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ABSTRACT 

This research evaluates the applicability to microcomputers 

of various methods for determining the solution of large systems 

of simultaneous linear algebraic equations. Such systems of equa­

tions characterize physical systems often encountered in Civil 

Engineering and other engineering disciplines. 

Many methods of solution involving either in-core or out-of­

core storage of data have been developed for use with large digi­

tal computers. These methods are reviewed and their applicability 

to microcomputers is evaluated. A comparison of several schemes 

is made regarding core size required, time of execution, and pre­

cision of results. The out-of-core solution schemes for banded 

matrices are found to be most applicable to microcomputers with 

large out-of-core storage capacity. 
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CHAPTER I 

INTRODUCTION 

Analytical methods such as finite element methods find their 

application not only in the analysis of large trusses and frames, 

but also in analysis of plates and shells, as well as in hydraulics 

and other disciplines of engineering (1,2). These schemes gener­

ate a large set of algebraic simultaneous equations. Digital 

computers offer considerable savings in time compared to the man­

ual methods for solving these equations. 

The techniques available for solving the linear system of 

equations can be classified into two methods: direct or iterative. 

In the direct method, a solution for unknowns is obtained direct­

ly by a single application of a computational procedure. In the 

iterative method, the solution requires the repeated application 

of an algorithm. The direct method can be divided into two cate­

gories: in-core and out-of-core equation solvers. In the in-

core method, the entire coefficient matrix resides in the tandom 

access memory of the computer throughout the operation. Out-of­

core methods differ in that only portions of the coefficient matrix 

are brought from a peripheral device such as a disk into the com­

puter memory as they are needed. 

In the 1950's, the core storage of computers was small and 

the rates of transferring the data to and from magnetic tape were 
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slow (4). Because of this, direct methods of solution were re­

stricted to small and simple problems. The larger and more com­

plex problems were solved by iterative methods. Since then, large 

computers have been improving both in capacity and in the rate of 

transfer between the computer core and the peripheral storage. 

Therefore, one encounters fewer of the earlier limitations in 

solving the equations. 

Due to the rapid improvement of the performance (capability 

of various applications) and price (affordability) of the micro­

computer, many engineering firms have found that selecting micro­

computers to fit their needs is now an economically feasible invest­

ment. Most microcomputers on today's market have from 4K to 64K 

bytes of in-core memory, although microcomputers with much larger 

capacity have recently become available. However, even though 

microcomputers are becoming more widely used, one drawback still 

remains; these computers, like the earlier larger computers, are 

limited in storage capacity and data transfer rate. Therefore, 

before selecting any microcomputer, one should make a comparative 

study of the different equation solvers and their techniques. 

To demonstrate the application of microcomputers in the solu­

tion of large systems of equations, a typical truss analysis pro­

gram was converted from FORTRAN tQ the BASIC computer language. 

The equations generated by this program were then solved by either 

in-core or out-of-core methods. 



3 

The computer support subroutine used for this work requires 

2K bytes of memory. The disk operating system and the BASIC inter­

preter require an additional lO.SK bytes of memory, leaving 19.5K 

bytes available for program and data storage. Less sophisticated 

BASIC interpreters are available but are unsuitable for many engi­

neering applications. 

In preparing this thesis, a typical microcomputer system manu­

factured by the Apple Corporation with 32K memory and a single 

disk drive was used. The disk drive uses mini diskettes which can 

hold about 100,000 bytes of information. (Detailed information 

about II computers can be obtained from references 4 through 8.) 



CHAPTER II 

DIRECT METHODS 

Frequently, in engineering analysis, one encounters a system 

of equations 

allxl + al2x2 + 

a2lxl + 2 22x2 + 

+a x -ln n 

+ a 2 x 
n n 

b 
n 

where the x's are unknowns, and the a's and b's are constants, 

appearing in matrix form as seen below: 

or, 

X 
n 

[A]{X} = {B} 

= 

b 
n 

In this case, [A] is the coefficient matrix, {X} is the vector 

of unknowns, and {B} is the vector of constants. 

There are various methods of solving these equations. Direct 

methods, unlike the iterative technique, solve a system of linear 

4 
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equations using a finite number of operations known in advance so 

that the number of operations performed is independent of the 

accuracy desired. An exact solution would be obtained if there 

were no roundoff errors (9), or truncation errors. 

The accuracy of a solution is dependent on the condition and 

size of matri~, the precision of arithmetic performed by the com-

puter and the algorithm used for the solution. 

Two schemes for the solution of linear equations are presented 

here to illustrate the direct methods: the Gauss Elimination and 

the Cholesky Decomposition Method, also known as the Cholesky 

Square-Root Method. Both these methods require the matrices [A] 

and {B} in computer core for solution. Algorithms in which these 

matrices are stored out-of-core on a peripheral device, such as a 

disk drive, are reviewed in Chapter VI. 

Gauss Elimination 

The objective in Gauss Elimination is to transform the equa-

tion from the general form shown earlier to an upper triangular 

form as shown below: 

' ' a 11 a 12 

0 ' a 22 

0 0 

a' 
1n 

a' 2n 

a' 
nn 

X 
n 

= 

b' 
1 

b' 2 

b 
n 
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Once this transformation has been achieved, the last equation can 

be solved directly for x , and the remaining n-1 values of x. can 
n 1 

be obtained by the back substitution process. The entire solution 

vector can, thus, be obtained once this upper triangular system 

has been generated. 

The method of converting a coefficient matrix to upper trian-

gular form follows. 

Consider a general system: 

allxl + a12x2 + 

al2xl + a22x2 + 

Divide by a
11

, obtaining: 

where: 

alnxn = bl 

a2nxn = b2 

a x = b nn n n 

1 a 
1 

x 
n n 

j = 2,n 

= b 1 
1 

x1 can now be eliminated from subsequent equations to obtain 

1 + 1 + ... 1 b 1 
a 22x2 a 23x3 a 2 x = n n 2 

1 + 1 +· 1 = b 1 
a 32x2 a 33x3 a 3 x n n 3 

1 1 1 b 1 
a n2x2 + a n3x3 + a X = nn n n 

• 
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a~ .. = a .. 
1] 1]. 

b
1

. = b. 
1 1 

7 

Similarly, each x (x2 , x3 , ... ) can be eliminated from the equa­

tions. A general algorithm for the elimination of ~ is 

and 

k 
a kj = 

k-1 k-1 
~j /~k 

k-1 k 
a 

ij 
= a .. 

k-1 k 
- aik ~j 1] 

j = k + 1, •.. , n 

i, j = k + 1, ... , n 

-
After the above procedure has been applied n-1 times, the ori-

ginal set of equations is reduced to 

n-1 
a 
nn 

which is solved directly for x 
n 

X 
n 

bn-1 
n 

xn = n-1 
a nn 

After the elimination is completed, the original system of equa-

tions has been transformed into the upper triangular system with 
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unit diagonal coefficients previously discussed. The general 

form of Kth Row is now 

+ k 
~ ~,k+l ~+1 + ... 

After obtaining the value of x , one can compute the remaining 
n 

unknowns successively, applying, in reverse order, the formula 

n 
k 
~j X. 

j=k+l J 

Cholesky's Method 

When matrix [A] is symmetric and is a positive definit~ Cho-

lesky's method presents a very efficient solution. This method 

is described below. 

This method is based upon the fact that a symmetric matrix 

can be expressed as the product of a lower triangular matrix and 

an upper triangular matrix. 

The solution of the system [A]{X} = {B} reduces to finding 

the solution of two equivalent systems [S]T{C} = {B}and [S] {X} = 

{C}. Now that the triangular matrix [S] is known, vector {C} 

can be found by back substitution. Once {C} is known, {X} can 

be found from [S]{X} = {C}. 

The whole process involves the decomposition of the symmetric 

matrix [A] to find [S] and the vector {C}. Back substitution 

as in Gauss Elimination is then used to determine the unknown {X}. 

The algorithms and computer programs are given in reference 1. 
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To illustrate this solution technique, consider the follow-

ing system: 

or 

Multiplying the 

a nn 

two [S] matrices 

2 
sll 

sllsl2 

sllsl3 

sllsln 

0 

0 0 

0 0 0 

s 0 • • • • • • • • • • • s nn nn 

yields: 

= all 

= al2 

= al3 

= aln 

Therefore, the coefficients of the first row of [S] become 

and 

Continuing this process further, 

sl2sll = al2 
2 2 

s12 + s22 = a22 
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and 

2 2 
sln + s2n + · · · 

2 
s = a nn nn 

Therefore, a general algorithm for coefficients of [S] is: 

1 
8 .. = 
1] ·s .. 

11 

j-1 2 ~ 
s .. = (a .. - 2:: s k

1
.) 

11 11 k=l 

(a .. 
1] 

i-1 
2:: 

k=l 
~i ~j ) , for j > i 

Cholesky's Method is efficient and in some cases, is faster than 

Gauss Elimination Scheme for symmetric matrices (2). 

Symmetric Banded Matrices and Storage Requirements 

In some applications, the non-zero coefficients in matrix 

[A] are located within a narrow band around the diagonal as 

shown in the following diagram: 
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L: M = bandwidth 

~ ' "" 
X X X 0 0 0 

""' 
~ 

"" 
X X X X ~ 0 

"' X X X X X 0 

0~ X "' n 
X X X X 

~ ~ 
0 X X X X 

"" ~ 
0 0 X X 

,r-l ---=-n -----Ak 
In the case of banded matrices, one can store and work with 

only the terms in the bandwidth. Therefore, one can save storage 

and computation time -because fewer terms are involved than when 

using the whole of matrix [A]. When the banded matrix is also 

symmetrical, only the terms on the diagonal plus the terms in 

the right-hand side up to M need to be stored and worked with, 

thus providing further savings in storage requirements and compu-

tation time for both the Gauss and Cholesky Methods. This can 

be seen from the formulae presented here. 

For a non-symmetric non-banded matrix [A], the storage 

needed is nxn locations. For a banded matrix, the storage re-

quirement is Mxn. 

needed is (M + l) 
2 

For a symmetric banded matrix, the storage 

x n. 
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The most effective direct solution techniques currently used 

are basically applications of Gauss Elimination (10). However, 

this scheme can be applied to almost any set of simultaneous linear 

equations; and its effectiveness depends on the specific proper­

ties of matrix [A] such as symmetry, positive definiteness and 

handedness (10). 

• 

I 



CHAPTER III 

ITERATIVE METHODS 

When the application of iterative methods is to be used, an 

estimate is made for the values of the unknown vector {X}. This 

vector is corrected to its correct value in a series of successive 

iterations. The series of iterations is continued until the 

solution converges. Convergence is defined by selecting a small 

number by which the solution differs from the solution of pre-

ceding iteration. 

Iterative methods are preferred for solving large sparse 

systems because they do not operate on zeros in the matrix and 

tend to be self-correcting and minimize round-off error (9). 

Such methods are particularly good for almost-diagonal or dominant-

diagonal systems. A drawback to iterative methods is the 

possibility of slow or irregular convergence (9). 

Of the many iterative techniques currently in use, the 

Jacobi and Gauss-Seidel Schemes, because of their widespread 

acceptance and utilization, are reviewed in the following sections. 

Jacobi Scheme 

The details of the Jacobi iterative technique are as follows: 

13 
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b 
n 

The subscript zero denotes initial estimates of the values of {X}. 

A subsequent trial yields new values of {X} from the follow-

ing equations: 

1 -anl .0 an2 0 
x =--x ---x-

n a 1 a 2 
nn nn 

1 
At this time, x. is compared with 

1 

I x~ - x? I < E, i = 1, 2, ... , n 
1 1 

b 
+ _g_ 

a nn 

where E is the selected small number to check convergence. If 

this condition is satisfied, {X.} is taken as an acceptable 
1 

approximate solution, otherwise further iteration is carried 

out. 
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K 
In general, at the Kth iteration, the values of {X} are 

given by 

k 
X 

n 

-a21 k-1 
=--x 

a22 1 

-a nl k-1 
=--x 

a 1 
nn 

al3 k-1 
--x 
all 3 

a23 k-1 
---X 

a22 3 

a n2 k-1 
---X 

a 2 
nn 

b 
n ---

a nn 

and the previously used convergence criteria are given by: 

I Xk. _ xk.-ll 
1 1 

< E, i = 1, 2, ... , n 

The Jacobi Method is slow to converge, but it serves as a 

yardstick against which most of the other iterative methods may 

be measured. 

Gauss-Siedel Method 

Because the Jacobi Method can be slow in its convergence, 

the Gauss-Siedel Method is often used instead. In this method, 

the solution for an unknown during an iteration is used in the 

computation of subsequent unknowns as shown below: 

al3 k-1 
---X 

all 3 
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k -a21 k a23 k-1 a2n k-1 b2 
x2 = --x --x --- X +--

a22 1 a22 3 a22 n a22 

k -a k an2 k 
b 

nl + _g__ X = x2 - --x ................ n a a 2 a 
nn nn nn 

The same criteria for convergence may be used; 

I Xk. _ xk.-ll 
1 1 

< E, i = 1, 2, ... , n 

Although it has been shown that the Gauss-Siedel Method con-

verges twice as fast as the Jacobi Method, it is still not effi-

cient enough for use with the large sparse matrices for which 

iterative methods are particularly suitable. This problem oc-

curs because a considerably larger number of iterations must be 

performed in order to achieve the level of a~curacy desired. 

From the tests shown by Segui (11), it can be seen that the 

results did improve during successive iterations in the Gauss-

Siedel Scheme. The accuracy of the Gauss Elimination Method 

could not be obtained even after two hundred iterations taking 

as much as one hundred times longer than the Gauss Elimination 

Method. 



CHAPTER IV 

GRADIENT METHODS 

The basis for gradient methods is that the solution to equa-

tion [A]{X} = {B} can be shown to be equivalent to minimizing the 

quadratic function: 

This equation can be used to define a family of similar ellipsoids 

whose common center corresponds to a point on the surface of a 

particular ellipsoid. An iterative gradient method consists of 

successive steps from a larger to a smaller elipsoid with the 

point corresponding to the approximate solution moving closer 

to the common center. 

Various gradient methods differ in their choices of direc-

tion for each step. In the steepest descent method, the itera-

tion step is along the normal to ellipsoid. In the conjugate 

gradient method, each iterative step consists of two sub-steps: 

the first along the inward normal, and the second parallel to the 

previous iterative step. Fox and Evans (12,13) describe these 

methods with clarity. 

Consider minimization of a certain quadratic form of the 

components x
1

, ... , xn of the req~ired solution of [A]{X} = {B } . 

The vector {X} = [A]-1 {B}, for example, minimizes the sum of 

17 



18 

squares of the components of the residual vector {y} = [B] -

[A]{X}, given by 

Instead of solving the resulting normal equations directly, the 

method proceeds by successive approximation, making successive 

changes in the components of a starting approximation {X} so 
0 

that the quadratic form is steadily reduced to a minimum. This 

process can be presented by the non-stationary iterative scheme 

where {X}.+l ={X}.+ a.{P}., where a. is a scalar and {P}
1 

a 
1 1 1 1 1 

direction vector yet to be determined. 

In the steepest descent method, the iteration step is along 

the inward normal to the ellipsoid. For symmetric positive-

definite matrices, {P}. = {y}. and leads to the equation 
1 1 

where: 

and 

T {P}.{y}. 
1 1 a. = ---------- = 

1 {P}:[A]{y}. 
1 .1 

T {y}.{y}. 
1 1 

T {y}.[A]{y}. 
1 1 

{y}. = {B} - [A]{X}. 
1 1 

Convergence is relatively slow in the steepest descent method; 

therefore, it is not recommended for practical use (3). 

The Conjugate Gradient Method requires that each iterative 

step consist of two sub-steps: the first along the inward 
• 
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normal; and the second parallel to the previous iterative step, 

which improves the convergence rate. Isaac Fried (14) and Peter 

Y. Ko (15) present this method and further improvements to this 

method. Referring back to the equation 

{X}.+
1 

={X}.+ a .{P}. 
1 1 1 1 

For positive definite symmetric matrices 

T {P}.{y}. 
1 1 a.=------

1 {P}i[A]{y }i 

For {P}., a combination of current residual and the previous 
1 

vector {P}. 
1 

is taken so that 
J_-

and successive constants can be so chosen that the process is 

terminated in exactly N steps, N being equal to the number of 

unknowns. To this end, {P}. is made conjugate; that is orthagona l 
l. 

with respect to the matrix [A], to the previous {P }i_
1

. 

or 

That is: {P}iT[A]{P}i-l = 0, resulting in 

T 
-{y}. [A]{P}. l 

1 l.-
(3. 1 = l.-

T 
-{y}i+l[A]{P}i 

{P}:[A]{P}. 
l. . l. 

with {X} arbitrary and P-1 = 0 so that {P} = {y} , further s i m-
o 0 0 

plification leads to 
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n 2 
L: {y }. 

. 1 1 
= J= 

ai {P}:(A]{P}. 
1 1 

n 2 
L: { y } '+1 

. 1 1 s. = .=..] = ____ _ 
1 n 2 

L: {y } . 
. 1 1 J= 

The gradient method, thus, becomes (14) 

{P} = {y} = {B} 
0 0 

[A] {X} 

E {y2}. 
. 1 1 a = ..::.:...]_= ___ _ 

{P}~[A]{P}. 
1 1 

i 

= {X}. + a. {P}. 
1 1 1 

-
= { y}. - a. [A] {P}. 

1 1 1 

n 2 
L: { y } '+1 

. 1 1 
= J= s. 

1 n 
2 

L: {y }. 
. 1 1 J= 

0 

After N cycles, the solution vect9r X is obtained as shown 

on the following page : 
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{X}= ~-l{P}N-1 + {X}N-1 

In this method, convergence is achieved quickly and efficiently, 

requiring a finite number of steps, N. Another important fea­

ture of this method is that multiplication is performed on the 

elementary level, and assembly is carried out only on the re­

sulting vector. Therefore, there is no need to assemble the 

Global Matrix during the multiplication. This results in sub­

stantial savings in the amount of storage needed. 



CHAPTER V 

OUT-OF-CORE EQUATION SOLVERS 

Blocked Banded Schemes 

In Chapter II, the concept of banded matrices was explained, 

and the savings in storage space which the banded algorithms of­

fer was also discussed. The in-core direct methods require the 

entire banded matrix [A] to be in the core of the computer 

throughout the process. However, if a suitable peripheral stor­

age device such as a disk drive of large capacity is available 

with the computer, the coefficient matrix [A] and matrix [B] can 

be stored on the disk, and successive portions of coefficient 

matrix [A] and matrix [B] are then brought into the core of the 

computer for elimination. 

Initially, all the equations are stored consecutively on 

the disk, the coefficients for each equation being arranged as 

a string of numbers within the half-band preceded by the corre­

sponding load vector. Only a limited area of coefficients is 

required at any one time in the computer core, and the necessary 

partitioning is based on the available core. 

Figure 1 illustrates that f~r each set of equations, e, 

held in computer core, the elimination proceeds as far as possi­

ble; that is, in the forward elimination, only the first e-b 

22 
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<l) 
(/) 

e-b 

b 
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4 b 
·~ f 

Matrix A 

c+b 

Working store 
1st, 2nd and 
3rd set of equa­
tions 

Equations trans 
ferred to top t 
computer core 

<e 

Load Matrix [B] 

Working store 
for the 4th set 
of equations 

Fig. 1. Equation Partitioning. 
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equations can be used as pivot equations. The elimination area, 

hatched horizontally in the sketch, is then transferred back to 

disk; the equations still to be eliminated, hatched vertically 

in Figure 1, are transferred to the first locations in the 

computer core, and a new set of e-b equations is brought to core 

from disk. This procedure continues throughout the forward elimi­

nations and is reversed during the back substitutions. Brooks 

and Botton (16) give a good explanation of this process. 

If the data are shifted in and out of the core of the com-

puter for each individual unknown, there will be too many in and 

out-of-core operations requiring a prohibitive amount of time. 

For this reason, the equations are divided into blocks, and 

each time a complete block is shifted in and out of computer 

core. William T. Sequi (11) has compiled two such programs. 

One is written by E.L. Wilson (17) and the other by T.J. Chung 

of the University of Alabama. The essential difference between 

the two algorithms lies in the number of blocks that are brought 

into the computer core from the disk or tape at any one time 

and in the method of elimination used. 

In Wilson's Scheme (17), the coefficient matrix [A] is 

stored out-of-core on a magnetic tape or disk. It brings the 

coefficients of the upper half-band into core and eliminates 

the unknowns by the Gaussian Elimination Method. It requires 

two blocks of coefficients to be in-core at one time. This 
• 
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program is for symmetric banded matrix [A] and has been converted 

from FORTRAN to the BASIC language. A detailed treatment is given 

in Chapter VI, where a comparison is made between this method and 

the in-core equation solver. 

T.J. Chung's Scheme works for positive definite matrices 

only. In this method, the coefficients of symmetric banded 

matrix [A] are stored out-of-core. The coefficients of the lower 

half band are brought into core and are eliminated by Cholesky's 

Symmetric Decomposition Method (also known as the Square Root 

Method), rather than Wilson's Scheme, in which the upper half­

band is brought into core and is eliminated by the Gauss Elimina­

tion Method. Another significant difference is that Chung's 

Scheme requires only one block of coefficients in-core at one 

time. The accuracy achieved is identical in both cases, but 

Chung's Scheme is considerably slower than W~lson's Scheme 

because of more shifting of data in- and out-of-core in Chung's 

Algorithm (11). 

Equation Solver by Giles Cantin 

The Equation Solver by Giles Cantin (18) uses symmetric 

matrix inversion of square sub-matrices as opposed to the direct 

Gaussian Elimination which occurs in Wilson's and Chung's Schemes. 

The basic concept of this scheme is briefly presented here. 

Consider the following system: 
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Kll K12 Kl3 ••• KlM 

T 
Kl2 K22 K23 K24 K2,M+l 

T T 
R3 Kl3 K23 K33 K34 K35 K3,M+2 

T T T 
~ = KlM K2M KM-l,M ~,M ~,M+l ~,2M 

RI 
T 

Kl-M+l,I 
T 

KI-l,I KII KI, I+l KI, I+M-

T • . 
T 

~ KN-Mtl,N KN-l,N l)m 

where [K .. ] can be treated as ·square sub-matrices. The first 
1] 

equation is solved for {y}
1 

to get: 

After substitutions from 2 to M, 

T -1 
= {R} 2 - [Kl2] [Kll] {R} 1 

for the load vectors . All the coefficients in rows two to M from 

column two to M are reduced by similar operations. A typical 

example is 

T -1 
= [K34] - [Kl3] [Kll] [Kl4] 

2 

3 

M 

I 



27 

Then equation two is solved for y 2 and is substituted in equations 

3 to M + 1, and the entire process is repeated until the last 

equation becomes 

This equation is now solved for Y , and a simple process of back 
n 

sub.stitution in reverse order gives all the unknowns. The entire 

process is valid whether the elements of matrix [K] are individual 

coefficients or square sub-matrices of coefficients. 

Giles Cantin (18) developed this algorithm for symmetric 

banded matrices. The scheme requires no more than three differ-

ent blocks of coefficients at the same time in-core, for elimi-

nation, together with corresponding three blocks of load vectors 

for back substitution. This scheme does not pose any limits on 

the half bandwidth or on the total number of equations (18); how-

ever, it does involve symmetric matrix inversions. Matrix inver-

sion is found to be an inefficient technique (11). Elimination 

and back substitution, or their compact equivalents, are always 

faster, and the inverse should be obtained only if it is needed 

explicitly (12). 

Frontal Solution Method 

Bruce M. Irons (19) presents a scheme for positive definite 

matrices. Frontal solution is a ·variation of Gaussian Elimina-

tion (20) that utilizes the external storage effectively. It is 



28 

based upon the fact that Gauss Elimination can be performed in 

stages with only the coefficients within the so-called active 

area being required in-core at any stage. In most solutions, 

when algorithms are used in finite element programs, the stiff-

ness matrix is assembled entirely before starting Gaussian Elimi-

nation. Frontal solution schemes effect considerable savings 

in backup storage requirements by assembling and reducing the 

equations at the same time, thus eliminating the need to save 

the total unreduced stiffness matrix. 

The stiffness matrix is built by summing the contributions 

[A]. of each element i properly addressed by the element localizing 
1 

matrices [1] .. Therefore, 
1 

IAJ 
T = E.IL].[A].[L]. 

1 1 1 1 

In the frontal method of solution, the Global Btiffness Matrix 

is not assembled completely. The operation E.[L]~[A].[L]. is 
1 1 1 1 

limited to a relatively small number of finite elements, and the 

corresponding part of the Global Stiffness Matrix is partitioned 

in the form 

[A]step j = 

where the subscript C corresponds to degrees of freedom that may 

be eliminated at that step; that is, degrees of freedom which are 

not coupled with those of the elements that are still to be 
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assembled. The subscript R indicates that the degree of freedom 

is retained. At each step j, the Gaussian Elimination is achieved 

for condensable degrees of freedom at the end of each elimination 

step. Therefore, 

[A*] RR. 
J 

-1 
{B*}R = {B}R - [A]RC [A]CC {B}C. 

j j j j J 

The [A*]RR· matrix is retained for assembling with the next 
J 

sequence of finite elements to form a system similarly for step 

j + 1: 

= [L*]~+l[A*]RR [L*] "+l + 2: [L]~[A]. [L]. 
J j+l J l l l 

[A]j+l = 
[A]CC [A]CR 

j+l j+l 

IAJRC [A]RR 
j+l j+l 

A similar operation is achieved to form the load vectors. 

In order to understand the "front" of the equations, one 

should consider the finite element grid for plane stress as shown 

in Figure 2. There are two equations associated with each node, 

corresponding to displacements u and v. To eliminate degrees of 

freedom of node 1, one has to assemble equations corresponding 

to nodes 1, 2, m and m+l. This requires the stiffness matrices 

of elements 1, 2, q and q+l to be calculated and assembled; and 
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Element q Element qtl Element qt2 Element q+3 

------- l 

m 

Element 1 

Node 1 

u 

I 
I 

Ellement 2 
I 
I 
I 

I 
I 

El~ment 3 
I 
I 
I 

Element 4 

?wave fr:nt 
for Node 2 

Fig. 2. Frontal idealization for plane stress . 

• 
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then the degrees of freedom corresponding to node 1 are statically 

condensed out. Next, in order to eliminate the equations for node 

2, the final equation corresponding to degrees of freedom at nodes 

3 and m+2 is also needed, requiring that stiffness matrices of 

elements 3 and q+2 be first calculated and assembled and so on. 

The procedure consists of statically condensing out one degree 

of freedom after the other, assembling only those element stiff­

ness matrices that are actually required during the specific con­

densation. The finite elements that must be considered in this 

condensation corresponding to one specific node define the wave 

front at that time. 

The equations are assembled in the order of the elements. 

The length of wave front and, therefore, the half bandwidth are 

determined by the element numbering; thus, an effective ordering 

of elements is necessary. 

The frontal solution technique has the advantage that at any 

one time only the equations that are currently needed are assembled 

in-core. It should also be noted that elements can be added with 

relative ease because no nodal point renumbering is required (10). 

The essential and important limitation of the frontal method 

appears to be its often excessive requirements in core storage 

as the front becomes large. When this happens, there is no simple 

way of avoiding the requirements ·of a large memory allocation 

which may override the intrinsic advantages of simplicity and 

efficiency in dealing with variable bandwidth (21). 



CHAPTER VI 

A PROGRAM FOR MICROCOMPUTERS 

General 

In the preceding chapters, a brief survey was made of several 

methods to solve a system of linear simultaneous equations. A 

microcomputer has a limited core memory, and a large system of 

equations cannot be solved in the core alone by direct methods 

even when a symmetric banded matrix is used. In iterative methods 

such as the Jacobi and Gauss-Siedel Methods, there is a possibil­

ity of slow or irregular convergence. In general, iterative 

methods are only suitable when the system matrix is almost diagonal 

or dominant-diagonal, and thus gives rapid convergence. Front 

solvers produce savings of storage and execut-ion time, but they 

prohibit the solutions of very large systems (18) because of 

large front width that cannot be accommodated in computer core. 

The blocked banded equation solvers seem to be a good choice 

for microcomputers for use for a wide range of problems encoun­

tered in finite elements and frame analysis. All the three 

blocked banded schemes discussed deserve serious consideration 

for microcomputer application. The out-of-core scheme presented 

by Wilson (17) requires less in- . and out-of-core operations than 

the scheme presented by Chung (in Segui)(ll) and uses elimination 

32 
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and back substitution rather than matrix inversion as in Cantin's 

Scheme (18). Because of this, the blocked banded scheme presented 

by Wilson was selected for implementation. 

This author has implemented the technique presented by E.L. 

Wilson into a BASIC language program for the microcomputer. The 

input and output operations depend upon the microcomputer used. 

Still, the applicability of the processes as a whole is general 

enough. It is assumed that a fast out-of-core device of large 

capacity like a suitable disk drive is available. 

The upper half-band and constant vector must be written on 

a disk file in blocks. Referring to Figure 3, the blocks can 

now be made with the following restrictions. The width of 

block should at least be equal to the half bandwidth. The depth 

of the block should at least be equal to half bandwidth for re­

duetion of the block to proceed. Consider matrix B: 

bl 

b2 

b3 

b4 

bs 

b 
6 

b7 

0 
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halt b andwid t)l MM 
r 1 

.___:_- :- :- } block depth ISZE 1 MM 

X X X 

load vector -----4~ -~unreduced coefficients matrix 
X X X 

f---------
X X X 

X X X 

-

Disk File "jT" 

{ X X 

block 
depth 

X X 

----- 2* Block Depth 

Solution of 
Unknowns 
Stored here 

X X 

X X 

Matrix A in computer core 

At forward elimination stage matrix A holds 
two blocks of coefficients 

x xlx x1x 

x xlx xlx 
---L---+-----

1 I 
xl x3 I x5 I 
x2 x4 I 

not less than number of blocks 

2* block 
depth 

Matrix A in computer core after back substitution 

Fig. 3. Matrix blocks in disk file and computer core. 
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And upper half-band coefficients: 

0 0 

Here the block size is 2 x 2. Note that dummy zeros have to be 

put in last rows of both matrices {A] and {B} to keep the same 

size for all of the blocks. 

To write these coefficients in the disk file, start with 

the first term of vector{B1 then write the coefficients on the 

first row of the upper half-band. After that, the second term 

of vector{B}is followed by coefficients of the second row of the 

upper half-band and so on as shown below: 

bl all al2 

b2 a21 a22 

b3 a31 a32 

b4 a41 a42 
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Once the complete file is written, one can proceed with the solu-

tion. A general flow diagram of this process is shown in Figure 

17. Detailed flow charts are given in Figure 18 in the Appendix . 

A listing of the program is also given. 

Refer to Figure 3 and note that matrix [A] in the program 

represents the coefficients that are required at any one time in 

the core. The first dimension of this matrix must at least be 

equal to twice the depth of the block because this matrix holds 

two blocks of coefficients for reduction; and, at the end of back 

substitution, the lower half of this matrix contains the solution 

of the unknowns. The second dimension of matrix [A] must at least 

be equal to the half bandwidth and at least equal to the number 

of blocks. For an explanation of this restriction, one must look 

at the flow chart for back substitution in Figure 18 in the Appen-

dix. The back substitution starts from the last unknown and, after 

finding the value, proceeds upward. But before it proceeds upward, 

the solution of this unknown is stored in lower half of the matrix 

A. This is needed because the terms of vector {B} keep changing 

in the entire process. Figure 3 shows these restrictions. 

Test Matrices 

To determine the accuracy of the solution obtained by the 

program, test matrices of known solutions were used. Gregory 

and Karney (22) document some of these. For a half bandwidth of 

2, this test matrix was used in this program: 
• 



2 -1 0 0 0 

-1 2 -1 0 0 

-1 2 -1 0 

-1 2 

-1 

With the solutions X. = i for i 
1 

For half bandwidth = 4, the 

5 1 1 1 0 0 0 0 

1 5 1 1 1 0 0 0 

1 1 5 1 1 1 0 0 

1 1 1 5 1 1 1 0 

0 1 1 1 5 1 1 1 

0 0 0 1 1 1 5 1 

0 0 0 0 1 1 1 5 

0 0 0 0 0 1 1 1 

0 0 0 0 0 0 1 1 
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0 

0 

0 
= 

-1 

1 X n 

= 1, ..• ' n. 

following test 

0 

0 

0 

0 

0 

1 

1 

5 

1 

0 

0 

0 

0 

0 

1 

1 

1 

5 

xl 

x2 

X 
n 

0 

0 

0 

1 

matrix was used: 

8 

9 

10 

11 

11 

11 

10 

9 

8 

Which has solutions X.= 1 fori= 1, ... , n. Sub-routines for 
1 

generation of the upper half-band coefficients for these matrices 

are included in the program listing. 
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Maximum Capability 

T4e computations for approximately finding the maximum num-

ber of equations that can be handled by the in-core and out-of-

core banded solvers can proceed as follows. The in-core program 

takes up close to 2200 bytes, and the out-of-core program takes 

up about 4200 bytes. Both include sub-routines for test matrix 

generation. 10.5K is taken by the disk operations system, and 

2K is taken by the computer operating system. Space available 

for matrix terms in the in-core solver is then: 

(32 - 12.5) x 1024 - 2200 = 17768 bytes 

The system configuration used requires five bytes for each matrix 

term. Therefore, the number of matrix terms which can be stored 

in core is 17768/5 or 3553 terms. For a half bandwidth of 2, we 

need B(N), A(N,2), requiring N + 2N = 3N terms. The maximum num-

ber of equations is then 3553/3 or 1184 equations. Similarly, 

with a half bandwidth of 4, the maximum number of equations is 

3553/5 or 710. Table 1 gives the values of N for various half 

bandwidths. For the out-of-core solver, the space available is 

given by 

(32 - 12.5) x 1024 - 4200 = 15768 bytes 

The number of matrix terms which can be in-core at any one time 

is then 15768/5 = 3153 terms. For a half bandwidth of 2, a figure 

of at least B(N), A(2 x 2, N/2), -requiring 

2 X 2 N + 2 N = 3N terms 
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The maximum number of equations = 3153/3 = 1051. Actually, N = 

. 1051 
1nteger block depth x depth of block = 1050. The half bandwidth 

of 4 requires 

N + 2 x 4 N = 3N terms 
4 

Therefore, the number of equations = 3153/3 or 1051 equations. 

1051 
Actually, N = Integer --

4
-- x 4 = 1048. 

TABLE 1 

MAXIMUM NUMBER OF EQUATIONS THAT CAN BE 
SOLVED WITH A PARTICULAR HALF BANDWIDTH 

Half In-Core Out-of-Core 
Bandwidth Solver Solver 

2 1184 1050 

4 710 1048 

5 592 1050 

-10 323 1050 

15 222 1050 

20 169 1040 

25 136 1050 

30 114 1050 

Table 1 shows that as the half bandwidth increases, the in-

core equation solver is capable of solving a decreasing number 

of equations. The out-of-core solver is not similarly limited 

provided that the disk system has a large capacity; otherwise, 
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the storage needed will exceed the disk capacity before the solu­

tion is obtained. In the system configuration selected the real 

number can have nine digits of precision excluding the decimal 

point and the sign. To be recorded on the disk file, each char­

acter of this real number requires one byte for the record length. 

For example, using a disk file record length of 12 bytes, a disk 

of 100,000 bytes capacity can solve 1048 equations with a half 

bandwidth of 4. To solve the same number of equations with a 

half bandwidth of 30, one needs a disk of close to 800,000 bytes 

capacity. The writing and reading commands and lengths of records 

all play important roles in this regard. 

Therefore, a larger system of equations can be solved with 

disks of greater capacity, using the smallest possible record 

length for the disk files and making efficient use of writing and 

reading commands. 

Time of Execution 

The test matrices described in the previous section on test 

matrices were used for this section and are shown below. For a 

half bandwidth of 2, this matrix was used: 

2 -1 0 0 0 0 xl 0 

-1 2 -1 0 0 0 xz 0 

-1 2 -1 0 .0 x3 0 
= 

-1 2 -1 

-1 1 1 



For a half bandwidth of 4, the 

5 1 1 1 0 0 

1 5 1 1 1 0 

1 1 5 1 1 1 

1 1 1 5 1 1 

0 1 1 1 5 1 

0 0 0 1 1 1 

0 0 0 0 1 1 

0 0 0 0 0 1 

0 0 0 0 0 0 
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following 

0 0 

0 0 

0 0 

1 0 

1 1 

5 1 

1 5 

1 1 

1 1 

matrix was used: 

0 

0 

0 

0 

0 

1 

1 

5 

1 

0 

0 

0 

0 

0 

1 

1 

1 

5 

xl 

xz 

X 
n 

= 

8 

9 

10 

11 

11 

11 

10 

9 

8 

The time of execution was recorded by varying the number of un-

knowns. In Figure 4, execution time can be seen to be linearly 

dependent on the number of equations being selved. The reasons 

for this follow. 

In a computer, addition and subtraction are performed many 

times faster than multiplication and division. Because of this, 

the time of execution depends largely on the number of multipli-

cations and divisions used. Morris, Wilbur and Utku (23) observe 

that the number of multiplications involved for the decomposition 

of matrix [A] is basically proportional to T when 

T = n X square of half bandwidth 

demonstrating that for a constant bandwidth, T will be proportional 

to the total number of unknowns, n; and therefore, the time of 
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execution will vary almost linearly with the increase in n. This 

is confirmed by Figure 4. 

If the half bandwidth is taken as n rather than a constant, 

the matrix is full; and the number of multiplications is propor­

tional to n 3 , as reported by many authors. 

Execution time for banded and symmetric in-core equation 

$Olvers is also plotted on the same graph, from which one notices 

that the out-of-core solver took almost six times as long for 

solving the same number of equations. However, when the system 

of equations is large, to need storage greater than the in-core 

capacity of the computer as discussed in the previous section, 

the equations cannot be solved using in-core system and one has 

to use out-of-core solver. 

Truncation Error 

In several instances, the exact number obtained from a mul-

tiplication or division is larger than the word length used by 

the computer. This number is truncated to conform to the word 

length of the computer. As the number of unknowns increases, 

the multiplications and divisions increase considerably, thus 

increasing the truncation error. 

Sequi (16) gives two error measurements to compare the 

accuracy in different situations; 

Overall Inaccuracy = Error Measure = 

Maximum Error= Max le.l 
1 

1 1/2 
2 

n !Lei I 
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where e. represents the difference between the exact and computed 
1 

value of X. 

In Figure 5 overall error measure has been plotted versus the 

number of equations for a half bandwidth of 2. This curve is non-

linear, increasing rapidly with an increasing number of equations. 

Exactly the same curve was obtained when trials were made varying 

the depths of the block. In Figure 6, maximum error has been 

plotted versus the number of equations for a half bandwidth of 

two. This curve is also non-linear and increases rapidly with 

increases in the number of equations. The overall error measure 

and the maximum error curve do not change with changes in block 

depth, as can be seen from Figures 7 and 8. 

In the tests performed, both the overall error measure and 

the maximum error remained the same for the in-core and out-of-

core equation solvers. Therefore, the out-of-core solver can be 

used where the precision of the in-core banded solver is accepta-

ble. 

To perform a curve fit for the overall error measure curve 

in Figure 5 and the maximum error curve in Figure 6, a second 

order regression equation of the following form was used: 

where: 

y = dependent variable 

c = constant 
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a 1 and a 2 = coefficients of independent variables x, 2 
X ' 

n 
• • • ' X ' 

respectively. A computer program from Pool and Borchers (24) 

was used to find the values of the various coefficients of the 

regression equation. 

Tables 2 and 3 show the coordinates of the overall error 

measure and maximum error curves that were used as input to the 

computer. Tables 4 and 5 show the output from the computer, giving 

the constants and the coefficients of the regression equation. 

Figures 9 and 10 show the curve fits for the overall error mea-

sure and maximum error computed from the regression equations shown 

in Tables 4 and 5. From these curve fits, one can estimate t he 

number of equations that can be solved to the accuracy desired. 

For example, if . the overall accuracy required in an application is 

.1%, the curve in Figure 9 shows that 1300 equations can be solved. 

When greater precision is needed, one has to use double precision 

arithmetic. In many microcomputers, double precision arithmetic 

needs special sub-routines and requires almost twice the storage 

space in the computer core and disk as needed for single precision 

arithmetic. 

Effect of Depth of Block on Time of Execution 

The depth of block refers to the number of rows in each 

block. The present version of this program requires each block 

to have the same depth. A smaller depth of block results in a 

larger number of blocks for the same total number of unknowns. 
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TABLE 2 

COORDINATES DATA FROM OVERALL ERROR MEASURE GRAPH 

X y 

Number of Equations Error Measure 

0 0 

100 .2614 X 10-S 

200 1.2868 X 10 -5 

300 4.1919 X 10-s 

400 8.2150 X 10-5 

TABLE 3 

COORDINATES DATA FROM MAXIMUM ERROR GRAPH 

X y 

Number of Equations Maximum Error 

0 0 

100 .3734 X 10-4 

200 2.5636 X 10-4 

300 10.55QQ X 10-4 

400 23.3793 X 10-4 
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TABLE 4 

REGRESSION EQUATION FOR OVERALL ERROR 

6.2219952E-07 

-6.50549926E-08 

6.71649983E-10 

y = (6.2219952E-07) - (6.50549926E-08) * X 

+ (6.71649983E-lO) * x2 

TABLE 5 

REGRESSION EQUATION FOR MAXIMUM ERROR 

3.73076976E-05 

-3.08019402E-06 

2.19342851E-08 

y = (3.73076976E-05) - (3.08019402E-06) *X 

+ (2.19342851E-08) * x2 
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This increases the shifting of data in and out of core, thus 

increasing the time of execution. Figure 11 shows this clearly. 

In general, the maximum possible depth of block results in mini-

mum time of execution. However, if the total number of equations 

is not a multiple of the block depth selected, the last block 

will not be of the same size as other blocks and, therefore, 

will be filled with dummy zeros to maintain the same depth of 

block as others. Operation with too many of these dummy zeros 

increases the time of execution. Therefore, for solving 200 

equations, a block depth of 175 will require greater execution 

time than a block depth of 100. Tables 6 and 7 and Figure 12 

reflect this phenomenon. 

TABLE 6 

SHOWING EFFECT OF BLOCK DEPTH ON EXECUTION TIME 

Execution Time 
Half Bandwidth Block Depth For 200 Equations 

Min:Secs 
2 4 3:36 
2 8 3:08 
2 25 2:43 
2 50 2:18 
2 100 1:52 
2 200 1:21 

4 4 7:12 
4 8 6:23 
4 25 5:06 
4 100 4:22 
4 200 3:02 

• 
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Fig. 11. Block depth versus execution time (no dummy zeros). 
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TABLE 7 

SHOWING EFFECT OF DUMMY ZEROS ON EXECUTION TIME 

Half Block Number of !tows Execution Time 

Bandwidth Depth of Dummy Zeros for 200 Equations 
Min:Secs 

4 100 0 4:22 

125 50 4:57 

150 100 5:44 

175 150 6:25 

197 194 7:16 

200 0 3:02 
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CHAPTER VII 

TRUSS PROGRAM EXAMPLES 

To demonstrate the feasibility of the out-of-core equation 

solver presented in Chapter VI in practical engineering applica­

tions, a number of truss analysis problems were solved with the 

help of a computer program developed by the author on the basis 

of the truss analysis program given by Brebbia and Ferrante (1). 

The program uses the stiffness method for assembling the system 

matrix. Initially, each element is regarded as isolated from 

the structure to establish a matrix equation defining the indi­

vidual element behavior. Then, considering the intersection of 

each element with the remaining elements of the structure ac­

cording to its connectivity, the total behayior of the structure 

is defined, leading to the problem solution. 

The basic steps of this scheme are as shown below: 

1. Numbering of nodes and elements for identification pur­

poses and entering required data to the computer which includes 

the nodal coordinates, connectivity table, element properties, 

boundary and support conditions and a description of the applied 

loads, 

2. Evaluation of the element matrix equations, 

58 
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3. Assembling of the total system of equations, 

{P}= [KJ{U} 

where: 

{P} = the total applied load vector 

[K] • the total stiffness matrix 

{U} = the total nodal displacements vector 

4. Introduction of boundary conditions in the above men­

tioned equations, 

5. Solution of the equation {p} = [K]{U} to obtain the values 

for vector. {u}, 

6. Finding the forces in members from the equation; force 

in the element = [element rotation matrix] * {element nodal 

displacement vector}. 

Two versions of this program were prepared. In the first 

version, the total stiffness matrix is assembled from the ele­

ment stiffness matrices in the computer core; and the system 

equations is solved by the in-core symmetric banded scheme. The 

second version of this program assembles the total stiffness 

matrix on a disk file and the system of equations is solved by 

out-of-core blocked banded equation solver 

The half bandwidth has a great effect on the efficiency of 

the system and on the total number of equations that can be 

solved. An increase in half bandwidth reduces both the efficiency 

of the system and the total number of equations that can be 
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solved. The half bandwidth, counted in nodes, is obtained by 

adding 1 to the greatest difference in number for the two nodes 

associated with a bar. It is, therefore, recommended that the 

nodal numbering should be selected, minimizing the differences in 

number of the two nodes connected to each bar. 

The truss examples in Figures 13-15 have a half bandwidth 

of 6. Each element of these trusses has an area of .05 square 

6 inches and a modulus of elasticity of 30 x 10 pounds per square 

inch. Each truss has two support nodes; one support node is 

hinged, and the other node is supported on a roller. Each of 

these trusses was solved by the in-core and out-of-core versions 

of the truss analysis program. A comparison of the times of 

execution for these trusses is shown in Figure 16. 

The 97 nodes and 191 elements truss shown in Figure 15 re-

quires close to 10,000 bytes of computer core memory for the 

program, 10,752 bytes for disk operating system, 2048 bytes for 

computer operation, and 5 bytes for each term of the matrix. The 

storage requirement exceeds the computer core memory. Therefore, 

this problem cannot be solved by the in-core scheme on the system 

configuration used with a 32K byte computer core, but it can be 

solved by the out-of-core scheme with the same core capacity . 

• 
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16K bytes of memory were added to the computer core of the system 

configuration used to solve the problem mentioned earlier, by 

the in-core scheme to check the results obtained by out-of-core 

methods. The results obtained by both methods were identical. 

Core storage requirements for stiffness matrix in out-of-core 

solver is reduced to one-third of that of in-core solver. 

It can be seen from Figure 16 that the in-core version of 

the truss analysis program cannot be used for trusses with nodes 

greater than 70 and elements greater than 140, the other condi­

tions in the program remaining are the same. The out-of-core 

version of truss analysis program can be used for trusses with 

nodes close to 100 and elements close to 200. The precision of 

results obtained by both methods is the same, but the time of 

execution for out-of-core solver is considerably greater. 



CHAPTER VIII 

CONCLUSIONS 

The in-core banded equation solver is an efficient program 

for a microcomputer and can be used when the system of linear 

algebraic equations is small enough that the global stiffness rna-

trix can be accommodated in the core of the computer. However, in 

engineering analysis, a much larger system of equations is usually 

encountered; and the in-core storage is not large enough to accom-

modate the data. In the equations derived by minimization or energy 

principles, one frequently encounters symmetric banded matrices which 

are usually well conditioned. In such cases, the out-of-core 

blocked banded program presented in this report is suitable. 

The ninety-seven node truss example presented -in Chapter VII demon-

strates this result using an Apple II computer. The tests in this 

report show the overall error measure and the maximum error com-

puted by this program to be the same as for the in-core program, 

but the time taken for execution is many times greater, as shown 

in Chapter VI. These tests also confirm William T. Segui's obser-

vation that maximum possible block size results in maximum effi-

ciency (25). However, as discussed in Chapter VI of this paper, 

this program requires each block to have the same depth; there-

fore, the maximum efficiency is obtained only when this maximum 
• 
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depth of block is chosen so as not to fill up the last block 

with too many dummy zeros. 

It was shown in Chapter VI of this report that whereas the 

block size is limited only by the core capacity of the computer, 

the total number of unknowns that can be solved is also limited 

by the capacity of the out-of-core peripheral device such as a disk 

drive. In conclusion, it can be said that the out-of-core pro­

gram is suitable for a microcomputer which has a high speed disk 

or tape drive of large capacity and where time for execution is 

of no particular importance. 

The research done for this report suggests several areas where 

further work might be done. First, the program used might be im­

proved further. The current algorithm does not take variable band­

width into account. Consideration of this possibility might decrease 

processing time. Also, because BASIC interpreters are relatively 

slow in operating, a compiled program in machine language will re­

sult in significant time saving. It should also be noted that the 

current algorithm does not test for singular or ill-conditioned ma­

trices. If the matrix is singular, the program will reach an error 

condition and halt; but if the matrix is ill-conditioned, a false 

result might be obtained. Several techniques exist to test matrices 

for ill-conditioning, and incorporation of such a test in the pro­

gram would increase its utility. 

The other schemes discussed in this report provide a second 

area for further study. Cantin's scheme (18) for blocked banded 
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matrices and the gradient methods, particularly the conjugate 

gradient method show great promise. It would be interesting to 

implement these methods on a microcomputer and compare accuracy 

and execution time. 



APPENDIX 



- Write Reduced 
Block on File "IT" 

Open Input File "JT" 
and Scratch File "IT" 
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Read First Block 
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Shift Block 
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Read Next Block 
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Reduce Block 
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Block? 
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Read a Block From 
File "IT" 
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Yes 

Order Unknowns 
In {B } Array 

Fig. 17. Flow chart for out-of-core solver. 
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Open and Initialize 
Scratch File "IT" and 
Open Input File "JT" 

I 

NC = 0 
J4 = 0 
JS = 0 

NL = ISZE + 1 
NH = ISZE + ISZE 

MM = IHBW 

I 

Read First Block 
of Equations 

From File "JT" 

I 

For N = 1\TL to NH -
I 

J4 = J4 + 1 
Read JT,R; J4 

Input B(N) 

I 
For M = 1 to MM 

I I 
J4 = J4 + 1 I 

Read JT,R; J4 I 
Input A(N,M) I 

I I 
Next M 

I 

Next N -

0 
Shift Blocks of 

Equations 
• 

I 
I 
I 
I 
I 
I 
I 
I 

- I 
I 

_j 

Fig. 18. Detailed flow chart for out-of-core solver. 



Shift Block of Equations 

NC = NC + 1 

NM = ISZE + N 
B(N) = B(NM) 

B(NM) = 0 

A(N,M)=A(NM,M) 
A(NM,M) = 0 

Next M 

L_ 
Next N 

Read Next Block of Equations 
From "JT" 

J4 = J4 + 1 
Read JT,R; J4 

Input B(N) 

For M = 1 to HM 

J4 = J4 + 1 
Read JT,R; J4 
Input A(N,M) 

Reduce Block of Equations 

Fig. 18. Detailed flow chart for out-of-core solver (continued) . 
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Fig. 18. Detailed flow chart for out-of-core solver (continued) . 



Write Block of Equa­
tions on File "IT" 

For N=1 to ISZE 

JS = JS + 1 
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Write IT,R; JS 
Print A(N,M) 
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N3 = N1 
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Fig. 18. Detailed flow chart for out-of-core solver (continued). 
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COMPUTER PROGRAM 

2 REM: THIS PROGRAM GENERATES A LARGE SET OF SIMULTANEOUS EQUA­
TIONS AND SOLVES THESE EQUATIONS WITH THE HELP OF A BANDED 
BLOCKED EQUATION SOLVER SUB-ROUTINE. 

3 REM: 'JT' IS A DISK FILE IN WHICH THE UPPER HALF BAND AND CON­
STANT VECTORS ARE WRITTEN. 'IT' I S A DISK FILE USED AS A 
SCRATCH FILE. 

4 REM: B IS A SOLUTION VECTOR WITH DIMENSION GREATER THAN OR EQUAL 
TO THE PRODUCT OF THE BLOCK DEPTH AND THE NUMBER OF BLOCKS. 

5 REM: A IS A BLOCK OF COEFFICIENTS OF THE UPPER HALF BAND . THE 
DEPTH OF EACH BLOCK MUST BE AT LEAST AS LARGE AS THE HALF 
BAND WIDTH BUT NO LARGER THAN HALF THE FIRST DIMENSION OF A. 

6 REM: THE SECOND DIMENSION OF A MUST BE EQUAL TO OR GREATER THAN 
THE HALF BANDWIDTH AND EQUAL TO OR GREATER THAN THE NUMBER 
OF BLOCKS. 

7 REM: MM = HALF BANDWIDTH OF THE SYSTEM BEI NG SOLVED . 

8 DIM B(200),A(4,100) 
10 NO = 200 
20 IHBW = 2 
30 ISZE = 2 
40 D$ = CHR$ (4) 
50 PRINT D$;"OPEN JT,L16" 
60 PRINT D$;"DELETE JT" 
70 PRINT D$;"OPEN JT,L16" 
80 REM: DETERMINE NUMBER OF BLOCKS NBL 
100 BL = NO / ISZE 
110 NBL = INT (BL) 
120 IF BL > NBL THEN NBL = NBL + 1 
130 PRINT " NUMBER OF BLOCKS="; NBL 
140 REM: DETERMINE TRUE DEPTH KBL OF THE LAST BLOCK 
150 KBL = ISZE 
160 IF (NBL * ISZE - NO) > 0 THEN KBL = NO - (NBL - 1) * ISZE 
170 REM: GENERATE UPPER HALF BAND AND RIGHT HAND SIDE VECTOR BY 

BLOCKS 
180 J3 = 0 
200 FOR J = 1 TO NBL 
210 FOR K = 1 TO ISZE 
220 B(K) = 0 
230 FOR L = 1 TO IHBW 
240 A(K,L) = 0 
250 NEXT L 
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COMPUTER PROGRAM (Continued) 

260 NEXT K 
270 REM: DETERMINE THE CURRENT BLOCK DEPTH KHBW 
300 KHBW = ISZE 
310 IF J = NBL THEN KHBW = KBL 
320 FOR I = 1 to KHBW 
330 A(I,1) = 2 
340 A(I,2) = -1 
350 NEXT I 
360 IF J < > NBL THEN 510 
370 REM: GENERATE THE LAST ROW OF COEFFIC IENTS 
400 B(KHBW) = 1 
410 A(KHBW,1) = 1 
420 A(KHBW,2) = 0 
440 REM: WRITE THE BLOCK OF COEFFICIENTS ON DISK FILE JT 
510 FOR N = 1 TO ISZE 
512 J3 = 1 + J3 
515 PRINT D$;"WRITE JT,R";J3 
520 PRINT B(N) 
530 FOR M = 1 TO IHBW 
532 J3 = J3 + 1 
535 PRINT D$;"WRITE JT,R";J3 
540 PRINT A(N,M) 
550 NEXT M 
560 NEXT N 
570 NEXT J 
580 PRINT D$;"CLOSE JT" 
590 GOSUB 1000 
600 PRINT D$; "BLOAD KSR80" 
610 CALL 775 
700 FOR I = 1 TO NO 
710 PRINT I,B(I) 
720 NEXT I 
800 REM: COMPUTE ERROR MEASURE 
810 SUM = 0 
820 AMAX = 0 
830 FOR I = 1 TO NO 
840 R = I - B(I) 
850 IF ABS (R) > AMAX THEN AMAX = ABS (R) 
860 SUM = SUM + R * R 
865 NEXT I 
870 ER1 = SQR (SUM) I NO 
880 PRINT "ERROR MEASURE=" ;ER1 
890 PRINT "MAXIMUM ERROR="; AMAX 
900 PRINT D$;"PR/IO" 
950 END 
1000 REM: BANDED BLOCKED EQUAT ION SOLVER 
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COMPUTER PROGRAM (Continued) 

1010 NL = ISZE + 1 
1020 NH = ISZE + ISZE 
1030 PRINT D$;"0PEN IT,L16" 
1040 PRINT D$;"DELETE IT" 
1050 PRINT D$;"0PEN IT,L16" 
1060 PRINT D$;"0PEN JT,L16" 
1070 NC = 0 
1072 J4 = 0 
1073 J5 = 0 
1075 MM = IHBW 
1080 GO TO 2020 
1090 REM: REDUCE EQUATIONS BY BLOCKS 
1095 REM: SHIFT BLOCKS OF EQUATIONS 
1100 NC = NC + 1 
1110 FOR N = 1 TO ISZE 
1120 NM = ISZE + N 
1130 B(N) = B(NM) 
1140 B(NM) = 0 
1150 FOR M = 1 TO MM 
1160 A(N,M) = A(NM,M) 
1170 A(NM,M) = 0 
1180 NEXT M 
1190 NEXT N 
1195 REM: READ NEXT BLOCK OF EQUATIONS INTO CORE 
2000 IF NBL = NC THEN 2200 
2020 FOR N = NL TO NH 
2022 J4 = J4 + 1 
2030 PRINT D$;"READ JT,R";J4 
2040 INPUT B(N) 
2050 FOR M = 1 TO MM 
2052 J4 = J4 + 1 
2055 PRING D$;"READ JT,R";J4 
2060 INPUT A(N,M) 
2070 NEXT M 
2080 NEXT N 
2100 IF NC = 0 THEN 1100 
2150 REM: REDUCE BLOCK OF EQUATIONS 
2200 FOR N = 1 TO ISZE 
2210 IF A(N,1) = 0 THEN 2350 
2220 B(N) = B(N) I A(N,1) 
2230 FOR L = 2 TO MM 
2240 IF A(N,L) = 0 THEN 2340 
2250 c = A(N,L) I A(N,1) 
2260 I = N + L - 1 
2270 J = 0 
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COMPUTER PROGRAM (Cont i nued ) 

2280 FOR K = L TO MM 
2290 J = J + 1 
2295 IF A(I,J) = 1 AND B(I) = 0 THEN 2330 
2300 A(I,J) = A(I,J) - C * A(N, K) 
2310 NEXT K 
2320 B(I) = B(I) - A(N,L) * B(N) 
2330 A(N,L) = C 
2340 NEXT L 
2350 NEXT N 
2360 REM: WRITE BLOCK OF REDUCED EQUATIONS ON DISK IT 
2400 IF NBL = NC THEN 2485 
2415 FOR N = 1 TO ISZE 
2417 J5 = J5 + 1 
2420 PRING D$;"WRITE IT,R";J5 
2430 PRINT B(N) 
2440 FOR M = 2 TO MM 
2442 J5 = J5 + 1 
2445 PRINT D$ .;"WRITE IT,R";J5 
2450 PRINT A(N,M) 
2460 NEXT M 
2470 NEXT N 
2480 GO T0 ·1100 
2485 PRINT D$;"CLOSE IT" 
2490 REM: BACK SUBSTITUTION 
2500 FOR M = 1 TO ISZE 
2510 N = ISZE + 1 - M 
2520 FOR K = 2 TO MM 
2530 L = N + K - 1 
2540 B (N) = B (N) - A(N ,K) *B (L) 
2550 NEXT K 
2560 NM = N + ISZE 
2570 B(NM) = B(N) 
2580 A(NM,NC) = B(N) 
2590 NEXT M 
2600 NC = NC - 1 
2603 N2 = ISZE * MM 
2605 N1 = NC * N2 - N2 
2610 IF NC = 0 THEN 2697 
2620 PRINT D$;"0PEN IT,L16" 
2625 N3 = Nl 
2630 FOR N = 1 TO ISZE 
2632 N3 = N3 + 1 
2635 PRINT D$;"READ IT,R"; N3 
2640 INPUT B(N) 
2650 FOR M = 2 TO MM 

• 
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2652 N3 = N3 + 1 
2655 PRINT D$;"READ IT,R";N3 
2660 INPUT A(N,M) 
2670 NEXT M 
2680 NEXT N 
2690 PRINT D$;"CLOSE IT" 
2695 GO TO 2500 
2697 REM: ORDER UNKNOWNS IN B ARRAY 
2700 K = 0 
2710 FOR NC = 1 TO NBL 
2720 FOR N = 1 TO ISZE 
2730 NM = N + ISZE 
2740 K = K + 1 
2750 B(K) = A(NM,NC) 
2760 NEXT N 
2770 NEXT NC 
2780 RETURN 

]PRIIO 
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