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ABSTRACT 

The problem of scheduling tasks onto multiprocessor systems has 

increasing practical importance as more applications are -being 

addressed with multiprocessor systems. Actual applications and 

multiprocessor systems have many characteristics which become 

constraints to the general scheduling problem of minimizing the 

schedule length. These practical constraints include precedence 

relations and communication delays between tasks, yet few researchers 

have considered both these constraints when developing schedulers. 

This work examines a more general multiprocessor scheduling 

problem, which includes these practical scheduling constraints, and 

develops a new scheduling heuristic using a list scheduler with 

dynamically computed priorities. The dynamic priority heuristic is 

compared against an op ti ma 1 schedu 1 er and against other researchers 1 

approaches for thousands of randomly generated scheduling problems. The 

dynamic priority heuristic produces schedules with lengths which are 

10% to 20% over optimal on the average. The dynamic priority heuristic 

performs better than other researchers' approaches for scheduling 

problems with the practical constraints. We conclude that it is 

important to consider practical constraints in the design of a 

scheduler and that a simple heuristic can still achieve good 

performance in this area. 
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CHAPTER l PRACTICAL MULTIPROCESSOR SCHEDULING 

1 . 1 Scope 

Multip·rocessor systems ar.e being considered for an increasing 

number ·Of problem applications which demand large amounts of processing 

power. This trend is driven by the lower cost of individual processors 

which makes multiprocessor systems economical. However, the problem of 

scheduling processing tasks onto a multiprocessor system can severely 

limit the effective processing power of such systems. Thus, 

multiprocessor scheduling is becoming more important for actual systems. 

The system designer must deal with the scheduling problem in a 

practical environment where the interaction between processing tasks 

can be complex. The classical work on the scheduling problem is not 

generally applicable because it does not consider many of the practical 

constraints found in real systems, such as task precedence, 

communication, or task deadlines. Some researchers are developing 

actual multiprocessor schedulers, but their ad hoc approach gives 

little direction for other systems. 

In this dissertation, we formulate the practical multiprocessor 

scheduling problem in a systematic way and we develop schedulers which 

consider the practical constraints. We develop an optimal scheduling 

algorithm <with exponential time complexity) as a reference point and 

measure its performance, via simulation, over a variety of scheduling 
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problem examples. We also develop and evaluate two heuristic approaches 

which consider the practical constraints. Our problem formulation and 

scheduler investigation should provide some guidance for the designers 

of future multiprocessor sys terns and schedu 1 ers. The ana 1 ys is in the 

results section indicates which constraints are critical and should be 

considered when developing a multiprocessor schedule. The results also 

show that our heuristic which considers different practical constraints 

performs better than "optima 111 schedulers which do not account for 

practical constraints. 

1 .2 Problem Area and Example 

Our problem area is scheduling tasks onto processors to satisfy 

the requirements of a given application. In Section 1.2.l we discuss 

the types of applications we are concerned with and how we will 

represent an application as a collection of task modules with some 

constraints. In Section 1.2.2 we discuss multiprocessor architectures 

and how we wi 11 represent any architecture as a co 11 ecti on of 

processors with some constraints. Finally, in Section 1.2.3, we show 

how to formulate the scheduling problem in terms of the application and 

architecture representations. 
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1.2.1 Classes of Applications under Consideration 

The problem of multiprocessor sc~heduling occurs in a variety of 

applications. Weather prediction, ballistic missile defense, image 

generation, and image processing are among those commonly identified. 

We are primarily concerned with these kinds of problems which require 

11 supersystem 11 processing power in excess of one bi 11 ion operations per 

second <Transactions of Computers 1982; Computer 1980). These systems 

achieve this processing power through tightly coupled networks of 

processors in a variety of intercommunication configurations. The 

successful use of such a system depends on properly scheduling each 

processor to complete its work in coordination with the rest of the 

system. Because of this tight coupling between processors, inefficient 

scheduling techniques can cause many processors to become idle and 

severe 1 y degrade sys tern performance. Therefore, the schedu 1 i ng prob 1 em 

is especially critical for these applications. 

These app 1 i ca ti ens are norma 11 y represented as a co 11 ecti on of 

processes or task modules. Each task· requires an amount of execution 

time, memory, and communication with other tasks. Precedence relations 

and deadlines govern the period during which the task must complete its 

processing. 

We are concerned with deterministic scheduling in which the 

application has already been divided into a set of tasks and all of the 

task constraints < i . e., execution requirement, precedence, etc.) can be 

determined a priori. The assumption that this kind of information wi 11 
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be obtainable is one reason that the class of applications is limited 

to supersystem-type problems. Such applications can justify the 

overhead costs involved in gathering this information which may require 

data flow analysis and test runs of the tasks. These types of 

applications are often scheduled deterministically in order to 

guarantee average and worst case behavior. 

1.2.1.1 Example: Image Generation Application. We now define a 

simplified version of the image generation application to illustrate 

the constraints of the scheduling problem. We will refer to this 

example throughout the dissertation. The example function produces a 

perspective view of a data base of three-dimensional features, as shown 

in Figure 1. The inputs are the view window position and orientation, 

the sun illumination angle, and the data base features. For this 

example the features will be composed of planar faces where the face 

position is defined by the vertices of the face in Cartesian space. The 

output is a TV raster line display <Sl2x512 pixels) which represents 

the perspective s eerie from the view window position. The view window 

and possibly the data base features can move, so a new image must be 

computed at a 60 hertz TV field rate <every 16 milliseconds). 

The image generation function is represented as eight tasks as 

shown in Figure 2. Task 1 (Tl) ·searches through the data base to select 

the features which are potentially visible, as shown in Figure la. T2 

then checks all faces of the selected features to determine which faces 

are potentially visible (i.e., T2 eliminates faces on the "back side" 
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of the feature). T3 prioritizes the features by distance so that closer 

features appear in front of more distant features. Figure lb shows this 

where the verti ca 1 box is c 1 oser than the hor i zonta 1 box and therefore 

the verti ca 1 box has higher priority. T4 performs a s i mi 1 ar 

prioritization on the individual faces of each feature. TS projects the 

face vertices from the data base coo rd i na te sys tern < X, Y, Z) to the 

display coordinate system (pixel row and column). T7 · uses the face 

vertex positions to determine which pixels are covered by the face. T7 

also resolves overlapping faces using the priority defined by T4 <e.g., 

in Figure lb portions of the horizontal box overlap with the vertical 

box, but the faces _of the vertical box have higher priority and will be 

used to cover those pixels). T6 calculates the color coefficients for 

each face. These coefficients are then used by T8 to determine the 

shade of color for each pixel covered by a face. The color coefficients 

determine the fading and shading of the face due to distance and 

illumination angle. The output of TB is the color intensities <R,G,B) 

for each pixel in the video memory. 

The eight tasks of the image generation application have 

precedence constraints as indicated by the directed arcs in Figure 2. 

For example, T3 cannot start until Tl finishes, T4 cannot start until 

both T3 and T2 finish, etc. We use the double lines between T7 and T8 

to indicate that tasks 7 and 8 can be executed in a pipeline fashion. 

This is where T8 can start working on an output of T7 before T7 has 

finished all outputs. 
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Each task has an execution time constraint which is the time 

needed to execute the task. This is a function of both the number of 

processing steps to be performed and the rate of execution. Since the 

rate of execution can vary for different processors, we wi 11 defer 

defining the execution times of the example · unti 1 the next section on 

processor architecture. 

Each task has a requirement to use one or more processors 

concurrently. For this example, only one processor is required for each 

task. More than one processor could be specified for a single task when 

a task represents a special function which requires multiple 

processors. An example is a producer/consumer relationship between two 

processing functions. This can be modeled as a single "task" which 

requires two processors simultaneously. 

Each task also has a deadline. The image generation function has a 

cycle time requirement of 16 millisec, which is represented by placing 

a 16 millisec external deadline on the last task, T8. Deadlines can 

then be propagated i nterna 11 y throughout the precedence tree by using 

the minimum execution times of each task. Other applications could have 

multiple external deadlines, such as when some intermediate results are 

required by another system at a particular time. 

Another constraint on the· tasks is the intertask communication 

requirement, or ITC. The ITC for the image generation tasks is given in 

Table la. T2 and T3 must receive 500 words from Tl, T4 must receive 

2000 words to T2, etc. This communication transfer wi 11 be defined to 
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TABLE l 

.IMAGE GENERATION TASKS' COMMUNICATION AND MEMORY REQUIREMENTS 

A) INTERTASK COMMUNICATION 8) TASK MEMORY 
<WORDS) REQUIREMENTS 

(WORDS> 

FROM TO TASK MEMORY 
TASK 2 3 4 5 6 7 8 TASK REQUIRED 

l 500 500 0 0 0 0 0 1 lk 
2 0 2000 2000 2000 0 0 2 3k 
3 500 0 0 0 0 3 lOk 
4 0 1000 0 0 4 lOk 
5 - 1000 0 0 5 lOk 
6 0 1000 6 15k 
7 - 2000 7 Sk 
8 8 Sk 
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occur after the sender completes execution and immediately before the 

receiver starts execution. This implies that the sender is always of 

higher precedence than the receiver <i.e., the sender must be executed 

prior to the receiver>. A zero ITC is allowed between two precedence 

re 1 ated tasks, as in the case of output dependence where both tasks 

output to the same data area. 

The amount of communication time required is related to the number 

of words in the ITC and the communication rate between processors. We 

normally define the communication rates so that if two tasks are 

coresident (i.e . , they execute in the same processor) then no 

communication time is required. This is because the two tasks share the 

same processor memory and have immediate access to the data to be 

communicated. If the tasks are not coresident then the data must be 

transferred by the receiving processor from the sending processor 

according to the available communication rate. The communication rate 

will be discussed in the next section on processor architecture. 

The final constraint we will consider for application tasks is the 

task memory requirement. This is shown in Table lb where Tl requires lk 

words, etc. This requirement can reflect the memory space needed for 

program code and/or data storage, depending on the application and 

architecture. For this example the figures given include both code and 

data since the processors defined in the next section have a single 

memory for both. The sum of the memory requirements of coresident tasks 

cannot exceed the processor memory capacity. 
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1. 2 . 1. 2 App 1 i cat i on Rep re sen tat i on . Fr om the pre v i ou s d i s cu s s i on , we 
will represent any application in the following terms: 

o An application is a collection of tasks. Each task represents a 
processing function, similar to the concept of a subroutine. 

o The application tasks have several constraints: 

task precedence - a task cannot begin execution unti 1 all 
tasks of higher precedence are completed. 

task execution time - a task wi 11 requ.i re a fixed amount of 
time to execute on a given processor. Execution shall be 
nonpreempti ve. The size of task execution ti me may vary 
between different processors. 

number of task processors - a task will normally require one 
processor for execution. If more than one processor is 
required, the specified number of processors must be 
dedicated simultaneously to the given task. 

intertask communication requirement <ITC) - the number of 
words which must be shared between two tasks. If tasks are 
not coresident then a period of communication time wi 11 be 
required between the processors executing the tasks. 

task memory size the number of words which must be 
allocated from a processor's memory space for the task. For 
the set of tasks scheduled on a given processor, the sum of 
the task memory sizes must fit within the processor memory 
capacity. 

task deadline - the time limit for a task to complete 
execution. The time is measured from the start of the 
highest precedence task. The schedule length must be less 
than or equa 1 to the deadline of the 1 as t task to comp 1 ete 
execution. 

This representation has intuitive appeal because these factors are 

considered in any system design process. As we will see in Chapter 2, 

however, current research in multiprocessor scheduling generally makes 

simplifying assumptions which eliminate some of these constraints. This 

representation does restrict the class of applications which will be 
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able to take advantage of our scheduling work. The primary restriction 

is that all constraints must be deterministic to allow for a 

determi ni sti c scheduling. We wi 11 see that most researchers in this 

area make a similar assumption. However, this assumption does require 

that the information defining the task constraints be gathered 

analytically or empirically. This process can be costly and 

time-consuming. Thus the class of applications is narrowed to those 

which can afford such overhead, and supersystem-type problems generally · 

meet this condition. 

1 .2.2 Computer Architectures under Consideration 

There is a wide variety of computer architectures used to solve 

supersystem problems. Architectures are always composed of general 

purpose processors <e.g., a 16-bit floating point processor with a 16 k 

word memory), special purpose processors <e.g., a 64-point Fast Fourier 

Transform with a 256 k word staging memory), and communication paths 

between processors. Architectures can be application specific <e.g., a 

computer image generator), algorithm type specific <e.g., a vector 

processor), or general purpose (e.g., a reconfigurable architecture). 

We desire a model which can represent, at the system level, any type of 

architecture used to solve the targeted class of applications. 

We represent an architecture by the performance of the individual 

processors on each task, the processor memory capacity, the 11 di stance" 

(in time units) of communicating between each pair of processors, and 

the overhead time required when changing communication configurations. 
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These characteristics or constraints effectively define any computer 

system for purposes of scheduling. The execution time required by a 

given task can vary on different processors to differentiate between 

general and special purpose processors in the system. The special 

purpose processor wi 11 norma 11 y have exce 11 ent performance with tasks 

for which it was intended and arbitrarily poor performance otherwise. 

The communication "distances" are specified for each pair of 

processors and represent the number of time uni ts required per word 

during a communication between the pair of processors. The distance 

values can be used to represent the presence <or absence) of 

communication paths and the efficiencies of dedicated paths versus the 

penalties of shared paths. A reconfigurable architecture would have a 

different set of communication distances for each possible 

configuration. By manipulating the distance values, many different 

architectures can be simulated because the primary difference between 

pipeline, array, and vector architectures is the time required for 

communication. 

The final architecture constraint is the configuration overhead 

time. This reconfiguration time is used to model the overheads of 

setting up a pipe 1 i ne or, for the case of a reconfi gurab 1 e 

architecture, establishing the communication paths of a new 

configuration. 

We will generally assume that these constraints are known, which 

is the case when the application is to be implemented on a specific 
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architecture. Natural extensions can be made to develop architecture 

designs which would be well-suited for a given subset of problems. One 

example extension would be to determine the minimum number of 

processors needed to maintain a feasible schedule. Another extension is 

to i n v e s t i gate d i ff ere n t c ommu n i cat i on path s < e . g . , s tar , s hared bu s , 

cluster) to determine which type works best for a given subset of 

problems. 

1.2.2.1 Example: Image generation architecture. The image generation 

application introduced in the last section is to be scheduled on the 

architecture shown in Figure 3. We will use this example to illustrate 

how we wi 11 represent an architecture in terms of processor 

performance, memory capacity, interprocessor communication distance and 

configuration change overhead. 

The architecture has three processors which operate in either an 

independent or pipeline mode. These processors must use the inputs from 

the Data Memory to create the 512x512 pi xe 1 video memory i mag.e of the 

TV display. The 512x512 pixel video memory is also located in the Data 

Memory so that the TV Driver can access the data and drive the raster 

scan display. 

The three processors are identical except for the hardware assist 

functions. Processor 1 <Pl) and P2 are equipped with a divide function 

and P3 is equipped with a dot produc.t function. Each 32-bi t processor 

has a 64K word memory which holds the program code and working storage 

of all tasks to be executed on the processor. The basic execution rate 
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is 5 mi 11 ion operations per second <MOPS) and the performance of the 

processors for each of the eight tasks is shown in Table 2. The 

di ff ere nee in performance between Pl and P3 is due to the code mix of 

the tasks with respect to the hardware assist functions. 

This performance table immediately shows that all tasks cannot 

execute on a single processor because the sum of execution times on any 

processor exceeds the deadline of 16 millisec Cor 16000 microsec). 

Si nee more than one processor wi 11 be required to execute the eight 

tasks and the tasks have communication requirements, the interprocessor 

communication <IPC> time or distance becomes relevant. For the 

independent mode, we wi 11 assume that any processor can communicate 

with any other processor on the shared bus at a rate of one word every 

one mi crosec. Therefore, if X words are to be read by a task start; ng 

on Pl from a task which completed on P2, Pl must spend X microsec 

receiving the data from P2. The independent operation w.i th the shared 

bus is shown in Table 3a by the IPC matrix where each processor is 1 

microsec away from its neighbors. 

As noted in the previous section, T7 and T8 can operate in a 

pipeline fashion where each output of T7 is allowed to be processed by 

TB. Table 3b shows the effective communication configuration used to 

implement the pipeline where the IPC has gone to zero. This reflects a 

configuration in which data is passed between processors over the bus 

during the task execution, so the time period used to transfer the 

block of data between T7 and T8 is not needed. 
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TABLE 2 

PROCESSOR EXECUTION PERFORMANCE OF EACH TASK 

TASK PROCESSOR 1 PROCESSOR 2 PROCESSOR 3 
<MICROS EC) <MICROS EC) <MICROS EC) 

1 5000 5000 1500 
2 1500 1500 3000 
3 3000 3000 1500 
4 2500 2500 7500 
5 3000 3000 6000 
6 500 500 3000 
7 4500 4500 4500 
8 4500 4500 4500 

TOTAL 24500 24500 31500 
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TABLE 3 

!PC FOR NORMAL AND PIPELINE CONFIGURATION 

A) !PC <MICROSEC) FOR 8) IPC<MICROSEC) FOR 
INDEPENDENT PIPELINE 
CONFIGURATION CONFIGURATION 

TO PROCESSOR TO PROCESSOR 
FROM 1 2 3 FROM 1 2 3 

PROCESSOR PROCESSOR 
1 0 1 1 1 0 0 0 
2 l 0 1 2 0 0 0 
3 1 . 1 0 3 0 0 0 
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The example system does have an overhead penalty for entering the 

pipeline mode. The time required to effect such a configuration change 

for this sys tern will be 500 mi crosec. This models the ti me lost to 

achieve synchronous pipeline operation and to fill the pipeline. The 

scheduler must decide whether to put T7 and T8 on the same processor, 

on two different processors in the independent configuration, or on a 

set of processors in a pipeline configuration <and incur the 

configuration change overhead). 

1 . 2 . 2 . 2 Arch i t e ct u re Represent at i on . Fr om the pre v i ou s d i s cu s s i on , we 

will represent any architecture in the following terms: 

o An architecture is a collection of processors. 

o The architecture made up of processors has several constraints: 

processor performance - the performance of each processor is 
rated in terms of the time to execute each task. A special 
purpose processor wi 11 perform wel 1 with those tasks which 
use the special function. 

interprocessor communication <IPC) the amount of time 
required to transfer one word between two · processors. The 
IPC is defined with different values for each configuration. 

configuration change - the time overhead caused by changing 
the configuration, which changes the IPC. 

processor memory capacity - the amount of memory available 
to each processor to satisfy the task memory requirements. 
We will assume that all tasks are loaded into the processor 
memory prior to the beginning of the application run. 

Therefore the sum of the task memory requirements cannot 
exceed a processor's memory capacity. 

This representation captures all of the architecture factors which 

influence scheduling. · The class of architectures covered is generally 
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unrestricted si nee any architecture can be defined in these terms for 

scheduling purposes. 

1 .2.3 The Multiprocessor Scheduling Problem under Consideration 

For a given application and architecture which can be represented 

in the terms defined in the previous sections, we wish to develop a 

scheduling which satisf~es all of the application and architecture 

constraints. We assume all constraints are known a priori so we can 

define a deterministic schedule. The schedule is to be nonpreemptive 

and is established prior to the start of execution by assigning each 

task to run on a particular processor. 

Given a schedule and the task constraints <execution time, 

precedence, etc.) we can compute the exact start ti me of each task, 

and, therefore, we know the schedule length. The application 

requirements may be such that the goal is to find any feasible 

scheduling, rather than an optimal feasible scheduling which minimizes 

the schedule length. 

We conclude this chapter by illustrating the scheduling problem 

for the image generation example and then more formally defining the 

scheduling problem in terms of the application and architecture 

constraints. 

1.2.3.1 Example: Image Generator Scheduling. The image generator 

schedu 1 i ng ex amp 1 e dea 1 s with eight tasks to be· executed by a three 
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processor system in 16 millisec. Even this simplified problem is 

nontrivial and we could not guarantee an optimal solution without 

exercising our optimal scheduler developed later. These example 

schedules shown were developed manually, although the third schedule 

, does minimize the schedule length, and is, therefore, optimal. 

The simplest solution which minimizes communication time <to zero) 

is to schedule all tasks on a single processor. However this is not a 

f ea s i b 1 e s ch e du 1 e s i n c e the exec u ti on ti me on any s i n g 1 e pro c e s so r i s 

greater than 23 millisec <reference Table 2 for task execution times on 

each processor). 

A second schedule, shown in Figure 4, was developed by scheduling 

tasks on those processors which have the best performance and which 

minimize communication time. This schedule is feasible since it 

finishes within 16 millisec. Examining this schedule in more detail, we 

see that task 1 <Tl) is executed on Processor 3 <P3) to take advantage 

of P3' s performance of 1500 mi crosec. Si nee T2 and T3 can be executed 

in parallel, and T2 runs faster on Pl than on P3, T2 is scheduled on Pl 

while T3 is placed on P3. However 500 microsec must be spent 

transferring data from Pl to P3. <reference Figure 2 for task 

precedence and Table 1 for ITC.) T4, TS and T6 are also scheduled to 

run on Pl to reduce execution and communication times. The schedule 

concludes by changing the configuration to pipeline T7 and T8. This 

allows the two tasks to execute concurrently, but a 500 microsec change 

overhead is incurred and 1000 units of communication time is required 

for TB to get data computed by T6. 
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A third schedule is shown in Figure 5. This schedule is the 

shortest of the three. It has more execution time and communication 

time than either the first or second schedule. However it provides a 

better balance of running tasks on different processors to take 

advantage of performance, while reducing the communication overhead 

. which does occur. 

1.2.3.2 Summary of the multiprocessor 1 scheduling problem. From the 

discussion in the previous sections of the applications and 

architectures under consideration, the scheduling problem is stated as 

fol lows: 

Given a set of tasks, a set of processors, and the following 
constraints: 

1) task execution time per processor 
2) task precedence relations 
3) intertask communication requirement 
4) task memory requirement and processor capacity 
5) task execution deadlines 
6) interprocessor communication cost 
7) number of coprocessors required per task 
8) configuration change overhead 

a.) Find a feasible schedule of the tasks on the processors, 
where a feasible schedule assigns each task to a processor, 
assigns at most one task to a processor at a time, and 
satisfies all constraints. 

b.) Find an optimal feasible schedule which minimizes the 
schedule length. 

1 .3 Contents 

The remaining chapters provide the background for this problem and 

describe the work which was performed. Chapter 2· reviews the re 1 ated 
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work to see how others have approached this problem. We show that the 

body of reported work has considered only subsets of the general 

scheduling problem that we define. 

Chapter 3 contains a formal definition of the scheduling problem 

and describes the three algorithms which we developed to solve the 

scheduling problem. The first algorithm considers all of the task and 

processor constraints. It is optimal in that it guarantees to find the 

feasible schedule with the shortest schedule length, or report failure 

if no feasible schedule exists. However, this optimal algorithm 

exhibits the exponential time complexity of the NP-hard scheduling 

problem and is not applicable for scheduling large numbers 

of tasks or processors. 

The second algorithm is intended to simulate other scheduling 

algorithms which do not consider all the scheduling constraints. This 

"constraint relaxing" heuristic first develops a schedule without 

considering one or more of the scheduling constraints. Then the true 

performance of the "relaxed" schedule is computed by applying the 

relaxed schedule to the real problem, i.e., with all of the scheduling 

constraints. This algorithm is based on the optimal algorithm so that 

the relaxed schedule is "optimal" <for the problem with the relaxed 

constraint). However, the true _performance is generally not optimal 

because some of the constraints had been ignored when creating the 

schedule. 
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The third algorithm is the dynamic priority heuristic which 

considers all the practical scheduling constraints. The heuristic is 

based on priority list scheduling. The priorities are dynamically 

computed to guide the scheduler toward the "right" scheduling choices. 

--- This dynamic priority heuristic offers the polynomial time complexity 

needed for scheduling large numbers of tasks and processors. 

Chapter 4 discusses the performance of these three algorithms. A 

problem generator is described which automatically creates scheduling 

problems to be solved. The optimal algorithm is evaluated for a variety 

of scheduling problems. The results indicate the problem sizes which 

can be solved using ·the optimal scheduler and also characterize the 

relationship between schedule constraints and optimal schedule length. 

The constraint relaxing algorithm is evaluated to measure the 

performance of schedules which do not consider all practical 

constraints. The constraints of task precedence, communication delay, 

and variable task execution times are each relaxed. The schedule 

1 ength s are compared to the true op ti ma 1 s chedu 1 e 1 engths to quantify 

the effectiveness of other researchers' ~pproaches when applied to 

scheduling problems with practical constraints. 

The dynamic priority heuristic is measured against the previous 

two to determine how well it ·solves the multiprocessor scheduling 

problem. Although this heuristic is quite simple, it performs well 

because it considers the practical constraints. The performance of the 

dynamic priority heuristic is better than the constraint relaxing 
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algorithm over a variety of scheduling problems. While the heuristic 

could be improved upon for a given application, it verifies that 

successful schedulers must consider the practical scheduling 

constraints in a systematic way. 

Chapter 5 concludes this work with a discussion of the key 

characteristics of the scheduling problem and algorithms. We also 

suggest some direction for future work in this area of multiprocessor 

scheduling with practical constraints. 



CHAPTER 2 REVIEW OF RELATED WORK 

2. 1 Overview 

This chapter reviews related research to show how others have 

attacked this problem of scheduling multi processor systems. Previous 

authors have provided a tutorial and bibliography of research 

approaches in this area, for example Chu (1980). Our primary concern is 

the types of constraints the different research approaches have 

considered. In par ti cu-1 ar, we wi 11 show that researchers have genera 11 y 

considered either precedence or communication constraints, but not 

both. We begin by a summary of how the previous work relates to our 

problem of multiprocessor scheduling with the practical constraints 

introduced in Chapter 1. We then provide an overview of representative 

work in each of three approaches to the scheduling problem: 

o Graph Theory 

o Integer Programming 

o Heuristics 

Other approaches, such as analytical models <e.g., queueing theory) 

are not relevant because they do not consider communication or 

precedence constraints between tasks. 

Table 4 shows how the reviewed work relates to our proposed 

research. Each previous work is summarized according to how the work 

dealt with the eight scheduling constraints listed in 1 .2.3.2. 
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TABLE 4 

SCHEDULING CONTRAINTS ADDRESSED BY PREVIOUS RESEARCHERS 

PREVIOUS RESEARCHERS (section reviewed) 
INT PROG AUTO-DESIGN 

SCHEDULE GRAPH INTEGER WITH PRACTICAL LOAD TASK 
CONSTRAINTS THEORY PROGRAMMING HEURISTIC SCHEDULER BALANCING ARCHITECT. 

(2.2) (2.3) (2.3) (2.4.1) (2.4.2) (2e4.J) 

EXECUTE OPT OPT OPT HEUR HEUR HEUR TIME 

PRECEDENCE HEUR HEUR 

TASK OPT OPT OPT HEUR HEUR COMMUNo 
TASK OPT OPT HEUR MEMORY 

DEADLINES HEUR HEUR 

COMMUN. OPT OPT OPT HEUR HEUR DISTANCE . 
# PROC 
PER TASK 
CONFIG. 
OVERHEAD 

KEY: OPT - Researcher considered constraint using optimal approach. 
HEUR - Researcher considered constraint using heuristic approach. 

DYNAMIC HI-SPEED 
ARCHITEC- MULTI ... 

TURE PROCESSOR 
(2.4.4) (2.4.4) 

HEUR HEUR 

HEUR 

HEUR HEUR 

HEUR 

HEUR 

HEUR HEUR 

HEUR HEUR 
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The graph theory approach attempts to allocate the tasks onto 

processors by minimizing the execution and communication required using 

graph partitioning. This approach assumes all tasks are independent, so 

the task precedence constraint is not considered. This approach a 1 so 

does not consider the actua 1 sequencing of the tasks on the processors, 

so is unable to consider deadline constraints or reconfiguration. 

The integer programming approach deals with the classic task 

s~heduling problem, with complications such as interprocessor 

communication and task memory. As with the graph theory approach, the 

integer programming formulation develops a partitioning of tasks onto 

processors in order to minimize the execution and communication 

required. This approach can consider interprocessor communication 

distances and memory constraints. However, it does not consider 

precedence or other sequence-related constraints. 

The heuristic group of papers deal with a larger set of the 

scheduling constraints. One paper describes good heuristics for solving 

the schedu 1 i ng prob 1 em with precedence constraints. Two of the papers 

discuss how to schedule tasks onto a general multiprocessor system with 

the communication constraint. The last two papers discuss how to 

execute a given set of algorithms on reconfigurable architectures. 

Between the five papers, all of our practical constraints are addressed 

in some fashion. However none of the papers address all of the 

constraints in a systematic fashion. 
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Our own work, defined in Chapter 3, investigates optimal and 

heuristic algorithms which consider all constraints. Note that none of 

the related work covers all of our constraints, and that the previous 

work with op ti ma 1 schedu 1 es covers on 1 y a sma 11 subset. Our work, which 

considers all of the constraints in a systematic fashion, wii-1 be 

discussed in the next chapters. The rest of this chapter briefly 

reviews representative works in each of the three areas of previous 

research to identify the constraints addressed by the previous 

researchers. 

- 2. 2 Graph Theory Approach 

This approach selects a task allocation which produces a minimal 

cutset in a network fl ow graph <Stone 1977; 1978). The network f 1 ow 

graph represents the execution and commun i ca ti on cos ts of "fl ow 

requirement" as weighted edges connecting processors and tasks. 

Figure 6a shows three tasks, A, B, and C, where A and B both have a 

communication requirement with C. Figure 6b shows the addition to the 

graph of two processor nodes, Pl and P2. The weighted edges connecting 

task nodes with processor nodes specify the task execution time on the 

other processor. Therefore, an execution requirement of 8 for task Bon 

processor P2 is represented by an edge from B to Pl with weight 8. 

The minimal cutset <shown as 1 in Figure 6b) partitions the tasks 

onto the processors contained in the cutset. In this case, all of the 

tasks would be assigned to Pl with a total cost of 23. 



a) Process Conununication Requirements. 

CUTSET 2 
', __ 1_0 __ 

·-----~ 
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b) Process Communication and Execution Requirements. 
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'OPTIMAL' CUTSET 1 'SUB-OPTIMAL' CUTSET 2 
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Figure 6. Graph Theory Scheduling Approach. 

32 



33 

This approach has serious drawbacks. The flow graph does not 

include precedence relationships between tasks to model the delay of a 

task waiting for another task. This approach also does not minimize the 

schedule length, or time to complete all processors. Figure 6c shows a 

11 nonoptimal 11 cutset which reduces schedule time by increasing 

concurrency. 

2.3 Integer Programming Approaches 

The research using this approach generally assumes a known 

multiple instruction, multiple data <MIMD) architecture and a set of 

tasks to be scheduled <allocated) onto the architecture. The problem is 

to allocate tasks onto processors to minimize the schedule time. The 

approaches develop an allocation by weighing requirements for task 

execution, intertask communication and processor load balancing. 

The problem of task allocation, or task scheduling, has been 

investigated for over 20 years and the general problem is NP-hard 

<Coffman 1973). Thus, the work has concentrated on solving sub-problems 

< e . g . , task w i th e qua 1 e x e cut i on ti mes or tasks i n spec i a 1 precedence 

graphs) which allow a solution in polynomial time, measuring the 

effectiveness of heuristic methods <e.g., largest processing time first 

for independent tasks, 1 i st scheduling), or the effect of allowing 

preemption or processor sharing. 

Practical work in this area followed the development of multiple 

processor systems for distributed information processing <Chen 1980; 
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Chu 1980) and for tightly coupled multiprocessor system <Efe 1982; Ma 

1984). This work considers both processor execution time and 

interprocessor communication <IPC> time because communication can 

become the bottleneck in a real system. 

This approach chooses a task allocation which minimizes a cost 

objective function. The cost objective function includes execution time 

and communication time, along with other application unique parameters 

such as storage cost for information systems. The objective function is 

then minimized using a branch and bound technique <BB). 

Chen (1980) used this approach to design a distributed information 

system for a banking system. The input specification defined four 

cities as nodes which generated transactions, the transaction traffic, 

transaction processing and data base requirements, etc. Chen's integer 

programming model used BB to optimize an objective function with nine 

cost components <execution, storage, data base update, etc.) and eight 

constraints <communication line capacity, existence of data base, 

existence of a tasks on a computer, etc.). The solution output defined 

the optimal configuration of communication lines between cities, 

existence of computer and/or data base at cities, and the capacity of 

the system components. 

Ma < 1981; 1982; 1984) u·sed the BB integer programming technique to 

allocate tasks to a distributed computing system. The inputs are a 

known MIMD system, a set of tasks, the execution requirement of each 

task, and the amount of intertask communication. The cost function, F, 
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is a summation over the task execution times and the intertask 

communication. The objective is to find an allocation of tasks onto 

processors which minimizes the sum of the execution times and the 

communication times. This approach considers variable task execution 

times, nonhomogeneous processors, variable task communication times and 

nonhomogeneous communication rates, or "costs", between processors. The 

constraints include: 

a. the memory capacity of each processor must not be exceeded by 

the memory requirements of the tasks allocated to it. 

b. a task preference matrix specifies which tasks can execute on 

each processor. 

c. a task exclusive matrix specifies which tasks cannot be 

allocated to the same processor. 

The output of the Ma's model is a task allocation which minimizes the 

cost objective function. 

The main weakness in both these 1 i near programming mode 1 s is the 

exclusion of constraints on task dynamics such as precedence 

constraints or deadlines for tasks or task threads. As we showed with 

the graph theory approach, the mode 1 tends to group tasks on a few 

processors in order to minimize execution time and communication time. 

Thus, overhead is reduced at the expense of reducing concurrency. Ma 

attempts to compensate by introducing preference and exclusion matrices 

which force concurrency despite higher communication cost. 



36 

Unfortunately, these matrices must be manually created which 

effectively requires part of the allocation to be specified manually, 

using ad hoc criteria. 

2.4 Heuristic Approaches 

In this section we examine five heuristics for the general 

multiprocessor scheduling problem. These heuristics consider at least 

task precedence or task communication in developing a task allocation. 

2.4. 1 Critical Path Extension Heuristic 

Kasahara (1984) proposes an extension to the critical path 

heuristic called CP/MISF <critical path/most immediate successors 

first). This heuristic uses a list scheduling approach with the task 

priorities computed based on a critical path determination. If two or 

more tasks have the same cri ti ca 1 path priority, a further 

prioritization is made based on the number of immediate successors 

<descendants). A task with more immediate successors is given higher 

pr i or i t y . Th i s he u r i s t i c i s e v a 1 u ate d and the wo r s t case error < i . e . 

the percentage over optimal length for the heuristic schedule length) 

is shown to be better than the standard critical path error. The 

average performance is a 1 so. eva 1 ua ted and shown to be in the range of 

5% longer than optimal. Kasahara then develops a better heuristic 

scheduler by using the CP/MISF in a heuristic tree search algorithm 

<branch and bound type). 
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This approach is effective for .the scheduling problem with preced

ence and execution time constraints only . However many constraints, such 

as communication time and nonhomogeneous processors, are not addressed 

by Kasahara. This work is well supported and our own research approach 

described in Chapters 3 and 4 uses similar evaluation techniques. 

2o4o2 Load Balancing Heuristics 

The heuristic methods of Efe (1982} and Stankovic <1985) choose a 

task allocation by trading the communication cost against the execution 

load balancing Ci .eo, the execution load of each processor>. Efe 

proposes a deterministic scheduler which computes the schedule before 

task execution begins. Stankovic proposes a realtime scheduler which 

accepts rand om task arr i v a l s and s ch e du 1 e s the tasks onto av a i l ab 1 e 

processors. Both techniques consider the same set of constraints as 

discussed later. Efe's approach is reviewed here. 

A two-stage heuristic iterates until a "sufficient" solution is 

found. The first stage clusters the tasks to reduce intertask 

communication. The second stage reassigns certain tasks from overloaded 

processors to underloaded processors. The resulting allocation of tasks 

strikes a balance between the communication and processor load 

balancing. 

The first stage, called the task clustering algorithm, is a 

heuristic which assigns tasks to processors so that intertask 

communication is reduced. A local search technique is used which 
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iteratively clusters tasks with the most intertask communication. When 

the number of · clusters will fit on the available processors, the 

clusters are assigned accordingly. Some provision is made for reserving 

certain processors for special tasks <similar to the preference matrix 

of Ma discussed in 2.3). 

The second stage evaluates the load balancing by comparing each 

processor load to the theoretical average determined by the total 

serial task execution time and the number of processors. The processors 

which have acceptable 1 oads are removed from the a 11 oca ti on prob 1 em 

along with the tasks assigned to those processors. The underloaded and 

overloaded processors will then be adjusted to get closer to the 

theoretical average. 

A new problem is defined which consists of the underloaded 

processors, overloaded processors, task clusters from the underloaded 

processors, and ind iv i dua 1 tasks from the over 1 oaded processors. The 

communication costs between an "underloaded cluster" and an "overloaded 

task" are then increased to encourage the migration of tasks to the 

underloaded processor. The size of the communication increase is 

proportional to the load difference between the processors. The new 

<hopefully reduced) problem is then used for another iteration of the 

heuristic. The heuristic terminates when all processors are acceptably 

balanced or the same assignment is found by two successive passes. The 

heuristic may not terminate. 



39 

The weakness of Efe's approach is that the model does not provide 

for delays from precedence constraints and communication. Also, the 

authors do not support the heuristic approaches by either theoretical 

ana 1 ys is or empi ri ca 1 data. Stankovic' s mode 1 is better supported and 

does provide for communication delays, however precedence constraints 

are also not considered. 

2.4.3 Automated Design of Task-specific Architectures 

Ward (1982) proposes a procedure for automatically designing a 

special purpose architecture which can execute a particular set of 

algorithms. The target applications are those where the high frequency 

of execution and the high speed requirements justify a special purpose 

machine. The goal is to automate the initial design process, and no 

attempt is made to produce machines capable of adapting to different 

algorithms. 

The four steps in Ward's approach are: 

1. Extract parallel tasks from sequential programs and determine 

firing conditions. 

2. Allocate tasks to processors to meet time requirement. 

3. Specify architecture using components from knowledge base. 

4. Compile and load tasks into architecture. 
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The tasks are assigned to processors to maximize parallelism, 

i.e., so no two tasks on the same processor are ready for execution at 

the same time. Then the number of processors is reduced to minimize the 

system size and to reduce interprocessor communication. After the final 

assignment of tasks to processors, the architectural requirements such 

as memory size, processing power, and interprocessor communication are 

established. From this estimate, a knowledge base of architectural 

components is referenced to select processors and communication links. 

The final step is to compile and load the tasks and their 

execution order. The operation of the architecture is similar to a data 

flow machine. A task is enabled and ready to execute when all 

predecessor tasks have executed. The task then executes and, when 

finished, enables its successors or descendants. The author does not 

report on the effectiveness of this technique. 

2.4.4 Reconfigurable Architecture Heuristics 

A class of architectures is being developed called reconfigurable 

or dynamic architectures. 11 Reconfigurable 11 refers to the ability of a 

multi processor system to change the way subsets of processors 

communicate and interact. These architectures are of speci a 1 interest 

because the researchers ~ho develop the architectures are forced to 

consider the scheduling or mapping of tasks onto their architectures in 

order to justify the reconfiguration capability. 
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We are interested in architectures which reconfigure ; n order to 

improve the performance of the active algorithms <or tasks). We are not 

interested in reconfigurable system for improving reliability. We also 

do not include systems such as ETH's Empress <Buehrer 1982) which is a 

multiprocessor machine, but which does not allow for different 

configurations, such as pipeline or SIMD. We shall review the works of 

researchers who propose reconfigurable architectures and who deal with 

the problem of how to prepare algorithms to be executed on their 

architectures. We consider two reconfigurable architectures, proposed 

by Kuck <1978) and Kartashev (1982). 

Kartashev's reconfigurable architecture is called the Dynamic 

Computer <DC) <Vick 1980; Kartashev 1981; 1982a; 1982b). The problem of 

mapping an application onto the DC architecture is dealt with in two 

steps. The first step is to decompose the application into tasks or 

programs and measure the program resource. This is done using a 

P-resource (program resource) diagram which shows the memory 

requirement of the program and the required word width <in bi ts) for 

each major program phase or interval. The diagram also shows the 

execution time requirement of each interval. 

The second step is to fit the P-resource diagrams of all the 

programs into a combined schedule or combined resource diagram. This is 

done using a first-fit, priority heuristic. The combined resource 

diagram also indicates the changes in the reconfigurable communication 

bus which are needed to effect different word width computers. Figure 7 

is an example of the combined resource diagram and shows the fit of ten 
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different programs <Pl ,P2, ... ,PlO) onto a set of processors. Each 

processor is 16-bits, so the system shown in Figure 7 has five 

processors < 80 bi ts). The bi ts required by each program defines which 

processors will execute the program in whole or in part. 

The collection of Kartashevs' work is fairly complete, from the 

architecture description to the procedure for mapping pro.grams onto the 

architecture. However, the concentration in developing the schedule is 

on fitting different word width computers together, rather than using 

the DC in its various modes: pipeline, master/slave, etc. Also, the 

performance of the heuristic for performing the schedule is not 

measured or evaluated by the author. 

Kuck' s architecture is ca 11 ed simply "a high-speed multi processor" 

<Kuck 1979; Padua 1980). The system is composed of multiple processor 

clusters <PCs) connected by a global alignment network and a global 

shared memory. Each PC can operate independently, can synchronize with 

other PCs via the global network, or can operate as a slave, with some 

other PCs, under control of a global control unit. Processors within a 

PC can operate independently, synchronized with other processors 

through the local network, or as a slave under control of the array 

control unit. Each processor has program and data memory. 

This architecture can operate as an SEA <Single Execution on an 

Array of Data) by forcing all processors to execute the same 

instruction on data in their local memory. It can operate as an MEA 

<Multiple Execution, Array) by dividing into multiple SEAs - either to 
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perform multiple pipelined operations on the same array or to 

concurrently process multiple arrays. It can also operate as a MES 

<Multiple Execution, Scalar) which is a data flow type machine <Empress 

operates in MES mode exclusively>. Reference <Kuck 1978) for further 

detail on Kuck's machine taxonomy. 

Kuck's approach to mapping an algorithm onto the architecture has 

three steps. The first step is to convert the algorithm to a DAG 

<Directed Acyclic Graph) of Pi-blocks where a Pi-block is a simple 

computational node. The Pi-block is a statement or small group of 

statements which are "strongly connected," i.e., the data dependence 

between statements is cyclic. Practically, this means that the 

statements in a Pi-block have to be executed sequentially to ensure 

determinancy. Since all cycle dependencies are in Pi-blocks, any 

algorithm can be represented as a DAG of Pi-blocks. 

The second step is to analyze the dependency of Pi-blocks which 

are within iteration control constructs (i.e., DO FOR loops> to 

increase parallelism. The techniques include rearranging the loop 

control structures, identifying potential concurrency within a loop, 

and "pipelining." Pipelining breaks a loop into smaller loops which are 

chained together (i.e., the ith iteration of loop j cannot start until 

the ith iteration of loop j-1 has completed). An evaluation is also 

made to determine whether the pipeline approach wi 11 be dominated by 

bottlenecks, where most processors in the pipeline are idle because of 

unequal Pi-block execution times. 
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The third step is to assign Pi-blocks to processors. This is 

similar to the task allocation in a distributed computer system problem 

as discussed earlier. Kuck does not add to this body of knowledge; he 

does riote that the problem is NP-complete and that it is a common 

problem in scheduling theory. 

The lack of discussion on the multiprocessor scheduling problem by 

Kuck is indicative of the need for a systematic investigation of the 

multiprocessor scheduling for practical systems such as Kuck's high 

speed multiprocessor. 



CHAPTER 3 SCHEDULING ALGORITHMS 

As shown in Chapter 2, the previous work in this area has developed 

optimal algorithms for only a subset of constraints. We also reviewed 

some heuristic approaches which do consider a more complete set of con

straints, yet these heuristics cannot be properly evaluated since there 

is no comparable optimal algorithm. 

In this chapter we develop an optimal algorithm and heuristic 

algorithms to _solve the multiprocessor scheduling problem. We begin with 

a formal definition of the scheduling problem in terms of the con

straints discussed in Chapter 1. We then describe the optimal algorithm 

and sketch the procedures which are used to implement the algorithm. The 

optimal algorithm has exponential time complexity and we discuss the 

theoretical worst case complexity. We then describe the constraint re

laxing heuristic which is used to evaluate the performance of the other 

researchers' scheduling approaches. Finally, we introduce the dynamic 

priority scheduling heuristic which considers the key practical con

straints when developing the multiprocessor schedule. The optimal 

algorithm and the two heuristics will be evaluated in Chapter 4 and used 

to investigate key characteristics of the scheduling problem. 

46 
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3.1 Formal Definition of the Scheduling Problem 

We define the scheduling problem as follows: 

Given a set of tasks, a set of processors, and the following 

constraints: 

1) task execution time per processor 
2) task precedence relations 
3) intertask communication requirement 
4) task memory requirement 
S> task execution deadlines 
6> interprocessor communication cost 
7) number of coprocessors required per task 
8) configuration change overhead 

a.) Find a feasible schedule of the tasks on the processors, where a 
feasible . schedule assigns each task to a processor, assigns at most 
one task to a processor at a time, and satisfies all constraints. 

b.) Find an optimal feasible schedule which minimizes the schedule 
length. 

The processor scheduling problem can be formulated as a combination 

allocating/sequencing problem. In our formulation, the function to be 

minimized is the schedule length and the system of constraints account 

for the application and architecture constraints listed above. 

3. 1 .1 Schedule and Schedule Length 

Define the scheduling problem as having a set of m processors, 

P = (Pl,P2, ... ,Pm), and a .set of n tasks, T = (Tl, ... ,Tn). Any schedule 

can be modeled as an allocation of tasks and a sequence of scheduling 

events. The a 1 location defines which tasks execute on which processors 

and the sequence defines the order that the tasks process on the 

processors. For our system, we consider several phases of the task 
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processing: execution, communication, and configuration. So any 

processor can be in one of four states: executing a task, communicating 

with another processor due an intertask communication requirement, 

reconfiguring due to a change in communication configuration, or 

idling. This definition is quite general since most other processor 

functions, such as operating system overhead, can be included as part 

of the task proce·ssing time. Figure 8 illustrates this state definition 

as applied to our example in Chapter 1. 

The scheduling events wi 11 define any change between the four 

states listed above. Thus, a schedule, SCHED, is defined by the 

sequence, SEQ, and the task allocation, ALL: 

SCHED = <SEQ, ALL) 

where SEQ is a sequence of z events 

SEQ = < E 1 , E2, . . . Ez) 

and ALL is an assignment of the n tasks onto processors and 

configurations 

ALL= (Al,A2, ... An). 

Each event, Eq, is a two tuple, Eq = <ETYPEi, ETIMD, where ETIME 

is the time of the event and ETYPEi is one of the six task events which 

indicate the start or finish of one of the task processor states: 

S-RFIGi = start . reconfiguration required for Ti 

F-RFIGi =finish 11 11 11 11 

S-COMMi = start communication of Ti 

F-COMMi = finish 11 
" 
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S-EXECi = start execution of Ti 

F-EXECi =finish 11 11 

We will use the notation t<ETYPEi) to indicate the time that ETYPEi 

occurred and INDEX<ETYPEi) to indicate the event sequence index of 

ETYPEi. In a similar fashion, we use t<Eq) to indicate the time of event 

q and we use TYPE< Eq> to indicate the type of event Eq. Note that the 

idle state is not explicitly represented but is easily computed as the 

absence of any other state. Each of the six event types is recorded for 

each task, so z = 6*n. The schedu 1 i ng events for a given task wi 11 

always occur in the order shown above, i.e., t<S-RFIGi) ~ t<F-RFIGi) 

< t<S-COMMi), etc. Multiple events can occur at the same time, such as 

when two tasks start execution simultaneously, i.e., t<S-EXECi) = 

t<S-EXECj), or when a task has no communication requirement, i.e., 

t<S-COMMi) = t<F-COMMi). As an example, Table 5 gives sequence events 

from the schedule shown in Figure 5 of Chapter 1. 

Each allocation defines which processor<s>, Pk, a task is assigned 

to and which communication configuration, R, is to be used for that 

task: 

Ai = <Pk,R) 

Normally a task requires only one processor and Pk identifies that pro

cessor. For cases where a group of coprocessors are required, we will 

i den ti fy the set as Pk where Pk is the first processor of the set, 

ordered by processor index. We will use ALLOC<Pk) to indicate the set of 

tasks which are assigned to Pk. The communication configuration R is a 



TABLE 5 

SEQUENCE OF EVENTS FOR EXAMPLE PROBLEM 

EVENT - <STATE, TIME) EVENT - <STATE, TIME) 

ql - <S-RFIGl, 0) q25 - (S-COMM4, 3500) 
q2 - <F-RFIGl, 0) q26 - <S-COMMS, 3500) 
q3 - <S-COMMl, 0) q27 - (S-COMM6, 3500) 
q4 - <F-COMMl, 0) q28 - (F-COMM4, 4000) 
qS - (S-EXECl, 0) q29 - <S-EXEC4, 4000) 
q6 - <F-EXECl, 1500) q30 - <F-COMM5, 5500) 
q7 - <S-RFIG2, 1500) q31 - <F-COMM6, 5500) 
q8 - <S-RFIG3, 1500) q32 - <S-EXEC5, 5500) 
q9 - <F-RFIG2, 1500) q33 - <S-EXEC6, 5500) 
qlO - <F-RFIG3, 1500) q34 - <F-EXEC4, 6500) 
qll - (S-COMM2, 1500) q35 - <F-EXEC5, 8500) 
q12 - <S-COMM3, 1500) q36 - (F-EXEC6, 8500) 
q13 - <F-COMM3, 1500) q37 - <S-RFIG7, 8500) 
q14 - <S-EXEC3, 1500) q38 - <S-RFIG8, 8500) 
q15 - <F-COMM2, 2000) q39 - (F-RFIG7, 9000) 
q16 - <S-EXEC2, 2000) q40 - (F-RFIG8, 9000) 
q17 - <F-EXEC3, 3000) q41 - <S-COMM7, 9000) 
q18 - <F-EXEC2, 3500) q42 - <S-COMM8, 9000) 
q19 - <S-RFIG4, 3500) q43 - <F-COMM7, 10000> 
q20 - < S-RFIGS, 3500) q44 - <F-COMM8, 10000) 
q21 - <S-RFIG6, 3500) q45 - <S-EXEC7, 10000) 
q22 - <F-RFIG4, 3500) q46 - <S-EXEC8, 10000) 
q23 - <F-RFIG5, 3500) q47 - (F-EXEC7, 14500) 
q24 - <F-RFIG6, 3500) q48 - (F-EXEC8, 14500) 

KEY TO STATES 
S-RFIGi = Start Reconfig. for Task i 
F-RFIGi = Finish Reconfig. for Task i 
S-COMMi = Start Communication for Task i 
F-COMMi = Finish Communication for Task 
S-EXECi ·=Start Execution for Task i 
F-EXECi = Finish Execution for Task i 
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selection of one of the f allowable configurations. Continuing our 

example from Figure 5, the allocation for that schedule is given by: 

ALL = < A 1 , A2, A3, A4, AS, A6, A 7, AS ) 
= ( (3,l), (1,1), (3,1), (1,1), (2,1), (3,1), (2,2), (3,2)) 

The schedule is defined to start at time zero, t<El) = O, so the 

schedule length is found by the time of the last event, t<Ez). In our 

scheduling problem we are trying to minimize the schedule length t<Ez) 

while obeying all scheduling constraints. The next section defines 

those constraints. 

3. 1.2 Scheduling Constraints 

The scheduling constraints serve as the rules by which a feasible 

schedule can be constructed and therefore serve as the rules for finding 

a sequence of events and an allocation of tasks. The task and processor 

characteristics used to define the scheduling constraints are listed 

below. Note the one-to-one correspondence to the application and archi

tecture constraints discussed in . 1 .2.1 and 1 .2.2 respectively. The 

application characteristics are: 

Q<i ,k) = task execution time of Ti on Pk. 

PREC<i ,j) = precedence relation between Ti and Tj 
1 if Ti precedes Tj <denoted Ti < * Tj > 
2 if Ti and Tj can execute as pipeline 

tasks (denoted Ti <*> Tj) 
and O o'therwise. 

C<i ,j) = number of words to be communicated from Ti to Tj 

DEAD(i) = deadline time for Ti. 

MREQ<i> = memory space required for Ti. 



NUMP(i) = number of processors required for Ti. 

D<k,l ,r) = time units per communication word between Pk and Pl 
at communication configuration r. 

MCAP<k> = memory space capacity of Pk: 

REC<a,b) = overhead time to change from configuration a to b. 
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The constraints of the scheduling problem can now be represented 

using these task and processor characteristics. For the following 

equations we define Ti to be mapped onto Pk using configuration "a" 

<Ai= <Pk,a)) and Tj to be mapped onto Pl using configuration "b." 

1 .) Execution time constraints for all Ti 

t<F-EXECi) - t<S-EXECi) = Q<i ,k) 

2.) Precedence constraint for all Ti 

t<S-RFIGi) > t<F-EXECj) for all Tj <*Ti. Note that 
t<S-EXECi) > t<F-EXECj) because t<S-EXECi) > t<S-RF!Gi) 

3.) Communication constraint for all Ti 

t<F-COMMi) = t<S-EXECi) 
t<F-COMMi) - t<S-COMMi) = SUM [ C<i ,j) * D<k, 1 ,a) J 

for all Tj <*Ti. 
where SUM [ J denotes the summation of elements 
within the square -brackets. 

4.) Deadline constraint for all Ti 

t<F-EXECi) < t<DEAD(i)) 

5.) Memory constraint for all Pk 

MCAP(k) ~ SUM [ MREQ(i) J for all Ti allocated to Pk 

6.) Processors required for Ti 

a.) Exclusive use of processor<s> Pk 

t<F-EXECj) ~ t<S-RFIGi) or 
t<S-RF!Gj) > t<F-EXECi) for all Tj ~Ti and 

Tj allocated to Pk 



b.) Number of processors 

SIZE <Ti) = NUMP(i) where SIZE<Ti) is the number of 
processors allocated for Ti 

7.) Reconfiguration overhead for all Ti 

t<F-RFIGi) = t<S-COMMi) 
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t<F-RFIGi) - t<S-RFIGi) = REC<a' ,a) where a' was the previous 
commun i ca ti on configuration. a 1 is determined by the most 
recent reconfiguration state for some Tj with maximum 
t<S-RFtGj) and with t<S-RFIGj) < t<S-RFIGi>. For the very 
first task, a' will be set to a. 

In general, these constraint defi ni ti ons correspond to the 

intuitive descriptions offered in l .2 where the image generation 

example was illustrated. Constraint 4 and 7 include two additional 

relationships, t<F-RFIGi) = t<S-COMMi) and t<F-COMMi) = t<S-EXECi). 

These constraints state. that a task wi 11 immediate 1 y transition from 

configuring to communicating to executing without any idle time or use 

of the processor by another task. The rationale behind this constraint 

is that all of the task phases <configuring, communicating, and 

executing) are part of the overall task processing and our system does 

not permit interruptions of the task processing. 

A final constraint is that the schedule will not permit all 

processors to be idle at the same time. Clearly, any schedule with a 

period of time during which all processors are idle can be improved by 

eliminating that period of time. Thus all reasonable schedules will not 

permit all of the processors to be idle. 
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3.1 .3 Reduced Schedule Representation 

The constraints listed in 3. 1 .2 introduce redundancy into the 

earlier schedule definition of 3. 1. 1. Some of the event times are 

constrained to be equal and the difference in time between many of the 

events are known from the task characteristics. In this section we will 

examine different representations of the schedule which reduce the 

amount of redundancy. 

We can combine constraints 1, 3, and 6 to be 

F-EXECi - S-RFIGi = REC<a 1 ,a) + SUM [ C<i ,j)*D<k, l ,a) ] + Q<i ,k) 

For conveni enc.e, 1 et F-TASKi represent the finish event for task 

<F-TASKi = F-EXECi) and let S-TASKi represent the start event for task 

i <S-TASKi = S-RFIGi). We can formulate an equal representation of a 

feasible schedule SCHED by 

SCHED 1 = <SEQ'' ALL) 

where SEQ' =(El', E2 1
, • En 1

) represents the sequence of task 

f i n i she s and the i r f i n i s h t i me s , i . e . , E q 1 = < i , t) · i den ti fl e s the 

finish time for some Ti. This representation is equal in that the exact 

values of SCHED can be reconstructed from SCHED'. This is clearly true 

since, given the time of F-TASKi and the allocation, we can compute the 

time of the start of execution, and then the start of any 

communication, and finally the start of any reconfiguration. For our 

example: 

SEQ' = < (1, 1500), (3,3000), (2,3500), (4,6500), (5,8500), (6,8500), 
(7,14500), (8, 14500) ) 
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which is the subset of events from SEQ 

(q6, ql7, ql8, q34, q35, q36, q47, q48) 

A further reduction is possible if we are satisfied with a 

representation which allows us to reconstruct an equivalent feasible 

schedule. An equivalent feasible schedule must be feasible and must 

have the same schedule length. Obyiously the ordering and time of 

internal events could be rearranged without changing the schedule 

1 ength. One such rearrangement is when there is 11 s1ack 11 ti me on a 

processor and the task processing can be arb i trari 1 y moved within the 

slack window, subject to the scheduling constraints. Another 

rearrangement is when the processing periods of two tasks on the same 

processor could b·e interchanged. Our reduced representation will allow 

only the former rearrangement because it defines the order of execution 

of all tasks. An equivalent schedule can be represented by 

SCHED' I = <SEQ' I' ALL) 

where SEQ''= (ql, q2, ... qn) is the finish order of all tasks, i.e., 

task ql finishes first, task q2 finishes second, etc. Our example case 

would simply be SEQ'• = (1,3,2,4,5,6, 7 ,8). 

For systems which can be modeled without reconfiguration 

capabi 1 i ty or overhead, we can further reduce our equi va 1 ent schedule 

representation by partitioning the finish order of tasks by processor, 

i.e., order the task finishes on each processor. This partitioning also 

i ndi ca tes the a 11 oca ti on, so the reduced schedu 1 e SCH ED 1 1 1 can now be 

represented by the set of processor-partitioned sequences: 

s· I I = SEQ' I I = (PSEQl' PSEQ2, ... PSEQm) 
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where PSEQl is the set of tasks which execute on Pl ordered by their 

execution finish time. For our example: 

5 1 
I I : ( '(2,4), (5,7>, <1,3,6,8) ) 

This last reduced representation of a schedule wi 11 be important 

for measuring the performance of schedulers which do not consider all 

of the scheduling constraints . Because they do not consider all of the 

constraints, they are unable to accurately report the start and finish 

times of the tasks for the schedules they produce. However, we will be 

able to find out the schedule length by knowing the order of task 

execution for each processor. Given that processor ordering, we can 

simulate the schedule events <with all constraints considered> and use 

the resulting schedule to measure the schedule length. 

3. 1 .4 Feasible Allocation Bounds 

An allocation is defined in 3.1.l as an assignment of tasks onto 

processors and communication configurations. A feasible schedule 

requires the combination of the sequence and allocation. Our scheduling 

algorithms will search for a schedule incrementally, and at each step 

verify that no constraints have been violated. Our optimal algorithm 

will first try to find an allocation which has the potential to permit 

a feasible schedule. The allocation will then be examined for any 

sequences of events which produce a feasible schedule. In this section, 

we define those constraints which we will be able to use to identify an 

allocation, or subset of an allocation, which cannot render a feasible 
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schedule for any sequence. Obviously these will become the "bounding 11 

tests of a branch and bound search. If a subset of an a 1 location is 

shown to violate a constraint, then all allocations containing that 

subset can be eliminated from consideration. 

By examining the constraints listed in 3.1.2, we find that the 

memory constraint (constraint 5) and the number of processors per task 

<constraint 7b) are the only constraints independent of task 

sequencing. These two can therefore be used to test al locations or 

subsets for violations. 

We can also develop a bound using the deadline constraints. 

Although the actual finish time of a given task cannot in general be 

determined during the allocation phase, we can use the precedence 

relations <which must be obeyed by any sequence) to determine the 

minimum time for the task finish. This minimum is then compared to the 

task deadline to check for violations. Define MINFINi to be the minimum 

finish time for Ti using a procedure which propagates the minimum 

finish ti me from the 1 owes t l eve 1 of the precedence tree < i . e., no 

antecedents) to the current task. The procedure is to find the minimum 

finish of the current task, Ti, allocated onto Pk is given below: 

PROCEDURE COMPUTE.MINFIN 
MINFINi = Q< i ,k) 
COMMi = 0 
DO FOR ALL Tj (* Ti 

COMMi = COMMi + C(i ,j) * D(k,1 ,a) 
DO FOR ALL Tj <* Ti 

MINFINi =MAX [MINFINi, <MINFINj + Q<i ,k) + COMMi)] 
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This procedure depends on the existence of MINFINj, which means 

that all antecedents of Ti must be allocated before Ti. We will 

guarantee that by first ordering the tasks by pair-wise precedence 

(i.e., if Ti <* Tj then i < j) and then al locating the tasks in that 

order. If at any point we find that MINFINi > DEAO(i) then the 

allocation cannot lead to a feasible schedule. 

Most tasks wi 11 not have an exp 1 i cit deadline. For the image 

generator example of 1.2, only the last task, TS, had a deadline which 

corresponded to the 16 millisec cycle time requirement. Obviously all of 

the tasks cou 1 d be assigned the 16 mi 11 i sec dead 1 i ne s i nee they had to 

complete before TB. In fact, if we knew the allocation of all of the 

tasks, we could compute the communication and execution times and then 

propagate internal deadlines for all tasks. This propagation would start 

at the task<s> at the highest level <no descendants) and use the maximum 

start time for Ti to determine the deadline of all antecedents. Thus, 

PROCEDURE PROPAGATE.DEAD 
MAXDEAD = schedule length deadline for all tasks 
DO FOR ALL Ti , i = n , n-1 , ... , 1 

DEAO(i) =MIN [ DEAO(i), MAXDEAD ] 
DO FOR ALL ANTECEDENTS Tj, Tj <* Ti 

DEAO(j) =MIN [OEAO(j), DEAO(i) - Q<i ,k) - COMMiJ 

Unfortunately, this procedure cannot be used while an allocation is 

being constructed because all of the tasks must be allocated for it to 

work. Therefore the calculation of MINFINi above is not very useful. 

However, we can modify the deadline propagation procedure so that as we 

build the allocation in precedence order we can test MINFINi against 

some deadline constraints. To do this, we must make the 'best-case' 
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assumptions about the allocation of tasks. We use the minimum possible 

execution time for each task <minimum over all processors) and the 

minimum amount of communication time, representing these as MINQi and 

MINCOMMi respectively. The revised deadline propagation procedure is 

then: 

PROCEDURE PROPAGATE.DEAD' 
MAXDEAD =schedule length deadline for all tasks 
DO FOR ALL Ti , i = n , n-1 , . . . , l 

DEAD(i) =MIN [ DEAD(i), MAXDEAD] 
DO FOR ALL ANTECEDENTS Tj, Tj <*Ti 

DEAD(j) =MIN [DEAD(j), DEAO(i) - MINQi - MINCOMMi] 

This can be used to check MINFINi against DEAD(i) while building 

an allocation. Note that MINCOMMi will normally be zero because the 

best-case assumption is that tasks would be coresident and not require 

communication. After the allocation is completed, the procedure 

PROPAGATE DEAD can be used to see if the allocation violates the 

stricter deadline constraint. 

3. 1 .4 Feasible Sequence Bounds 

We can use the constraints to define bounds while searching for 

sequences of a given allocation. Most of the constraints will form the 

rules for determining the set of possible sequences and do not have to 

be explicitly checked. For instance we will only consider sequencing a 

task when all of its antecedents have completed execution, so the 

precedence constraint cannot be violated. The length of execution, 

communication, and reconfiguration will all be computed from the 

characteristics so that the corresponding constraint is not violated. 
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The key constraint which could be violated is the deadline 

constraint. When examining possible sequences of a given allocation, it 

is best to detect a deadline constraint violation as soon as possible. 

The deadline calculation from procedure PROPAGATE DEAD can be used to 

check each task as it is scheduled. If a task violates its deadline, 

then no further development of that sequence is necessary. 

3.2 Optimal Scheduling Algorithm 

3.2. 1 Scheduling Algorithm Overview 

Th 1 s a 1 gori thm uses a branch and bound technique to search the 

solution space of all possible reasonable schedules. The algorithm 

search e s u n ti 1 a f ea s i b 1 e s ch e du 1 e i s d i s covered < i . e . , meets a 11 

problem constraints). This feasible schedule is then recorded and the 

algorithm continues to search for a feasible schedule with a smaller 

schedule length. This process is repeated until no more feasible 

schedules can be found. 

The last feasible schedule to be found has the minimal schedule 

1 ength and is therefore optima 1. If no feas i b 1 e schedu 1 e is found, then 

none exists for the scheduling problem. The algorithm is guaranteed to 

find an op ti ma 1 schedu 1 e . because the branch and bound search wi 11 not 

prune a branch of possible schedules unless each of those schedules on 

the branch cannot be feasible. Therefore all feasible schedules are 

guaranteed to be inspected. 
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Our branch and bound algorithm is actually a two-phase process, as 

illustrated in Figure 9. The outer phase searches for feasible alloca

t ions using the subroutine FIND NEXT ALLOCATION. As discussed in 3.1.4, 

we define an infeasible allocation to be an allocation which violates a 

schedule constraint regardless of the sequencing. A feasible allocation 

is any allocation which we cannot prove to be violating a schedule con

straint. For each feasible allocation found by the algorithm outer 

phase, the inner phase uses FIND NEXT SEQUENCE to search for all 

feasible schedules using that allocation. It is possible <and very 

likely in fact) that a feasible allocation will not render a feasible 

schedule. If a feasible sequence of the allocation is found, the 

combination is recorded as a feasible schedule. 

The schedule length of that feasible schedule is then used by 

UPDATE TASK DEAD to define stricter task deadlines. This will have the 

effect of eliminating from future consideration any feasible schedules 

which have a longer schedule length. Once a feasible schedule is found 

and recorded, the inner phase continues to search for sequences of the 

allocation which are feasible <and must have shorter schedule length). 

When a 11 sequences are exhausted, the outer phase ca 11 s FIND NEXT 

ALLOCATION to find another f eas i b 1 e a 11 oca ti on and the process 

continues. When all feasible allocations have been exhausted, the 

executive program termi n·ates by reporting the most recently found <and 

shortest schedule length) schedule. If no feasible schedule was found, 

then none exists and the program reports failure. 



procedure OPTIMALoSCHEDULER <PROBLEM,SCHED> 
;variable definition 

PROBLEM - input definition of application and 
architecture characteristics/constraints 

FEAS.ALL - boolean denoting feasible allocation 
ALL allocation mapping 
FEASoSEQ boolean denoting feasible sequence 
SEQ sequencing of allocation 
SCHED.FOUND - boolean denoting feasible schedule found 
SCHED complete schedule = <ALL,SEQ> 

;subroutines called 
!NIT.ALLOCATION 

FINOoNEXT.ALLOCATION -

!NIT.SEQUENCE 

FINOoNEXT.SEQUENCE 

UPDATE.TASK.DEAD 
REPORT 

set SCHED.FOUND =false 
call !NIT.ALLOCATION 
set FEAS.ALL = true 

initialize allocation variables for the 
current scheduling problem 

searches forward until a new feasible 
allocation is found 

initialize sequence variables for the 
current allocation 

searches forward to find a new feasible 
sequence for the current allocation 

sets new deadline= schedule length - l 
reports the optimal feasible schedule 

or reports no feasible schedules exist 

do while <FEAS.ALL> ;outer phase - get feas. alloc. 
call FIND.NEXT.ALLOCATION (ALL, FEAS.ALL) 
if <FEAS.ALL) 

;inner phase - get feas. seq. of alloc. 
call !NIT.SEQUENCE 
do while <FEAS.SEQ> 

call FIND.NEXT.SEQUENCE<ALL,SEQ,FEAS.SEQ) 
if <FEAS.SEQ> 

set SCHED.FOUND = true 
set SCHED = <ALL,SEQ> ;record feasible schedule 
call UPDATE.TASK.DEAD <t<SEQ<Z>> 

end do ;end inner phase 
end do ;end outer phase 
if <SCHEO.FOUND> then call REPORT <SCHEO) 
else call REPORT <fals~> 

end procedure 

Figure 9. Optimal Scheduler Procedure. 
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There are many feasible allocations <up to nm)and each feasible 

allocation can produce many feasibl~ sequences <up to nl>. The subrou

tines that the executive calls to find the next feasible allocation or 

the next feasible sequence are responsible for searching efficiently 

through the allocation and sequencing possibilities. These subroutines 

are discussed next. 

3.2.2 Allocation Branch and Bound 

Each time FIND NEXT ALLOCATION is called, it must search for a 

feasible allocation among the set of all possible allocations of tasks 

onto processors. We represent this set of possible allocations as an 

"allocation tree," as shown in Figure 10. The tree is structured 

assuming that task 1 is allocated, then task 2, etc. Each of the levels 

of the tree represent the different allocation choices for a specific 

task, given the allocations of the all the previous tasks. FIND NEXT 

ALLOCATION must search the tree in a methodical fashion until it finds 

a feasible allocation. When FIND NEXT ALLOCATION is called again, it 

must resume the search from the previous tree location. This search 

must continue until all feasible allocations are discovered. Since each 

of the n tasks can be allocated to any of the m processors, there are a 

total of nm possible allocations. Fortunately, we can employ the 

scheduling constraints discussed in 3.1.4 to eliminate, or prune, parts 

of the tree and thus reduce our search space. 

We will search the tree in a depth-first fashion. At each level the 

allocation choices will be evaluated and the task will be allocated to a 
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Note: Tij indicates that task i is assigned to processor j 

Figure 10. M-ary Allocation Tree of N Tasks. 
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processor such that none of the allocation constraints are violated. 

This process continues from level to level until either all of the tasks 

are allocated or the task at the current level cannot be allocated with

out violating the allocation constraints. If the task at the current 

level cannot be allocated then all of the allocation possibilities below 

that point are ignored and the subroutine backtracks to level which has 

feasible allocation possibilities. The program then continues forward 

unti 1 it must back track again, or a 11 of the tasks are succe s sfu·11 y 

allocated. 

If all of the tasks are successfully allocated then the feasible 

allocation is returned to the executive. The executive will then use 

FIND NEXT SEQUENCE to search for any f eas i b 1 e s chedu 1 es -using that 

allocation. When all sequences are exhausted the executive recalls FIND 

NEXT ALLOCATION which back tracks from the current task 1eve1 < 1eve1 n 

since all tasks are allocated) to level n-1 and continues to search for 

another feasible allocation. FIND NEXT ALLOCATION will eventually 

finish searching the allocation tree and will report that no additional 

feasible allocations exist. 

The subroutine FI ND NEXT ALLOCATION is given in Figure 11. The 

outer do while loop performs the depth first forward search, advancing 

form one task level to the next as long as the allocation remains 

feasible. The subroutine INIT ASSIGN is called when each level is 

entered from "above," e.g., if task 5 is to be allocated after task 4 

has been allocated, then INIT ASSIGN (5) is called. INIT ASSIGN serves 

to initialize the status of the current node of the tree so that all 



subroutine FIND.NEXT.ALLOCATION <ALL, FEAS.ALL) 
;variable definition 

N - number of tasks in scheduling problem 
FEAS.ALL - boolean denoting feasible allocation 
ALL - allocation mapping 
TASK index of the last task to be allocated 

initialized to 0 by !NIT.ALLOCATION 
NEW boolean value for each task which 

initialized true by !NIT.ALLOCATION 

;subroutines called 
!NIT.ASSIGN - prepare for first assign of a task in 

a forward search 
NEXT.ASSIGN - allocate task #TASK+l. Iff allocation is 

feasible, set FEAS.ALL=true 

do while < <TASK . lt. N) .and. FEAS.ALL ) 

if ( NEW<TASK) ) 
call !NIT.ASSIGN <TASK) ;this is a forward search 
set NEW<TASK) =false ;init task 1 s allocation state 

call NEXT.ASSIGN <TASK, ALL, FEAS.ALL) 

do while ( not.FEAS.ALL .and. (TASK .gt. Q)) 

NEW<TASK) = true ;flag this task for forward search 
;backtrack to previous level if infeasible 

set TASK = TASK - 1 
call NEXT.ASSIGN <TASK, ALL, FEAS.ALL) 

end do 
set TASK = TASK + 

end do 
return 

Figure 11. Find Next Allocation Subroutine. 
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allocations for that node will be considered. NEXT ASSIGN (5) is then 

called to perform the actual allocation using the best allocation at 

that level 5, where 11 best 11 is defined using the minimum execution and 

communication times computed for that allocation. 

During a backtrack operation, a task level will be entered from 

"below," e.g., level 6 has no feasible options so it backtracks to 

1eve1 5. At this point we ca 11 NEXT ASSIGN s i nee we want to advance to 

the next best al location at the current level, e.g., level 5. If the 

next best allocation is not feasible, we continue to backtrack. If it 

is feasible, we resume the forward sear~h from that point. 

3.2.3 Sequencing Branch and Bound 

Each time FIND NEXT SEQUENCE is called, it must search for a 

feasible sequence among the set of all possible sequences of events for 

the given al location of tasks onto processors. The structure of FIND 

NEXT SEQUENCE for controlling the search of sequences is similar to the 

control structure of FIND NEXT ALLOCATION. For this case, the search 

tree is the set of all possible scheduling events within the 

allocation. There are 2*n levels, or events, where each event is either 

a task start or a task finish. Again, the search is depth-first with 

the subroutines NEXT SEQ and . BACK SEQ doing the investigation. 

As with the allocation processing, we will search the sequence 

tree in a depth-first fashion. At each event level the sequencing 

choices will be evaluated and one chosen. Multiple event options will 
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be available only if more than one event is ready to occur at the same 

time, e.g., two tasks are ready to start execution at the same time. A 

choice between options must be made if they are mutually exclusive, 

e.g., the two ready tasks are allocated to the same processor. One 

option must be chosen and then the next event must be found. This 

process continues from event to event until either the 1 ast event is 

successfully scheduled (i.e., all tasks have started and finished) or 

the current event is not feasible because it violates a scheduling 

constraint, in particular the deadline constraint. If the event at the 

current level has no feasible options, then we backtrack to an event 

which has feasiqle options. The program then continues forward until it 

must backtrack again, or all of the events are scheduled. 

If all of the events are successfully scheduled then the feasible 

sequence and a 11 ocati on is returned to the executive. The executive 

wi 11 then record the feasible schedule and use the schedu 1 e 1 ength to 

def i n e new , s ma l 1 er task dead l i n e v a 1 u e s . The exec u ti v e then rec a 11 s 

FIND NEXT SEQUENCE which backtracks from the current event level <level 

2*n since each task must start and finish) to level 2n-l and continues 

to search for another feasible sequence. FIND NEXT SEQUENCE . will 

eventua 11 y finish searching the SEQUENCE tree and wi 11 report that no 

additional feasible sequences exist. 

The subroutine FIND NEXT SEQUENCE is given in Figure 12. The outer 

DO WHILE loop performs the depth first forward search, advancing from 

one event level to the next as long as the sequence remains feasible. 

FIND NEXT SEQUENCE calls NEXT SEQ to move forward a single event. NEXT 



subroutine FIND.NEXT.SEQUENCE <ALL,SEQ,FEAS.SEQ> 
;variable definition 

' 

N - number of tasks in scheduling problem 
ALL - allocation mapping 
FEAS.SEQ boolean denoting feasible sequence 
·sEQ - sequencing of allocation 
EVENT index of the last event to be scheduled 

initialized to 0 by !NIT.SEQUENCE 
LAST.EVENT global boolean set true when all tasks 

have finished 
BACK.START boolean set true by subroutine BACK.SEQ 

iff the last event backtracked was a task start 

;subroutines called 
NEXT.SEQ - determine next event to occur. Iff event is 

feasible, set FEAS.SEQ=true 
BACK.SEQ - backtrack event #EVENT and undo its effects 

LAST.EVENT= false 
do while ( not.LAST.EVENT .and. FEAS.SEQ 

call NEXT.SEQ <EVENT, FEAS.SEQ) 

do while ( <EVENT .gt. Q) .and. (not. FEAS.SEQ) ) 
call BACK.SEQ <EVENT,BACKSTART) 
set EVENT = EVENT - 1 
if <BACKSTART) then call NEXT.SEQ <EVENT,FEAS.SEQ) 

end do 

set EVENT = EVENT + 1 
end do 

return 

Figure 12. Find Next Sequence Subroutine. 
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SEQ considers only the precedence feasible sequences when selecting the 

next event in a forward search. This is accomplished by maintaining an 

event-based simulation of the states of all tasks. Only tasks which 

have their precedence relations satisfied can ever be scheduled. As 

shown in Figure 13, NEXT SEQ first checks all of the idle processors to 

see if there is a ready start event, i .e., a task ready to begin 

execution. If a start event is found, it is recorded and the subroutine 

returns to FIND NEXT SEQ. If more than one start event option is 

available, then the "best" one is chosen which has the smallest 

execution time. If no start event is found, NEXT SEQ determines which 

currently executing task will finish next. The simulated clock is 

advanced to the time of this next finish event and the finish event is 

recorded. This subroutine is ca 11 ed repeatedly in a forward search to 

record the next scheduling event and advance the simulation clock. 

· If any of the options is infeasible <i.e., a task cannot be 

started bee au se it wi 11 not finish before its dead 1 i ne) then none of 

the options need be considered and backtracking is required. <Obviously 

the task which violates the deadline constraint will always violate the 

constraint for any future scheduling.) When backtracking is required, 

the inner DO WHILE loop of FIND NEXT SEQ is activated to repeated 1 y 

call BACK SEQ EVENT. BACK SEQ EVENT simply reverses the effect of the 

previous scheduling event a·nd reverses the clock. If the backtracking 

event was a start, then BACK SEQ EVENT returns a flag so that any other 

feasible options at that start event can be investigated. The outer 

loop of FIND NEXT SEQ will resume the forward search at that point. 



subroutine NEXT.SEQ <EVENT, FEAS.SEQ) 
;variable definition 

EVENT index of current event 
FEAS.SEQ boolean set false if constraint violated 
FOUND.EVENT - boolean set true if an event is found 
PROC local index to check all processors 

;subroutines called 
FIND.START 

FIND . FINISH -

checks if a ready t~sk is available to be 
started on the processor 
called if no starts available. Finds the 
next task finish and advances clock to finish 

set FEAS.SEQ = true 
set FOUND.EVENT= false 

do for PROC = 1 to M 
call FIND.START <EVENT, PROC, FOUND.EVENT, FEAS.SEQ) 

if (not FOUND.EVENT and FEAS.SEQ) 
call FIND.FINISH <EVENT, FOUND.EVENT, FEAS.SEQ) 

return 

Figure 13. Next Sequence Subroutine. 
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3.3 Constraint Relaxing Heuristic 

The scheduling algorithm described in 3.2 is guaranteed to find 

the optimal schedule, but the exponential time complexity of the 

scheduling problem limits the algorithm to small problems. The 

execution ti me performance of the OPTIMAL SCHEDULER is reported in 

detail in Chapter 4. It is sufficient here to note that a prob 1 em with 

only sixteen tasks and three processors may require evaluating over ten 

million schedule nodes, representing several hours of ~omputing time. 

This time would grow to days and years with small increases to the 

numbers of tasks or processors. Thus, in order to schedule large 

numbers of tasks and processors, we must relax our goal of optimality 

and look for heuristics which will produce a "reasonably good" schedule. 

Heuristic scheduling approaches are difficult to compare without a 

known baseline. Our technique for comparison is to develop a benchmark 

set of schedules with known optimal schedules. We will then compare our 

heuristic to that benchmark. We also need to show how our heuristic 

compares to other researchers' approaches. Since their specific results 

are not generally available and reproducible, and since they did not 

evaluate their algorithms against an optimal baseline, we have 

developed the constraint relaxing algorithm to empirically evaluate 

their approaches. 

The key about other researchers' approaches is that they do not 

consider one or more of the practical scheduling constraints, as shown 

in Chapter 2. We will refer to a constraint not consid.ered as a relaxed 
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constraint. We can model their scheduling approach using our optimal 

algorithm, with the corresponding constraints relaxed, and call the 

resulting schedule a relaxed schedule. Our optimal algorithm will 

obviously produce a relaxed schedule at least as good as any other 

scheduler implementation. We can then measure the true length of the 

relaxed schedule by simulating that schedule with the actual scheduling 

problem with a 11 constraints. The resulting 1 ength from the re 1 axed 

schedule is a good measure of the scheduling approach which does not 

consider the specific constraint. The constraints we will allow to be 

relaxed are communication requirements, precedence relations, and 

variable task execution times. 

3.3. 1 Constraint Relaxing Heuristic Overview 

The constraint relaxing heuristic works in three steps: 

1. Relax selected constraints of actual problem 

2. Find schedule for relaxed problem 

3. Use relaxed schedule for actual problem with all constraints 

reintroduced 

Note that the re 1 axed s chedu 1 e found in step 2 wi 11 provide the 

allocation of tasks to processors and the sequencing of tasks within a 

processor. Step 3 wi 11 then use the re 1 axed schedu 1 e to determine the 

actual start and finish times for each task and the actual schedule 

length. As noted in 3.1.3, we can evaluate the schedule length by 
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reconstructing the actual events given the order of the events. We will 

'perform an event-based s i mu 1 a ti on of the task executions and use the 

defined order of events to resolve any conflicting event options. The 

resulting schedule length will be the measure for evaluating the 

relaxed schedule. 

We find the relaxed schedule using the optimal schedule algorithm 

with the selected constraints neutralized. For example, the precedence 

constraints might be eliminated or the task executions times might be 

set to a constant. Another researcher 1 s scheduling algorithm could be 

used here in place of our own optimal scheduling algorithm. But for 

comparison purposes, .our optimal algorithm produces a relaxed schedule 

which is at least as good <short schedule length) as an algorithm from 

the previous research which does not consider the relaxed constraint. 

The CONSTRAINT RELAXING procedure is shown in Figure 14. The 

executive first relaxes the selected set of constraints by calling SAVE 

CONSTRAIN. SAVE CONSTRAIN s imp 1 y saves a copy of the prob 1 em and then 

neutralizes the selected set of · constraints. The executive then calls 

the normal OPTIMAL SCHEDULER procedure to find the optimal relaxed 

schedule. The ori gi na 1 constraints are restored by RESTORE CONSTRAIN 

and the the re 1 axed s chedu 1 e is eva 1 ua ted for the fu 11 y constrained 

scheduling problem. The evaluation is performed using the allocation 

. developed for the relaxed schedule. The schedule events are determined 

by calling FIND NEXT SEQUENCE once. There is only one possible sequence 

to "search" since the sequence is defined by the relaxed schedule. 



procedure CONSTRAINT.RELAXING <PROBLEM,SCHED) 
PROBLEM - input definition of application and 

architecture characteristics/constraints 
RELAX.PROBLEM - problem definition with relaxed constraint 

removed 
RELAX.SCHED - the optimal schedule for the realxed problem 
ALL allocation mapping 
FEAS.SEQ boolean denoting feasible sequence 
SEQ sequencing of allocation 
SCHED.FOUND - boolean denoting feasible schedule found 
SCHED complete schedule = <ALL,SEQ> 

;subroutines called 
SAVE.CONSTRAIN 

OPTIMAL SCHEDULER 
!NIT.SEQUENCE 

FIND.NEXT.SEQUENCE 

REPORT 

record original constraints and remove 
constraints to be relaxed 
finds optimal schedule for relaxed prob. 
initialize sequence variables for the 

current allocation 
searches forward to find a new feasible 

sequence for the current allocation 
reports the optimal feasible schedule 

or reports no feasible schedules exist 

first find the optimal schedule for the relaxed problem 

call SAVE.CONSTRAIN (PROBLEM, RELAX.PROBLEM) 
call OPTIMAL.SCHEDULER <RELAX.PROBLEM, RELAX.SCHED) 

now evaluate the relaxed schedule on fully constrained problem 

call RESTORE.CONSTRAIN <PROBLEM, RELAX.PROBLEM) 
call SET.ALLOCATION <RELAX.SCHED, ALL) 
call !NIT.SEQUENCE -
call FIND.NEXT.SEQUENCE'<ALL,SEQ,FEAS.SEQ) 
if <FEAS.SEQ) then call REPORT <SCHED> 
else call REPORT (false) 

end procedure 

Figure 14. Constraint Relaxing Heuristic Procedure. 
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3.3.2 Constraint Relaxing Subroutines 

Three new subroutines defined for this heuristic are READ 

CONSTRAIN, SAVE CONSTRAIN, and RESTORE CONSTRAIN. These subroutines sim

ply provide the logic to determine which constraints should be relaxed, 

relax the selected constraints, and restore the selected constraints. 

We also modify FIND NEXT SEQ to force the task execution order of 

the rel axed s chedu 1 e to be repeated. Ac tua 11 y, we imp 1 ement this by 

modifying NEXT SEQ (from the optimal scheduler, Figure 13) so that when 

the next start event must be in accordance with the order of the 

relaxed schedule. The modified version of NEXT SEQ is given in 

Figure 15. The only modification is that the subroutine GET HIGH 

PRIORITY is called before searching for start events. GET HIGH PRIORITY 

uses the task execution order from the relaxed schedule to control when 

ready tasks are allowed to begin execution. In effect, the order of the 

relaxed schedule becomes another precedence constraint because tasks 

are restricted to execute in the order of the relaxed schedule. 

3.3.3 Constraint Relaxing Scheduler Time Complexity 

The time complexity of this algorithm can be developed by examining 

the major components called by the CONSTRAIN executive: 

o READ, SAVE, RESTORE CONSTRAIN = O(n) 

o Find relaxed schedule = O<OPTIMAL SCHEDULER) 

o Evaluate relaxed schedule = O<nlogn) 



subroutine NEXT.SEQ <EVENT, FEAS.SEQ) 
;variable definition 

EVENT index of current event 
FEAS.SEQ boolean set false if constraint violated 
FOUND.EVENT - boolean set true if an event is found 
PROC local index to check all processors 

;subroutines called 
FIND.START checks if a ready task is available to be 

started on the processor 
FIND.FINISH - called if no starts available. Finds the 

next task finish and advances clock to finish 
GET.HIGH.PRIORITY - get highest priority task for each proc. 

set FEAS.SEQ = true 
set FOUND.EVENT= false 

call GET.HIGH.PRIORITY 

do for PROC = 1 to M 
call FIND.START <EVENT, PROC, FOUND.EVENT, FEAS.SEQ) 

if <not FOUND.EVENT and FEAS.SEQ) 
call FIND.FINISH <EVENT, FOUND.EVENT, FEAS.SEQ) 

return 

Figure 15. Modified Next Sequence Subroutine. 
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For our case, the OPTIMAL SCHEDULER is exponential so the overall 

complexity is exponential. However, we could have found a nonoptimal 

relaxed schedule using a heuristic, such as the heuristics of previous 

researchers. Si nee a 1 most every heuristic is at 1 east 0( n 1 ogn) , the 

overall complexity would be governed by the complexity of the heuristic. 

3.4 Dynamic Priority Heuristic 

This heuristic is based ·on the simple list scheduler with some 

modifications to dynamically adjust the priority list order. In a list 

scheduler, tasks are scheduled during actual application processing. 

Idle processors request a task for execution and the scheduler selects 

one of the ready tasks <tasks with all · precedence relations satisfied) 

for that processor. The selected ready task is scheduled onto that 

processor for execution. When the task finishes execution, the processor 

becomes idle again and requests another task for execution. This is 

called list scheduling since the scheduler selects a ready task for an 

idle processor based on a schedule list which prioritizes the tasks. 

This heuristic develops a schedule by simulating the operation of 

a 1 i st scheduler. We use the same event-based simulation used by the 

optimal scheduler <reference 3.2.3) and by the constraint relaxing 

heuristic (reference 3.3.2). For our heuristic, the event-based 

simulation keeps track of the start and finish of tasks. Each time a 

task finishes, the list scheduler will assign one of the ready tasks to 

the idle processor. We record the order of execution of the simulated 

operation and that order serves as the schedule. 
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This dynamic priority heuristic prioritizes the schedule list in 

an attempt to produce a short schedule length. The priority of each 

task is developed using the different constraints defined in 3.1, such 

as task execution, task communication, deadlines, etc. The priority is 

dynamic because the priority of a given task will depend on the 

previous scheduling activity up to the moment the task is scheduled. 

We also introduce a lookahead extension which allows the scheduler 

to accommodate high priority tasks which are "almost ready." This 

mechanism allows the scheduler to anticipate that a high priority task 

will be ready to execute soon. The scheduler can then reserve a 

processor for the high priority task so that the high priority task can 

begin execution as soon as it becomes ready. 

3.4.l Dynamic Priority Heuristic Overview 

The dynamic priority heuristic performs an event-based simulation 

of the tasks executing on the set of processors. The priority of each 

ready task is computed for every idle processor and the task with the 

highest priority is scheduled onto the corresponding processor. The 

task with the highest priority and the processor it is scheduled on are 

removed from the set of ready tasks and set of idle processors, 

respectively. The scheduling process repeats for the remaining ready 

tasks and idle processors until no more ready tasks or idle processors 

are available. The simulation then advances to the next event. 



81 

The task priority is computed as a weighted sum of factors derived 

from the practi ca 1 constraints defined in 3. l. Some of these factors 

give priority to one task over another and some of these factors give 

priority to one processor over another for a specific task. The factors 

are: 

o Task execution time 
- variable per processor. Favors processors which 

execute the task faster <called TASK EXEC) 
- variable between tasks. Favors tasks which 

require longer execution <called PROC EXEC) 

o Precedence relations 
- precedence level - favors tasks at a higher level 

of precedence (i.e., fewer ancestors) 
- descendant degree - favors tasks with a large 

number of immediate descendants 

o Intertask/interprocessor communication - favors 
processors which reduce the task's 
communication requirement 

o Task execution deadline - favors tasks which have 
immediate deadlines 

o Task memory requirement - favors processors which 
have a lot of available memory 

Note that the CP/MISF <critical path/most immediate successors first) 

heuristic described by Kasahara <reference section 2.4. l) is a subset 

of our dynamic priority heuristic. Our task execution deadline priority 

is equivalent to Kasahara's critical path priority and our descendant 

degree priority is equivalent to Kasahara's MISF priority. Our 

heuristic provides for additional constraints <e.g. communication and 

memory) as well as nonhomogeneous processors. The key difference which 

allows these additional constraints to be accommodated by our heuristic 
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is the dynamic priority computation which continually adjusts to the 

previously allocated tasks. 

The lookahead extension is implemented by adding the almost ready 

tasks to the set of ready tasks discussed above. An almost ready task 

must have all precedence relations satisfied except for one or more ex-

ecuting antecedents. These execution antecedents must complete execution 

during a defined lookahead time window. Thus, an almost ready task is 

guaranteed to become ready during the time period defined by the look

ahead window. If an almost ready task has a sufficiently high priority, 

then an idle processor will be forced to remain idle (i.e., reserved for 

the almost ready task) until the almost ready task becomes ready. 

If an almost ready task is chosen as the highest priority task on a 

given processor, that processor is "assigned" the almost ready task 

which forces the processor to be idle until the next scheduling event 

<since the almost ready task can't begin execution yet>. 

The factors which control the lookahead extension are: 

o Lookahead window - period of time used in lookahead 
computation 

o Lookahead weight - fractional weight to reduce the priority 
of almost ready tasks in comparison to ready tasks 

The dynamic priority scheduler procedure is shown in Figure 16. 

The procedure first ca 11 s I NIT SEQUENCE to in i ti a 1 i ze the event-based 

simulation. Then !NIT PRIOR is called to compute the initial task 

priorities. INIT PRIOR computes the priorities of all tasks which have 

no antecedents and are therefore ready to start at the first event. 



procedure DYNAMIC.PRIORITY <PROBLEM,SCHED> 
PROBLEM input definition of application and 

architecture characteristics/constraints 
ALL allocation mapping 
FEAS.SEQ boolean denoting feasible sequence 
SEQ sequencing of allocation 
SCHED complete schedule = <ALL,SEQ> 

;subroutines called 
!NIT.SEQUENCE 

INIT.PRIOR 
FIND.NEXT.SEQUENCE 

REPORT 

call !NIT.SEQUENCE 
ca 11 I NIT. PRIOR 

initialize sequence variables for the 
current allocation 

initialize task priority parameters 
searches forward to find a new feasible 

sequence for the current allocation 
reports the optimal feasible schedule 

or reports no feasible schedules exist 

call FIND.NEXT.SEQUENCE' <ALL,SEQ,FEAS.SEQ> 
if <FEAS.SEQ> then 

set SCHED = <ALL,SEQ) 
call REPORT <SCHED) 

else call REPORT (false) 

end procedure 

Figure 16. Dynamic Priority Heuristic Procedure. 
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INIT PRIOR also computes some of the priority factors <those that have 

a constant value regardless of the sequence of events) for all tasks. 

The procedure then ca 11 s FI ND NEXT SEQUENCE, once, to find the task 

allocation and schedule. As for the constraint relaxing heuristic, FIND 

NEXT SEQUENCE performs the event-based simulation and is modified by 

using the NEXT SEQ version shown in Figure 15. For this dynamic 

priority heuristic: however, the GET HIGH PRIORITY subroutine makes all 

of the allocation and scheduling decisions based on task priorities, 

rather than on a relaxed schedule. 

3.4.2 Dynamic Priority Subroutines 

The dynamic priority procedure requires two new subroutines: !NIT 

PR I 0 R and GET H I G H PR I 0 R ITY . IN IT PR I 0 R deter mi n e s the i n i t i a 1 task 

priority as described above. The GET HIGH PRIORITY subroutine is shown 

in Figure 17. It first determines the set of ready tasks, almost ready 

tasks, and idle processors. It then enters a loop in which either all 

of the ready tasks are allocated to a processor, or all of the 

processors have tasks allocated to them. At each iteration of the loop, 

a 11 of the ready and a 1 most ready tasks are eva 1 ua ted for a 11 of the 

idle processors. The highest priority combination of task and processor 

is determined and that task is assigned to that processor. The task and 

processor are then e 1 i mi na ted from their respective sets and the 1 oop 

continues until one of the sets is empty. 



subroutine GET.HIGH.PRIORITY 
;variable definition 

WINDOW size of lookahead window 
READY set of tasks currently ready 
ALMOST set of tasks becoming ready during window 
IDLE.PROC set of idle processors 
HIGH.TASK ready or almost ready task with hi priority 
HIGH.PROC processor on wich HIGH.TASK has priority 

;subroutines called 
FIND.READY.TASKS 
FIND.IDLE.PROC 
FIND.HIGH.TASK 

ASSIGN.HIGH 

find set of ready and almost ready tasks 
find set of idle processors 
find highest priority ready or almost 
ready task for all idle processors 
reserve the HIGH.PROC for the HIGH.TASK 

<HIGH.PROC is idled if HIGH.TASK almost ready) 

call FIND.READY.TASKS <WINDOW, READY, ALMOST) 
ca 11 FI ND. IDLE .. PROC (IDLE. PROC> 

do while < <IDLE.PROC not empty) and <READY not empty) ) 
call FIND.HIGH.TASK <HIGH.TASK,HIGH.PROC, READY, ALMOST, IDLE) 
call ASSIGN.HIGH <HIGH.TASK, HIGH.PROC) 
set IDLE.PROC = IDLE.PROC - HIGH.PROC 
if <HIGH.TASK member READY) then set READY= READY - HIGH.TASK 
else set ALMOST= ALMOST - HIGH.TASK 

return 

Figure 17. GET HIGH PRIORITY Subroutine for Dynamic Priority. 

85 



86 

3.4 .. 3 Dynamic Priority Time and Space Complexity 

The time complexity of this heuristic is driven by the subroutine 

GET HIGH PRIORITY which computes the priority for each ready and almost 

ready task and idle processor. At any given time, n tasks could be 

ready and m processors could be idle, requiring O<n*m) calculations to 

determine the highest task for one processor. This is then repeated for 

each idle processor, requiring 0 <n*m 2
). The event simulator calls 

GET HIGH PRIORITY as each task is scheduled, giving a total complexity 

of O<n 2 *m 2
). This type of polynomial complexity is acceptable in 

order to schedule large numbers of tasks and processors in a reasonable 

amount of computational time. 

The space complexity of this heuristic is largely determined by 

the space required to store the input definition of the problem, 

O«n+m) 2
). The list scheduler simulation maintains the status of each 

processor using O<m> space and maintains the status of each task using 

Q(n) space. The priority calculation equations use a constant space 

s i nee the task priorities are computed in sequence and on 1 y the ·highest 

is saved. For an application of this heuristic to a realtime scheduler, 

some of the priority components could be precomputed and stored for 

each task and processor, thus trading off O<n*m> space for reduced 

computation time. 



CHAPTER 4 SCHEDULING ALGORITHM RESULTS AND ANALYSES 

The three algorithms discussed in Chapter 3 were coded in FORTRAN 

77 and executed on a VAX computer. This chapter discusses the results 

gathered by exercising these algorithms on a variety of test cases. The 

results are used to characterize and compare the scheduling performance 

and time complexity of the different algorithms. 

4. 1 Empirical Procedure 

The results are gathered by using a given scheduling algorithm to 

schedule a set of scheduling instances. Each scheduling instance 

specifies all of the task and processor characteristics <execution 

time, deadlines, communication distances, etc.) needed for the 

schedu l i ng prob 1 em. For each s chedu 1 i ng instance, the tot a 1 s chedu 1 e 

length is recorded if a feasible schedule is found. The number of 

scheduling nodes examined is also recorded to measure the computation 

time required for the schedule. A scheduling node is either an 

allocation or sequence node in the respective search trees. 

A large set of instances is required to develop a good measure of 

the algorithm performance for comparison or prediction purposes. We 

developed an "instance generator" which randomly creates scheduling 

instances from user-supplied bounds for each of the problem 

characteristics: task execution length, amount of communication, 
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probability of precedence links, and so on. The instance generator 

random l y as s i g n s spec i f i c v a 1 u e s w i th a u n i form d i s tr i but i on b e't ween 

the user-supplied upper and lower bounds. Thus the random execution 

time will fall 'between the execution bounds and the random 

communication time will fall between the communication bounds, etc. 

The random precedence relationships are created by randomly 

defining direct precedence links between tasks. The user-supplied 

precedence percentage defines the probab i 1 i ty that a precedence 1 ink 

will be specified between each Ti and Tj for i = l ... N-1 and j = i+l 

N. To keep the tasks in precedence related order, a task Ti can be 

the antecedent of Tj (ioe . , Ti<* Tj) only if i < j. Thus the 

precedence matrix is always upper triangular and all precedence 

relationships are acyclic. Once this initial precedence matrix is 

created, a 11 redundant precedence 1 inks are removed so that Ti <* Tj 

implies that there is no Ti <* Tk and Tk <* Tj for a.11 i. As an 

example, if Tl <* T2 and T2 <*TS and Tl<* TS, then Tl<* TS is 

redundant and is removed. The fi na 1 precedence matrix defines those 

pairs of tasks which have a direct precedence relationship and which 

may have intertask communication <using the communication bounds to 

determine the amount of communication). 

An example execution .time, communication time, and precedence 

percentage is given by: 

Execution time: lower bound = 200, upper bound = 8500 

Communication time: lower bound = 500, upper bound = 4000 

Precedence: percentage = 60% 
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Two example scheduling instances created using these controls are given 

in Figure 18. Note that all execution times are between the bounds 

( 200, 8500), the precedence matrix is upper tr i angu 1 ar, and the 

communication values are within the communication bounds <S00,4000). 

The tasks with communication correspond to the precedence matrix since 

communication occurs only between tasks with direct precedence links. 

This generator was set up to produce many random instances for a 

specific number of tasks and processors. Most of the following results 

examine the importance of a particular variable for a range of tasks 

and processors and each samp 1 e point represents the performance for a 

particular number of tasks and processors. For a given sample point, 

several instances are generated and evaluated using the scheduler. The 

average of the results is used to characterize that sample point. When 

comparing two different scheduling algorithms, the exact same set of 

cases is used for each algorithm by manipulating the random number 

generator seed value. 

4.2 Optimal Scheduler Performance 

4.2. 1 Optimal Scheduling Example 

This section uses the image generator scheduling problem discussed 

in Chapter 1 to illustrate the operation of the optimal scheduler. We 

give some of the allocations and sequences which were examined by the 

scheduler to determine the optimal schedule. The optimal schedule 

length is shown to be 14500 time units. This is the same length as the 



# Of TASKS<N> • 8 II OF PROCS<M> • 3 I OF TASKS<N> • 8 # OF PROCS<H> m 3 

· Q MATRIX PROCESSOR Q MATRIX PROCESSOR 
1 2 3 1 2 3 

TASK TASK 
1 1948 1488 499 1 6635 8238 7110 
2 5085 1542 5786 2 1672 4838 6478 
3 3848 3451 3478 3 2223 7539 1130 
4 4423 3990 1531 4 2470 2005 7194 
s 5771 3150 960 5 249 1447 7241 
6 2523 4539 5326 ·6 6778 1140 4735 
7 3897 5722 8360 7 5504 4332 2159 
8 5338 4448 4349 8 4242 4385 5532 

PRECEDENCE MATRIX FOR Na 8 PRECEDENCE MATRIX FOR Nm 8 
1 2 3 4 s 6 1 8 1 2 3 4 5 6 7 8 

1 0 1 0 0 0 0 0 0 1 0 0 l 1 0 0 0 0 
2 . 0 0 1 0 0 0 0 0 2 0 0 0 1 0 0 0 0 
3 0 0 0 1 1 0 0 0 3 0 0 0 0 0 1 0 1 
4 0 0 0 0 0 1 0 0 4 0 0 0 0 1 0 0 0 
5 0 0 0 0 0 0 0 1 5 0 0 0 0 0 1 0 1 
6 0 0 0 0 0 0 1 1 6 0 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 

COMMUNICATION MATRIX FOR N- 8 COMMUNICATION MATRIX FOR N• 8 
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

1 0 3750 0 0 0 0 0 0 1 0 0 2085 2572 0 0 0 0 
2 0 0 3536 0 0 0 0 0 2 0 0 0 2415 0 0 0 0 
3 0 0 0 2572 1746 0 0 0 3 0 0 0 0 0 1603 0 1545 
4 0 0 0 0 0 1598 0 0 4 0 0 0 0 810 0 0 0 s 0 0 0 0 0 0 0 1901 5 0 0 0 0 0 2557 0 836 
6 0 0 0 0 0 0 3633 3181 6 0 0 0 0 0 0 2239 0 
7 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 

DISTANCE MATRIX DISTANCE MATRIX 
1 2 3 1 2 3 

1 0 1 l 1 0 1 1 
2 1 0 1 2 1 0 1 
3 1 1 0 3 1 1 0 

Figure 18. Random Instances Created by Random Instance Generator. 
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schedule given in Figure 5 of Chapter l, although the two optimal 

schedules differ in the allocation of tasks 5, 6, 7, and 8. 

The optimal scheduler begins by finding the first feasible 

allocation. There are a total of 10,935 possible allocations (3 8 *5/3) 

for the 3 processors, 8 tasks and 2 configurations for tasks 7 and 8 

<actually only 5/3 configurations since, in the pipeline mode, task 7 

and 8 must be on different processors). The first allocation is built 

by placing each task on the processor which gives the shortest 

execution and commun i ca ti on ti me. The first a 11 oca ti on can be 

represented using the notation of 3.1, where an allocation is a mapping 

for each task to a processor and configuration: 

A=< (3,1), (1,1), (3,1>, (1,1>, (1,1), (1,1>, (1,2), (1,2)) 

This allocation is feasible and a feasible sequence is immediately 

found which is shown in Figure 19a. The s chedu 1 i ng a 1 gor i thm records 

this feasible schedule of 16,000 time units and establishes a new 

deadline of 15,999 time units. No further sequences of this allocation 

<e.g., rearranging the execution order of tasks 4, 5, and 6) are 

feasible since the resulting schedule length is at least 16,000 units. 

When all of the sequences of feasible allocation #1 are exhausted, 

a new feasible allocation is found. New feasible allocations are found 

by allocating tasks 7 and 8 .to different processors, but this does not 

improve the schedule length. The ninth feasible allocation allocates 

task 6 to a different processor (P2) which leads to a feasible sequence 

with length 14,500 as shown in Figure 19b. This feasible schedule is 

recorded and the dead 1 i ne . is reduced to 14, 999. 
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No other feasible sequences can be found with a schedule length 

less than 14,500, so this is optimal. A total of 190 feasible 

allocations were found and tested, but only allocations #1 and #9 led 

to feasible schedules as shown. In order to find those 190 feasible 

allocations, a total of · 462 allocation nodes were searched in the 

forward direction. Note that a full allocation tree of 10,935 leaf 

nodes (3a.5/3) has an additional 5,466 internal nodes <2* <3 1 + 

+ 31
)). Thus, by pruning the allocation tree using the available 

constraints, only 462 I 16,401 or 3% of the tree nodes were searched. 

For the two feasible sequences, 2,272 sequencing nodes were 

checked. These sequences included permuting tasks on the same processor 

<such as tasks 4, 5 and 6 on Pl of allocation #1) and introducing idle 

ti mes before starting any task <e.g. , de 1 ayi ng the start of task 2 

until task 3 finishes in case a dependent of task 3 should precede task 

2). For allocation #1 there are a total of 174 million sequences for 

the tasks ((2*5)[ <2*1 )[ (2*2)[) where each task can be preceded by 

idle ti me. Most of the sequences are never considered because they 

violate precedence rules. Our algorithm had to consider only a small 

fraction (2,272 I 174 million) by enforcing the precedence rules and 

checking task deadlines as tasks were scheduled. 

The total number of nodes our algorithm searches is therefore 

2,734 (462 allocation + 2,272 sequence). This is a good measure of the 

computational time required since the computations required at each 

node are roughly constant. <There are some search functions dependent 

on the number of tasks and processors but these functions are not a 
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significant component overall.) A larger scheduling problem searching 

4 million nodes requires about 1/2 hour run time (15 minutes CPU) on 

the VAX 8600 under VMS. This equates to 450 microsec per node <225 CPU 

mi crosec). Note that only forward nodes are counted and every forward 

node is subsequently backtracked. Thus the time per node includes both 

the forward and backtrack computations. 

4.2.2 Optimal Scheduler Evaluation 

The optimal scheduler was exercised for a variety of random cases. 

This section presents the statistics gathered for over 2000 test 

problems. These statistics will serve as an optimal baseline against 

which we compare our priority scheduling algorithm and the versions of 

the constraint relaxing algorithm corresponding to other researchers' 

approaches. The comparison is done later in 4.3. This section examines 

the optimal results themselves to characterize how the general 

characteristics of sets of random cases affect the average schedule 

length and average schedu 1 i ng ti me · < i . e., number of nodes searched to 

find the schedule). 

The statistics shown in figures 20 through 24 record the average 

schedule length and average scheduling nodes as a function of m, the 

number of processors (independent axis), n, the number of tasks (family 

of curves) and p, the precedence percentage (different graphs within a 

figure). The execution and communication bounds are fixed for any 

figure. Each graph is a set of sample points linearly connected 

according to the number of tasks in the sample. The schedule length, 
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SL, is shown in thousands of time units. The number of scheduling nodes 

is shown on a logarithmic sea 1 e because of the exponenti a 1 character. 

The graphed value for the number of scheduling nodes, SN, is defined by 

SN = log 10 <number of nodes). Thus SN = 6 corresponds to 1 mi 11 ion 

nodes searched. 

The sample point is the average value for 10 random cases created 

using the specified number of tasks, number of processors, precedence 

percentage, execution bounds, and communication bounds. Some sample 

points are the average of fewer than ten cases, and this is indicated 

on the graphs using a dotted line and solid sample point. This 

condition occurs when the computational time required to find the 

schedule for all ten cases exceeded our computational limits. The 

partial results are therefore given as an approximation to the full set 

of ten cases. 

All scheduling cases used nonhomogeneous processors with a simple 

cross bar type communication network <unit distance between processors 

and zero distance within a processor). The memory constraints were 

defined so that 70% of the tasks could be allocated to a single 

processor. The dead 1 i ne for a 11 tasks was set equa 1 to the combined 

average sequential execution time of all tasks. 

The first set of results <Set 1) are given in figures 20 and 21. 

Figure 20a-h shows the average schedule length for scheduling instances 

with task execution bounds of (200,8500), communication bounds of <SOO, 

4000) and precedence percentages ranging from 80% to 10% for a-h, 
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respectively. The results are to be expected that more processors and 

more task concurrency <smaller precedence percentages) lead to shorter 

average schedule length. Even the cases which are highly precedent 

constrained <e.g., 80% precedence in Figure 20h) show schedule length 

improvements with more processors. This is because the processors are 

nonhomogeneous, so adding processors may result in a particular task 

executing faster on the added processor. This type of allocation based 

on minimizing each task's execution time is partially offset by the 

added communication between processors, but provides a net decrease in 

the schedule length. 

We found the variance in schedule length <within a sample of 10 

cases) to be about 10% of the schedule length. This small variance is 

representative of all the optimal results reported here. A small 

variance indicates that a fairly good estimate can be developed based 

on the general application characteristics <execution time variance, 

communication variance, precedence, etc.) without detailed 

characteristics of each task. Although all of our scheduling algorithms 

require the detailed task characteristics to develop the schedule, some 

applications could benefit from a good estimated schedule length. 

The computational time measure for the Set l schedules are given 

in Figure 21 a-h. The average number of computa ti ona 1 <or schedule) 

nodes are given for each sample point of ten schedules. For the 

different degrees of precedence, one can use this information to 

estimate the largest size problem which can be solved using a specific 

amount of computer resources. For a given precedence percentage, the 
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schedu 1 i ng nodes increase by near 1 y . an order of magnitude when the 

tasks increase by four. We imposed a computa ti ona 1 1 i mi t of 4 mi 11 ion 

nodes because of the 1 arge number of cases we processed < i . e., up to 

40 million nodes for the ten schedules in one sample point). One can 

predict, for example, that to schedule twenty tasks on three processors 

with 30% precedence would require an average of ten million nodes. This 

is near the practical limit. However, the actual scheduling times 

varied widely about the average, with the variance frequently exceeding 

the mean. Thus the hypothesized case with twenty tasks on three 

processors with 30% precedence might require 100 million nodes or only 

500,000. 

The Set 2 problem characteristics are identical to Set 1 except 

the task communication is increased relative to the task execution 

time. In Set 2 the communication bounds are <2000,5000) so the average 

communication is 3,500 and the variation in communication is 1:2.5. For 

Set 1 the average c ommu n i cat i on was on 1 y 2 , 2 5 0 and the var i at i on was 

greater <1:8). Figure 22 shows the schedule lengths for 80%, 60%, and 

40% precedence. The schedule lengths are approximately 10% longer for 

two processors due to the increase in average communication. Also note 

that the schedule length does not decrease as quickly as more 

processors are added. This is because the added communication 

discourages scheduling tasks on a different processor just to reduce 

the task execution time. The number of nodes required to schedule Set 2 

is given in Figure 22 and is almost the same as the nodes required for 

Set 1. This indicates that the scheduling computation time is not very 
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sensitive to different degrees of communication variation (1 :2.5 versus 

1 : 8). 

The third set of results characterize a smaller execution time 

variation (2000,6700) but the same communication variation <500,4000) 

as Set 1 . The average execution is the same but Set 3 has a 1 : 3. 3 

variation instead of the 1 :42 variation of Set 1. The Set 3 schedule 

length results in Figure 23 show that the length for 2 processors are 

about the same as for Set 1, but the schedule length does not decrease 

rapidly with more processors. This is caused by the smaller variation 

in task execution lengths which has an equalizing effect on the 

processors. The number of scheduling nodes for Set 3 are nearly the 

same as for sets 1 and 2. 

The last set of optimal results uses the larger average 

communication of Set 2, communication bounds of (2000,5000), and the 

smaller execution variation of Set 3, execution bounds of (2000,6700). 

The results shown in Figure 24 confirms the earlier observations. The 

schedule length does not reduce as quickly when the communication 

increases and task execution variance decreases. The number of 

scheduling nodes recorded in Figure 24 is approximately the same for 

all sets and is thus relatively insensitive to changes in task 

execution and communication time on average. 
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4.2.3 Optimal Scheduler Application as a Design Tool 

One of the uses of an optimal scheduler is to evaluate how well 

specific classes of applications will execute on different 

multiprocessor architectures. This section illustrates this technique 

by comparing four multiprocessor architectures: crossbar, ring, tree, 

and star. We determine the average schedule length on each architecture 

as a measure of their relative ability to support intertask 

communication. For our test cases we used sixteen tasks and four 

homogeneous processors. The execution bounds are <200,8500), the 

communication bounds are (2000,5000), and the precedence values are 60% 

and 40%. The memory constraint was set to force a distribution of tasks 

onto all processors. A maximum of 1/3 the tasks could reside on any 

single processor. 

These four communication architectures or configurations are shown 

in Figure 25a-d for four processors. Next to each configuration is the 

interprocessor communication <IPC) matrix which is referred to as the 

distance matrix, D<k,1,r) in · chapter 3. D<k,l,r) defines the 

communication di stance (in time uni ts per word) from Pk to Pl using 

configuration r. The values of D are computed using the "distance 

weight" of each communication link between Pk and Pl and the delay 

added by intervening processors. The distance weight of the links are 

defined to keep the hardware complexity comparable in all 

architectures. Thus, the crossbar network with twice as many links has 

slower links <distance = 2) than the others (distance= 1). The delay 

added by an intervening processor was defined to reflect the nature of 
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the specific architecture and varies as discussed below. The distance 

matrix is alway~ symmetric and the diagonal is zero since communication 

between tasks on the same processor is assumed instantaneous <e.g., 

shared memory). 

For the crossbar architecture, each processor has a direct link to 

all others so each di stance between processors is 2. For the other 

architectures, the distance between processors directly connected is 1 

and the distance between other processors is the sum of links and delay 

from intervening processors. For the ring network which generally 

consists of independent processors, each intervening processor 

introduces two units of delay, e.g., 0(1 ,3,ring) = 1. The tree 

architecture is typically designed to efficiently spawn tasks to and 

retrieve results from immediate descendants. Therefore we defined zero 

units delay for an intervening processor directly connecting the source 

and destination processors. If the source and destination are not 

immediate, then each intervening processor adds one unit of delay. Thus 

0(2,4,tree) = 5 because of the delay of three links and two intervening 

processors. The last architecture, the star, uses one unit of delay 

when passing through the center processor, so the distance is 3 between 

any two outside processors. Note that the average communication 

distance is the same for all configurations (24/16 = 1.5). We verified 

this empirically by randomly scheduling the sixteen tasks onto the 

processors of the different configurations. When tasks are randomly 

placed on the processors, all four architectures yield equivalent 

average schedule lengths. 
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Figure 26 shows the comparison of the average optimal schedule 

lengths for the four different architectures. Results were gathered by 

optimal ly scheduling a set of 10 cases on each of the four 

architectures and on a fifth "baseline" architecture, which is our · 

standard crossbar with unit distance between processors <average 

communication distance of 0.75). Clearly the schedule lengths from each 

of the four architectures will be at least as long as the baseline. The 

results for each of the four architectures is represented as a 

percentage longer than the baseline schedule length to simplify the 

comparison. These res u 1 ts show that the tree and ring off er average 

schedule lengths -nearly as good as the baseline, even though the 

average communication distance is twice the baseline. This means that 

the optimal scheduler is able to schedule tasks so that most 

interprocessor communication uses the direct communication links with a 

distance of 1. The star also performs well, but there is some 

degradation because the fast local links exist only for the center 

processor. The crossbar with distance weight of 2 performs very poorly, 

20% to 35% longer than the baseline. 

These results show that, although all four architectures ·are 

equivalent for a random scheduling of tasks, a good scheduler can 

exploit local communication links. A given amount of hardware 

complexity is better utilized to provide fast local communication links 

<such as for a tree or ring) even though some paths between processors 

are quite long <e.g., distances of 4 and 5). This type of local 

communication is better than guaranteeing a more average performance 
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such as in the star or crossbar. At the same time, even if the tasks 

are randomly scheduled, the tree and ring will perform at least as well 

as the others. 

4. 3 Comparison of Heuri sti·cs 

This section examines how the constraint relaxing algorithm and 

priority algorithm compare to each other and to the optimal algorithm. 

These algorithms were run on a subset of the cases reported in 4.2.2. 

The exact same set of scheduling problems is used when comparing the 

performance at a given sample point. Therefore, the nonoptimal 

algorithms will always produce average schedule lengths <and individual 

schedule lengths) which are at least as long as the optimal schedule. 

The average schedule lengths of the nonoptimal algorithms are reported 

using the percentage over average optimal schedule length. 

Three versions of the constraint relaxing heuristic are evaluated, 

as discussed in 3.3. These versions are denoted COMM, PREC, and EXEC in 

the following discussion. The COMM version does not consider intertask 

communication when developing the relaxed schedule and represents the 

expected results of Kartashev 1 s scheduling approach <reference 2.4.3). 

The PREC version does not consider task precedence when developing the 

relaxed schedule, but the communication time which should occur between 

actual precedence-related tasks is considered. Therefore PREC will tend 

to cluster tasks with large communication requirements on the same 

processor. The PREC results represent the expected performance of the 

graph theory technique (reference 2.2) and integer programming 
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techniques <reference 2.3). Note that PREC minimizes the schedule 

length of the relaxed schedule (i.e., maximum sum of execution and 

communication on individual processors) rather than minimizing the 

overall sum of execution and communication times on all processors. The 

third version of the constraint relaxing heuristic, called EXEC, does 

not consider varying task execution time when developing the relaxed 

schedule <a constant value is used). This version may be considered for 

systems with nearly fixed length tasks, but does not directly 

correspond to an approach suggested by the reviewed researchers. 

Two versions of the dynamic priority algorithm were also 

evaluated. The results labeled PRIOR represent the priority algorithm 

performance without the lookahead ex tens ion. The same set of priority 

weights was used for all PRIOR results reported here. The weight values 

used are given by <see 3.4 for definition of weighting functions): 

1) task execution weight - 4 
2) processor execution weight - 40 
3) precedence weight - 32 
4) descendence weight - 4 
5) communication weight - 32 
6) deadline weight - 16 
7) memory weight - 64 

While the priority weights could be adjusted to optimize the 

performance for each schedule, a more realistic approach i s to use a 

standard set of weights for all schedules or perhaps to select a set of 

weights based on the genera 1 characteristics (e.g. , execution variance, 

ratio of communication to execution, etc.). In fact, we generally found 

that the above weights gave good results for a 11 the cases we attempted 
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and that varying the weights did not provide significantly better 

results. The apparent explanation why a single weight set works well is 

that the weights are applied to the problem specific characteristics 

<e.g., ratio of a task's execution to the average task execution). 

Therefore the unique characteristics of the prob 1 em are accounted for 

even though the weights remain the same. 

The second version of the priority algorithm we evaluated is the 

lookahead extension. The results of the lookahead extension are not 

shown because the extension did not offer a significant improvement 

over the PRIOR results. This disappointing result is discussed later. 

The results of the algorithms are shown in figures 27 to 30. Each 

.of the figures corresponds to the op ti ma 1 results of one of the four 

sets discussed in 4.2.2. The measure for schedule length is the percent 

longer than optimal schedule length, as discussed earlier. For these 

figures, the important result is the comparison of the different 

algorithms. Therefore, each curve represents the performance of one 

particular algorithm for a given number of processors (independent 

axis) and other problem characteristics fixed for the graph <number of 

tasks, precedence, execution bounds, etc.). 

Figure 27 corresponds to the Set 1 optimal results for 60% and 40% 

respectively. The Set 1 characteristics are a large variation in 

execution bounds <200,8500) and a fairly small amount of communication 

<500,4000). The results show that all of the algorithms degrade as the 

number of processors increase. While the optimal algorithm was 
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Figure 27. Set 1 Heuristic Schedule Length Results. 
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Figure 28. Set 2 Heuristic Schedule Length Results. 
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Figure 29. Set 3 Heuristic Schedule Length Results. 
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consistently ab 1 e to reduce the s chedu 1 e 1 ength with more processors, 

these algorithms are not as successful so the percentage· over optimal 

increases. The priority algorithm produces the best schedules, in the 

range of 10% to 30% over optimal. Note that the performance of PRIOR is 

nearly the same for the 60% and 40% precedence cases. The next best 

algorithm is COMM, but COMM degrades noticeably as the precedence 

decreases from 60% to 40%. As the precedence percentage decreased, the 

possible concurrency increases and COMM does not perform well with a 

lot of concurrency. The performance of COMM degrades because, not 

considering communication, it tends to spread tasks over many 

processors which increases the communication time. The EXEC and PREC 

versions of the constraint relaxing algorithm fare the worst and 

degrade very rapidly as the number of processors increase. 

Figure 28 corresponds to the Set 2 optimal results. Set 2 has a 

larger amount of communication <2000,5000). The PRIOR algorithm 

continues to perform the best with performance slightly poorer than for 

Set 1. The COMM a 1 gori thm is again second with s i mi 1 ar performance to 

Set 1 . The EXEC and PREC a 1 gor ithms cont i nue to perform very poor 1 y. 

The same performance trends are shown for the Set 3 and Set 4 results 

given in figures 29 and 30 respectively. 

In summary, the dynamic pr .iority algorithm <PRIOR> performs the 

best relative to the constraint relaxing versions. PRIOR's absolute 

performance is in the range of 10% to 40% over optimal schedule length. 

The performance of PRIOR does degrade as the . number of processors 

increase, as does the performance of a 11 the other nonopti ma 1 
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algorithms. <As the number of processors increase, the optimal 

schedu 1 es tend to decrease much faster than the nonopti ma 1 schedu 1 es.) 

The average performance of the priority algorithm is fairly constant 

over a variety of the other scheduling problem characteristics such as 

the number of tasks, amounts of communication and execution, and 

precedence percentage. Again note that the same set of priority weights 

were used for all results shown. 

The priority algorithm lookahead extension did not offer a 

significant average performance increase. The average performance 

decreas.ed marked 1 y as the lookahead became 1 arger than approximately 

one half the average task execution length. For window sizes smaller 

than this, the 1 ookahead extension had a sma 11 impact on the average 

schedule length, in the range of +/- 2% <measuring the difference 

between the lookahead percent over optima 1 and the PRIOR percent over 

optimal). We examined specific scheduling problems and thei .r solutions 

to determine the reason the lookahead extension did not improve 

scheduling performance. The reason is th~t there were few situations in 

which the schedule length could be reduced by changing the sequence of 

an 'almost ready' high priority task with a ready low priority task. 

This remained true even when there was a 1 arge difference in the task 

priorities. Therefore, the decision to delay a low priority ready task 

was often wrong or had no effect. 

The second best algorithm was the communication constraint 

relaxing algorithm, representative of Kartashev's approach. This 

algorithm's performance was generally in the range of 5% to 10% longer 
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than the PRIOR schedules. <Percentage based on optimal schedule 

length.) The performance of the COMM algorithm naturally tends to 

degrade as the communication component becomes more significant, either 

by reducing the precedence percentage (increasing concurrency) or 

increasing the requirement for intertask communication. The EXEC and 

PREC versions of the constraint relaxing algorithm fared the worst for 

all cases by a wide marginc Obviously these algorithms are not well 

suited for applications which have those practical constraints. 



CHAPTER 5 SUMMARY AND CONCLUSIONS 

This chapter summarizes the research approach of this dissertation 

and briefly reviews our scheduling problem formulation and scheduler 

algorithm definitions. We draw some conclusions, from the results shown 

in Chapter 4, concerning the genera 1 app 1icabi1 i ty of the different 

scheduling algorithms and their relative merits. ·Finally, we make some 

recommendations for future research in the multi processor scheduling 

area . 

5 .. 1 Dissertation Summary 

This dissertation considers the problem of practical constraints 

in noninterruptible multiprocessor scheduling. The types of constraints 

generally seen in practical applications and architectures are 

introduced in Chapter 1 , using -the image genera tor ex amp 1 e, and a set 

of scheduling constraints is defined. The related work by previous 

researchers is reviewed and it is shown that previous researchers 

address only subsets of our scheduling problem. The previous 

researchers which did consider many of our constraints used ad hoc 

schedu 1 i ng procedures which are not eva 1 ua ted ana 1 yti ca 11 y or 

empirically. 

Our work is a systematic investigation of the scheduling problem 

and includes the development of an optimal scheduler and the dynamic 

119 
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priority scheduling heuristic. The optimal scheduler is limited by the 

exponential computational time complexity. We use it to establish an 

optimal baseline to measure other scheduling algorithms. Our dynamic 

priority heuristic achieves good average performan'ce over the measured 

range of problem characteristics by considering the key scheduling 

constraints. The dynamic priority heuristic outperforms other 

scheduling algorithms which do not consider certain key constraints 

<characteristic of previous researchers' approaches). 

Our work formulates the multiprocessor scheduling problem as an 

allocation and sequencing problem, where an allocation of tasks onto 

processors is found and then the task execution sequence for that 

allocation is found. This form is useful for developing an optimal 

scheduler which uses a double branch and bound technique. The first 

branch and bound finds all feasible allocations. A feasible allocation 

is defined to include any allocation leading to a feasible .schedule, 

while excluding most of those allocations which cannot lead to a 

feasible schedule. Given a feasible allocation, the second branch and 

bound checks all possible sequences of the tasks on the processors. The 

sequences are built using an event-based simulation which enforces the 

precedence constraints, task execution time, communication time, etc. 

If a feas i b 1 e sequence of tasks is found < i . e. meets a 11 dead 1 i ne 

constraints), then the combination of the feasible sequence and 

feasible allocation is a feasible schedule. The scheduling algorithm is 

designed to limit the remaining search to schedules which have a 

shorter schedule length. The search ends by reporting the optimal 
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schedule <shortest schedule length) or by reporting that no feasible 

schedule is possible for the given problem constraints. 

We also develop a constraint relaxing scheduling algorithm which 

allows us to characterize the performance of previous researchers' 

scheduling approaches. This algorithm can be controlled so that one or 

more of the scheduling constraints are ignored when developing an 

initial schedule, called a relaxed schedule. The task allocation and 

sequence of the relaxed schedule is then used to solve the actual 

scheduling problem, by reintroducing the constraints, and develop the 

final schedule. This constraint relaxing algorithm is a valid 

characterization of other researchers' approaches since it produces an 

optimal relaxed schedule for the constraints their work considered. By 

then measuring the performance of the re 1 axed schedu 1 e for the actua 1 

problem, we quantize how well the approach works in practical 

scheduling environments. 

The dynamic priority algorithm is then developed. This simple 

algorithm develops a schedule using an event-based simulation of a list 

scheduler. The priority of each task is based on several task 

characteristics, each weighted according to a separate priority weight 

and the final priority being the summation of the priority components. 

The priority of the ready tasks at a given point in time is dynamically 

computed by using the current state of the schedule. A lookahead 

extension is also described which effectively reserves a processor for 

a high priority task at the expense of delaying or reallocating a lower 

priority task. 
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These algorithms are then evaluated in the results of Chapter 4. 

The conclusions from these results and the recommendations about future 

research in this area are given below. 

5.2 Applicability ·of Optimal and Heuristic Schedulers 

The purpose of the optimal results reported in 4.2.2 is to 

establish an optimal baseline against which we compare the heuristics. 

The general nature of the schedule length results and schedule node 

results is to be expected. The schedule node results are useful for 

showing the range of scheduling problem size <number of tasks and 

processors) which can be optimally solved in a reasonable amount of 

computational time. A general guideline is that our optimal algorithm 

can solve prob 1 ems up to sixteen tasks and four processors in a few 

hours. We expect that increasing to twenty tasks wou 1 d increase the 

computational time by a factor of ten. Therefore, the optimal algorithm 

. cou 1 d be app 1icab1 e for non-rea 1 ti me ana 1 ys is of some current 

multiprocessor architectures with four or fewer processors. 

A surprising characteristic of the schedule node statistics is 

that a fairly constant computational time is required for all sets, 

even though the variations for execution and communication change 

drastically. Although the worst-case time performance is dependent only 

on the number of processors, tasks, and confi gura ti ons, in an actual 

problem the performance of the branch and bound is greatly affected by 

the ability to efficiently prune the search trees. We would expect that 

varying the execution and communication bounds would result in 
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significantly different computational time requirements. In fact, if 

any of the bounds are taken to an extreme <e.g., constant execution 

time, zero communication time) the schedule nodes do increase by about 

a factor of ten. However, over a normal range of these constraints 

there seems to be little variation. 

An interesting statistic about schedule lengths is the fairly 

small variance about the average for each group of problems at a given 

sample point. This small variance suggests that we could extrapolate 

the observed schedule lengths of solved schedule problems as an 

estimated schedule length of problems with similar characteristics. 

Such an estimated schedule length has applications for allocating 

resources to execute an application, designing systems which can 

efficiently process certain classes of applications, and developing 

i ni ti al bounds for an actua 1 scheduler. On the other hand, one cannot 

- accurately predict the computation time required to schedule a problem 

because of the large schedule node variance. Therefore, it is best to 

anticipate at least a factor of ten variation in the computation time 

required to solve very similar scheduling problems. 

We also demonstrate how the optimal 

architecture design. We measure the 

algorithm can be used in 

performance of different 

communication architectures and show that hardware resources should be 

allocated to local communication. The ring and tree architectures have 

the best performance because they provide fast local communication 

between different pairs of processors. The importance of a good 

scheduler is also shown because a random scheduling eliminated the 
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advantage of the ring and tree. This application of the optimal 

scheduler to architecture analysis is very exciting because it provides 

a technique to measure the architecture performance over a wide variety 

of scheduling problems. 

Heuristics are applicable as realtime schedulers and ar~ required 

for an a 1 y s i s of 1 a r g er s ch e du 1 i n g pr ob 1 ems < e . g . , th i rt y- two ta s ks on 

four processors). Our results in 4.3 show that our dynamic priority 

algorithm, based on a simple list scheduling technique, performs well 

for a variety of scheduling problem characteristics. The performance is 

especially good for two to four processors. On the other hand, 

scheduling approaches which do not systematically consider the 

practi ca 1 constraints do not perform as we 11. The approaches which do 

not consider precedence <such as the integer programming approach) have 

much poorer performance, even though the time complexity of such a 

scheduler is much greater than our heuristic. The scheduling approach 

which does not consider communication performs nearly as well as our 

heuristic, but the performance decr~ases as communication becomes more 

important. These results provide evidence that the scheduler can 

perform much better when it considers the scheduling constraints, 

rather than developing a schedule with fewer constraints and attempting 

to later add in the effect of the constraints. 

5.3 Considerations for Future Research 

This research can be readily extended in two areas. The first is 

to use the scheduling algorithms we have developed to evaluate the type 
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of multi processor architecture which is best suited to a particular 

class of applications. This is a continuation of the work we described 

in section 4.2.3 where high speed local communication links are shown 

to be nearly as effective as the more complex high speed global 

communication links. The potential benefit of further work in this area 

is a better definition of the types of multiprocessor architectures 

which will perform well for a variety of cases. This could lead to an 

approach for automatically configuring a communication architecture to 

execute a particular application. 

The second area for future research is to examine the performance 

characteristics of our own dynamic priority heuristic and develop 

techniques to improve the performance. Although our heuristic 

establishes a measured baseline, it could be improved to produce 

schedules which are closer to optimal. This improvement could be 

targeted to a particular set of applications with specific 

characteristics, or our own approach of developing a generally 

applicable scheduler could be enhanc.ed. This enhancement process would 

be a worthwhile activity before applying the heuristic scheduler to an 

actual application of multiprocessor scheduling with practical 

constraints. 
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