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ABSTRACT 

An important part of optimal estimation technology, the Kalman filter is a 

computationally intensive application that has been limited either to non-real time 

realizations or to realizations that can afford vast amounts of mainframe hardware. 

The potential use of the Kalman filter theory could be greatly enhanced by a low cost, 

high performance machine capable of computing the recursive matrix equations in real 

time. 

The use of pipelined parallel architectures allows the Kalman filter equations to 

be realized with much greater efficiency than previous implementations. A 

reconfigurable, few instruction, multiple data, orthogonal, pipelined, systolic array 

processor will be used to implement the recursive_ algorithm of the filter. Since the 

architecture is reconfigurable, a single systolic array will perform all of the required 

operations. The architecture selected provides a general foundation for other 

applications involving matrix computations to build upon. 

A previously designed algorithm for pipelined matrix multiplication is employed, 

and a modified version of an inversion algorithm which is based on Cholesky's method 

is used. The resulting system improves the performance of the Kalman filter by about 

a factor of three over an implementation by Liu and Young. 
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CHAPTER I, INTRODUCTION 

Since its inception in 1960, the Kalman filter has been an important part of 

optimal filter technology. It has been introduced to a wide range of applications 

including missile guidance, air and sea navigation, target tracking, and flight control. 

The theory is ahead of practice. The filter's implementation has been hindered by the 

fact that it is computationally bound. The recursive nature of the Kalman filter 

coupled with the matrix equations used poses severe performance limitations on this 

technique for optimal linear estimation. An inexpensive yet powerful processor of 

compact proportions would broaden the filter's applications to include process control, 

robotics, and computer vision (Graham and Kadela 1985). 

Advances in parallel computer architectures have provided promise for the 

reduction of the computational bottleneck associated with recursive, linear applications. 

However, these architectures would not be feasible without the tremendous progress in 

microelectronics. Very large scale integration (VLSD, the fourth generation of 

integrated circuits, has provided logic designers with the means to improve 

performance and reduce size of existing systems. More importantly, it has allowed 

them to set new state of the art design goals which is clearly evident in the 16 million 

transistor memories and 250,000 transistor microprocessors being developed today 

(Pucknell and Eshraghian 1985). 
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The Kalman Filter 

The intent of this paper is not simply to develop a specific processor that 

implements the Kalman filter in an efficient manner. Rather, the Kalman filter is 

presented to provide essentially a worst case computational application that will allow 

a systolic architecture to be developed that will perform matrix addition, subtraction, 

multiplication, inversion, and transposition. Since this application requires these five 

basic matrix operations, it provides a general platform that can be modified to perform 

most any recursive set of matrix computations. 

The Kalman filter is used to estimate the state variables of a system when noise is 

present. The Kalman filter is the most popular state estimator used in system control 

in the least square sense. It is easily extended to nonlinear systems and systems with 

non-Gaussian noise (Graham and Kadela 1985). 

Unfortunately, the intensive matrix calculations required to implement the Kalman 

filter have limited its applications, especially those applications requiring real time 

performance. Graham and Kadela considered the use of a systolic architecture to solve 

the Kalman filter dileITh-na. They restructured the optimal state estimation equations 

developed by Kalman to minimize the amount of processing necessary and to take 

advantage of the single instruction multiple data (SIMD) architectures afforded by 

systolic arrays. However, they did not employ any pipelining nor did they provide an 

arithmetic logic unit with the dynamic precision necessary in most optimal state 

estimation applications. This paper will modify existing algorithms for matrix 
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multiplication and inversion to take advantage of pipelining to improve performance. 

In addition, the systolic machine developed will have a high dynamic precision for 

realization in practical examples. This paper will go one step further in improving 

performance in implementing the Kalman filter machine. 

The Systolic Architecture 

Over the past thirty years, computation speed has been increased primarily as a 

result of improved electronic technology. Integrated circuits have become faster and 

smaller as transistor feature size has been reduced. However, it has become evident 

that the technological advancements in integrated circuit technology have slowed due 

to complex quantum physics problems associated with reduced transistor minimum 

feature size. Since the technological trend indicates slower improvements in 

component speed, designers must consider other approaches to increase computational 

throughput (Stone et al. 1980). 

The area of parallel processing has showed a great deal of promise for such broad 

applications as military defense, genetic engineering, artificial intelligence, and medical 

diagnosis. Parallel processing employs two or more elements for the efficient 

computation of some equation or set of equations through the use of concurrent events. 

In particular, systolic arrays use two or more individual arithmetic units operated in 

parallel for highly concurrent processing. Systolic arrays, which are single instruction 

multiple data architectures, provide a means of optimizing an algorithm for specific 

implementation in integrated circuits. Systolic algorithms are usually constructed as a 
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set of identical operations that can be performed in parallel. For this reason, matrix 

computations are particularly well suited to systolic arrays. More than one element of 

a resultant matrix can be computed simultaneously to reduce the overall computation 

time of an application. 

The systolic architectural concept was developed by Kung and associates at 

Carnegie-Mellon University. In a systolic system, data passes from the computer 

memory through many processing elements (PEs) before it is returned to memory. An 

analogy is often made between the systolic array and the heart. Data flows through 

the PEs in a rhythmic fashion similar to the blood circulation in a heart (Briggs and 

Hwang 1984). 

Many special purpose systolic processors have been designed by various 

universities and industrial organizations. Because they involve several identical 

building blocks which are used repetitively with simple interfaces, systolic arrays result 

in cost-effective, high-performance, special-purpose systems for a wide range of 

potential applications (Briggs and Hwang 1984). 

The fundamental principle of a systolic system is quite simple. Replacing a single 

processing element with an array of processing elements that operate in parallel will 

result in a higher computational throughput without an increase in memory bandwidth. 

The memory bandwidth is not increased because exhaustive use of data read from 

memory is made before the new data is written to memory. In general, the memory 

only interfaces to the boundary elements of a systolic array. Data flows between 
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neighboring elements in a pipelined manner. The ability to keep the pipeline full is a 

measure of the systolic array's efficiency (Kung 1982). 

The processing element of a systolic array is essentially an arithmetic logic unit 

(ALU) with a set of working registers, possibly some scratch pad memory, and a local 

microcode memory and controller (Briggs and Hwang 1984). In most applications, the 

PE is scaled down to perform only the set of instructions needed for that particular 

application. In this paper, the general purpose PE developed by Condorodis will be 

employed with only modest changes (Condorodis 1987). These changes will be 

outlined during the design synthesis of this paper. 

The PE of Condorodis is capable of high speed calculations and data routing 

between neighboring elements for the implementation of an orthogonal array. The 

ALU can perform multiplication, division, addition, subtraction, square, and square 

root operations at a very high speed on 20-bit logarithmic numbers. The PE also 

allows the routing of data to neighboring PEs to allow the configuration of various 

algorithms. It includes a microcode RAM for the local programming of algorithms 

such as matrix multiplication and inversion. 

The Logarithmic Number System 

When a large dynamic range and high precision are required as in most Kalman 

filtering applications, a floating point number system is usually adopted. 

Unfortunately, floating point operations are inherently slower than fixed point 
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operations due to the normalization and denormalization that must be performed before 

and after arithmetic computations. Taylor developed an ALU based on the 

Logarithmic Number System (LNS) that is capable of performing multiplication and 

division faster than conventional floating point ALUs (1985). This ALU forms the 

basis of the PE designed by Condorodis. 

Numbers in LNS are represented with a signed radix raised to some signed 

exponent. Therefore, multiplication and division operations are simply an addition or 

subtraction of the exponents, and square and square root operations are simply a left or 

right shift of the data word. If the radix is constant, a number can be represented in 

logarithmic notation as a signed exponent alone. For digital computer applications, the 

radix will be two. 

The primary disadvantage of the LNS is that addition and subtraction require the 

use of memory look-up tables. Thus, the memory required to implement an LNS 

based ALU with a reasonable dynamic range has been prohibitive. However, the recent 

advances in VLSI technology and LNS ALU algorithms have made it feasible to 

consider a single chip implementation of a 20-bit LNS ALU. Addition and subtraction 

read only memory (ROM) tables can be included on chip when memory reduction 

techniques are employed (Condorodis 1987). 

Although LNS is an ideal numbering system to be used in the implementation of 

the systolic array Kalman filter, it has become neither an industry nor a military 

standard. Therefore, to employ the LNS in a Kalman filter machine that must interface 
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with other systems, it is necessary to convert between LNS and a standard number 

system. Floating point number systems are commonly used, and the Institute of 

Electrical and Electronic Engineering (IEEE) has developed a standard for 32-bit 

floating point numbers. Taylor has shown how to convert between the LNS and 

floating point formats (1985). 



CHAPTER II, DESIGN FUNDAMENTALS 

The Kalman filter equations are natural for a systolic implementation. The initial 

equations were minimized by Graham and Kadela to reduce the necessary matrix 

operations (1985). These reduced equations will be used for the Kalman filter 

implementation. 

Matrix inversion has been a stumbling block in previous Kalman filter designs. 

However, the symmetric nature of the matrix that is inverted in the Kalman equations 

makes is possible to introduce a simplified, pipelined inverse algorithm based on the 

Cholesky LU decomposition. Furthermore, by using a reconfigurable systolic array, all 

matrix operations can be performed with the same architecture without the need for 

purging the systolic pipeline when new instructions are executed. 

Control of the individual PEs is one of the most difficult design factors associated 

with systolic arrays. Although these architectures provide simple network structures 

for data flow, partitioning, scheduling, and synchronizing of the problem are necessary 

for correct operation. These factors must be considered when the arithmetic 

algorithms are designed. 

8 
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Kalman Filter Equations 

Prior to 1960, work in the area of control and estimation theory modelled and 

analyzed systems in the frequency domain. In the early 1960's statistical modelling 

was extended to the time domain using state-space notation (Kalman 1960). This 

method simplified the mathematical and notational models associated with optimal 

estimation and was useful in providing a statistical description of system behavior. 

Time domain models also produced a system description closer to physical reality than 

any of the previous frequency domain models. Today the Kalman filter is one of the 

most commonly used state estimators for system control. 

A linear discrete dynamic system can be described with 

(1) 

and 

(2) 

The Kalman filter variables are defined in Table 1. The uncorrelated zero-mean white 

noise sequences w (k) and v (k) have the second order properties 

(3) 

and 

R1 = E [v1 v[]. (4) 

An estimate of the state of the system defined by equations (1) and (2) can be obtained 

given initial estimates of the initial state, .£0, and the state covariance, Po, and statistical 

information of the input noise covariance, Q1 , and the output noise covariance, R1. 



TABLE 1 

KALMAN FILTER VARIABLES 

Variable Description 
k - 0,1,2 ... 
X .- nxl state estimate vector 
F - nxn state transition matrix 
G ·- nxp system input matrix 
Q - pxp input noise covariance 
H .- mxn measurement matrix 
R ·- mxm output noise covariance 
V - mx 1 plant noise vector 
w - px 1 system noise vector 
z - mx 1 measurement vector 

The sequential equations modelling the standard Kalman filter become 

ik+l = Fk ik + Fk Kk [z1 - Hk ik] 

where the Kalman gain, Kk, is 

Kk = Pk H[ [Hk Pk H[ + Rkr1 

and the covariance matrix, Pk is 

10 

(5) 

(6) 

These equations can be computed recursively. 

(7) 

Equations (5) through (7) are 

rewritten as 

and 

x = F x + F K [z - H x], 

P = F P pT - F K HP Fr+ G Q Gr, 

(8) 

(9) 
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(10) 

Graham and Kadela have restructured the Kalman equations listed above to 

reduce the required matrix multiplications by 25 percent over that of the original set of 

equations (1985). The resulting equations are 

and 

a =F K, 

x = F x + a [z - H x], 

P = [F - a H] P FT + G Q GT, 

b = P HT, 

K = b [R + H b r 1
. 

(11) 

(12) 

(13) 

(14) 

(15) 

Note that the original equations required sixteen matrix multiplies, but the new 

equations have reduced this number to twelve. Storing intermediate results which are 

used more than once into system memory can produce a significant reduction of 

necessary computations. Equations (11) through (15) require matrix addition, 

subtraction, multiplication, inversion, and transposition and are well suited to systolic 

arrays. 

Systolic Architectures 

Parallel computers are frequently classified according to the parallelism w_ithin the 

instruction and data streams. Naturally, there are four types of parallel computers that 

ari·se from this classification. The single instruction single data (SISD) machine is a 

serial computer. In this architecture, only one instruction can execute at any given 
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instance. The data stream can be replicated to produce the single instruction multiple 

data (SIMD) computer. Systolic arrays are of the SIMD architecture. Parallelism in 

the instruction stream will produce a multiple instruction single data (MISD) processor. 

In the MISD processor, a data word is operated on by several instructions 

simultaneously. This type of machine has found limited applications. Parallelism in 

both the instruction and data streams results in a multiple instruction multiple data 

(MIMD) computer. The MIMD machine is the most powerful and the most difficult to 

control. Control of the MIMD device becomes more complex as interconnection 

between processors increases (Stone et al. 1980). Models of the four classes of 

parallel computers are shown in Figure 1. 

A systolic array consists of many PEs connected to adjacent PEs in a regular 

fashion. The essential point of the systolic architecture approach is that data is used in 

each cell it passes for the attainment of some computational goal. Unfortunately, it is 

not always possible to achieve 100 percent efficiency in PE usage. For example, using 

a n x n systolic array to compute m x m matrix addition where m < n will result in less 

than maximum PE utilization. However, systolic architectures can often produce 

dramatic performance improvements even without peak efficiency. Figure 2 contrasts 

a conventional processor with a systolic array processor. The conventional machine is 

a Von Neumann machine with one processor while the systolic array processor is a 

Von Neumann machine with several processors. 
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Figure 1. Models For Four Computer Classes. 
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If each PE operates with a clock frequency of 10 MHz, the conventional 

memory-processor machine can produce at best a performance of five million 

operations per second (MOPs). A systolic machine operating at the same clock 

frequency will result in a performance of 10n /2 MOPs where n is the number of PEs 

used. To take full advantage of the parallel processing feature of systolic arrays, 

algorithms must be devised as a number of identical computations. In addition to 

higher performance, systolic arrays offer the advantages of modular expansion, regular 

data flow, and use of identical processing elements (Briggs and Hwang 1984). 

Various geometric configurations exist for systolic architectures that make it 

possible to implement a variety of algorithms. In addition, a reconfigurability feature 

can be added to provide on-line operational modifications for the implementation of 

different algorithms. For example, the systolic array might be used for performing a 

matrix operation such as AB + CD where it has to multiply and add matrices. Figure 3 

depicts a few of the more common configurations of systolic architectures. Table 2 

matches common systolic architectures to some of their applications (Hwang and 

Briggs 1984 ). Many problems can take advantage of the performance improvements 

offered by such systolic topologies by rearranging the flow graphs of those algorithms 

into recursion relations. 

Obviously, if high performance is a primary design objective, then some form of 

parallel processing must be employed. Traditionally,_ the SIMD and MIMD structures 

have been chosen. Recently, systolic arrays have become popular due to many of the 
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Figure 3. Common Systolic Architecture Configurations. 



17 

TABLE 2 

GEOMETRIC CONFIGURATIONS AND CORRESPONDING FUNCTIONS 

SYSTOLIC ARCHITECTURE APPLICATION 

linear arrays discrete Fourier transforms, 
priority queues 

orthogonal arrays orthogonal matrix arithmetic, 
graph algorithms involving 
adjacency matrices 

hexagonal arrays band matrix arithmetic, transitive 
closure, pattern matching, relational 
database operations 

trees searching algorithms, parallel function 
evaluation, recurrence evaluation 

triangular arrays inversion of triangular matrix, 
formal language recognition 

reasons described above. The implementation of a basic matrix operation such as a 

fixed multiply-add function would be well suited for a systolic architecture. However, 

there are several design obstacles to overcome when considering such an architecture. 

The lack of much previous experience in the systolic field means that no formal body 

of knowledge is available detailing the synthesis of such an array. Although systolic 

arrays of infinite size and ideal qualities can be conceptualized, it is not well 

understood what happens when the array dimension · is reduced to practical limits. In 

addition, whenever the arithmetic operation of a program changes, it might be 

necessary to "flush" the systolic array to avoid the interaction of inappropriate data. 
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The global control of the computational units has also been a problem. In addition, 

complex algorithm mapping into systolic arrays often yields low PE utilization, 

especially for orthogonal architectures. All of these problems can be overcome with 

the introduction of the few instruction multiple data (FIMD) systolic architecture. The 

FIMD architecture takes advantage of efficient software techniques to perform high 

level pipelining so many operations can be performed simultaneously yielding a higher 

PE utilization and throughput. A five by five pipelined, orthogonal systolic array of 

this type is shown in Figure 4. The reconfigurable, pipelined, orthogonal, systolic 

array FIMD architecture will be used to present the algorithms of this paper. 

Arithmetic Algorithms For Systolic Arrays 

Arithmetic algorithms are required such that when implemented in orthogonal 

. systolic architectures, they can perform recursive matrix operations at a very high rate. 

In particular, it is necessary to load a matrix into the structure, to add or subtract two 

matrices, to multiply two matrices, to invert a matrix, and to transpose a matrix. With 

the exception of inversion, the pipelined systolic structure should be able to perform 

all of these operations on non-square as well as square matrices. The n x n systolic 

array should also be capable of processing any of the operations on matrices with 

dimensions less than the maximum dimension of the array, n . For Kalman filtering, the 

symmetric nature of the matrix that is to be inverted can be taken advantage of to 

simplify the inversion algorithm. 
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Figure 4. Systolic Pipelined Orthogonal Array. 
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Matrix Load 

Loading a matrix into the orthogonal array is necessary for performing matrix 

multiplication, addition, subtraction, and inversion. A matrix is piped into an 

orthogonal array from the bottom. As a data element passes the appropriate processing 

element, it is stored into the scratch pad memory of that PE. 

The loading order of an array is vital. As shown in Figure 5, the data is loaded 

into each column with the nth row loaded first. Columns are loaded in a skewed 

manner as shown such that element a 52 is stored one clock after element a 51 , a 53 is 

stored one clock after a 52, and so on. This is necessary to keep the pipeline full during 

multiplication and inversion computations as will be discussed later. 

With this loading algorithm, element a 51 is input to PE 11 during the first clock 

cycle, elements a 41 and a 52 are input to PE 12 and PE 2i, respectively, during the second 

clock, and so on. Therefore, element a51 passes through PE 11 , PE 2i, PE 3i, and PE41 

before it is stored in element PE51 • This process is repeated for all matrix elements, and 

once PE 11 has stored its matrix data, element a 11, it is ready to begin processing on the 

next clock cycle. 

Note that this loading scheme is systolic since data is passed through the lower 

elements just to arrive and get stored in the upper elements. Each PEii passes n - i 

data words before it stores the appropriate matrix data in its local memory. Since a 

PE passes a variable number of words which depends on the row which it resides, it is 

necessary to program each row of PEs separately. 
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Matrix Multiplication 

The systolic architecture intended for the Kalman filter application must perform 

matrix arithmetic operations, and many algorithms exist that implement matrix 

functions using an orthogonal array architecture. One such algorithm developed by 

Kung obtains the product of two n x n matrices in 4n - 1 computational units (1982). 

Recently, a new algorithm was developed by Papadourakis and Taylor that uses the 

FIMD concept and extensive pipelining. With this procedure, the matrix multiplication 

throughput is 2n clocks (1986). 

Matrix multiplication, addition, and subtraction as presented by Papadourakis and 

Taylor are identical operations in a pipelined orthogonal systolic architecture. For 

given matrices A and B , an element of the matrix product z can be found with the 

recurrent equation 

n 

z .. = ~ a,L bL · ,, ~ ... ,,:1, (16) 
k=l 

where n is the column dimension of A. Assuming the matrix A is partially loaded 

inside the orthogonal array using the procedure described in the previous section, B 

can be piped in the system to interact with A before loading is complete. The first 

row elements of matrix B are input from the bottom into the first column of the 

systolic array with the b 11 element input the first clock after the last column one A 

element, a 11 , is loaded. This pipelining produces a more efficient machine than would 

otherwise be capable. 



23 

During the multiplication operation, each appropriate PEiJ takes the sum of partial 

products from the left neighbor and adds it to the product of aik.bk.J· Thus, each product 

matrix element is obtained by accumulating data in the rows of the systolic array from 

left to right as shown in Figure 6. In addition, the B data is piped one row deeper into 

the array. The resulting product matrix is output to the right. 

As mentioned, the product of two n x n matrices, z = AB , has a computation time 

of 2n clock cycles. This can be verified by the fact that n units are needed to compute 

z 11 and n units are required for the partial loading of another matrix. 

In general, the product of a n 1 x m1 matrix A and a n 2 x m 2 matrix B can be 

obtained in n 1 + m 2 clocks provided m1 = n2 and all matrix dimensions of matrices A 

and B are less than or equal to the largest dimension of the systolic array, n . Given 

the same constraints, n 1 + m 1 PEs are utilized during the matrix multiplication. 

The operation z = AB + C can be performed in 2n clocks since the C matrix can 

be input from the left. This requires no more overhead since the left column of the 

orthogonal array has no left neighbors to input a sum of partial products from. Thus, it 

is the left column that adds the C values to the product (Papadourakis and Taylor 

1985). This method can be used for attaining the sum or difference of two matrices as 

well. If an identity matrix is preloaded into the local PE memory, only n clocks are 

required for any B + c or B - c operation. This operation is identical to the AB + C 

operation described above with the A matrix equal to the identity matrix. 
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Matrix Inversion 

Previous Kalman filter implementations have relied on an iterative inversion 

algorithm. This algorithm required four iterations or 16n clocks to achieve the desired 

accuracy for most Kalman filter applications (Graham and Kadela 1985). Using the 

FIMD architecture, Liu and Young demonstrated a new method for inverting a 

covariant matrix in an orthogonal systolic array that is based on Crout's 

triangularization method (1984). This procedure, as demonstrated, is simplified for 

symmetric matrices when Cholesky's decomposition method is used. Although 

Cholesky' s method requires fewer computations, it has not been very popular because 

of the overwhelming computational burdens imposed by the need to compute the 

square root. However, using the proposed LNS computational unit will eliminate this 

burden, and a very high speed inversion implementation can be developed which will 

further increase throughput. The matrix requiring inversion in the Kalman filter 

equations is symmetric. Therefore, it is amenable to this implementation. 

A non-singular matrix C can be decomposed as a product of a lower matrix L 

and an upper matrix u. Then, the inverse 

c-1 = u-1 L :...i_ (17) 

If the matrix is symmetric and Cholesky's decomposition method is applied, then 

L = ur, (18) 

so 
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c-1 = u-1 (u-1)7. (19) 

Triangular matrix inversion can be used to find the inverse of u. 

Procedure For Upper Matrix Decomposition 

The decomposition of matrix C requires that only the upper triangular portion of 

the matrix be input since it is symmetric. Cholesky's method can be represented as 

and 

i-1 

Cij - L"ki Utj 
k=l 

(20) · 

for i =t= j. 

The orthogonal array representation of this algorithm is shown in Figure 7. The 

orthogonal array functionally contains two types of PEs, diagonal and non-diagonal. 

The diagonal PEs are depicted by circles in Figure 7. These elements calculate and 

store the square root of the left input and pass the "" value to the top output when the 

first data is received. The diagonal PEs pass cm I uii to the PEs directly above it for the 

remaining cycles, where c;,. refers to the data input from the left. The non-diagonal 

PEs store the incoming uii value at the appropriate PE cycle. The following cycles are 

used to calculate c;,. - uu;,.. The results are passed to the right where they are used in 

the diagonal PEs to calculate the u;i values. The uii values are piped vertically through 

the array so that they can be stored in the appropriate PEs and retransmitted to the 

bottom of the array for the calculation of the inverse of the upper triangular matrix. 
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The upper triangularization time is n clocks. 

Procedure For Inversion Of Upper Matrix 

Exactly n clock cycles after the start of the upper decomposition, the inverse 

calculation of the triangular matrix U can commence. The triangular inverse algorithm 

can be represented as 

and 

1 
vii = - for i = j 

U;; 

j-1 

vii = - vii :~:Vikukj for i '¢ j. 
k=l 

(21) 

The orthogonal array representation of the upper triangular matrix inversion is shown 

in Figure 8. The PEs calculate and store the ratio ci"lum during the first PE cycle. The 

next cycles are used to calculate c;" - v;i um. The resulting inverse is output to the 

right. Thus, the v;i values are stored in the lower triangular PEs of the array. The 

total upper triangular inverse computation time is n clocks. 

The remaining step is to obtain the product of v and its transpose. Note that the 

matrix V is stored in the appropriate PEs during the calculation of V. Therefore, 

reloading is not necessary and only vT needs to be input. The procedure for inputting 

a matrix in a transposed order will be discussed in a later section. A total of n clocks 

are needed to complete the multiplication step. Therefore, the total inversion 

computation time is 3n clocks. The entire inversion procedure is depicted in Figure 9. 
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It should be noted that the inversion of a non-singular, non-symmetric matrix can 

be performed in 4n clocks. The non-symmetric case requires the calculation of the 

lower triangular matrix and its inverse. 

Example of Inversion Procedure 

Often the general equations used to represent an algorithm are difficult to 

understand. This general 4 x 4 matrix example should serve as an aid in understanding 

the matrix inversion procedure from a mathematical standpoint. 

Consider a matrix 

(22) 

Let R be symmetric as in the Kalman filter case so that rii = rii. The diagonal elements 

of the upper triangular matrix resulting from decomposition can be found from 

equation (20) to be 

U11=~, 

(23) 

and 

Similarly, the non-diagonal elements are 



and 

r13 
U13=-, 

U11 

U23 = 

U34 = 
r34 - U13U14 - U23U24 

U33 

32 

(24) 

The inverse, V, of the upper triangular matrix can be computed from equation (21). 

The resulting diagonal matrix elements are 

and 

The non-diagonal elements are 

1 
Vu=-, 

Uu 

1 
V22=-, 

U22 

1 
V33= -, 

U33 

(25) 



and 

V14 = - [V 11U14 + V 12U24 + V13U34]V 44, 

V23 = - V22U23V33, 

V24 = - [V22U24 + V23U34]V 44, 

V34 = - V33U34V44, 

The required inverse of matrix R is 

Matrix Transposition 

33 

(26) 

(27) 

Equations (11) through (15) contain four matrix transpositions including the one 

required for matrix inversion. None of these transposed matrices act as a loading 

matrix. However, the loading of a transposed matrix will be considered for 

completeness. 

Loading of a transposed matrix may be necessary for such operations as AT B . If 

it is assumed that data elements are input in the pipelined order shown in Figure 5, the 

simplest way to load the matrix transposed is to input the data from the left of the 

systolic array in a manner similar to the loading procedure. Thus, element a 11 would 

be stored in PE 11 , element a 21 would be stored in PE 12, and so on. This is not 

necessary if the memory controller reads data in a transposed order. However, it is not 

feasible to have a 2n port memory for n >2 since this would result in intensive decode 

circuitry. It will probably be necessary to have separate memory banks for rows or 

columns of data. The consideration of the external memory and associated controller 
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is beyond the scope of this paper. However, it will be assumed that n memory banks 

will be used to store matrix data. 

For an operation such as ABT, matrix A is loaded in the manner described by 

Figure 5. However, the B matrix must be input in a transposed manner. As before, if 

the memory controller can read matrix elements in a transposed order, this method is 

preferred. Without this memory capability, a transpose switch is necessary to swap bii 

and bii as they are input to the array. Note from Figure 6 that bii and bii are input 

during the same clock interval for all i and j. This makes the implementation of a 

transpose switch a fairly straightforward procedure. A diagram of a possible 

implementation of the switch is shown in Figure 10 for a 5 x 5 systolic array. 

Upon receipt of the first element of a n x n matrix to be input transposed, the 

counter of the transpose switch is reset and a transpose signal is sent for n clocks. 

During the first clock, element b 11 is input as usual. During the second clock, the 

counter is incremented, and the column one 5-to-1 multiplexer selects the column two 

data, and the column two 5-to-1 multiplexer selects the column one data. This process 

propagates for n clocks until the entire matrix is loaded. 

PE Control 

When a task is presented to a parallel processor, it must be separated into 

sub~sks that can be processed in parallel. This is the partitioning problem associated 

with systolic array control. This problem was solved in the previous sections when 
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arithmetic operations in the orthogonal array were described. Efficient partitioning 

extracts the maximum amount of parallelism from a problem with minimum system 

overhead. Often tradeoffs exist between these two goals. To achieve maximum 

parallelism, it might be necessary to divide a task in such a way that requires more 

setup time than a less than perfect parallel scheme. For example, any algorithm that 

causes a break in the systolic pipeline would produce inefficiency resulting from 

processor idle time. 

Once partitioned, it is necessary to divide subtasks among the various PEs. This 

is the scheduling problem and was accounted for in the previous sections. Finally, the 

individual PEs need to be synchronized with respect to one another. This control issue 

is often the most complex. The primary goal of synchronization is to have associated 

data and instructions at the input to a PE during the same clock interval. The 

synchronization scheme presented here is a data driven wavefront. The PE opcodes 

are propagated in a wave-like manner as shown in Figure 11. Opcodes are used to tell 

the individual PEs what function to perform. The general control structure shown in 

Figure 11 is used for all of the matrix operations. The first opcode corresponding to a 

particular operation is input to PE 11 • The opcode is registered there, used by that PE, 

and output to PE 12 and PE 21 during the next clock. Control propagation proceeds 

through the rest of the array in 2n - 1 clocks. Each PE receives n identical opcodes for 

each matrix operation. The numbers inside each PE of Figure 11 represent the clock 

delay associated with the receipt of the first opcode by that PE. 



37 

5 6 7 8 g 

4 5 6 7 8 

3 4 5 6 7 

2 3 4 5 6 

1 2 3 4 5 

Figure 11. Control Structures For Orthogonal Array Algorithms. 



38 

Note that the inversion and loading procedures require that each row of PEs be 

micro-programmed uniquely. Further, the upper triangularization method requires the 

diagonal elements to be programmed differently than the non-diagonal elements. 

Micro-programming each PE uniquely destroys the uniformity of the systolic array and 

makes the writing of microcode a function of n2
• However, it does provide significant 

performance improvements, and the programming burden can be administered to a 

compiler. 

Processing Element 

The processing element is the principle component of the systolic array. The PE 

must be functionally capable of implementing the algorithms necessary for the Kalman 

filter application. In addition, it must support the wavefront control outlined in the 

previous section. The PE of Condorodis meets most of the specifications for the 

Kalman filter implementation. The general PE to be described below is a modified 

version of the Condorodis PE. Differences will be noted. 

The required PE will employ the LNS to provide high speed arithmetic capability 

and a large dynamic range. The arithmetic capability will include addition, 

subtraction, multiplication, division, square, and square root of LNS numbers. In 

addition, the PE will be capable of routing internal and external data to adjacent PEs. 

An on chip writable control memory and controller will provide programmability. A 

block diagram of the PE to be used in the Kalman filter implementation is shown in 
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Figure 12. 

The LNS ALU 

The block diagram of the LNS ALU developed by Condorodis is depicted in 

Figure 13. Note that it is possible to perform operations such as AB + c and A + B 2 in 

one clock since the propagation delay through the adder-multiplier and adder-square 

paths is less than one clock period. 

LNS Arithmetic 

Numbers in LNS are represented as 

(28) 

where r = 2. In equation (28), e" is a 19-bit two's complement number with a 6-bit 

integer part and a 12-bit fractional part. The radix sign bit is Sn:. LNS numbers are 

represented in the word format shown below. 

19-bit exponent magnitude 
(two's complement) 

To represent x = o logarithmically, it is necessary to provide a zero flag with each data 

that is set for this special case (since log(O) = 00 ). 

The product of logarithmic numbers X and Y may be written as 

(29) 

where 
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Figure 12. Block Diagram of Processing Element 
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(30) 

Thus, the product of two logarithmic numbers simply requires the addition of the 

exponent values of the two numbers. 

Division is similar to multiplication m the LNS. The quotient of two LNS 

numbers is 

(31) 

where 

(32) 

Thus, the quotient of two logarithmic numbers is obtained by subtracting the exponent 

values of the numbers. 

The addition of two logarithmic numbers is not as straightforward as either 

multiplication or division. The sum of two LNS values can be expressed as 

S e S e 
Z = X + Y = (-1) n: r .r_ + (-1)" r 1 , (33) 

or 

Z = X + Y = (-l{r.r ,«.r(l + (-lf1 -Sr.r ,«, -e.r). (34) 

Taking the logarithm of both sides of equation (34) produces 

ez = e" + LOG2(l + / 1 -«.r). (35) 

However, to minimize memory requirements, ez is implemented as 

(36) 

where emax=max(ex,ey) and emin=min(ex,ey) (Condorodis 1987). The addition operation 

requires the table look-up of the argument of equation (36). 
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The logarithmic subtraction operation is similar to the addition operation as it also 

requires a table look-up in memory. The difference of two numbers x and y can be 

expressed as 

Z = X - Y = (-I{rx ,ex - (-IfY r\ 
or 

Z = X - Y = (-1/rx ,ex(l - (-IfY -Srx reY -ex) 

The resulting difference can be represented as 

e,. = ex + LOG 2(1 - re, - ex). 

Equation (39) is similar to equation (35) and can be restructured as 

- LOG (1 emin - emax) e,. - emax + 2 - r 

to reduce the memory requirements. Letting 

D = emax - emin 

(37) 

(38) 

(39) 

(40) 

(41) 

allows the equations for addition and subtraction to be represented as LOGz(l + 2n) and 

LOG 2(1 - iD), respectively. These two functions can be implemented in the PE by 

using a table look-up ROM with D as the address input. The ROM will consist of 

separate tables for the addition and subtraction functions shown above. Condorodis 

employed memory reduction techniques on the two functions to take advantage of 

approximately linear regions. This technique reduced the total memory requirements 

for the table look-up procedure from 9.5 Mbits to 154 Kbits. The memory 

requirements for the addition function are shown in Table 3 (Condorodis 1987). The 

memory requirements for the subtraction function are identical 
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TABLE 3 

MEMORY REQUIREMENTS FOR LOGARITHMIC ADDITION 

ROM ID D RANGE ADDRESS RANGE ROM SIZE TOTAL BITS 

1 0.0-0.5 0-2047 2K x 11 22 Kbits 
2 0.5-1.0 2048-3071 lK x 11 11 Kbits 
3 1.0-2.0 3072-5119 2K x 12 24 Kbits 
4 2.0-3.0 5120-6143 lK x 11 11 Kbits 
5 3.0-4.0 6144-6655 512 X 10 5 Kbits 
6 4.0-5.0 6656-6911 256 X 9 2.3 Kbits 
7 5.0-6.0 6912-7039 128 X 8 1 Kbits 
8 6.0-7.0 7040-7103 64 X 7 .45 Kbits 
9 7.0-8.0 7104-7135 32 X 6 .2 Kbits 
10 8.0-9.0 7136-7151 16 X 5 .08 Kbits 

The square and square root operations are necessary for the matrix inversion 

algorithm. In LNS the square function is simply a single bit left shift since 

LOG 2(x
2) = 2 LOG2(x). It may be expressed as 

(42) 

Similarly, the square root function is just a single bit right shift, and it may be 

expressed as 

e, = i:c > > 1 bit. (43) 



45 

ALU Functional Description 

The LNS ALU performs the six matrix operations described above on 20-bit LNS 

words. The multiplication and division operations are performed with an adder and a 

subtracter, respectively. The addition and subtraction functions are calculated with an 

on chip ROM and a special addressing scheme that performs a table look-up. The 

square and square root operations are performed with a zero fill left shifter and a sign 

extended right shifter, respectively. The ALU can accept up to five data inputs, one 

for the square/square root block, and two each for the multiplier/divider and 

adder/subtracter sections. Included with each data input is a zero flag. In addition, the 

ALU inputs a 3-bit instruction opcode. The ALU instruction opcode definition is 

shown in Table 4. 

TABLE 4 

OPCODE DEFINITION FOR ALU 

OPCODE OPERATION 

0xx divide 
x0x square root 
xx0 subtract 
lxx multiply 
xlx square 
xxl add 
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The output of the ALU is a 20-bit LNS number, a zero flag, and a system 

overflow flag. Overflow logic is used to handle the special case when the result of 

some arithmetic operation is larger than the system was designed to support. Under 

such a condition, the ALU outputs the largest representable number and sets the 

overflow flag to a logic one. 

Eight-to-one multiplexers are present at the inputs of the various ALU data paths. 

Each multiplexer is controlled with a 3-bit opcode which selects the source of data. 

The opcode definition of these multiplexers is shown in Table 5. Note one exception 

to Table 5. The multiplexer for the top output selects the bottom input when a zero 

opcode is received. This default allows data to be piped from bottom to top during no 

operation conditions. The left input is selected when the opcode is a one. This 

multiplexing scheme is different from that proposed by Condorodis. The previous PE 

TABLE 5 

OPCODE DEFINITION FOR INTERNAL DATA MULTIPLEXERS 

OPCODE 

000 
001 
010 
011 
100 
101 
110 
111 

SOURCE 

left input 
bottom input 
multiply/divide output 
square/square root output 
add/subtract output 
scratch pad output 
previous data input (hold) 
ground 
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design used bus switches to control data input to the ALU, scratch pad memory, and 

output ports. The old scheme would be difficult to implement since it would require 

eleven internal tristate busses. Generally, the tristating of data lines is slow. The new 

scheme makes microcode programming of the PE a simpler task since the data input to 

the ALU, scratch pad memory, and output ports is controlled by identical multiplexers. 

Microcode memory requirements are reduced since the new microcode width is 32 bits 

rather than 46 bits. 

Scratch Pad Memory 

In conjunction with the ALU, a scratch pad memory is provided to store internal 

data for more than one clock. This data can be an element of a loading matrix, an 

intermediate value of some operation, or a constant such as zero or one. The scratch 

pad memory is 8-words by 21-bits. Included with each word is the zero flag of the 

data. The scratch pad memory is controlled by a 3-bit microcode address and a 

microcode write enable signal. Data written to the memory is selected with an 8-to-1 

multiplexer which is identical to that described in the previous section. 

PE Control. Structure 

The internal control structure is a very important feature of the PE. It determines 

the functional power of the PE as well as its relative ease to program. It also helps to 

simplify the external control. The PEs make use of a microcontroller and a microcode 

RAM for government of the functions of the PE. 
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The PE Microcontroller 

The PE includes a lK-word by 31-bit microcode RAM to allow the programming 

of the PE for implementation in a systolic array. A microcode controller provides the 

capability to partition the microcode memory into four groups for the processing of 

different functions. The ability to partition the memory into control groups means that 

all PEs of a systolic array can be loaded with the same microcode, but various PEs can 

access different control groups within the memory. This feature is not used in the 

Kalman filter implementation. 

A start and end address associated with each of the four groups must be input to 

the PE. A counter is used to increment the address of the microcode RAM as the PE 

executes instructions. Comparators are used to keep the address between the start and 

end addresses. When the counter reaches the end address, it simply wraps back to the 

start address. Thus, recursive operations can be. repeated indefinitely. 

The instruction opcodes for the external PE control are defined in Table 6. The 

loading of the microcode memory can be accomplished by inputting the start and end 

address for counter one. Microwords from the left input port are written consecutively 

to locations within the range specified by the end and start address when the opcode is 

fifteen. The counter is incremented after each write. 



The Control Word 

TABLE 6 

OPCODE DEFINITION FOR PE CONTROL 

OPCODE 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

FUNCTION 
no operation 
run counter 1 microcode 
run counter 2 microcode 
run counter 3 microcode 
run counter 4 microcode 
load counter 1 start address 
load counter 2 start address 
load counter 3 start address 
load counter 4 start address 
load counter 1 end address 
load counter 2 end address 
load counter 3 end address 
load counter 4 end address 
pass data to right 
read from memory 
write to memory 
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The PE control word can be subdivided into an upper control word and a lower 

control word. Each control word is 16 bits. The upper control word is shown below. 

31 30 28 27 25 24 22 21 19 18 16 

UNUSED I ALU I MULT X I MULT y I SQUARE_X I ADD_X 

The bit range of each field is shown above it. The ALU field controls the ALU 

operations according to the definition of Table 4. The remaining fields act as a 3-bit 

select to the respective 8-to-1 multiplexer. 
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The lower control word is shown below. 

15 13 12 10 9 7 6 4 3 2 0 
ADD y I TOP I RIGHT I MEM I W/R I MEM ADDR 

The W /R signal is the write enable to the scratch pad memory. If it is set, data will be 

written to the location specified by MEM_ADDR. This address field is also used for 

reading data from the single port scratch pad memory. The remaining fields act as 3-

bit selects to the respective 8-to-1 multiplexer. 



CHAPTER ill, DESIGN ANALYSIS 

With the fundamental Kalman filter and systolic concepts well understood, it is 

now possible to examine the Kalman filter implementation in more detail. The 

architecture presented will be reconfigurable so that a minimum of hardware will 

perform all of the necessary operations and no "flushing" will be necessary to switch 

operational modes. In addition, the architecture will provide FIMD capability so the 

total power of parallel architectures will be realized. The performance and efficiency 

of the implementation will be measured to determine the success of this project. 

Control of Successive Operations 

The solution to the Kalman filter equations involves several steps. In order to 

perform these steps in succession with maximum efficiency, it is necessary to keep the 

pipeline as full as possible. There are essentially two types of operations needed to 

implement the Kalman filter, multiply and inverse operations. All procedures are 

identical in terms of control flow. The integration of multiply-multiply, multiply

inverse, inverse-multiply, and inverse-inverse. steps must be examined. 

Successive multiplication operations can be achieved easily in the pipelined 

systolic architecture. If two matrix products such as AB · and AC are desired, matrix A 

can· be loaded and matrices B and c can be input in_ succession. The first product will 

require 2n clocks as noted previously. However, the second product will only require 
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an additional n clocks to obtain since reloading of A is not required. 

Two unique products such as AB and CD can be obtained by !oading A, inputting 

B, loading C, and inputting D in succession. The total computation time is 4n clocks. 

All inverse operations require a matrix multiplication as a last step. Consequently, 

the integration of inverse and multiplication procedures can be viewed as successive 

multiplication steps. 

Order of Pipelined Operations 

The inverse, multiply, load, and transpose algorithms developed in the previous 

chapter can be combined in an orthogonal implementation which uses the LNS based 

PE. The order which the operations of equations (11) through (15) are performed is 

important. It is necessary to have intermediate values calculated and available when 

they are needed. For example, equation (14) should be calculated before equation (15) 

since the latter requires the result of the former. It would be desirable to have the data 

available at the output of the systolic array rather than in an internal node of the 

systolic array when it is time to input it for some other computation. The use of 

switches to route data from internal nodes is costly in terms of hardware and disrupts 

the data flow within the systolic pipeline. 

The recommended order of the Kalman operations is depicted in Table 7. The 

table shows the size of the matrices involved and breaks the inverse operation into 

subtasks. The start time of each operation is represented in terms of the general 
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TABLE 7 

KALMAN FILTER OPERATIONS VERSUS TIME 

START DATA 
OPERATION SIZE TIME AVAILABLE 

1. QGT (pxp)(pxn) 1 n +p + 1 
2a. b =PHT (nxn)(nxm) n + p + 1 3n + p + 1 
2h. ppT (nxn)(nxn) 2n+p+m+l 3n + p + m + 1 

3. R +Hb (mxn)(nxm) 3n + p + m + 1 4n + p + 2m + 1 

4. G(QGT) (nxp)(pxn) 3n + p + 3m + 1 Sn+ p + 3m + 1 

5. (R + Hb)-1 . (mxm) 

Sa. UPPER DECOMPOSITION. (mxm) Sn+ p + 3m + 1 Sn+ p + 4m + 1 

Sb. UPPER INVERSE (mxm) Sn+ p + 4m + 1 Sn+ p +Sm+ 1 

Sc. u-1(u-1)7 (mxm)(mxm) Sn+ p +Sm+ 1 6n + p +Sm+ 1 

6a. a =FK (nxn)(nxm) Sn+ p + 6m + 1 7n + p + 6m + 1 

6b. Fx (nxn )(nx 1) 6n + p + 1m + 1 1n + p + 1m + 1 

7. K = b(R + Hbr1 (nxm)(mxm) 6n + p + 1m + 2 8n + p + 1m + 2 

8. z -Hx (mxn)(nx 1) 1n + p + 8m + 2 8n + p + 9m + 2 

9a. F - aH (nxm)(mxn) 7n + p + 9m + 3 9n + p + 9m + 3 

9b. x = Fx + a (z - Hx) (nxm)(mx 1) 9n + p + 9m + 3 10n + p + 9m + 3 

10. P = GQGT + (F - aH)(PFT) (nxn)(nxn) 9n + p + 9m + 4 lln + p + 9m + 4 

Kalman matrix dimensions, m, n, and p where n ~ p ~ m. It corresponds to the time 

when the first element is input to PE 11 • The data available time corresponds to the first 

computational cycle when a resultant element is available at the output of the array. 

Table 7 reflects the operational order derived by Papadourakis and Taylor for the 

special case n = m = p (1986). Equations (6a) and (6b) of the table have been swapped 

with equation (7) to ensure that the inverse will be processed and output before the 

operation of equation (7). Multiplexer switches could be used here, but they are not 

necessary. 
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Note from Table 7 that b is available before it is needed for the R + Hb 

calculation. Similarly, QGr is available before the G(QGr) calculation commences, a 

is calculated before the F - aH calculation requires it, and F - aH is output prior to the 

calculation of P. 

The inversion is a special case. The calculation of R + Hb is completed well in 

advance of the start of the inverse operation. The upper decomposition and the inverse 

of the upper triangular matrix operations are each calculated in m computational units. 

However, data is available for each operation n computational units after it starts. If n 

is significantly greater than m, then much time will be spent waiting for the necessary 

data to start the upper triangular inverse calculation. For example, if n = 5 and m = 2, 

three computational units will be wasted. In order to avoid this problem, a switch 

should be included after PE,,.; for i from one to m. For the upper triangular 

decomposition, this switch should reroute data from the top of the left-most m 

processors of row m to the bottom of the array. For the upper triangular inversion, the 

switch should reroute data from the right of the lower m processors of column m to 

the bottom of the array. This will improve the computational throughput by 2(n - m) 

computational units. Although this switching breaks the systolic flow of the data, it 

can, in certain applications, produce a significant performance improvement. 
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Register Level Simulation 

A C simulation of the systolic array architecture was written to verify the 

algorithms and architecture proposed for performing the Kalman filter operations. This 

program was written at a register level and modelled the PE with a LNS based ALU. 

The simulation was somewhat crude in that it did not handle zero numbers, it did not 

propagate overflow flags, and it did not implement the transpose switch. 

It was assumed that a PE computational unit corresponded to one clock period. 

Further, it was assumed that n = 5, p = 3, and m = 2. The intent of the simulation was 

to model the PE to the 20-bit accuracy described in the previous section. With this 

model, the performance of the wavefront control structure could be tested along with 

the load, multiply, and inverse algorithms. Since the nature of the operations in Table 

7 are very repetitive, it is sufficient to simulate each case once. 

The most encompassing operation is the inverse operation (R + Hb r1
• This 

operation requires decomposing a matrix to an upper triangular form, inverting the 

upper triangular matrix, inputting a matrix transposed, and multiplying two matrices. 

Fortunately, a very simple example can be applied that will completely test the 

complex procedures associated with the orthogonal array. Let 

R + Hb = [1 ;]. (44) 

Note that this matrix is symmetric. This matrix is decomposed to an upper triangular 

matrix in 2 clocks. The result is 
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u = [b i]. (45) 

The upper triangular matrix is inverted in 2 clocks. Its inverse is 

V = [6 -j_2]. ( 46) 

Equations ( 45) and ( 46) can be verified with equations (23) through (26). Figure 14 

shows the data flow through the systolic array for equations (45) and (46). The 

inverse matrix is loaded in the array as a result of the previous operation. The 

transposed matrix input and the matrix multiplication starts immediately after the 

inverse matrix is output since processing is pipelined. The multiplication is complete 

after 2 clocks. The multiplication produces 

(47) 

which is the inverse of equation (44). The data flow for this step is depicted in Figure 

15. The upper decomposition procedure requires that each row of PEs be programmed 

uniquely. Furthermore, the upper triangular matrix inversion procedure requires that 

each column of PEs be programmed uniquely. Therefore, each PE must be 

programmed uniquely, depending upon its position in the array. 

The upper control word for PE 11 is shown below for the six clock intervals 

associated with the 2 x 2 inversion procedure. The control words for PE 12 are similar 

except the storage of v 12 occurs one clock later than for v 11 (relative to the first opcode 

received by the particular PE). Also, PE 11 is a diagonal element and requires slightly 

different arithmetic functionality for the upper decomposition operations. The control 

words for PE 21 are similar except the storage of u 12 occurs one clock later than for u 11. 
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31 30 28 27 25 24 22 21 19 18 16 
TIME UNUSED ALU MULT X MULT Y SQUARE X ADD X 

1 0 000 000 000 000 000 
2 0 000 000 101 000 000 
3 0 000 000 001 000 000 
4 0 100 101 001 000 000 
5 0 101 101 001 000 000 
6 0 101 101 001 000 000 

The lower control word is shown below for PE ll • 

15 13 12 10 9 7 6 4 3 2 0 
TIME ADDY TOP RIGHT MEM W/R MEM ADDR 

1 000 011 001 011 1 010 
2 000 010 001 000 0 010 
3 000 000 010 010 1 011 
4 010 000 100 000 0 011 
5 010 000 100 000 0 011 
6 010 000 100 000 0 011 

Performance Comparison 

The performance of the new Kalman filter implementation is compared to two 

previous designs in Table 8. This table is a modified version of one developed by 

Papadourakis and Taylor (1986). The first design uses algorithms developed by Liu 

and Young (1984). The second design was developed by Kung (1982). The 

comparison is not exactly apples to apples. However, letting n = p = m produces a 

total computational throughput of 21n + 3 for the new method. The comparison of the 

different approaches for various values of n is shown in Table 9. 
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TABLE 8 

KALMAN FILTER EXECUTION TIME COMPARISON 

OPERATION SIZE 
BAPST uu 

P.dPAnnTTR.d'f(I,<:; YOTTNr; 
KUNG 

1. QGT (pxp)(pxn) n +p 4n -2 4n -1 
2.a. PHT (nxn)(nxm) n+m 4n -2 4n -1 
2h. ppT (nxn)(nxn) n n 4n - 1 

3. R +Hb (mxn)(nxm) 2m 4n -2 5n -1 

4. G(QGT) (nxp )(pxn) 2n 4n -2 4n -1 

5. (R + Hb)-1 (mxm) 3m 32n - 16 36n - 8 

6a. FK (nxn)(nxm) n+m 4n -2 4n - 1 

6b. Fx (nxn)(nx 1) 1 1 4n -1 

7. b(R + Hbr1 (nxmXmxm) n+m 4n -2 4n -1 

8. z -Hx (mxn)(nx 1) m + 1 3n - 1 3n + 1 

9a. F - aH (nxm)(mxn) 2n 4n -2 5n - 1 

9b. Fx + a(z - Hx) (nxm)(mxl) 1 1 3n + 1 

10. GQGT + (F - aH)(PFT) (nxn)(nxn) 2n 4n -2 5n -1 

TOTAL 11n + 9m + p + 3 68n - 31 85n - 16 

TABLE 9 

COMPARISON OF KALMAN FILTER IMPLEMENTATIONS VERSUS N 

N 
BAPST uu 

KUNG 

3 66 173 239 
5 108 309 409 
10 213 649 834 
64 1347 4321 5424 
100 2103 6769 8484 

Clearly, the new implementation becomes everi more favorable as n increases. 

The time to execute the Kalman filter equations is about three to four times faster than 

either of the previous methods. 
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PE utilization is a measure of the average number of PEs used in a computational 

unit of time. For the Kalman filter implementation, the total number of PEs used for 

each operation is summarized in Table 10. As shown, the total number of PEs used 

for an n x n multiply is n2(n + I). Actually, n2 processors are used during the load and 

n3 are used for the actual multiply. Given the equations of Table 10, the PE utilization 

is 

4n 3 + 6n 2 + np 2 + p 2 + np + 3mn 2 + 2nm 2 + m2 + 4mn + 2m3 PEU = ______ ,.__ __ ...___________ (48) 
lln + 9m + p + 3 

The denominator, of course, is the total Kalman filter execution time defined in Table 

TABLE 10 

PE UTILIZATION OF KALMAN FILTER IMPLEMENTATION 

OPERATION SIZE TOTAL PEs USED 

1. QGT (pxp)(pxn) p 2(n + 1) 

2a. PHT (nxn)(nxm) n2(m + 1) 
2b. ppT (nxn)(nxn) n3 

3. R +Hb (mxn)(nxm) mn(m + 1) 

4. G(QGT) (nxp)(pxn) n(n 2 + p) 

5. (R + Hbf1 (mun) 

5a. UPPER DECOMPOSITION. (mun) m3 

5b. UPPER INVERSE (mun) m3 

5c. u-1(u-1)7 (mxm )(mun) m2(n + 1) 

6a. FK (nxn)(nxm) n2(m + 1) 

6b. Fx (nxn)(nx 1) n2 

7. b(R + Hb)-1 (nxm )(mun) nm(n + 1) 

8. z -Hx (mxn )(nx 1) n(n + m) 

9a. F -aH (nxm)(~) n(n 2 + m) 

9b. Fx + a(z -Hx) (nxm)(mx 1) n2 

10. GQGT + (F - aH)(PFT) (nxn)(nxn) n2(n + 1) 
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8. For n = m = p = 5, the PE utilization is 1825/108 = 16.9. Therefore, 16.9/25 = 67.6 

percent of the PEs are being used on the average. If n = 5, p = 3, and m = 2, the PE 

utilization is 969/79 = 12.3, so 49.1 percent of the PEs are used on the average. Clearly, 

the PE utilization will decrease as m and p differ from n . 

Other performance measurements are available for advanced parallel systems. 

The Optimum Processor Count (OPC) reflects the basic parallelism within the system. 

It is the number of PEs needed to handle a given array size. For the Kalman filter 

application, it is n 2• 

The speedup (SU) is defined as the ratio of serial time to parallel time. A matrix 

multiply requires n 3 serial multiply-accumulate type operations. Assuming that all 

fifteen basic Kalman operations are of this type and n = m = p , the speedup for the 

special Kalman filter implementation is 

For n = 5 the speedup is 14.6. 

12n 3 + 3n 2 

SU= 21n + 3 . (49) 

It was assumed that the serial type computer used for the preceding comparison 

employed an LNS ALU. A floating point ALU such as the AM29325 would require 

three computational units to perform one calculation since time is needed for 

normalizing and denormalizing data before arithmetic operations. Therefore, the 

speedup would be three times that mentioned above for a floating point ALU. 



CHAPTER IV, CONCLUSION 

An implementation of the recursive Kalman filter was obtained using a systolic 

architecture. A few instruction multiple data machine was used to perform the 

individual operations such as matrix multiplication and inversion. The parallel 

processor was reconfigurable which allowed all operations to be calculated in a strict 

pipeline fashion with one array of processing elements. The algorithms developed 

were general in terms of matrix operations and the Kalman filter array dimensions. 

The throughput of this new design exceeded previous implementations employing 

parallel processors by a factor of three to four depending on the Kalman dimensions. 

For n = 5, the new implementation is roughly 14 times faster than a LNS based serial 

processor implementation, and the processing element utilization is about 67 percent. 

A LNS based processing element was used to provide a machine with a capability 

for a large dynamic range. The resulting array, which was proven and verified with a 

C program, was completely designed. Details such as PE control were included in this 

paper. The result is not only general, but it is also fairly simple to understand and 

implement. The technically limiting factor will be in the physical implementation of 

the processing element. A small feature size ~SI process will be necessary if such a 

desigJ?- is to have a one clock computational time. Although the LNS ALU allows 

functions such as division and square root to be calculated easily and with minimum 

63 
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hardware, driving off one VLSI part and onto another has proven to be a speed critical 

problem at high frequencies. 

Alternate Architectures 

Other computer architectures could have been used to implement the Kalman 

filter, but it is not obvious that any could improve upon the performance obtained here. 

A serial computer would produce the most hardware efficient design, but it would 

suffer from obvious computational bandwidth problems. A vector processor would 

improve upon the serial computer's performance, but would still suffer from bandwidth 

limitations. An orthogonal architecture similar to the one developed here could use 

fixed point or floating point processing elements. Either of these approaches would 

have a difficult time performing the square root and division operations necessary for 

the inversion algorithm. To revert to the iterative inversion algorithm would result in 

reduced performance. 

Areas of Future Work 

A compiler is the next logical step for work in this area. To completely 

generalize this design, a compiler would be necessary to transform any given operation 

or set of operations into an efficient and logical series of pipelined systolic operations. 

Combined with this effort, the firmware of the general implementation should be 

written for the PEs and external control. 
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The handling of some special LNS conditions such as zero and overflow should 

be given more thought. Such items would involve more detail than was appropriate 

for this paper. However, zero data appears frequently and the handling of such data 

should be considered. 

The memory and interface structures should be considered in more detail. It was 

mentioned briefly that a four port random access memory could serve each column of 

PEs. This memory, which is certainly feasible in a register file implementation, should 

have two read and two write ports. This would allow it to input to a left side element 

and a bottom side element simultaneously. In addition, it could store data that is 

output from a top column element and a right row element simultaneously. The 

transpose switch could be used to "shuffle" the data as it is input to the array. 
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