
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1987

A Reconfigurable Orthogonal Systolic Array Implementation of a A Reconfigurable Orthogonal Systolic Array Implementation of a

Kalman Filter Kalman Filter

Mark V. Bapst
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Bapst, Mark V., "A Reconfigurable Orthogonal Systolic Array Implementation of a Kalman Filter" (1987).
Retrospective Theses and Dissertations. 5087.
https://stars.library.ucf.edu/rtd/5087

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F5087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/5087?utm_source=stars.library.ucf.edu%2Frtd%2F5087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

UNIVERSITY OF CENTRAL FLORIDA

OFFICE OF GRADUATE STUDIES

THESIS APPROVAL

DATE: November 18, 1987

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION

BY

ENTITLED

Mark V. Bapst

"A Reconfigurable Orthogonal Systolic Array

Implementation of a Kalman Filter"

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE

DEGREE OF ___ M_a_s_t_e_r_of __ Sc_i_·e_n_c_e_i_·n_E_n~g~i_n_e_e_r_i_n-g ___________ _

FROM THE COLLEGE OF __ En__,..;;;..g_in_e_e_r_i_·n_g=------------------

RECOMMENDATION CONCURRED IN:

"<;'~ Bruce E. Mathews
Coordinator of Degree Program

·COMMITTEE ON FINAL EXAMINATION

A RECONFIGURABLE ORTHOGONAL SYSTOLIC ARRAY
IMPLEMENTATION OF A KALMAN FILTER

BY

MARK V. BAPST
B.S.E., University of Florida, 1985

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

in the Graduate Studies Program of the
College of Engineering

University of Central Florida
Orlando, Florida

Fall Term
1987

ABSTRACT

An important part of optimal estimation technology, the Kalman filter is a

computationally intensive application that has been limited either to non-real time

realizations or to realizations that can afford vast amounts of mainframe hardware.

The potential use of the Kalman filter theory could be greatly enhanced by a low cost,

high performance machine capable of computing the recursive matrix equations in real

time.

The use of pipelined parallel architectures allows the Kalman filter equations to

be realized with much greater efficiency than previous implementations. A

reconfigurable, few instruction, multiple data, orthogonal, pipelined, systolic array

processor will be used to implement the recursive_ algorithm of the filter. Since the

architecture is reconfigurable, a single systolic array will perform all of the required

operations. The architecture selected provides a general foundation for other

applications involving matrix computations to build upon.

A previously designed algorithm for pipelined matrix multiplication is employed,

and a modified version of an inversion algorithm which is based on Cholesky's method

is used. The resulting system improves the performance of the Kalman filter by about

a factor of three over an implementation by Liu and Young.

ACKNOWLEDGMENTS

The author wishes to thank his committee chairman, Dr. George M .

. Papadourakis, for his intellectual guidance in the development of the body of this

.. report. The success of this project would not have been possible without his

leadership.

The participation of thesis committee members Dr. Christian S. Bauer and Dr.

Harley Myler is greatly appreciated. Also, Tina Andre verified the inverse algorithm,

and her help is acknowledged.

Lastly, Donna M. Bapst has provided great motivation and encouragement during

· the duration of this project.

LIST OF TABLES ..

LIST OF FIGURES

TABLE OF CONTENTS

CHAPTER I, INTRODUCTION

The Kalman Filter . •

The Systolic Architecture . • · •

The Logarithmic Number System •.

CHAPTER II, DESIGN FUNDAMENTALS

Kalman Filter Equations

Systolic Architectures . . • • .

Arithmetic Algorithms For Systolic Arrays .

Matrix Load. • • • . .
Matrix Multiplication

Matrix Inversion

Procedure For Upper Matrix Decomposition . .

Procedure For Inversion Of Upper Matrix .•.

Example of Inversion Procedure • . .

Matrix Transposition . •
PE Control •

Processing Element

The LNS ALU .

LNS Arithmetic

ALU Functional Description

Scratch Pad Memory

PE Control Structure • . .

The PE Microcontroller

The Control Word

CHAPTER III, DESIGN ANALYSIS

.

.

iii

lV

V

1
2
3
5

8

9

11

18

20

22
25

26
28
31

33
34

38
39
39
45

47

47

48

49

51

Control of Successive Operations

Order of Pipelined Operations

Register Level Simulation .

Performance Comparison . . .

CHAPfER IV, CONCLUSION
Alternate Architectures
Areas of Future Work

REFERENCES

.

.

iv

51

52

55
59

63
64
64

66

LIST OF TABLES

1. Kalman Filter Variables
2. Geometric Configurations and Corresponding Functions
3. Memory Requirements for Logarithmic Addition

. . . . 10

. . . . 17

. 44

4. Opcode Definition for ALU • . . . • • 45
5. Opcode Definition For Internal Data Multiplexers 46
6. Opcode Definition For PE Control . • • 49

7. Kalman Filter Operations Versus Time
8. Kalman Filter Execution Time Comparison
9. Comparison of Kalman Filter Implementation Versus N .
10. PE Utilization of Kalman Filter Implementation . . .

V

. . 53
. 60

. 60

· · 61

LIST OF FIGURES

1. Models For Four Computer Classes

2. Conventional Versus Systolic Processor Architectures

3. Common Systolic Architecture Configurations

4. Systolic Pipelined Orthogonal Array .

5. Matrix Load Procedure • . .

6. Matrix Multiply Procedure

7. Upper Triangular Matrix Decomposition Procedure

8. Upper Triangular Matrix Inversion Procedure

9. Pipelined Inversion Procedure

10. Block Diagram of Transpose Switch . . .

11. Control Structures For Orthogonal Array Algorithms

12. Block Diagram of Processing Element

13. Block Diagram of LNS ALU

14. Data Flow For Decomposition and Inverse Operations . .

15. Data Flow For Multiplication Operation. • •

vi

13
14

16

19

21

24

27
29
30

35

37
40
41

57
58

CHAPTER I, INTRODUCTION

Since its inception in 1960, the Kalman filter has been an important part of

optimal filter technology. It has been introduced to a wide range of applications

including missile guidance, air and sea navigation, target tracking, and flight control.

The theory is ahead of practice. The filter's implementation has been hindered by the

fact that it is computationally bound. The recursive nature of the Kalman filter

coupled with the matrix equations used poses severe performance limitations on this

technique for optimal linear estimation. An inexpensive yet powerful processor of

compact proportions would broaden the filter's applications to include process control,

robotics, and computer vision (Graham and Kadela 1985).

Advances in parallel computer architectures have provided promise for the

reduction of the computational bottleneck associated with recursive, linear applications.

However, these architectures would not be feasible without the tremendous progress in

microelectronics. Very large scale integration (VLSD, the fourth generation of

integrated circuits, has provided logic designers with the means to improve

performance and reduce size of existing systems. More importantly, it has allowed

them to set new state of the art design goals which is clearly evident in the 16 million

transistor memories and 250,000 transistor microprocessors being developed today

(Pucknell and Eshraghian 1985).

2

The Kalman Filter

The intent of this paper is not simply to develop a specific processor that

implements the Kalman filter in an efficient manner. Rather, the Kalman filter is

presented to provide essentially a worst case computational application that will allow

a systolic architecture to be developed that will perform matrix addition, subtraction,

multiplication, inversion, and transposition. Since this application requires these five

basic matrix operations, it provides a general platform that can be modified to perform

most any recursive set of matrix computations.

The Kalman filter is used to estimate the state variables of a system when noise is

present. The Kalman filter is the most popular state estimator used in system control

in the least square sense. It is easily extended to nonlinear systems and systems with

non-Gaussian noise (Graham and Kadela 1985).

Unfortunately, the intensive matrix calculations required to implement the Kalman

filter have limited its applications, especially those applications requiring real time

performance. Graham and Kadela considered the use of a systolic architecture to solve

the Kalman filter dileITh-na. They restructured the optimal state estimation equations

developed by Kalman to minimize the amount of processing necessary and to take

advantage of the single instruction multiple data (SIMD) architectures afforded by

systolic arrays. However, they did not employ any pipelining nor did they provide an

arithmetic logic unit with the dynamic precision necessary in most optimal state

estimation applications. This paper will modify existing algorithms for matrix

3

multiplication and inversion to take advantage of pipelining to improve performance.

In addition, the systolic machine developed will have a high dynamic precision for

realization in practical examples. This paper will go one step further in improving

performance in implementing the Kalman filter machine.

The Systolic Architecture

Over the past thirty years, computation speed has been increased primarily as a

result of improved electronic technology. Integrated circuits have become faster and

smaller as transistor feature size has been reduced. However, it has become evident

that the technological advancements in integrated circuit technology have slowed due

to complex quantum physics problems associated with reduced transistor minimum

feature size. Since the technological trend indicates slower improvements in

component speed, designers must consider other approaches to increase computational

throughput (Stone et al. 1980).

The area of parallel processing has showed a great deal of promise for such broad

applications as military defense, genetic engineering, artificial intelligence, and medical

diagnosis. Parallel processing employs two or more elements for the efficient

computation of some equation or set of equations through the use of concurrent events.

In particular, systolic arrays use two or more individual arithmetic units operated in

parallel for highly concurrent processing. Systolic arrays, which are single instruction

multiple data architectures, provide a means of optimizing an algorithm for specific

implementation in integrated circuits. Systolic algorithms are usually constructed as a

4

set of identical operations that can be performed in parallel. For this reason, matrix

computations are particularly well suited to systolic arrays. More than one element of

a resultant matrix can be computed simultaneously to reduce the overall computation

time of an application.

The systolic architectural concept was developed by Kung and associates at

Carnegie-Mellon University. In a systolic system, data passes from the computer

memory through many processing elements (PEs) before it is returned to memory. An

analogy is often made between the systolic array and the heart. Data flows through

the PEs in a rhythmic fashion similar to the blood circulation in a heart (Briggs and

Hwang 1984).

Many special purpose systolic processors have been designed by various

universities and industrial organizations. Because they involve several identical

building blocks which are used repetitively with simple interfaces, systolic arrays result

in cost-effective, high-performance, special-purpose systems for a wide range of

potential applications (Briggs and Hwang 1984).

The fundamental principle of a systolic system is quite simple. Replacing a single

processing element with an array of processing elements that operate in parallel will

result in a higher computational throughput without an increase in memory bandwidth.

The memory bandwidth is not increased because exhaustive use of data read from

memory is made before the new data is written to memory. In general, the memory

only interfaces to the boundary elements of a systolic array. Data flows between

5

neighboring elements in a pipelined manner. The ability to keep the pipeline full is a

measure of the systolic array's efficiency (Kung 1982).

The processing element of a systolic array is essentially an arithmetic logic unit

(ALU) with a set of working registers, possibly some scratch pad memory, and a local

microcode memory and controller (Briggs and Hwang 1984). In most applications, the

PE is scaled down to perform only the set of instructions needed for that particular

application. In this paper, the general purpose PE developed by Condorodis will be

employed with only modest changes (Condorodis 1987). These changes will be

outlined during the design synthesis of this paper.

The PE of Condorodis is capable of high speed calculations and data routing

between neighboring elements for the implementation of an orthogonal array. The

ALU can perform multiplication, division, addition, subtraction, square, and square

root operations at a very high speed on 20-bit logarithmic numbers. The PE also

allows the routing of data to neighboring PEs to allow the configuration of various

algorithms. It includes a microcode RAM for the local programming of algorithms

such as matrix multiplication and inversion.

The Logarithmic Number System

When a large dynamic range and high precision are required as in most Kalman

filtering applications, a floating point number system is usually adopted.

Unfortunately, floating point operations are inherently slower than fixed point

6

operations due to the normalization and denormalization that must be performed before

and after arithmetic computations. Taylor developed an ALU based on the

Logarithmic Number System (LNS) that is capable of performing multiplication and

division faster than conventional floating point ALUs (1985). This ALU forms the

basis of the PE designed by Condorodis.

Numbers in LNS are represented with a signed radix raised to some signed

exponent. Therefore, multiplication and division operations are simply an addition or

subtraction of the exponents, and square and square root operations are simply a left or

right shift of the data word. If the radix is constant, a number can be represented in

logarithmic notation as a signed exponent alone. For digital computer applications, the

radix will be two.

The primary disadvantage of the LNS is that addition and subtraction require the

use of memory look-up tables. Thus, the memory required to implement an LNS

based ALU with a reasonable dynamic range has been prohibitive. However, the recent

advances in VLSI technology and LNS ALU algorithms have made it feasible to

consider a single chip implementation of a 20-bit LNS ALU. Addition and subtraction

read only memory (ROM) tables can be included on chip when memory reduction

techniques are employed (Condorodis 1987).

Although LNS is an ideal numbering system to be used in the implementation of

the systolic array Kalman filter, it has become neither an industry nor a military

standard. Therefore, to employ the LNS in a Kalman filter machine that must interface

7

with other systems, it is necessary to convert between LNS and a standard number

system. Floating point number systems are commonly used, and the Institute of

Electrical and Electronic Engineering (IEEE) has developed a standard for 32-bit

floating point numbers. Taylor has shown how to convert between the LNS and

floating point formats (1985).

CHAPTER II, DESIGN FUNDAMENTALS

The Kalman filter equations are natural for a systolic implementation. The initial

equations were minimized by Graham and Kadela to reduce the necessary matrix

operations (1985). These reduced equations will be used for the Kalman filter

implementation.

Matrix inversion has been a stumbling block in previous Kalman filter designs.

However, the symmetric nature of the matrix that is inverted in the Kalman equations

makes is possible to introduce a simplified, pipelined inverse algorithm based on the

Cholesky LU decomposition. Furthermore, by using a reconfigurable systolic array, all

matrix operations can be performed with the same architecture without the need for

purging the systolic pipeline when new instructions are executed.

Control of the individual PEs is one of the most difficult design factors associated

with systolic arrays. Although these architectures provide simple network structures

for data flow, partitioning, scheduling, and synchronizing of the problem are necessary

for correct operation. These factors must be considered when the arithmetic

algorithms are designed.

8

9

Kalman Filter Equations

Prior to 1960, work in the area of control and estimation theory modelled and

analyzed systems in the frequency domain. In the early 1960's statistical modelling

was extended to the time domain using state-space notation (Kalman 1960). This

method simplified the mathematical and notational models associated with optimal

estimation and was useful in providing a statistical description of system behavior.

Time domain models also produced a system description closer to physical reality than

any of the previous frequency domain models. Today the Kalman filter is one of the

most commonly used state estimators for system control.

A linear discrete dynamic system can be described with

(1)

and

(2)

The Kalman filter variables are defined in Table 1. The uncorrelated zero-mean white

noise sequences w (k) and v (k) have the second order properties

(3)

and

R1 = E [v1 v[]. (4)

An estimate of the state of the system defined by equations (1) and (2) can be obtained

given initial estimates of the initial state, .£0, and the state covariance, Po, and statistical

information of the input noise covariance, Q1 , and the output noise covariance, R1.

TABLE 1

KALMAN FILTER VARIABLES

Variable Description
k - 0,1,2 ...
X .- nxl state estimate vector
F - nxn state transition matrix
G ·- nxp system input matrix
Q - pxp input noise covariance
H .- mxn measurement matrix
R ·- mxm output noise covariance
V - mx 1 plant noise vector
w - px 1 system noise vector
z - mx 1 measurement vector

The sequential equations modelling the standard Kalman filter become

ik+l = Fk ik + Fk Kk [z1 - Hk ik]

where the Kalman gain, Kk, is

Kk = Pk H[[Hk Pk H[+ Rkr1

and the covariance matrix, Pk is

10

(5)

(6)

These equations can be computed recursively.

(7)

Equations (5) through (7) are

rewritten as

and

x = F x + F K [z - H x],

P = F P pT - F K HP Fr+ G Q Gr,

(8)

(9)

11

(10)

Graham and Kadela have restructured the Kalman equations listed above to

reduce the required matrix multiplications by 25 percent over that of the original set of

equations (1985). The resulting equations are

and

a =F K,

x = F x + a [z - H x],

P = [F - a H] P FT + G Q GT,

b = P HT,

K = b [R + H b r 1
.

(11)

(12)

(13)

(14)

(15)

Note that the original equations required sixteen matrix multiplies, but the new

equations have reduced this number to twelve. Storing intermediate results which are

used more than once into system memory can produce a significant reduction of

necessary computations. Equations (11) through (15) require matrix addition,

subtraction, multiplication, inversion, and transposition and are well suited to systolic

arrays.

Systolic Architectures

Parallel computers are frequently classified according to the parallelism w_ithin the

instruction and data streams. Naturally, there are four types of parallel computers that

ari·se from this classification. The single instruction single data (SISD) machine is a

serial computer. In this architecture, only one instruction can execute at any given

12

instance. The data stream can be replicated to produce the single instruction multiple

data (SIMD) computer. Systolic arrays are of the SIMD architecture. Parallelism in

the instruction stream will produce a multiple instruction single data (MISD) processor.

In the MISD processor, a data word is operated on by several instructions

simultaneously. This type of machine has found limited applications. Parallelism in

both the instruction and data streams results in a multiple instruction multiple data

(MIMD) computer. The MIMD machine is the most powerful and the most difficult to

control. Control of the MIMD device becomes more complex as interconnection

between processors increases (Stone et al. 1980). Models of the four classes of

parallel computers are shown in Figure 1.

A systolic array consists of many PEs connected to adjacent PEs in a regular

fashion. The essential point of the systolic architecture approach is that data is used in

each cell it passes for the attainment of some computational goal. Unfortunately, it is

not always possible to achieve 100 percent efficiency in PE usage. For example, using

a n x n systolic array to compute m x m matrix addition where m < n will result in less

than maximum PE utilization. However, systolic architectures can often produce

dramatic performance improvements even without peak efficiency. Figure 2 contrasts

a conventional processor with a systolic array processor. The conventional machine is

a Von Neumann machine with one processor while the systolic array processor is a

Von Neumann machine with several processors.

13

Control Ir'\9"truct1on , r
Data

Un1t CPU

<a> SISD computgr modg

Data 1
CPU

Control In9"truct , on Data 2
Un,t CPU

. .
Data n

CPU

(b) SIMD co~utgr model

Contro l In9truct,on 1
Un,t CPU

Control IrJ9"truct , on 2 Data
Unit CPU

Control In9"truct , on n
Un,t CPU

(C) ,-,rsn co~uter model , r
Control If19truct,on l Data 1

Un,t CPU

Control In9"truct 1on 2 , r
Data 2

Unit CPU

, r
Control In9t.ruct1on n Data n

Un, t CPU

Cd : MIMD computer model

Figure 1. Models For Four Computer Classes.

Memory /

'

' PE
/

-

<a) Conventional Processor

PE
1

Memory

PE
2

• • • PE
n

<b) Systol ,c Array Processor

Figure 2. Conventional Versus Systolic Processor Architectures.

14

15

If each PE operates with a clock frequency of 10 MHz, the conventional

memory-processor machine can produce at best a performance of five million

operations per second (MOPs). A systolic machine operating at the same clock

frequency will result in a performance of 10n /2 MOPs where n is the number of PEs

used. To take full advantage of the parallel processing feature of systolic arrays,

algorithms must be devised as a number of identical computations. In addition to

higher performance, systolic arrays offer the advantages of modular expansion, regular

data flow, and use of identical processing elements (Briggs and Hwang 1984).

Various geometric configurations exist for systolic architectures that make it

possible to implement a variety of algorithms. In addition, a reconfigurability feature

can be added to provide on-line operational modifications for the implementation of

different algorithms. For example, the systolic array might be used for performing a

matrix operation such as AB + CD where it has to multiply and add matrices. Figure 3

depicts a few of the more common configurations of systolic architectures. Table 2

matches common systolic architectures to some of their applications (Hwang and

Briggs 1984). Many problems can take advantage of the performance improvements

offered by such systolic topologies by rearranging the flow graphs of those algorithms

into recursion relations.

Obviously, if high performance is a primary design objective, then some form of

parallel processing must be employed. Traditionally,_ the SIMD and MIMD structures

have been chosen. Recently, systolic arrays have become popular due to many of the

16

D-D-0-0
<a> L,m~ar array

 Orthogonal array <c> R1ng

Cd> TrQe CQ> Octagonal array

Figure 3. Common Systolic Architecture Configurations.

17

TABLE 2

GEOMETRIC CONFIGURATIONS AND CORRESPONDING FUNCTIONS

SYSTOLIC ARCHITECTURE APPLICATION

linear arrays discrete Fourier transforms,
priority queues

orthogonal arrays orthogonal matrix arithmetic,
graph algorithms involving
adjacency matrices

hexagonal arrays band matrix arithmetic, transitive
closure, pattern matching, relational
database operations

trees searching algorithms, parallel function
evaluation, recurrence evaluation

triangular arrays inversion of triangular matrix,
formal language recognition

reasons described above. The implementation of a basic matrix operation such as a

fixed multiply-add function would be well suited for a systolic architecture. However,

there are several design obstacles to overcome when considering such an architecture.

The lack of much previous experience in the systolic field means that no formal body

of knowledge is available detailing the synthesis of such an array. Although systolic

arrays of infinite size and ideal qualities can be conceptualized, it is not well

understood what happens when the array dimension · is reduced to practical limits. In

addition, whenever the arithmetic operation of a program changes, it might be

necessary to "flush" the systolic array to avoid the interaction of inappropriate data.

18

The global control of the computational units has also been a problem. In addition,

complex algorithm mapping into systolic arrays often yields low PE utilization,

especially for orthogonal architectures. All of these problems can be overcome with

the introduction of the few instruction multiple data (FIMD) systolic architecture. The

FIMD architecture takes advantage of efficient software techniques to perform high

level pipelining so many operations can be performed simultaneously yielding a higher

PE utilization and throughput. A five by five pipelined, orthogonal systolic array of

this type is shown in Figure 4. The reconfigurable, pipelined, orthogonal, systolic

array FIMD architecture will be used to present the algorithms of this paper.

Arithmetic Algorithms For Systolic Arrays

Arithmetic algorithms are required such that when implemented in orthogonal

. systolic architectures, they can perform recursive matrix operations at a very high rate.

In particular, it is necessary to load a matrix into the structure, to add or subtract two

matrices, to multiply two matrices, to invert a matrix, and to transpose a matrix. With

the exception of inversion, the pipelined systolic structure should be able to perform

all of these operations on non-square as well as square matrices. The n x n systolic

array should also be capable of processing any of the operations on matrices with

dimensions less than the maximum dimension of the array, n . For Kalman filtering, the

symmetric nature of the matrix that is to be inverted can be taken advantage of to

simplify the inversion algorithm.

19

Figure 4. Systolic Pipelined Orthogonal Array.

20

Matrix Load

Loading a matrix into the orthogonal array is necessary for performing matrix

multiplication, addition, subtraction, and inversion. A matrix is piped into an

orthogonal array from the bottom. As a data element passes the appropriate processing

element, it is stored into the scratch pad memory of that PE.

The loading order of an array is vital. As shown in Figure 5, the data is loaded

into each column with the nth row loaded first. Columns are loaded in a skewed

manner as shown such that element a 52 is stored one clock after element a 51 , a 53 is

stored one clock after a 52, and so on. This is necessary to keep the pipeline full during

multiplication and inversion computations as will be discussed later.

With this loading algorithm, element a 51 is input to PE 11 during the first clock

cycle, elements a 41 and a 52 are input to PE 12 and PE 2i, respectively, during the second

clock, and so on. Therefore, element a51 passes through PE 11 , PE 2i, PE 3i, and PE41

before it is stored in element PE51 • This process is repeated for all matrix elements, and

once PE 11 has stored its matrix data, element a 11, it is ready to begin processing on the

next clock cycle.

Note that this loading scheme is systolic since data is passed through the lower

elements just to arrive and get stored in the upper elements. Each PEii passes n - i

data words before it stores the appropriate matrix data in its local memory. Since a

PE passes a variable number of words which depends on the row which it resides, it is

necessary to program each row of PEs separately.

C ,n

a,OIR

a
'"

a41

a31

a21

all

21

Tl

T2

T3

a22 a33 a44 ass T4

al2 a.23 a34 a4S TS

al3 a24 a35 T6

al4 a25 T?

alS TB

co~
appropr,ate t1rm2

a out" a ,n

Figure 5. Matrix Load Procedure.

22

Matrix Multiplication

The systolic architecture intended for the Kalman filter application must perform

matrix arithmetic operations, and many algorithms exist that implement matrix

functions using an orthogonal array architecture. One such algorithm developed by

Kung obtains the product of two n x n matrices in 4n - 1 computational units (1982).

Recently, a new algorithm was developed by Papadourakis and Taylor that uses the

FIMD concept and extensive pipelining. With this procedure, the matrix multiplication

throughput is 2n clocks (1986).

Matrix multiplication, addition, and subtraction as presented by Papadourakis and

Taylor are identical operations in a pipelined orthogonal systolic architecture. For

given matrices A and B , an element of the matrix product z can be found with the

recurrent equation

n

z .. = ~ a,L bL · ,, ~ ... ,,:1, (16)
k=l

where n is the column dimension of A. Assuming the matrix A is partially loaded

inside the orthogonal array using the procedure described in the previous section, B

can be piped in the system to interact with A before loading is complete. The first

row elements of matrix B are input from the bottom into the first column of the

systolic array with the b 11 element input the first clock after the last column one A

element, a 11 , is loaded. This pipelining produces a more efficient machine than would

otherwise be capable.

23

During the multiplication operation, each appropriate PEiJ takes the sum of partial

products from the left neighbor and adds it to the product of aik.bk.J· Thus, each product

matrix element is obtained by accumulating data in the rows of the systolic array from

left to right as shown in Figure 6. In addition, the B data is piped one row deeper into

the array. The resulting product matrix is output to the right.

As mentioned, the product of two n x n matrices, z = AB , has a computation time

of 2n clock cycles. This can be verified by the fact that n units are needed to compute

z 11 and n units are required for the partial loading of another matrix.

In general, the product of a n 1 x m1 matrix A and a n 2 x m 2 matrix B can be

obtained in n 1 + m 2 clocks provided m1 = n2 and all matrix dimensions of matrices A

and B are less than or equal to the largest dimension of the systolic array, n . Given

the same constraints, n 1 + m 1 PEs are utilized during the matrix multiplication.

The operation z = AB + C can be performed in 2n clocks since the C matrix can

be input from the left. This requires no more overhead since the left column of the

orthogonal array has no left neighbors to input a sum of partial products from. Thus, it

is the left column that adds the C values to the product (Papadourakis and Taylor

1985). This method can be used for attaining the sum or difference of two matrices as

well. If an identity matrix is preloaded into the local PE memory, only n clocks are

required for any B + c or B - c operation. This operation is identical to the AB + C

operation described above with the A matrix equal to the identity matrix.

24

cSS c54 c53 c52 cSl -

c15 cl4 c13 c12 ell

T0

Tl

b13 b22 T2

bl4 b23 T3

blS b24 b33 b42 T4

b25 b34 b43 TS

b3S b44 b53 T6

b45 b54 T7
b aut bSS TB

-¢-·-z
'" baut~ b,n

zaut~ z "' + a*b,n

b
'"

Figure 6. Matrix Multiply Procedure.

25

Matrix Inversion

Previous Kalman filter implementations have relied on an iterative inversion

algorithm. This algorithm required four iterations or 16n clocks to achieve the desired

accuracy for most Kalman filter applications (Graham and Kadela 1985). Using the

FIMD architecture, Liu and Young demonstrated a new method for inverting a

covariant matrix in an orthogonal systolic array that is based on Crout's

triangularization method (1984). This procedure, as demonstrated, is simplified for

symmetric matrices when Cholesky's decomposition method is used. Although

Cholesky' s method requires fewer computations, it has not been very popular because

of the overwhelming computational burdens imposed by the need to compute the

square root. However, using the proposed LNS computational unit will eliminate this

burden, and a very high speed inversion implementation can be developed which will

further increase throughput. The matrix requiring inversion in the Kalman filter

equations is symmetric. Therefore, it is amenable to this implementation.

A non-singular matrix C can be decomposed as a product of a lower matrix L

and an upper matrix u. Then, the inverse

c-1 = u-1 L :...i_ (17)

If the matrix is symmetric and Cholesky's decomposition method is applied, then

L = ur, (18)

so

26

c-1 = u-1 (u-1)7. (19)

Triangular matrix inversion can be used to find the inverse of u.

Procedure For Upper Matrix Decomposition

The decomposition of matrix C requires that only the upper triangular portion of

the matrix be input since it is symmetric. Cholesky's method can be represented as

and

i-1

Cij - L"ki Utj
k=l

(20) ·

for i =t= j.

The orthogonal array representation of this algorithm is shown in Figure 7. The

orthogonal array functionally contains two types of PEs, diagonal and non-diagonal.

The diagonal PEs are depicted by circles in Figure 7. These elements calculate and

store the square root of the left input and pass the "" value to the top output when the

first data is received. The diagonal PEs pass cm I uii to the PEs directly above it for the

remaining cycles, where c;,. refers to the data input from the left. The non-diagonal

PEs store the incoming uii value at the appropriate PE cycle. The following cycles are

used to calculate c;,. - uu;,.. The results are passed to the right where they are used in

the diagonal PEs to calculate the u;i values. The uii values are piped vertically through

the array so that they can be stored in the appropriate PEs and retransmitted to the

bottom of the array for the calculation of the inverse of the upper triangular matrix.

TS
T6
T7
TB
T9
TU!J
Tll
Tl2
Tl3

TS T7 T6 T5 T4 T:3 T2 Tl T0

c55 0 0 0 0

c-45 c-44 e e

c:35 c:34 c33 0

c25 c24 c2:3 c22

clS cl4 cl3 cl2 ell

Ull
Ul2
UU!
Ul4
Ul5

u

u
'"

l..122
LJ23

U33

u ~ '-' '" at appropr,ata t,rna
c_ ~ c,n - uu

u-~ u,n

u ~ Jc: } at appropr 1 atril t, ma
u.,i""'"" u
u.,i ~ c ,,, /U othar1111 sca

c_.~ u

Figure 7. Upper Triangular Matrix Decomposition Procedure.

27

28

The upper triangularization time is n clocks.

Procedure For Inversion Of Upper Matrix

Exactly n clock cycles after the start of the upper decomposition, the inverse

calculation of the triangular matrix U can commence. The triangular inverse algorithm

can be represented as

and

1
vii = - for i = j

U;;

j-1

vii = - vii :~:Vikukj for i '¢ j.
k=l

(21)

The orthogonal array representation of the upper triangular matrix inversion is shown

in Figure 8. The PEs calculate and store the ratio ci"lum during the first PE cycle. The

next cycles are used to calculate c;" - v;i um. The resulting inverse is output to the

right. Thus, the v;i values are stored in the lower triangular PEs of the array. The

total upper triangular inverse computation time is n clocks.

The remaining step is to obtain the product of v and its transpose. Note that the

matrix V is stored in the appropriate PEs during the calculation of V. Therefore,

reloading is not necessary and only vT needs to be input. The procedure for inputting

a matrix in a transposed order will be discussed in a later section. A total of n clocks

are needed to complete the multiplication step. Therefore, the total inversion

computation time is 3n clocks. The entire inversion procedure is depicted in Figure 9.

TBTi'T6TST4T3T2Tl Te

1e00e0eee

1 e e

e, 1

c,.,

~ = = =
u.13 u22 -==--------- -
u14 u23 - ~
u.15 u24 u33 -

u2S u:34

u:35

T&e

Tl

T2

T3

T4

TS

Tfi

u45 T"7

u55 Te

u-

- 11lS 1114 1113 u12 ull

T.13 T12 Tll T.10 TE TI! T"7 T6 TS

~·- u ~ C.""u '" } st appropr,at• t,,,.
~~u

u,,. c_~ c,., - "*-' } r•ra1n1ng C!JCl•s '" "'-4~ u."

Figure 8. Upper Triangular Matrix Inversion Procedure.

29

19 TT le 'TS T-4 T:, T2 Tl TII

cm e II e 11

ce c44 e 11

TS Ull
'T15 U12
n u1:,
Te uu
T9 U1!5
Tlll
Tll
T12
Tl:!1

USS

.,:,:,
e 11:54
II 1144 .,

.,

'11!5
"25
"315
M!5
IIS5

T!5
TIS
T7
T8 ,.,
Tlll
TU
Tl2
n:,
TU
TU5
TUS
T17
ne

30

111!5 1114 111:, 1112 dl

Tlll Tl T T18 T1!5 TU n:, T12 TU Tle

Figure 9. Pipelined Inversion Procedure.

31

It should be noted that the inversion of a non-singular, non-symmetric matrix can

be performed in 4n clocks. The non-symmetric case requires the calculation of the

lower triangular matrix and its inverse.

Example of Inversion Procedure

Often the general equations used to represent an algorithm are difficult to

understand. This general 4 x 4 matrix example should serve as an aid in understanding

the matrix inversion procedure from a mathematical standpoint.

Consider a matrix

(22)

Let R be symmetric as in the Kalman filter case so that rii = rii. The diagonal elements

of the upper triangular matrix resulting from decomposition can be found from

equation (20) to be

U11=~,

(23)

and

Similarly, the non-diagonal elements are

and

r13
U13=-,

U11

U23 =

U34 =
r34 - U13U14 - U23U24

U33

32

(24)

The inverse, V, of the upper triangular matrix can be computed from equation (21).

The resulting diagonal matrix elements are

and

The non-diagonal elements are

1
Vu=-,

Uu

1
V22=-,

U22

1
V33= -,

U33

(25)

and

V14 = - [V 11U14 + V 12U24 + V13U34]V 44,

V23 = - V22U23V33,

V24 = - [V22U24 + V23U34]V 44,

V34 = - V33U34V44,

The required inverse of matrix R is

Matrix Transposition

33

(26)

(27)

Equations (11) through (15) contain four matrix transpositions including the one

required for matrix inversion. None of these transposed matrices act as a loading

matrix. However, the loading of a transposed matrix will be considered for

completeness.

Loading of a transposed matrix may be necessary for such operations as AT B . If

it is assumed that data elements are input in the pipelined order shown in Figure 5, the

simplest way to load the matrix transposed is to input the data from the left of the

systolic array in a manner similar to the loading procedure. Thus, element a 11 would

be stored in PE 11 , element a 21 would be stored in PE 12, and so on. This is not

necessary if the memory controller reads data in a transposed order. However, it is not

feasible to have a 2n port memory for n >2 since this would result in intensive decode

circuitry. It will probably be necessary to have separate memory banks for rows or

columns of data. The consideration of the external memory and associated controller

34

is beyond the scope of this paper. However, it will be assumed that n memory banks

will be used to store matrix data.

For an operation such as ABT, matrix A is loaded in the manner described by

Figure 5. However, the B matrix must be input in a transposed manner. As before, if

the memory controller can read matrix elements in a transposed order, this method is

preferred. Without this memory capability, a transpose switch is necessary to swap bii

and bii as they are input to the array. Note from Figure 6 that bii and bii are input

during the same clock interval for all i and j. This makes the implementation of a

transpose switch a fairly straightforward procedure. A diagram of a possible

implementation of the switch is shown in Figure 10 for a 5 x 5 systolic array.

Upon receipt of the first element of a n x n matrix to be input transposed, the

counter of the transpose switch is reset and a transpose signal is sent for n clocks.

During the first clock, element b 11 is input as usual. During the second clock, the

counter is incremented, and the column one 5-to-1 multiplexer selects the column two

data, and the column two 5-to-1 multiplexer selects the column one data. This process

propagates for n clocks until the entire matrix is loaded.

PE Control

When a task is presented to a parallel processor, it must be separated into

sub~sks that can be processed in parallel. This is the partitioning problem associated

with systolic array control. This problem was solved in the previous sections when

--------1 2:1

l"'lJX
NDil COL l ------- 2:1

l"l.O(
NEW COL 2

2 : l HEM COL '4

l"l.O(

.--------12:1

l"UX

2 : l NEW COLS

l'tJX

Figure 10. Block Diagram of Transpose Switch.

35

36

arithmetic operations in the orthogonal array were described. Efficient partitioning

extracts the maximum amount of parallelism from a problem with minimum system

overhead. Often tradeoffs exist between these two goals. To achieve maximum

parallelism, it might be necessary to divide a task in such a way that requires more

setup time than a less than perfect parallel scheme. For example, any algorithm that

causes a break in the systolic pipeline would produce inefficiency resulting from

processor idle time.

Once partitioned, it is necessary to divide subtasks among the various PEs. This

is the scheduling problem and was accounted for in the previous sections. Finally, the

individual PEs need to be synchronized with respect to one another. This control issue

is often the most complex. The primary goal of synchronization is to have associated

data and instructions at the input to a PE during the same clock interval. The

synchronization scheme presented here is a data driven wavefront. The PE opcodes

are propagated in a wave-like manner as shown in Figure 11. Opcodes are used to tell

the individual PEs what function to perform. The general control structure shown in

Figure 11 is used for all of the matrix operations. The first opcode corresponding to a

particular operation is input to PE 11 • The opcode is registered there, used by that PE,

and output to PE 12 and PE 21 during the next clock. Control propagation proceeds

through the rest of the array in 2n - 1 clocks. Each PE receives n identical opcodes for

each matrix operation. The numbers inside each PE of Figure 11 represent the clock

delay associated with the receipt of the first opcode by that PE.

37

5 6 7 8 g

4 5 6 7 8

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

Figure 11. Control Structures For Orthogonal Array Algorithms.

38

Note that the inversion and loading procedures require that each row of PEs be

micro-programmed uniquely. Further, the upper triangularization method requires the

diagonal elements to be programmed differently than the non-diagonal elements.

Micro-programming each PE uniquely destroys the uniformity of the systolic array and

makes the writing of microcode a function of n2
• However, it does provide significant

performance improvements, and the programming burden can be administered to a

compiler.

Processing Element

The processing element is the principle component of the systolic array. The PE

must be functionally capable of implementing the algorithms necessary for the Kalman

filter application. In addition, it must support the wavefront control outlined in the

previous section. The PE of Condorodis meets most of the specifications for the

Kalman filter implementation. The general PE to be described below is a modified

version of the Condorodis PE. Differences will be noted.

The required PE will employ the LNS to provide high speed arithmetic capability

and a large dynamic range. The arithmetic capability will include addition,

subtraction, multiplication, division, square, and square root of LNS numbers. In

addition, the PE will be capable of routing internal and external data to adjacent PEs.

An on chip writable control memory and controller will provide programmability. A

block diagram of the PE to be used in the Kalman filter implementation is shown in

39

Figure 12.

The LNS ALU

The block diagram of the LNS ALU developed by Condorodis is depicted in

Figure 13. Note that it is possible to perform operations such as AB + c and A + B 2 in

one clock since the propagation delay through the adder-multiplier and adder-square

paths is less than one clock period.

LNS Arithmetic

Numbers in LNS are represented as

(28)

where r = 2. In equation (28), e" is a 19-bit two's complement number with a 6-bit

integer part and a 12-bit fractional part. The radix sign bit is Sn:. LNS numbers are

represented in the word format shown below.

19-bit exponent magnitude
(two's complement)

To represent x = o logarithmically, it is necessary to provide a zero flag with each data

that is set for this special case (since log(O) = 00).

The product of logarithmic numbers X and Y may be written as

(29)

where

40

~RIGHT

Figure 12. Block Diagram of Processing Element

XJ'I.LT

Y.J'U..T

XJ\DD

Y..ADD

AD[R

CA...C

ZJ'LLT

Figure 13. Block Diagram of INS ALU.

41

42

(30)

Thus, the product of two logarithmic numbers simply requires the addition of the

exponent values of the two numbers.

Division is similar to multiplication m the LNS. The quotient of two LNS

numbers is

(31)

where

(32)

Thus, the quotient of two logarithmic numbers is obtained by subtracting the exponent

values of the numbers.

The addition of two logarithmic numbers is not as straightforward as either

multiplication or division. The sum of two LNS values can be expressed as

S e S e
Z = X + Y = (-1) n: r .r_ + (-1)" r 1 , (33)

or

Z = X + Y = (-l{r.r ,«.r(l + (-lf1 -Sr.r ,«, -e.r). (34)

Taking the logarithm of both sides of equation (34) produces

ez = e" + LOG2(l + / 1 -«.r). (35)

However, to minimize memory requirements, ez is implemented as

(36)

where emax=max(ex,ey) and emin=min(ex,ey) (Condorodis 1987). The addition operation

requires the table look-up of the argument of equation (36).

43

The logarithmic subtraction operation is similar to the addition operation as it also

requires a table look-up in memory. The difference of two numbers x and y can be

expressed as

Z = X - Y = (-I{rx ,ex - (-IfY r\
or

Z = X - Y = (-1/rx ,ex(l - (-IfY -Srx reY -ex)

The resulting difference can be represented as

e,. = ex + LOG 2(1 - re, - ex).

Equation (39) is similar to equation (35) and can be restructured as

- LOG (1 emin - emax) e,. - emax + 2 - r

to reduce the memory requirements. Letting

D = emax - emin

(37)

(38)

(39)

(40)

(41)

allows the equations for addition and subtraction to be represented as LOGz(l + 2n) and

LOG 2(1 - iD), respectively. These two functions can be implemented in the PE by

using a table look-up ROM with D as the address input. The ROM will consist of

separate tables for the addition and subtraction functions shown above. Condorodis

employed memory reduction techniques on the two functions to take advantage of

approximately linear regions. This technique reduced the total memory requirements

for the table look-up procedure from 9.5 Mbits to 154 Kbits. The memory

requirements for the addition function are shown in Table 3 (Condorodis 1987). The

memory requirements for the subtraction function are identical

44

TABLE 3

MEMORY REQUIREMENTS FOR LOGARITHMIC ADDITION

ROM ID D RANGE ADDRESS RANGE ROM SIZE TOTAL BITS

1 0.0-0.5 0-2047 2K x 11 22 Kbits
2 0.5-1.0 2048-3071 lK x 11 11 Kbits
3 1.0-2.0 3072-5119 2K x 12 24 Kbits
4 2.0-3.0 5120-6143 lK x 11 11 Kbits
5 3.0-4.0 6144-6655 512 X 10 5 Kbits
6 4.0-5.0 6656-6911 256 X 9 2.3 Kbits
7 5.0-6.0 6912-7039 128 X 8 1 Kbits
8 6.0-7.0 7040-7103 64 X 7 .45 Kbits
9 7.0-8.0 7104-7135 32 X 6 .2 Kbits
10 8.0-9.0 7136-7151 16 X 5 .08 Kbits

The square and square root operations are necessary for the matrix inversion

algorithm. In LNS the square function is simply a single bit left shift since

LOG 2(x
2) = 2 LOG2(x). It may be expressed as

(42)

Similarly, the square root function is just a single bit right shift, and it may be

expressed as

e, = i:c > > 1 bit. (43)

45

ALU Functional Description

The LNS ALU performs the six matrix operations described above on 20-bit LNS

words. The multiplication and division operations are performed with an adder and a

subtracter, respectively. The addition and subtraction functions are calculated with an

on chip ROM and a special addressing scheme that performs a table look-up. The

square and square root operations are performed with a zero fill left shifter and a sign

extended right shifter, respectively. The ALU can accept up to five data inputs, one

for the square/square root block, and two each for the multiplier/divider and

adder/subtracter sections. Included with each data input is a zero flag. In addition, the

ALU inputs a 3-bit instruction opcode. The ALU instruction opcode definition is

shown in Table 4.

TABLE 4

OPCODE DEFINITION FOR ALU

OPCODE OPERATION

0xx divide
x0x square root
xx0 subtract
lxx multiply
xlx square
xxl add

46

The output of the ALU is a 20-bit LNS number, a zero flag, and a system

overflow flag. Overflow logic is used to handle the special case when the result of

some arithmetic operation is larger than the system was designed to support. Under

such a condition, the ALU outputs the largest representable number and sets the

overflow flag to a logic one.

Eight-to-one multiplexers are present at the inputs of the various ALU data paths.

Each multiplexer is controlled with a 3-bit opcode which selects the source of data.

The opcode definition of these multiplexers is shown in Table 5. Note one exception

to Table 5. The multiplexer for the top output selects the bottom input when a zero

opcode is received. This default allows data to be piped from bottom to top during no

operation conditions. The left input is selected when the opcode is a one. This

multiplexing scheme is different from that proposed by Condorodis. The previous PE

TABLE 5

OPCODE DEFINITION FOR INTERNAL DATA MULTIPLEXERS

OPCODE

000
001
010
011
100
101
110
111

SOURCE

left input
bottom input
multiply/divide output
square/square root output
add/subtract output
scratch pad output
previous data input (hold)
ground

47

design used bus switches to control data input to the ALU, scratch pad memory, and

output ports. The old scheme would be difficult to implement since it would require

eleven internal tristate busses. Generally, the tristating of data lines is slow. The new

scheme makes microcode programming of the PE a simpler task since the data input to

the ALU, scratch pad memory, and output ports is controlled by identical multiplexers.

Microcode memory requirements are reduced since the new microcode width is 32 bits

rather than 46 bits.

Scratch Pad Memory

In conjunction with the ALU, a scratch pad memory is provided to store internal

data for more than one clock. This data can be an element of a loading matrix, an

intermediate value of some operation, or a constant such as zero or one. The scratch

pad memory is 8-words by 21-bits. Included with each word is the zero flag of the

data. The scratch pad memory is controlled by a 3-bit microcode address and a

microcode write enable signal. Data written to the memory is selected with an 8-to-1

multiplexer which is identical to that described in the previous section.

PE Control. Structure

The internal control structure is a very important feature of the PE. It determines

the functional power of the PE as well as its relative ease to program. It also helps to

simplify the external control. The PEs make use of a microcontroller and a microcode

RAM for government of the functions of the PE.

48

The PE Microcontroller

The PE includes a lK-word by 31-bit microcode RAM to allow the programming

of the PE for implementation in a systolic array. A microcode controller provides the

capability to partition the microcode memory into four groups for the processing of

different functions. The ability to partition the memory into control groups means that

all PEs of a systolic array can be loaded with the same microcode, but various PEs can

access different control groups within the memory. This feature is not used in the

Kalman filter implementation.

A start and end address associated with each of the four groups must be input to

the PE. A counter is used to increment the address of the microcode RAM as the PE

executes instructions. Comparators are used to keep the address between the start and

end addresses. When the counter reaches the end address, it simply wraps back to the

start address. Thus, recursive operations can be. repeated indefinitely.

The instruction opcodes for the external PE control are defined in Table 6. The

loading of the microcode memory can be accomplished by inputting the start and end

address for counter one. Microwords from the left input port are written consecutively

to locations within the range specified by the end and start address when the opcode is

fifteen. The counter is incremented after each write.

The Control Word

TABLE 6

OPCODE DEFINITION FOR PE CONTROL

OPCODE

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

FUNCTION
no operation
run counter 1 microcode
run counter 2 microcode
run counter 3 microcode
run counter 4 microcode
load counter 1 start address
load counter 2 start address
load counter 3 start address
load counter 4 start address
load counter 1 end address
load counter 2 end address
load counter 3 end address
load counter 4 end address
pass data to right
read from memory
write to memory

49

The PE control word can be subdivided into an upper control word and a lower

control word. Each control word is 16 bits. The upper control word is shown below.

31 30 28 27 25 24 22 21 19 18 16

UNUSED I ALU I MULT X I MULT y I SQUARE_X I ADD_X

The bit range of each field is shown above it. The ALU field controls the ALU

operations according to the definition of Table 4. The remaining fields act as a 3-bit

select to the respective 8-to-1 multiplexer.

50

The lower control word is shown below.

15 13 12 10 9 7 6 4 3 2 0
ADD y I TOP I RIGHT I MEM I W/R I MEM ADDR

The W /R signal is the write enable to the scratch pad memory. If it is set, data will be

written to the location specified by MEM_ADDR. This address field is also used for

reading data from the single port scratch pad memory. The remaining fields act as 3-

bit selects to the respective 8-to-1 multiplexer.

CHAPTER ill, DESIGN ANALYSIS

With the fundamental Kalman filter and systolic concepts well understood, it is

now possible to examine the Kalman filter implementation in more detail. The

architecture presented will be reconfigurable so that a minimum of hardware will

perform all of the necessary operations and no "flushing" will be necessary to switch

operational modes. In addition, the architecture will provide FIMD capability so the

total power of parallel architectures will be realized. The performance and efficiency

of the implementation will be measured to determine the success of this project.

Control of Successive Operations

The solution to the Kalman filter equations involves several steps. In order to

perform these steps in succession with maximum efficiency, it is necessary to keep the

pipeline as full as possible. There are essentially two types of operations needed to

implement the Kalman filter, multiply and inverse operations. All procedures are

identical in terms of control flow. The integration of multiply-multiply, multiply­

inverse, inverse-multiply, and inverse-inverse. steps must be examined.

Successive multiplication operations can be achieved easily in the pipelined

systolic architecture. If two matrix products such as AB · and AC are desired, matrix A

can· be loaded and matrices B and c can be input in_ succession. The first product will

require 2n clocks as noted previously. However, the second product will only require

51

52

an additional n clocks to obtain since reloading of A is not required.

Two unique products such as AB and CD can be obtained by !oading A, inputting

B, loading C, and inputting D in succession. The total computation time is 4n clocks.

All inverse operations require a matrix multiplication as a last step. Consequently,

the integration of inverse and multiplication procedures can be viewed as successive

multiplication steps.

Order of Pipelined Operations

The inverse, multiply, load, and transpose algorithms developed in the previous

chapter can be combined in an orthogonal implementation which uses the LNS based

PE. The order which the operations of equations (11) through (15) are performed is

important. It is necessary to have intermediate values calculated and available when

they are needed. For example, equation (14) should be calculated before equation (15)

since the latter requires the result of the former. It would be desirable to have the data

available at the output of the systolic array rather than in an internal node of the

systolic array when it is time to input it for some other computation. The use of

switches to route data from internal nodes is costly in terms of hardware and disrupts

the data flow within the systolic pipeline.

The recommended order of the Kalman operations is depicted in Table 7. The

table shows the size of the matrices involved and breaks the inverse operation into

subtasks. The start time of each operation is represented in terms of the general

53

TABLE 7

KALMAN FILTER OPERATIONS VERSUS TIME

START DATA
OPERATION SIZE TIME AVAILABLE

1. QGT (pxp)(pxn) 1 n +p + 1
2a. b =PHT (nxn)(nxm) n + p + 1 3n + p + 1
2h. ppT (nxn)(nxn) 2n+p+m+l 3n + p + m + 1

3. R +Hb (mxn)(nxm) 3n + p + m + 1 4n + p + 2m + 1

4. G(QGT) (nxp)(pxn) 3n + p + 3m + 1 Sn+ p + 3m + 1

5. (R + Hb)-1 . (mxm)

Sa. UPPER DECOMPOSITION. (mxm) Sn+ p + 3m + 1 Sn+ p + 4m + 1

Sb. UPPER INVERSE (mxm) Sn+ p + 4m + 1 Sn+ p +Sm+ 1

Sc. u-1(u-1)7 (mxm)(mxm) Sn+ p +Sm+ 1 6n + p +Sm+ 1

6a. a =FK (nxn)(nxm) Sn+ p + 6m + 1 7n + p + 6m + 1

6b. Fx (nxn)(nx 1) 6n + p + 1m + 1 1n + p + 1m + 1

7. K = b(R + Hbr1 (nxm)(mxm) 6n + p + 1m + 2 8n + p + 1m + 2

8. z -Hx (mxn)(nx 1) 1n + p + 8m + 2 8n + p + 9m + 2

9a. F - aH (nxm)(mxn) 7n + p + 9m + 3 9n + p + 9m + 3

9b. x = Fx + a (z - Hx) (nxm)(mx 1) 9n + p + 9m + 3 10n + p + 9m + 3

10. P = GQGT + (F - aH)(PFT) (nxn)(nxn) 9n + p + 9m + 4 lln + p + 9m + 4

Kalman matrix dimensions, m, n, and p where n ~ p ~ m. It corresponds to the time

when the first element is input to PE 11 • The data available time corresponds to the first

computational cycle when a resultant element is available at the output of the array.

Table 7 reflects the operational order derived by Papadourakis and Taylor for the

special case n = m = p (1986). Equations (6a) and (6b) of the table have been swapped

with equation (7) to ensure that the inverse will be processed and output before the

operation of equation (7). Multiplexer switches could be used here, but they are not

necessary.

54

Note from Table 7 that b is available before it is needed for the R + Hb

calculation. Similarly, QGr is available before the G(QGr) calculation commences, a

is calculated before the F - aH calculation requires it, and F - aH is output prior to the

calculation of P.

The inversion is a special case. The calculation of R + Hb is completed well in

advance of the start of the inverse operation. The upper decomposition and the inverse

of the upper triangular matrix operations are each calculated in m computational units.

However, data is available for each operation n computational units after it starts. If n

is significantly greater than m, then much time will be spent waiting for the necessary

data to start the upper triangular inverse calculation. For example, if n = 5 and m = 2,

three computational units will be wasted. In order to avoid this problem, a switch

should be included after PE,,.; for i from one to m. For the upper triangular

decomposition, this switch should reroute data from the top of the left-most m

processors of row m to the bottom of the array. For the upper triangular inversion, the

switch should reroute data from the right of the lower m processors of column m to

the bottom of the array. This will improve the computational throughput by 2(n - m)

computational units. Although this switching breaks the systolic flow of the data, it

can, in certain applications, produce a significant performance improvement.

55

Register Level Simulation

A C simulation of the systolic array architecture was written to verify the

algorithms and architecture proposed for performing the Kalman filter operations. This

program was written at a register level and modelled the PE with a LNS based ALU.

The simulation was somewhat crude in that it did not handle zero numbers, it did not

propagate overflow flags, and it did not implement the transpose switch.

It was assumed that a PE computational unit corresponded to one clock period.

Further, it was assumed that n = 5, p = 3, and m = 2. The intent of the simulation was

to model the PE to the 20-bit accuracy described in the previous section. With this

model, the performance of the wavefront control structure could be tested along with

the load, multiply, and inverse algorithms. Since the nature of the operations in Table

7 are very repetitive, it is sufficient to simulate each case once.

The most encompassing operation is the inverse operation (R + Hb r1
• This

operation requires decomposing a matrix to an upper triangular form, inverting the

upper triangular matrix, inputting a matrix transposed, and multiplying two matrices.

Fortunately, a very simple example can be applied that will completely test the

complex procedures associated with the orthogonal array. Let

R + Hb = [1 ;]. (44)

Note that this matrix is symmetric. This matrix is decomposed to an upper triangular

matrix in 2 clocks. The result is

56

u = [b i]. (45)

The upper triangular matrix is inverted in 2 clocks. Its inverse is

V = [6 -j_2]. (46)

Equations (45) and (46) can be verified with equations (23) through (26). Figure 14

shows the data flow through the systolic array for equations (45) and (46). The

inverse matrix is loaded in the array as a result of the previous operation. The

transposed matrix input and the matrix multiplication starts immediately after the

inverse matrix is output since processing is pipelined. The multiplication is complete

after 2 clocks. The multiplication produces

(47)

which is the inverse of equation (44). The data flow for this step is depicted in Figure

15. The upper decomposition procedure requires that each row of PEs be programmed

uniquely. Furthermore, the upper triangular matrix inversion procedure requires that

each column of PEs be programmed uniquely. Therefore, each PE must be

programmed uniquely, depending upon its position in the array.

The upper control word for PE 11 is shown below for the six clock intervals

associated with the 2 x 2 inversion procedure. The control words for PE 12 are similar

except the storage of v 12 occurs one clock later than for v 11 (relative to the first opcode

received by the particular PE). Also, PE 11 is a diagonal element and requires slightly

different arithmetic functionality for the upper decomposition operations. The control

words for PE 21 are similar except the storage of u 12 occurs one clock later than for u 11.

X

1

:
ls
I
I
I
I

: 1
I
I

t,nal t,ma2

t,ma~

: ______ :", 1

Figure 14. Data Flow For Decomposition and Inverse Operations.

57

58

t,mcas t11na6

1

e

t11na7 t,rniae

Figure 15. Data Flow For Multiplication Operation.

59

31 30 28 27 25 24 22 21 19 18 16
TIME UNUSED ALU MULT X MULT Y SQUARE X ADD X

1 0 000 000 000 000 000
2 0 000 000 101 000 000
3 0 000 000 001 000 000
4 0 100 101 001 000 000
5 0 101 101 001 000 000
6 0 101 101 001 000 000

The lower control word is shown below for PE ll •

15 13 12 10 9 7 6 4 3 2 0
TIME ADDY TOP RIGHT MEM W/R MEM ADDR

1 000 011 001 011 1 010
2 000 010 001 000 0 010
3 000 000 010 010 1 011
4 010 000 100 000 0 011
5 010 000 100 000 0 011
6 010 000 100 000 0 011

Performance Comparison

The performance of the new Kalman filter implementation is compared to two

previous designs in Table 8. This table is a modified version of one developed by

Papadourakis and Taylor (1986). The first design uses algorithms developed by Liu

and Young (1984). The second design was developed by Kung (1982). The

comparison is not exactly apples to apples. However, letting n = p = m produces a

total computational throughput of 21n + 3 for the new method. The comparison of the

different approaches for various values of n is shown in Table 9.

60

TABLE 8

KALMAN FILTER EXECUTION TIME COMPARISON

OPERATION SIZE
BAPST uu

P.dPAnnTTR.d'f(I,<:; YOTTNr;
KUNG

1. QGT (pxp)(pxn) n +p 4n -2 4n -1
2.a. PHT (nxn)(nxm) n+m 4n -2 4n -1
2h. ppT (nxn)(nxn) n n 4n - 1

3. R +Hb (mxn)(nxm) 2m 4n -2 5n -1

4. G(QGT) (nxp)(pxn) 2n 4n -2 4n -1

5. (R + Hb)-1 (mxm) 3m 32n - 16 36n - 8

6a. FK (nxn)(nxm) n+m 4n -2 4n - 1

6b. Fx (nxn)(nx 1) 1 1 4n -1

7. b(R + Hbr1 (nxmXmxm) n+m 4n -2 4n -1

8. z -Hx (mxn)(nx 1) m + 1 3n - 1 3n + 1

9a. F - aH (nxm)(mxn) 2n 4n -2 5n - 1

9b. Fx + a(z - Hx) (nxm)(mxl) 1 1 3n + 1

10. GQGT + (F - aH)(PFT) (nxn)(nxn) 2n 4n -2 5n -1

TOTAL 11n + 9m + p + 3 68n - 31 85n - 16

TABLE 9

COMPARISON OF KALMAN FILTER IMPLEMENTATIONS VERSUS N

N
BAPST uu

KUNG

3 66 173 239
5 108 309 409
10 213 649 834
64 1347 4321 5424
100 2103 6769 8484

Clearly, the new implementation becomes everi more favorable as n increases.

The time to execute the Kalman filter equations is about three to four times faster than

either of the previous methods.

61

PE utilization is a measure of the average number of PEs used in a computational

unit of time. For the Kalman filter implementation, the total number of PEs used for

each operation is summarized in Table 10. As shown, the total number of PEs used

for an n x n multiply is n2(n + I). Actually, n2 processors are used during the load and

n3 are used for the actual multiply. Given the equations of Table 10, the PE utilization

is

4n 3 + 6n 2 + np 2 + p 2 + np + 3mn 2 + 2nm 2 + m2 + 4mn + 2m3 PEU = ______ ,.__ __ ...___________ (48)
lln + 9m + p + 3

The denominator, of course, is the total Kalman filter execution time defined in Table

TABLE 10

PE UTILIZATION OF KALMAN FILTER IMPLEMENTATION

OPERATION SIZE TOTAL PEs USED

1. QGT (pxp)(pxn) p 2(n + 1)

2a. PHT (nxn)(nxm) n2(m + 1)
2b. ppT (nxn)(nxn) n3

3. R +Hb (mxn)(nxm) mn(m + 1)

4. G(QGT) (nxp)(pxn) n(n 2 + p)

5. (R + Hbf1 (mun)

5a. UPPER DECOMPOSITION. (mun) m3

5b. UPPER INVERSE (mun) m3

5c. u-1(u-1)7 (mxm)(mun) m2(n + 1)

6a. FK (nxn)(nxm) n2(m + 1)

6b. Fx (nxn)(nx 1) n2

7. b(R + Hb)-1 (nxm)(mun) nm(n + 1)

8. z -Hx (mxn)(nx 1) n(n + m)

9a. F -aH (nxm)(~) n(n 2 + m)

9b. Fx + a(z -Hx) (nxm)(mx 1) n2

10. GQGT + (F - aH)(PFT) (nxn)(nxn) n2(n + 1)

62

8. For n = m = p = 5, the PE utilization is 1825/108 = 16.9. Therefore, 16.9/25 = 67.6

percent of the PEs are being used on the average. If n = 5, p = 3, and m = 2, the PE

utilization is 969/79 = 12.3, so 49.1 percent of the PEs are used on the average. Clearly,

the PE utilization will decrease as m and p differ from n .

Other performance measurements are available for advanced parallel systems.

The Optimum Processor Count (OPC) reflects the basic parallelism within the system.

It is the number of PEs needed to handle a given array size. For the Kalman filter

application, it is n 2•

The speedup (SU) is defined as the ratio of serial time to parallel time. A matrix

multiply requires n 3 serial multiply-accumulate type operations. Assuming that all

fifteen basic Kalman operations are of this type and n = m = p , the speedup for the

special Kalman filter implementation is

For n = 5 the speedup is 14.6.

12n 3 + 3n 2

SU= 21n + 3 . (49)

It was assumed that the serial type computer used for the preceding comparison

employed an LNS ALU. A floating point ALU such as the AM29325 would require

three computational units to perform one calculation since time is needed for

normalizing and denormalizing data before arithmetic operations. Therefore, the

speedup would be three times that mentioned above for a floating point ALU.

CHAPTER IV, CONCLUSION

An implementation of the recursive Kalman filter was obtained using a systolic

architecture. A few instruction multiple data machine was used to perform the

individual operations such as matrix multiplication and inversion. The parallel

processor was reconfigurable which allowed all operations to be calculated in a strict

pipeline fashion with one array of processing elements. The algorithms developed

were general in terms of matrix operations and the Kalman filter array dimensions.

The throughput of this new design exceeded previous implementations employing

parallel processors by a factor of three to four depending on the Kalman dimensions.

For n = 5, the new implementation is roughly 14 times faster than a LNS based serial

processor implementation, and the processing element utilization is about 67 percent.

A LNS based processing element was used to provide a machine with a capability

for a large dynamic range. The resulting array, which was proven and verified with a

C program, was completely designed. Details such as PE control were included in this

paper. The result is not only general, but it is also fairly simple to understand and

implement. The technically limiting factor will be in the physical implementation of

the processing element. A small feature size ~SI process will be necessary if such a

desigJ?- is to have a one clock computational time. Although the LNS ALU allows

functions such as division and square root to be calculated easily and with minimum

63

64

hardware, driving off one VLSI part and onto another has proven to be a speed critical

problem at high frequencies.

Alternate Architectures

Other computer architectures could have been used to implement the Kalman

filter, but it is not obvious that any could improve upon the performance obtained here.

A serial computer would produce the most hardware efficient design, but it would

suffer from obvious computational bandwidth problems. A vector processor would

improve upon the serial computer's performance, but would still suffer from bandwidth

limitations. An orthogonal architecture similar to the one developed here could use

fixed point or floating point processing elements. Either of these approaches would

have a difficult time performing the square root and division operations necessary for

the inversion algorithm. To revert to the iterative inversion algorithm would result in

reduced performance.

Areas of Future Work

A compiler is the next logical step for work in this area. To completely

generalize this design, a compiler would be necessary to transform any given operation

or set of operations into an efficient and logical series of pipelined systolic operations.

Combined with this effort, the firmware of the general implementation should be

written for the PEs and external control.

65

The handling of some special LNS conditions such as zero and overflow should

be given more thought. Such items would involve more detail than was appropriate

for this paper. However, zero data appears frequently and the handling of such data

should be considered.

The memory and interface structures should be considered in more detail. It was

mentioned briefly that a four port random access memory could serve each column of

PEs. This memory, which is certainly feasible in a register file implementation, should

have two read and two write ports. This would allow it to input to a left side element

and a bottom side element simultaneously. In addition, it could store data that is

output from a top column element and a right row element simultaneously. The

transpose switch could be used to "shuffle" the data as it is input to the array.

REFERENCES

Briggs, Faye A., and Hwang, Kai. Computer Architecture and Parallel Processing.
New York: McGraw-Hill Book Company, 1984.

Graham, James H., and Kadela, Thaddeus F., "Parallel Algorithms and Architectures
for Optimal State Estimation," IEEE Transactions Computers, Vol. C-34,
November 1985, pp. 1061-1068.

Kalman, R.E., "A New Approach to Linear Filtering and Prediction Problems,11
Journal of Basic Engineering, Vol. 82, March 1960, pp. 35-45.

Kung, H. T. "Why Systolic Architectures?" Computer, January 1982, pp. 37-46.

Liu, Philip S., and Young, Tzay Y., "VLSI Array Design Under Constraint of
Limited 1/0 Bandwidth," IEEE Transactions Computers, Vol. C-32,
December 1984, pp. 1160-1170.

Papadourakis, George M., "Adaptive Optimal Filtering using the Logarithmic Number
System." Ph.D. dissertation, University of Florida, 1986.

Papadourakis, George M., and Taylor, Fred J., "Implementation of Kalman Filter
using Systolic Arrays," University of Central Florida and University of
Florida, 1986.

Pucknell, Douglas A., and Eshraghian, Kamran, Basic VLSI Design, Sydney:
Prentice-Hall, 1985.

Stone, Harold S., Introduction to Computer Architecture, Chicago: Science Research
Associates, 1980.

Taylor, Fred J., "An Extended Precision Logarithmic Number System,"
IEEE Transactions ASSP, Vol. ASSP-31, February 1983, pp. 232-234.

Tayl9r, Fred J., "A Hybrid Floating-Point Logarithmic Number System Processor,"
IEEE Transactions Circuits and Systems, Vol. CAS-32, January 1985, pp.
92-95.

66

67

Taylor, Fred J., "A 20-bit VLSI Arithmetic Unit for Digital Signal Processing in the
Logarithmic Number System," Signal Processing ill; Theories and
Application, Elsevier Publishers, 1987.

	A Reconfigurable Orthogonal Systolic Array Implementation of a Kalman Filter
	STARS Citation

	A RECONFIGURABLE ORTHOGONAL SYSTOLIC ARRAYIMPLEMENTATION OF A KALMAN FILTER
	02

	ABSTRACT
	03

	ACKNOWLEDGMENTS
	04

	TABLE OF CONTENTS
	05
	06

	LIST OF TABLES
	07

	LIST OF FIGURES
	08

	CHAPTER I, INTRODUCTION
	09
	10
	11
	12
	13
	14
	15

	CHAPTER II, DESIGN FUNDAMENTALS
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58

	CHAPTER Ill, DESIGN ANALYSIS
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70

	CHAPTER IV, CONCLUSION
	71
	72
	73

	REFERENCES
	74
	75

