
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

Spring 1982

A Comparative Study of In-Core and Out-of-Core Equation Solvers A Comparative Study of In-Core and Out-of-Core Equation Solvers

for Microcomputer Applications for Microcomputer Applications

Salahuddin A. Siddiqui
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Siddiqui, Salahuddin A., "A Comparative Study of In-Core and Out-of-Core Equation Solvers for
Microcomputer Applications" (1982). Retrospective Theses and Dissertations. 654.
https://stars.library.ucf.edu/rtd/654

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/654?utm_source=stars.library.ucf.edu%2Frtd%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

A COMPARATIVE STUDY OF IN-CORE AND OUT-OF-CORE
EQUATION SOLVERS FOR MICROCOMPUTER APPLICATIONS

BY

SALAHUDDIN AHMED SIDDIQUI, P.E.

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Graduate Studies Program of the College of Engineering
University of Central Florida

0

Orlando, Florida

Spring Term
1982

ABSTRACT

This research evaluates the applicability to microcomputers

of various methods for determining the solution of large systems

of simultaneous linear algebraic equations. Such systems of equa

tions characterize physical systems often encountered in Civil

Engineering and other engineering disciplines.

Many methods of solution involving either in-core or out-of

core storage of data have been developed for use with large digi

tal computers. These methods are reviewed and their applicability

to microcomputers is evaluated. A comparison of several schemes

is made regarding core size required, time of execution, and pre

cision of results. The out-of-core solution schemes for banded

matrices are found to be most applicable to microcomputers with

large out-of-core storage capacity.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Dr. Wayne E.

Carroll, Dr. Martin P. Wanielista and Dr. Christian S. Bauer, mem

bers of his committee, for their encouragement and advice in pre

paring this thesis. Dr. Carroll has been instrumental in stimu

lating the author's interest in numerical methods in engineering

and their computer applications.

Thanks are due to Dr. W. T. Segui of Memphis University, for

critical information, and to Dr. G. Cantin of the Naval Post

Graduate School, Monterey, California, for his suggesting valua

ble reference material.

The author also wishes to acknowledge Mr. Harry Reynolds of

Engineering Design, Inc., Longwood, Florida, for providing the

computer facility.

Finally, warm personal appreciation goes to Priscilla V.

Brain, Instructor, Department of English, University of Central

Florida, for editorial assistance in English and to Hillard

Brain, lis head of the Computer ~epartment, Creative Engineer

ing, Inc., Orlando, Florida, for editorial assistance in numer

ical portions of this paper.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES vii

Chapter

I. INTRODUCTION . 1

II. DIRECT METHODS .. 4

Gauss Elimination. 5
Cholesky's Method. 8
Symmetric Banded Matrices and Storage Requi rements 10

III. ITERATIVE METHODS ..

Jacobi Scheme. .
Gauss-Siedel Method ..

IV. GRADIENT METHODS ..

V. OUT-OF-CORE EQUATION SOLVERS

VI.

Blocked Banded Schemes .
Equation Solver by Giles Cantin. .
Frontal Solution Method

A PROGRAM FOR MICROCOMPUTERS .

General.
Test Matrices ...
Maximum Capability .
Time of Execution.
Truncation Error
Effect of Depth of Block on Time of Execution .

VII. TRUSS PROGRAM EXAMPLES . •

iv

13

13
15

17

22

22
25
27

32

32
36
38
40
43
49

58

TABLE OF CONTENTS (Continued)

VIII. CONCLUSIONS. 66

APPENDIX. .

REFERENCES.

v

69

80

LIST OF TABLES

1. Maximum Number of Equations that can be Solved with
a Particular Half Bandwidth. 39

2. Coordinates Data from Overall Error Measure Graph. 50

3. Coordinates Data from Maximum Error Graph. 50

4. Regression Equation for Overall Error. . 51

5. Regression Equation for Maximum Error. 51

6. Showing Effect of Block Depth on Execution Time. 54

7. Showing Effect of Dummy Zeros on Execution Time. 56

vi

LIST OF FIGURES

1. Equation partitioning .. 23

2. Frontal idealization for plane stress. 30

3. Matrix blocks in disk file and computer core 34

4. Execution time versus number of equations. . 42

5. Overall error measure versus number of equations . 45

6. Maximum error versus number of equations 46

7. Overall error measure versus number of equations with
different block depths 47

8. Maximum error versus number of equations with dif-
ferent block depths. 48

9. Curve fit for overall error. 52

10. Curve fit for maximum error. 53

11. Block depth versus execution time (no dummy zeros) 55

12. Block depth versus execution time (with dummy zeros) . 57

13. Nine nodes and fifteen elements truss. . 61

14. Sixty-nine nodes and 135 elements truss. 62

15. Ninety-seven nodes and 191 elements truss. 63

16. Execution time versus number of nodes in a truss . 64

17. Flow chart for out-of-core solver. 70

18. Detailed flow chart for out-of-core solver . 71

• vii

CHAPTER I

INTRODUCTION

Analytical methods such as finite element methods find their

application not only in the analysis of large trusses and frames,

but also in analysis of plates and shells, as well as in hydraulics

and other disciplines of engineering (1,2). These schemes gener

ate a large set of algebraic simultaneous equations. Digital

computers offer considerable savings in time compared to the man

ual methods for solving these equations.

The techniques available for solving the linear system of

equations can be classified into two methods: direct or iterative.

In the direct method, a solution for unknowns is obtained direct

ly by a single application of a computational procedure. In the

iterative method, the solution requires the repeated application

of an algorithm. The direct method can be divided into two cate

gories: in-core and out-of-core equation solvers. In the in-

core method, the entire coefficient matrix resides in the tandom

access memory of the computer throughout the operation. Out-of

core methods differ in that only portions of the coefficient matrix

are brought from a peripheral device such as a disk into the com

puter memory as they are needed.

In the 1950's, the core storage of computers was small and

the rates of transferring the data to and from magnetic tape were

2

slow (4). Because of this, direct methods of solution were re

stricted to small and simple problems. The larger and more com

plex problems were solved by iterative methods. Since then, large

computers have been improving both in capacity and in the rate of

transfer between the computer core and the peripheral storage.

Therefore, one encounters fewer of the earlier limitations in

solving the equations.

Due to the rapid improvement of the performance (capability

of various applications) and price (affordability) of the micro

computer, many engineering firms have found that selecting micro

computers to fit their needs is now an economically feasible invest

ment. Most microcomputers on today's market have from 4K to 64K

bytes of in-core memory, although microcomputers with much larger

capacity have recently become available. However, even though

microcomputers are becoming more widely used, one drawback still

remains; these computers, like the earlier larger computers, are

limited in storage capacity and data transfer rate. Therefore,

before selecting any microcomputer, one should make a comparative

study of the different equation solvers and their techniques.

To demonstrate the application of microcomputers in the solu

tion of large systems of equations, a typical truss analysis pro

gram was converted from FORTRAN tQ the BASIC computer language.

The equations generated by this program were then solved by either

in-core or out-of-core methods.

3

The computer support subroutine used for this work requires

2K bytes of memory. The disk operating system and the BASIC inter

preter require an additional lO.SK bytes of memory, leaving 19.5K

bytes available for program and data storage. Less sophisticated

BASIC interpreters are available but are unsuitable for many engi

neering applications.

In preparing this thesis, a typical microcomputer system manu

factured by the Apple Corporation with 32K memory and a single

disk drive was used. The disk drive uses mini diskettes which can

hold about 100,000 bytes of information. (Detailed information

about II computers can be obtained from references 4 through 8.)

CHAPTER II

DIRECT METHODS

Frequently, in engineering analysis, one encounters a system

of equations

allxl + al2x2 +

a2lxl + 2 22x2 +

+a x -ln n

+ a 2 x
n n

b
n

where the x's are unknowns, and the a's and b's are constants,

appearing in matrix form as seen below:

or,

X
n

[A]{X} = {B}

=

b
n

In this case, [A] is the coefficient matrix, {X} is the vector

of unknowns, and {B} is the vector of constants.

There are various methods of solving these equations. Direct

methods, unlike the iterative technique, solve a system of linear

4

5

equations using a finite number of operations known in advance so

that the number of operations performed is independent of the

accuracy desired. An exact solution would be obtained if there

were no roundoff errors (9), or truncation errors.

The accuracy of a solution is dependent on the condition and

size of matri~, the precision of arithmetic performed by the com-

puter and the algorithm used for the solution.

Two schemes for the solution of linear equations are presented

here to illustrate the direct methods: the Gauss Elimination and

the Cholesky Decomposition Method, also known as the Cholesky

Square-Root Method. Both these methods require the matrices [A]

and {B} in computer core for solution. Algorithms in which these

matrices are stored out-of-core on a peripheral device, such as a

disk drive, are reviewed in Chapter VI.

Gauss Elimination

The objective in Gauss Elimination is to transform the equa-

tion from the general form shown earlier to an upper triangular

form as shown below:

' ' a 11 a 12

0 ' a 22

0 0

a'
1n

a' 2n

a'
nn

X
n

=

b'
1

b' 2

b
n

6

Once this transformation has been achieved, the last equation can

be solved directly for x , and the remaining n-1 values of x. can
n 1

be obtained by the back substitution process. The entire solution

vector can, thus, be obtained once this upper triangular system

has been generated.

The method of converting a coefficient matrix to upper trian-

gular form follows.

Consider a general system:

allxl + a12x2 +

al2xl + a22x2 +

Divide by a
11

, obtaining:

where:

alnxn = bl

a2nxn = b2

a x = b nn n n

1 a
1

x
n n

j = 2,n

= b 1
1

x1 can now be eliminated from subsequent equations to obtain

1 + 1 + ... 1 b 1
a 22x2 a 23x3 a 2 x = n n 2

1 + 1 +· 1 = b 1
a 32x2 a 33x3 a 3 x n n 3

1 1 1 b 1
a n2x2 + a n3x3 + a X = nn n n

•

where

a~ .. = a ..
1] 1].

b
1

. = b.
1 1

7

Similarly, each x (x2 , x3 , ...) can be eliminated from the equa

tions. A general algorithm for the elimination of ~ is

and

k
a kj =

k-1 k-1
~j /~k

k-1 k
a

ij
= a ..

k-1 k
- aik ~j 1]

j = k + 1, •.. , n

i, j = k + 1, ... , n

-
After the above procedure has been applied n-1 times, the ori-

ginal set of equations is reduced to

n-1
a
nn

which is solved directly for x
n

X
n

bn-1
n

xn = n-1
a nn

After the elimination is completed, the original system of equa-

tions has been transformed into the upper triangular system with

8

unit diagonal coefficients previously discussed. The general

form of Kth Row is now

+ k
~ ~,k+l ~+1 + ...

After obtaining the value of x , one can compute the remaining
n

unknowns successively, applying, in reverse order, the formula

n
k
~j X.

j=k+l J

Cholesky's Method

When matrix [A] is symmetric and is a positive definit~ Cho-

lesky's method presents a very efficient solution. This method

is described below.

This method is based upon the fact that a symmetric matrix

can be expressed as the product of a lower triangular matrix and

an upper triangular matrix.

The solution of the system [A]{X} = {B} reduces to finding

the solution of two equivalent systems [S]T{C} = {B}and [S] {X} =

{C}. Now that the triangular matrix [S] is known, vector {C}

can be found by back substitution. Once {C} is known, {X} can

be found from [S]{X} = {C}.

The whole process involves the decomposition of the symmetric

matrix [A] to find [S] and the vector {C}. Back substitution

as in Gauss Elimination is then used to determine the unknown {X}.

The algorithms and computer programs are given in reference 1.

9

To illustrate this solution technique, consider the follow-

ing system:

or

Multiplying the

a nn

two [S] matrices

2
sll

sllsl2

sllsl3

sllsln

0

0 0

0 0 0

s 0 • • • • • • • • • • • s nn nn

yields:

= all

= al2

= al3

= aln

Therefore, the coefficients of the first row of [S] become

and

Continuing this process further,

sl2sll = al2
2 2

s12 + s22 = a22

10

and

2 2
sln + s2n + · · ·

2
s = a nn nn

Therefore, a general algorithm for coefficients of [S] is:

1
8 .. =
1] ·s ..

11

j-1 2 ~
s .. = (a .. - 2:: s k

1
.)

11 11 k=l

(a ..
1]

i-1
2::

k=l
~i ~j) , for j > i

Cholesky's Method is efficient and in some cases, is faster than

Gauss Elimination Scheme for symmetric matrices (2).

Symmetric Banded Matrices and Storage Requirements

In some applications, the non-zero coefficients in matrix

[A] are located within a narrow band around the diagonal as

shown in the following diagram:

11

L: M = bandwidth

~ ' ""
X X X 0 0 0

""'
~

""
X X X X ~ 0

"' X X X X X 0

0~ X "' n
X X X X

~ ~
0 X X X X

"" ~
0 0 X X

,r-l ---=-n -----Ak
In the case of banded matrices, one can store and work with

only the terms in the bandwidth. Therefore, one can save storage

and computation time -because fewer terms are involved than when

using the whole of matrix [A]. When the banded matrix is also

symmetrical, only the terms on the diagonal plus the terms in

the right-hand side up to M need to be stored and worked with,

thus providing further savings in storage requirements and compu-

tation time for both the Gauss and Cholesky Methods. This can

be seen from the formulae presented here.

For a non-symmetric non-banded matrix [A], the storage

needed is nxn locations. For a banded matrix, the storage re-

quirement is Mxn.

needed is (M + l)
2

For a symmetric banded matrix, the storage

x n.

12

The most effective direct solution techniques currently used

are basically applications of Gauss Elimination (10). However,

this scheme can be applied to almost any set of simultaneous linear

equations; and its effectiveness depends on the specific proper

ties of matrix [A] such as symmetry, positive definiteness and

handedness (10).

•

I

CHAPTER III

ITERATIVE METHODS

When the application of iterative methods is to be used, an

estimate is made for the values of the unknown vector {X}. This

vector is corrected to its correct value in a series of successive

iterations. The series of iterations is continued until the

solution converges. Convergence is defined by selecting a small

number by which the solution differs from the solution of pre-

ceding iteration.

Iterative methods are preferred for solving large sparse

systems because they do not operate on zeros in the matrix and

tend to be self-correcting and minimize round-off error (9).

Such methods are particularly good for almost-diagonal or dominant-

diagonal systems. A drawback to iterative methods is the

possibility of slow or irregular convergence (9).

Of the many iterative techniques currently in use, the

Jacobi and Gauss-Seidel Schemes, because of their widespread

acceptance and utilization, are reviewed in the following sections.

Jacobi Scheme

The details of the Jacobi iterative technique are as follows:

13

14

b
n

The subscript zero denotes initial estimates of the values of {X}.

A subsequent trial yields new values of {X} from the follow-

ing equations:

1 -anl .0 an2 0
x =--x ---x-

n a 1 a 2
nn nn

1
At this time, x. is compared with

1

I x~ - x? I < E, i = 1, 2, ... , n
1 1

b
+ _g_

a nn

where E is the selected small number to check convergence. If

this condition is satisfied, {X.} is taken as an acceptable
1

approximate solution, otherwise further iteration is carried

out.

15

K
In general, at the Kth iteration, the values of {X} are

given by

k
X

n

-a21 k-1
=--x

a22 1

-a nl k-1
=--x

a 1
nn

al3 k-1
--x
all 3

a23 k-1
---X

a22 3

a n2 k-1
---X

a 2
nn

b
n ---

a nn

and the previously used convergence criteria are given by:

I Xk. _ xk.-ll
1 1

< E, i = 1, 2, ... , n

The Jacobi Method is slow to converge, but it serves as a

yardstick against which most of the other iterative methods may

be measured.

Gauss-Siedel Method

Because the Jacobi Method can be slow in its convergence,

the Gauss-Siedel Method is often used instead. In this method,

the solution for an unknown during an iteration is used in the

computation of subsequent unknowns as shown below:

al3 k-1
---X

all 3

16

k -a21 k a23 k-1 a2n k-1 b2
x2 = --x --x --- X +--

a22 1 a22 3 a22 n a22

k -a k an2 k
b

nl + _g__ X = x2 - --x n a a 2 a
nn nn nn

The same criteria for convergence may be used;

I Xk. _ xk.-ll
1 1

< E, i = 1, 2, ... , n

Although it has been shown that the Gauss-Siedel Method con-

verges twice as fast as the Jacobi Method, it is still not effi-

cient enough for use with the large sparse matrices for which

iterative methods are particularly suitable. This problem oc-

curs because a considerably larger number of iterations must be

performed in order to achieve the level of a~curacy desired.

From the tests shown by Segui (11), it can be seen that the

results did improve during successive iterations in the Gauss-

Siedel Scheme. The accuracy of the Gauss Elimination Method

could not be obtained even after two hundred iterations taking

as much as one hundred times longer than the Gauss Elimination

Method.

CHAPTER IV

GRADIENT METHODS

The basis for gradient methods is that the solution to equa-

tion [A]{X} = {B} can be shown to be equivalent to minimizing the

quadratic function:

This equation can be used to define a family of similar ellipsoids

whose common center corresponds to a point on the surface of a

particular ellipsoid. An iterative gradient method consists of

successive steps from a larger to a smaller elipsoid with the

point corresponding to the approximate solution moving closer

to the common center.

Various gradient methods differ in their choices of direc-

tion for each step. In the steepest descent method, the itera-

tion step is along the normal to ellipsoid. In the conjugate

gradient method, each iterative step consists of two sub-steps:

the first along the inward normal, and the second parallel to the

previous iterative step. Fox and Evans (12,13) describe these

methods with clarity.

Consider minimization of a certain quadratic form of the

components x
1

, ... , xn of the req~ired solution of [A]{X} = {B } .

The vector {X} = [A]-1 {B}, for example, minimizes the sum of

17

18

squares of the components of the residual vector {y} = [B] -

[A]{X}, given by

Instead of solving the resulting normal equations directly, the

method proceeds by successive approximation, making successive

changes in the components of a starting approximation {X} so
0

that the quadratic form is steadily reduced to a minimum. This

process can be presented by the non-stationary iterative scheme

where {X}.+l ={X}.+ a.{P}., where a. is a scalar and {P}
1

a
1 1 1 1 1

direction vector yet to be determined.

In the steepest descent method, the iteration step is along

the inward normal to the ellipsoid. For symmetric positive-

definite matrices, {P}. = {y}. and leads to the equation
1 1

where:

and

T {P}.{y}.
1 1 a. = ---------- =

1 {P}:[A]{y}.
1 .1

T {y}.{y}.
1 1

T {y}.[A]{y}.
1 1

{y}. = {B} - [A]{X}.
1 1

Convergence is relatively slow in the steepest descent method;

therefore, it is not recommended for practical use (3).

The Conjugate Gradient Method requires that each iterative

step consist of two sub-steps: the first along the inward
•

19

normal; and the second parallel to the previous iterative step,

which improves the convergence rate. Isaac Fried (14) and Peter

Y. Ko (15) present this method and further improvements to this

method. Referring back to the equation

{X}.+
1

={X}.+ a .{P}.
1 1 1 1

For positive definite symmetric matrices

T {P}.{y}.
1 1 a.=------

1 {P}i[A]{y }i

For {P}., a combination of current residual and the previous
1

vector {P}.
1

is taken so that
J_-

and successive constants can be so chosen that the process is

terminated in exactly N steps, N being equal to the number of

unknowns. To this end, {P}. is made conjugate; that is orthagona l
l.

with respect to the matrix [A], to the previous {P }i_
1

.

or

That is: {P}iT[A]{P}i-l = 0, resulting in

T
-{y}. [A]{P}. l

1 l.-
(3. 1 = l.-

T
-{y}i+l[A]{P}i

{P}:[A]{P}.
l. . l.

with {X} arbitrary and P-1 = 0 so that {P} = {y} , further s i m-
o 0 0

plification leads to

and

20

n 2
L: {y }.

. 1 1
= J=

ai {P}:(A]{P}.
1 1

n 2
L: { y } '+1

. 1 1 s. = .=..] = ____ _
1 n 2

L: {y } .
. 1 1 J=

The gradient method, thus, becomes (14)

{P} = {y} = {B}
0 0

[A] {X}

E {y2}.
. 1 1 a = ..::.:...]_= ___ _

{P}~[A]{P}.
1 1

i

= {X}. + a. {P}.
1 1 1

-
= { y}. - a. [A] {P}.

1 1 1

n 2
L: { y } '+1

. 1 1
= J= s.

1 n
2

L: {y }.
. 1 1 J=

0

After N cycles, the solution vect9r X is obtained as shown

on the following page :

21

{X}= ~-l{P}N-1 + {X}N-1

In this method, convergence is achieved quickly and efficiently,

requiring a finite number of steps, N. Another important fea

ture of this method is that multiplication is performed on the

elementary level, and assembly is carried out only on the re

sulting vector. Therefore, there is no need to assemble the

Global Matrix during the multiplication. This results in sub

stantial savings in the amount of storage needed.

CHAPTER V

OUT-OF-CORE EQUATION SOLVERS

Blocked Banded Schemes

In Chapter II, the concept of banded matrices was explained,

and the savings in storage space which the banded algorithms of

fer was also discussed. The in-core direct methods require the

entire banded matrix [A] to be in the core of the computer

throughout the process. However, if a suitable peripheral stor

age device such as a disk drive of large capacity is available

with the computer, the coefficient matrix [A] and matrix [B] can

be stored on the disk, and successive portions of coefficient

matrix [A] and matrix [B] are then brought into the core of the

computer for elimination.

Initially, all the equations are stored consecutively on

the disk, the coefficients for each equation being arranged as

a string of numbers within the half-band preceded by the corre

sponding load vector. Only a limited area of coefficients is

required at any one time in the computer core, and the necessary

partitioning is based on the available core.

Figure 1 illustrates that f~r each set of equations, e,

held in computer core, the elimination proceeds as far as possi

ble; that is, in the forward elimination, only the first e-b

22

<l)

+J
<l)
(/)

<l)

+J
<l)
(/)

'"d
p
0
cJ <l)
<l)
(/) +J

<l)
(/)

e-b

b

23

4 b
·~ f

Matrix A

c+b

Working store
1st, 2nd and
3rd set of equa
tions

Equations trans
ferred to top t
computer core

<e

Load Matrix [B]

Working store
for the 4th set
of equations

Fig. 1. Equation Partitioning.

24

equations can be used as pivot equations. The elimination area,

hatched horizontally in the sketch, is then transferred back to

disk; the equations still to be eliminated, hatched vertically

in Figure 1, are transferred to the first locations in the

computer core, and a new set of e-b equations is brought to core

from disk. This procedure continues throughout the forward elimi

nations and is reversed during the back substitutions. Brooks

and Botton (16) give a good explanation of this process.

If the data are shifted in and out of the core of the com-

puter for each individual unknown, there will be too many in and

out-of-core operations requiring a prohibitive amount of time.

For this reason, the equations are divided into blocks, and

each time a complete block is shifted in and out of computer

core. William T. Sequi (11) has compiled two such programs.

One is written by E.L. Wilson (17) and the other by T.J. Chung

of the University of Alabama. The essential difference between

the two algorithms lies in the number of blocks that are brought

into the computer core from the disk or tape at any one time

and in the method of elimination used.

In Wilson's Scheme (17), the coefficient matrix [A] is

stored out-of-core on a magnetic tape or disk. It brings the

coefficients of the upper half-band into core and eliminates

the unknowns by the Gaussian Elimination Method. It requires

two blocks of coefficients to be in-core at one time. This
•

25

program is for symmetric banded matrix [A] and has been converted

from FORTRAN to the BASIC language. A detailed treatment is given

in Chapter VI, where a comparison is made between this method and

the in-core equation solver.

T.J. Chung's Scheme works for positive definite matrices

only. In this method, the coefficients of symmetric banded

matrix [A] are stored out-of-core. The coefficients of the lower

half band are brought into core and are eliminated by Cholesky's

Symmetric Decomposition Method (also known as the Square Root

Method), rather than Wilson's Scheme, in which the upper half

band is brought into core and is eliminated by the Gauss Elimina

tion Method. Another significant difference is that Chung's

Scheme requires only one block of coefficients in-core at one

time. The accuracy achieved is identical in both cases, but

Chung's Scheme is considerably slower than W~lson's Scheme

because of more shifting of data in- and out-of-core in Chung's

Algorithm (11).

Equation Solver by Giles Cantin

The Equation Solver by Giles Cantin (18) uses symmetric

matrix inversion of square sub-matrices as opposed to the direct

Gaussian Elimination which occurs in Wilson's and Chung's Schemes.

The basic concept of this scheme is briefly presented here.

Consider the following system:

26

Kll K12 Kl3 ••• KlM

T
Kl2 K22 K23 K24 K2,M+l

T T
R3 Kl3 K23 K33 K34 K35 K3,M+2

T T T
~ = KlM K2M KM-l,M ~,M ~,M+l ~,2M

RI
T

Kl-M+l,I
T

KI-l,I KII KI, I+l KI, I+M-

T • .
T

~ KN-Mtl,N KN-l,N l)m

where [K ..] can be treated as ·square sub-matrices. The first
1]

equation is solved for {y}
1

to get:

After substitutions from 2 to M,

T -1
= {R} 2 - [Kl2] [Kll] {R} 1

for the load vectors . All the coefficients in rows two to M from

column two to M are reduced by similar operations. A typical

example is

T -1
= [K34] - [Kl3] [Kll] [Kl4]

2

3

M

I

27

Then equation two is solved for y 2 and is substituted in equations

3 to M + 1, and the entire process is repeated until the last

equation becomes

This equation is now solved for Y , and a simple process of back
n

sub.stitution in reverse order gives all the unknowns. The entire

process is valid whether the elements of matrix [K] are individual

coefficients or square sub-matrices of coefficients.

Giles Cantin (18) developed this algorithm for symmetric

banded matrices. The scheme requires no more than three differ-

ent blocks of coefficients at the same time in-core, for elimi-

nation, together with corresponding three blocks of load vectors

for back substitution. This scheme does not pose any limits on

the half bandwidth or on the total number of equations (18); how-

ever, it does involve symmetric matrix inversions. Matrix inver-

sion is found to be an inefficient technique (11). Elimination

and back substitution, or their compact equivalents, are always

faster, and the inverse should be obtained only if it is needed

explicitly (12).

Frontal Solution Method

Bruce M. Irons (19) presents a scheme for positive definite

matrices. Frontal solution is a ·variation of Gaussian Elimina-

tion (20) that utilizes the external storage effectively. It is

28

based upon the fact that Gauss Elimination can be performed in

stages with only the coefficients within the so-called active

area being required in-core at any stage. In most solutions,

when algorithms are used in finite element programs, the stiff-

ness matrix is assembled entirely before starting Gaussian Elimi-

nation. Frontal solution schemes effect considerable savings

in backup storage requirements by assembling and reducing the

equations at the same time, thus eliminating the need to save

the total unreduced stiffness matrix.

The stiffness matrix is built by summing the contributions

[A]. of each element i properly addressed by the element localizing
1

matrices [1] .. Therefore,
1

IAJ
T = E.IL].[A].[L].

1 1 1 1

In the frontal method of solution, the Global Btiffness Matrix

is not assembled completely. The operation E.[L]~[A].[L]. is
1 1 1 1

limited to a relatively small number of finite elements, and the

corresponding part of the Global Stiffness Matrix is partitioned

in the form

[A]step j =

where the subscript C corresponds to degrees of freedom that may

be eliminated at that step; that is, degrees of freedom which are

not coupled with those of the elements that are still to be

29

assembled. The subscript R indicates that the degree of freedom

is retained. At each step j, the Gaussian Elimination is achieved

for condensable degrees of freedom at the end of each elimination

step. Therefore,

[A*] RR.
J

-1
{B*}R = {B}R - [A]RC [A]CC {B}C.

j j j j J

The [A*]RR· matrix is retained for assembling with the next
J

sequence of finite elements to form a system similarly for step

j + 1:

= [L*]~+l[A*]RR [L*] "+l + 2: [L]~[A]. [L].
J j+l J l l l

[A]j+l =
[A]CC [A]CR

j+l j+l

IAJRC [A]RR
j+l j+l

A similar operation is achieved to form the load vectors.

In order to understand the "front" of the equations, one

should consider the finite element grid for plane stress as shown

in Figure 2. There are two equations associated with each node,

corresponding to displacements u and v. To eliminate degrees of

freedom of node 1, one has to assemble equations corresponding

to nodes 1, 2, m and m+l. This requires the stiffness matrices

of elements 1, 2, q and q+l to be calculated and assembled; and

v

30

Element q Element qtl Element qt2 Element q+3

------- l

m

Element 1

Node 1

u

I
I

Ellement 2
I
I
I

I
I

El~ment 3
I
I
I

Element 4

?wave fr:nt
for Node 2

Fig. 2. Frontal idealization for plane stress .

•

31

then the degrees of freedom corresponding to node 1 are statically

condensed out. Next, in order to eliminate the equations for node

2, the final equation corresponding to degrees of freedom at nodes

3 and m+2 is also needed, requiring that stiffness matrices of

elements 3 and q+2 be first calculated and assembled and so on.

The procedure consists of statically condensing out one degree

of freedom after the other, assembling only those element stiff

ness matrices that are actually required during the specific con

densation. The finite elements that must be considered in this

condensation corresponding to one specific node define the wave

front at that time.

The equations are assembled in the order of the elements.

The length of wave front and, therefore, the half bandwidth are

determined by the element numbering; thus, an effective ordering

of elements is necessary.

The frontal solution technique has the advantage that at any

one time only the equations that are currently needed are assembled

in-core. It should also be noted that elements can be added with

relative ease because no nodal point renumbering is required (10).

The essential and important limitation of the frontal method

appears to be its often excessive requirements in core storage

as the front becomes large. When this happens, there is no simple

way of avoiding the requirements ·of a large memory allocation

which may override the intrinsic advantages of simplicity and

efficiency in dealing with variable bandwidth (21).

CHAPTER VI

A PROGRAM FOR MICROCOMPUTERS

General

In the preceding chapters, a brief survey was made of several

methods to solve a system of linear simultaneous equations. A

microcomputer has a limited core memory, and a large system of

equations cannot be solved in the core alone by direct methods

even when a symmetric banded matrix is used. In iterative methods

such as the Jacobi and Gauss-Siedel Methods, there is a possibil

ity of slow or irregular convergence. In general, iterative

methods are only suitable when the system matrix is almost diagonal

or dominant-diagonal, and thus gives rapid convergence. Front

solvers produce savings of storage and execut-ion time, but they

prohibit the solutions of very large systems (18) because of

large front width that cannot be accommodated in computer core.

The blocked banded equation solvers seem to be a good choice

for microcomputers for use for a wide range of problems encoun

tered in finite elements and frame analysis. All the three

blocked banded schemes discussed deserve serious consideration

for microcomputer application. The out-of-core scheme presented

by Wilson (17) requires less in- . and out-of-core operations than

the scheme presented by Chung (in Segui)(ll) and uses elimination

32

33

and back substitution rather than matrix inversion as in Cantin's

Scheme (18). Because of this, the blocked banded scheme presented

by Wilson was selected for implementation.

This author has implemented the technique presented by E.L.

Wilson into a BASIC language program for the microcomputer. The

input and output operations depend upon the microcomputer used.

Still, the applicability of the processes as a whole is general

enough. It is assumed that a fast out-of-core device of large

capacity like a suitable disk drive is available.

The upper half-band and constant vector must be written on

a disk file in blocks. Referring to Figure 3, the blocks can

now be made with the following restrictions. The width of

block should at least be equal to the half bandwidth. The depth

of the block should at least be equal to half bandwidth for re

duetion of the block to proceed. Consider matrix B:

bl

b2

b3

b4

bs

b
6

b7

0

34

halt b andwid t)l MM
r 1

.___:_- :- :- } block depth ISZE 1 MM

X X X

load vector -----4~ -~unreduced coefficients matrix
X X X

f---------
X X X

X X X

-

Disk File "jT"

{ X X

block
depth

X X

----- 2* Block Depth

Solution of
Unknowns
Stored here

X X

X X

Matrix A in computer core

At forward elimination stage matrix A holds
two blocks of coefficients

x xlx x1x

x xlx xlx
---L---+-----

1 I
xl x3 I x5 I
x2 x4 I

not less than number of blocks

2* block
depth

Matrix A in computer core after back substitution

Fig. 3. Matrix blocks in disk file and computer core.

35

And upper half-band coefficients:

0 0

Here the block size is 2 x 2. Note that dummy zeros have to be

put in last rows of both matrices {A] and {B} to keep the same

size for all of the blocks.

To write these coefficients in the disk file, start with

the first term of vector{B1 then write the coefficients on the

first row of the upper half-band. After that, the second term

of vector{B}is followed by coefficients of the second row of the

upper half-band and so on as shown below:

bl all al2

b2 a21 a22

b3 a31 a32

b4 a41 a42

36

Once the complete file is written, one can proceed with the solu-

tion. A general flow diagram of this process is shown in Figure

17. Detailed flow charts are given in Figure 18 in the Appendix .

A listing of the program is also given.

Refer to Figure 3 and note that matrix [A] in the program

represents the coefficients that are required at any one time in

the core. The first dimension of this matrix must at least be

equal to twice the depth of the block because this matrix holds

two blocks of coefficients for reduction; and, at the end of back

substitution, the lower half of this matrix contains the solution

of the unknowns. The second dimension of matrix [A] must at least

be equal to the half bandwidth and at least equal to the number

of blocks. For an explanation of this restriction, one must look

at the flow chart for back substitution in Figure 18 in the Appen-

dix. The back substitution starts from the last unknown and, after

finding the value, proceeds upward. But before it proceeds upward,

the solution of this unknown is stored in lower half of the matrix

A. This is needed because the terms of vector {B} keep changing

in the entire process. Figure 3 shows these restrictions.

Test Matrices

To determine the accuracy of the solution obtained by the

program, test matrices of known solutions were used. Gregory

and Karney (22) document some of these. For a half bandwidth of

2, this test matrix was used in this program:
•

2 -1 0 0 0

-1 2 -1 0 0

-1 2 -1 0

-1 2

-1

With the solutions X. = i for i
1

For half bandwidth = 4, the

5 1 1 1 0 0 0 0

1 5 1 1 1 0 0 0

1 1 5 1 1 1 0 0

1 1 1 5 1 1 1 0

0 1 1 1 5 1 1 1

0 0 0 1 1 1 5 1

0 0 0 0 1 1 1 5

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1

37

0

0

0
=

-1

1 X n

= 1, ..• ' n.

following test

0

0

0

0

0

1

1

5

1

0

0

0

0

0

1

1

1

5

xl

x2

X
n

0

0

0

1

matrix was used:

8

9

10

11

11

11

10

9

8

Which has solutions X.= 1 fori= 1, ... , n. Sub-routines for
1

generation of the upper half-band coefficients for these matrices

are included in the program listing.

38

Maximum Capability

T4e computations for approximately finding the maximum num-

ber of equations that can be handled by the in-core and out-of-

core banded solvers can proceed as follows. The in-core program

takes up close to 2200 bytes, and the out-of-core program takes

up about 4200 bytes. Both include sub-routines for test matrix

generation. 10.5K is taken by the disk operations system, and

2K is taken by the computer operating system. Space available

for matrix terms in the in-core solver is then:

(32 - 12.5) x 1024 - 2200 = 17768 bytes

The system configuration used requires five bytes for each matrix

term. Therefore, the number of matrix terms which can be stored

in core is 17768/5 or 3553 terms. For a half bandwidth of 2, we

need B(N), A(N,2), requiring N + 2N = 3N terms. The maximum num-

ber of equations is then 3553/3 or 1184 equations. Similarly,

with a half bandwidth of 4, the maximum number of equations is

3553/5 or 710. Table 1 gives the values of N for various half

bandwidths. For the out-of-core solver, the space available is

given by

(32 - 12.5) x 1024 - 4200 = 15768 bytes

The number of matrix terms which can be in-core at any one time

is then 15768/5 = 3153 terms. For a half bandwidth of 2, a figure

of at least B(N), A(2 x 2, N/2), -requiring

2 X 2 N + 2 N = 3N terms

39

The maximum number of equations = 3153/3 = 1051. Actually, N =

. 1051
1nteger block depth x depth of block = 1050. The half bandwidth

of 4 requires

N + 2 x 4 N = 3N terms
4

Therefore, the number of equations = 3153/3 or 1051 equations.

1051
Actually, N = Integer --

4
-- x 4 = 1048.

TABLE 1

MAXIMUM NUMBER OF EQUATIONS THAT CAN BE
SOLVED WITH A PARTICULAR HALF BANDWIDTH

Half In-Core Out-of-Core
Bandwidth Solver Solver

2 1184 1050

4 710 1048

5 592 1050

-10 323 1050

15 222 1050

20 169 1040

25 136 1050

30 114 1050

Table 1 shows that as the half bandwidth increases, the in-

core equation solver is capable of solving a decreasing number

of equations. The out-of-core solver is not similarly limited

provided that the disk system has a large capacity; otherwise,

40

the storage needed will exceed the disk capacity before the solu

tion is obtained. In the system configuration selected the real

number can have nine digits of precision excluding the decimal

point and the sign. To be recorded on the disk file, each char

acter of this real number requires one byte for the record length.

For example, using a disk file record length of 12 bytes, a disk

of 100,000 bytes capacity can solve 1048 equations with a half

bandwidth of 4. To solve the same number of equations with a

half bandwidth of 30, one needs a disk of close to 800,000 bytes

capacity. The writing and reading commands and lengths of records

all play important roles in this regard.

Therefore, a larger system of equations can be solved with

disks of greater capacity, using the smallest possible record

length for the disk files and making efficient use of writing and

reading commands.

Time of Execution

The test matrices described in the previous section on test

matrices were used for this section and are shown below. For a

half bandwidth of 2, this matrix was used:

2 -1 0 0 0 0 xl 0

-1 2 -1 0 0 0 xz 0

-1 2 -1 0 .0 x3 0
=

-1 2 -1

-1 1 1

For a half bandwidth of 4, the

5 1 1 1 0 0

1 5 1 1 1 0

1 1 5 1 1 1

1 1 1 5 1 1

0 1 1 1 5 1

0 0 0 1 1 1

0 0 0 0 1 1

0 0 0 0 0 1

0 0 0 0 0 0

41

following

0 0

0 0

0 0

1 0

1 1

5 1

1 5

1 1

1 1

matrix was used:

0

0

0

0

0

1

1

5

1

0

0

0

0

0

1

1

1

5

xl

xz

X
n

=

8

9

10

11

11

11

10

9

8

The time of execution was recorded by varying the number of un-

knowns. In Figure 4, execution time can be seen to be linearly

dependent on the number of equations being selved. The reasons

for this follow.

In a computer, addition and subtraction are performed many

times faster than multiplication and division. Because of this,

the time of execution depends largely on the number of multipli-

cations and divisions used. Morris, Wilbur and Utku (23) observe

that the number of multiplications involved for the decomposition

of matrix [A] is basically proportional to T when

T = n X square of half bandwidth

demonstrating that for a constant bandwidth, T will be proportional

to the total number of unknowns, n; and therefore, the time of

14

1
3

12

l

-
6

-
h

a
lf

 b
an

d
w

id
th

 =
 4

,
1

1
 1

h

a
lf

 b
an

d
w

id
th

 =
 2

,
ou
t-
of
~r

e
so

lv
e
r

-
o

-
0

10

I

h
a
lf

 b
an

d
w

id
th

 =
 2

,
in

-~
or

e
so

lv
e
r

__
._

_
I

CJ
)

9
I

QJ

-
o

-
h

a
lf

b

an
d

w
id

th

=

 4
./

in
-c

o
re

so

lv
e
r

+
J ::l

~

8
~ ~

•M

7
~

I
/

/
~

•M

N

H

6 5 4 3 2 1 0
10

0
20

0
30

0
40

0
N

um
be

r
o

f
e
q

u
a
ti

o
n

s

F
ig

.
4

.
E

x
ec

u
ti

o
n

ti

m
e

v
e
rs

u
s

nu
m

be
r

o
f

e
q

u
a
ti

o
n

s
.

43

execution will vary almost linearly with the increase in n. This

is confirmed by Figure 4.

If the half bandwidth is taken as n rather than a constant,

the matrix is full; and the number of multiplications is propor

tional to n 3 , as reported by many authors.

Execution time for banded and symmetric in-core equation

$Olvers is also plotted on the same graph, from which one notices

that the out-of-core solver took almost six times as long for

solving the same number of equations. However, when the system

of equations is large, to need storage greater than the in-core

capacity of the computer as discussed in the previous section,

the equations cannot be solved using in-core system and one has

to use out-of-core solver.

Truncation Error

In several instances, the exact number obtained from a mul-

tiplication or division is larger than the word length used by

the computer. This number is truncated to conform to the word

length of the computer. As the number of unknowns increases,

the multiplications and divisions increase considerably, thus

increasing the truncation error.

Sequi (16) gives two error measurements to compare the

accuracy in different situations;

Overall Inaccuracy = Error Measure =

Maximum Error= Max le.l
1

1 1/2
2

n !Lei I

44

where e. represents the difference between the exact and computed
1

value of X.

In Figure 5 overall error measure has been plotted versus the

number of equations for a half bandwidth of 2. This curve is non-

linear, increasing rapidly with an increasing number of equations.

Exactly the same curve was obtained when trials were made varying

the depths of the block. In Figure 6, maximum error has been

plotted versus the number of equations for a half bandwidth of

two. This curve is also non-linear and increases rapidly with

increases in the number of equations. The overall error measure

and the maximum error curve do not change with changes in block

depth, as can be seen from Figures 7 and 8.

In the tests performed, both the overall error measure and

the maximum error remained the same for the in-core and out-of-

core equation solvers. Therefore, the out-of-core solver can be

used where the precision of the in-core banded solver is accepta-

ble.

To perform a curve fit for the overall error measure curve

in Figure 5 and the maximum error curve in Figure 6, a second

order regression equation of the following form was used:

where:

y = dependent variable

c = constant

8
X

1

0
-5

 7 6

<lJ

H

==
'

(/
)

5.
cU

<lJ

~

$-1

0 $-1

$-1

4.

~

M

M

I
I

~

Ct
l

lJ
'1

$-1

 ~
3

0

2

1
X

1

0
-5

 0
10

0
20

0
30

0
40

0
N

um
be

r
o

f
e
q

u
a
ti

o
n

s

F
ig

.
5

.
O

v
e
ra

ll

e
rr

o
r

m
ea

su
re

v

e
rs

u
s

n
u

m
b

er
 o

f
e
q

u
a
ti

o
n

s.

24

X

1
0

-4 H

0 H

H

~
 s ~ ·M

:X:

C'
(j :a:
 0

10
0

20
0

30
0

40
0

F
ig

.
6

.
M

ax
im

um
 e

rr
o

r
v

e
rs

u
s

n
u

m
b

er

o
f

e
q

u
a
ti

o
n

s.

N
um

be
r

o
f

e
q

u
a
ti

o
n

s

.p
-.

0
\

8
X

1

0
-5

 7 6

Q
) ,.._
,

;:
j

CJ
)

5
m

~ ,.._

,

0 ,.._
,

,.._
,

4
I::L

l

H

'
H

I

I
+:-

-
m

.....

....s

,.._
,

Q
) :> 0

2

1
X

1

0
-5

0
10

0
20

0
30

0
4

0
0

N

um
be

r
o

f
e
q

u
a
ti

o
n

s

F
ig

.
7

.
O

v
e
ra

ll

e
rr

o
r

m
ea

su
re

v

e
rs

u
s

n
u

m
b

er

o

f
e
q

u
a
ti

o
n

s
w

it
h

d

if
fe

re
n

t
b

lo
c
k

d

e
p

th
s.

•2
4

X

1
0

-4

~

0 ~

~

I:L
l El ~ ·H
 :< ('l
j

::E

0
1

0
0

2

0
0

4

0
0

N

um
be

r
o

f
e
q

u
a
ti

o
n

s

F
ig

.
8

.
M

ax
im

um

e
rr

o
r

v
e
rs

u
s

nu
m

be
r

o
f

e
q

u
a
ti

o
n

s
w

it
h

d

if
fe

re
n

t
b

lo
c
k

 d
e
p

th
s

c

_p
-.

0
0

49

a 1 and a 2 = coefficients of independent variables x, 2
X '

n
• • • ' X '

respectively. A computer program from Pool and Borchers (24)

was used to find the values of the various coefficients of the

regression equation.

Tables 2 and 3 show the coordinates of the overall error

measure and maximum error curves that were used as input to the

computer. Tables 4 and 5 show the output from the computer, giving

the constants and the coefficients of the regression equation.

Figures 9 and 10 show the curve fits for the overall error mea-

sure and maximum error computed from the regression equations shown

in Tables 4 and 5. From these curve fits, one can estimate t he

number of equations that can be solved to the accuracy desired.

For example, if . the overall accuracy required in an application is

.1%, the curve in Figure 9 shows that 1300 equations can be solved.

When greater precision is needed, one has to use double precision

arithmetic. In many microcomputers, double precision arithmetic

needs special sub-routines and requires almost twice the storage

space in the computer core and disk as needed for single precision

arithmetic.

Effect of Depth of Block on Time of Execution

The depth of block refers to the number of rows in each

block. The present version of this program requires each block

to have the same depth. A smaller depth of block results in a

larger number of blocks for the same total number of unknowns.

50

TABLE 2

COORDINATES DATA FROM OVERALL ERROR MEASURE GRAPH

X y

Number of Equations Error Measure

0 0

100 .2614 X 10-S

200 1.2868 X 10 -5

300 4.1919 X 10-s

400 8.2150 X 10-5

TABLE 3

COORDINATES DATA FROM MAXIMUM ERROR GRAPH

X y

Number of Equations Maximum Error

0 0

100 .3734 X 10-4

200 2.5636 X 10-4

300 10.55QQ X 10-4

400 23.3793 X 10-4

c

c

51

TABLE 4

REGRESSION EQUATION FOR OVERALL ERROR

6.2219952E-07

-6.50549926E-08

6.71649983E-10

y = (6.2219952E-07) - (6.50549926E-08) * X

+ (6.71649983E-lO) * x2

TABLE 5

REGRESSION EQUATION FOR MAXIMUM ERROR

3.73076976E-05

-3.08019402E-06

2.19342851E-08

y = (3.73076976E-05) - (3.08019402E-06) *X

+ (2.19342851E-08) * x2

1
2

0

X

1
0

-5

90

X

1
0

-
5

~

0 ~

~

J:L
l

r-
1

r
l m

H

Q)

-5

:>

60

X

1
0

'
i

0

30

X

1
0

-5 0

D
o

tt
ed

li

n
e

sh
ow

s
o

ri
g

in
a
l

g
ra

p
h

20
0

30
0

40
0

50
0

60
0

70
0

80
0

N
um

be
r

o
f

E
q

u
a
ti

o
n

s

fl

90
0

10
00

1

1
0

0

12
00

13

00

14
00

F
ig

.
9

.
C

u
rv

e
f
it

fo

r
o

v
e
ra

ll

e
rr

o
r.

V
'1

N

4
0

X

1
0

-
3

~

30

X

1
0

 -3

0 ~

~

~
 s ~ s ·M

X

-3
~

/
V

1
~
 2

0
X

1

0
·

w

1
0

X

1

0
-3 0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

70
0

8
0

0

9
0

0

1
0

0
0

1

1
0

0

1
2

0
0

1

3
0

0

1
4

0
0

N

um
be

r
o

f
E

q
u

a
ti

o
n

s

F
ig

.
1

0
.

C
u

rv
e

f
it

fo

r
m

ax
im

um
 e

rr
o

r.

54

This increases the shifting of data in and out of core, thus

increasing the time of execution. Figure 11 shows this clearly.

In general, the maximum possible depth of block results in mini-

mum time of execution. However, if the total number of equations

is not a multiple of the block depth selected, the last block

will not be of the same size as other blocks and, therefore,

will be filled with dummy zeros to maintain the same depth of

block as others. Operation with too many of these dummy zeros

increases the time of execution. Therefore, for solving 200

equations, a block depth of 175 will require greater execution

time than a block depth of 100. Tables 6 and 7 and Figure 12

reflect this phenomenon.

TABLE 6

SHOWING EFFECT OF BLOCK DEPTH ON EXECUTION TIME

Execution Time
Half Bandwidth Block Depth For 200 Equations

Min:Secs
2 4 3:36
2 8 3:08
2 25 2:43
2 50 2:18
2 100 1:52
2 200 1:21

4 4 7:12
4 8 6:23
4 25 5:06
4 100 4:22
4 200 3:02

•

55

7

6
(J)
Q)
+J
;j
p 5
·ri
::E:

f'l

Q)

s 4
·ri
H

p
0
·ri 3
+J
;j
t)
Q)

:<
2 w

1

0

25 50 100 200

Block Depth, Half Bandwidth = 4

Fig. 11. Block depth versus execution time (no dummy zeros).

56

TABLE 7

SHOWING EFFECT OF DUMMY ZEROS ON EXECUTION TIME

Half Block Number of !tows Execution Time

Bandwidth Depth of Dummy Zeros for 200 Equations
Min:Secs

4 100 0 4:22

125 50 4:57

150 100 5:44

175 150 6:25

197 194 7:16

200 0 3:02

..
ClJ s

•,.-I
H

0
0

•,.-I
4-J

B 3
ClJ
:<
~

2

1

No Dummy
Zeros

125 150

57

175
Block Depth, Half Bandwidth = 4

No Dummy
Zeros

197 200

Fig. 12. Block depth versus execution time (with dunnny zeros).

CHAPTER VII

TRUSS PROGRAM EXAMPLES

To demonstrate the feasibility of the out-of-core equation

solver presented in Chapter VI in practical engineering applica

tions, a number of truss analysis problems were solved with the

help of a computer program developed by the author on the basis

of the truss analysis program given by Brebbia and Ferrante (1).

The program uses the stiffness method for assembling the system

matrix. Initially, each element is regarded as isolated from

the structure to establish a matrix equation defining the indi

vidual element behavior. Then, considering the intersection of

each element with the remaining elements of the structure ac

cording to its connectivity, the total behayior of the structure

is defined, leading to the problem solution.

The basic steps of this scheme are as shown below:

1. Numbering of nodes and elements for identification pur

poses and entering required data to the computer which includes

the nodal coordinates, connectivity table, element properties,

boundary and support conditions and a description of the applied

loads,

2. Evaluation of the element matrix equations,

58

59

3. Assembling of the total system of equations,

{P}= [KJ{U}

where:

{P} = the total applied load vector

[K] • the total stiffness matrix

{U} = the total nodal displacements vector

4. Introduction of boundary conditions in the above men

tioned equations,

5. Solution of the equation {p} = [K]{U} to obtain the values

for vector. {u},

6. Finding the forces in members from the equation; force

in the element = [element rotation matrix] * {element nodal

displacement vector}.

Two versions of this program were prepared. In the first

version, the total stiffness matrix is assembled from the ele

ment stiffness matrices in the computer core; and the system

equations is solved by the in-core symmetric banded scheme. The

second version of this program assembles the total stiffness

matrix on a disk file and the system of equations is solved by

out-of-core blocked banded equation solver

The half bandwidth has a great effect on the efficiency of

the system and on the total number of equations that can be

solved. An increase in half bandwidth reduces both the efficiency

of the system and the total number of equations that can be

60

solved. The half bandwidth, counted in nodes, is obtained by

adding 1 to the greatest difference in number for the two nodes

associated with a bar. It is, therefore, recommended that the

nodal numbering should be selected, minimizing the differences in

number of the two nodes connected to each bar.

The truss examples in Figures 13-15 have a half bandwidth

of 6. Each element of these trusses has an area of .05 square

6 inches and a modulus of elasticity of 30 x 10 pounds per square

inch. Each truss has two support nodes; one support node is

hinged, and the other node is supported on a roller. Each of

these trusses was solved by the in-core and out-of-core versions

of the truss analysis program. A comparison of the times of

execution for these trusses is shown in Figure 16.

The 97 nodes and 191 elements truss shown in Figure 15 re-

quires close to 10,000 bytes of computer core memory for the

program, 10,752 bytes for disk operating system, 2048 bytes for

computer operation, and 5 bytes for each term of the matrix. The

storage requirement exceeds the computer core memory. Therefore,

this problem cannot be solved by the in-core scheme on the system

configuration used with a 32K byte computer core, but it can be

solved by the out-of-core scheme with the same core capacity .

•

2
[I

T
]

4
[I

T
]

6
[i

ll

10
0

p

4
B

ay
s

a
t

1
0

";

h
e
ig

h
t

=
 1

0
"

A
re

a
o

f
ea

ch

el
em

en
t

=
 .

O
S

sq
u

a
re

in

c
h

E
 =

30

x

10
6

p
o

u
n

d
s

p
e
r

sq
u

a
re

in

c
h

F
ig

.
1

3
.

N
in

e
n

o
d

es

an
d

fi
ft

e
e
n

el

em
en

ts

tr

u
s
s
.

8

1
0

"

0
\

f--
J

lll9
l

(]
I]

3

[]Q
J

11
01

1
11

02
1

1
0

0

p

34

B
ay

s
a
t

1
0

"
;

h
e
ig

h
t

=

lO
u

A
re

a
o

f
ea

ch
 e

le
m

en
t

=

.O
S

sq
u

a
re

in

c
h

E
 =

30

x

1
0

6
p

o
u

n
d

s
p

e
r

sq
u

a
re

in

c
h

F
ig

.
1

4
.

S
ix

ty
-n

in
e
 n

o
d

es

an
d

13

5
e
le

m
e
n

ts

tr

u
s
s
.

1
0

"

6
9

0"
1

N

~

11
44

1

10
0

p

48
 B

ay
s

a
t

1
0

";

h
e
ig

h
t

=

1
0

"

A
re

a
o

f
ea

ch
 e

le
m

en
t

=

.O
S

sq
u

a
re

in

c
h

E
 •

30

x

10
6

p
o

u
n

d
s

p
e
r

sq
u

a
re

in

c
h

F
ig

.
1

5
.

N
in

e
ty

-s
e
v

e
n

 n
o

d
es

an

d
 1

9
1

 e
le

m
en

ts

tr
u

s
s
.

1
0

"

"" w

96

C
/)

(]
)

4-
J

72

:J p •r
l

;:E
: p •r
l

(]
) s •r
l

H

4
8

p 0 •r

l
4-

J :J
·

(.
)

Q
) ~

I:L
l

2
4

1

-
-
o

-

-
-
6

-
-
-

O
u

t-
o

f-
C

o
re

S

o
lv

e
r

In
-C

o
re

S

o
lv

e
r

R
eg

io
n

 w
h

er
e

a
d

d
it

io
n

a
l

m
em

or
y

is

re
q

u
ir

e
d

to

u

se

th
e

in

-c
o

re

so

lv
e
r

so

70

N
um

be
r

o
f

N
od

es

-
-
-
-
-
-
-
-
-
6

10
0

F
ig

.
1

6
.

E
x

ec
u

ti
o

n

ti
m

e
v

e
rs

u
s

nu
m

be
r

o
f

n
o

d
es

in

a

tr
u

s
s
.

(J
'\

+:-
-

65

16K bytes of memory were added to the computer core of the system

configuration used to solve the problem mentioned earlier, by

the in-core scheme to check the results obtained by out-of-core

methods. The results obtained by both methods were identical.

Core storage requirements for stiffness matrix in out-of-core

solver is reduced to one-third of that of in-core solver.

It can be seen from Figure 16 that the in-core version of

the truss analysis program cannot be used for trusses with nodes

greater than 70 and elements greater than 140, the other condi

tions in the program remaining are the same. The out-of-core

version of truss analysis program can be used for trusses with

nodes close to 100 and elements close to 200. The precision of

results obtained by both methods is the same, but the time of

execution for out-of-core solver is considerably greater.

CHAPTER VIII

CONCLUSIONS

The in-core banded equation solver is an efficient program

for a microcomputer and can be used when the system of linear

algebraic equations is small enough that the global stiffness rna-

trix can be accommodated in the core of the computer. However, in

engineering analysis, a much larger system of equations is usually

encountered; and the in-core storage is not large enough to accom-

modate the data. In the equations derived by minimization or energy

principles, one frequently encounters symmetric banded matrices which

are usually well conditioned. In such cases, the out-of-core

blocked banded program presented in this report is suitable.

The ninety-seven node truss example presented -in Chapter VII demon-

strates this result using an Apple II computer. The tests in this

report show the overall error measure and the maximum error com-

puted by this program to be the same as for the in-core program,

but the time taken for execution is many times greater, as shown

in Chapter VI. These tests also confirm William T. Segui's obser-

vation that maximum possible block size results in maximum effi-

ciency (25). However, as discussed in Chapter VI of this paper,

this program requires each block to have the same depth; there-

fore, the maximum efficiency is obtained only when this maximum
•

66

67

depth of block is chosen so as not to fill up the last block

with too many dummy zeros.

It was shown in Chapter VI of this report that whereas the

block size is limited only by the core capacity of the computer,

the total number of unknowns that can be solved is also limited

by the capacity of the out-of-core peripheral device such as a disk

drive. In conclusion, it can be said that the out-of-core pro

gram is suitable for a microcomputer which has a high speed disk

or tape drive of large capacity and where time for execution is

of no particular importance.

The research done for this report suggests several areas where

further work might be done. First, the program used might be im

proved further. The current algorithm does not take variable band

width into account. Consideration of this possibility might decrease

processing time. Also, because BASIC interpreters are relatively

slow in operating, a compiled program in machine language will re

sult in significant time saving. It should also be noted that the

current algorithm does not test for singular or ill-conditioned ma

trices. If the matrix is singular, the program will reach an error

condition and halt; but if the matrix is ill-conditioned, a false

result might be obtained. Several techniques exist to test matrices

for ill-conditioning, and incorporation of such a test in the pro

gram would increase its utility.

The other schemes discussed in this report provide a second

area for further study. Cantin's scheme (18) for blocked banded

68

matrices and the gradient methods, particularly the conjugate

gradient method show great promise. It would be interesting to

implement these methods on a microcomputer and compare accuracy

and execution time.

APPENDIX

- Write Reduced
Block on File "IT"

Open Input File "JT"
and Scratch File "IT"

I
Read First Block

of Equations

No

I
Shift Block

of Equations

I
Read Next Block

of Equations

1
Reduce Block
of Equations

Last
Block?

Yes

Read a Block From
File "IT"

I
Perform

Backsubstitution

11
Nn Blocks

Proce
e

Yes

Order Unknowns
In {B } Array

Fig. 17. Flow chart for out-of-core solver.

71

Open and Initialize
Scratch File "IT" and
Open Input File "JT"

I

NC = 0
J4 = 0
JS = 0

NL = ISZE + 1
NH = ISZE + ISZE

MM = IHBW

I

Read First Block
of Equations

From File "JT"

I

For N = 1\TL to NH -
I

J4 = J4 + 1
Read JT,R; J4

Input B(N)

I
For M = 1 to MM

I I
J4 = J4 + 1 I

Read JT,R; J4 I
Input A(N,M) I

I I
Next M

I

Next N -

0
Shift Blocks of

Equations
•

I
I
I
I
I
I
I
I

- I
I

_j

Fig. 18. Detailed flow chart for out-of-core solver.

Shift Block of Equations

NC = NC + 1

NM = ISZE + N
B(N) = B(NM)

B(NM) = 0

A(N,M)=A(NM,M)
A(NM,M) = 0

Next M

L_
Next N

Read Next Block of Equations
From "JT"

J4 = J4 + 1
Read JT,R; J4

Input B(N)

For M = 1 to HM

J4 = J4 + 1
Read JT,R; J4
Input A(N,M)

Reduce Block of Equations

Fig. 18. Detailed flow chart for out-of-core solver (continued) .

•

Reduce

~---

' I
r--
1

I
I
I
I

Yes

C=A(N 'L) I A(N' 1)
I = N + L - 1

J = 0

I ~- For K = L to

I I
I I
I I
I I

I 1...-------~-----. I I A(I,J) = A(I,J)-C*A(N,K)

I L_
----------~----------~

I
I I I L __
L __ _

Fig. 18. Detailed flow chart for out-of-core solver (continued) .

Write Block of Equa
tions on File "IT"

For N=1 to ISZE

JS = JS + 1

JS = JS + 1
Write IT,R; JS
Print A(N,M)

Next M

Next N

Open "IT"
N3 = N1

For N=1 to ISZE

N3 = N3 + 1
Read IT, R; N3 .

Input B(N)

For M = 2 to 1'1M

N3 = N3 + 1
Read IT,R; N3

Next N

Close "IT"

I
I
I
I
I
I

1 I
I I
I
1 I
I I
I I

_j
I

_j

--,
I
I
I
I

ll
I I
I

I I
_II

_j

No

No

Back

For M=1 · to ISZE

N = ISZE +1 - M

ForK '= 2 to MM

---,
I

---1 I
I I

L = N + K - 1
B(N) = B(N)-A(N,K)*B(L)

I I
I
I I

Next K

NM = N + ISZE
B(NM) = B(N)

A(NM,NC) = B(N)

Next M

NC = NC - 1
N2 = ISZE * MM
N1 = NC * N2-N2

Order Unknowns in

K = 0

For NC=1 to NBL

For N=1 to ISZE ·

NM = N + ISZE
K = K + 1

B(K) = A(NM,NC)

Next N

Next NC

End

___ _j I
I
I
I
I

____ j

Array

----,
I
I
I
I
I

_j

I
I
I
I
I
I

Fig. 18. Detailed flow chart for out-of-core solver (continued).

75

COMPUTER PROGRAM

2 REM: THIS PROGRAM GENERATES A LARGE SET OF SIMULTANEOUS EQUA
TIONS AND SOLVES THESE EQUATIONS WITH THE HELP OF A BANDED
BLOCKED EQUATION SOLVER SUB-ROUTINE.

3 REM: 'JT' IS A DISK FILE IN WHICH THE UPPER HALF BAND AND CON
STANT VECTORS ARE WRITTEN. 'IT' I S A DISK FILE USED AS A
SCRATCH FILE.

4 REM: B IS A SOLUTION VECTOR WITH DIMENSION GREATER THAN OR EQUAL
TO THE PRODUCT OF THE BLOCK DEPTH AND THE NUMBER OF BLOCKS.

5 REM: A IS A BLOCK OF COEFFICIENTS OF THE UPPER HALF BAND . THE
DEPTH OF EACH BLOCK MUST BE AT LEAST AS LARGE AS THE HALF
BAND WIDTH BUT NO LARGER THAN HALF THE FIRST DIMENSION OF A.

6 REM: THE SECOND DIMENSION OF A MUST BE EQUAL TO OR GREATER THAN
THE HALF BANDWIDTH AND EQUAL TO OR GREATER THAN THE NUMBER
OF BLOCKS.

7 REM: MM = HALF BANDWIDTH OF THE SYSTEM BEI NG SOLVED .

8 DIM B(200),A(4,100)
10 NO = 200
20 IHBW = 2
30 ISZE = 2
40 D$ = CHR$ (4)
50 PRINT D$;"OPEN JT,L16"
60 PRINT D$;"DELETE JT"
70 PRINT D$;"OPEN JT,L16"
80 REM: DETERMINE NUMBER OF BLOCKS NBL
100 BL = NO / ISZE
110 NBL = INT (BL)
120 IF BL > NBL THEN NBL = NBL + 1
130 PRINT " NUMBER OF BLOCKS="; NBL
140 REM: DETERMINE TRUE DEPTH KBL OF THE LAST BLOCK
150 KBL = ISZE
160 IF (NBL * ISZE - NO) > 0 THEN KBL = NO - (NBL - 1) * ISZE
170 REM: GENERATE UPPER HALF BAND AND RIGHT HAND SIDE VECTOR BY

BLOCKS
180 J3 = 0
200 FOR J = 1 TO NBL
210 FOR K = 1 TO ISZE
220 B(K) = 0
230 FOR L = 1 TO IHBW
240 A(K,L) = 0
250 NEXT L

76

COMPUTER PROGRAM (Continued)

260 NEXT K
270 REM: DETERMINE THE CURRENT BLOCK DEPTH KHBW
300 KHBW = ISZE
310 IF J = NBL THEN KHBW = KBL
320 FOR I = 1 to KHBW
330 A(I,1) = 2
340 A(I,2) = -1
350 NEXT I
360 IF J < > NBL THEN 510
370 REM: GENERATE THE LAST ROW OF COEFFIC IENTS
400 B(KHBW) = 1
410 A(KHBW,1) = 1
420 A(KHBW,2) = 0
440 REM: WRITE THE BLOCK OF COEFFICIENTS ON DISK FILE JT
510 FOR N = 1 TO ISZE
512 J3 = 1 + J3
515 PRINT D$;"WRITE JT,R";J3
520 PRINT B(N)
530 FOR M = 1 TO IHBW
532 J3 = J3 + 1
535 PRINT D$;"WRITE JT,R";J3
540 PRINT A(N,M)
550 NEXT M
560 NEXT N
570 NEXT J
580 PRINT D$;"CLOSE JT"
590 GOSUB 1000
600 PRINT D$; "BLOAD KSR80"
610 CALL 775
700 FOR I = 1 TO NO
710 PRINT I,B(I)
720 NEXT I
800 REM: COMPUTE ERROR MEASURE
810 SUM = 0
820 AMAX = 0
830 FOR I = 1 TO NO
840 R = I - B(I)
850 IF ABS (R) > AMAX THEN AMAX = ABS (R)
860 SUM = SUM + R * R
865 NEXT I
870 ER1 = SQR (SUM) I NO
880 PRINT "ERROR MEASURE=" ;ER1
890 PRINT "MAXIMUM ERROR="; AMAX
900 PRINT D$;"PR/IO"
950 END
1000 REM: BANDED BLOCKED EQUAT ION SOLVER

77

COMPUTER PROGRAM (Continued)

1010 NL = ISZE + 1
1020 NH = ISZE + ISZE
1030 PRINT D$;"0PEN IT,L16"
1040 PRINT D$;"DELETE IT"
1050 PRINT D$;"0PEN IT,L16"
1060 PRINT D$;"0PEN JT,L16"
1070 NC = 0
1072 J4 = 0
1073 J5 = 0
1075 MM = IHBW
1080 GO TO 2020
1090 REM: REDUCE EQUATIONS BY BLOCKS
1095 REM: SHIFT BLOCKS OF EQUATIONS
1100 NC = NC + 1
1110 FOR N = 1 TO ISZE
1120 NM = ISZE + N
1130 B(N) = B(NM)
1140 B(NM) = 0
1150 FOR M = 1 TO MM
1160 A(N,M) = A(NM,M)
1170 A(NM,M) = 0
1180 NEXT M
1190 NEXT N
1195 REM: READ NEXT BLOCK OF EQUATIONS INTO CORE
2000 IF NBL = NC THEN 2200
2020 FOR N = NL TO NH
2022 J4 = J4 + 1
2030 PRINT D$;"READ JT,R";J4
2040 INPUT B(N)
2050 FOR M = 1 TO MM
2052 J4 = J4 + 1
2055 PRING D$;"READ JT,R";J4
2060 INPUT A(N,M)
2070 NEXT M
2080 NEXT N
2100 IF NC = 0 THEN 1100
2150 REM: REDUCE BLOCK OF EQUATIONS
2200 FOR N = 1 TO ISZE
2210 IF A(N,1) = 0 THEN 2350
2220 B(N) = B(N) I A(N,1)
2230 FOR L = 2 TO MM
2240 IF A(N,L) = 0 THEN 2340
2250 c = A(N,L) I A(N,1)
2260 I = N + L - 1
2270 J = 0

78

COMPUTER PROGRAM (Cont i nued)

2280 FOR K = L TO MM
2290 J = J + 1
2295 IF A(I,J) = 1 AND B(I) = 0 THEN 2330
2300 A(I,J) = A(I,J) - C * A(N, K)
2310 NEXT K
2320 B(I) = B(I) - A(N,L) * B(N)
2330 A(N,L) = C
2340 NEXT L
2350 NEXT N
2360 REM: WRITE BLOCK OF REDUCED EQUATIONS ON DISK IT
2400 IF NBL = NC THEN 2485
2415 FOR N = 1 TO ISZE
2417 J5 = J5 + 1
2420 PRING D$;"WRITE IT,R";J5
2430 PRINT B(N)
2440 FOR M = 2 TO MM
2442 J5 = J5 + 1
2445 PRINT D$.;"WRITE IT,R";J5
2450 PRINT A(N,M)
2460 NEXT M
2470 NEXT N
2480 GO T0 ·1100
2485 PRINT D$;"CLOSE IT"
2490 REM: BACK SUBSTITUTION
2500 FOR M = 1 TO ISZE
2510 N = ISZE + 1 - M
2520 FOR K = 2 TO MM
2530 L = N + K - 1
2540 B (N) = B (N) - A(N ,K) *B (L)
2550 NEXT K
2560 NM = N + ISZE
2570 B(NM) = B(N)
2580 A(NM,NC) = B(N)
2590 NEXT M
2600 NC = NC - 1
2603 N2 = ISZE * MM
2605 N1 = NC * N2 - N2
2610 IF NC = 0 THEN 2697
2620 PRINT D$;"0PEN IT,L16"
2625 N3 = Nl
2630 FOR N = 1 TO ISZE
2632 N3 = N3 + 1
2635 PRINT D$;"READ IT,R"; N3
2640 INPUT B(N)
2650 FOR M = 2 TO MM

•

79

COMPUTER PROGRAM (Continued)

2652 N3 = N3 + 1
2655 PRINT D$;"READ IT,R";N3
2660 INPUT A(N,M)
2670 NEXT M
2680 NEXT N
2690 PRINT D$;"CLOSE IT"
2695 GO TO 2500
2697 REM: ORDER UNKNOWNS IN B ARRAY
2700 K = 0
2710 FOR NC = 1 TO NBL
2720 FOR N = 1 TO ISZE
2730 NM = N + ISZE
2740 K = K + 1
2750 B(K) = A(NM,NC)
2760 NEXT N
2770 NEXT NC
2780 RETURN

]PRIIO

REFERENCES

1. Brebbia, C.A., and Ferrante, A.J. Computational Methods for
the Solution of Engineering Problems. New York: Crane,
Russak, 1978.

2. Huebner, Kenneth H. The Finite Element Method for Engineers.

3.

New York: John Wiley and Sons, 1975.

Norrie, D.H., and DeVries, G.
ment Analysis. New York:

An Introduction to Finite Ele
Academic Press, 1978.

4. Espinosa, Christopher. Apple II Reference Manual. Cupertino,
CA: Apple Computer, Inc., 1979.

5. Applesoft II BASIC Programming Reference Manual. Cupertino,
CA: Apple Computer, Inc., 1978.

6. Disk Operating System Instruction and Reference Manual 3.2
Version. Cupertino, CA: Apple Computer, Inc., 1979.

7. Poole, Lon; McNiff, Martin; and Cook, Steven. Apple II User's
Guide. Berkeley, CA: Osborne/McGraw-Hill, 1981.

8. The Applesoft Tutorial. Cupertino, CA: - Apple Computer, Inc.,
1979.

9. Westlake, Joan P. A Handbook of Numerical Matrix Inversion
and Solution of Linear Equations. New York: John Wiley
and Sons, 1968.

10. Bathe, K., and Wilson, E.L. Numerical Methods in Finite Ele
ment Analysis. Englewood Cliffs, NJ: Prentice Hall,
Inc., 1976.

11. Segui, William T. Computer Programs for the Solution of
Linear Algebraic Equations. NASA Contractors Rep.
CR-2173, January, 1973.

12. Fox, L. An Introduction to Numerical Linear Algebra. New
York: Oxford University -Press, 1964.

80

81

13. Evan, D.J. "The Analysis and Application of Spar se Matrix
Algorithms in the Fini te Element Method ." In Mathematics
of Finite Elements and Applications. Ed . by J . R. White
man. New York: Academic Press, 1973.

14. Fried, Issac. "A Gradient Computational Procedure for the
Solution of Large Problems Ar i sing f rom t he Finite Ele
ment Discretization Method." Internat . J. Numer . Methods
in Engrg. 2 (October-December 1970): 477-494.

15. Ko, Peter Y. "Conjugate Gradient for Finite Element Equa
tions." In Proceedings of the Sevent h Conference on
Electronic Computation, August 1979, New York: ASCE,
1979.

16. Brooks, David F., and Brotton, Derik M. "Computer System for
Analysis of Large Frameworks." J. Struct . Div. Am . Soc.
Civ. Engrs. 93 (December 1964): 1-23.

17. Wilson, E.L. Analysis of Axisymmetric Soli ds . Computer Pro
gramming Series, University of Cal i f ornia , 1967 .

18. Cantin, Giles. "An Equation Solver of Very Large Capacity . "
Internat. J. Numer. Methods in Engr g . 3 (July-September
1971): 379-388.

19. Irons, Bruce M. "A Frontal Solution Program for Finite Ele
ment Analysis." Internat. J. Numer. Methods in Engrg.
2 (January-March 1970): 5-32.

20. Tang, Pin, and Rossettos, J.N. Finite Element Me t hod . Cam
bridge, Mass.: MIT Press, 1977.

21. Beckers, P., and Sander, G. Proceedings of t he Seventh Con
ference on Electronic Computation , August 1979 . New
York: ASCE, 1979.

22. Gregory, R.T., and Karney, D.L. A Collection of Matrices
for Testing Computational Algori thms . New York:
Wiley Interscience, 1969.

23. Norris, C.H.; Wilber, J.B.; and Utku , Senol . Elementary
Structural Analysis. New York: McGr aw- Hill, 1976.

24. Pool, Lon, and Borchers, Mary. Some Common BASIC Programs.
Berkeley, CA: Osborne/McGraw- Hi l l , 1979.

25. Segui, Wil liam T. "Computer Programs for the Solution of
Systems of Linear Algebraic Equations . " Internat. J.
Numer. Methods in Engr g . 7, No .4 (1 973): 479- 490.

	A Comparative Study of In-Core and Out-of-Core Equation Solvers for Microcomputer Applications
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENTS
	iii

	TABLE OF CONTENTS
	iv
	v

	LIST OF TABLES
	vi

	LIST OF FIGURES
	vii

	CHAPTER I. INTRODUCTION
	01
	02
	03

	CHAPTER II. DIRECT METHODS
	04
	Gauss Elimination
	05
	06
	07

	Cholesky's Method
	08
	09

	Symmetric Banded Matrices and Storage Requirements
	10
	11
	12

	CHAPTER III. ITERATIVE METHODS
	Jacobi Scheme
	13
	14

	Gauss-Siedel Method
	15
	16

	CHAPTER IV. GRADIENT METHODS
	17
	18
	19
	20
	21

	CHAPTER V. OUT-OF-CORE EQUATION SOLVERS
	Blocked Banded Schemes
	22
	23
	24

	Equation Solver by Giles Cantin
	25
	26

	Frontal Solution Method
	27
	28
	29
	30
	31

	CHAPTER VI. A PROGRAM FOR MICROCOMPUTERS
	General
	32
	33
	34
	35

	Test Matrices
	36
	37

	Maximum Capability
	38
	39

	Time of Execution
	40
	41
	42

	Truncation Error
	43
	44
	45
	46
	47
	48

	Effect of Depth of Block on Time of Execution
	49
	50
	51
	52
	53
	54
	55
	56
	57

	CHAPTER VII. TRUSS PROGRAM EXAMPLES
	58
	59
	60
	61
	62
	63
	64
	65

	CHAPTER VIII. CONCLUSIONS
	66
	67
	68

	APPENDIX
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79

	REFERENCES
	80
	81

