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ABSTRACT 

- A mathematical analysis seeking an accurate measure of 

the worth of ical integration techniques used for real- 

time digital flight simulation problems is presented. 

This investigation allows the subject of "bestu integra- 

tion methods to be pursued making emphasis on the choice of 

practical steps and the use of available mathematical tech- 

niques to illustrate and evaluate a potential root matching 

approach involving a selected first-order differential 

system. 

This study allows certain evaluational techniques to be 

developed. Notable among these are the schemes for compar- 

ing roots of sampled ideal integrators to roots of sampled 

approximated integrators, the development of an integration 

and of an iteration formula, and the creation of a computer 

program. 
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PREFACE 

The study presented in this thesis seeks an accurate 

measure of the worth of numerical integration methods used 

in flight simulation problems. The emphasis here is on the 

choice of practical steps and the use of available mathemat- 

ical techniques to evaluate a potential root matching ap- 

proach involving a selective first-order differential system. 

This study assumes a knowledge of numerical analysis termi- 

nology and techniques. A computer program is developed with 

the aid of an HP-41CV hand-held calculator system which is 

then written in Fortran and run in the Harris 800 computer. 

Section I explains how integration methods have been 

evaluated in the past and how typical textbooks today com- 

pare them. The criteria for comparison of the various meth- 

ods is outlined along with a brief description of the pro- 

gram capabilities. 

Section 11 is an illustration of the theoretical basis 

for the root comparison techniques. Included are arguments 

and techniques as to how to compare roots of sampled ideal 

integrators to roots of sampled approximated integrators. 

Section I11 shows the development of a form of integra- 

tion and of iteration formulas from the closed quadrature 

iv 



formula. There follows a discussion of the z-transform 

method to describe a numerical method which can be used to 

approximate the desired solution of a given differential 

equation. 

Section IV discusses the four methods of integration 

which were used to investigate the root error problem. In- 

cluded is a summary of their key characteristics from a gen- 

eral and comparative point of view. 

Section V illustrates the results of the computer pro- 

grams with plots to compare the stability range, the per- 

cent constant root error and the transient root errors of 

the four methods under investigation. Included are argu- 

ments and techniques as to how to match the numerical 

transient root to its analytic counterpart. 

Section VI explains the advantages and disadvantages of 

the root matching techniques as a tool for measuring the 

accuracy of integration methods and finally, in Section VII 

recommendations of other potential areas of investigation in 

the field of the evaluation of numerical integration tech- 

niques are presented. 
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SECTION I 

INTRODUCTION 

A significant task in flight simulation is to numeri- 

cally solve the differential equations of motion for the 

vehicle of concern, For this task a method of numerical 

integration is required. 

Although a theoretically infinite number of numerical 

integration techniques exist, fewer than a half dozen are 

popularly chosen as candidates each time a flight simulator 

is developed. According to Knoop (1) the final selection of 

one method of integration is normally based on two consider- 

ations: 

1. The apparent past success of the method for other 
simulations. 

2. The apparent accuracy of the method for present 
simulation as judged by several empirical tests. 

Classical methods like those analyzed and developed by 

Knoop (1) and Nigro (2) were basically evaluated on the sta- 

bility, the truncation error, the round-off error and the 

propagation error. Their tests are time consuming, labori- 

ous and lacking root consistency, not permitting the inte- 

gration methods to be effectively compared so that an easy 

selection can be made of a method best suited for the prob- 

lem at hand. 



On the other hand, today's typical textbooks do not 

generate adequate techniques for root measures. Ball ( 3 ) ,  

Forsythe ( 4 ) ,  Kreyszig ( 5 ) ,  Linz (6) and Scheid ( 7 ) ,  for 

example, based the comparison of the accuracy of integration 

methods in the case of the initial value problem, on the 

absolute value of error. To others, like Ferziger ( 8 ) ,  it 

is more appropriate to discuss numerical methods in terms of 

amplitude and phase errors rather than the apparently sim- 

pler truncation error when one is interested in problems 

with oscillatory solutions. 

As a result of this, in 1980 a study was begun to test 

a proposed measure of accuracy of numerical integration 

techniques for application of complex numbers to a selected 

first-order differential system. 

This test consists of matching the percent root error 

to the transient root error. This objective was conducted 

in two phases over a two-year period, one phase being de- 

voted exclusively to the % root error and % transient 

root error analysis and the second phase to the implementa- 

tion of a Fortran computer program. 

~ u r i n ~  the first phase, the theoretical bases for the 

root comparison techniques were set, the iteration formula 

for calculating the root accuracies was developed from the 

quadrature formula as well as a form of integration formula 

for computing the numerical and analytical transient root 



errors. Four candidate methods of integration were chosen 

to implement this test and they are: 033 Mod Gurk, 012 

Second-Order Adams, MTH .01-.9 and MTH .0-1. The assump- 

tions made in order to perform this test are as follows: 

1. The system does not have to be stable but the in- 

tegration method should be stable. 

2. The system will be excited by a single input driv- 

ing delta function (unit impulse). 

3 .  The roots will be bounded in a complex z-plane and 

should be independent of the system. 

The criteria for comparison of the four integration 

methods, in order of importance is: 

1. The stability of the method. 

2. The order of accuracy provided by each of the 

methods being compared. 

The iteration formula developed from the quadrature 

formula is used to compare the four methods. The iteration 

formula calculates the sampled approximated root A'T, which 

is also called the computed, iterated or exact root. This 

root is then compared to the sampled ideal root AT, also 

called the ideal root, and recalculated until their absolute 

value is within a predetermined limit or % accuracy. The 

final iterated A ' T  root is then used to initialize the inte- 

gration formula, ultimately calculating the transient root 

y... . , - - - -- 
7 = error, Rss. 

5 



The Rss error plot of the integration formula will give 

insight about the error due to the unit impulse driver. 

Also, the transient could be identified, which in turn is a 

good measure of response of a system. On the other hand, 

the resonance response could be analyzed via the constant 

root error plot. 

These relative errors versus its root locations may be 

sufficient enough to help predict and evaluate ahead of time 

the accuracy of an integration technique and lead us into a 

solution of the root error problem being investigated. 

The second phase of this study is the generation of a 

Fortran computer program to implement the theoretical work 

performed during the first phase. The resulting program 

REAP, Root Error Analyzer Program, is capable of evaluating 

integration methods for applications to first-order differ- 

ential systems by calculating the constant root errors and 

the transient root errors. 

Originally, the program was implemented in RPN (Reverse 

Polish Notation) for the Hewlett Packard HP-41CV hand-held 

calculator system but later programmed and executed in For- 

tran 77 using the Harris 800 computer at the University of 

Central Florida via batch processing. 

The calculations were performed in single-precision, 

floating-point arithmetic. 

In using this program, one must supply certain input 



data which describes both the integration method and the 

accuracy desired for the constant toot error. 

The program computes and outputs key cteristics of 

the constant root error and the transient root error. 

From these the user can easily discern the advantages or 

disadvantages afforded by the use of the method for the par- 

ticular root error problem of concern. 

A listing of the Root Error Analyzer Program which con- 

sists of the % Root Error, Numerical Rss Error and Analytic 

Rss Error routines appears in Appendix B. 



SECTION I1 

THEORETICAL BASES FOR 

ROOT COMPARISON TECHNIQUES 

The theoretical work in this analysis which forms a 

basis for the computer program is presented in this section, 

i.e., the arguments as to how to compare "roots" of contin- 

uous integrators to "roots" of sampled integrators. 

Continuous Inteqrator Concepts 

We shall restrict ourselves to a system having an ex- 

ponential response, so in order to illustrate the root com- 

parison techniques, a first-order system with 

is selected as the significant test function, where A is a 

complex number and represents the true or natural resonant 

frequency. 

We are interested in frequencies with non-positive real 

parts, i.e., Re(A)<O. If the differential equation 1 is 

solved analytically, its solution is found to be 

The real part of A determines the rate at which the 

solution grows or decays and its imaginary part is 2n times 





Sampled Integrator Concepts 

An example of a sampled integrato shown in Figure 

2.  The effects of sampling on an integrator system are best 

illustrated through the normalized z-transform. 

f (t)Xf* (t) sampler 
T 

The sampler takes the time function f (t) and generates 

a sequence of delta functions f*(t). The area under each 

delta function corresponds to f(t) at the sampling instant, 

so 

where T is the sampling interval ( e ,  in our case the com- 

putational interval, T). 
-n 

We define a z-transform, so B [  6(t-n~) ] = z . NOTE: 

fi(t-n~) ++ e under the Laplace transform, hence when in 

the s domain where the characteristic roots are easily de- 

termined, we also see 

Examples of z-transforms from Karworski (9) 

1 
f (t) =e -At ++ - 

s+A 

(b) Unit step ~ ( t )  ++ 
1 
S 



I f  t h e  r o o t s  of z are wi th in  t h e  u n i t  circle i n  t h e  z 

plane,  then  t h e  s o l u t i o n  i s  stable. 

I n  F igure  2 t h e  i n t e g r a t o r  func t ion  is I(z) which rep- 

r e s e n t s  t h e  z-transform of t h e  i n t e g r a t i o n  formula i s  an 

approximation t o  t h e  i d e a l  i n t e g r a t i o n  func t ion .  

The i n t e g r a t i o n  formula i s  developed i n  Sec t ion  111. 

w Y Y* 
+ - I ( z )  - 

i n p u t  ' ou tpu t  
sampler sampler 

1 

?J ( 2 )  J - A -  y ( 2 )  
.& - 

Figure  2. Sampled Approximated I n t e g r a t o r  

Therefore  t h e  t r a n s f e r  func t ion  f o r  t h i s  sampled 

approximated i n t e g r a t o r  becomes 

y  (2 )  H(z)=- = I ( z )  U(z) 1-A1 (z)  

I t  i s  t h e  i n t e n t  of t h i s  s e c t i o n  t o  in t roduce  t h e  r o o t  

comparison techniques  of sampled i d e a l  and approximated 

i n t e g r a t o r s ;  i n  o t h e r  words, t h e  r o o t s  of Yi(z) versus  Y ( z ) ,  

where y r ( t )  i s  def ined  as t h e  sampled i d e a l  s o l u t i o n  and 

yg (t) is def ined as t h e  sampled approximated so lu t ion .  For 

s i m p l i c i t y  w e  w i l l  l e t  y,*(t)  = y i n  our  a n a l y s i s .  



I f  w e  want t h e  primary r o o t  of 1 
t o  be a t  - -  

I(z) 
A 

s = A  f o r  t h e  best i n t e g r a t i o n  formula, then the arguments 

f o r  doing t h i s  are as fol lows:  

A The z-transform of - S-A i s ,  

where t h e  exac t  r o o t  of t h e  sampled i d e a l  i n t e g r a t o r  then 

becomes z=eAT and t h e  comparison of H (z) and Hi (z) becomes 

1 - -  -1 AT 
I ( 2 )  

A G a-z e 

W e  could s u b s t i t u t e  z=eAT i n t o  1-2 -'eAT then 

b u t  

But i n s t e a d ,  l e t  

s o  t h a t  A'-A i s  a measure of t h e  small e r r o r  i n  t h e  r o o t  

p o s i t i o n ,  where A '  is t h e  r o o t  of t h e  sampled i n t e g r a t o r ,  

t h a t  is, t h e  i t e r a t e d  roo t .  



We choose not to solve '- - A=O since this yields, 
I(z1 

in general, a complicated polynominal. 

But if we solve for A', 

1 I 

the calculations are easy and the distance (Af-A) should, 

in concept, be the same. Hence comparing the roots of % 
and Y should yield some root matching and if the primary 

root of Yi matches the primary root of Y ,  the damping and 

frequency characteristics solutions equations and 

3 will be similar. 

The calculation of A '  is done by means of an iterative 

process in which the percentage of error is computed as de- 

scribed in Section V, using successively different (larger) 

and smaller) values of A until the desired percentage is 

attained. 

Using the z-transform method we have been able to 

exactly set up the numerical integration scheme in a form 

which lends itself for exact analysis, since it provides the 

basis for analyzing all equal interval integration schemes-- 

not only of stability analysis, but also for root error 

analysis. 



SECTION 111 

FORM OF INTEGRATION FORMULAS 

The iteration and the integration formulas were derived 

from the closed quadrature formula described in (lo), 

where T is the quadrature interval, ai and bi are the 

known coefficients of the quadrature formula and, K is 

the order of the formula. 

If we let K-3 the quadrature formula becomes 

Since this equation is a recursion relation involving 

four sequences of numbers, yn, Yn-l, Yn,2r Yn,3t then, since 

n is arbitrary, the above equation may also be written 

The z-transform method is used to describe a numerical 

method which can be used to approximate the desired solution 

of a system of ordinary differential equations. 

This method is a technique for deriving a difference 

equation whose solution approximates the solution of a given 



d i f f e r e n t i a l  equation.  The d i f f e r e n c e  equat ion s o  der ived 

i s  requi red  t o  have t h e  fol lowing two p rope r t i e s :  

(a )  I t  must have a s o l u t i o n  t h a t  has  t h e  same damping 

and frequency c h a r a c t e r i s t i c s  as t h e  continuous 

s o l u t i o n  ( s o l u t i o n  of t h e  d i f f e r e n t i a l  equa t ion ) .  

(b) I t  must have a s o l u t i o n  wi th  a f i n a l  va lue  cor- 

responding t o  t h e  s o l u t i o n  of t h e  d i f f e r e n t i a l  

so lu t ion .  

Proper ty  ( a )  i s  s a t i s f i e d  i f  t h e  r o o t s  of t h e  d i s c r e t e  

r e p r e s e n t a t i o n  match t h e  r o o t s  of t h e  approximate d i s c r e t e  

r ep resen ta t ion .  

Proper ty  (b) is  s a t i s f i e d  i f  t h e  f i n a l  va lue  of t h e  

ou tpu t  func t ion  of both  r e p r e s e n t a t i o n s  (given above) a r e  

t h e  same. 

I n  employing t h i s  method w e  are matching ou r  sampled 

i d e a l  system wi th  t h e  sampled approximated system. 

I f  w e  t a k e  t h e  z-transform t o  equat ion 5 we g e t  

Assuming i n i t i a l  condi t ions  are set t o  zero ,  i .e. ,  

Yo = Y1 = Y2 = 0, w e  now o b t a i n  





i t e r a t i o n  formula ; 

t h e  l e f t  side i s  t h e  r o o t  of t h e  sampled approximated i n t e -  

g r a t o r  whi le  AT i s  t h e  r o o t  of t h e  sampled i d e a l  i n t e g r a t o r .  

From our  sampled approximated i n t e g r a t o r  system w e  

found t h e  z-transform func t ion  t o  be ,  

Expanding Y ( z )  w e  g e t  t h e  s o l u t i o n  of t h e  i n t e g r a t i o n  

formula, 

One r o o t  of t h e  denominator of t h e  above formula w i l l  be 

i n  the v i c i n i t y  of z=+1, i f  AT -0. The s i g n i f i c a n c e  of 

t h i s  i s  t h a t  i f  w e  f i r s t  e l i m i n a t e  t h i s  r o o t ,  then w e  

w i l l  have a quadra t i c  t o  so lve ,  and w e  w i l l  be able t o  see 

how t h e  r o o t s  of t h e  sampled approximated i n t e g r a t o r  sys- 

tem compare t o  t h e  sampled i d e a l  i n t e g r a t o r  (11). 



SECTION IV 

NUMERICAL INTEGRATION METHODS 

There are four methods of integration which the author 

used to investigate the root error problem, and two of them 

are known to be popularly selected for use in flight simula- 

tion. These are not self-starting methods. Therefore, some 

other procedure must be used to obtain sufficient past 

values, 

These are discussed below from both a general and a 

comparative point of view, Table I sunrmarizes the key char- 

acteristics of these four methods, taken from Nigro (2) and 

Knoop (1) documents, which are arranged in order of increas- 

ing stability range. The MTH methods were derived by the 

SAP program (1). 

0 -3 3 Mod Gurk ~ethod* 

* 
The double subscript, e . g . ,  Oij  means that the method 

of integration uses i past values of the variable and 
j past values of its derivative to compute the present 
value of the dependent variable. The "0" signifies an 
open integration method, i.e. one which does not use the 
present value of the derivative (13). 



The 033 Mod Gurk method is so named because it is a 

nonclassical, open three-step method derived by H.M. Gurk 

(12) specifically for the F-100 A flight simulation problem 

(2) . It is classical to the second degree, has a truncation 

error coefficient of 0.03297, and has a stability range of 

(-0.82134,O). Its stability and propagated-error damping 

rate characteristics make it excellently suited for first- 

order problems of the form 

Yi = +Ayi, for Re (A) c 0 

Whereas many three-step methods tend to oscillate about 

solutions, the 033 Mod Gurk method produces a smooth, 

nonoscillating solution. 

As a three-step method with mixed coefficients, it is 

time-consuming to compute. 

The 033 Mod Gurk method is possibly the most often 

used and probably the most over-rated method in flight simu- 

lation work according to Knoop (1). Useful for solutions of 

the aerodynamic equations of the helicopter rotors, its sin- 

gle exceptional characteristic is its smoothness in approxi- 

mating solutions of the form 

Yi = eAT, for Re(A) < 0 

It has enjoyed great popularity primarily because, first, it 

is of the only three-step methods ever suggested or recom- 

mended for use in flight simulation (2) , and second, it 



appeared to produce satisfactory results for the F-100A 

simulation problem (1). 

0 Second-Order Adams Method -1 2 

Possibly second in popularity in simulation work is the 

Second-Order Adams method. Submarines and most aircraft 

dynamic equations use this method, which is often mistakenly 

referred to as the Trapezoidal Method according to Nigro 

(13). This is a two-step 012 method which, because of its 

simple coefficients, is extremely rapid to compute. While 

having a larger coefficient of truncation error (.417) than 

the 033 Mod Gurk method, it is classical to the third 

degree and thus matches three terms of the Taylor series. 

Thus depending on the integration interval, it could produce 

a smaller truncation error term and usually does with the 

At's popularly used in simulation. 

The Second-Order Adams method has a stability interval 

of l , O ) ,  slightly larger than that for Mod Gurk. The 

Adams method, therefore, could use an integration interval 

up to .085 for the F-100A problem, considering stability 

alone. Like the 033 Mod Gurk method, the Second-Order 

Adams method has excellent propagated-error damping 

characteristics. 



The MTH.01-.9 is a three-step nonclassical method with 

a stability range of (-.950,0) and a truncation error coef- 

ficient of .012. It is classical to the second degree. As 

a three-step method with mixed coefficients, it is time- 

consuming to compute. This integration formula shifts the 

roots toward increased stability. This can be disastrous if 

the actual system is mildly unstable. Then one would not 

observe the instability. They could see only a weakly 

damped oscillatory system. Therefore, MTH.01-.9 should 
-. v; -: 

never be used to investigate a system. However, i f ' t h e  

continuous system to be simulated is known to be uncondi- 

tionally stable, then MTH.01-.9 may be an effective formula. 

MTH.01-1 Method 

@gig:= 
The MTH.01-1 method is a- two-step nonclassical method 

with a stability range of (-1.020,0), fairly close to that 

of Second-Order Adams. Like the 033 Mod Gurk method, the 



20 

MTH.01-1 method is classical to the second degree but 

slightly faster to compute. It has a smaller truncation 

error coefficient (.009) than the MTH.01-.9 method. 



TABLE I 

* 
Taken from Knoop's document (1) 

Method 

. 

Mod Gurk 

O33 

MTH 
.01-. 9 

Second 
Order 
Adams 

O12 
I 

MTH 
.01-1 

C 

Order 

3 step 
non- 

classical 

3 step 
non- 

classical 

2step 
classical 

2 step 
non- 

classical 

E i  
1.145208 

1.641586 

0.614318 

1.707964 

1.0 

1.5 

1.006667 

1.488056 

~oefficients'Coefficients'~oefficients 
a 

b: 

-0. 201087 

-1.008013 

Stability 
Range 

-0.821 

-0.95 

-1.0 

-1 . 020 

, 

ba: 
0.54879 

0.275097 

Truncation 
Error 

Coefficient 

0.03297 

0. 012 

0.417 

0.009 

0.0097546 

-0.161177 

0. 0 

-0.5 

-0 006667 

-0.494722 

Degree 
to which 
Classical 

2 

2 

3 

2 

0.375927 

0.214822 

0. 0 

0. 0 

0. 0 

0. 0 



SECTION V 

EMPIRICAL RESULTS 

In order to be able to judge the relative merits of one 

integration method over another, we must certainly consider 

stability and accuracy. However, stability alone only de- 

termines whether a method is usable or not. 

Findins the Stabilitv Ranae 
of an Intearation Method 

A short computer program is given in Appendix A of a 
* 

method whereby the stability range may be determined for 

any method of integration. The results of the four 

candidate methods are shown in Figure 3. 

This stability plot affords us a method by which we may 

evaluate the stability of a given numerical integration 

technique. 

The equation used for finding the stability range is 

the iteration formula developed in Section 111, where A ' T ~ Y .  

nx where z = ejw and w = m  for n = 1,2,...,60 

- 

* 
The stability range is the largest real value of Y such 
that all roots lie within the unit circle. 





Here t h e  imaginary p a r t  of Y*O where IYI is l a r g e .  

The s t a b i l i t y  range f o r  t h e  four methods under inves- 

t i g a t i o n  were found t o  be as follows: 

(a) Mod Gurk: -0.82134 

(b)  Second-Order Adams : -1.0000 

(c) MTH. 01-. 9: -0.95035 

(d) MTH. 01-1: -1.0154 

Looking a t  t h e  s t a b i l i t y  p l o t  i n  F igure  3 w e  see t h a t  

MTH.01-.9 should show b e s t  r e s u l t s  of  t h e  f o u r  methods com- 

pared i f  a l l  r o o t s  i n s i d e  t h e  f i / 1 0  circle are equa l ly  

l i k e l y .  However, uns t ab le  systems can y i e l d  improper re- 

s u l t s  by appear ing s t a b l e .  

Therefore ,  it i s  b e t t e r  t o  have 

(a) a log-log p l o t  showing t h e  s t a b i l i t y  boundary, 

guaranteeing "good" s imula t ion ,  i. e. , never forc-  

i n g  an uns t ab le  system t o  appear  s t a b l e ;  and 
, 

(b) a log-log p l o t  of t h e  A ' T  p lane  mapping equal  

relat ive accuracy reg ions .  

% Root E r r o r  Ca lcu la t ions  

p rocess  i n  which t h e  percentage  of e r r o r  i s  computed us ing 

success ive ly  d i f f e r e n t  ( l a r g e r  and/or  sma l l e r )  va lues  of A 

u n t i l  t h e  d e s i r e d  percentage  is a t t a i n e d .  The program f o r  

t h i s  procedure is  presented i n  Appendix B. 



The algorithm which is used in solving for the % Root 

Error via the iteration formula, which provides the speci- 

fied accuracy, is summarized and given below as a step by 

step procedure. 

1. Set the Rss flag to zero, RSSFLG= 0 

2. Choose the accuracy desired, error parameter, (in 

% )  for the constant error curve. 

3. Select the form of the integrator of the type, 

A 1- C ai,p 
i=l A'T = 2 

wnere k = 1 + Oj3 MOD GURK METHOD 

k = 2 + MTH 0.01 - 0.9 METHOD 

k = 3 +.012 SECOND-ORDER ADAMS METHOD 

k = 4 + MTH 0.01 - 1.0 
Pick the real axis starting point Xnew. There are 

40 possible values equally spaced on the real axis. 

5. Select the imaginary axis starting point, START. 

6. The formula is normalized by setting the integra- 

tion interval to one, T = l. 

7. From the above information a candidate exact root 

A'T is generated where its real part is (Xnew)T and its ima- 

ginary part is (Ynew) T. 



Now s u b s t i t u t e  z= eAT and expand t h e  r e s u l t i n g  

polynomial u n t i l  w e  g e t  cond i t ions  such t h a t  t h e  c a l c u l a t e d  

root A ' T  = AT + E ,  where E is  t h e  abso lu te  e r r o r  which is 

bounded. 

Furthermore, w e  restrict t h e  r o o t s  of 

3 -i 
( 1 X a i , k ~  ) t o  be wi th in  t h e  u n i t  circle. 

i=l 

9.  W e  seek a r e l a t i v e  e r r o r  E a s  A'T - AT. 
AT 

10. I f  the abso lu te  e r r o r  I A ' T  - A T I  i s  wi th in  t h e  6% 

of t h e  e r r o r  parameter a new e x a c t  r o o t  i s  generated,  o ther -  

w i s e  Ynew i s  i t e r a t e d  v i a  a h a l f  i n t e r v a l  s ea rch  u n t i l  t h e  

e x a c t  and d e s i r e d  r o o t s ,  A ' T  and AT r e spec t ive ly ,  s a t i s f y  
\ 

t h e  accuracy check being sought. 

11. S tep  1 0  i s  repea ted  u n t i l  a l l  t h e  p o s s i b l e  r o o t s  

f o r  t h e  chosen method a r e  ca l cu la t ed .  

Note: The fol lowing approach w a s  o r i g i n a l l y  used t o  

c a l c u l a t e  t h e  a b s o l u t e  e r r o r ,  

DELTAl = R e  ( Y )  - Xnew 

DELTA* = I m ( Y )  - Ynew 

DELTA = / (DELTA1 ) + (DELTA* ) 

where Y= A'T ,  t h e  e x a c t  roo t .  But t h i s  was n o t  a good ap- 

proach because one of the p a r t s  can have a l a r g e  r e l a t i v e  

error, y e t  t h e  o t h e r  p a r t  c o n t r i b u t e s  m o s t  t o  t h e  r o o t ' s  

magnitude. 



The Numeric Development of a Technique f o r  
Evaluat ing an  Integration Method 

I n  t h i s  s e c t i o n  a procedure for computing t h e  l a r g e s t  

t r a n s i e n t  r o o t  e r r o r  and when it occurs  f o r  cons t an t  r o o t  

e r r o r s  i s  presented.  

One of t h e  main f e a t u r e s  of t h i s  technique i s  t h a t  t h e  

t r a n s i e n t  r o o t  e r r o r  of t h e  system can be obta ined with- 

o u t  f i r s t  so lv ing  t h e  d i f f e r e n c e  equat ion which charac te r -  

i z e s  i t s  behavior .  

I n  o r d e r  t o  match t h e  i n t e g r a t i o n  formula t o  a f i r s t -  

o rde r  problem wi th  eAt a s  i ts s o l u t i o n ,  w e  need t o  assume 

e x a c t  s t a r t i n g  values .  L e t  

where y ( n )  is t h e  i n t e g r a t i o n  formula based upon a quadra ture  

formula which computes i t s  next  r e s u l t  based upon o l d  da t a .  

I f  w e  l e t  y ( l ) = e  A ' T  be t h e  p re sen t  va lue  when n= l ,  

then t h e  exac t  s t a r t i n g  va lues  may be assumed a s  fo l lows ,  

, f o r  n = 0 

y(-1)  = e -A'T, f o r  n = -1 

y(-2)  = e  -2A'T , f o r  n = -2 

which can be def ined  as t h e  t h r e e  o l d  va lues  of y ( n )  and i ts  

i n i t i a l  cond i t ions  for o u r  a n a l y s i s .  

The basic a lgor i thm which is  used i n  f i n d i n g  these  er- 

r o r s  i s  summarized and given below as a s t e p  by s t e p  proce- 

dure.  



1. Set the Rss flag to one, RSSFLG = 1 

2. Repeat steps 2 through 10 of the % Root Error Pro- 

gram. 

3. The exact root of the ideal integrator that satis- 

fies the accuracy check being sought is inserted into the 

in n - -A- .e.,z = e is substituted in the 

integration formula of the form, 

4. Compute local error, i.e., the error in one subin- 

terval or sampling instant. 

where EX(nT) = e A'nT is the exact root and y (nT) is the 

calculated solution from the integration formula. 

5 .  Compute true absolute error by multiplying XC(nT) 

by its conjugate 

6. Compute summation of errors 

7. Find arithmetic mean of summation of errors 

8. Find the upper limit of integration. If the pres- 

ent arithmetic mean is less than or equal to one-half of 



i ts  previous va lue  o r  i f  t h e  product of t h e  sampling i n t e r -  

v a l  t i m e s  t h e  real p a r t  of t h e  exact r o o t  i s  g r e a t e r  than ar 

equal  t o  one, t h e  upper l i m i t  of i n t e g r a t i o n  has been found; 

t h a t  i s ,  i f  R s s 2  c - - o r  (-nT). R e  (A'T)  2 1 where AMX i s  
3 

t h e  o l d  l a r g e s t  arithmetic mean and R s s 2  is the new arithme- 

t i c  mean. 

Take square  r o o t  of t h e  summation of a l l  arithme- 

t i c  mean va lue  

where nT r e p r e s e n t s  t h e  number of A ' T ' s  (upper l i m i t  of in- 

t e g r a t i o n ) .  

10. Repeat s t e p  11 of t h e  % Root E r r o r  Program u n t i l  

a l l  t h e  p o s s i b l e  r o o t s  of t h e  chosen method a r e  ca l cu la t ed .  

This  scheme i s  a way t o  test  t h e  t r a n s i e n t  response of 

a system. Given t h e  i n i t i a l  cond i t ions ,  i n  ou r  case t h e  

va lue  of the ou tpu t  t e n s  y (0) , y (-1) , and y (-2) of t h e  in-  

t e g r a t i o n  formula, i t e r a t e  t h i s  ou tpu t  versus  nT and t h e  

response should match t h a t  of t h e  a n a l y t i c  R s s i  e r r o r ,  

The Analy t ic  Development of a Technique 

For Evaluat inq an I n t e g r a t i o n  Methodp 

I n  t h i s  s e c t i o n  a procedure f o r  computing t h e  l a r g e s t  
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Rss error bounded by the upper limit previously found by the 

numerical solution for constant root errors is presented but 

this time is solved analytically. 

The basic algorithm which is used in finding these er- 

rors is presented in Appendix B and summarized and given 

below as a step by step procedure. 

1. Find the roots of the denominator of the integra- 

tion formula under investigation. The integration formula 

is of the form 

For simplicity let 

p = -(al + A1bl) 

q = - (a2 + AWb2) 
r = - (a3 + A' b3) 

then the complex cubic equation may be equated to zero 

2 z 3 + p z  + q z  + r = ~  

which may be reduced to the form ( 5 ) ,  

(root) + a (root) + b = o 

by substituting for z  the value, root - (p/3). 
Here 

1 2 1 
a = $3q - p  1 and b = .Ti(2p3 - 9pq + 27r) 

For solution let, 



then the values of root will be given by, 

therefore the roots of the complex cubic equation become 

Now the complex coefficients p, q and r may be double- 

checked as follows: 

and the integration formula becomes 

2. Solve the above integration formula by the partial 

fraction expansion- method. 



Without solving for the complex constants K1, K2 and K3 we 

get, 

now take the Inverse Laplace Transform to Y ( z ) ,  

I - I *  - [K,(z,)*~ + ICZ(zZ)* + K ~ ( z ~ ) ~ * ]  , w i t h  T = l  

* 
then the first three points of y (t) are 

3. Equate the first three points of tne numerical 

solution to the last three equations above and solve for the 

complex constants K1, K2 and K3. 

In this way the analytic solution is initialized as the 
A numerical solution was. For simplicity let y = f. 

The determinant for this set of equations is 



After solving for K1, K2 and K3 substitute these con- 

stants back into the general analytic integration formula, 

4. Solve the analytic Rss error, i.e., 



* * 8 
where I E X  (t) - f (t) 1 is the complex conjugate of 

* I EX* (t) - f (t) 1 and 

* * 
Here EX (t) and f (t) are the exact and the integration 

formula sampled or pulsed signals respectively at regular 
* 

intervals of T seconds. This sequence of values EX (nT) 
* 

and f (nT) may be represented by a train of impulses 

with the areas or strengths of the impulses equal to the 

magnitude of EX(t) and f(t) at the corresponding instants of 

time. At any given time t = nT, the impulse is 

EX (nT)*&t-nT) and f (nTIe&t-nT) and the train of impulses 

may be represented by the infinite summation 

This representation of a continuous signal by impulses of 

varying amplitude is a mathematical convenience which sim- 

plifies much of the analysis of sampled-data systems. 
* * 

Whether EX (t) and f (t) represent a continuous signal 

EX(t) and f(t) respectively, at every T seconds, or if 
* * 

EX (t) and f (t) are actually sampled or pulsed signals 

at regular intervals of T seconds, the impulse representa- 

tion may be thought of as a switch, as in Figure 4. 



EX (t) EX* (t) 
T 

Figure 4. Ideal Sampler Model 

The switch or ideal sampler closes instantaneously every T 

seconds, and its output at the sampling instants nT is 

If the unit pulse train is &(t) = $(t-n~) 
n=O 

* 
it is observed the EX (t) is simply the multiplication of 

the unit impulse train by the values of EX(t) at the samp- 

ling instants. Hence, equation 9 may be written 

The delayed delta function 6 (t-n~) is an impulse of unit 
area occurring at time t = nT, where nT is a positive real 

constant. Consistent with the definition for 6 (t) , 

Also the unit area property of the impulse requires (14) 

Another property of the delta function is that the integral 

where T is a dummy variable of integration, and provided 

f(t) is a continuous function in an interval including T=nT. 



The proof of this property follows by noting that the inte- 

grand is zero for T+nT; hence the integral may be written 

according to Saucedo (14) 

where A is some arbitrarily small positive quantity. Using 

the theorem of the mean for integrals, integral 10 may be 

written 

Therefore, the analytic Rss error may be written, for t>nT, 

Inter~retation of Results 

The Root Error Analyzer Program has been used to evalu- 

ate four integration methods for application to a selected 

first-order differential system. 

For this empirical study, the problem examined has con- 

sisted of one first-order linear differential system, 



Yi = A y i  , yi(0) = 1 t Real (A) * 0,  

where analytical solution and behavior is well known, 

where the only eigenvalue is X = A. 

The analysis of the four integration methods was done 

at a normalized integration interval of T = 1. At each step 

of the solution, the following parameters were computed and 

printed during the execution of the % Root Error Program: 

1. The sampled ideal root A. 

2. The sampled approximated root A ' .  

3 . The % normalized root error E.  

The problem was subsequently solved numerically and 

analytically using four different methods. The results were 

compared, and a match was found between the numeric and ana- 

lytic transient root error. 

For the Transient Root Error Program the following 

parameters were computed and printed at each step of the 

solution: 

1. The sampled ideal solution, e AnT 

2. The sampled approximated solution, e A' nT . 
3. The approximate numerical solution, y(n). 

4. The approximate analytical solution, yi (n) . 
5. The numerical transient root error, Rss. I 

6. The analytical transient root error, Rssi. 



In solving the cubic equation of the integration forrnu- 

la it was found that the aominant or primary root, el, is 

At the same sampled ideal solution, i.e., z=e . Looking at 

the other two roots, z 2  and z3, we find that they are 

not quite complex conjugates of each other. The contribu- 

tion of these secondary roots to the Rss error was almost 

negligible since their magnitudes were, in the most part, 

less than el, and their corresponding constants, K2 and 

K3, were one to two orders of magnitude smaller than K1 

whose magnitude is approximately equal to 1. 

Summarizing we get, 

At Bt where z1 = e , z 2  = e and z3 = e Ct 

where I K * ~  <<  1 and I K ~ I  <<  1. 

It was also found that the  magnitudes of the roots B 

and C were greater than one, 

I B . ~  > 1 and I c I  > 1. 

The plots of the results for the normalized constant 

root errors are provided in Figures 5 through 7 where A'T~Y. 

In addition to providing a basis for relative compari- 

son of different integration methods, these plots also allow 
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TABLE I1 

FIRST PEAK POINT OF THE CONSTANT ROOT ERROR OF THE INTEGRATION METHODS 

* 
Root # 2 1 o f  MH .01-.9 is  the root location for a change in  slope direction and where the curve levels o f f .  

# 

Method 

EfODGURK 

2nd ORDER ADAMS 

JSX .01-,9 

MTH .01-1 

10% Raot m ? ( Y ) ,  Ima(Y)] 

root X29 

(-1. 7887xlom2, 5 . 0 4 2 8 ~ 1 0 ~ ~ )  

root #32 

(-4.4967x10°2, 4.4943x10-~) 

* 
root P21 

( -2 .0288~10-~ ,  3 .5604x10~~)  

root X32 

( -4 .5740~10-~ ,  4 . 3 4 3 9 ~ 1 0 ~ ~ )  

1% Root [Re(Y), Im(Y) I 

toat Pa3 

(-5 .7419~10-~,  2 . 2 1 5 2 ~ 1 0 ~ ~ )  

root #23 

(- 3. 8567x10-~, 1. 4744x10-l) 

root f25 

( -6 .6117~10-~ ,  2 . 2142~10-~ )  

root #27 

(-1.134% loo2, 1.5523~10 -1 ) 

0.1% Root [Re(Y), M Y )  I 

root t 28  

( - ~ . w M o ~ ~ ,  1.94~1.1o-~)  

rwt #I3 

( -4 .4129~10-~ ,  4 . 8 1 6 8 ~ 1 0 ~ ~ )  

root R27 

1 1 3 3 3 1 0 * ,  7.1032x1d2) 

root 625 

( -6 .6035~10-~,  4 . 6 4 4 7 ~ 1 0 - ~ )  







results from Tables I1 and 111. 

The Rss error tran~ient responses are plotted in Fig- 

ures 8 through 10 in terms of the % Rss error and the upper 

time limit, t. 

From the results we may conclude that: 

1. The Mod Gurk method is the only one of the four 

methods tested that provides the smallest constant trans- 

ient root error although it is off by a factor of three from 

the percent root error. 

2. The Second Order Adams method is the only one of 

the four methods tested that provides the largest constant 

transient root error and is off by a factor greater than 

three from the percent root error. 

3 .  The MTH .01-.9 and the MTH .01-lmethods show a 

constantly changing transient root error with no obvious 

relation to the permatt root error. 

After careful analysis of the root error data and the 

Rss data and their respective plots we can conclude that 

they do not reveal any significant correlation between the 

calculated transient root error and the percent root 

error. Therefore these data and plots are not sufficient 

information to evaluate and identify the accuracy of an in- 

tegration formula. 
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SECTION VI 

CONCLUSIONS 

The purpose of this thesis was to illustrate and test a 

measure of accuracy for evaluating numerical integration 

techniques. Using this measure of accuracy, we have devel- 

oped an evaluational algorithm applicable to numerical inte- 

gration schemes. Its use permitted us to compare four dif- 

ferent integration methods on a firm numerical and analyti- 

cal basis for the specific application of a first-order dif- 

ferential system. The four methods tested were chosen based 

upon their stability range and their past performance in 

flight simulation work. 

The technique for comparing roots of continuous inte- 

grators to roots of sampled integrators was investigated. 

The development of an integration and of an iteration 

formula which followed standard mathematical procedures is 

presented. 

The computer program REAP, implemented on well founded 

theoretical basee, was first developed for the HP-41CV hand- 

held calculator system and later implemented for the Harris 

800 computer. 

The data generated by the Root Error Analyzer Program 

for each integration method permits one to confidently 
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calculate the percent root accuracy characteristics to be 

expected. Most important, the program allows us to find the 

numeric and analytic transient root error of each method. 

This study has not been highly rewarding although it 

has produced some noteworthy results, the most important of 

which is that the root matching technique illustrated and 
.r :<*-hi 3t- +..?+ ,. :-: -;:;:, :. - ,,.. :, z ,.-:<:.:! ~..-~?.:~.k-::i:; <!?:.- ;! ,:...;,yy..7 f *:;: is:::. ::=:, :. .2yqxa 

Ffii. . <Ly, -+ ,  +;:,;;<?*~,~~'~ ..; b,~.2:~<;,!&z;:.?;%! :;.<< .,..:?.:?;*.?. ;;:<yL.z ::7<.2:. 
evaluated in this th 

. . ., 
prove to be a very.effec- 

tive tool for comparing the accuracy of integration methods 

for application to first-order differential systems; neither 

is it suited for an application where a method for the de- 

velopment of the best integration formula is required. Al- 
l 

though correlation of the numeric transient root error 

versus the analytic transient root error showed excellent 

computation accuracy of the computer program REAP, the 

transient root error failed to match the percent root error. 

Admittedly, this technique has not been completely 

applied in its entirety and to use it in any application 

involving other than first-order differential problems will 

require further investigation. 



SECTION VII 

RECOMMENDATIONS 

The successful creation of the REAP program has demon- 

strated that the art of seeking a measure of accuracy for 

integration methods can be mechanized to a greater degree 

than was formerly thought possible. However, it should be 

obvious to the e&ucated reader that, considering the total 

field of continuous and discrete systems, there is more work 

to be done. For example, an interesting area of investiga- 

tion would be to let A be a complex matrix with 1000:l root 

variations, where the matrix is rotated so that coefficients 

change, but tne root locations stay fixed, then use the var- 

ious integration formulas and compare errors with the pre- 

dicted root accuracies. 

It is anticipated that use of this program will enable 

many integration methods used in simulation problems to be 

accommodated with assured (greater) accuracy. The present 

study was concerned with fixed integration intervals. But 

similar computer programs for the analysis of continuous 

systems -- digital simulations with variable integration 
intervals -- would be welcome additions, as well as non- 
linear and/or variable coefficient differential equations. 

Similar empirical results can be conducted for second-order 



differential system, Finally, it is the hope of the author 

that this analysis will  tim mu late more investigation in the 

field of the evaluation of numerical integration techniques. 



APPENDIX A 

STABILITY RANGE PROGRAM 

STABILITY W G . E  PROGRAM 

DIMENSION A ( 3 , 4 ) ,  B(3,4), R(4,60) 
COMPLEX 2,  (4 ,60) ,  W1, W2, 23,  CMPLX 

TEST FUEJGTION 1 
MOD GUaK METHOD 

TEST FUNCTLOH 2 
MTH .OJ. - .9 BfETHOD 

TEST FUWTTUN 3 
SECOND ORDER ADAMS METHOD 

TEST FUNCTION 4 
MTH .01 - 1 METHOD 



DO 150 N = 2,3 
W1 = W1 * 2 + B(N,J) 
W2 = W2 * 2 + A(N,J) 

150 CONTINUE 
C 

W2 = 23 - W 2  
Y (&I) =. W2/W1 
R ( J , I )  = CABS(Y(J,I)) 

200 CONTINUE 
C 

DO 300 K = 1,4 
WRITE(6,l) K, J&Jk#X,K), I 1,3), ( B ( I , K ) ,  1 =1,3) 
WRITE (6,4) 
WRITE(6,2) 
WRITE(6,3) (J, Y ( K , J )  ,R(K,J) ,J=1,300 

WRITE (6,l) (B(X,K) ,  I =1,3) 
WRITE ( 6 , 4 )  
WRITE (6.2) 
WRITE(6p3) (J, Y ( K , J )  ,R(K,J) ,Je31,60) 

300 CONTINUE 
C 

 FORMAT('^',' ' , / , '  ' , I ,  ' ' , I ,  ' ' , I ,  ' ' , / ,  
*16X,'TEST FUNCTION ',12,/,' ',/,16X,'Al=',F10.7, 
*2X,'A2=',F10.7,2X,'A3=',F10.7,/,' ',/,16X 
*'Bl=',F10.7,2X,'B2='~FlO~7~2X,'B3n',F10~7,/) 

2 FORMAT(~~X,'REAL(Y) ' ,8X,'IMAG(Y) ',7X,'MAG(Y) ' ,/) 
3 FORMAT(lP,11X,13,3F15.4,/) 
4 FORMAT(' ',I, ' ' , / I  

STOP 
END 



APPENDIX B 

ROOT ERROR ANALYZER PROGRAM 

REAL RI , RX 
COMPLEX EXQ,YO,XCO,YLO 
COMPLEX M0,C1F18Q2,CF3,CF4,Y1,Y2,Y3 
COMPLEX CKll,CI5~2,CK13,CK14,CKl5,CK16,CD,CDl,CD2 
COMPLEX CD3p~~8CL)5,CD6,CK21,CK22,CK23,CK24,CK25 
COMPLEX CK26,CK31,CK32,CK33,CK34,CK35,CK36,C(14) 
COMPLEX D(14) , G ( l 4 )  ,P(14) ,Q(14) ,R(14) ,Sl,S2,S3,S4 
COMPLEX S5,S6,67,58,SUMl 

C 
COMPLEX S9,S10,Sll,S12,S13,SUM2,Sl4,S15,S16,S17 
COMPLEX CP,CQ,CR,CA,CB,CAA,BA,BB,CMAG,CPH,RTAl 
COMPLEX RTA2,RTA3,RTB1,RTB2,RTB3,ROOT1,ROOT2,ROOT3 
COMPLEX Z21,ZZ2,ZZ3,CNKl,CDKl,CKl,CNK2,CDK2,CK2 
COMPLEX CPJK3,CDK3,CR3,CNK4,CDK4,CK4,CO,CMM,CN,CCP, 
COMPLEX CCQ,CCR 

C 
REAL XX,E8EE,XIHC,XNEW,YNEW,RSSFLG 
INTEGERS fYY,I3tX,IX,X,I,J,K,TA,TY,T,U 
COMPLEX FAT, ALFAT8NAT,XXO,XX1,A(3,4), B(3,4),2,22 
COMPLEX 23,W1,W2,Y,CMPLX,W,RZ8Z1,X0,X1,X2,X3,F1 
COMPLEX F2,F3,EXtTMP,XC,AT,F4 

C 
C 
C NUMERICAL INTEGRBTION METHODS 
C 
C 
C MOD GURK - 033 
C 

A(1,1)=(1.146208,0.0) 
A(2,1)=(-0.201087,O.O) 
A(3,1)=(0.054879,0.0) 
B(l,l)=(1.641586,0.0) 
B(2,1)=(-1.008013,O.O) 
B(3,1)=(0.275097,0.0) 

C 
C 
C MTH .01-.9 
C 

A(1,2) =(.614318, 0.0) 
A ( 2 , 2 )  =(.0097546, 0.0) 
A ( 3 , 2 )  =(.375927, 0.0) 
B(1,2) =(1.707964, 0.0) 



C 
C 
C SECOND ORDER R D M S  - 012 
C 

A ( 1 , 3 )  = 1 0.0)' 
A ( 2 , 3 )  s(0 .0 ,  0.0) 
A ( 3 , 3 )  t ( O . O 1  0B0) 
B ( l t 3 )  =(1*5# U e Q )  
B ( 2 , 3 )  ~ ( 0 . 5 ,  0 . 6 )  
B ( 3 , 3 )  =(0.0,  0 . 0 )  

C 
C 
C MTH -01-1 
C 

A ( 1 , 4 )  =(1.006667, 0.0) 
A ( 2 , 4 )  =(-,006667, 0.0)  
A ( 3 , 4 )  =(Om0 , 0.0) 
B ( 1 , 4 )  ~ ( 1 . 4 8 8 0 5 6 ,  0 .0)  
B ( 2 , 4 )  =(-.494722, 0.0)  
B ( 3 , 4 )  = ( O m O  8 0.0) 

C 
C 
C CONSTANT ROOT ERROR PROGRAM 
C 
C 
C THE BASIC METHOD TO THIS APPROACH I S  TO PICK XNEW, 
C (REAL(AT), AND VPTRY YNEW, (W), WHICH I S  THE FREQUENCY 
C TERM OR IMAG(AT) OF THE DESIRED SOLUTION UNTIL THE 
C RELATIVE ERROR APPROACHES THE ACCURACY BEING SOUGHT. 
C 
C 
C RSSFLG=O.O COMPUTE ROOT ERROR ONLY 
C RSSFLG=l.O CUMPUTE RSS ERROR ONLY 

RSSFLGG1.O 
07 CONTINUE 
C 
C 'EE' REPRESENTS THE % ACCURACY DESIRED 

EE=lO.O 
C 
C 
C 
C 
C 
C 'K' REPRESENTS THE ISUMBER OF THE INTEGRATION FORMULA 
C TO BE EVALUATED. 
24  K = l  

IF(K.EQ.4) GO TO 05 



IF(K.EQ.3) GO TO 03 
IF(K.EQ.2) GO TO 01 
WRITE(6@21) EE 
WRITE (6,29) 

C 
C EXACT STARTING PQZNT FOR MOD GURK 

START= 1.661853)-03 
GO TO 18 . 

C 
01 WRITE(6,OZ)~~ 

WRITE (6,29)  
C EXACT STARTING Pl3SBPE FOR MTH .01-,9 

START= 4.222!!$W!C58'7D-03 
GO TO 18 

C 
03 WRITE(6,04) EE 

WRITE(6,29) 
C EXACT STARTING POXNT FOR SECOND ORDER ADAMS 

START=1,4184399fD-02 
GO TO 18 

C 
05 WRITE(6,OB) EE 

WRITE (6 ,29)  
C EXACT STARTING PSIBtT FOR MTH .01-1 

START= 3.38954984SD-03 
C 
C ' E' REPRESENTS TM& 8 ERROR BEING INVESTIGATED 
18 E=EE/100.0 

IF(RSSFLG.EQ. 0.0) GO TO 08 
GO TO 09 

08 WRITE(6,80) 
09 CONTINUE 
C 
C 
C SET UP REAL AXIS XNCRENENT 

XINC=EXP(AUX;(5,OE+04) /40.0) 
XDOUB=XINC 
XX2 = SQRT (XDOUB) 

C 
C DESIRED ROOTS 
C SET UP FIRST VALWES OF XNEW AMD YNEW 

XNEW = (-1.0&-05)/XINC 
YNEW= (START) *SQRT (EE) /XX2 

C 
C 
C % ERROR ITERATION 

DO 210 I=1,41 
C 
C ITERATES THE STARTING POINT 



C REAL PART OF 
C 

ROOT 

RZ=CMPLX (EXP (XNEW) ,O .O) 
C 
C IMAGINARY PART (FREQUENCY TERM) OF DESIRED ROOT 
C 
34 W=CMPLX(COS(YNEW), SINtYNEW)) 

Z=RZ*W 
Z2=Z*2 
z3=z2*z 
WlzZ3-A(1 ,K) *22-A(2 ,K) *Z-A(3-K) 
W2=B (1 ,K) *Z2+B (2 ,K) *Z+B (3 ,K) 

C 
C ITERATION FORMULA 
C 
C Y = (1- (Al*Z** ( - l )+A2*Z* *  (-2)+A3*Z** (-3) ) ) / 
C (Bl*Z** (-1)+B2*Z** (-2)+B3*2** (-3) ) 

Y=(Wl) / (W2) 
C Y=A1, ITERATED OR EXACT ROOT 
C THE PERCENT OF ROOT CHANGE 
C CALCULATE THE PERCENT INCREASE OR DECREASE FROM 
C EXACT ROOT TO THE DESIRED ROOT 
C 

PCRY= ( (REAL fY) -XNEW) /XNEW) *loo. 0 
PCIY= ( (AIMAG (Y) -YNEW) /YNEW) *loo. O 

C 
C MAGNITUDE OF THE PERCENT ROOT CHANGE 
C PERCENT CHANGE OF Y BOUNDS 
C ( . 9 4 ) * ( E )  < %CHY < (1,06)*(E) 
C 

PCY = SQRT (PCRY*PCRY+PCIY*PCIY) 
C 

THE 

C FRACTION OF ERROR 
C 'ER' REFERS TO THE DEVIATION OF THE IMAGINARY PART 
C OF THE CALCULATED ROOT FROM YNEW THE IMAGINARY PART 



C OF THE DESIRED ROOT. 
C A VALUE GREATER THAN 1.06 INDICATES YNEW, IS ABOVE 
C THE ORIGINAL EH3UMD SlW FOR THAT ROOT. 
C A VALUE LESS TEUUI 0.94 MEANS YNEW IS BELOW THE 
C ORIGINAL 
C BOUND SET FOR THAT ROOT. 
C 
C RELATIVE ERROR TOLERANCE 
C LOWER AND UPPER BOUFJDS OF 'ER' 
C 0.94 < ER < 1.06 
C 

ER=EE/ PCY 
C 
C ABSOLUTE ERROR 3?OJirERANCE 

ERR * ABS(ER - 1.0) 
C 
C ITERATION COWTIE3R 

'IYY=IYY+l 
C 
C RESTRICT ABSOLUTE ERROR TOLERANCE TO BE LESS THAN 0.06 
C TO AVOID LIMITING PRECISION DIFFICULTIES ARISING FROM 
C IMPOSSIBLE ACCURACY =QUESTS 
C ERR=(ER - 1) 0.06 

IF(ERR.LT.O.06) GO TO 180 
C 
C ABSOLUTE ERROR TOLERANCE TOO LARGE 

IF(IX.EQ.1)GQ TO 20 
YMAX=YNEW 
YMIN=YNEW 

C 
C MAKE YNEW SMALLER 
6 6 YNEW=ER*YNEW 

IYY=IYY+l 
IX=1 
IF(ER.GE.1.0) GO TO 31 

YMLN-YHEW 
100 CONTINUE 
C 
C 
C 
C 
C 
C TO AVOID PREMATURE UNDERFLOW IN THE IMAGINARY PART OF Y 
C RESCALE THE ITERATION COUNTER IYY 

IF(IYY.EQ.7) GO TO 66 
IF(IYY.GT.14) GO TO 210 
IF( (ER.GT.l.06) .OR. (ER.LT.O.94) ) GO TO 33 

C 
C GET LARGER VALUE FOR YNEW 



YNEW= (YMZW+YMIN) / 2 
GO TO 34 

20 IF(PCY.GT.EE)GOTO 31 
C 
C MAKE YNEW THE L m R  BOUND 

YMIN=YB@W 
GO TO 100 

C MAKE YNEW THE UPPBR BOUND 
31 YMAX=YNEW 

GO TO 100 
C 
C GET SMALLER VALUE FOR YNEW 
33 YNEW = SQRT(YHIN*YMAX) 

GO TO 34 
C 
200 CONTINUE 

WRITE (6 ,29)  
WRITE (6 ,27)  IYY 
WRITE (6,28)  ~YESEWrYrP<3YrYMAXrYMINrER,ERR,IYY 
WRITE (6 ,29 )  
GO TO 210 

C 
180 CONTINUE . 

RI = FLOA'Ptf) 
IF(I.LT.16) QO TO TO 210 

C 
C 

GO TO 190 
C 
C 
190 CONTINUE 
C 
C TRANSIENT ROOT ERROR 
C NUMERICAL SOLUTION 
C RSS CASE 
C 
C PROGRAM TO GENERATE LARGEST ERROR AND WHERE IT OCCURS 
C LARGEST RSS ERROR IWD WHEN IT OCCURS 
C TO CALCULATE TBE RSB ERROR FIND THE QUADRATIC MEAN VALUE 
C OF THE ABSOLUTE ERROR, 
C WHERE THE ABSOLUTE ERROR= INTEGRATION FORMULA - EXACT 

SOLUTION 
C 
C INITIALIZATION FOR RSS ERROR 
C EXACT ROOTS 
C 

XO = CEXP (Y) 
C ASSIGN INITIAL CONDITIONS TO VARIABLES 

F3 = CMPLX(l.O, 0.0)  



F2 = F3/XO 
F1 = F2/XO 
EX= CMPLX(1.0, 0.0) 
AMX=o . 0 
YMAx=O . 0 
TA=O . 0 
TY=O .O 
RSS2=O. 0 

C 
C X IS THE NUMBER OF AT'S, IoEo, X=N(AT) 
C WHERE 'AT=l.O' f##?&TeS ONE PERIOD 
C UPPER LIMIT OF II@%!BGRATION 

x=O 00 
C 
C FOR IMPROVED RSS IkCCWRACY TO ELIMINATE 
C ROUNDOFF ERFDR OF' IUlDING SMALL NUMBER TO 
C LARGER NUMBER 

SSl=O. 0 
SS2=O. 0 
SS3=0.0 
ISSl=O 00 
ISS2=0.0 
ISS3=0.0 

99 X=X+loO 
C 

EX=EX*XO 
C 
C INTEGRATION F O m L A  
C F4 REPRESENTS THE RESULT OF ESTIMATING THE EXACT 
C ROOT, AVT= YT 
C VIA F4, THE INTEGRATION FORMULA. 
C 
C INTEGRATION FORMULA 
C 
C 2-TRANSFORM TWSFBR FUNCTION OF 
C THE DIFFERENCE I$(&IATION 

CF1 = (A(1,K) + B(l,K)*Y)*F3 
CF2 = (A (2  ,X) + B (2 ,K) *Y) *F2 
CF3 = (A(31K) + B(3,K)*Y)*Fl 
F4 = CF1 + CF2 + CF3 

C 
C USED OLD VALW FOR NEXT ITERATION 
C SET UP STORAGE FOR YSIRIABLES 

F1 = F2 
F2 = F3 
F3 = F4 

C 
C 
C THE ERROR DEFINED BY XC=EX-F4, REPRESENTS THE 



C DIFFERENCE 
C BETWEEN EXACT SOLUTION AND FORMULA 

XC = EX - F4 
C 
C YL IS THE SQUARE QP THE DIFFERENCE 

YL=REAL (XC) ** 2+AIWLG (XC) * * 2 
C 
C UNDERFLOW LIMIT 

IF(YL . LT.O.0) GO TO 38 
C 
C OVERFLOW LIMIT 

IF(YL.GT.1.DD+10) GO TO 38 
C 
C SUMMATION OF EmOIRS 

SSl=SSl+YL 
ISSl=ISS1+1 
IF(ISSl.NE.100)QO TO 43 
ISSl=O. 0 
ISS2=ISS2+1 
SS2=SS2+S81 
SSl=O. 0 
IF (ISSZ .ME. 100)GO TO 43 
ISS2=0.0 
ISS3=ISS3+2 
SS3=SS3+SS2 
SS2=0 . 0 

43 CONTINUE 
C 
C TEST LARGEST TRUE MAXIMUM ABSOLUTE ERROR 

IF (YMAX. LT. YL) GO TO 11 
C 
C RSS2 IS THE A R I m T f C  MEAN OF THE SQUARE OF THE 
C DIFFERENCE, YL 
C X IS THE UPPER LIMIT OF THE INTEGRATION FORMULA 
C 
12 RSS2= (SSl+SS2+SS3) /X 

C 
C TEST LARGEST ARI2MMETIC MEAN 

IF(AMX.LT.RSS1)GO TO 13 
C 
C ARITHMETIC M E N  UPPER LIMIT TEST 
14 IF(RSS2.GT. ( O e 5 * A M X )  .AND. ( (4) *REAL(Y) .LT.1) )GO TO 

99 
C RSS DEFINES THE MEAN SQUARE ERROR OF THE ARITHMETIC 
C MEAN OF THE 
C SQUARE OF THE DIFF., YL 
C RSS IS THE MEAN SQUARE DEVIATION 
C FROM THE BOUNDS TAKEN OVER THE 
C DIFFERENCES, YL, IN THE 



C INTEGRATION FOWULRo 
17 RSS = SQRT(RGS2) 
C YYY IS THE SQ- ROOT OF THE 
C TRUE MAXIMUM E m #  TAKEN OVER THE DIFFERENCES, YL, IN. 
C THE INTO FCfRMUXA* 

YYY = swT(-) 
GO TO 56 

C MAXIMUM VLLUE P8W X COMPONENT 
C YMAX IS TIIIE O m  Yf, VAtUE 
C TRUE MAX ERROR (LARGEST) 
C 'TY' IS LUE FOR THE X COMPONENT 
C WHEN 'YL' HAS Rf@U%IED ITS MAXIMUM VALUE, YMAX 
11 YMaX=YL 

TY=X 
GO TO 12 

C LARGEST ART 
C AM2C IS THE 
C 'TA' ILS TR VALUE FOR THE X COMPONENT 
C WHEN RSSZ ED ITS MAXIMUM VALUE , AMX 
13 AMX=RSS2 G m  &;:. ; -, 7, *?.. . .,, '.- :', ', . 

7 >  < I _ *  

TA=X 
GO TO 99 

C 
C 
38 WRITE (6,39) 

WRITE(6,40)YL 
WRITE (6 ,41 )  
GO TO 17 

16 CONTINUE 
C 
C TRANSIENT R W T  ERROR 
C ANALYTIC SOLUTION 
C RSSE CASE 
C COMPLEX CUBSC EQUaTION 
C Z**3+CPZ**2+CQZ+CR=O,O 
C X**3+CAX+CB=Q.O 
C Z=X-CP/3 
C 
C THE ZEROS OR RCXWS OF THIS 
C POLYNOMIAL ARE C ~ P U T E D  
C ONE AT A TIME IN ROUGHTLY 
C INCREASING ORDER OF MODULUS. 
C AS EACH. ROOT OR ZERO IS FOUND, 
C THE POLYNOMIAL IS DEFLATED 
C TO ONE OF LOWER DEGREE. 
C COMPLEX POLYNOMIAL COEFFICIENTS 

AT = CMPLX(XNEW,YNEW) 
FAT = CEXP (AT) 
CP = -Y*B(l,K)-A(1,K) 



CQ = -Y*B ( 2  ,K)-A(2 ,K) 
CR = -Y*B ( 3  ,K) - k ( 3  ,K) 
CA = CQ-((CP)**2)/(3.0,0.0) 
CB (CP**~)* (2 .9,0.0) /  (27.0,O.O)-(CPeCQ)/ (3.0,O.O) 

+CR 
CAA = CSQRT((cEI**2)/(4.0,0.0) + (CA**3)/(27.0,0.0)) 
BA = (-CB/(2 
NDEG = 3 
SAV = 2* (3.141592654/NDEG) 

C 
C A ROOTS 
C RECTANGULAR TO POLAR 

CM = CABS(BA) 
CT = ATAN2 (AIMBG (BA) , REAL (BA) ) 
CM = CM**(l.O/NDEG) 
CMAG = CMPLX(CM, 0.0) 
CT = CT/NDEG 
CPH = CMPWI (COS (CT) , SIN (CT) ) 

C POLAR TO RECTANGULAR 
RTAl = CMAG*CPH 
CM = CABS(RTA1) 
CT = ATAN2 (AIWG(RTA1) ,REAL (RTA1) ) 
CT = CT + SAV 
CMAG = CMPLX(CM,O.O) 
CPH = CMPLX (COS (CT) , SIN (CT) ) 
RTA2 = CM.AG*CPH 
CM = CABS(RTA2) 
CT = ATANZ(AIMAG(RTA2) ,REAL(RTA2)) 
CT = CT + SAV 
CMAG = CMPLX(CM,O.O) 
CPH = CMPLX (COS (CT) ,SIN (CT) ) 
RTA3 = CJ!!IAGJCCPH 

C 
C B ROOTS 

BB = (-CB/(P.O, 0.0) - CAA) 
CM = CABS(BB) 
CT = ATAN2 (AIMAG (BB) , REAL (BB) ) 
CM = a** (l.O/NDEG) 
CT = CTIPJDEG 
CMAG = CMPLX(CM,O.O) 
CPH = CMPLX (COS (CT) , SIN (CT) ) 
RTBl -- CMAG*CPH 
CM = CABS(RTB1) 
cT= ATAN2 (AIMAG (RTB1) , REAL (RTB1) ) 
CT = CT + SAV 
CMAG = CMPLX(CM,O.O) 
CPH = CMPLX (COS (CT) , SIN (CT) ) 
RTB2 = CMAG*CPH 
CM = CABS(RTB2) 



CT = ATAN2 (AIMAG (RTB2 ) , REAL (RTB2 ) ) 
CT = CT + SAV 
CMAG = CMPLX(CM,O.O) 
CPH = CMPLX (COS (CT) , SIN (CT) ) 
RTB3 = CMAG*CPH 

C TEST1 
TSTFL = 0 
ROOTl = RTAl + RTBl 
ROOT2 = RTPh2 + RTB3 
ROOT3 = RTA3 + RTB2 

60 CONTINUE 
C (2-221) (2-222) (2-223)=0 .O  

221 = ROOT1 .-CP/ (3,0,0.0) 
222 = ROOT2 - CP/(3.0,0.0) 
223 = ROOT3 - CP/(3.0, 0.0) 

C CHECK 
CCP = - (221+222*223) 
CCQ = (ZZl*ZZZ)+ (ZZ1*223) + (222*223) 
CCR = - (ZZl*LZ2*ZZ3) 
CRR = ABS (REAL (CCR) - REAL (CR) ) 
IF(CRR.LE.1.OE-05) GO TO 62 
IF(TSTFL.EQ.1) GO TO 61 
IF(TSTFL.EQ.2) GO TO 62 

C TEST2 
ROOTl = RTAl + RTB3 
ROOT2 = RTA2 + RTB2 
ROOT3 = RTA3 + RTBl 
TSTFL = 1 
GO TO 60 

61 CONTINUE 
C TEST 3 

ROOTl = RTAl + RTB2 
ROOT2 - RTA2 + RTBl 
ROOT3 = RTA3 3. RTB3 
TSTFL = 2 
GO TO 60 

62 CONTINUE 
C COEFFICIENTS 

CO = CLOG(ZZ1) 
CMM = CIXX;(ZZ2) 
CN = CLCK(ZZ3) 

C 
c INITIAL CONDITIONS - SAME as NUMERICAL 
C SOLUTION 

XO = CEXP (Y) 
CF3 = CMPLX(l.0, 0.0) 
CF2 = CF3/XO 
CF1 = CF2/XO 
CD1 = ZZl* ( (222) **2) * ( (223) **3) 



CD2 = -ZZ1* ( (222) **3) * ( (223) **2) 
CD3 = -222* ( (ZZ1) * *2 )  * ( (223) **3) 
CD4 = 222* ( (ZZ1 )  **3) * ( (223) **2) 
CD5 = ZZ3*  ( (ZZl) * *2 )  * ( (222) **3) 
CD6 =-ZZ3* ( ( Z Z l )  **3) * ( (222) ""2) 
C D  = C D ~ + C D ~ + C D ~ + C D ~ + C D ~ + C D ~  
CKll = CFl* ( ( t Z 2 )  * *2 )  * ( (223) **3) 
CK12 = -CFl.* ( (222)  **3) * ( (223) **2) 
CK13 = -222*CF2* ( (223) **3) 
CK14 = 222*CF3* ((223) **2) 
CK15 = ZZ3*CF%* ( (ZZ2) **3) 
CK16 = -ZZ3*C@3* ( (222) **2) 
CK1 = (CKll+~lZ+CK13+C~14+~~15+~~16) /CD 
CK21 = ZX1*CF2* ( (213) **3) 
CK22 = - Z Z l * 8 C F 3 *  ( (223) **2) 
CK23 = -CF1* (EZ1) **2)  * ( (223) **3) 
CK24 - CFl* ( (%el) **3) * ( (223) **2) 
CK25 = 223* ( (&El) * *2 )  *CF3 
CK26 = -ZZ3* [ ( Z Z 1 )  **3) * C F ~  
CK2 - ( C K ~ ~ + C K ~ ~ + C X ~ ~ + C K ~ ~ + C K ~ ~ + C K ~ ~ ) / C D  
CK31 = Z Z I *  ( (,222) * *2 )  *CF3 
CK32 = - Z Z l *  ( (XZ2)  **3) *CF2 
CK33 = -ZZZ* [ (SZl) * *2 )  *CF3 
CK34 = 222" ( [ Z Z ~ )  **3) * C F ~  
CK35 = CFl* ( (223.) **2) * ( (222) **3) 
CK36 = -CF1* ( ( M I )  **3) * ( (222) **2) 
CK3 = ( C K ~ ~ + C K ~ ~ + C K ~ ~ + C K ~ ~ + C K ~ S + C K ~ ~ ) / C O  

C 
C ANALYTIC SOLUTION 
C 

AT = CMPLX (XNEW, YNEW) 
FAT = CEXP(AT) 
EX0 = FAT**X 

C ASSIGN INITIAL CONDITIONS TO VARIABLES 
RX = FLOAT (X) 
XO = CEXP(Y) 
EX = CMPLX(1.0, 0.0) 
SS1 = 0.0 
NT = 1.0 
u = 4  

70 CONTINUE 
C 2-TRANSFORM SAMPLED-DATA TRANSFER 
C FUNCTION OF THE NUMERIC TRANSFER 
C FUNCTION 

Y1 = CKl* ( (221) **U) 
Y2 = CKZ* ((ZZZ)**U) 
Y3 = CK3* ( (223) **U) 

C OUTPUT 
AFO = Y1 + Y2+ Y3 



EX = EX*XO 
S3 = EX - AFO 

C MULTIPLY BY CUNWGILTE TO MAICE IT A REAL # 
AYL = REAL(S3]**2 + AIMAG(S3)**2 
SS1 = SS1 C AYL 
u = u + 1  
NT = NT + 1.0 

C UPPER LIMIT T&6T 
IF(NT.GT,RX) 00 TO 72 
GO TO 70 

72 CONTINUE 
RSSE = SQE(TIB8SJX) 
WRITE(6,44} BXPECX,EXO,F4,AFO,RSS,RSSE 
WRITE (6,245) 
IF(I.EQ.30) 6'30 M 230 
IF(1.EQ.ti.a) 60 "PO 230 
IF(I.EQ.90) KBO "K) 230 
IF(I.EQ.120) CO TO 230 
IF(I.EQ.I!5O] &J TO 230 
IF(I.EQ.180) (PO 20 230 
IF(I.EQ.2ld) GX3 'PO 230 
IF(I.EQ.240) (30 TQ 230 
GO TO 210 

C 
230 IF(K.EQ.4) 00 234 

IF(K.EQ.3) GO T4 233 
IF(K.EQ.2) 60 M 232 
WRITE(6,21) EE 

231 WRITE (6,291 
WRITE ( 6 , 2 2 )  
GO TO 210 

232 WRITE(6,02) EE 
GO TO 231 

233 WRITE(6,04) EE 
GO TO 231 

234 WRITE(6,06) EE 
GO TO 231 

210 CONTINUE 
220 CONTINUE 

C 
C 
c -  
02 FORMAT('l',' ',/, ' ' , I ,  ' ' , I ,  ' ' , I ,  ' ',/ 

I ' ' , I ,  ' ' , / #  

*19X,'MTH .01-.9 METHOD1,10X,F5.2,'% ROOT 
ERROR' , / I  

04 FORMAT('ll,' ',if ' ',It ' ' J ,  ' ' , I t  ' ',/ 
' ' f / f '  ' f / f  

*~~X,'SECOND ORDER ADAMS METHOD', 4X,F5.2,'% ROOT 



ERROR', / )  
FORMAT('I',' ' ' ',I, ' ' , I ,  ' ' , I ,  ' ',/ 
' ' , I ,  ' ',I, 

*~~x,'MTH .oi-1 METAOD~,~OX,F~.Z,~% ROOT ERROR',/) 
F O T ( '  ',I,' ',Ir ' ' , I ,  ' ',/, ' ' I /  
' ',/, ' . 'PI, 

*~~x,'MoD GURK #IETHOD',lOX,F5.2,'% ROOT ERRORv,/) 
FORMAT(~~X,'REAL(AT) ' ,~X,"IMAG(AT) ',5X,'REAL(Y) ', 
*6X, 'IMAG(Y) ' ,/) 
FoRMAT(9X,'X',1OX,'RSS',lOX,'TA',lOX,'YYY',1OX, 
'TY',11X,'AMXW, 

&~~x,'YMAX',~OX,'YL',~~X,'RY',~OX,'IY',/) 
FORMAT(' ' , I )  
FORMAT(~X,'E~~R~,~X,'IYY= ',I31 
F O R M A T ( ~ ~ X , I ~ , ~ E ~ ~ . ~ , / )  

DUMMY CARD 
WRITE(6,21) EE 

STOP 
END 
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