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ABSTRACT 

Since the advent of radar in the 1940s, it has been well known that water drops 

composing precipitation scatter microwaves in a predictable manner. This characteristic 

of early. radar has lead to the present day Weather Surveillance Radar (WSR-88D) or 

NEXRAD systems, operated by the National Weather Service (NWS). In parallel to the 

evolution of weather radar for measuring precipitation over large areas, remote networks 

of rain gauges have been deployed and managed by agencies such as the Florida Water 

Management Districts. Since the recent deployment of the NWS network of WSR-88D, 

as well as the recent launch of the NASA Tropical Rainfall Measurement Mission 

(TRMM) satellite, significant attention has been placed upon the merging of these diverse 

sources of rainfall measurement. The main focus of this dissertation research has been to 

develop and analyze methods of rain gauge and radar correlation for the purpose of 

optimizing rainfall estimates. The techniques presented in this dissertation observe that 

the physical link between rain gauge and radar reflectivity data is the drop size 

distribution (DSD). Using various numerical algorithms, as well as methods common to 

image and signal processing such as median filtering, two-dimensional cross-correlation, 

and adaptive signal processing, methods of analysis are presented which attempt to 

correlate radar reflectivity, rain gauge, and disdrometer data. Particular attention is given 

to the subjects of rain gauge and radar interpolation; disdrometer calibration; microscale 

radar rainfall estimation; and a convolution model of DSD evolution, which attempts to 

model the convective-like properties of rainfall. 
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CHAPTER 1 

INTRODUCTION 

The field of image and digital signal processing (DSP) has evolved at an 

exponential rate over the last few decades, primarily due to advances in computer 

technology. However, without advances in numerical and computational algorithms, 

topics which are fhdarnentally mathematical in nature, this relatively new field of 

electronics might not exist today. Many DSP and image processing algorithms were 

borrowed from other unrelated fields of engineering, as well as science, economics, and 

business. Since the field of DSP and image processing has had several decades to evolve 

independently, it is now use l l  to explore how some of these algorithms and numerical 

techniques can be utilized in other unrelated endeavors of engineering and science. 

It is the goal of this dissertation research to borrow some of the common, as well 

as uncommon, DSP and image processing algorithms and to apply them, with appropriate 

modification, to selected problems involving radar meteorology, hydrology, and 

atmospheric science. The general problem that will be considered is rainfall estimation 

hy means of weather surveillance radar. Several signal processing algorithms and 

techniques will be considered, adapted, and applied to this problem. The results of this 

work will be presented in the sections to follow. 

1.1 Adaptive Signal - Processing 

Algorithms which recursively transform one state of a system into another state, 

such that after some length of time, a specific final state is reached regardless of the initial 



state, can usually be designated as adaptive algorithms. These algorithms are closely 

related to optimization or function minimiration['] problems where the goal is to find a 

bction's global minimum in multi-dimensional parameter space. Adaptive algorithms 

are usually associated with real-time processing, as opposed to general optimization 

meth&ds which are usually performed by means of off--line processing. However, even 

though this distinction may be a common characteristic, it does not necessarily suffice as 

a true definition. A better definition perhaps is to simply say that adaptive algorithms are 

a subset of general numerical optimization methods and are usually processed in real- 

time. The concepts discussed in this section will be utilized in Chapter 5 for developing 

an algorithm for calibrating a disdrometer. 

1.1.1 LMS Algorithm 

The least mean square (LMS) class of algorithms used in digital signal 

processing, are among the most commonly used DSP algorithms in existence today. 

Proposed in the mid 1970's by Bernard Widrow and associates[21, this computationally 

intensive numerical technique became practical and affordable with the recent advent of 

low-cost programmable DSP devices such as the Motorola DSP56303. 

A typical application of the LMS algorithm for system identification (system 

modeling), as shown in Figure 1-1, adapts afinite response filter (FIR) whose output y(n) 

is subtracted from the input signal d(n) to create an output error signal e(n): 

e(n)  = d(n) - w, (n) x(n - k )  
k=O 

where x(n) is the reference signal, x(n-k) are the N filter states, and wdn) are the N 

filter coefficients. If d(n) is correlated to x(n) , then the error signal e(n) should tend 

towards zero. This situation describes, for example, a speakerphone where x(n) is the 

signal received from the telephone network (receive signal from the remote party); d(n) 

? 



is the local acoustic signal reflected from the speakerphone's amplifierhpeaker, through 

the room and back to the microphone; and e(n) is the outgoing transmitted telephone 

signal. In this case, d(n) is correlated to x(n) since d(n) is a linear time-invariant (LTI) 

version of x(n) formed by the acoustic transfer function of the speaker-room-microphone 
\ 

system. The LMS algorithm adapts the FIR filter coefficients in a recursive manner so 

that the filter output y(n) approximates the input signal d(n). The algorithm which 

updates the FIR coefficients so that y(n) closely follows d(n), is the LMS algorithm: 

wk(n + 1) = wk (n) + 2p e(n) x(n - k)  

where wk(n) are the coefficients at the kth tap of the FIR filter at the current sample time 

n and p is the convergence constant or gain factor. The new kth coefficients wdn+l) , 

will be used during the next sample time by the FIR filter. The x(n-k) are the input 

values at the tap outputs as shown in Figure 1 - 1. The LMS algorithm is a special case, 

using the delayed tap-line configuration and real-time recursive tap updates, of the 

general gradient search method. 

1.1.2 Gradient Search Algorithm 

Determining the coefficients wo and w, of a straight line fit y = wo + wl x to a 

set of N data points (xk, yk), is referred to as linear regression. This curve fitting 

procedure is the result of minimizing the X 2  error defined as: 

or the corresponding RMS error, as shown in Figure 1-2: 



An exact solution W* for the minimum of Equation (1.3a) or (1.3b) can be found by 

evaluating the gradient of X2 and setting it to zero. 

In parameter space of dimensions higher than two, a similar procedure can be used 

to find an exact solution W* for the RMS minimum, as long as the fitting function is a 

polynomial in x. Otherwise, the issue involves finding the solution to a non-linear 

problem for which an exact analytical solution will probably not exist. Again in this case, 

the minimum of an RMS error surface W is the solution to the problem (finding the 

solution will require an iterative search procedure): 

where w = [wo , w , ... w N 1. The N parameters wo , w 1 , ... w hi are the coordinates of 

an N-dimensional error surface defined by Equations (1.4). Using a gradient search 

algorithm, such as the steepest descent method, an approximately optimized set of 

parameters can be found by recursively evaluating Equation (1.5): 

where p is the convergence constant. Comparing Equation (1.5) with the LMS algorithm 

of Equation (1.2), it can be seen that in the LMS problem, the product term 2e(n) x(n-k) 

is comparable to the kth component of the gradient as defined by Equation (1 -6). 



1.2 Motion Detection in Image Processing 

A digital gray-scale image is an array of pixel values which may be denoted by 

x4nl ,  n2) , where nl and 1-72 are the pixel (array) indices in the horizontal and vertical 

directions, respectively, usually starting from the bottom lefi corner of the frame. In most 

gray-scalelmages, the value of xk(nl, n2) is quantized to 8 bits with 256 shades of gray, 

where a value of 0 represents black and a value of 255 is equal to white. In order to 

estimate the motion velocity vector u of an object in the image, the displacement vector 

between consecutive k and k+l image frames, divided by the time interval between 

frames, must be measured. (For simplicity of general discussion in the following 

sections, the time period between consecutive frames are assumed to be one so that the 

displacement vector is always equal to the velocity vector u). Applications of motion 

detection and estimation will be utilized in Chapter 4 for measuring the advection 

velocity of a cell or cluster of precipitation cells contained in a weather radar image. 

1.2.1 Subtraction Method 

The simplest method of detecting and measuring the direction of motion of 

objects within consecutive gray-scale image frames x4nl, n2) and xtcI(nl, n2), is to 

simply subtract the two frames (see Figure 1-3) forming a diference image: 

where i and j are displacements which attempt to minimize the sum of all pixels in the 

difference image : 



Figure 1-3a shows an example of motion detection. In Figure 1-3b, the direction of 

motion is estimated by searching for a minimum in Do corresponding to the 

displacement vector u = ( i ,  j )  = (1,O) for this particular example. 

It should be noted that in order for motion detection algorithms to perform 

properly, the total time derivative of change of objects within the image must be 

relatively small between consecutive image frames. For applications in radar 

meteorology, this would correspond to the relation between rate of change (growth and 

decay) of precipitation cells as compared to the scan time (sampling period) between 

radar images. Since the National Weather Service radar scan time is fixed to about 5 min, 

some convective storm cells can evolve at very fast rates, making it difficult to estimate 

the spatial displacement and advection velocity (displacement divided by scan time). 

1.2.2 Cross-Correlation Method 

One problem with the difference method described in the previous section, is that 

a difference is essentially a derivative and it is well known that derivatives can be 

adversely sensitive to noise. The cross-correlation method, as shown in Figure 1-4, 

alleviates some of these problems at the expense of an increased number of numerical 

computations: 

where i and j are displacements which attempt to maximize the sum of all pixels in the 

product image: 



Figures 1-4 show an example of motion estimation, where the direction of motion is 

found by searching for a maximum in R, , again corresponding to the displacement 

vector u = (i, j) = (1,O) for this example. 

1.3 Linear Filtering - Convolution 

If fi (x) and f i (x )  are two arbitrary functions, the continuous domain (as opposed 

to discrete domain) convolution of these two functions is defined as: 

The Fourier transform of the convolution is: 

Equations 1.9 state that the Fourier transform of a convolution is equivalent to the 

product of the Fourier transforms of the factors of the convolution. The discrete version 

of convolution has a profound impact on practical applications of image and digital signal 

processing. Using the concepts presented in this section, a convolution model ofrainfall, 

based on spatial and temporal convolution and atmospheric advection, will be discussed 

in Chapter 6. 

1.3.1 Discrete Spatial Convolution 

A common type of two-dimensional spatial filtering is defined where each .pixel is 

replaced by a linear combination of its surrounding pixels. As shown in Figure 1-5I3I 

masks of certain size and shape define the region from which pixels are used in this linear 

combination. Since this operation is essentially a convolution, these masks are often 

referred to as convolution masks. Since the convolution mask is essentially the impulse 



response of the filter, it is apparent that this corresponds to a linear FIR type of filtering. 

Spatial linear filters are equivalent to transform domain filters. In the case of convolution 

masks, the fiequency response can be obtained fiom the two-dimensional Fourier 

transform of tlie mask given by: 

where 2N+1 is the length of the mask in the x direction, 2M+1 is the length in the y 

direction, and h(n, m) are the mask coefficients. 

One popular image processing filter for noise suppression is the averaging or 

lowpass filter. This filter replaces each pixel with the average (or mean) value of the 

pixels in the filter mask. The left side of Figure 1-6a shows the 3 x 3 convolution mask 

of a mean or lowpass filter, where the averaging operation smoothes an image. The right 

side of Figure 1 -6a displays the equivalent frequency response of the 3 x 3 lowpass filter. 

The DC gain of the filter is unity, which means that the average brightness of a filtered 

image will be preserved. The mean filter is also effective in suppressing Gaussian noise 

(grainy appearance) fiom images, but the blurring introduced by the filter can be a 

problem. 

Figure 1-6b shows the mask and equivalent frequency response of a 3 x 3 

highpass filter formed by subtracting the mean filter mask from an identity (unity) mask. 

Highpass filters are useful for sharpening edges of an object in an image. In the extreme 

case, highpass filters can be used to suppress most of the image information except for 

the edges, which is useful in applications where object outlines are important such as 

robotic vision applications. 



1.3.2 Discrete Temporal Convolution 

As an example of temporal convolution, a filter network based on a second-order 

infinite impulse response (IIR) structure, is shown in Figure 1-7. The filter control 

parameters are represented by f, and d (or f, and Q), which are the cutoffji-equency 

and damping factor for a lowpass or highpass filter (or center frequency and quality 

factor for a bandpass or bandstop filter). The discrete time convolution filter from the 

network of Figure 1-7 is implemented using the recursive difference equation: 

where the parametric form of the filter  coefficient^[^.^], as shown in Table 1-1, are given 

as a function of the filter control parameters f, and d (or f, and Q), and the normalized 

center frequency is = 2n: fo I f ,  . Note that in the lowpass and highpass cases, the 

damping factor d is typically set equal to fi for a maximaN'flat response. 

The filter input states are x(n-k) and the y(n-k) are the filter output states. The 

frequency response of the difference formula of Equation (1.1 1) is: 

where 8 = 21r f 1 f, is the normalized frequency and f, is the sample frequency. 

Frequency response plots of the bandpass and bandstop configurations are shown in 

Figures 1 -8, using the magnitude of the frequency response I H(B]  from Equation (1.12). 



Table 1 - 1. Convolution coefficients for IIR filter network of Figure 1-7. 

1.4 Non-Linear Filtering - Median Filter 
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Among the many types of non-linear filters, rank or order statistics filters are 

among the most popular, and of these, the medianfilter is probably the most common. A 

very desirable property of these filters in image processing applications, not achievable by 

conventional linear filters, is the ability to suppress impulsive (salt and pepper) noise 
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while preserving sharp signal transitions. In radar meteorology, median filters can be 

used to efficiently suppress anomalous propagation (AP) noise! AP is impulsive in 

nature and can significantly degrade rainfall estimation from weather radar images 

contaminated by this kind of noise. 
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A rankfilter scans the input signal with a window and replaces the central sample with an 

order statistic of the enclosed samples. In the special case, when the order statistic is the 

median, then-this rank filter is called the median filter (MF). Among rank filters, the MF 

is the only type that will not distort monotonically increasing or decreasing signal slopes. 

Since a sharp edge (step) is monotonic in a region around the edge, it will be preserved as 

well. Other rank filters generally preserve edges, but shift the location of the transition. 

The two extremes of rank filters, namely the minimum and maximum filters, are important 

in the implementation of another major class of non-linear filters, referred to as 

morphological filters. Another important property of the MF is that any impulse (positive 

or negative) in the input signal that is narrower than (N-1)/2 samples, will be suppressed 

and replaced by the median of the window. This property makes the MF an ideal filter 

for the suppression of impulsive noise. However, the MF is not very effective in 

suppressing other types of non-impulsive noise such as Gaussian noise, in which case the 

conventional linear filters are better suited. 

Median filtering can be performed on both one-dimensional or two-dimensional 

signals. In two-dimensional filtering, the filter window has a specific size and shape. 

Among the numerous useful shapes, the most popular are the square and cross shaped 

windows, shown in Figures 1-9. Theoretically it can be proven that if the two- 

dimensional median window shape is symmetric around a central point, and the central 

point is also included in the median computation, then the filter will preserve edges. The 

edge preservation property is valuable in image processing applications since edges are 

predominant image characteristics. As discussed previously, a mean filter will always 

smear edges due to the attenuation of the high frequency components. Depending on the 

window shape, certain other image features may or may not be preserved by the MF. For 

example, thin lines in the image can be mistaken as impulses and be suppressed. Also, 



rectangular windows are known to clip comers, whereas cross shaped windows preserve 

them. However, cross shaped windows cannot suppress as much noise as the rectangular, 

unless the size of the cross is rather large. Using large crosses, on the other hand, has the 

disadvantage that pixels distant to the central pixel will be used in the median 

computation, and therefore the strong local correlation of pixel values is not fully utilized. 

In general, the best choice of the window shape for a particular application is somewhat 

ad-hoc. Concepts of median filtering discussed in this section, will be utilized in 

suppressing environmental noise from the acoustic signal of the UCF impact disdrometer, 

to be discussed in Chapter 5. 

1.4.1 Conditional Median Filter 

When filtering of salt and pepper noise is desired, the conditional median filtert7] 

(CMF) developed at the University of Central Florida, offers a much better solution by 

adaptively varying the amount of filtering depending on the amount of impulsive noise. 

The primary advantage of the CMF is that it can suppress impulsive noise while 

preserving most of the image detail. Since it will minimally degrade noise-free images, 

the CMF is suitable in applications where the amount of impulsive noise in the image is 

not known, such as AP noise in weather radar images. The CMF is based on the 

condition that noise impulses should differ significantly from the local background. At 

each pixel, this condition is checked to determine whether the pixel should be replaced by 

the median. With the window centered at the pixel x(i, j), the CMF output y(i, j) is 

either the median m(i, j) or the input sample x(i, j), according to the following equation 

(assuming 8 bitslpixel): 

M i 9  J )  
< x ( j 7  j )  < 

m(i, j )  + 255 
2 2 

otherwise 



The CMF will selectively eliminate impulses based on both the relative width as 

compared to the window size, and the relative amplitude as compared to the local 

background. Figure 1-1 0b presents the output of a CMF with a 5 x 5 window, applied on 

the noisy image of Figure 1-1 0a. The CMF performs best at suppressing salt and pepper 

noise. while maintaining the fine image detail. 

1.4.2 Gated Median Filter 

The gated median filter[*] (GMF) is a modification of the CMF algorithm where 

an independent detector first locates impulses, then gates a conventional MF on and off. 

The MF is normally disabled (bypassed), except in those signal regions where impulses 

have been detected: 

where: 

A n )  > 0 
otherwise 

m(n) = med { x ( n  - k ) .  . - , x ( n ) ,  - x(n  + k ) }  

is the median value over a window of length N = 2k + 1 samples. x(n) and y(n) are the 

input and output sequences and g(n) is a gating signal which is provided with the correct 

timing so that the MF is activated when impulses are within the filter window. This type 

of MF preserves the signal, except where impulses are detected. The disadvantage of the 

GMF over other types of median filters is that two separate steps are required, detection 

and filtering. However, in one-dimensional signal processing applications, such as 

suppression of environmental noise associated with the impact disdrometer, the GMF 

may be the best choice. 



1.5 Spatial Interpolation 

The topic of this section deviates somewhat from the previously discussed image 

and signal processing algorithms. In general, interpolation may encompass a variety of 

applications, including some main stream DSP topics such as sample rate conversion, 

linear prediction, and other related subjects. The application to be discussed in this 

section is more closely related to mapping and associated numerical algorithms for 

performing spatial interpolation of data over a two-dimensional surface. Two types of 

interpolation methods will be considered: the bilinear method, which requires that data be 

on a uniform rectangular grid; and the gravity[91 method which does not require a grid. 

These techniques will be utilized in Chapter 4 for creating rainfall rate maps ,from rain 

gauge and weather radar data. 

1.5.1 Bilinear Method 

The bilinear method is the two-dimensional extension of simple one-dimensional 

linear interpolation. The basic bilinear method requires that the original data is on a 

uniform rectangular grid of spacing Ax in the x direction and Ay in the y direction. 

Every grid point consists of a set of data points, {x,, yk, zu,k)), where z(j,kf z(x,, yk) is 

the functional value (for example, radar reflectivity) at the (j,k) grid point. For every 

rectangle consisting of the four adjacent grid points {x,, yk, z(j,k)}, {x,+,, yk, z(i+l,k)), {x,, 

yk+ 1,  z(j,k+ 1 ) } , and {x,+ l ,  yk+ 1, z(j+ 1 ,k+ 1 )) , a two-dimensional linear interpolation for an 

arbitrary point z(x,y) bounded by the grid is given by the bilinear formula: 



for x , S t S  xj+/  and y k S y S y k + l ,  where du=x,+, -x, and Ay=yk+, - y t .  

1.5.2 The Gravity Formula 

In Shepard's formula (or gravity formula), the requirement of the rectangular grid 

spacing is eliminated. For N set of data points {xi, y ,  ziJ,  the interpolation for an 

arbitrary point z(x,y) is: 

where q is a fiee parameter. For q = 1, each term of the denominator [(x - + 0, - 
y,)2]-' is equivalent to the inverse of the distance from the interpolation point (xyy) to the 

data point (x,, yi). 

Equation (1.17) is an extremely simple method of two-dimensional interpolation, 

and has continuous derivatives through out the interpolation region. However, one 

disadvantage of this method is that the derivatives are zero at all data points (x,, y )  The 

parameter q controls how fast the derivative goes to zero when approaching the (xiy y,) 

data point. Shepard devised methods[91 for avoiding' some of the disadvantages of 

Equation (1.17) at the expense of added complexity. 



Figure 1 - 1. Network diagram of the LMS algorithm, for one-dimensional signals. x(n) is 
the reference signal, d(n)  is the input signal, e(n) is the error output signal, and y(n) is the 
LMS approximation of x(n).  The filter coefficients are w(k),  while the filter states are 
x(n-k). 

Figure 1-2. Example mean squared error (MSE) surface traversed by gradient search 
algorithm. Solution is the surface minimum at W*. Figure from Widrow (1985). 



Figure 1-3. Motion detection by subtraction where a minimum in Di, determines the value 
of displacement u = ( i ,  j) between consecutive images xl(nl, n2) and x2(nl, n2); (a) u = 

(0,O) where Doo = 5, (b) u = (1,O) where Dlo = 1. 



Figure 1-4. Motion detection by cross-correlation where a maximum in RU determines the 
value of displacement u = ( i ,  j) between consecutive images xl(nl, n2) and x2(nl, n2); (a) 
u=(O,O)and Roo=2,(b)u=(l ,0)and RloZ5. 



Figure 1-5. Two-dimensional spatial convolution. Figure from Weeks (1 993). 



Convolution Mask: 

f(x9y) 

Frequency Response: 

F(u,v) = 

IDENTITY 
MASK 

LOWPASS 
(MEAN) 

LOWPASS 
MASK 

HIGHPASS 
MASK 

Figure 1-6. Spatial convolution filter masks; (a) 3 x 3 lowpass, (b) 3 x 3 highpass. 



Figure 1-7. Second-order temporal convolution filter network, based on infinite impulse 
response (IIR) structure. See Table 1 - 1  for definition of coefficients. 

Figure 1-8. Magnitude response of IIR filters from Figure 1-7; (a) bandpass with Q = 2 
and 6 = x116, n18, d 4 ,  x12, (b) bandpass with 6b = n14 and Q = 1 ,  2, 4, 8, (c)  bandstop 
with Q = 2 and 6 = n/16, ~ 1 8 ,  n/4, n/2, (d) bandstop with 6 = x14 and Q = 1,2,4,8.  



SQUARE CROSS 

Figure 1-9. Common MF windows; (a) square filter window, (b) cross filter window. 

Figure 1 - 1  0. Image restoration with MF; (a) Image corrupted by impulse noise (salt and 
pepper noise), (b) image on left filtered by a 5 x 5 square window CMF. 



CHAPTER 2 

RAMFALL MEASUREMENT INSTRUMENTATION 

2.1 Background 

Various types of rainfall measurement apparatus include: those which directly 

measure single drops, such as disdrometers; instruments that measure an averaged 

ensemble of single drops, such as radar; those which measure the volume of water 

collecting on the ground, such as the accumulation rain gauge; and instruments that 

measure the rate at which water is accumulating, such as the t@ping bucket and optical 

rain gauge. In addition to these type of measurement classifications, there are also the 

spatial and temporal characteristics of the measurement to consider. Rain gauges and 

disdrometers measure rainfall at a single location or gauge site, whereas, radar measures a 

spatial average of rainfall in a three-dimensional volume, referred to as a radar bin. 

2.2 Rain Gauges 

All rain gauges measure rainfall at a single location where the measurement area 

or volume is much smaller than the scale of spatial variation of rainfall. All rain gauges 

also measure the volume of water accumulating at the gauge site. The sampling period of 

measurement may be very large, as in the case of an accumulation gauge, or on the order 

of a second or less, as in the case of the optical rain gauge. 



2.2.1 Accumulation Gauge 

Figure 2-1 shows a typical accumulation rain gauge. These type of gauges are 

frequently used in applications where long time averages of rainfall are of interest. A 

typical measurement from the National Weather Service (NWS) is the daily rainfall 

amount. -After the accumulation gauge is read, it must be emptied in order to start a new 

measurement cycle. Typical measurement scales are in inches, with 0.1 in. resolution, or 

in metric units with 1 rnm resolution. 

2.2.2 Tipping Bucket 

Figures 2-2 shows a tipping bucket rain gauge. This type of gauge is used in 

applications where hourly rainfall averages are of interest, such as in agricultural 

applications and flood forecasting. The resolution is usually 0.01 in., or in metric 

versions, 0.1 mm. Rainfall rates are easily computed from the tipping bucket rain gauge 

by dividing the measurement resolution by the time between tips. The tip of the bucket 

(see Figure 2-2b) triggers a momentary switch, creating an electrical pulse, thus activating 

a recording of the tip time. 

The rainfall rate measurement accuracy and resolution of a tipping bucket is also 

dependent on the resolution of the time clock used to record tip times. In many tipping 

buckets with associated recording electronics, such as data loggers, the number of tips 

using a constant sample time (for'exarnple, 1 min) is recorded. The rainfall rate in this 

case is the number of tips multiplied by the tip bucket resolution, divided by the constant 

sample time. In research applications, the measurement accuracy of a tipping bucket can 

be increased an order of magnitude by placing a funnel over the collection area (see 

Figure 2-2a). The ratio of the funnel opening area to the area of the tipping bucket 

collector determines the increase in measurement resolution. Most tipping buckets have 



an 8.0 in. diameter collection area. A 16 in. diameter funnel increases a gauge resolution 

of 0.01 in, to 0.0025 in. per tip, for example. However, under conditions favoring 

evaporation, the extra surface area of the funnel may lead to increased gauge error in the 

case of light rain. 

2.2.3 Optical Rain Gauge 

The optical rain gauge (ORG) measures rainfall by detecting the optical variations 

induced within the sample measurement volume by raindrops passing through a beam of 

semi-coherent infrared light. By measuring the transmitted light intensity using a 

photodetector, the voltage output of the detector represents the rainfall rate. A typical 

ORG (Scientific Technology, Inc. model ORG-105) output voltage V,, approximates 

rainfall rate R rnrn h-' with the following empirical relation: 

where the output voltage is typically sampled by an analog to digital converter (ADC) for 

subsequent recording by data logger or computer. 

One significant advantage of the ORG over mechanical systems such as the 

tipping bucket, is that they are less susceptible to errors induced by motion, making it a 

better choice for shipboard or buoy applications. However, since the calibration of the 

ORG is very critical and the ADC can drift with time, the tipping bucket is considered to 

be a more reliable and accurate measure of rainfall rate. 

2.3 Disdrometer 

Disdrometers measure and count single hydrometeors within a sample area, for 

the impact disdrometer; or within a sample volume, for the video disdrometer. Rainfall 

rate is computed by integrating (summing) the accumulation of single drop events. In 
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some sense, the disdrometer is a common link between the rain gauge and weather radar 

in that the disdrometer, like any other rain gauge, measures rainfall at essentially a single 

point. On the other hand, disdrometers like radar, indirectly estimate rainfall by means of 

a measurement of the drop size distribution (DSD). (Radar is measurement of the 6th 

moment of the DSD averaged over a volume of space, or bin, corresponding to the radar 

range increment and beam width). 

2.3.1 Impact Disdrometer 

Impact disdrometers measure individual raindrop impacts on a diaphragm, 

converting the collision of a single raindrop at terminal velocity to an electrical impulse. 

The disdrometer's processing electronics is responsible for converting the impulse 

amplitude to an equivalent drop diameter. The relationship between electrical signal 

amplitude and drop diameter is dependent on the various physical mechanisms which 

couple the drop collision to the mechanical portion of the sensing element. 

2.3.1.1 Joss Disdrometer 

Figure 2-3 shows a cross sectional view of the receiving body of the RD69 active 

Styrofoam disdrometer[lo7' 'I. The sensing element is a Styrofoam cone, approximately 10 

cm in diameter, attached to a movable coil surrounded by a permanent magnet (much like 

a hi-fi speaker). A secondary coil is used to rapidly dampen the cone movement caused 

by a drop impact, utilizing the signal from the first coil as negative feedback. The 

electronics include an analog analyzer which converts the voltage pulse from a drop 

impact to a digital code for output to a computer. The digital code represents 20 drop 

diameter categoria from 0.3 mm to 5.0 mrn. This particular system has been used world 

wide since its introduction in 1969 and is still considered the standard impact disdrometer 

for which all others are compared. 



2.3.1.2 APL Disdrometer 

A cross sectional view of the APL disdrometer, built by the Applied Physics 

Laboratory, Johns Hopkins University, is shown in Figure 2-4. The receiving body 

consists of a solid Plexiglas cylinder with a beveled top upon which raindrops collide. A 

piezoelectric transducer is bonded to the cylinder which is bonded to a brass plate. The 

resonant frequency and damping factor is strongly dependent upon the size of the brass 

plate. As with the RD69, the peak voltage pulse represents the drop diameter size. The 

output of the sensor is applied to signal conditioning electronics which compresses the 

signal and determines its peak value. This value is digitized to a resolution of 8 bits and 

is output to an audio tape (older versions) or computer interface. The new low-cost 

version of the APL disdrometer is self-contained and records data in non-volatile memory 

for up to several months before it fills memory. Periodically, the data is downloaded to a 

portable computer. 

2.3.1.3 UCF Disdrometer 

The University of Central Florida (UCF) disdrometer, otherwise known as the 

Acoustic Rain Gauge ~rra-y' l~]  (ARGA), is similar to other impact disdrometers (see 

Figure 2-5), except that in this case the drop impulse is acoustically coupled to the 

sensing element, consisting of a low-cost electret condenser microphone. The output 

signal of an individual disdrometer is connected to one channel of a stereo digital audio 

tape (DAT) recorder. The second channel of the DAT is connected to a tipping bucket 

rain gauge for reference. DATs have a distinct advantage over conventional analog 

recorders due to the increased capacity of DAT tapes (up to 4 hours at the lower sample 

rate of 32 kHz). In addition, the DAT automatically records a time stamp once per 



second, making it ideal for correlating measurements to other disdrometers in different 

locations and correlating to NWS radar. 

2.3.2 Video Disdrometer 

The 2D-~ideo-~ i s t rorne ter~ '~~  measures numerous properties of single rainfall 

hydrometeors using commercial video camera technology, essentially taking detailed 

pictures of drops as they pass through the measurement sample volume. The instrument 

records the front and side view of each drop reaching the measuring volume, with a 

digitizing grid resolution on the order of 0.25 rnm. This type of data permits the detailed 

study of the shape and terminal velocity of raindrops, as well as the corresponding drop 

size distribution. The Video-Distrometer may soon become the new base-line DSD 

measurement instrument from which all others are compared. 

2.4 Weather Surveillance Radar (WSR-88D) 

The Next Generation Weather Radar (NEXRAD), also known as WSR-88D, has 

replaced the previous National Weather Service WSR-57, WSR-74C, and WSR-74s 

systems. The deployment of a national network of WSR-88D radars officially began in 

February 28, 1994 with the commissioning of the first installation in Norman, OK. One 

month later, the Melbourne, FL WSR-88D system was commissioned. Nearly all of the 

planned NEXRAD systems have been installed and are now operational. 

The WSR-88D utilizes Doppler radar technology to observe the presence and 

calculate the speed and direction of motion of severe weather conditions such as 

tornadoes and violent thunderstorms. The motion detection capabilities of NEXRAD are 

important characteristics of this new system which results in earlier and more reliable 

warnings of severe weather conditions, thus improving the NWS's capacity in public 

safety warnings and alerts. 



2.4.1 Scan Strategy 

NEXRAD operates in a volume scan configuration, repeating every five to six 

minutes when the radar is in precipitation detection mode, and approximately every ten 

minutes when the radar is in clear-air mode. The radar base product data consists of three 

independent measurement quantities: reflectivity which is the strength of the precipitation 

returns caused by scattering of the microwave radiation from the hydrometeors; velocity 

which is the direction and speed of the air motion (Doppler radar actually measures only 

the radial component of the wind vector); and spectrum width which is a measure of the 

range of velocity returns. These measurements are taken at several elevation angles 

between the base scan angle (about 0.5") and the highest scan angle around 20" above the 

surface. The base products are processed by numerous algorithms, resulting in derived 

products. Both base and derived products are generated each volume scan. 

The WSR-88D estimates rainfall by processing base reflectivity data taken fiom a 

1.0 krn x 1.0 km sample volume at an altitude of approximately 1.0 km. In order to 

maintain a somewhat constant height, a hybrid scan strategy is employed, as shown in 

Figure 2-6, where only four of the volume scan elevations are used for rainfall estimation. 

Beyond 50 km, the largest of the two reflectivity values contained in the lowest two scans 

is used for rainfall estimation. Figure 2-7 is an example of Melbourne NEXRAD derived 

product reflectivity data (1 5 min image updates), downloaded fiom the internet service 

American Weather Concepts. 

2.4.2 2-R Relation -. 

WSR-88D data is processed through a series of algorithms and output is available 

after the completion of each volume scan. From the output base reflectivity 2, rainfall 

rates R are computed using the system default equation: 



where Z is in units of mm6 m". Typically, reflectivity is expressed in units of dBZ = 10 

loglo(Z). Light rain corresponds to 35 dBZ, whereas, 55 dBZ reflectivity indicates very 

heavy downpours. Most measured rainfall occurs within this 20 dBZ range. The exact 

form of the Z-R relation is the topic of much research. One particularly popular variation 

of the NWS 2-R relation is the dual regime[l4] 2-R relation which uses one set of 

coefficients for convective rainfall and another set for stratiform rainfall. Convective rain 

is usually associated with thunderstorms, but in general, is rainfall which exhibits a large 

spatial gradient. Stratiform rainfall is usually lighter rain and is by definition, anything 

that is not convective. 

2.4.3 Radar Refraction 

The distance from the radar site to the point of interest on the ground S, the scan 

elevation angle R , and radar range p, determine the height h of the beam center above 

the ground: 

, pcosA 
S = Re sin- ( R e + h )  

cos A 
h  = Re 

COS(/Z + S / R,)  - lJ 

where Re = 8500 km is 413 average earth radius. This rnodel[15] assumes that the index 

of refraction of the atmosphere is linearly dependent on h. Equations (2.3) can be 

simplified since h << Re and SIRe << A : 



Figure 2-1. Accumulation rain gauge. 

Figure 2-2. Tipping bucket rain gauge. Left, showing funnel used to increase sensitivity; 
right, showing close-up of tipping bucket mechanism. 



Figure 2-3. Schematic diagram of the RD69 (Distromet, Ltd.), commonly referred to as 
the Joss disdrometer. Note feedbaLk amplifier used to rapidly dampen cone movement, 
thus decreasing instrument dead-time. Figure from Rowland ( 1  976). 
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Figure 2-4. Schematic diagram of the APL disdrometer, built by the Applied Physics 
Laboratory, Johns Hopkins University. Figure from Rowland (1 976). 



Figure 2-5. Four UCF low-cost acoustic disdrometers (ARGA sensors). 

Figure 2-6. NWS NEXRAD hybrid scan strategy for rainfall estimation. 



Figure 2-7. Example Melbowne NEXRAD derived product reflectivity data (fiom 
American Weather Concepts), April 26, 1997, 1:40P. Images are updated at 
approximately every 15 min. 



CHAPTER 3 

RAINDROP DYNAMICS 

3.1 Background 

- Most precipitation reaching the ground in the tropics does so in the form of 

raindrops. From a very simplistic point of view, these hydrometeors can be viewed as 

non-interacting and falling at a constant terminal velocity. Even though this assumption 

is not true, because of the many physical processes such as break-up, evaporation, and 

coalescence, it is nevertheless a safe assumption for the purpose of analyzing many useful 

properties of rainfall. 

3.2 Drop Size Distribution 

The drop size distribution is the number of raindrop hydrometeors per unit volume 

per drop size diameter D. Usually the DSD is denoted by N(D) and is expressed in units 

of mJ mm-' or cm4. The total number of drops Nr in a volume of air is equal to the 

integral of N(D) over all drop diameters: 

where N(D)dD is the number of drops per unit volume with diameters between D and 

Since the largest raindrop sizes found in nature do not exceed 6 to 7 mrn, the DSD 

is often defined as: 



DSD = 

":"' 

Quantities involving the DSD, such as N T ,  are then found from the truncated integral: 

For most quantities involving integrals of N(D), the error associated with the choice of 

large drop size cutoff is insignificant as compared to errors from other sources. A 

practical strategy, which will be used in this work, is to limit large drop sizes to 6 mm 

when performing data analysis. When performing analytical calculations on integrals 

involving N(D), it is more convenient to use infinity as the upper bound for drop size 

since in this case, the integrals often reduce to the form of a simple gamma function. 

3.2.1 Exponential Distribution 

The simplest and probably most commonly used DSD is the exponential 

distributioni ' 61 : 

where No and A are fitting parameters. In this case, the total number of drops per unit 

volume reduces to: 



3.2.2 Gamma Distribution 

The gamma distribution["] was proposed in order to alleviate a problem at small 

drop diameters seen by researchers, which suggested that N(D)  + 0 as D + 0 : 

The gamma distribution also allowed for a three parameter fit, where v , as well as No 

and A are the fitting parameters. In this case, the total number of drops per unit volume 

reduces to: 

Comparing Equations (3.4) and (3.5) to Equations (3.6) and (3.7), it can be seen that the 

exponential distribution is a special case of the gamma distribution where v = 0. 

3.2.3 Marshall-Palmer Distribution 

The ~ a r s h a l l - ~ a l r n e r [ ~ ~ ~  (MP) DSD is a special case of the exponential distribution, 

described by Equation (3.4), where historically the exponential DSD may have resulted as 

a generalization of the MP DSD. The MP DSD is characterized by its explicit definition 

of the fitting parameters, No and A: 

with R in units of mm h-I. The original DSD data by Marshall and Palmer is shown in 

Figure 3- 1. 



The total number of drops for the MP DSD, based on Equation (3.5), is: 

According to the MP DSD and Equation (3.9), the total number of drops per unit volume 

increbe as the 0.21 power of R. 

3.3 Raindrop Terminal Velocity 

The equation of motion for a raindrop of mass r n ~  in a uniform gravitational field 

of acceleration g, falling in the z direction (defined positive from cloud to ground, 

where z = 0 at the initial starting point in the cloud), is: 

where the first term on the right-hand-side (RHS) is the gravitational force and the second 

term on the RHS is the force due to frictional drag through air. Approximations for the 

quantities in Equation (3.10) can be estimated by assuming a spherical drop shape of 

diameter D and by neglecting the change in atmospheric density with altitude: 

(3.1 la) 

where pw is the density of water, p is the density of air (neglecting altitude 

dependence), and Cd is the drag coefficient of a spherical drop. By substituting v = z 

in the equation of motion, Equation (3.10) becomes: 

39 



-- 

where v, = dmDg l p, . The solution to the differential equation of Equation (3.12) is: 

As z + m in Equation (3.13), v + V, , thus implying that VD is the terminal velocity 

of a drop of diameter D. Experimental data[lgl for drop velocities versus fall height for 

several drop sizes, is shown in Figure 3-2, along with the velocities predicted by Equation 

(3.13). Note that Equation (3.13) also correctly predicts that as 2 goes to zero: 

which is the free fall solution in a vacuum, where the drag force vanishes. 

One of the primary problems with the former arguments is the assumption that the 

raindrop shape is spherical. Figures 3-3 and 3-4 show high-speed photographs 119.201 Of 

drops at terminal velocity. For drop diameters larger than about 3 mrn, the shape 

becomes more flattened as the diameter increases. For this reason, terminal velocity 

formulas are usually empirical and are not usually based on the spherical drop shape 

assumption of Equation (3.1 1 b). 

3.3.1 Approximation by Gunn (1 948) 
* 

A simple form of drop terminal velocity VD is described by a simple power- 

law['' 1. 



where KG = 4.5 when drop diameter D is expressed in mrn and terminal velocity is in 

units of m s-'. This particular form of v~ is particularly useful when evaluating integrals 

over drop size, involving drop size distribution functions. Specific examples of this will 

be presented in sections to follow. 

3.3.2 Approximation by Best ( 1  950) 

An improved approximation for terminal ~e loc i t f l~~] ,  which takes into account the 

variation of velocity with altitude, due to atmospheric density, is: 

where A = 9.58 m s", b = 0.0854 km", z is the elevation at the ground (or at the point 

of measurement), D is the drop diameter measured in rnrn, a = 1.77 mm, n = 1.147, and 

v~ is expressed in units of m s". 

3.3.3 Approximation by Atlas (1973) 

Another approximation for terminal velocity[231, which is also an improvement over the 

power-law form of Gunn, is: 

where vo = 9.65 m s-', K = 1.067, c = 0.6 mm-', and D is expressed in mm. Even 

though this form of vo is not as simple as Gunn's approximation, it nevertheless results 

in a form which is relatively easy to manage when evaluating integrals involving DSD 

functions. 



3.4 Moments of the DSD 

Many useful atmospheric and meteorological quantities can be calculated simply 

by evaluating the xth moment of the DSD: 

For example, the total number of drops NT in a volume of air is equal to Mo, the zeroth 

moment of the DSD, as verified by Equation (3.1). 

3.4.1 Liquid Water Content 

The third moment M3 of the DSD is proportional to the amount of water in a unit 

volume of air: 

If the exponential DSD described by Equation (3.5) is used to evaluate M3 , the result is: 

where pw is the density of water. 



3.4.2 Rainfall Rate 

The integral over D of the product of terminal velocity and DSD is equal to the 

rainfall rate. If the terminal velocity v~ is described by Gunn's approximation, Equation 

(3.15), rainfall rate R becomes the 712 moment of the DSD: 

where KG = 4.5 (drop diameter D is expressed in mm and terminal velocity in units of 

m s"). If the exponential DSD of Equation (3.5) is used, R then evaluates to: 

where the scale factor 0.0036 places R in standard unit of rnm h-' 

The sixth moment 

reflectivity: 

3.4.3 Radar Reflectivity 

M6 of the DSD is approximately equal to the radar 

If the exponential DSD of Equation (3.5) is used, Z then evaluates to: 



where Z is in standard units of mm6 mJ. Note that a commonly used measure of Z is 

dB2 = 10 loglO(Z). 

3.4.4 2-R Relation 

The rainfall rate R described by Equation (3.22) can be combined with the radar 

reflectivity Z given by Equation (3.24), by eliminating A: 

Using KG = 4.5 and No = 8000, Z becomes: 

where a = 179.3 and b = 1419 = 1.56 . Equation (3.26) is a 2'-R relation derived from 

Gum's terminal velocity and the exponential DSD. Equation (3.26) is the well known Z- 

R power law used to convert weather surveillance radar (WSR) data to estimations of 

rainfall amounts. However, it should be noted that the National Weather Service (NWS) 

has adopted the modified values of a = 300 and b = 1.4 for use with its WSR-88D radar 

network. 



Figure 3-1. Solid lines are plots of the MP DSD, Equation (3.4) with parameters defined 
by Equations (3.8), for the three rainfall rates shown, R = 1,  R = 5, and R = 25 mm h-l. 
Dotted and dashed lines are rainfall rate data averaged from many measurements. 



Figure 3-2. Symbols are experimental data of drop velocity versus fall height by Laws 
( 1  94 1) .  Solid lines are the velocities predicted by Equation (3.13) using terminal velocity 
vo by GUM ( 1  948), Equation (3.15). 
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Figure 3-3. High-speed photographs of falling raindrops, at or near terminal velocity. 
Figure from Edgarton ( 1  939). 



Figure 3-4. Wind tunnel simulations of falling raindrops at terminal velocity. Drop 
diameters, from large to small, are: 8.00, 7.35, 5.80, 5.30, 3.45, and 2.70 rnm. Figure 
from Pruppacher (1  970). 



CHAPTER 4 

INTERPOLATION OF RAIN GAUGE AND RADAR DATA 

4.1 Background 

In many applications of water resources management, such as in agriculture and 

forestry, it is desirable to accurately determine areal rainfall amounts with high temporal 

and spatial resolution. A microscale network (separations on the order of 1 to 3 km) of 

rain gauges provides a reliable solution to detailed rainfall mapping for city size areas, 

farms, or park lands. However, dense rain gauge networks are not cost effective or 

practical for larger geographical areas such as counties, states, or regions due to the shear 

number of gauges required. After all, one of the primary justifications for the 

development of the National Weather Service network of NEXRAD radars was that it 

would provide improved rainfall information by filling in estimates over areas where 

large gaps in gauges exist. 

There are two issues associated with weather radar rainfall estimation; scan 

strategy and calibration of the rainfall estimation algorithm. Since the primary aim of the 

NWS is public safety, the chosen radar scanning technique is optimized for surveillance 

and warning of severe weather conditions. The resulting volume scan strategy, beam 

width, and range resolution are therefore not optimized for rainfall estimation. The issue 

of radar rainfall algorithm calibration is a more complex problem. In the early days of 

weather radar, it was believed that a simple 2-R relation (2 is radar reflectivity and R is 

rainfall rate) would suffice to accurately estimate rainfall amounts from radar 

measurements. Previously, most research focused on finding the "best" 2-R relation. 



4.2 Mathematical Development 

However. it is now common knowledge that this approach is a gross over simplification 

of the problem[241. Recent work in this area has split into three directions: (1) a 

comprehensive data analysis based on the complete volume scan and time series of radar 

images; (2) the assumption that only a statistical approach will yield useful results, based 

on long time averages and large areas of measurement; and (3) the application of other 

measurement techniques and instruments such as polarimetric radar[251 and ground based 

disdr~meters['~] to enhance present capabilities. 

The primary motivation of the work presented in this dissertation was to develop a 

useful method of combining and interpolating rain gauge data for the purpose of real-time 

rainfall mapping. For any geographical area larger than a few hundred square kilometers, 

the network of NWS radar provides the best available solution for rainfall mapping. In 

this case, clusters of densely spaced rain gauges, as well as single isolated gauges in the 

radar service area1261, may be used to improve radar rainfall algorithm calibration and 

subsequent real-time rainfall estimation accuracy. 

For global coverage (macro or synoptic scale), NASA's Tropical Rainfall 

Measurement Mission (TRMM) satellite radar provides the best rainfall mapping 

solution. Calibration and verification of the satellite radar measurements are performed 

by specific Ground Validation (GV) sites consisting of rain gauge networks and NWS 

WSR-88D radar. A robust gauge interpolation algorithm is essential to the successful 

implementation of reliable ground truth for calibration of the NWS rainfall algorithm and 

subsequent calibration of the TRMM satellite radar. 

Atmospheric dynamics are controlled by four fundamental laws of physics: 

conservation of mass, conservation of momentum, conservation of energy, and 

conservation of angular momentum (also referred to as vorticity). Two types of 



coordinate systems are commonly used to describe the mathematical laws of atmospheric 

fluid motion in a control volume. In the Eulerian frame of reference, the control volume 

consists of an infinitesimal parallelepiped whose position is fixed relative to the 

coordinate axes. Mass, momentum, and energy conservation will depend on fluxes 

caused by fluid flow through the boundaries of the control volume. In the Lagrungian 

frame, the control volume consists of an infinitesimal mass of fluid particles which move 

about following the motion of the fluid, always containing the same fluid particles. 

The difference in these two descriptions of atmospheric fluid motion is 

exemplified by a convective thunderstorm which is moving rapidly due to wind motion 

(advection velocity). An observer on the ground next to a rain gauge, is in the Eulerian 

coordinate system and will most likely witnesses a large time rate of change in rainfall 

rate, as measured by the rain gauge. Most of the time dependence of the observed (and 

measured) gauge rainfall is due to the passing of the convective storm system over the 

gauge site due to advection. An observer in a balloon whose speed matches the advection 

velocity, is in the Lagrangian coordinate system. This observer may notice a much 

smaller time rate of change of rainfall rate since he is observing the total time derivative 

of rainfall. 

4.2.1 Conservation Equation 

The general differential equation for conservation of a meteorological field 

variable is: 

f(w) = ( ) + u(r, t) ~ f ( r ,  t )  = source terns at 

where f (r, r )  may be a meteorological quantity such as radar reflectivity Z or rainfall 

rate R, at a point in space defined by the location vector r and time t, defined by an 

Eulerian coordinate system (an inertial coordinate system, neglecting the effects of the 

earth's rotation). f (r, t) is moving with an advection velocity u(r, r )  which is in general 



also a function of the location vector r and time t. Note that the term on the left hand 

side of Equation (4.1) is zero in the absence of source terms. 

In order to evaluate the total time derivative term, f (r,t) , it is often convenient 

to transform to a Lagrangian frame of reference which is traveling with the advection 

velocity u(r, t). (The Lagrangian system is not generally an inertial system since it may 

be accelerating). If at t = 0, the origin of the earth coordinate system, or Eulerian frame 

of reference, and Lagrangian system coincide, then the location vector r' in the 

Lagrangian h e  is related to r in the Eulerian frame by r'= r(t) - u t in the case of 

constant advection velocity (space and time independent). Since by definition the 

advection velocity is zero in the Lagrangian frame, Equation (4.1) reduces to: 

According to Equation (4.2), determination of the total time derivative of an atmospheric 

quantity such as Z or R is most easily accomplished in a Lagrangian coordinate system. 

A useful approximation, which will lead to a spatial and temporal interpolation 

method for radar and rain gauge data, is to assume that the total time derivative term in 

Equation (4.1) is small compared to the advective term: 

There are two cases to consider: temporal interpolation of radar data, and spatial 

interpolation of rain gauge data. These topics will be discussed in following sections. 

4.2.2 Measurement of Advection 

Wind motion in the atmosphere is a very complex process. Velocity is in general 

a three-dimension vector, where the vertical component may, for example, be associated 



with the updraWdowndraft motion of convective thunderstorms. Since the atmosphere is 

very thin compared to its extent, the movement of storm systems may be considered a 

horizontal motion, described by a two-dimensional velocity vector. For example, squall 

lines associated with mesoscale convective systems (MCSs), consisting of interacting 

thunderstorm cells and large areas of trailing stratiform precipitation[271, often move in a 

direction perpendicular to the line of thunderstorm cells. However, the motion of the 

individual storm cells, and sometimes imbedded tornadic cyclones, may be along the 

squall line, transverse to the velocity of the storm front. Vertical dependence of 

advection may be examined when observing the passing of clouds overhead in a direction 

opposite the wind direction on the ground. The "sea-breeze boundary" along a coast-line 

may also generate very complex horizontal wind motions. 

For the purpose of the following discussions, advection velocity will be 

considered a constant over a microscale area, on the order of 10 km2 or less; and for 

some interval of time, on the order of one hour or less. The justification for this 

characterization of advection is that even though it is generally not a constant in time or 

space over mesoscale areas (hundreds of krn2) and several hours, it can be formed as a 

piece-wise construction of constant velocities. The work presented in this chapter 

focuses on the regime where advection is approximately constant, i.e., microscale spatial 

extents and time scales on the order of minutes or tens of minutes. It will be assumed that 

the techniques developed under this constraint may be extended to larger spatial and time 

scales by connecting the microscale solutions using a numerical mosaicing scheme. 

4.2.2.1 Cross-Correlation of Radar Data 

The advection velocity can be estimated[281 by performing a cross-co~~elation 

between consecutive frames of reflectivity 2, (x, y) and Z,,+,(x, y) , where n is the time 

index of the radar scan image, generally occurring every 5 min or so. 



where p, is the average value of Z,(X, y )  over a region of area A. The best estimate 

for advection velocity u is that which maximizes p, (u)  . 

The spatial coordinates x and y may be, for example, the raw WSR-88D base scan 

coordinates (lowest elevation scan of OSO), consisting of 1.0 krn range increments and 

azimuth angle increments of 1 .OO. At times, it may be more convenient to work with an 

interpolated set of reflectivity values, generated by the WSR-88D precipitation products 

software[291, having a spatial resolution of 2 krn x 2 km. Whatever the choice of x and y 

used to describe a time sequence n of two-dimensional radar reflectivity images 

Z,(x, y ) ,  maximizing the cross-correlation of adjacent image scans (as described by 

Equation (4.4)) by a discrete summation over a miscroscale region A, yields an estimate 

of the advection velocity u associated with that spatial area. 

This process may be better visualized by studying the 5 min radar image scans 

(base reflectivity) shown in Figures 7-4. The radar data of Figures 7-4 corresponds to a 

region where strong westerly advection collided with the sea-breeze boundary from the 

Florida east coast. The cluster of cells moving from left to right in the upper to middle 

portion of these images, show a predominately easterly advection; whereas the cell cluster 

moving up from the bottom of the image sequence, show a predominately north-easterly 

advection velocity. A microscale region of study is designated by the circle of radius 1.3 

km where the advection is assumed to be constant over that area and over the time 

sequence of four radar scans (20 min). Note that the radar images of Figures 7-4 - 
represent a 16 krn x 16 km area, SSW of the Melbourne NWS radar. 

The region of integration (discrete summation) prescribed by Equation (4.4) needs 

to be larger than the microscale region of study (circled area) in Figures 7-4, due to the 

displacement of correlated features between adjacent images, as a result of scan time and 

advection velocity. An upper limit of integration area is imposed by the variation of 
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advection within the radar image surrounding the area of interest. The result of this trade- 

off is that a region larger than the microscale area of interest needs to be chosen for the 

cross-correlation. This result is evident by careful inspection of the images in Figure 7-4. 

4.2.2.2 Triangulation of Rain Gauge Data 

A method of determining the advection velocity requires only a simple 

trigonometric computation. For example, note the cluster of three gauges shown in 

Figure 4-1. The advection time delay between gauges i and j can be formally found by 

performing a cross-correlation between the two: 

where the maximum of p (t,) gives the best estimate of the time delay r ,  . Equation 

(4.5) is approximately equivalent to simply measuring the time interval between 

correlated features of 8 and R, , such as the rainfall rate peaks, as illustrated in Figure 4- 

2. The advection velocity can be estimated from the time delays determined from 

Equation (4.9, or by the graphical technique demonstrated in Figure 4-2: 

cosB(x, -x,)+sinB(y, - y, )  
U = 

where u = (u, 8). 



4.2.3 Interpolation of Radar Data 

As described in the previous section, radar data can be represented as discrete 

time samples of two-dimensional functions of reflectivity data, 2, (x, y ) where n is the 

time frame index and x and y are projections of the spherical coordinate data from 

three-dimensional space onto a two-dimensional ground coordinate system. The radar 

base product data are discrete samples of a volume scan Z,  (x, y, z)  , where Z,, ( x ,  y )  is 

calculated fiom a vertical composite of reflectivity, such as the maximum Z value in the 

z direction[301: Z,,(X, y )  = Max(Z,,(x, y, z)) . Given f ( r , n T )  = 2, (x, y) , where T is the 
( r )  

frame interval time (radar volume scan period), a solution to Equation (4.3) is: 

Radar data. in its original form, is not a continuous function of x  and y. If an 

arbitrary area is considered, consisting of k = 1 ... N radar samples {xkn , y b  , Zh) where 

xh and y h  are the Cartesian coordinates of the projection of the reflectivity value Zh 

onto the x-y ground plane, Shepard's interpolation formula[91 can be combined with 

Equation (4.8) for each time frame n : 

(4.1 Ob) 

where B is the angle of u measured fiom the x-axis so that u = (u, 8). Note that a 

typical value[91 for q is 2. Practical conditions on the choice of number of radar samples 



N in Equation (4.9) is based on the requirement that the interpolated section should be 

well within the area enclosed by the {xkn . ykn} coordinates. 

In practice, Equation (4.9) must be cross-faded with consecutive radar frames 

2, (x, y ,  t ) and Z,+, (x, y ,  t )  in order to prevent discontinuities in the interpolation due to 

the total time derivative term, Zn , which was ignored in the preceding derivation: 

where Zn (x, y, t ) and Zn+, (x, y, t ) are determined from Equation (4.9) and Equations 

4.2.4 Interpolation of Rain Gauge Data 

Rain gauge data can be treated as discrete spatial samples of a continuous time 

function of rainfall rate R, ( t )  where the jth gauge position is located at r, = (x,, y ,  ) . 

Given f (r, , t )  = Rj ( t )  , a solution['21 to Equation (4.3) is: 

Rain gauge data, in its original form, is not a continuous function of t .  If a time sequence 

of rain rate data, consisting of i = 1 ... M samples { to  , R,,) where t ,  is the ith time at . 
which the jth gauge acquires a rain rate sample of Ri,, Shepard's interpolation formula 

can be used with Equation (4.12) for each gauge location j : 



where a value of p = 3 seems to produce good results, based on data presented in the 

following sections. The final interpolated rainfall rate is a superposition of the 

R, ( x , ~ ,  r )  from all L gauges of the network, again using Shepard's formula: 

4.2.5 RMS Gauge to Radar Error 

In order to determine an optimum set of 2-R coefficients a and b in the 

standard 2-R power-law, Z = a R" a root-mean-square (RMS) error function can be 

defined, based on the differences between the jth rain gauge data and radar data (base 

scan or vertical reflectivity composite) above the jth gauge location: 

where again the interpolation formulas from Equations (1 1) and (1 5) are used. An RMS 

error function based on the arithmetic average of three gauge locations, for example, can 

also be defined as: 



And finally, an RMS error function can be defined, based on the interpolated and 

spatidly averaged rain gauge and interpolated radar reflectivity: 

4.2.6 Gauge Spacing Considerations 

The question of optimum gauge spacing can be addressed by examining the 

correlation of adjacent gauges as defined by Equation (4.5). This is graphically shown by 

superimposing rainfall rate plots from adjacent gauges, such as that shown in Figure 4-2. 

As the separation of gauges is increased, the time delay of correlated features of the 

rainfall rates also increases. As the separation continues to increase, the rates become 

uncorrelated so that it is no longer possible to identify related features and is therefore not 

possible to extract a physically meaningful time delay. Another way of looking at the 

question of gauge spacing is to compare the total time derivative term of Equation (4.1) to 

the advective term. When the spacing is small, the advective term dominates and 

Equation (4.3) is an approximation of the rainfall at adjacent gauge sites. Physically, the 

concept of gauge correlation is simply that the gauges should be far enough apart to get a 

good "view" of a single convective cell as it passes over a gauge cluster site. When the 

distance is too large, adjacent gauge sites are no longer measuring the same convective 

cell. These qualitative specifications for spacing are very dependent on the extent of the 

convective cells within a storm system. The best strategy is to find a spacing small 

enough to satisfy these requirements for most storm systems, while maintaining the 



maximum separation possible. Based on the results presented in this work, a 

recommended spacing is 0.5 to 2 krn. These distances are based on Florida summer 

thunderstorm characteristics, and may be different for other locations and time of year. 

4.3 Experimental Results 

The data that will be used to demonstrate the concepts from the previous section 

was acquired on June 14, 1997, 18:OO through 18:40 UTC at Kennedy Space Center 

(KSC). Three TRMM/KSC rain gauges were used for this analysis, corresponding to site 

numbers 017, 018, and 020. The gauges are tipping buckets (manufactured by 

Qualimetric), physically located at the lightening detection sites as shown on the map of 

Figure 4-3. The circle surrounding the gauges in Figure 4-3 is the interpolation area used 

to process and compare the gauge and radar data. The corresponding radar is from the 

Melbourne WSR-88D (KMLB) station, approximately 50 krn to the south of the study 

area. 

Using the rain gauge interpolation formula, Equation (4.19, R(x,, y,, t) for the 

three TRMMIKSC gauges is plotted in Figures 4-4, where j = 1, 2, 3 corresponds to 

locations of gauges 01 7, 01 8, and 020. The rain rate in Figures 4-4 is essentially the raw 

tipping bucket data interpolated in time using a constant sample interval of At = t,, -ct,,.l = 

60 s. Also shown in Figures 4-4 is the interpolated NWS radar reflectivity, Z(x,, y,, t), 

using Equations (4.11) and the lowest elevation scan data (base scan, 0.5' elevation), and 

again applying a sample interval of At = 60 s. 

4.3.1 Interpolation of Gauge and Radar Rainfall Rates 

Figures 4-5 show At = 120 s time frame intervals of gauge and radar rainfall over 

the study area surrounding the three TRMM gauge sites at KSC, using Equations (4.1 1) 

for radar interpolation, as well as Equation (4.15) for gauge interpolation (Figure 4-5b). 



The radar reflectivity data is converted to rainfall rate in Figure 4-5a by inverting the 

standard form of the Z-R power-law relation, Z = a R ~ .  whose parameters are obtained 

from a minimization of the RMS function specified by Equation (4.18). In this specific 

example, the RMS method results in a = 60 and b = 1.7. (The most commonly accepted 

Z-R parameter values are a = 300 and b = 1.4, obtained from a very large ensemble of 

data points, averaging the statistical fluctuations that occur during a single rainfall event). 

Rainfall rate is shown in units of mrn h" on a logarithmic scale versus color. Dark green, 

on the low end of the scale, represents 0.3 mm h-'; yellow is 17 mm h-'; while dark red on 

the upper end is 90 mm h-' . 

4.3.2 Gauge to Radar Comparisons 

Two methods of comparing radar to gauge rainfall will be considered. First, a 

linear regression method will be used to find the optimum 2-R coefficients a and b for 

each TRMMIKSC gauge site studied. For comparison, the RMS error functions 

discussed in Section 4.2.5, will be used to find an optimum set {a, b )  for the three cases 

specified by Equations (4.1 6), (4.1 7), and (4.1 8). Based on these results, the radar rainfall 

rate will be calculated over the corresponding gauge site, making use of the radar 

interpolation method presented in Section 4.2.3. 

4.3.2.1 Linear Regression 

Determining the coefficients a and b of the Z-R power-law Z = UR' can be 

performed by fitting the measured data points of log2 and logR to a straight line: 



where y = log Z, x = log R , a = 1 Oy0 . and b = m . This curve fitting procedure is 

often referred to as linear regression for historical reasons. For a set of N data points 

(x ,y , )  , the following sums can be defined: 

Standard linear regression results in solutions for yo and rn : 

s s, - SxSy 
m =  ss, -s,' 

Equations (4.21) are the result of minimizing the X 2  error defined as: 

The preceding procedure minimizes the vertical distance between the data point y, 

and the calculated point y(xi). The implication of this method is that all of the error in 

the data is contained in y, . If the error is assumed to be equally distributed among both 

xi and y, , an alternate procedure is to minimize the perpendicular distance between (xi$,) 

and the line y = yo + m x . In this case, the X 2  error is defined as: 



The new solutions for yo and m are now: 

where, 

Figures 4-6 show linear regression results for each of the three gauges under study 

at the TRMM/KSC sites. The standard linear fit according to Equations (4.21), 

summarized in Table 4-1, results in a lower slope (smaller b) than does the regression fit 

based on Equations (4.24), summarized in Table 4-2. Based on these results, the standard 

fit agrees better with 2-R parameters based on NWS operations standards[291 where n = 

300and b =  1.4. 

Table 4- 1. 2-R parameters based on standard 
linear regression from Figures 4-6 and Equations (4.21) 

Gauge Site No. a b 

017 55 1.8 

Table 4-2. Z-R parameters based on linear regression 
from Figures 4-6, using Equations (4.24). 

Gauge Site No. 

018 



4.3.2.2 RMS Error 

Plots of E,(a. b) for j = l , 2 ,  and 3, from Equation (4.16) are shown in Figures 4- 

7a. 4-8a. and 4-9a. Note that N in Equation (4.16) is the number of At = 60 s time 

intervals plotted in Figures 4-4. These RMS error plots immediately reveal an error 

surface minimum, representing the optimal choice of the 2-R coefficients a and b. 

When the optimal 2-R coefficients fkom Figures 4-7a, 4-8a, and 4-9a are used to calculate 

radar rainfall rate from interpolated reflectivity data above the jth gauge, the best possible 

match, in a least squares sense, results. Figures 4-7b, 4-8b, and 4-9b are the 

corresponding plots of radar rainfall compared to the gauge rainfall, using the 2-R 

parameters determined from the RMS error surface minimum, as summarized in Table 4- 

3. As shown by comparing Tables 4-1 and 4-3, the RMS surface minimums agree with 

the linear regression results, within plotting quantization error of the RMS surface plots. 

Table 4-3. Z-R parameters based on RMS error surfaces 
from Figures 4-7 through 4-9. 

A plot of E A ( ~ ,  b), based on Equation (4.17) for the data of Figures 4-4, is shown 

Gauge Site No. 

017 

in Figure 4-1 0a. For comparison, a plot of E(a, b), based on Equation (4.1 8) is shown in 

Figure 4-1 0b. The optimum a and b found from the corresponding RMS error surface 

minimums are summarized in Table 4-4. Based on Table 4-4, the spatial average method, 

based on Equation (4.1 8), results in a similar set of Z-R parameters as found from the 

arithmetic average method of Equation (4.17). However, when comparing the error 

a 

60 

b 

1.8 



surface minimum values in Table 4-5, it is clear that the spatial average error function 

E(a, b)  results in a choice of 2-R parameters which yield the minimum RMS error. 

Table 4-4. Z-R parameters based on RMS error surface 
minimums of Figures 4- 10. 

RMS Type a b 
Arithmetic Average 60 1.68 

EA(G b )  
Spatial Average 60 1.72 

Table 4-5. Comparison of RMS error surface 
minimum values and Z-R parameters. 

RMS Type a b Emin dBz 

Gauge Site #0 1 7 60 1.80 2.05 
El(Q, b) 

Gauge Site #018 100 1.48 2.75 
E2(a, 6 )  , 

Gauge Site #020 90 1.32 3.69 
E3(a, b )  

Arithmetic Average 60 1.68 1.75 
E A ( ~ ,  b )  

Spatial Average 60 1.72 1.03 
E(a, b )  

A conclusion from these results is that the spatial average method of gauge to 

radar comparison E(a, b),  reduces many of the errors associated with single point 

comparisons. Even though the arithmetic average function &(a, b) may result in similar 

2-R parameters, the reliability of the results may be less than those based on spatial 

averages, due to the larger RMS error. 

Figure 4-1 1 a shows comparison of the minimum RMS error based on the June 14, 

1997, KSC data, identical to the Emin data summarized in Table 4-5. Figures 4- 1 1 b and 



4-1 1c show similar comparisons for two other rainfall events. It is clear from these 

graphs that the spatial averaging method results in a choice of 2-R parameters which 

yield the minimum RMS error. 

4.4 Applications and Discussion 

An algorithm for combining and interpolating rain gauge data for the purpose of 

real-time rainfall mapping has been proposed, based on an advection transformation and 

Shepard's formula. Preliminary data provides evidence that this interpolation processing 

scheme can lead to improved mapping of areal rainfall over microscale gauge networks. 

By integrating the spatially interpolated gauge and radar rainfall rates over microscale 

gauge clusters, the effects of advection and gravitational sorting of drops are reduced so 

that accurate areal average rainfalls may be generated with high temporal resolution. This 

method of gauge to radar comparison is suggestive of the Window Probability Matching 

~ e t h o d ~ ' ] ,  but in this case both the gauge and radar are windowed in space. 

In applications for TRMM Ground Validation (GV), where only single gauges are 

available (gauge separation > 5 km, which is the predominant case of gauge network 

placement), analysis suggests that an interpolation over single gauge points (actually, an 

extrapolation) may also lead to better gauge to radar comparisons. Figures 4-12a and 4- 

12b show examples of gauge extrapolation, using Equation (4.15) with N = 1, over a 

single gauge site in Satellite Beach, FL. Note that the horizontal scales are in units of 

min, which is the spatial extent of interpolation scaled by the inverse of advection 

velocity. Knowing an estimate of the total time rate of change of rainfall fiom the 

can be approximated corresponding radar measurements, a time constant 

corresponding to a lle = 37% change, for example, in the radar reflectivity over the 

gauge site. A distance corresponding to 7 along the horizontal axis of Figures 4-12 fiom 



the gauge location, gives some quantitative definition of an area of extrapolation around 

the gauge site. 



Figure 4- 1 .  Determination of advection velocity 
triangulation. 
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Figure 4-2. Three adjacent gauges showing delay time between correlated features of 
rainfall rate. 



Figure 4-3. Map of TRMM/KSC gauge test site. 
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Figure 4-4. TRMMIKSC rain gauge and Melbourne NEXRAD interpolated data, June 
14, 1997; (a) Gauge 01 7, (b) Gauge 0 18, (c) Gauge 020. 
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Figure 4-5a. Interpolated radar rainfall, based on Melbourne NEXRAD data of June 14, 
1997, over KSC. 



Figure 4-5b. Interpolated gauge rainfall, based on TRMM rain gauge data of June 14. 
1997 over KSC. 
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Figure 4-6. Linear regression of log2 versus logR of interpolated data, where solid line is 
a standard linear fit based on Equations (4.2 1 )  and dashed line is a fit based on Equations 
(4.24); (a) gauge site 017 with correlation coefficient r = 0.93, (b) gauge site 018 with r = 

0.88, (c) gauge site 020 with r = 0.79. 



(b) . 
m l l l l l l " l r l l ' l l l l ' l l l ' l l ' I 1 l -  - - -- Ra in  Gauge - - 

. . . . . . . KMLB Radar, z = ~ o R ' . ~  1 
- - 
- - - - - 
- I - 
.. 
- - - - - " 

Time [UTC] 

Figure 4-7. TRMMIKSC gauge site 017, June 14, 1997; (a) RMS error surface from 
Equation (4.16), (b) radar rainfall (dotted line) from 2-R parameters a = 60 and b = 1.80, 
determined from RMS error surface minimum, compared with gauge rainfall rate (solid 
line). 
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Figure 4-8. TRMMIKSC gauge site 0 18, June 14, 1997; (a) RMS error surface from 
Equation (4.16), (b) radar rainfall (dotted line) from 2-R parameters a = 100 and b = 

1.48, determined from RMS error surface minimum, compared with gauge rainfall rate 
(solid line). 
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Figure 4-9. TRMMIKSC gauge site 020, June 14, 1997; (a) RMS error surface fiom 
Equation (4.16), (b) radar rainfall (dotted line) fiom 2-R parameters a = 90 and b = 1.32, 
determined fiom RMS error surface minimum, compared with gauge rainfall rate (solid 
line). (Note the time delay in (b) between gauge and radar data, which is most likely due 
to advection and/or the fall time of drops above the gauge). 



Figure 4-10. RMS error functions and corresponding 2-R parameter solutions based 
minimum of error surfaces; (a) arithmetic average RMS error &(a, b), based on 
Equation (4.17), (b) spatial average RMS error E(a, b), based on Equation (4.17). 



R14JUN1: KSC Gauges 
Convect ive Rainfal l  

Arithmetic 

. . Integral . . . . . . 
. . . . . . 
. . . - . . . 

0 . , . , . . 

1 1  I I " " I '  

- A01 J I I N I  : Convective Rainfall - - - 
- Site-I - ...... . . Site-3 

. . . . . . . .  
, . - . .  . . , . . , , . , . 

i Arithmetic - i I Site-2 . , 
d 

. . . . .  . . I , i . Average 
. . . . , . - .  . . . . . - 
, . . . , . - 7 

, . 
Spatial - 

. . - I . . . . . . . . . . 

. . 
I Integral - 

_ . .  . . Y .  . .  - . .  . . 
1 I 

. . - _ . .  . . I I . . . . . . , . . . 
I I 

. . . . . . . . . . . . 
. . . . . . . . . . 

I I 
. . . . . , . . 
. . . . , . . . I I 
. . . .  . . 
. . . . 

, . . . 
. . . . . . . . I I 

. . . . I 1  

I I 

R19JUL1: KSC Gauges 
Stratiform Rainfall 

Arithmetic 

lntegrai 
... . . . .  . . . . . . . . . . . . . . 

0 . . 

Figure 4- 1 1 . Comparisons of RMS error minimums determined from Equations (4.1 6), 
(4.17), and (4.18) for different locations and times; (a) KSC - June 14, 1997, (b) Palm 
Bay, FL - June 1 ,  1997, (c) KSC - July 19, 1997. 
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Figure 4- 12a Spatially interpolated rainfall rate from a single gauge, Satellite Beach, FL, 
June 9,1996, using Equation (4.15) with N = 1.  Advection velocity u = 1 1 m/s. 
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CHAPTER 5 

ALGORITHMS FOR PROCESSING DISDROMETER DATA 

5.1 Background 

Impact disdrometers are the class of rainfall measurement instruments for 

recording individual raindrop impacts. These instruments convert the impact of a single 

water drop at terminal velocity to an electrical impulse. The disdrometer's processing 

electronics is responsible for converting the impulse amplitude to an equivalent drop 

diameter. The relationship between electrical signal amplitude and drop diameter is 

dependent on the various physical mechanisms which couple the drop momentum or 

impulsive force to the mechanical portion of the sensing element. Most impact 

disdrometers transform drop momentum to an electrical output by a direct coupling of the 

sensor mass to the sensor transducer["121. These instruments can sometimes be modeled 

as a simple spring-mass system where the sensor mass reacts to the impulsive force of the 

drop impact. In other cases, the appropriate model may be a two-dimensional dm-head.  

The sensing element of the Acoustic Rain Gauge Array, is similar in principle to previous 

impact disdrometers except that in this case, the drop impact impulse is acoustically 

coupled through air to the transducer[121. 

The calibration of impact disdrometers has traditionally been a tedious process, 

whereby known diameter single water droplets are generated and allowed to fall from a 

height of 10 m or more in order to obtain terminal velocity. An alternate method of 

calibration is proposed which eliminates the need of a single drop generator and 

associated drop shaft. The strategy behind this technique is to use an accumulation rain 



measurement instrument, such as a tipping bucket rain gauge, to provide a known signal 

for the purpose of training an adaptive calibration algorithm. The reference signal to this 

digital signal processing algorithm is the output of the impact disdrometer which is 

preprocessed by an impulse amplitude estimation algorithm. This calibration technique 

has been evaluated using data from UCF's Acoustic Rain Gauge Array, which estimates 

raindrop size distributions (1.0 mm drop diameter or more) by digitally sampling the 

acoustic signal from an array of acoustic impact sensors. This calibration technique 

should be applicable for use with other impact disdrometers. 

Partially spurred by the advent of radar, an extensive amount of experimental and 

theoretical work was performed during the 1940s to analyze rainfall. The main thrust of 

that research was to describe and characterize rain as a volume density distribution of 

water droplets, where the number of drops in a volume of air as a function of drop size is 

defined as the drop size distribution[16]. Since that time, interest in characterizing rain 

from this perspective has continued [337341. Weather radar remains the primary motivation 

in rainfall DSD measurements, although, there are many other reasons to study DSDs, 

especially as a function of time and surface coordinates[12]. 

Even though impact disdrometers[lol were originally developed to measure rainfall 

rate, they have since been used to estimate rainfall DSD functions by counting and 

measuring the individual raindrop impacts on a measurement surface. These instruments 

convert the collision of a single water drop (assumed at terminal velocity) with the 

sensing surface to an electrical impulse. The impact disdrometer's processing electronics 

is then responsible for converting the impulse amplitudes to equivalent drop diameters, 

even though it has been found that these instruments are 'seldom reliable below drop size 

diameters of 1 or 2 rn~n[~~] .  Impact disdrometers can nevertheless contribute to the 

understanding of cloud physics, hydrology, and numerous other fields which require 

knowledge of detailed rainfall characteristics. 



5.2 UCF Acoustic Disdrometer 

Most impact disdrometers transform a drop impulse to an electrical output by a 

direct coupling of the drop impulse to the sensor transducer. UCF's Acoustic Rain Gauge 

A.rray[12] (ARGA) sensor is similar to previous impact disdrometers, except that in this 

case, the drop impulse is acoustically coupled through air. By incorporating low-cost 

components, off-the-shelf hardware, and custom software, the ARGA disdrometer can be 

implemented as an array of sensors at a lower cost than most single disdrometers. Since 

the sensors are acoustic in nature, other useful applications may be implemented by 

simply downloading application specific software to the programmable hardware. In this 

way, ARGA can possibly be used as a wind measurement system for severe weather 

events such as a tornado, for example. 

Referring to Figure 5-1, the sensing element consists of a balsa wood diaphragm, 

12 cm in diameter and coated with a waterproof sealant, which acts like a highly damped 

drum head (resonant frequency of the diaphragm is about 530 Hz). The foam sleeve is 

used to suppress impulses from drop impacts on the side of the sensor housing. Figure 5- 

2 is an example plot of the digitally sampled output of the acoustic sensor, with sample 

frequency f, = 1 1025 Hz, while acquiring data during a typical Florida thunderstorm. 

Note that the impulse width is on the order of 10 ms. The dead-time, equal to the pulse 

width, is comparable to that of previous impact disdrometersP6]. 

Figure 5-3 shows a block diagram of the acoustic sensor's digital signal processing 

algorithm section. The primary DSP functions are: (1) signal filtering, (2) peak detection 

and amplitude estimation, and (3) drop size diameter conversion. The filtering is 

accomplished by a 16th order bandpass filter centered around the resonant frequency of 

the sensor diaphragm = 530 Hz, with a bandwidth of 375 Hz. The amplitude 

estimation algorithm incorporates any necessary dead-time by recognizing characteristics 

in the pulse which may correspond to impulse overlap. The peak detection and amplitude 



estimation algorithms are based on simple pattern recognition principles. The drop size 

conversion is accomplished by an empirical drop impulse to drop diameter, based on a set 

of parametric coefficients determined by an adaptive calibration algorithm. During a 

rainfall event, all impulses over the sensor's measurement area, and within a time frame 

interval T (for example, T = 30 s), are measured, converted to equivalent drop volumes, 

and presented as rainfall rate or an estimation of the DSD function N(D) (for diameters 

greater than 1 rnrn). 

5.3. Calibration 

Since disdrometers measure the voltage output resulting from the impact of a 

raindrop, a calibration is necessary to convert peak impulse voltages to the equivalent 

drop size diameters. Two methods will be discussed: traditional single drop calibration; 

and UCF's method of adaptive calibration (this method is also referred to as an in situ 

calibration). 

5.3.1 Single Drop Calibration 

Single drop generators, designed and built by the NOAA Atlantic Oceanographic 

and Meteorological Laboratory (AOML) in ~ i a r n i [ ~ ~ ] ,  are shown in Figures 5-4. In these 

apparatus, a water reservoir is attached to a needle valve which controls the flow rate 

through different diameter copper tubing. For larger raindrop sizes of 2.5 - 5.5 mm 

diameter (Figure 5-4a), water is allowed to drip off the end of copper tubing of various 

inner diameters ranging from 0.2 to 5 mm. The relationship between tube diameter and 

drop size is shown in Figure 5-5a. Flow rate does not affect drop size, as long as 

individual drops are allowed to form at the tube tip. Drop sizes are determined by 

weighing 100 drops for each tube size in groups of 20 drops each. 



In order to generate smaller drop sizes, the individual drops must be actively 

knocked off of the tube tip. To accomplish this, the smallest diameter tubes were 

mounted onto an audio speaker (Figure 5-4b), driven by a sine wave of variable 

frequency. By varying the frequency of the sine wave driver, drop sizes from 0.6 - 2 rnm 

diameter can be created as shown in Figure 5-5b. Drop sizes were determined by 

collecting 15 - 20 individual drops on a water repellent surface and then measuring their 

diameter using precision calibrated optical magnifying lenses. The drop sizes are verified 

before each experimental run because the relationship between drop size and driver 

frequency is not generally stable. 

Drops are allowed to fall five stories in an internal stairwell, since the largest 5.5 

rnm drops need approximately 12 m in order to obtain terminal velocity. For small drop 

sizes, a shorter fall height of 4.5 m can be used to assure that the drops hit the sensor 

surface, since small drops exhibited significant horizontal drift as they fell. Peak voltage 

for approximately 100 drop impacts for each of 15 drop sizes ranging from 0.6-5.5 mm 

diameter are collected. Spurious data points (low voltage values) due to drop breakup, 

near misses, spatter, and noise are removed subjectively. The result is a calibration curve, 

yielding drop diameter as a function of peak instrument voltage. 

5.3.2 Tipping Bucket as a Reference Signal 

An alternate method of calibration[371, based on the numerical minimization of a 

function, is now proposed. This technique is similar to many well known adaptive signal 

processing algorithms. The strategy behind this technique is to use a tipping bucket rain 
k 

gauge for providing reference data to optimize a set of adaptive coefficients , a 1 , ... 

a~.2 , and p . An error surface defined by Equation (5. l), is the sum of the square of the 

differences between the tipping bucket output V(n - k) and the calculated c(n - k) for 

the current and previous N - 1 time frame intervals: 



N - l  2 

E ( n ) =  C [ v ( n -  k ) -  c ( n -  k ) ]  
k=O 

N - l  2 

= C [vo - P(n - k ) ]  
k =O 

where xm(n) is the amplitude of the mth drop impulse amplitude, such as those in Figure 

5-2, and of the nth time frame. V(n) is the accumulated volume of rain measured by the 

tipping bucket during the nth time frame, whereas e ( n )  is the corresponding volume of 
I 

rain measured by the acoustic sensor. Note that both V(n) and G ( n )  correspond to the 

volume of rain collected over an area equivalent to the sensor diaphragm, As . The time 

frame n is triggered by the tipping bucket, corresporrding to the accumulation of a 

constant volume of water Vo in the collector (Vo might typically be equal to 0.01 inches 

multiplied by As), where n could correspond to a few seconds for a hard downpour or 

several minutes for a light drizzle. f ( n )  is calculated by summing the mth estimated 

raindrop volume C,(n) from Equation (5.3), the adaptive drop size estimator algorithm 

shown in Figure 4, for all M, drops in the nth time frame. The drop diameter Dm(n) is 

then estimated from the estimated volume assuming a spherical shape: 

Dm (n) = (6 Cm(n) / 7r)It3 

Note that the form of Equation (5.3) is arbitrarily based on a polynomial power series of 

2, and that other forms may likely exist which will yield improved results. 

The parameters a~ , a I , ... a ~ - 2  , and P are the coordinates of an L-dimensional 

error surface defined by Equations (5 .1)  through (5.3).  Using the Steepest Descent 

gradient search algorithm, an approximately optimized set of parameters can be found, 



and by evaluating Equations (5.3) and (5.4), provide the calibration curve for any 

subsequent sensor output. In this way, the disdrometer is calibrated for all future 

measurements where periodically, the adaptive calibration procedure can again be 

performed to compensate for changes in the sensor response. 

- During the sensor calibration phase, or equivalently the coefficient adaption 

phase, the drop size estimation parameters are updated using the gradient of Equation 

(5.1): 

where p is the convergence gain factor (gradient search step size) and the index 1 

represents a multiple coefficient update, occurring during the time frame n. The number 

of iterations or multiple updates defined by Equation (5.5) necessary to arrive at a 

coefficient vector c in the vicinity of the error surface minimum, may be several 

thousand. The reason for the large number of iterations at each time fiarne n is due to 

the limited number of available tipping bucket triggers (or clocks) during a typical rainfall 

event. The total number of tipping bucket clocks is often a hundred or less for a typical, 

fast moving, summer thunderstorm. 



The number of data sets x(n) (consisting of M. components x,(n)) stored in 

memory for use in Equation (5.5) is N, as specified by Equation (5.1). The gradient term 

of Equation (5.5) is shown to depend on a triple sum from Equations (5.1) through (5.3). 

Therefore, each iteration of each component of Equation (5.5) involves L Mn N terms, 

where L = 3, Mn = 1000, and N = 50 might be typical values. The total number of 

terms per component, per iteration of the coefficient vector, is then 150000 for these 

example values. In addition, the amount of memory required to store the N vectors of 

x(n), is M.N which is equal to 50000, again using the above typical values. 

The total number of iterations and memory storage requirements can be reduced 

significantly by representing x(n), a vector of variable length Mn , by a histogram vector 

H(n) of constant length P, such that: 

where xl and x* are the lower and upper limits of x, , defined by the number of bits 

used to sample the acoustic sensor output. For a 16 bit sampling system, half of the bits 

are used to represent x, because of the absolute value operation shown in Figure 5-3, so 

that xl = 2-l5 and x2 = 1-2-15. Using this method, the histogram H(n) is a logarithmic 

partitioning of the drop amplitude vector x(n) into P bins. 

The gradient vector in the coefficient update formula of Equation (5.5) now 

becomes: 



where the summation over k has been rewritten as a summation over a new k index 

with limits of kl = n - N + 1 and k2 = n. In this way, the summation over the time frame 

index n - k is treated as a sliding window of length N over time frames k stored in 

memory. The purpose of the change of summation index is to simplify notation, by 

representing H,(k) as a P x N matrix of components gk. 

Equation (5.1 1) is the partial derivative of the adaptive drop size estimator output 

of Figure 5-6, which can now be expressed as: 



The adaptive coefficient vector of Equation (5.5) can now be updated using Equations 

(5.12) and (5.13). With typical values of P = 100, L = 3, and k2 - kl - 1 = 50, the total 

number of iterations per component of the coefficient vector c is 15000, requiring (k2 - 

kl - 1) -P = 5000 words of memory storage for H, .  The number of iterations and 

- memory storage requirements may be further reduced by increasing kl , thus decreasing 

P, since the first several j bins of Hjk are usually well below the sensor's noise 

threshold. 

In order to prevent instability and divergence in the recursive coefficient update 

formula, and at the same time, allow reasonable convergence with a moderate number of 

iterations, the constant gain factor p in Equation (5.5) is replaced with individual gain 

factors p, for each coefficient c ,  . An empirical approximation for p, , whch has 

experimentally proven (in this work) to be useful under a wide range of conditions, is: 

c, 
" ' 100 VE,  

The p, are approximated by Equation (5.14) for some number of initial iterations (1 000 

for example) and then held constant for the remainder of the adaption process. 

Another way to utilize the empirical relationship of Equation (5.14) is to use the 

quantity 100p,VE, / C, as a convergence indicator and adjustment for the individual gain 

factors p,. If this quantity remains less than one for each adaption parameter, and 

continues to decrease with successive iterations, convergence will most likely be 

achieved. 

5.3.3 In Situ Calibration of UCF Disdrometer 

Figures 5-7 show examples of c(n) versus t(n) from three individual acoustic 

sensors, along with the tipping bucket data V(n) = Vo , where t(n) is the relative time at 

which the tipping bucket clock pulses occur. The ~ ( n )  are generated by the output of 



the adaptive drop size estimator in Figure 5-6, using the approximately optimized 

coefficients from Table 5-1. The coefficients in Table 5- 1 were generated by updating the 

adaption coefficient vector of Equation (5.5) with P = 100, N = k2 - kl - 1 = 46, and L = 

3, for a thunderstorm event lasting 6 min on August 15, 1996, passing over Satellite 

Beach, Florida. The number of iterations used to adapt the coefficient vector was 

approximately 10000 for each of the three sensors. Figure 5-8 is a calibration curve 

generated for each of the three sensors under test, using the coefficients from Table 5-1 

and Equations (5.3) and (5.4). 

The raw data output mode of the acoustic disdrometer is the drop size versus time 

(D/t) mode, which is the output of the parametric drop size estimator, Equations (5.3) 

and (5.4) (Dm of Figure 5-3). As shown in Figures 5-9, this type of output data is 

displayed by plotting a small dot at the corresponding drop diameter (vertical axis) and 

time (horizontal axis) coordinate, where each dot represents a measured raindrop. 

An average rainfall rate R(t)  during a time interval At, is calculated by summing 

the drop volumes given by Equation (5.3) during a vertical slice of the Dlt plot of width 

At: 

where the x index m now represents all drop impulse amplitudes occurring during the 

jth time interval At. Figures 5-10 show the result of converting the D/t data from 

Figures 5-9 to rainfall rate using Equation (5.15) with dt = 6 s and sensor area As = 



Table 5-1. Parameters using Equations (5.3) and (5.4), as shown in Figure 5-8. 

I Sensor I ao I a I I P I 

Drop size distributions can be extracted from the D/t data of Figures 5-9 by 

generating a DSD histogram and dividing by the drop terminal velocity. A good 

approximation for terminal velocity, which takes into account the variation of terminal 

velocity with atmospheric density, is by ~ e s t [ ~ ~ ] .  

v, = ~e~~ [ 1 - crn / s i 
where A = 958 cm s-I, b = 0.0854 km-I, z is the elevation at the ground (or at the point 

of measurement), D is the drop diameter, a = 1.77 rnrn, and n = 1.147. Figures 5-1 1 

show DSD extracted from the D/t data of Figures 5-9. In these examples, the drop size 

distributions were generated by using D/t data from times of equivalent rainfall rate, 

defined by partitioning rainfall rate data R(Z) into bins of width dR = 20 mm/hr. 

Disdrometer calibration has been an area of debate and concern for the research 

meteorologist and atmospheric scientist. [32,34,38] Using an adaptive digital signal 

processing approach, a calibration algorithm has been proposed which provides a 

relatively simple means of relating the impact disdrometer response to actual rainfall 

accumulation. Utilizing a tipping bucket rain gauge as a reference clock, the impulse 

amplitudes from the disdrometer sensor are transformed by an adaptive drop size 

estimator algorithm and summed together within a reference time frame defined by the 

clock. The sum of the transformed impulses within each time frame are all equal and 

equivalent to the tipping bucket collector volume. An adaptive algorithm updates a 



coefficient vector, which attempts to minimize the error between transformed disdrometer 

volume and the tipping bucket volume, thus producing a set of coefficients which are 

thereafter used to convert the disdrometer impulse amplitude to drop diameter. 

Example data from UCF's acoustic rain gauge sensors was processed using this 

adaptive calibration algorithm. Rainfall rate was generated from the acoustic sensor data 

using the coefficient vector obtained fiom the output of the adaptive drop size estimator 

b d  was compared to the rainfall rate calculated fiom a tipping bucket rain gauge. 

Comparisons of rainfall rate are shown to be good. It is hoped that this method can be 

used to replace or supplement previous disdrometer calibration methods, providing 

additional means of checking accuracy of DSD measurements obtained from impact 

disdrometers. 

5.4. Suppression of Environmental Noise 

Using an impulse suppression algorithm, environmental noise such as thunder and 

wind can be filtered fiom the sound of raindrops impacting an acoustic rain gauge sensor. 

A non-linear filter algorithm, based on a gated median filter, was previously used to 

suppress scratch noise from damaged phonograph records. The goal of this work is to 

adapt this impulse suppression algorithm and evaluate its performance in detecting and 

filtering the impulse signal from a sensor element of ARGA at the University of Central 

Florida. In this case, the amplitude of each impulse is a measurement of the raindrop size 

impacting the sensor. By subtracting the filtered signal from a delayed version of the 

original, the output signal contains only the drop impulses fiom which the raindrop size 

distribution can be derived. 



5.4.1 Impulse Detection Using a Non-Linear Filter 

The adaptive scratch noise filterIgl was originally inspired from the similarities 

between scratch filtering of damaged phonograph records and suppression of impulsive 

noise (known as "salt and pepper") from images. This suggested the idea that filters 

traditionally used in image processing could be applied for scratch filtering as well. A 

well-known filter for salt and pepper noise suppression is the medianjilrer (MF) which 

replaces each image pixel with the median of surrounding pixels. However, direct 

median filtering has undesirable side-effects such as smoothing of noise free regions, 

resulting in loss of image detail. The conditional median filter (CMF) improves the 

performance of the MF by selectively filtering only pixels contaminated by impulses. 

Scratch impulses in audio signals have some distinct differences fiom salt and pepper 

impulses in images, thus direct application of filters such as the CMF may not produce 

satisfactory results. This stems fiom the nature of the source that generates the impulses. 

Salt and pepper noise is generated fiom bit errors in the data stream and occurs as isolated 

impulses. Scratch noise is generated when a phonograph playback stylus encounters 

discontinuities in the groove and is essentially the impulse response of the playback 

mechanism. A typical scratch waveform consists of an initial pulse followed by decaying 

oscillations, due to mechanical vibration of the stylus. 

In the case of rainfall drop measurements, the waveforms have a very similar 

appearance, but now the role of signal and noise is reversed. As shown in the top trace of 

Figure 3, the drop impact is the equivalent of the phonograph scratch, while thunder is the 

equivalent of the music audio signal. 

The gated median filter (GMF) is a modification of the CMF algorithm where an 

independent detector first locates impulses, then gates a median filter on and off 

accordingly, as shown in the block diagram of Figure 2. Impulse suppression is 

accomplished with a median filter placed in the main signal path. The MF is normally 



disabled and bypassed, except in those signal regions where impulses have been detected, 

otherwise 

where: 

is the median value over a window of length N = 2k + 1 samples. x. and yn are the . 
input ai~d output sequences and gn is a gating signal which is provided with the correct 

timing so that the MF is activated when impulses are within the filter window. It is well 

known that MFs preserve smooth signal regions and suppress impulses of widths 

narrower than k = (N - 1)/2. The signal gn is generated in the lower branch of Figure 12 

where impulse detection and gating generation take place. 

The input signal is first highpass filtered so that the presence of impulses (which 

are rich in high frequencies) are enhanced. The highpass filter used is a simple discrete 

second derivative approximation, and the output zn is given by: 

The second derivative produces a large output when an abrupt change in slope is 

encountered. Because of the oscillatory characteristics of the scratch waveform, the MF 

must remain active for the entire duration of a scratch. Thus, the gating impulse must 

bracket the scratch waveform. An impulse profile w, can be obtained fiom the envelope 

of a full-wave rectified 2,. This can be accomplished by a local recursive medianfilter 

(RMF) operator applied on zn over a sliding window of length M, i.e.: 



This RMS operator was found to discriminate impulses better than simple local averaging 

of I z ,  I .  Smoothing the output of the highpass filter defines the impulse duration more 

clearly. The length M of the averaging window is not very critical, but it should be large 

enough to include at least one cycle of the impulsive oscillations. 

The gating signal gn can be obtained by applying a threshold on wn with respect 

to a signal reference floor bn which excludes peak excursions. Again, we may call upon 

the MF for assistance in generating b, but a recursive median filter would be more 

appropriate because in a single application it can suppress multiple closely spaced 

impulses, whereas, the MF may require repeated applications. The RMF is identical to 

the MF with the exception that previous medians are placed in the input buffer and used 

in the computation of subsequent medians. Compared to Equation (5.17a) the RMF 

output rn is obtained from: 

Since impulse peak widths in w, may exceed 30 samples, the RMF window 

length required to extract the background should be over 60 samples, but such large 

windows are computationally expensive. A simple method to reduce the window size 

and number of computations, without significant performance loss, is to decimate wn 

and use a small RMF window. The final background extraction operator, in this case, can 

be written as: 



where L is the RMF window length, K is the decimation ratio, and KL is the effective 

RMF window length. The gating signal is defined from the normalized absolute 

difference between w, and bn as: 

d, > C 

otherwise 

where. 

and m is the number of consecutive sample positions where the upper branch of 

Equation (5.22a) is valid. Essentially rn indicates the width of the resulting gates in g,. 

Normalization by 6, makes dn insensitive to input conditions (amplitude or spectral 

content) so that a constant value for the threshold C can be used. Values of C from 1.5 

to 2.5 seemed to work well over a wide range of input conditions. 

The adaptive scratch filter can now be expressed as: 

where the filter window length Nn = 2gn +l is dependent on the gate width so that when 

g, = 0, no filtering takes place. For this reason, the filter is adaptive. The top trace of 

Figure 13, xn shows typical rain drop data from a UCF disdrometer contaminated by 

thunder and wind noise. The middle trace yn is the result of filtering xn with the filter 

algorithm summarized in Equation (5.23). The final data used to determine the DSD, 

shown in the bottom trace of Figure 13, is simply x, - yn . 



5.4.2 Noise Suppression of Thunder with a Median Filter 

The primary DSP functions previously used to process data from the ARGA 

disdrometer, are (1) signal filtering and (2) signal peak detection with amplitude 

estimation. The filtering is accomplished by a 16th order bandpass filter, centered around 

the resonant frequency of the sensor diaphragm, f o  = 750 Hz, with a bandwidth of 350 

Hz. An amplitude estimation algorithm incorporates any necessary dead-time by 

recognizing characteristics in the pulse which may correspond to impulse overlap. The 

peak detection and amplitude estimation algorithms are based on pattern recognition 

principles. 

During a rainfall event, all impulses over the sensor's measurement area, and 

within a time frame interval T (for example, T = 30 s), are measured and converted to 

equivalent drop volumes using a parametric relationship between drop diameter and the 

maximum amplitude of the measured impulseP7]. The raw output display mode of the 

acoustic disdrometer is drop size versus time (D/t) plot, as shown in Figure 14a. This 

output format is accomplished by plotting a small dot at the corresponding drop diameter 

(vertical axis) and time (horizontal axis) coordinate, where each dot represents a 

measured raindropPg1. A complex plotting routine might adjust the dot size based on the 

raindrop diameter in order to accurately convey the drop density. In Figure 14a, all dots 

are of equal size, but the density is nevertheless apparent from this plotting format. 

Consecutive vertical time slices of the Dlt plot can be readily converted to a rainfall rate 

versus diameter R(D) distribution (or histogram) by counting the number of dots in 

corresponding drop size bins, converting to equivalent spherical volumes, dividing out 

the area of the sensor, and dividing by the width of the time slice. The total rainfall rate 

R during that time interval is the integral of R(D) over all diameters. Figure 14b shows 

R as a function of time corresponding to the data in Figure 14a. The dotted line is 



rainfall rate measured by a tipping bucket rain gauge. The data shown in Figures 14a was 

processed by the bandpass filter method described in a previous section. 

As can be seen by examination of the D/t plot of Figure 14a, linear filtering 

methods lead to problems during high background noise such as thunder (shown as 

vertical lines) which degrade the overall DSD measurement. Figure 15a and 15b show 

the same data as Figures 14, but processed by the adaptive non-linear filter described by 

Equation (5.23). The thunder noise is suppressed in this case. However, the lower drop 

size detection limit has increased so that in the case of Figure 15a, the DSD lower cutoff 

is approximately 2 mrn, whereas, in the previous case, data is detected to approximately 1 

rnrn or lower. 

Optimization of the median filter parameters could increase the drop diameter 

sensitivity, with a possible trade-off with some noise contamination. Alternatively, a 

method which may yield the best performance would be a combination of both the linear 

and non-linear filtering methods. A possible strategy would be to use linear filtering on 

data with relatively low background noise, then automatically switch to the non-linear 

filter when the background noise rises above a threshold value. This will be a subject of 

firture work. 
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Figure 5- 1 .  Schematic diagram of acoustic sensor. 
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Figure 5-2. Sampled output of acoustic sensor. 
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Figure 5-4. (a) Synthetic drop production apparatus. The large drop generator produces 
different sized drops by allowing drops to form at the end of different diameter tubes. (6) 
Small drop generator actively knocks drops off the tip of a small tube using an audio 
speaker. 
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Figure 5-5. (a) Relationship between inner diameter tube size and drop diameter using 
the large drop generator. (b) Relationship between audio speaker frequency and drop 
diameter using the small drop generator (top curve is for a 0.3 mm inner diameter tube 
and bottom curve is for a 0.2 mm inner diameter tube). 



Figure 5-6. Block diagram of adaptive DSP calibration algorithm. 

(a) 



.o Tipping Elucket Data - Acocst ic  Sensor-8 

o t . ~ i o i ~ o . i ~ o . . i ; o 3 ~ o "  
Time [s] 

'O Tippirg Bucket Sate - Acoustic Serisor-C 

ot.*;i'*i~o.';ko..2~o**2~o.*3~Q.*' 
Time [s] 

100 200 300 
Time [s] 

A 

Figure 5-7. V(n) (open circles) and V(n)  (solid squares) versus t(n) for (a) sensor B, (b) 
sensor C, and (c) sensor D, using coefficients from Table 5-1. 
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Figure 5-8. Calibration curves for three acoustic sensors, based on coefficients from 
Table 5- 1 . 
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Figure 5-9. D/t plots for (a) sensor B, (b) sensor C, and (c) sensor D. 
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Figure 5-1 0. Rainfall rate versus t(n) with At = 6 s. Open circles are tipping bucket data 
and solid squares are acoustic sensor data, for (a) sensor B, (b) sensor C, and (c)  sensor D. 



Figure 5- 1 1 .  Various rainfall rate drop size distributions N(D) for (a) sensor By (b) sensor 
C, and (c)  sensor D. Also shown are the equivalent Marshall-Palmer DSD 
approximations for the same rainfall rates. 
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Figure 5- 13. Processing of ARGA disdrometer data by adaptive scratch filter algorithm. 
Top trace is input data x, ; middle trace is filter output y, , as described by Equation 
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Figure 5-14. ARGA disdrometer data processed by previous linear filter; (a) drop 
diameter D versus time, (b) calculated rainfall rate R versus time (solid line) and 
tipping bucket data (dotted line). 
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Figure 5-1 5. Same data shown in Figures 5- 14, but processed by non-linear filter of 
Equation (5.1 3). 



CHAPTER 6 

CONVOLUTION RAINFALL MODEL 

6.1 Background 

The primary goal of this simulation model is to study the effects of advection and 

gravitational sorting on drops as they fall. This model considers only drop dynamics and 

for that reason is too over-simplified to produce quantitative results that would be 

observed in nature. Since factors such as evaporation, drop breakup and coalescence, and 

updraWdowndraf3 velocities will be ignored, simulation results are only expected to yield 

some qualitative insight into the nature and variation of the 2-R relationship under 

conditions of advection and large transient conditions of rainfall rate. These 

characteristics are common to convective thunderstorm systems across central Florida 

during the summer months. 

6.2. Mathematical Development 

The basis of the convolution rainfall (CR) model is the exponential drop size 

distribution: 

where No and A are independent parameters, possibly dependent on rainfall rate. Using 

the approach of ~arshall-palmerr 1 6 ]  (MP), A can be defined as a function of rainfall rate: 



where 5 and E are again independent parameters. In the case of the MP DSD 
112 A = 4.1 R~ 21 mm-'. Using terminal velocity as defined by ~ u n n [ ~ ' ] ,  vD = K D rn s-', 

where K z 4.5 m s-' mm-ln and D is expressed in mm, rainfall rate becomes the 7/2 

moment of the DSD: 

where K' = 0.0036 and the scale factor 0.0036 allows rate R to be expressed in 

standard units of mm/hr. Note that the gamma function ~ ( x )  = efi. 
Since R appears on both sides of Equation (6.3), the implication is that the 

exponential DSD parameters No , 4 ,  and E defined by Equations (6.1) and (6.2 ), are 

not independent. Two constraints result as a consequence of Equation (6.3): 

Using the "standard" value of No = 8000 m" mm-', { = 4.404. For comparison, the MP 

DSD defines these values as 6 = 0.21 and 5 = 4.1 . Using No = 8000 rnJ rnm-', the 

normalized (based on terminal velocity by Gunn) exponential DSD can be expressed as a 

function of D and R as: 



The basic assumption of the CR model is that the normalized DSD as described 

by Equation (6.5) represents the distribution of rain drops at a cloud height h, where R 

is defined as a function of the spatial horizontal distance 7 and time t. A simplified 

(one spatial dimension) Gaussian model of R will be defined which captures the basic 

characteristics of the total time derivative of rainfall, spatial variation, and advection: 

characterized by the parameters Ro,  A , and B where u is the advection velocity. The 

parameters A and B define the temporal and spatial widths of the rainfall rate function. 

as well as the corresponding widths of the DSD. As A + m  and B+ a, 

R(x, t )  + 4 for all time and space. Figure 6-1 portrays an example rainfall rate 

hnction R(x, t) at a height h above the ground, based on the description provided by 

Equation (6.6). 

Radar reflectivity Z is the 6th moment of the DSD, and using the exponential 

form of Equation (6.1) and (6.2), becomes: 



Note that ~ ( 7 )  = 6! = 720. Using the parameter constraints from Equations (6.41, Z then 

becomes: 

where a = 26423 N ~ ~ ' ~  and b = 1419 where Z is in standard units of mm6 m" and R is 

in units of rnrn h-'. Using the standard value of No = 8000 rnJ mm", the Z-R relation 

becomes: 

6.2.1 Rainfall Rate Model 

Rainfall rate RG(xG,t) measured at gauge location xc , is in general, not the 

same as the rainfall rate R(xG,t)  at the cloud level. For the limiting case of infinite A 

and B: 

A + 00 
RG(x,t)+R(x,t)+& , for & 

B+ 00 

This result is independent of the magnitude of u. Another useful case, with finite B, 

results in a relation between cloud rainfall and ground rainfall: 

, for 

The relations expressed by Equations (6.9) are useful for testing the validity of the 

simulation model. 



Referring to Figure 6-1, it can be seen that the DSD at gauge location xc on the 

ground, is convolution sum of drop sizes formed at past times and locations based on 

advection. The explanation for this model is simply this: For the jth drop size bin of 

width AD, corresponding to a mean drop diameter of D, = jdD, the fall time At, of the 

drop (based-on Gunn's terminal velocity) is: 

The horizontal distance Ax, in the negative x direction from the gauge location (for u > 

0), corresponding to the time interval A5 is: 

Together, Equations (6.10) and (6.11) describe the linear trajectory of a rain drop packet 

M, of mean size D, : 

AN, = N(D,)  AD 

traveling at a constant velocity cj formed by the vector sum of the advection and 

terminal velocity vectors: 

where zx and iZ are unit vectors in the x and z directions, respectively. For a fall 

height of z = h = 0, the total number of drops arriving at the gauge is the integral of the 

DSD, and is approximately equal to the sum of the M, : 



The rainfall arriving at the gauge location is 712 moment of the DSD (using Gunn 

for terminal velocity). However, the DSD at the gauge site is not the same as the DSD at 

cloud level z = h. The correct description of rainfall rate at the gauge site is the 712 

moment of the convolved DSD, now using a continuous time and space description : 

where K1 = 0.0036 K % and: 

which are based on the drop trajectory arguments leading to Equations (6.10) and (6.1 1). 

The convolution of the DSD in Equation (6.16) is a consequence of summing 

(integrating) over D, resulting in a time delay At = h 1 ( K  D~~~ ) due to fall height and 

terminal velocity. The complete description of gauge rainfall, using Equations (6.16), 

(6 17), and (6.5) is: 

00 

RG (x, t)  = K' ~D"~N[D; R(X' , t')] dD 
0 

m 

= 8000K1 1 D7" exp[-4.404 R-~ '~(x ' ,  t') D] dD 
0 

where x is any arbitrary point on the ground where a gauge might be located. Equation 

(6.18) is evaluated using numerical integration procedures. For purposes of simulation, 

the cloud rainfall rate R(x, t) will be described by Equation (6.6). 



6.2.2 Radar Reflectivity Model 

Radar reflectivity is calculated in a manner similar to rainfall rate. In this 

simplified CR model, the y dependence is ignored and we assume there is no variation 

of the DSD, rainfall rate, or radar reflectivity along the y axis. Starting with Equations 

(6.16) and (6.17) as a guide, the 6th moment of the DSD is calculated at a point @,@ 

within.the radar cross-section, as shown in Figure 6-2: 

x" and t" are similar to x' and t' described by Equations (6.17), but instead of 

evaluating the DSD convolution at a gauge point on the ground at x = x, and z = 0 ,  

the points of evaluation are now within the cross-section, at x = x, + pcose and 

z = z, + psin 8. The x" and t" in Equation (6.19) now become: 

u ( h  - z, -psino) 
xu= XG + pcose- 

K 

where again, XG has been replaced by x since the gauge location can be at any point 

along the ground. 

6.3 Simulation of Z versus R 

The Convolution Rainfall model consists of three basic computational steps for 
every value of time t : 

1) Simulation of a cloud DSD based on a cloud rainfall R(x, t), using 
Equation (6.6). 



2) Simulation of rainfall RG(x, t) at a gauge site x = XG , using Equations 
(6.16) and (6.17). 

3) Simulation of radar reflectivity Z(x, t), centered above a gauge site at 
x = XG , using Equations (6.19) and (6.20). 

Theequations used in steps 2 and 3 are calculated using numerical approximations, based 

on converting integrals to discrete sums, and the example parameters shown in Table 6-1. 

A simulated 2-R relation is generated by calculating a 2-R pair for each time 

step t, using steps 1 through 3. After many 2-R points are generated, a linear regression 

is performed to determine a power-law fit, as shown by Equations (6.8). If advection and 

gravitational effects are minimized, the 2-R parameters of the simulation will converge 

to the values contained in Equation (6.8b). Otherwise, the 2-R coeffcients can be very 

different, depending on the overall effects of advection and drop sorting. 

Table 6- 1 . Convolution model (CR) example simulation parameters 

Parameter 
Name 

RO 
A 

B 
to 
x0 
u 
h 
Rr 
xG 
elev 
MD 
DD 

Nrho 

Ntheta 

Parameter Description 

Ro , maximum rainfall rate of R(x, t) 
temporal Gaussian width of R(x, t) 
spatial Gaussian width of R(x, t) 
t o ,  center of temporal Gaussian of R(x, t) 
xo , center of spatial Gaussian of R(x, t) 
u , advection velocity 
height of N(D; R) (cloud height) 
radar range 
XG , gauge location 
radar scan elevation angle 
number of D integration steps 
AD , integration step-size 

number of p integration steps 
number of 9 integration steps 

Units 

mm h-' 
s 
m 
s 
m 

m s-' 
m 
m 
m 

degrees 
-- 

mm 
-- 
-- 

Parameter 
Value 
100 

300 
1000 

0 

0 
10 

3000 
50000 

6000 
0.5 

100 
0.1 
50 

50 



6.3.1 Point Z at Gauge Location 

The WSR-88D beam width of 1.0" is used in the example CR simulations. In 

order to approximate Z(x, t) at a point directly at the gauge site, the following change is 

made to the parameter control file of Table 6-1 : set radar range, Rr = 0. Depending on 

the way the equations specified by steps 1 through 3 of the previous section are 

implemented in soha re ,  it may be necessary to avoid setting simulation parameters, 

such as Rr to zero. This is to avoid a divide by zero error. In this case, it is sufficient to 

substitute very small non-zero values. 

Figures 6-3 through 6-6 are the simulated Z-R values and corresponding linear 

regression fits, using the example values of Table 6-1, and the approximation of a point 

2-R above the gauge. These plots simulate the 2-R relation measured by a disdrometer, 

which is essentially a point measurement of Z and R. Each of these four simulation 

plots correspond to a different value of gauge location, with everything else the same as 

specified by Table 6-1, with the exception of range, Rr 3 0. 

6.3.2 Volume Z Over Gauge Location 

Figures 6-7 through 6-10 are the simulated 2-R values and corresponding linear 

regression fits, using the example values of Table 6- 1, with a typical radar range Rr = 50 

krn. These plots simulate the 2-R relation measured by a gauge and WSR-88D 

(essentially a volume averaged measurement of 2). Each of the four simulation plots 

again correspond to different values of gauge locations xc , with everything else equal to 

that specified by Table 6-1. The different xc locations simulate different types of drop 

sorting (coupled with advection) which could be seen by radar or a disdrometer, using an 

identical simulated convective cell system passing overhead. 

In both simulation types, the point Z-R and volume Z-R, linear regression splits 

into two distinct lines. One possible explanation for this very distinct display of two 



different 2-R relations, is the way in which the drop distributions arrive at the ground. A 

convective cell, as it moves along its advective trajectory, forms large drops directly 

beneath the cloud, while small drops trail behind and beneath, due to the increase and 

decrease of rainfall rate at the cloud level. This segregation of drop sizes then leads to a 

dual 2-R. In nature, many other processes are active which tend to smear the dual 2-R 

split into a distribution of points, which are then fitted to a single 2-R line. These 

conclusions are very preliminary. 
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Figure 6-1. Calculated rainfall at gauge site XG based on convolution of DSD. 



Figure 6-2. Volume integration for radar reflectivity calculation. 
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Figure 6-3. Simulated point 2-R at XG = 4 km . 
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Figure 6-4. Simulated point 2-R at XG = 6 km . 
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Figure 6-5. Simulated point 2-R at xc = 8 km . 
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Figure 6-6. Simulated point Z-R at x~ = 10 km . 
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Figure 6-7. Simulated volume 2-R at xc = 4 km . 
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Figure 6-8. Simulated volume 2-R at xc = 6 km . 
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Figure 6-9. Simulated volume 2-R at xc = 8 km . 
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Figure 6-1 0. Simulated volume Z-R at xc = 10 krn . 



CHAPTER 7 

MICROSCALE Z-R ANALYSIS 

7.1 Background 

A major objective of NASA's Tropical Rainfall Measurement Mission (TRMM) is 

to improve rainfall estimates using satellite and ground based radar remote sensing 

methods. For the TRMM ground validation program, NASA will process radar data from 

the National Weather Service's network of WSR-88D radar (NEXRAD) using a Z-R 

relationship that transforms radar reflectivity into rainfall rate. Previous Z-R models 

relate rainfall rates to radar reflectivity through a non-linear relationship based on model 

parameters that are constant throughout the radar image. Recent work has extended this 

concept to include parameterization based on range, and to apply different 2-R 

relationships based upon the classification of rainfall regime into convective and 

stratiform precipitation types[14]. 

Strategies for estimating rainfall amounts from weather radar reflectivity data 

have traditionally taken different paths. One path is the statistical approach such as the 

Probability Matching Method (PMM)[~'], where large areal averages and long time 

intervals (days to months) are used to give an averaged Z-R relation. One such 

relation[291 between radar reflectivity Z and rainfall rate R used by the National 

Weather Service (NWS), is ~ = 3 0 0 ~ ' . ~  where Z is in units of mrn6 mJ and R is in units 

of mm h". Most research involving 2-R studies tends to approach the problem from the 

long time interval and large area average A second approach is based on 

optimizing the 2-R relationship, again over large areas, but using short time intervals 



(minutes to hours) for real-time applications such as flood warnings. This approach is 

often associated with Kalman filtering[261, a recursive optimization algorithm used to 

adjust the 2-R coefficients based on the instantaneous readings fiom a network of rain 

gauges. Even though there has been a fair amount of work in the area of real-time rainfall 

estimation algorithms, few practical results have made it into NWS operations. A third 

direction of research considers the problem fiom the point of view that more information 

is needed. More information can be supplied by polarmetric radar[2S1 or ground based 

disdr~meters['~l. Strategies of extracting additional radar reflectivity information fkom 

the standard NEXRAD daket ,  or base product, were investigated. Some of the 

techniques employed are common image processing problem solutions, such as two- 

dimensional cross-correlation for extracting advection velocity[281. 

Two directions were considered. First, using base scan reflectivity data, or a 

composite of vertical scans, a time derivative of Z has been constructed In this way, 

rainfall rate R becomes a function of both reflectivity Z and the total time derivative of 

reflectivity 2 . A second method, using the complete volume scan, constructs a time 

derivative of movement of a constant Z level in the vertical direction, or 2 .  This 

vertical velocity Wz = i may be closely coupled to the vertical wind velocity, thus 

affecting the drop terminal With this approach, R becomes a function of 

both Z and W Z .  

7.2. Mathematical Development 

The exponential drop size distribution model approximates the number of drops 

per unit volume of air, per drop size interval D, and can be expressed as: 



The number of drops as a function of drop size which exit or enter a unit volume of air is 

termed theflux density of rain. This quantity is experimentally measured as the number 

of drops as a function of drop diameter that strike a horizontal surface: 

where v~ is the drop velocity. For the purpose of this derivation, we will assume that all 

rain drops that strike a horizontal surface on the ground can be considered to be traveling 

at their terminal velocity. 

7.2.1 The 2 Model 

During conditions of the onset of rain at t = 0 , the drop size distribution can be 

approximated as a ~ a r s h a l l - ~ a l m d ' ~ ~  (MP) DSD at the cloud level H above the ground. 

The Marshall-Palmer DSD is a special case of the exponential distribution, Equation 

(7.1), with No= 8000 rngmm-' and A = 4 . 1 ~ " . ~ '  mm-', with R inunits of- h-'. At t 

= 0, N(D) = MP-DSD for z = H, and N(D) = 0 for z < H . Approximating drop 

terminal for ease of analysis by v, * K,D"*, where Kc = 4.5 , leads to the 

following expression for lower drop diameter cut-off for z < H and t > 0: 

where z is a vertical distance measured fiom the ground. Radar reflectivity is calculated 

as the 6th moment of the DSD, integrated over the radar cross-section A = n h2 1 4, where 

for simplicity, it will be assumed that the cross-sectional volume is a cylinder of length 

AR = 1 krn and area A: 



The total time derivative of Z can be computed as: 

Note that Equation (7.4) assumes a base scan with a beam center height of hl2. The 

expression under the square root symbol is the differential area cL4 of the cross-section 

A as a h c t i o n  of height z above the ground. The integral of this term from 0 to h 

over dz is equal to A/2 = z h2/8 . 

Using Gunn's terminal velocity formula, the equivalent expression for rainfall rate 

is: 

If the height at the top of radar cross section h is much less than the cloud height H, 

h<<H, then D L ( z 9 t )  rn (HI ~ ~ t ) ~ .  In this case, along with the simplifying assumption 

that N(D) is uniform throughout the radar cross-section, expressions for Z and R are: 



where T ( x , a )  is the incomplete gamma function. Equations (7.6) through (7.8) can be 

plotted parametrically, eliminating A, as shown in Figure 7-1 with an arbitrary choice of 

H = 3000 m. This plot defines R in terms of Z and 2 , R = R ( Z ,  2). 

7.2.2 The WZ Model 

. The relationship between terminal velocity and drop diameter can be 

approximated with greater accuracy by an empirical formular231: 

where vo = 9.65 m s-l, K = 1.067 , c = 0.6 rnm-', and D is expressed in mm. If vertical 

updraft velocity W reduces the terminal velocity, Equation (7.9) becomes: 

where, 

(7.1 Oa) 

(7.1 Oc) 

A drop diameter Dw corresponding to a terminal velocity of zero is defined from 

Equation (7.1 0a) as: 

so that, 



Combining Equations (7.8) and (7.10a) yields: 

The rainfall rate distribution is the product of the drop volume and flux density 

distribution, where a spherical drop volume is assumed (even though drops at terminal 

velocity tend to be more elliptical due to the frictional drag of air). The total rainfall rate 

R is the integral of R(D) over all possible diameters which result in a positive 

downward terminal velocity : 

A scale factor must be added to express R into standard units of mrn/h. Noting that the 

incomplete gamma function T(D, D ~ )  must, in general, be determined numerically: 

where, 

v', = (0.0036) v W z  / 6 

Radar reflectivity Z is the 6th moment of the DSD: 

Equations (7.15a) and (7.16) are plotted parametrically, eliminating A , as shown in 

Figure 7-2. This plot defines R in terns of Z and W, R = R(Z, W). The incomplete 



gamma functions of Equations (7.15a) and (7.16) can be evaluated analytically as 

follows: 

NEXRAD radar reflectivity Z,(xJyJz) can be expressed in a three-dimensional 

Cartesian coordinate system, where the time interval index n corresponds to a complete 

volume scan time interval of approximately 5 min. In the presence of rain, an arbitrary 

constant reflectivity Z level can be measured as a function of altitude z above the 

ground at point {xJ y }  and at time interval n. A 30 dBZ reflectivity is a convenient Z 

value to follow as a function of z and t where the discrete time index n is interpolated 

to provide the continuous variable t .  The basis of the Wz model is a proposed 

relationship between vertical velocity W(t) . and the time derivative of the 30 dB2 level 

W A  t) : 

where y is an empirical scaling factor and to is a delay time related to the average fall 

time of drops. A zeroth order approximation of the delay time is to describe to by an 

average fall distance divided by an average terminal velocity, to = % / FD. The fall 

distance might be proportional to the 30 dBZ altitude above the ground, z3odez , while the 

average terminal velocity would roughly correspond to the velocity of mid to large drop 

sizes. 



7.3. Experimental Results 

Figure 7-3 shows a UCF rain gauge test site consisting of a triad of rain gauge 

locations, with a separation of approximately 1.3 km . This was a temporary site in 

southwest. Palm Bay, east of the St. John's River basin, and about 21 km SSW of the 

Melbourne NEXRAD (KMLB). Each rain gauge location within the cluster consisted of 

a tipping bucket, accumulation rain gauge, and one UCF acoustic disdrometer. 

KMLB reflectivity of the lowest elevation scan equal to O S O ,  is shown in Figure 

7-4 for four consecutive time frames, beginning at 19: 1 3 5 3  UTC (the center of the beam 

is approximately 209 m above the rain gauges at a range of 21 km). Each plot displays a 

16 x 16 km section, approximately centered about the rain gauge test site. Reflectivity Z 

is plotted as a polar projection of the 0.5" scan's original spherical coordinates. The Z 

plots are filled with a spatial interpolation over x and y, based on Shepard's formula[91. 

7.3.1 . Predicted Vertical Velocity 

Using the Z interpolation formula from Equation (7.29), the average Z in the 

circle of radius ro = 1 km centered around the rain gauge cluster, is computed for the 

lowest elevation , k = 1 sweep: 

ZA(t) is plotted in Figure 7-5 as a dotted line. Similarly, the rain gauge data from the 

gauge cluster is interpolated using Equation (7.32), then averaged over the circle of radius 

1 km: 



The average RA(t) is plotted as open circles in Figure 7-5. Using an iterative numerical 

procedure, for each ZA , RA pair, a W is found by equating ZA to the right hand side of 

Equation (7.16) and by equating RA to the RHS of Equation (7.15a), and eliminating A . 

This can be accomplished using the plot in Figure 7-2 by locating the corresponding W 

for an R , Z pair. As a check, the resulting W's are substituted back into Equation 

(7.15a), and R is plotted as a solid line in Figure 7-5. The subsequent W's are plotted 

in Figure 7-6, resulting in a predicted time dependent vertical velocity W(t) , averaged 

over the circle of radius ro . The result is a prediction of rainfall rate using the Z-R 

relation specified by Equations (7.15a) and (7.16). In this way, the predicted radar 

rainfall rate exactly matches the gauge rainfall rate when averaged over the gauge cluster 

area. 

7.3.2. Measurement of Wz 

The center of the circle surrounding the gauge site is located at ro = {xo, yo) = 

(1.65, 1.65) krn, using a Cartesian coordinate system local to the rain gauge site. At 

several selected points within the circle, 5 = {x, ,yr}  , Z,(x; ,y;, t) and Zk (x:, y:, t ) 

are calculated from Equation (7.29), where: 

Zk(x-,x,t) and Zk(x,', y,', t )  are plotted for k = 1 ... 12, in Figures 7a and 7b, 

respectively, where 3 = {xl , y ) = (1.0, 1.0) , A t = 30 S, and ii = (32 30'1 h l  h . Note 

that k>12,  corresponding to clear air. Figure 7-8a is a plot of z-(t) and 



-- 
z&(t) , corresponding to the altitude of the 30 dBZ reflectivity above points r, and 

+ . The distance fiom the radar site to the point of interest on the ground S , the scan 

elevation angle A , and radar range p , determine the height of the beam center above the 

ground1 (Re = 8500 km is 4/3 average earth radius): 

S 
p X- 

cos 2 

Beam center height, for an example of S = 2 1 km, has been calculated for all elevations 

of the volume scan in Table 7-1. 

The time derivative of the 30 dB2 level is estimated by: 

using the re-sampled data shown in Figure 7-8b. The computation of Equation (7.24) is 

plotted in Figure 7-9, along with W(t) fiom Figure 7-6. The above procedure is repeated 

for several points = {x,, y,} within the gauge cluster. The resulting z,(t) are 

summed and averaged and then plotted in Figure 7-10 as a dotted line. Finally, Equation 

(7.19) is applied to this result and plotted as a solid line in Figure 7-10, with a scaling 

factor y=  0.5 and delay time to = 0.06 h. The estimated vertical velocity from Equation 

(7.19) is superimposed with the original W(t) from Figure 7-6, showing a reasonable 

correlation. The delay time can be attributed to an average fall height of 2 krn, and 

average terminal velocity of 9.25 mls. 



Table 7- 1. NEXRAD beam center height at S = 2 1 km 

Scan Scan Elevation Height of Beam Center 
Number Angle A degrees Above Ground z km 

1 0.5 0.209 
2 1 .S 0.576 
3 2.5 0.943 
4 3.4 1.274 
5 4.4 1.623 
6 5.4 2.01 1 
7 6.2 2.307 
8 7.6 2.828 
9 8.7 3.239 
10 10.1 3.767 
11 12.0 4.490 
12 14.1 5.301 

.L 

7.4. Discussion of Results 

The results presented in this chapter demonstrate that a 2-R relation appropriate 

for microscale size areas and short time intervals, must be described by something more 

than a simple power-law. Alternate 2-R strategies were investigated which rely on the 

extraction of additional information fiom the WSR-88D base product. In the first 

example, rainfall rate was derived in terms of the base scan reflectivity and total time 

derivative of reflectivity for the start of a rainfall pulse. In the second example, the 

vertical velocity of a constant 30 dB2 level was extracted fiom the volume scan. From 

this, an updrafVdowndrafi velocity was predicted fiom an exponential DSD and shown to 

be about half the time derivative of the 30 dB2 height. An obvious direction for future 

work is to combine these two cases into a single functional model, thus, incorporating 



vertical velocity and rainfall pulse transients into a rainfall rate R which is a function of 

three radar observables: 

Once a useable description of R in terms of radar observables is defined, such as 

Equation (7.25), standard image processing techniques can then be employed, to convert 

a sequence of radar volume scans into an map depicting rainfall rates over the entire radar 

service area. Proposed steps in achieving the final rainfall map might be, for example: 

(1) Segment the radar image into regions of rain using edge detection of 
precipitation clusters (convective cells for example), where a constant 
advection can be identified for that region. 

(2) Use two-dimensional cross-correlation of adjacent time scans to determine 
average advection magnitude and direction in each segmented region. 

(3) Calculate total time derivative of the base scan (or vertical composite) 
reflectivity, 2 , for each region. 

(4) Calculate the velocity W, = i of the 30 dBZ level in each region. 

(5) Using a model based on Equation (25), estimate instantaneous rainfall rate in 
each region. 

(6) Combine regions into a single contiguous rainfall map. 

By utilizing additional information contained in the WSR-88D base products, as 

well as two-dimensional algorithms common to image-processing techniques, accurate 

real-time estimates of rainfall rates may be possible for microscale areas within the radar 

service area. The two primary difficulties in achieving this goal is the development of a 

robust model, such as that outlined by Equation (7.25) and examples given in this paper, 

and most importantly, the computer power necessary to process the segmented radar data 



in real-time. However, as computer power increases exponentially with time, this 

capability may soon be within reach for implementation within the NWS operations. 

Fortunately for TRMM applications, processing requirements are not real-time so the 

problem of computer power is less of an issue. 

7.5. Interpolation of Z and R 

In order to conveniently work with the discrete values of radar reflectivity ZQb, , 

it is necessary to interpolate these values, where i and j represent a point on the ground 

which can be expressed as longitude and latitude, k is a point above the ground at some 

elevation, and n is a volume scan time index. Based on Shepard's interpolation 

formula13, one method of reflectivity interpolation, is to replace the Gk vector to the ijk 

location of Z with a location vector that changes with time based on the advection 

velocity[421 ii : 

where t ,  is the start time of the nth volume scan, M is the number of elevations 

scanned, and th is simply the start time of the kth elevation sweep. This procedure is 

independently followed for each elevation k and volume scan n : 

Temporal interpolation is then performed by summing over all n sweeps: 



A similar procedure is followed to spatially interpolate the rain gauge data & ( r )  

at locations Fm '_. but now the time variable is replaced as follows: 

where ii is again the advection velocity of the precipitation system. Spatial interpolation 

is then performed by summing over all rn gauges: 



- 2-R Based on MP DSD 

Figure 7-1. z model, R = R(Z, z), with H=3000 m. Note that plot shows only positive 

2 , corresponding to the onset of a rain pulse. A standard MP 2-R curve results where 
z = o .  
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Figure 7-3. Map of rain gauge test site and Melbourne radar. Separation is pproximately 
21 km. 



Figure 7-4. Melbourne NEXRAD base scan reflectivity over rain gauge test site, June 1, 
1997. Color range is from 3 dBZ (blue) to 57 dB2 (red) in 6 dB2 steps. 
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Figure 7-5. Dotted line is spatially interpolated radar rainfall estimate obtained from 
Figure 7-2 with W = 0 (i.e., MP 2-R relation). Open circles are spatially interpolated rain 
gauge data. Solid line is radar rainfall estimate from Figure 7-2 with appropriate W, 
forcing an exact fit to rain gauge data. 
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Figure 7-6. Predicted average vertical velocity W over rain gauge test site, based on 
Figure 7-5, which forces an exact fit of R in Figure 7-2 to the rain gauge data 
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Figure 7-7. Interpolated reflectivity as a hc t ion  of time above gauge array for complete 
volume scan. F = (1.0, 1.0) krn, ii = (32, 30') km/ h,  and At = 30 s ; (a) calculated 

for local gauge point 7- = r' - ii At , (b) local gauge point ?+ = 7 + &It. 
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Figure 7- 8. (a) Height of 30 dB2 level as a function of time for 7- and 7' , from 
Equation (7.22), at corresponding local gauge point = I1.0, 1.0) km, (b) re-sampled 
and smoothed height, filling in missing points. 
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Figure 7-9. Vertical velocity of 30 dBz level above local gauge point F = {1.0, 1.0) km , 
using Equation (7.23) and data from Figure 7-8b. 

Figure 7-10. Dotted line is average vertical velocity of 30 dBZ level above gauge site; 
solid line is average velocity shifted by 0.06 h and scaled by 0.5; and dashed line is 
extracted predicted updraftldowndraft velocity W fiom Figure 7-6. 
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CHAPTER 8 

CONCLUSIONS 

Contributions fiom this dissertation work are summarized in the following 

sections; and suggestions for future research are proposed. 

8.1 Summary of Contributions 

Conventional image and digital signal processing algorithms have been selected, 

combined, and appropriately modified in order to produce a novel set of numerical 

techniques useful for solving problems belonging to the fields of radar meteorology, 

hydrology, and atmospheric science. The specific problems addressed in this research are 

that of rainfall estimation from rain gauge and weather surveillance radar, and in 

particular, correlation and interpolation over microscale regions (areas on the order of 

tens of square kilometers or less). In all cases considered, a prototrpe algorithm was 

developed and subsequently tested using data fiom local rain gauge networks 

(TRMM/KSC and UCF/ARGA) collocated with Melbourne NWS radar data. In 

summary, I believe the following contributions have been made: 

1. In Section 4.2.4, a rain gauge interpolation algorithm, based on an advection 

transformation and the gravity formula, was proposed ma developed. Several sets of 

interpolated rain gauge data were compared to collocated interpolated radar data using 

a time sequence of rainfall measurements and an RMS measure of correlation. In this 

way, rain gauge data is essentially transformed to a spatial average, similar to the areal 

average of weather radar measurements. This method of interpolating microscale rain 



gauge clusters, or extrapolation of single gauges, shows promise of reducing radar- 

gauge correlation error, leading directly to the possibility of improved calibration of 

radar rainfall estimation algorithms. Other benefits of this contribution fiom Chapter 

4 are in rainfall mapping for hydrology applications, where large errors, typically 

induced by the convective and advective nature of thunderstorms, may be 

significantly reduced. The result may be enhanced estimates of short-time rainfall 

accumulations for agriculture, forestry, and river flood warnings. 

2. In Section 5.3, adaptive digital signal processing methods were combined with 

conventional gradient search optimization techniques to develop an algorithm for 

calibration of impact disdrometers. Real-time and off-line versions were considered, 

both of which utilize a conventional tipping bucket rain gauge as a reference or 

"training" signal. The advantages of such a calibration method are improved 

disdrometer estimates of rainfall rate as a function of time, as well the possibility of 

eliminating (or at least reducing) the laborious single drop calibration procedure, 

periodically required in order to safeguard reliable disdrometer operation. The 

method of Chapter 5 uses naturally occurring M a l l  to maintain a constant 

calibration of the disdrometer, resulting in an "in situ" calibration algorithm. 

3. In Section 5.4, an impulse suppression algorithm, previously developed at UCF for 

the suppression of scratch noise fiom damaged phonograph records, was modified 

and applied to the problem of disdrometer data corruption caused by environmental 

noise. The gated median filter algorithm was used to pre-process the input to the 

UCFIARG A acoustic disdrometer . Instead of suppressing the impulses, as in 

previous applications, the filtered signal was subtracted from the original data, 

resulting in a processed signal where all data except the impulses are removed. This 

results in alleviation of the damaging effects of thunder and wind noise on 

disdrometer measurements. 



4. A convolution model of rainfall based on spatial and temporal convolution and 

atmospheric advection was developed and presented in Chapter 6. The primary goal 

of this simulation model was to study the effects of advection and gravitational 

sorting on basic drop dynamics. Simulation results yield some interesting insight into 

the nature and variation of the 2-R relationship under conditions of advection and 

large transient conditions of rainfall rate. Based on several simulations of the 

convolution rainfall model presented in Chapter 6, some very surprising results are 

seen in the Z-R relationships. Not only does the simulation support the conjecture 

that the- 2-R power-law parameters may vary by significant amounts (over a 

microscale region), a distinct split in the behavior of the Z-R linear regression fit can 

be seen, proportional to advection magnitude. This split corresponds to the advective 

approach and recession of the developing storm cell. Preliminary data analysis 

suggests that data properly processed (using vigorous statistical methodologies) 

should at least partially corroborate some of these unanticipated simulation results. 

5. In Chapter 7, a DSD model was developed which accounts for the modification of the 

drop size distribution due to the segregation of drops from vertical wind velocities 

(updrafts and downdrafts). Making use of the rain gauge spatial interpolation and 

averaging methods of Chapter 4, careful comparisons were made between radar and 

gauge averages over a microscale gauge cluster area. From this set of correlated data, 

a predicted average vertical velocity was extracted. This predicted vertical velocity 

can then be compared to other vertical profile data such as the movement of echo tops 

as measured by a NEXRAD volume scan or a radar profiler. 



8.2 Suggestions for Future Research 

Due to the variety of topics investigated in this work, more questions have been 

produced than have been answered. For this reason, the possible directions for hture 

research are numerous, some of which will be suggested as follows: 

1. The rain gauge spatial interpolation and averaging procedures investigated in Chapter 

4 focused on rain gauge clusters at microscale separations, since that would be the 

ideal configuration for this algorithm. The interpolation algorithm has also been . 
casually tried on single gauge sites, in which case it is ktually an extrapolation 

process. Since nearly all existing gauge sites world-wide are not clustered within 

microscale separations, the single gauge variation of the algorithm could very well be 

more significant in its usefulness. This could have the same basic set of benefits as 

the gauge clustering scheme, but would certainly be more useful. This topic is 

undoubtedly something to pursue for future research. 

2. Recent work on the disdrometer calibration algorithm of Chapter 5 indicates that 

some amount of single drop calibration data is needed in order to resolve ambiguities 

in the RMS error surface. Work needs to be performed to determine the extent of 

single drop calibration needed. For example, is one single, large drop in conjunction 

with the in situ calibration the best compromise? Alternatively, a complete single 

drop calibration in collaboration with the in situ calibration may yield the best results. 

Investigating this question is a good candidate for fbture work. 

. 
3. The impulse suppression algorithm based on the median filter could be evaluated with 

other disdrometer types in addition to the UCF acoustic (microphone) disdrometer. 

For example, the Joss disdrometer uses an electro-magnetic transducer for converting 

drop collisions to equivalent electrical impulses. 

piezoelectric ceramic for its mechanical to electrical conversion. 

The APL disdrometer uses 

It would be 



interesting to adjust the median filter parameters (window length, gating threshold. 

etc.) of Chapter 5 for each of these transducer types and compare the corresponding 

noise suppression performance as a topic of future research. 

4. The rainfall convolution model proposed in Chapter 6 suggests some very interesting 

results for microscale 2-R relations. The model itself should be closely examined 

and verified. The predictions made by the model should be carellly compared to 

experimental data which has been specifically designed to reproduce the simulation 
\ 

conditions. Incorporation of this UCF rainfall model with the National Center for 

Atmospheric Research (NCAR) rain-shaft model has been discussed. These topics 

could be very useful and interesting subjects of fbture research. 

5. The vertical velocity predictions of the 2-R  model described in Chapter 7 has been 

compared to NEXRAD volume scan data and echo top evolution. More of these kind 

of comparisons should be done. Also, and possibly more importantly, the model 

vertical velocity predictions should be compared to radar profiler data, such as that 

planned for the TRMM TEFLUN-B campaign h m  August to September, 1998, west 

of Melbourne. This too would be a usefbl and worthwhile direction to follow for 

fiture research. 
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