'almost ready' high priority task with a ready low priority task.

This remained true even when there was a 1 arge difference in the task

priorities. Therefore, the decision to delay a low priority ready task

was often wrong or had no effect.

The second best algorithm was the communication constraint

relaxing algorithm, representative of Kartashev's approach. This

algorithm's performance was generally in the range of 5% to 10% longer

118

than the PRIOR schedules. <Percentage based on optimal schedule

length.) The performance of the COMM algorithm naturally tends to

degrade as the communication component becomes more significant, either

by reducing the precedence percentage (increasing concurrency) or

increasing the requirement for intertask communication. The EXEC and

PREC versions of the constraint relaxing algorithm fared the worst for

all cases by a wide marginc Obviously these algorithms are not well

suited for applications which have those practical constraints.

CHAPTER 5 SUMMARY AND CONCLUSIONS

This chapter summarizes the research approach of this dissertation

and briefly reviews our scheduling problem formulation and scheduler

algorithm definitions. We draw some conclusions, from the results shown

in Chapter 4, concerning the genera 1 app 1icabi1 i ty of the different

scheduling algorithms and their relative merits. ·Finally, we make some

recommendations for future research in the multi processor scheduling

area .

5 .. 1 Dissertation Summary

This dissertation considers the problem of practical constraints

in noninterruptible multiprocessor scheduling. The types of constraints

generally seen in practical applications and architectures are

introduced in Chapter 1 , using -the image genera tor ex amp 1 e, and a set

of scheduling constraints is defined. The related work by previous

researchers is reviewed and it is shown that previous researchers

address only subsets of our scheduling problem. The previous

researchers which did consider many of our constraints used ad hoc

schedu 1 i ng procedures which are not eva 1 ua ted ana 1 yti ca 11 y or

empirically.

Our work is a systematic investigation of the scheduling problem

and includes the development of an optimal scheduler and the dynamic

119

120

priority scheduling heuristic. The optimal scheduler is limited by the

exponential computational time complexity. We use it to establish an

optimal baseline to measure other scheduling algorithms. Our dynamic

priority heuristic achieves good average performan'ce over the measured

range of problem characteristics by considering the key scheduling

constraints. The dynamic priority heuristic outperforms other

scheduling algorithms which do not consider certain key constraints

<characteristic of previous researchers' approaches).

Our work formulates the multiprocessor scheduling problem as an

allocation and sequencing problem, where an allocation of tasks onto

processors is found and then the task execution sequence for that

allocation is found. This form is useful for developing an optimal

scheduler which uses a double branch and bound technique. The first

branch and bound finds all feasible allocations. A feasible allocation

is defined to include any allocation leading to a feasible .schedule,

while excluding most of those allocations which cannot lead to a

feasible schedule. Given a feasible allocation, the second branch and

bound checks all possible sequences of the tasks on the processors. The

sequences are built using an event-based simulation which enforces the

precedence constraints, task execution time, communication time, etc.

If a feas i b 1 e sequence of tasks is found < i . e. meets a 11 dead 1 i ne

constraints), then the combination of the feasible sequence and

feasible allocation is a feasible schedule. The scheduling algorithm is

designed to limit the remaining search to schedules which have a

shorter schedule length. The search ends by reporting the optimal

121

schedule <shortest schedule length) or by reporting that no feasible

schedule is possible for the given problem constraints.

We also develop a constraint relaxing scheduling algorithm which

allows us to characterize the performance of previous researchers'

scheduling approaches. This algorithm can be controlled so that one or

more of the scheduling constraints are ignored when developing an

initial schedule, called a relaxed schedule. The task allocation and

sequence of the relaxed schedule is then used to solve the actual

scheduling problem, by reintroducing the constraints, and develop the

final schedule. This constraint relaxing algorithm is a valid

characterization of other researchers' approaches since it produces an

optimal relaxed schedule for the constraints their work considered. By

then measuring the performance of the re 1 axed schedu 1 e for the actua 1

problem, we quantize how well the approach works in practical

scheduling environments.

The dynamic priority algorithm is then developed. This simple

algorithm develops a schedule using an event-based simulation of a list

scheduler. The priority of each task is based on several task

characteristics, each weighted according to a separate priority weight

and the final priority being the summation of the priority components.

The priority of the ready tasks at a given point in time is dynamically

computed by using the current state of the schedule. A lookahead

extension is also described which effectively reserves a processor for

a high priority task at the expense of delaying or reallocating a lower

priority task.

122

These algorithms are then evaluated in the results of Chapter 4.

The conclusions from these results and the recommendations about future

research in this area are given below.

5.2 Applicability ·of Optimal and Heuristic Schedulers

The purpose of the optimal results reported in 4.2.2 is to

establish an optimal baseline against which we compare the heuristics.

The general nature of the schedule length results and schedule node

results is to be expected. The schedule node results are useful for

showing the range of scheduling problem size <number of tasks and

processors) which can be optimally solved in a reasonable amount of

computational time. A general guideline is that our optimal algorithm

can solve prob 1 ems up to sixteen tasks and four processors in a few

hours. We expect that increasing to twenty tasks wou 1 d increase the

computational time by a factor of ten. Therefore, the optimal algorithm

. cou 1 d be app 1icab1 e for non-rea 1 ti me ana 1 ys is of some current

multiprocessor architectures with four or fewer processors.

A surprising characteristic of the schedule node statistics is

that a fairly constant computational time is required for all sets,

even though the variations for execution and communication change

drastically. Although the worst-case time performance is dependent only

on the number of processors, tasks, and confi gura ti ons, in an actual

problem the performance of the branch and bound is greatly affected by

the ability to efficiently prune the search trees. We would expect that

varying the execution and communication bounds would result in

123

significantly different computational time requirements. In fact, if

any of the bounds are taken to an extreme <e.g., constant execution

time, zero communication time) the schedule nodes do increase by about

a factor of ten. However, over a normal range of these constraints

there seems to be little variation.

An interesting statistic about schedule lengths is the fairly

small variance about the average for each group of problems at a given

sample point. This small variance suggests that we could extrapolate

the observed schedule lengths of solved schedule problems as an

estimated schedule length of problems with similar characteristics.

Such an estimated schedule length has applications for allocating

resources to execute an application, designing systems which can

efficiently process certain classes of applications, and developing

i ni ti al bounds for an actua 1 scheduler. On the other hand, one cannot

- accurately predict the computation time required to schedule a problem

because of the large schedule node variance. Therefore, it is best to

anticipate at least a factor of ten variation in the computation time

required to solve very similar scheduling problems.

We also demonstrate how the optimal

architecture design. We measure the

algorithm can be used in

performance of different

communication architectures and show that hardware resources should be

allocated to local communication. The ring and tree architectures have

the best performance because they provide fast local communication

between different pairs of processors. The importance of a good

scheduler is also shown because a random scheduling eliminated the

124

advantage of the ring and tree. This application of the optimal

scheduler to architecture analysis is very exciting because it provides

a technique to measure the architecture performance over a wide variety

of scheduling problems.

Heuristics are applicable as realtime schedulers and ar~ required

for an a 1 y s i s of 1 a r g er s ch e du 1 i n g pr ob 1 ems < e . g . , th i rt y- two ta s ks on

four processors). Our results in 4.3 show that our dynamic priority

algorithm, based on a simple list scheduling technique, performs well

for a variety of scheduling problem characteristics. The performance is

especially good for two to four processors. On the other hand,

scheduling approaches which do not systematically consider the

practi ca 1 constraints do not perform as we 11. The approaches which do

not consider precedence <such as the integer programming approach) have

much poorer performance, even though the time complexity of such a

scheduler is much greater than our heuristic. The scheduling approach

which does not consider communication performs nearly as well as our

heuristic, but the performance decr~ases as communication becomes more

important. These results provide evidence that the scheduler can

perform much better when it considers the scheduling constraints,

rather than developing a schedule with fewer constraints and attempting

to later add in the effect of the constraints.

5.3 Considerations for Future Research

This research can be readily extended in two areas. The first is

to use the scheduling algorithms we have developed to evaluate the type

125

of multi processor architecture which is best suited to a particular

class of applications. This is a continuation of the work we described

in section 4.2.3 where high speed local communication links are shown

to be nearly as effective as the more complex high speed global

communication links. The potential benefit of further work in this area

is a better definition of the types of multiprocessor architectures

which will perform well for a variety of cases. This could lead to an

approach for automatically configuring a communication architecture to

execute a particular application.

The second area for future research is to examine the performance

characteristics of our own dynamic priority heuristic and develop

techniques to improve the performance. Although our heuristic

establishes a measured baseline, it could be improved to produce

schedules which are closer to optimal. This improvement could be

targeted to a particular set of applications with specific

characteristics, or our own approach of developing a generally

applicable scheduler could be enhanc.ed. This enhancement process would

be a worthwhile activity before applying the heuristic scheduler to an

actual application of multiprocessor scheduling with practical

constraints.

LIST OF REFERENCES

Bruno, John; Jones, John W.; and So, Kimming. "Deterministic Scheduling
with Pipelined Processors." IEEE Transactions on Computers,
April 1980, pp. 308-316.

Buehrer, Richard E.; Brundi ers, Hans-Joerg; Benz, Hans; Bron, Bernard;
Fries, Hansmartin; Haelg, Walter; Halin, Hans Juergen; Isacson,
Anders; and Tadian, Milian. 11 The ETH-Multiprocessor Empress: A
Dynamically Configurable MIMD System. 11 IEEE Transactions on
Computers, November 1982, pp. 1035-1044.

Chen, Peter Pin-Shan, and Akoka, Jacob. "Optimal Design of Distributed
Information Systems. 11 IEEE Transactions on Computers, December
1980, pp. 1068-1080.

Chiang, Y., and Fu, K. "Matching Parallel Algorithm and Architecture."
IEEE Proceedings of the 1982 International Conference on Parallel
Processing, pp. 289-300.

Chu, Wesley W.; Holloway, Leslie J.; Lan, Min-Tsung; and Efe, Kemal.
"Task Allocation in Distributed Data Processing. 11 Computer,
November 1980, pp. 57-69.

Coffman, Edward G., and Denning, Peter J. Operating Systems Theory.
Englewood Cliffs, N.J.: Prentice Hall, 1973.

Coffman, Edward G. <ed.) Computer and Job-Shop Schedu 1 i ng Theory. New
York: Wiley, 1976.

Special Issue on Supersystems for the 80's. Computer, November 1980.

Efe, Kemal. "Heuristic Models of Task Assignment Scheduling . in
Distributed Systems. 11 Computer, June 1982, pp. 5~-56.

Hockney, R. and Jesshope, C. Parallel Computers. Bristol: Hilger Ltd.,
1981 .

Kartashev, Svetlana P., and Kartashev, Steven I. 11 Adapti ve Assignment
of Hardware Resources for Dynamic Architectures. 11 Para 11 el
Computers. Bristol: Hilger Ltd., 1981.

Kartashev, Svetlana P., and Kartashev, Steven I. "A Distributed
Operating System for a Powerful System with Dynamic Architecture."
AFIPS Conference Proceedings, Vol. 51, ·1982 National Computer
Conference, Montvale: AFIPS Press.

126

127

Kartashev, Svetlana P., and Kartashev, Steven I. 11 Di stri but ion of
Programs for a System with Dynamic Architecture." IEEE
Transactions on Computers, June 1982, pp. 488-514.

Kuck, David J. The Structure of Computers and Computations Volume I.
New York: Wiley, 1978.

Kung,. H. 11 The Structure of Parallel Algorithms." In Advances in
Computers Vol. 19. 1980, pp. 65-112. Edited by Michael Yovits. New
York: Academic Press.

Ma, Pern-Yi Richard; Lee, Edward Y. S.; and Tsuchiya, Masahiro. "On
the Design of a Task Allocation Scheme for TCA. 11 IEEE 1981 Real
Time System Symposium, pp. 1022-1031.

Ma, Pern-Yi Richard; Lee, Edward Y. S.; and Tsuchiya, Masahiro. "A
Task Allocation Model for Distributed Computing Systems." IEEE
Transactions on Computers, January 1982, pp. 41-47. --

Ma, Pern-Yi Richard. "A Model to Solve TCA Problems in Distributed
Computing Sys·tems. 11 Computer, January 1984, pp. 62-68.

Padua, David A.; Kuck, David J.; and Lawrie, Duncan H. "High Speed
Multi processors and Compi 1 at ion Techniques. 11 IEEE Transactions on
Computers, September 1980, pp. 763-776.

Stone, Harold. "Multiprocessor Scheduling with the Aid of Network Flow
Diagrams. 11 IEEE Transactions on Software Engineering, January
1977, pp. 85-93.

Stone, Harold, and Bohhari, Shahid. "Control of Distributed Processes."
Computer, July 1978, pp. 97-106.

Special Issue on Supersystems. IEEE Transactions on Computers. May 1982.

Vick, Charles R.; Kartashev, Svetlana P.; and Kartashev, Steven I.
"Adaptable Architecture for Supersystems .. 11 IEEE Transactions on
Computers, November 1980, pp. 17-35. ·

Ward, Mathew O. "The Automated Design of Task Specific Parallel
Architectures. 11 IEEE Proceedings of the 1982 Internationa 1
Confererence on Parallel Processing, pp. 298-300.

	Multiprocessor scheduling with practical constraints
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENTS
	iii

	TABLE OF CONTENTS
	iv

	LIST OF TABLES
	v

	LIST OF FIGURES
	vi
	vii

	CHAPTER 1 PRACTICAL MULTIPROCESSOR SCHEDULING
	1.1 Scope
	001

	1.2 Problem Area and Example
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022

	1.3 Contents
	023
	024
	025
	026
	027

	CHAPTER 2 REVIEW OF RELATED WORK
	2.1 Overview
	028
	029
	030

	2.2 Graph Theory Approach
	031
	032

	2.3 Integer Programming Approaches
	033
	034
	035

	2.4 Heuristic Approaches
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045

	CHAPTER 3 SCHEDULING ALGORITHMS
	046
	3.1 Formal Definition of the Scheduling Problem
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060

	3.2 Optimal Scheduling Algorithm
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072

	3.3 Constraint Relaxing Heuristic
	073
	074
	075
	076
	077
	078

	3.4 Dynamic Priority Heuristic
	079
	080
	081
	082
	083
	084
	085
	086

	CHAPTER 4 SCHEDULING ALGORITHM RESULTS AND ANALYSES
	4.1 Empirical Procedure
	087
	088

	4.2 Optimal Scheduler Performance
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108

	4.3 Comparison of Heuristics
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118

	CHAPTER 5 SUMMARY AND CONCLUSIONS
	5.1 Dissertation Summary
	119
	120
	121

	5.2 Applicability of Optimal and Heuristic Schedulers
	122
	123

	5.3 Considerations for Future Research
	124
	125

	LIST OF REFERENCES
	126
	127

