
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1986

A Microsequenced Prolog Inference Engine A Microsequenced Prolog Inference Engine

Jeffrey J. Ferguson
University of Central Florida

 Part of the Systems and Communications Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Ferguson, Jeffrey J., "A Microsequenced Prolog Inference Engine" (1986). Retrospective Theses and
Dissertations. 4906.
https://stars.library.ucf.edu/rtd/4906

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/276?utm_source=stars.library.ucf.edu%2Frtd%2F4906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4906?utm_source=stars.library.ucf.edu%2Frtd%2F4906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

A MICROSEQUENCED PROLOG
INFERENCE ENGINE

BY

JEFFREY JAMES FERGUSON
B.S.E.E., Ohio Northern University, 1982

RESEARCH REPORT

Submitted in partial fulfillment of the requirements for
the degree of Master of Science in Engineering in the

Graduate Studies Program of the College of Engineering
University of Central Florida

Orlando, Florida

Summer Term
1986

ABSTRACT

Prolog is a symbolic logic language presently emerging among

numerous expert system designs. The architecture for a microsequenced

Prolog machine (UPM) capable of providing the basic language features to

a host computer is proposed. The Prolog machine functions are

partitioned into three processor components -- Input/Output, Memory, and

Central (CPU), where the design of the Central Processor is emphasized.

Detailed discussion outlines the CPU facilities used to implement the

forward-chaining and backtracking functions for the UPM. The UPM

features are compared to the PLM-1, a microsequenced Prolog inference

engine under development at University of California, Berkeley. An

emulation of the entire algorithm is provided, as well as a proposed

microengine and associated microstore.

TABLE OF CONTENTS

LIST OF TABLES •
LIST OF FIGURES

I. INTRODUCTION TO EXPERT SYSTEMS
II. DEFINING AN EXPERT SYSTEM

III. PROLOG AS THE LANGUAGE •
IV. PROLOG ORIENTATION ••

Syntax • • • • • • •
Prolog Execution Methodology • • •
Sample Interactions with a Prolog System •

V. INFERENCE ENGINE CONSIDERATIONS

PLM-1
UPM Design Criteria

VI. UPM REALIZATION
Description of Facilities • • • • • • •

Memory Processor • • • • • • • • • • • •
Input/Output Processor • • • • • • • • • •
Central Processing Unit • • • • • •

Register Behavior During a Query
Implementation Notes • • • • • •
Proposed Microstore and Facilities • • • • • •

VII. CONCLUSIONS

. .

APPENDIX A. BASIC EMULATION OF ALGORITHM
APPENDIX B. SKETCH OF FACILITIES
LIST OF REFERENCES • • • • • • • • • . . .

iii

iv

v

1

3

6

8

8
10
10

12

12
15

18

18
18
19
20
26
29
31

36

39

46

48

LIST OF TABLES

1. FIFTH GENERATION KNOWLEDGE PROCESSOR GOALS 2

2. PARTIAL RULE BASE FOR A BOTANY SYSTEM . . . • . . 4

3. PLM-1 WORKING REGISTERS 14

4. CORRELATION BETWEEN PLM-1 AND UPM REGISTERS • . 17

s. REGISTER/FILE/STACK ROLES IN THE UPM • . . . 22

6. DATA BUS PROTOCOL • 30

iv

1.

2.

3.

4.

s.

6.

LIST OF FIGURES

UPM Emulator Interactions

Block Diagram of Facilities

Flowchart of CPU Actions • •

.
.

.
Flowchart of Memory Processor Actions • • •
Register/File/Stack (RFS) Behavior During a Query
Microstore Contents

v

11

21

23

25

26

33

I. INTRODUCTION

To provide for the information demands of the 1990s, fifth

generation computer systems are now evolving - design emphasis for this

generation of machines considers not only the ongoing efforts to

increase speed and density, but to include utilization of more varied

media, higher software productivity, and application of information

technology to those areas in which existing information technology has

not yet been applied.

Conventional (von Neumann) computers, structured primarily to

perform numeric-intensive, sequential programs are being replaced by

architectures which rely primarily on parallel processing, due to the

fact that device speed has approached a limit for sequential processing.

A second reason for the anticipated replacement of the traditional von

Neumann design is the difficulty in realizing basic functions for non

numeric processing of speech, text, graphics, and patterns, and for

artificial intelligence fields such as inference, association, and

learning. For this reason, reference to "fifth-generation" machines

generally implies reference to machines which provide knowledge

information processing systems.

The Japanese are a major force in spearheading the efforts to a

achieve new architectures for a fifth-generation knowledge information

processor. Their function goals, as outlined in Table 1, are indicative

of many expert systems presently under development{l}.

TABLE 1. FIFTH GENERATION KNOWLEDGE PROCESSOR GOALS

FUNCTIONS DESCRIPTION

(1) Problem Solving
and Inference
function

(2) Knowledge Base
Function

(3) Intelligent
Interface
Function

(4) Intelligent
Programming
Function

Carry on logical reasoning using data and
knowledge (facts and rules) stored in the
system as well as information given to it
from outside (user interaction/real time
acquisition). Includes inference, induc
tive inference (including guessing) based
on incomplete knowledge.

Provide storage and retrieval of not only
hard data, but also reasonable judgements
and test results organized into a know
ledge. Incorporates simultaneous utili
zation of distributed knowledge sources.

Increase flexibility in interaction with
humans, including handling of speech,
graphics, and images.

Enhance the intelligence of computers so
that they can take over the burden of
programming from humans. Ultimate goal is
to achieve an ability to automatically
convert problems into efficient computer
programs.

2

The UPM of this report will focus on functions (1) and (4) of Table 1,

excepting the "guessing" and "real time acquistion" aspects of Table 1.

II. DEFINING AN EXPERT SYSTEM

A key aspect of expert systems technology is that at least three

kinds of knowledge have been generally identified as useful in symbolic

provlem solving. These are facts, relations between these facts (also

referred to as rules), and methods for using these relations in problem

solving. Knowledge engineering is the subfield of artificial

intelligence concerned with applying knowledge to solve problems that

ordinarily require human intelligence. Solving problems in areas of

human expertise such as engineering, medicine, and financial advising

requires specialized know-how comparable to what a human expert

possesses, hence the term "expert system." The method used for problem

solving is the facet most heavily dependent on the application

environment. For example, by searching for confirming evidence, a

diagnostic medical expert system might reason backwards from all

potential diseases it knows. Only when it encountered sufficient

disconfirming data on the patient's condition would it proceed from one

disease to the next candidate{2}. This "backward chaining" methodology

offers contrast to a more traditional approach, that of the forward

chaining, or data-driven engine{3}.

The expert system employing a forward chainings type of inference

mechanism is best illustrated by an example. A user-interactive botany

expert system would contain a collection of rules adhering perhaps to

the classical "if-then" structure , as in the following:{4}

3

4

TABLE 2. PARTIAL RULE BASE FOR A BOTANY SYSTEM

RULE NUMBER CONTENTS

(1) Family is Cypress if:
Leaf Shape is Scalelike and
Class is Gymnosperm

(2) Family is Pine if:
Leaf Shape is Needlelike and
Pattern is Random and
Class is Gymnosperm

(3) Family is Pine if:
Class is Gymnosperm and
Leaf Shape is Needlelike and
Pattern is two even lines and
Has Silvery Band

(4) Type is Vine if:
Stem is Woody and
Position is Creeping

(5) ...

The botanist would then enter facts based on observations of the

specimen to be classified (stem is woody, leafshape is needlelike,

etc.), and then classify the specimen by issuing a query to the system,

such as: To what Family does the specimen belong? The methodology of

solving a query is language/architecture dependent and will be

approached in later sections, however, the scenario is illustrative of

major considerations in designing an expert system, namely:

A) The rule base may be augmented by the experience of many

experts, and conclusions may therefore be reached via different paths

depending on the knowledge or simply the preference of the contributing

experts (note rules (2) and (3), Table 2).

5

B) As a consequence of A), facilities to accomodate a failure in

investigating a possible solution path must exist. This mechanism is

referred to as backtracking.

C) The ability of the system to ask the user questions in the

event that no rule can be found that unequivocably leads to a family

classification.

D) In the event of insufficient facts and/or rules to obtain a

classification, the advanced expert system will attempt to yield a "best

guess" of the family using a deductive reasoning scheme. This may

incorporate certainty factors which designate the level of confidence or

validity the data possesses{2}. This is similar to a doctor diagnosing

pneumonia to be the ailment of a patient with a severe cough, high

temperature, and shortness of breath, even though fluid build-up in the

lungs is not yet evident. Certainty factors will not be included in the

proposed expert system.

E) Expert systems are distinguished from other artificial

intelligence programs in that their power is derived from the knowledge

contained in the database, rather than from pre-designed heuristics and

search methods. For this reason, explanation facilities to aid the user

and justify conclusions are an important aspect of a well-rounded expert

system.

Regardless · of their differences in technique, expert systems

consist of a database to hold rules, facts, and relationships, an

inference engine to arrive at conclusions, and an input/output

controller to facilitate communication with the programmer/user.

III. PROLOG AS THE LANGUAGE

For the reasons enumerated in section I, numeric-intensive

languages are inappropriate for the symbolic, image, and list processing

inherent in the application environment of most expert systems.

Although early attempts at artificial intelligence have employed top

down (von Neumann) formats consisting of more than 1000 "if-then" checks

to arrive at conclusions, essentially two languages which contrast this

solution methodology have risen to the forefront of artificial

intelligence

specifically:

processing,

- Prolog and Lisp. Prolog has many parallels with Lisp,

Both are interactive languages designed for symbolic data

and neither explicitly incorporates the machine-oriented

concepts of assignment and references. Prolog, however, offers further

benefits in many aspects, when compared with Lisp{S}:

A) General record structures take the place of Lisp's s- _

expressions. An unlimited number of different record types may be used.

Records with any number of fields are possible, and there are no type

restrictions on the fields of a record.

B) Pattern matching replaces the use of selector and constructor

functions for operating on structured data.

C) Procedures may have multiple outputs as well as multiple

inputs.

D) Input and output arguments of a procedure do not have to be

distinguished in advance, but may vary from one call to another.

Procedures may thus be multi-purpose.

6

7

E) Procedures may generate, via backtracking, a sequence of

alternative results.

F) An "incomplete" data structure (containing free var.iables) may

be returned as a procedure's output. The free variables can later be

filled in by other procedures. The programmer need not be concerned

with the status of a variable (assigned or unassigned) since this status

is handled invisibly by the inference engine. This results in the

impossibility of encountering an error condition due to an "undefined"

operation - at worst Prolog would be unable to generate a solution with

100 percent surety due to insufficient relations in its database.

G) Program and data are identical in form, thus significantly

reducing the front end burden of programmer orientation.

The resulting overall simplicity of Prolog (in adherence with

fifth-generation design criteria), coupled with its relative youth in

the potpourri of programming languages, make it an ideal candidate for a

prototype expert system. The UPM described will implement the features

of C), D), E), F), and G) enumerated above.

IV. PROLOG ORIENTATION

Since Prolog is not yet widely known (but nonetheless already

suffering from the ever-present problem of being syntactically system

dependent), a brief presentation of features germane to understanding

the inference engine design and emulator routine for the UPM is now

undertaken.

Syntax{6}

The primitive Prolog expression is called a clause. An example is:

father of(adam,john). (1)

"Father of" is considered the head of the clause and the arguments are

"adam" and "john." A rule exists when the head of the clause is

followed by a body consisting of a number (possibly zero) of goals

(alternatively referred to as subgoals or procedure calls).

The clause in (1) is termed a fact and might be spoken in English

as, "Adam is the father of John," although the order of interpretation

is entirely programmer/user dependent as long as consistency is

maintained. Other facts might be:

valuable(gold).

pretty(sally,marie,amy).

The three clauses above would be considered to have an arity of 2, 1,

and 3 respectively, where arity refers to the number of arguments.

8

(2)

(3)

9

Facts obey the following syntax rules:

1) A fact is a clause with zero procedure calls.

2) Facts are finalized with a period.

3) Arguments are literals as indicated by the first letter being a

small letter of the alphabet.

An example of a rule would be:

grandfather of(X,Z):=father of(X,Y),father of(Y,Z). (4)

The rule of (4) might be interpreted as "The grandfather of any X will

be Z if the father of X is Y and the father of Y is Z." Rules obey the

following syntax and inference guidelines:

1) ":=" seperates the head from the body.

2) Arguments with capital letters at the beginning designate

variables.

3) The ordering of the goals in the clause indicates control

information to the inference engine (subgoal satisfaction is attempted ·

in a left-to-right order).

4) Rules are finalized with a period.

Queries are issued to the Prolog system following the insertion of
\

available rules and facts into the database. They are of the following

form:

grandfather of(V,george)? (5)

Queries only have a head and must terminate with a question mark. The

effect of the query in equation (5) is to ask, "Find some V which has

George as a grandfather." The user may elicit a "true/false" response

10

by entering a query already containing literals, as in:

grandfather of(albert,george)? (6)

Effectively asking "Is George the grandfather of Albert?."

Finally, the entry of ";" after an already successful unification

indicates the desire for forced backtracking, or to say "go back and

find additional solutions, if possible."

Facilities found in many Prolog implementations not covered in the

UPM design are the "cut" and mathematical operations.

Prolog Execution Methodology

To execute a goal (initially entered as a query), the system

searches for the first clause in the rule and fact base whose head

matches or unifies with the goal. If a match is found, the matching

clause is then activated and execution (from left to right) of each of

the goals of its body (unless a fact, whereby unification of literals to

variables is performed) follows in turn. If at any time, the system

fails to find a match for a goal, it backtracks by rejecting the most

recently activated clause (undoing any substitutions made on the match

with the head of the clause). It proceeds by reconsidering the original

goal which activated the rejected clause, and tries to find a subsequent

clause which also matches the goal.{5} This search for alternate rule

clauses provides an "or" feature.

Sample Interactions with a Prolog Machine

To ensure a level of familiarity of Prolog sufficient to appreciate

the task of the inference engine(s) described, the following programs

11

run on the Prolog emulator of Appendix A are provided. Due to the

requirement by the supporting machine to view the comma as a delimiter

between input variables, it was necessary to depart from the standard

Prolog syntax to the extent that the comma (,) is replaced by the slash

(/) throughout the session.

? happy(jack):=dating(sally)/pretty(sally).
? happy(jack):=received(jack/raise).
THIS FUNCTOR ALREADY EXISTS •••
REDUNDANT ENTRY(R),WRITEOVER(W),OR ABORT(touch enter) DESIRED ?R
? dating(sally).
? received(jack/raise).
? happy(jack)?
TRUE
? grandfather of(X/Y):=father of(X/A)/father of(A/Y).
? father of(X/Y):=mother of(X/A)/wife of(Y/A).
? father of(X/Y):=sister of(X/A)/mother of(A/B)/wife of(Y/B).
THIS FUNCTOR ALREADY EXISTS •••
REDUNDANT ENTRY(R),WRITEOVER(W),OR ABORT(touch enter) DESIRED ?R
? mother of(betty/evelyn).
? mother of(clara/evelyn).
THIS FUNCTOR ALREADY EXISTS •••
REDUNDANT ENTRY(R),WRITEOVER(W),OR ABORT(touch enter) DESIRED ?R
? sister of(albert/betty).
? mother of(don/grace).
THIS FUNCTOR ALREADY EXISTS •••
REDUNDANT ENTRY(R),WRITEOVER(W),OR ABORT(touch enter) DESIRED ?R
? wife of(fred/grace).
? wife of(don/evelyn).
THIS FUNCTOR ALREADY EXISTS •••
REDUNDANT ENTRY(R),WRITEOVER(W),OR ABORT(touch enter) DESIRED ?R
? grandfather of(albert/ANYBODY)?
ANYBODY=f red
?

Figure 1. UPM Emulator Interactions

V. INFERENCE ENGINE CONSIDERATIONS

Overview

As previously discussed, the methodology of solution generation is

heavily dependent on the environment. Some Prolog applications

currently in use include MYCIN (diagnoses infections), PROSPECTOR (aids

geologists in evaluating mineral sites), PUFF (analyzes pulmonary

function tests), SACON (provides engineers with advice on structural

analysis) and DRILLING ADVISOR (troubleshoots problems encountered when

drilling an oil well), to name only a few.

In setting design priorities for such expert systems, attention

must be given to ensuring that the strengths of the design are in

alignment with the heaviest demands placed on it by the application

environment. For example an expert system operating within the real-time

constraints afforded by a cruise missile guidance system must emphasize

speed of decision making and interaction with information ports. Most

often it is the inference engine which represents the critical component

in achieving desired performance goals.

What follows is a look at the PLM-1 (Aquarius) project being

undertaken at Berkeley{7}. It is provided as a point of comparison for

the significant goals to be achieved in the UPM design.

PLM-1

The PLM-1 is intended to handle concurrently both logic and numeric

applications as an attached processor. The execution environment for

12

13

for PLM-1, as stated by Patt and Despain{7} is "to determine how a very

large improvement in performance can be achieved in a machine

specialized to solve some very difficult problems .which are

characterized by intensive numerical calculations tightly coupled to

substantial symbolic manipulations." As such, it is designed to operate

over an expansive database, a feature which will contrast sharply with

the UPM.

The PLM-1 consists of three major modules: the Microengine, the

Prolog Engine, and the Prolog Machine Interface; the Microengine is

responsible for the control of its own state as well as the two other

modules{8}.

The memory space (resident in an NCR/32 system acting as a host) is

divided into two areas: the Code Space and the Data Space. The Code

Space contains PLM-1 instructions which oversee the microsequencer

actions needed to service the current Prolog query.

are divided into five classes:

The instructions

A) Gets - used to unify with the head of an invoked subgoal.

B) Puts - used to set up the argument registers prior to invoking

a subgoal.

C) Unifies - construct and unify structured data.

D) Control - guide sequencing between subgoals, invoke built-in

functions.

E) Indexing - select clauses, manage the choice point, and

implement cuts.

The Data Space contains 32 bit tagged words representing all data items

and state information for a running Prolog program. It is divided into

14

three areas:

A) Trail - keeps track of variable bindings which must be unbound

upon backtracking.

B) Stack - LIFO format containing processor state information to

be restored on backtracking.

C) Heap - used for storage of lists and structures.

A fourth region, the Push Down List (a scratchpad area used during

unifications) is maintained within the Prolog engine.

Processor registers controlling data flow are summarized below:

TABLE 3. PLM-1 WORKING REGISTERS

r

Register Name Function

Program Pointer Contains Code Space Address (CSA) of the next
PLM-1 instruction to be executed

Continuation Contains CSA of the next instruction to be
Pointer executed upon successful completion of the

current clause .

Environment Contains a Data Space Address (DSA) pointing
Register to the current environment frame on the stack

N (Environment Contains the size of the last allocated
size) environment frame on the stack

Backtrack Contains DSA pointing to the active choice
Register point frame on the stack

Heap Pointer Contains DSA pointing to the current top of
the heap

Heap Backtrack Contains DSA pointing to the top of the heap
Pointer at the last backtrack point. Used to reclaim

heap space on backtracking

Structure Contains DSA pointing into the heap. Shows
Pointer the location of the next item of a structure

currently being processed

15

The reader is encouraged to consult Despain and Patt{8} at this point

for additional insight into the microarchitecture and microengine of

PLM-1, as an appreciation of its major design features is an asset in

understanding the inference mechanisms of UPM.

UPM Design Criteria

The UPM is also intended to be an attached processor that will

augment the facilities of a microcomputer host machine. Consisting of

an I/O Sub Processor (handles communication with the host, and

interprets Prolog strings - analogous to the PMI of PLM-1), a Memory

Processor (provides interface with the main memory of the host, and

handles alignment of local and global variables during the unification

process), and a Central Processor Unit (CPU - microsequenced inference

engine which maintains stacks, pointers, and counters needed for program

execution), the UPM offers significant variations from the PLM-1 design

in the following aspects~

A) It is intended to work directly with Prolog strings as a source

code, via interpretation by the I/O Processor (as opposed to compiled

Prolog).

B) The target database size is smaller (typically 64-128k), and

is not divided into "Code Space" and "Data Space."

C) Built-in functions are not supported directly by the inference

engine, but are interpreted in input (and carried out) by the host when

necessary.

D) Due to the separation of the I/O, Memory, and Central Process

ors, a high degree of parallelism may be achieved. For example, the

16

database may be expanded during execution of a query via a direct memory

access path from the I/O processor to the Memory processor. Other

facilities for parallelism are expounded upon in the system description.

E) Forced microbranch operations (interrupts in a real-time

scenario) are not supported in the UPM, hence, next microaddress

selection logic is simplified. This design feature arises from the

assumption of a target system consisting of a stand-alone microcomputer.

F) Numeric processing is not provided. Numbers may be handled

"brute force" by interpreting as a string, though this method would be

inefficient.

G) Perhaps most significantly, all stacks which are maintained in

the host memory by PLM-1 (accesses are "traditional" in that only

pointers are maintained in the microengine, and read requests must be

issued to, and serviced by, the host), are actually hardware resident in

the UPM. Numerous stacks and pointers needed in the PLM-1 are

eliminated or combined in the UPM. Table 4 relates the processor -

registers of PLM-1 and their associated UPM equivalent, emphasizing the

overall reduction of maintenance pointers required. This scheme reduces

and in some cases eliminates the problems discussed by Patt and

Despain{8} reagarding a memory bottleneck when referencing the Code

Space of the host. By maintaining the Choice Point Stack, Environment

File, and the Goal Stack "in house" in the UPM, there is no requirement

to shadow the registers or to buffer memory accesses, since each region

is independently accessible. Wait states only occur when accessing the

host memory for a new clause. There are additional consequences arising

from this arrangement, to be addressed in the conclusions.

TABLE 4. CORRELATION BETWEEN PLM-1 AND UPM REGISTERS

PLM-1 Register Name

Structure Pointer

Continuation Pointer

Environment

Program Pointer

Choice Point Frame

Push Down List

Environment Register

Backtrack Register

Heap Pointer

Heap Backtrack
Pointer

Trail

Trail Pointer

UPM Register Name

none-all Goals of a clause
placed in Goal Stack

Goal Stack Pointer (GSP)

none ·
)inherent in Goal Stack

none

Choice Point Stack (located
in Memory Processor)

Argument Translation Table

Environment File and Pointer

Choice Point Stack (in CPU)
consists of GSP, Environment
File and Arguments of all
previously unified clauses

17

VI. UPM REALIZATION

The focus of the facilities realization portion of this writing

will be on the CPU, however, its role in conjunction with the entire

module will initially be addressed.

Description of Facilities

Figure 2 illustrates the major facilities of the UPM along with

interconnecting buswork and communication protocol (single bit) lines.

Memory Processor

The Memory Processor is presented via the I/O Buffer the goal at

the top of the goal stack and argument information consisting of either:

A) Bound variables, or

B) Argument file displacements (for unbound variables).

The rule and fact database is then searched in a top-to-bottom manner

for a rule or fact which will unify (i.e., has a matching head and does

not have conflicts for bound variables in the same argument position)

with the goal.

Three conditions may result, and the Unify Process Logic and File

will load the I/O Buffer accordi~gly:

A) Neither a rule nor fact is found. This causes the fail

condition to be transmitted to the CPU.

B) A fact will be found. The arity field is set to 0 and

transmitted arguments are all bound literals.

C) A rule will be found. New rules will be returned to the CPU

18

19

one at a time. The goal field will contain the symbol for the new rule

and the argument fields abide by the criteria of Table 6, page 30.

Finally, the Memory Processor has a resident Choice Point Stack

(LIFO) which holds addresses of previously successful searches. This

facilitates continuation of the top-down search strategy should

backtracking be necessary.

Input/Output Processor

The Input/Output Processor provides an interface between the

inference engine of the CPU and the host - it performs writing and

reading of data to and from a predetermined control word in the address

space of the the host.

It must perform bidirectional conversion between text strings of

arbitrary length and eight bit (binary) symbols used in the inference

process by the CPU - this association is achieved via a symbol table

whose address represents the symbol and whose contents are the text

string.

The I/O Processor also maintains a Query Status Table (QST) which

is always clear between queries. It holds the EF position (within the

CPU) of the arguments contained in the initial query along with a tag

bit indicating which arguments were input as literals, and which were

variables. In the event of successful goal satisfaction, the QST allows

the I/O Processor to perform a DMA to the EF and retrieve new bindings

for output to the user. Had the query been a True/False question (see

the first emulation result, page 11) the I/O Processor will realize this

by consulting (anding together) the tag bits of the QST.

20

Central Processing Unit

The CPU provides the capability for the inference and backtracking

functions of the UPM including temporary storage (Environment File,

Choice Point Stack, Goal Stack, and Local Variable Translation Table) of

all parameters necessary for the resolution of a query. It does not

provide direct sequencing control to either of the other two processors.

Table 5 describes the role of each register, file, and stack housed

in the UPM and gives its location within the system. Figures 3 and 4

flowchart the actions of the Central and Memory Processors

(respectively) encountered in executing a query. Stages shown in dotted

lines are parallel processes, where similar dotting schemes indicate

simultaneous events. Abbreviations used in all four figures are keyed

below:

CP = Choice Point Stack
CPP = Choice Point Pointer
EM = Environment Memory
EMP = Environment Memory Pointer
GS = Goal Stack
GSP = Goal Stack Pointer
<I/O>da= data available signal from I/O processor to CPU
<I/O>do= data ready for output from CPU to I/O processor
dr<I/0>= data received acknowledge to I/O processor from CPU
dl<I/0>= data latched acknowledge from I/O processor to CPU
---previous four similar for Memory Processor to CPU channels---
LVP = Local Variable Translation Table Pointer
LVTI' = Local Variable Translation Table

Query
Status

I/O
Buff er

I/O PROCESSOR

Symbol
Table

ro
+'
ro

'O

$.-4
'"tj
'"tj
ro

'"tj
ro
Q)
$.-4

Q)
r-1
..c
ro
d
Q)

Environment
File

Data I/O
Buffer

LVTI

r-1 'O r-1 'O
•M Q)

ro - ·M ..c::
> u ro u

Q) > +' ro $.-4 ro ro
ro ro ro r-1
+'
ro +' +' ro

'O ro ro +'
'O 'O ro

'O

CPU

....:I
H
<
~

Available
File Links

Memory Processor

Choice Pt Unify Process
Addresses Logic & File

Output Acknowled e ,

ddress

Data Read

Data Acknowledge

Choice Point
Stack

uStore
ROM

uSequencer
Inference

Logic

UPM ...

Enable

Read/Write

Data

""' Address

Figure 2. Block Diagram of Facilities

· (HOST
MACHINE)

HOST

RAM

(Host
Machine)

21

22

TABLE 5. REGISTER/FILE/STACK ROLES IN THE UPM

Name/Location/Size

Query Status/
I/O Processor/

Unspecified

Symbol Table/
I/O Processor/

Unspecified

Environment File/
CPU/

9 Bits * 64
Records

Choice Point Stack/
CPU/

33 Bits * 32
Records

Goal Stack/
CPU/

46 Bits * 32
Records

LVTI/
CPU/

6 Bits * 8
Records

Choice Point
Address Stack/

Memory processor/
32 Records

Role

Retains Symbol Table address of Head and
Arguments of Query currently being processed.
Also holds the Environment File address of
Arguments so that literals may be recovered
upon completion of query.

Holds results of string-to-symbol transla
tions performed by the I/O Processor on
initial input of Rules, Facts, or Queries.
Strings of arbitrary length are converted
to 8 bit binary codes for use in the UPM.

Addresses of Environment File are global
variables. Contents of EF are the literals
(symbols) of bound variables. A single bit
tag field is used to indicate if a binding
has occurred.

Maintains information needed for back
tracking, including: GSP of last successful
unification, Tag fields to show unbindings
that must occur, and addresses in EF of
Arguments in last unified goal. (LIFO)

Holds all goals to be executed in a LIFO
fashion. Includes symbol for goal, arity,
and EFP's of arguments in head clause. A
maximum of 4 Arguments per head clause is
the prototype UPM design limit.

Memory Processor tags any new variables
introduced by subgoals of a clause as
"local". LVTf holds EF address(EFP) where
new variable is placed in EF.

Upon finding a successful unification for
the target clause, Memory Processor writes
the address of match in this LIFO stack.
Pushed on unification, Popped on backtrack.

t------------'------------------------------
Unify Process Logic
& File/

Memory Processor/
Unspecified

Performs alignment of subgoal arguments
those of the head. Where local variables
occur unify file must shadow to check for
multiple occurances.

23

EFP = 0 no
BEGIN •----~: GSP = 0 i----~

CPP = 0
yes

ifEFP&WRITE-~ --- r_L __
: CONSTANTS TO I 1tGSP & WRITE I ISSUE I

for all
variables
in goal 1

EF WITH Tag=l 1 GOAL ON GS !
/
dr<I/O> I

LO~ RES:_E--T---T~A-G~_J-l~~--~--~-'-=---=-=='-----J ___ l __ ____Jl- J.-----.

rLOAD- OUTPUT -BUFFER: - - I
11. [goal] AT GSP I
12. ARITY OF GOAL AT GSP I
13. LOAD [EF] FOR EACH I
1EFP IN GS WHICH HAS I
1Tag=l, ELSE LOAD EFP 1
~DETAINED_ IN GS ___ _J

~PP AND-INSERT -GSP ;'
EMP's HELD IN GS 1

~AND LVC HELD IN CP
1

1.... ______ _J

backtrack routine

rLoAD oUTPUT BUFFER:-,
11. nil AT GOAL SPOT I
I 2 • NIL IN ARITY SPOT I
3. CHECK EF AT ALL

IEFP's IN CP RECORD.
I IF Tag=l LOAD [EF], I
1 ELSE LOAD EMP HELD I
llN_ C~ R~CORD _ _ __ I

~NBIND (Tag=O) IN-EM-,
I VARS PREV. BOUND BY ,..

1
.._~

CO~SULTING _ C~ Tag~ _J

I SET-GSP TO VALUE-IN -,
.,..__~· CP, EFP BY AMOUNT OF....._~

r _ f_ - 1

I LVC = 0 I
/ ___ J

l_~vc IN CP - ·- - - _I

no

Figure 3. Flowchart of CPU Actions

Check if

no

LATCH
DATA BUS T

~-_, I/O BUFFER

RECORD GOAL

yes · ISSUE
>---11-' FAILURE

TO I/O
PROCESSOR

rrNsTAfrrIATE 1
!FACTS - SET .__...

~Tag=l IN EM I
0S_NEEDEDJ

--AND ARITY T01---..t
ISSUE

SUCCESS
TO I/O

PROCESSOR
.LATCH DATA
BUS TO I/O

BUFFER

yes

I
_ J _ l
RECORD

I EFP IN i
I GS ARG I
LFIELD _J -,-

GS AT GSP yes

no

yes

no

RECORD EMP's
RETURNED IN
BUFFER IN GS
AT GSP LOC.

no

r - _I_ - I

1
REcoRD

1
r RESET--,

EFP IN I Tag=O 1

: SECONDARY I I IN EF I
. FIELD OF I LAT EFP _J

l __ LVTT _AT~VP J

RECORD EMP
RETURNED IN
I/O BUFFER
IN GS AT
GSP POSTION

Figure 3. Flowchart of CPU Actions (continued)

yes

tLVP

iEFP

24

BEGIN
yes LATCH

DATA BUS
TO I/O

BUFFER

ILOAD GOAL~ ARITY' -,
IADDRESS+l SHOWN INI

7
/ ISSUE 1

___ d_l_<_m_>---'/

backtrack

-- ~CPP CP STACK TO MEMORY I
~ !ACCESS OUTPUT FILE.,__.--<

Backtracking - - - - - - - -4

~OAD-GOA~ ARITY~ I
ISHOWN BY INPUT I

~----------1 BUFFER(FROM CPU) 1_,...,..._ ___ _.;i

ITO MEMORY ACCESS I
I FILE _______ J

r---- ------ ----, LOAD EF DISPLACEMENTS (or literals

25

where known) SHOWN BY INPUT BUFFER.,__ _____ ,
l(FROM CPU) TO MEMORY ACCESS FILE I
~---------- ---

~ unspecified in UPM algorithm since protocol
dependent on host machine

ISSUE FAIL
>----~SIGNAL TO

yes

LOAD LITERALS

CPU

INSTANTIATE CALLING EF DISPLACE
MENTS WITH SUBGOAL ARGUMENTS, OR
INDICATE "LOCAL" VARIABLE IF NOT

PRESENT IN HEAD

yes
TO Arg FIELD ISSUE
OF I/OB. CLEAR t--------1~ <M>da 1--J~
ARITY FIELD

Figure 4. Flowchart of Memory Processor Actions

no

26

Register Behavior During a Query

As an illustration of the unification and backtracking scheme

employed, the behavior of the major registers, stacks, and files of the

UPM will be sequentially displayed throughout the steps needed to

process the "grandfather of(albert,ANYBODY)?" query. The rules and

facts are assumed to have been entered into the database (note emulation

results of this query, page 11).

EVENT # GS CONTENTS EF CONTENTS Tag CP STACK CONTENTS
M c:: I .

tt1 u u CJ CJ m
bO bO

0 0 0 0 0 m m Q)
Q) 00 r-1 r-1 r""""1 r""""1 Q)

.µ .µ $..!
$..! • Q) "C
tt1 $..! ~ ~ ~ ~

.0 0.... 0.... 0.... ..c: c::
~ 0 ~ ~ ~ ~ Q) uu
~

~ :::1
l1l 4-1

~ $..!
0

~

~~
oc bO bO bO l1l 4-1

c:: r-1
.µ

H H
Q) H H 4-1 l1l

-M -§ << 0 Q) Q) Q)_Q
H < <

~ ';.o < .µ $..! r-1
c:: s ~"C .µ ~ p... .µ ~

~
"C :::1

0 p..., l1l c:: Cl) i:: Cl) i:: "C $..!
u l1l .-! N ...-! N ~ ...-!IN ro

1 GSP-.[go] 2 1 2 l)[albert] 1..,... re:P=O I FLOWCHART EFP-2) nil 0
POINT indicates bound

1 content~ literal
symbol for EF(2) is placeholder

1:

Albert · for ANYBODY variable
:1

CPP•ll2 ll\1~111 <go> 2 GSP-+[fo] 2 3 !; 2 1)[albert] 1
,,

' 2) nil 0 .:

1 3~4~ l EFP 3) nil 0
[go] goal dis- no bindings had

s 6 8 carded to CP EF expanded to I occurred in this
I search upon unif ica- allocate position

6~7 g tion. Subgoals for local variable
being written introduced by [fo]

5 to GS in rev. subgoal.
order.

Figure 4. Register/File/Stack (RFS) Behavior During a Query

3 ' [fo] 2 3 2 l)[albert] 1 CPP~l 2 1 O O 1 <go>
GSP [fo] 2 1 3 2) nil 0

s~6~s~~ ~ EFP..,3) nil 0

4

5

6

All subgoals~~ See note 3 explanation of
of [go] loaded Memory Processor action in
to GS. aligning args for GS loading.

[fo] 2 3 2
GSP~[fo] 2 1 3

[fo] 2 3 2
[wo] 2 3 4

GSP~[mo] 2 1 4

Subgoals [mo],
[wo] written
in rev. order.
2nd. [fo] rule
overwritten
since discard
to CP

I
[f 0] l 2 3 2

GSP-[WO] : 2 3 4
A .

l)[albert]
2) nil

EFP...,3) nil

1
0
0

1)[al bert] 1
2) nil 0

y 3) nil 0
EFP-4) nil 0

EF expanded to
provide place for
local var. "A".

1)[al bert] 1
2) nil 0

EFP.,.3) nil 0
I A

Y 1 2 1 0 0 1 <go>
CPP-1 3 2

Arg locations in EF
and GSP of goal are
in CP, anticipate
successful search.

1 2 1 0 0 1 <go>
CPP-+l 3 2 0 0 1 <f o)

No args t Ii
were bound_\.!.)
by this rule

CPP-1 2 1 0 0 1 <go>
A

A 3 Failure to match [wo] goal caused CP "pop" (backtrack)

7

-- all appropriate pointers decremented. . 1

[fo] 12 · 3 2
' (WO] i 2 3 4
Y [mo] r 2 5 4

GSP-)>[so] l 2 1 5
I

l)[albert]
2) nil

Y 3) nil
Y 4) ·nil

EFP--.S) nil
New subgoals
GS, 2nd [fo]
overwritten

in
1

j EFP increments
· twice, since 2
I 1ocal variables

I I

1
0
0
0
0

Y 1 2 1 0 0 1 <go>
CPP~l 3 2 0 0 2 <fo>

Figure 4. RFS Behavior During a Query (continued)

27

28

8 [fo] 2 3 2 l)[albert] 1 1 2 1 0 0 1 <go>
[wo] 2 3 4 2) nil 0 1 3 2 0 0 2 <fo>

1~3~4,.. GSP-[mo] 2 5 4 3) nil 0 CPP-1 5 4 0 1 0 <so>
/A 4) nil 0

. ~~ 2,..1 (_ Decrement to EFP-+5)[betty] 1 2nd arg bound ~
access next lJ by this fact
subgoal para- Literal fro~ No new EF locations

'-meters . fact written

9 [fo] 2 3 2 l)[albert] 1 1 2 1 0 0 1 <go>
GSP-[wo] 2 3 4 2) nil 0 1 3 2 0 0 2 <f o>

l~ 3,..4,.. A 3) nil 0 ' 1 5 4 0 1 0 <so>
4)[evelyn] 1 CPP-.5 4 3 0 1 0 <mo>

2~1 EFP-5)[betty] 1

10 GSP-[fo] 2 3 2 l)[albert] 1 1 2 1 0 0 1 <go>
A 2) nil 0 1 3 2 0 0 2 <fo>

1~3,._4,.. 3)[don] 1 1 5 4 0 1 0 <so)

' 4)[evelyn] 1 ' 5 4 3 0 1 0 <mo>
2,..1 EFP-5)[betty] 1 CPP-3 4 2 1 0 0 <wo>

11 ' [wo] 2 2 6 l)[albert] 1 1 2 1 0 0 1 <go>
GSP-[mo] 2 3 6 2) nil 0 1 3 2 0 0 2 <fo>

1~3~4~5,.. 3)[don] 1 1 5 4 0 1 0 <so>
4)[evelyn] 1 5 4 3 0 1 0 <mo>

6,..6,._8,..6

'
5)[betty] 1 ' 3 4 2 1 0 0 <wo>

EFP-6) nil 0 CPP-3 2 1 0 0 1 <f o>

12 GSP-[WO] 2 2 6 l)[albert] 1
A 2) nil 0

1~3~Li. ~ 3)[don] 1 SAME
4)[evelyn] . 1

2~1 5)[betty] 1
EFP-6)[grace] 1 ' 3 2 1 0 0 1 <f o>

CPP•3 6 2 0 1 0 <mo>

13 GSP = 0 1)[albert] 1
2)[fred] 1

1~3~4,.. 3)[don] 1 SAME
4)[evelyn] 1

2~E 5)[betty] 1
EFP-6)[grace] 1 3 2 1 0 0 1 <f o>

' 3 6 2 0 1 0 <mo>
CPP--2 6 1 1 0 0 <wo>

Figure 4. RFS Behavior During a Query (continued)

29

Implementation Notes

1. [•••] denotes "symbol for."

2. < ••• >denotes "address of."

3. Memory processor (not specified in this writing) must perform

argument alignment prior to returning subgoals of a clause to CPU. This

task merits additional explanation as it is the crux of the unification

concept. For the unification of a rule, in event # 3, Memory Processor

receives via the data bus (DB):

GOAL Arg(l) Arg(2) Arg(3) Arg(4) Tags j Arity

DB(0:7) DB(8:15) DB(l6: 23) DB(24:31) DB(32:39) DB(40:43,44:45)

[father of] [albert] 3 nil nil 1 0 0 ol 2

Memory Processor, upon finding <fo) will return goals in reverse order

of appearance in rule, i.e.:

[mother of] 1

Followed by:

l[wifeof]

1st Arg
of
calling
clause

2

1

1st local
variable

1

nil nil I 0

0 indicates that . i
Arg(l) is not a__)
local variable

nil nil

1 o a I 2

l. 1 indicates
Arg(2) is a
local var.

In the case of a fact, in event # 8, Memory Processor receives:

![sister of]' [albert]I 5 nil nil j1 o o ol 2

and returns:

x]I [albert]l[betty] nil nil I x x x x I o

30

The arity field value of zero is the means by which the CPU detects that

a fact is being returned - it will recognize all argument values as

literals. Thus unifications are actually performed by · the Memory

Processor. It should be noted that the meaning of the contents of the

Argument and Tag fields of the Data Bus have different interpretations

depending in direction of transmission. The bus protocol is summarized

in Table 6.

TABLE 6. DATA BUS PROTOCOL

Direction of If Tag(n) It Means: Argument(n)
Transmission Holds: Holds:

0 EF positon is Displacement in EF
unbound of variable

CPU Memory
1 EF literal is Symbol for literal

available of bound variable

0 Variable (or Position in calling
literal) retur- clause of variable

I ned was in (or literal)
I calling clause

! i
Memory CPU : i

!
I
I

Number of local 1 ~ Local Variable
! ! being returned variable (may be
I many) I '
I

4. The final status of the registers (see event # 13) shows the

capability for _forced backtracking, should the user desire. Entry of ;

at this point would "pop" CP record # 6 to restore GS record # l; data-

base search would begin with previous [wo] match. Also, EF record # 2

([fred]) would be unbound in an attempt to see if [evelyn] were the wife

of anyone else (Note this Prolog implementation does not prohibit

polygamy!).

5. When GSP = 0, the "success" line to the I/O Controller

activated. The I/O Controller then executes a DMA to EF to access

31

is

new

bindings. By consulting the Query Status file, a determination can be

made regarding which EF postions need be accessed for output to the

user. Failure, had it occurred, would have been indicated by an empty CP

stack.

Proposed Microstore and Facilities

The microstore for the UPM is shown in pseudocode format in Figure

5, while a sketch of facilities is contained in Appendix B. The AMD

2910 is chosen as a target controller since its addressing capability is

within that required be the microstore of Figure 5. The alternative of

cascading AMD 2903s is also available, but needlelessly more

cumbersome.

As a result of the de-emphasis of mathematical operations in the

UPM, the need for an ALU is nearly obviated - the two uses of the AMD

2901 microprocessor slice is to compare the LVC to the Local Variable

Number returned by the memory processor to determine is a LVTT expansion

is in order, and to do the EMP decrement of step 35. A savings in

microstore width was achieved by installing a look-up ROM to supply the

limited (less than eight variations) number of ALU control bits to the

nine bit instruction field.

The needed control word width is seventy-nine bits, of which seven

are provided for direct input of non-incremental branch addresses. next

addresses. Multi-clock cycle subroutines are needed in the steps

annotated with an asterisk (those either implementing ALU functions, or

32

performing group transfers) - the subroutines are not specified in the

pseudocode.

Finally, some notes regarding the microstore content format:

1. "I/OB" throughout stands for Input/Output Buffer connected to

the external Data Bus.

2. The code conforms to AHPL conventions. For example, at address

3, the verbal interpretation would be "Perform a synchronous transfer of

the data contained in the [goal] field of the Input/Output Buffer to the

[goal] field of the goal stack pointed to by the goal stack pointer.

33

uStore Commands Conditional Next
Address Branch? Address

0 Clear GSP/EFP/CPP no inc

1 <I/O>da? yes 2
no 1

2 tGSP;output dr<I/O> no inc

3 GS[goal(GSP)] .- I/OB[goal] no inc

4 tEFP I/OB yes 6
[arg]=O? no 4

*S EF[tag(n)].-I/OB[tag(n)] no inc
EF[arg(n)] +- I/OB[arg(n)]

6 tCPP;I/OB[goal]+-GS[goal(GSP)] no inc
;I/OB[arity]+-GS[arity(gsp)]

7 I/OB[arg(l)]~(GS[arg(l)]! no inc
EF[arg(GS[arg(l)])])*(GS[tag
(1)],GS[tag(l)]);CP[arg(l)]
EF(GS[arg(l)]);I/OB[tag(l)].,._
(l!O)*(GS[tag(l)],GS[tag(l)])

8 ---same as 7, except all no inc
subscripts (2)---

9 ---same as 7, except all no inc
subscripts (3)---

10 ---same as 7, except all no inc
subscripts (4)---

11 output <M>do;LVC.-Q dl<M>? yes 12
no 11

12 <M>da? yes 13
no 12

13 Failure? yes 33
no 14

14 I/OB .. Data Bus no inc
--

Figure 6. Microstore Contents

34

15 Arity=O? yes 41
no 16

16 GS[goal].,.I/OB[goal];GS[arity] I/OB[tag yes 21
+-I/OB[arity] (1)]=1? no 17

17 GS[arg(l)].,_I/OB[arg(l)] I/OB[tag yes 22
(2)]=1? no 18

18 GS[arg(2)]+-I/OB[arg(2)] I/OB[tag yes 23
(3)]=1? no 19

19 GS[arg(3)]._I/OB[arg(3)] I/OB[tag yes 24
(4)]=1? no 20

20 GS[arg(4)]._I/OB[arg(4)] <M>da? yes 14
no 21

*21 LV#>LVC? yes 25
no 17

*22 LV#>LVC? yes 27
no 18

*23 LV#>LVC? yes 29
no 19

*24 LV#>LVC? yes 31
no 20

25 f LVP;tEFP no inc

26 EF[tag(EMP)]~O;GS[arg(l)]+- I/OB[tag yes 22
EFP;LVTT(LVP).-EFP (2)]=1? no 18

27 tLVP;t EFP no inc

28 EF[tag(EMP)] +-O;GS[arg(2)] .. I/OB[tag yes 23
EFP; LVTT (L VP) .., .EFP (3)]=1? no 19

29 tLVP;tEFP no inc

30 EF[tag(EFP)].-O;GS[arg(3)]+w I/OB[tag yes 24
I EFP;LVTT(LVP)+.EFP (4)]=1? no 20

inc !
31 fLVP;tEFP no j

Figure 6. Microstore Contents (continued)

35

32 EF[Tag(EFP)]~O;GS[arg(4)] <M>da? yes 14
EFP;LVTT(LVP)+-EFP no 6

33 1CPP no inc

34 CPP=O? yes 40
no 35

*35 I/OB[goal]+-O;I/OB[arity].-O; no inc
GSP+-CP[gsp(CPP)];EFP~EFP-
CP[lvc(CPP)]

36 I/OB[arg(l)]*CP[tagl(CPP)]~ no inc
EF(CP[arg(l)]);EF(CP[arg(l)])
*CP[tagl(CPP)]---o

37 ---same as 36, except all l's no inc
become 2's---

38 ---same as 36, except all l's no inc
become 3's---

39 ---same as 36, except all l's no 11
become 4's---

40 output FAILURE to I/O Proc. no 0

41 fGSP;EF(GS[arg(l)])*EF(GS[tag no 42
(l)]--I/OB[arg(l)]

42 EF(GS[arg(2)])*EF(GS[tag(2)].- no 43
I/OB[arg(2)]

43 EF(GS[arg(3)])*EF(GS[tag(3)]._ no 44
I/OB[arg(3)]

44 EF(GS[arg(4)])*EF(GS[tag(4)]+- GSP=O? yes 45
I/OB[arg(4)] no 6

Figure 6. Microstore Contents (continued)

VII. CONCLUSIONS

Prolog has been determined by numerous artificial intelligence

research communities to be a language worthy of investigation, and this

report has touched on many of the points of discussion carried on by

these efforts. An attempts has been made to illustrate the relative

ease with which Prolog may be both implemented and exercised by an

individual intent on expeditiously interrogating the knowledge of a

small scale database.

Major differences between UPM and PLM-1 include:

1. Instruction and Data Types:

A. PLM-1:

instruction

instructions.

Queries are compiled from C-Prolog into an abstract Prolog

set which includes I/O, memory reference, and control

The traditional top-to-bottom, left-to-right execution/

search strategy associated with Prolog inference engines is controlled ·

by the compiled code.

B. UPM: Queries and program strings have the same form: encoded Prolog

strings. The data types used are similar to PLM-1, with the exception

of local variables. In the UPM, all variables are allotted a position

in the EF, thus "temporary" variables are never truly destroyed between

clauses, as in the PLM-1.

A trade-off is apparent in handling unbound arguments - less

maintenance is required (thus increased speed) by the UPM, however, the

EF capability may be exceeded in a program involving numerous local

variables.

36

37

2. Architecture:

A. PLM-1: A single microengine controls I/O, memory, and Prolog

inference tasks. With exception of the Push-Down List, the Data Space

internal to the PLM-1 consists only of pointers and indexes used in

addressing and tracking host memory space.

B. UPM: Three processors are specified, and major operations are

parceled out between the three. Especially significant is that the

unification function is combined with memory processing. The UPM

contains all inference information resident in dedicated RAM.

A speed increase for manipulation of overhead parameters (Choice

Points, Environment, Trail) can be expected in the UPM, due to reduction

of memory access traffic at the host interface bottleneck. The

consequence of having an invarient (hardware limited) ceiling on the

number of records available for tracking bindings, arguments, and choice

points might be intolerable on large scale systems anticipating a deep

level of backtracking, or numerous variables.

For the prototype UPM, the limits are as follows: (see Table 5)

256 symbols (8 bit argument fields)
32 levels of goal nesting per query
32 nodes retraceable on backtracking
64 total arguments per query
8 local variables per clause

These choices were arbitrary and made at an early stage of the design

process. Examination of the target operational environment might reveal

the need to vary these values. The advantage of a microsequenced system

is apparent should this action be required, since expansion is achieved

simply by adding memory and using additional microstore fields to carry

the extra addressing bits. Widening of the data bus argument fields is

necessary if more than 256 arguments are needed.

38

The basic emulation program of Appendix A serves to validate the

design, as well as provide a test base for further capability

examination, however, it falls short of yielding the necessary time

consumption parameters needed to document the speed improvement claimed

as a byproduct of the design. Further efforts should thus be centered

on building the hardware portion of the UPM specification, and

performing benchmark comparisons to verify its strengths and weaknesses.

APPENDIX A

BASIC EMULATION OF UPM

1 ' ***
2 ' * *
3 ' * "PROLOG EMULATOR" MAY 30, 1986 *
4 ' * JEFFREY J. FERGUSON *
5 ' * *
6 ' * THIS PROGRAM USES MICROSOFT GW-BASIC (VER 2) TO EMULATE THE *
7 ' * ACTIONS OF THE CENTRAL, I/O, AND MEMORY PROCESSORS REQUIRED TO *
8 ' * SUPPORT THE PROLOG DIALECT DESCRIBED BY CLOCKSIN AND MELLISH *
9 ' * IN "PROGRAMMING IN PROLOG" {6) • . THE ACCOMPANYING REPORT *

10 ' * OUTLINES THE SYNTAX FEATURES. *
11 ' * *
12 ' * VARIABLE USAGE: *
13 ' * *
14 ' * GS,GS$ = GOAL STACK *
15 ' * GS$(X) = [goal](X) *
16 ' * GSl(X,l) = EF POSITION OF 1st VARIABLE OF [goal](X) *
17 ' * *
18 ' * CP = CHOICE POINT PARAMETERS *
19 ' * CP(N) = MEMORY ADDRESS OF PREVIOUS MATCH (RULE OR FACT) *
20 ' * CPl(N,M) =TAG FIELDS OF CHOICE POINT(N) INDICATING IF *
21 ' * VARIABLE(M) WAS BOUND BY THIS STEP. 1 IF BOUND, 0 IF NOT. *
22 ' * CP2(N,M): *
23 ' * FOR M=lT04, CP2 HOLDS EF LOCATION OF VARIABLE(M) FOR *
24 ' * THE 4 VARIABLES USED IN CHOICE POINT(N). HOLDS 0 IF *
25 ' * VARIABLE POSITION UNUSED. *
26 ' * FOR M=5, CP2 HOLDS GS POSITION WHERE GOAL(N) WAS *
27 ' * OBTAINED FOR COMPARISON TO DATABASE. *
28 ' * CP3(X) = RECORDS AMOUNT OF EF SIZE INCREASE CAUSED BY *
29 ' * CHOICE POINT(X), DUE TO NEW LOCAL VARIABLES *
30 ' * *
31 ' * EF$,EF = ENVIRONMENT FILE *
32 ' * EF$(X) = POSITION X IS VARIABLE. IF BOUND, CONTENTS ARE *
33 ' * SYMBOL FOR THE VARIABLE(LITERAL). *
34 ' * EFl(X) = TAG FIELD TO INDICATE IF CONTENTS OF EF$(X) ARE *
35 ' * A LITERAL. 1 =LITERAL, 0 = VARIABLE(UNBOUND). *
36 ' * *
37 ' * LV$,LV = LOCAL VARIABLE TRANSLATION TABLE *
38 ' * LV$(N) HOLDS SYMBOL FOR LOCAL VARIABLE(N) INTRODUCED BY *
39 ' * CLAUSE(X). *
40 ' * LV(N) HOLDS ENVIRONMENT FILE POSITION OF LOCAL VARIABL~ *
41 ' * HELD IN LV$(N). **
42 ' *
43 ' ***

39

so '
140 '
lSO OPTION BASE 1
160 DIM MATRIX$(100,S,S)

40

170 DIM EF$(SO), EFl(SO), CP2(60,S), CP(60), GS$(20), GS1(20,4),CP1(60,4)
180 DIM KEEPER$(4), GB(4), LV$(20), LV1(20), CP3(60)
190 '
200 '----------ACCEPT KEYBOARD INPUT HERE-------------------------------
210 '
220 TRACE = O:GOOD = 0
230 RR$ = "J": K=O: INPUT KAY$
240 IF KAY$ = "t" THEN TRACE= l:GOTO 230
2SO IF KAY$ = "nt" THEN TRACE = O:GOTO 230
260 IF KAY$=";" GOTO 1220
270 IF RIGHT$(KAY$,1) = "."GOTO 2740
280 '

'---FORCED BACKTRACKING
'---MUST BE A RULE OR FACT

290 '----------THIS AREA DOES QUERIES-----------------------------------
300 '
310 EFP=l: GSP=l: CPP=O
320 WALl=l
330 GOSUB 2040
340 IF OOTl = 0 GOTO 230
3SO '

'---MUST LOAD GOAL STACK WITH NEW QUERY
'---TOO MANY ARGUMENTS IN QUERY-INVALID

360 '----------EXECUTE TOP OF GOAL STACK--------------------------------
370 '
380 ARITY=l
390 WHILE GSl(GSP,ARITY) <> 0
400 ARITY = ARITY + 1
410 WEND
420 ARITY = ARITY - 1
430 RULE$ = GS$(GSP)
440 GOSUB 2340
4SO IF TRACE = 0 GOTO 680
460 LOCATE l,2:WIDTH 40:CLS

'---FINDS ARITY OF GOAL

'---FIND APPROXIMATE FILE LOCATION OF GOAL

470 PRINT "LOC# [goal] arg(l) arg(2) arg(3) arg(4)"
480 LOCATE 2,1,0:PRINT "--"
490 FOR AS = 1 TO 10
SOO LOCATE AS+2,l:PRINT USING" ## \ \ ## ##
";AS,GS$(AS),GSl(AS,1),GSl(AS,2),GSl(AS,3),GSl(AS,4)
SlO NEXT AS
S20 LOCATE 14,17:PRINT "GSP = ";GSP

S30 LOCATE 24,1,l:INPUT "",R$:CLS
S40 LOCATE 1,2:WIDTH 40:PRINT "
SSO LOCATE 2,1,0:PRINT"

EF LOC# [arg(N)]

S60 FOR AS = 1 TO 14
S70 LOCATE AS+2,l:PRINT USING"
) ,EFl(AS)
S80 NEXT AS
S90 LOCATE 18,21:PRINT "EFP = ";EFP

\ \

"

tag"

##";AS,EF$(AS

600 LOCATE 24,1,l:INPUT "",R$:CLS "
610 LOCATE 1,2:WIDTH 40:PRINT "LOC# EF(l) EF(2) GSP t(l) t(2) EFP ADDR

620 LOCATE 2,1,0:PRINT"--"
630 FOR AS = 1 TO 10

41

640 LOCATE AS+2,l:PRINT USING" ## ## ## ## ## ## ## ## #
##";AS,CP2(AS,1),CP2(AS,2),CP1(AS,1),CP1(AS,2),CP3(AS),CP(AS)
6SO NEXT AS
660 LOCATE 14,17:PRINT "CPP = ";CPP
670 LOCATE 24,1,l:INPUT "",R$:CLS:WIDTH 80:IF GOOD= 1 GOTO 1S80
680 GOSUB 2390 '---FIND EXACT FUNCTOR AND ARITY
690 IF FAIL = 1 THEN IF CPP = 0 GOTO 230 ELSE GOTO 1220 '---RESTART
700 '
710 '----------SUCCESSFUL SEARCH-MUST STORE OLD CALLING VARIABLES IN CP
720 '----------ASSOCIATE "LOCAL" VARS WITH CALLING VARS FROM GOAL STACK
730 '----------CREATE NEW EF POSITIONS WHERE NO ASSOCIATION EXISTS
740 '
7SO GOSUB 2SSO
760 LVC=O
770 FOR TTT = 1 TO 20
780 LV$(TTT) = ""
790 NEXT TTT
800 IF MATRIX$(HASH,2,l) = '"' GOTO 13SO'---MUST BE A FACT IF NO SUBGOALS
810 GOSUB 2670 '---SAVE ARGUMENT FILE DISPLACEMENTS SO
THAT PRESENT GOAL STACK POSITION CAN BE WRITTEN OVER WITH LAST SUBGOAL
820 '
830 '-----BEGIN LOADING SUBGOALS INTO GS BEGINNING WITH LAST SUBGOAL
840 '
8SO FOR LL = S TO 2 STEP -1
860 IF MATRIX$(HASH,LL,l) = "" GOTO 1060 '---NO SUBGOAL HERE, EMPTY
870 GS$(GSP) = MATRIX$(HASH,LL,1)
880 FOR KK = 2 TO S '---NOW TRANSLATE ARGUMENTS TO GOAL STACK
890 IF MATRIX$(HASH,LL,KK) = "" THEN GSl(GSP,KK-l)=O:GOTO 1040

'---NO ARGUMENT HERE
900 FOR JJ = 2 TO ARITY + 1
910 IF MATRIX$(HASH,LL,KK) = MATRIX$(HASH,l,JJ) THEN GSl(GSP,KK-1)
= GB(JJ-1): GOTO 1040'--SCAN TARGET HEAD CLAUSE TO FIND ASSOCIATION WITH
SUBGOAL VARIABLES
920 NEXT JJ
930 TTT=l
940 WHILE TTT <= LVC '---CHECK IF LOCAL VARIABLE ALREADY EXISTS
9SO IF LV$(TTT) = MATRIX$(HASH,LL,KK) THEN GSl(GSP,KK-1) = LVl(TTT):
GOTO 1040
960 TTT = TTT+l
970 WEND
980 '-----MUST HAVE NEW LOCAL VARIABLE~SO EXPAND LOCAL VARIABLE TRACKING
990 '-----ALSO MUST EXPAND ENVIRONMENT FILE
1000 EFP=EFP+l: HOLD= ASC(LEFT$(MATRIX$(HASH,LL,KK),l))
1010 IF HOLD >= 97 AND HOLD <= 122 THEN EFl(EFP) = l:EF$(EFP) =
MATRIX$(HASH,LL,KK) ELSE EFl(EFP) = 0
1020 LVC=LVC+l: LV$(LVC) = MATRIX$(HASH,LL,KK): LVl(LVC) = EFP
1030 GSl(GSP,KK-1) = EFP
1040 NEXT KK
lOSO GSP=GSP+l

1060 NEXT LL
1070 GSP=GSP-1
1080 CP3(CPP) = LVC

42

1090 GOTO 380 '---THIS GOAL COMPLETE - CYCLE BACK FOR NEXT GOAL
1100 '
1110 '-~-------ARGUMENT FILE LOADING SUBROUTINE--------------~----------
1120 '
1130 TEST$ = MID$(KAY$,VAL1+1,VAL2-VAL1-1)
1140 X$ = LEFT$(TEST$,1)
1150 IF ASC(X$) >= 97 AND ASC(X$) <= 122 THEN EF$(TT)=TEST$: EFl(TT)=l:
ELSE EFl(TT)=O
1160 KEEPER$(TT) = TEST$
1170 RETURN
1180 '
1190 '----------RESTART IS ACCESSED AFTER FAILED SEARCHES FOR A FUNCTOR
1200 '----------"POP" CHOICE POINT TO DETERMINE SEARCH POINT
1210 '
1220 GSP = CP2(CPP,5) '---REWRITE GOAL STACK FROM LAST MATCH
1230 GS$(GSP) = MATRIX$(CP(CPP),1,l) '---NOW HAVE PREVIOUS FUNCTOR
1240 FOR LL = 1 TO 4
1250 GSl(GSP,LL) = CP2(CPP,LL) '---PLACE AF LOCATIONS IN GOAL STACK
1260 IF CPl(CPP,LL)=l THEN EFl(CP2(CPP,LL))=O '---UNBIND ARGS IF NEEDED
1270 NEXT LL
1280 HASH = CP(CPP) + 1
1290 EFP = EFP -CP3(CPP)
1300 CPP = CPP - 1
1310 GOTO 450 '---BACKTRACK WITH THIS
1320 '
1330 '----THIS PORTION INSTANTIATES FACTS WITH THEIR RESPECTIVE EF LOCS
1340 '
1350 FOR LL = 1 TO 4
1360 HOLD(LL) = 0
1370 NEXT LL
1380 FOR LL = 1 TO 4
1390 TT= GSl(GSP,LL): IF TT= 0 THEN CPl(CPP,LL)=O: GOTO 1510 '---DONE
1400 TEST$ = MATRIX$(HASH,l,LL+l)
1410 X$ = LEFf$(TEST$,l)
1420 IF ASC(X$) <= 96 OR ASC(X$) >= 123 THEN CPl(CPP,LL)=O: GOTO 1510
1430 IF EFl(TT) = 0 THEN EF$(TT) = TEST$: EFl(TT)=l: CPl(CPP,LL)=l:HOLD
(LL) = TT:GOTO 1510
1440 IF TEST$ = EF$(TT) THEN CPl(CPP,LL)=O: GOTO 1510
1450 FAIL = 0: GOSUB 2420: CPP=CPP-1
1460 FOR LL = 1 TO 4
1470 IF HOLD(LL) <> 0 THEN EFl(HOLD(LL)) = 0
1480 NEXT LL
1490 GOTO 690
1500 '-----CHECKED FOR SMALL CHARACTER - BIND IF IT IS
1510 NEXT LL
1520 GSP = GSP - 1
1530 IF GSP <> O GOTO 380 '---DO NEXT GOAL ON GOAL STACK
1540 '

1550 '----------SUCCESS PORTION OUTPUTS NEW BINDINGS TO OPERATOR
1560 '
1570 OOT = 0
1580 FOR KK = 1 TO 4
1590 IF KEEPER$(KK) = "" GOTO 1620

43

1600 IF ASC(LEFT$(KEEPER$(KK), 1)) < 97 THEN PRINT KEEPER$(KK)."="EF$(KK):
OOT=l
1610 NEXT KK
1620 IF OOT = 0 THEN PRINT "TRUE" '---NO BINDINGS, T/F QUERY
1630 GOOD=O:GOTO 230 '---GET A NEW QUERY OR FORCED BACKTRACKING
1640 '
1650 '----------THIS AREA FINDS THE CORRECT LOCATION IN FILE FOR A GOAL
1660 '
1670 PLUG = HASH+24 '---SET LIMIT OF SEARCH WITHIN REASON
1680 IF PLUG > 100 THEN PLUG = PLUG - 100 '---CIRCULAR FILE
1690 IF MATRIX$(HASH,1,1) = "'' GOTO 1810 '---EMPTY SPOT FOUND
1700 IF MATRIX$(HASH,1,1) = RULE$ GOTO 1750'---COLLISION, CHECK VALIDITY
1710 HASH = HASH + 1: IF HASH = 101 THEN HASH= 0
1720 IF HASH = PLUG THEN PRINT "MEMORY FULL, ENTRY DISALLOWED": GOTO 230
1730 GOTO 1690
1740 '
1750 IF TIST = 1 GOTO 1710
1760 PRINT "THIS FUNCTOR ALREADY EXISTS ••• "
1770 INPUT "REDUNDANT ENTRY(R), WRITEOVER(W) OR ABORT(touch enter)
DESIRED? "; RR$
1780 IF RR$ = "R" OR RR$ = "r" THEN TIST = l:GOTO 1710 '---LOOK FOR SPOT
1790 IF RR$ = "" THEN RETURN
1800 '-----LOAD FUNCTOR HERE, THEN GOSUB TO LOAD ARGUMENTS
1810 MATRIX$(HASH,l,l) = RULE$
1820 SUB2=1: WALl=INSTR(KAY$,":=")
1830 IF WALl = 0 THEN WALl = INSTR(WAL2,KAY$, ")"): K=l '---MUST BE FACT .
1840 GOSUB 1890
1850 RETURN
1860 '
1870 '----------ARGUMENTS PORTION SCANS INPUT AND LOADS ARGS TO FILE----
1880 '
1890 OOT = 0
1900 FOR TT = 2 TO 5
1910 VAL2 = INSTR(WAL2+1,KAY$,"/")
1920 IF VAL2 >= WALl OR VAL2 = 0 THEN VAL2 = INSTR(WAL2,KAY$,")"): OOT=l
1930 MATRIX$(HASH,SUB2,TT) = MID$(KAY$,WAL2+1,VAL2-WAL2-l)
1940 WAL2 = VAL2
1950 IF OOT = 1 GOTO 1990
1960 NEXT TT
1970 PRINT "TOO MANY ARGUMENTS - ENTER AGAIN"
1980 MA TRIX$ (HASH, 1 , 1) = "" : RR$ = '"' : RETURN
1990 IF TT= 5 THEN Al = 2: A2 = 1 ELSE Al = 1: A2 =Tr+ 1
2000 RETURN
2010 '
2020 '----------THIS SUBROUTINE LOADS GOAL STACK WITH INITIAL QUERY
2030 '

44

2040 OOTl = 0
2050 VALl = INSTR(WAL1,KAY$,"(")
2060 GS$(GSP) = LEFf$(KAY$,VAL1-1) '---LOAD FUNCTOR ONTO GOAL STACK
2070 FOR TT = 1 TO 4
2080 VAL2 = INSTR(VAL1+1,KAY$,"/")
2090 IF VAL2 = 0 THEN VAL2 = INSTR(VAL1,KAY$,")"):OOT1=1
2100 GSl(GSP,TT) = TT
2110 GOSUB 1130 '---NOW LOAD ARGUMENTS
2120 VALl = VAL2
2130 IF OOTl = 1 GOTO 2170 '---NO MORE ARGUMENTS
2140 EFP = EFP + 1
2150 NEXT TT '---CYCLE BACK TO SCAN FOR MORE ARGUMENTS
2160 OOTl = 0
2170 FOR LL = TT+l TO 4
2180 GSl(GSP,LL) = 0
2190 KEEPER$ (LL). = ""
2200 NEXT LL '---CLEAR REMAINING GOAL STACK LOCATIONS
2210 RETURN
2220 '
2230 '----------THIS SUBROUTINE CLEARS UNUSED STORAGE LOCATIONS IN FILE
2240 '
2250 FOR LL Al TO 5
2260 FOR KK = A2 TO 5
2270 MATRIX$(HASH,LL,KK) = ""
2280 NEXT KK
2290 NEXT LL
2300 RETURN
2310 '
2320 '----------HASHING SCHEME FOR APPROXIMATE LOCATION OF GOAL--------
2330 '
2340 HASH = INT(3.8*(ASC(LEFf$(RULE$,1))-96))
2350 RETURN
2360 '
2370 '----------THIS SUBROUTINE SEARCHES FOR EXACT FUNCTOR MATCH IN FILE
2380 '
2390 FAIL = 0
2400 PLUG = HASH+24: IF PLUG > 100 THEN PLUG = PLUG - 100
2410 IF MATRIX$(HASH,1,1) = GS$(GSP) GOTO 2460
2420 HASH = HASH+l: IF HASH > 100 THEN HASH = HASH - 100
2430 IF HASH = PLUG THEN FAIL = 1: RETURN
2440 GOTO 2410
2450'---CONFIRM ARITY MATCH HERE
2460 CNT = 1
2470 WHILE MATRIX$(HASH,1,CNT+l) <> '"'
2480 CNT = CNT+l
2490 WEND
2500 CNT = CNT-1
2510 IF CNT <> ARITY GOTO 2420 '---FAILED ARITY TEST, TRY AGAIN
2520 '---IF FLOW REACHES HERE, DEFINITELY HAVE A MATCH - PROCESS IT
2530 RETURN
2540 '

45

2550 '-----------THIS SUB LOADS EF AFI'ER SUCCESSFUL GOAL SEARCH---------
2560 '
2570 CPP = CPP+l
2580 FOR TT = 1 TO 4
2590 CP2(CPP,TT) = GSl(GSP,TT)
2600 NEXT TT
2610 CP2(CPP,5) = GSP
2620 CP(CPP) = HASH
2630 RETURN
2640 '

'---ALSO DON'T FORGET FILE LOCATION OF MATCH

2650 '-----------THIS SUBROUTINE LOADS TEMPORARY BUFFER FOR CURRENT GOAL
2660 ' .
2670 FOR AAA = 1 TO 4
2680 GB(AAA) = GSl(GSP,AAA):CPl(CPP,AAA) = 0
2690 NEXT AAA
2700 RETURN
2710 '
2720 '----------THIS PORTION OVERSEES LOADING OF RULES & FACTS INPUTTED
2730 '
2740 WAL2 = INSTR(KAY$,"(")
2750 RULE$ = LEFr$(KAY$,WAL2-l)
2760 GOSUB 2340
2770 GOSUB 1670
2780 IF RR$ = "" GOTO 230
2790 GOSUB 2250
2800 IF K = 1 GOTO 230
2810 '

'---HASHING FOR APPROX FILE LOCATION
'---NOW GET A CLEAR POSITION IN FILE

'---NO LOCATIONS AVAILABLE - ABORT
'---CLEAR OUT REMAINING FILE PLACES

'---AWAIT NEW INPUT

2820 '----------THIS PORTION OVERSEES LOADING OF RULES-----------------
2830 '
2840 FOR SUB2 = 2 TO 5
2850 WALl = WAL1+2
2860 WAL2 = INSTR(WAL1,KAY$,"(")
2870 MATRIX$(HASH,SUB2,l) = MID$(KAY$,WAL1,WAL2-WAL1)'---SUBHEAD LOADED
2880 WALl = INSTR(WAL2,KAY$,")")
2890 GOSUB 1890 '---NOW LOAD ARGUMENTS OF SUBHEADING
2900 IF WALl = LEN(KAY$)-l GOTO 230 '---END OF INPUT STRING
2910 NEXT SUB2
2920 Al=l: A2=1: GOSUB 2250 '---IF FALL THROUGH, TOO MANY SUBGOALS
2930 PRINT ":TOO MANY SUBGOALS - ENTER AGAIN"
2940 GOTO 230

APPENDIX B

SKETCH OF FACILITIES (CPU)

6
6*(1 of 4) i/o P23

Bidir
Mux Pl8
i 0

t-------•--•P6 (A: D)

24 s
-+-PIS r-_._ _ __._,

0 d 8
Goal d P2

Pll Stack d 24

Pl

cont addr P6(A:D)

0

S Bit
. c Up/Down

GSP)

\7 .
t '7

GSP=O t
CPP=O

Pl3

c
I/O goal e

PIO P24

•
cont o
Choice Pt

Stack
addr cs

5

0

S Bit
Up/Down

(CPP)
c

B arg(l) 8*

P4

8 .------P23 i 9*(1 of 2)
Bidir

P20 i o Mux c i

P9

9

i/o

P7

24

PB P6(A:D)

6

0

6 Bit
Up/Dn
(Emp)

0

d c

9

u arg(2) .,.. _ __._.(lof4) o.,_--p23 P3
f arg(3) Bidir
f arg(4) Mux
e tag 'I
r ari ty ~....J.;;;;;...__..__ _ __..

PIS
P20

P21 ·

1
o Mux

Control
Logic

<I/O>da ------------
<I/O>; ~-----------------
FAIL~---------------------

46

01-----11- P2S
CPP=O
GSP=O

F=O(ALU)

Pipeline Output

<M>da
dl<M>

P18 i

P24 c

P25

P23

i i
6*(1 of 3)

Mux

D(lsb's)

AMD 2910

7

a
u Store

ROM
d

0

7

P12 P26 P27 P22 Pl8

6

0 c c d c 0

3 Bit 4*(1 of 2) o a LV'IT
Up Cnt o d
(LVC)

AMD 2901
i a b Cn

f
d

8*9
Lookup

Rom
a

Mux

f --to control logic

,...----~~P24

4

,-------ii;M' ... ~ P22
2

.---~,~, .,~ P21
2

r---~~ P17

47

To 3
Control

Logic
.... r Pipeline

11

dr<I/O>
<M>da ~-__,
SUCCESS ---
FAILURE ----___..
<M>dr - ~------ 4

Pl

4 4 2

P3 P4 P7 PB pg Pll

LIST OF REFERENCES

{l} Lemmons, Phil."Japan and the Fifth Generation." Byte, November
1983, pp. 394-401.

{2} Hayes-Roth, Fredrick "The Knowledge-Based Expert System: A
Tutorial," IEEE Computer Society (September 1984):11-28.

{3} D'Ambrosio, Bruce "Expert Systems-Myth or Reality?" Byte, January
1985, pp. 275-282.

{4} Thompson, Beverly A. and Thompson, William A. "Inside an Expert
System." Byte, April 1985, pp. 315-330.

{5} Warren, David H. Prolog-The Language and its Implementation
Compared with Lisp. Edinburgh, Scotland: University of Edinburgh,
1977.

{6} Clocksin, W.F. and Mellish, C.S. Programming in Prolog. New York:
Springer-Verlag, 1981.

{7} Despain, Alvin M., and Patt, Yale N. "Aquarius--A High Performance
Computing System for Symbolic/Numeric Applications" IEEE Proceed
ings. October 1984, p. 376.

{8} Dobry, T.P., Patt, Y.N., and Despain, A.M. "Design Decisions
Influencing the Microarchitecture for a Prolog Machine," Micro 17
Proceedings. October 1984, p. 87.

{9} Degroot, Doug.Prolog and Knowledge Information Processing: A
Tutorial. New York: IBM Research, T.J. Watson Research Center,
1984.

{10} Rigas, H., Booth, T. "Artificial Intelligence Research in Japan,"
IEEE Computer Society. Sept. 1985.

{11} Barr, A., and Feigenbaum, E.A. The Handbook of Artificial Intelli
gence, Vol. II. Stanford, Cal.: Stanford University, 1982.

{12} Siewiorek, D.P., Bell, G.C., and Newell, A. Computer Structures:
Principles and Examples. New York: McGraw-Hill, Inc., 1982.

48

	A Microsequenced Prolog Inference Engine
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	TABLE OF CONTENTS
	iii

	LIST OF TABLES
	iv

	LIST OF FIGURES
	v

	I. INTRODUCTION
	01
	02

	II. DEFINING AN EXPERT SYSTEM
	03
	04
	05

	III. PROLOG AS THE LANGUAGE
	06
	07

	IV. PROLOG ORIENTATION
	Syntax
	08
	09

	Prolog Execution Methodology
	Sample Interactions with a Prolog Machine
	10
	11

	V. INFERENCE ENGINE CONSIDERATIONS
	Overview
	12
	13
	14

	UPM Design Criteria
	15
	16
	17

	VI. UPM REALIZATION
	Description of Facilities
	Memory Processor
	18

	Input/Output Processor
	19

	Central Processing Unit
	20
	21
	22
	23
	24
	25

	Register Behavior During a Query
	26
	27
	28

	Implementation Notes
	29
	30

	Proposed Microstore and Facilities
	31
	32
	33
	34
	35

	VII. CONCLUSIONS
	36
	37
	38

	APPENDIX A. BASIC EMULATION OF ALGORITHM
	39
	40
	41
	42
	43
	44
	45

	APPENDIX B. SKETCH OF FACILITIES (CPU)
	46
	47

	LIST OF REFERENCES
	48

