Image Analysis and Segmentation Based on the Circular Pipeline Video Processor

Jon M. Albritton
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/rtd
University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

STARS Citation

Albritton, Jon M., "Image Analysis and Segmentation Based on the Circular Pipeline Video Processor" (1984). Retrospective Theses and Dissertations. 4680.
https://stars.library.ucf.edu/rtd/4680

BY
JON M. ALBRITTON, JR.
B.S.E., University of Central Florida, 1982

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering
in the Graduate Studies Program of the
College of Engineering
University of Central Florida
Orlando, Florida

Spring Term
1984

ABSTRACT

Visual inspection of printed circuit boards has generally depended on human inspectors. However, a system has been developed which allows for automated visual inspection using robotics and modern image processing techniques. This paper first introduces automatic visual inspection processes, overviews the Automatic Board Assembly, Inspection and Test (ABAIT) system, reviews image processing concepts and describes the Circular Pipeline Video Processor (CPVP). Image data from the CPVP is analyzed and an investigation into alternate segmentation algorithms to identify circuit board features is presented. The relative performance of these algorithms is compared and conclusions drawn.

I would like to express my sincere appreciation to those who have helped make my graduate studies and this paper possible.

First and foremost is Martin Marietta Orlando Aerospace. It was through the cooperation of Martin Marietta and the University of Central Florida College of Engineering that the Industrial Associates Graduate Work/Study Program was established and I was able to pursue a graduate degree on a full-time basis. In particular I wish to thank Bob Pettigrew who had faith in me from beginning to end, Stan Buchanan who as my supervisor graciously worked around my schedule, Andy Abercrombie and Scott Carruth, my tutors and co-workers, and especially Ed Soniat Dufossat who unselfishly bailed me out on more than one occasion. Walter Eggerton and Phil Bruce provided support as my functional managers.

I wish to express my gratitude to those at UCF who have earned my respect and made the graduate program a pleasure, difficult but still a pleasure. They are Dr. Madjid Belkerdid, Dr. Richard C. Harden, Dr. Fred 0. Simons and Dr. Robert Walker.

Special thanks go to Sharon Bronson who typed the manuscript with unwaivering perfectionism, proved to be an indispensable asset and always had a glass of "Pepsi" on hand.

I especially thank my mother. She has believed in me and supported me all of my life and I know she always will.

TABLE OF CONTENTS

LIST OF TABLES vi
LIST OF FIGURES vii
Chapter

1. AUTOMATED VISUAL INSPECTION 1
The Need for Automation 1
Current Inspection System Availability 2
Four Basic Inspection Processes 3
2. AUTOMATIC BOARD ASSEMBLY, INSPECTION AND TEST 7
A System Overview 7
The Visual Inspection Detail Station 7
Objectives of the Inspection Station 10
3. IMAGE PROCESSING CONCEPTS 12
Fundamentals of Image Processing 12
Image Enhancement 13
Segmentation 22
4. THE CIRCULAR PIPELINE VIDEO PROCESSOR 25
The System Hardware 25
The System Software 30
An Operational Illustration 30
5. IMAGE DATA ANALYSIS 34
Purpose of Investigation 34
Investigative Tools 35
Image Data Description 37
System Response 38
6. ALTERNATE SEGMENTATION TECHNIQUES FOR THE CPVP 50
Background Research of Threshold Techniques 50
Histogram Enhancement 52
Histogram Model 58
Threshold Selection 68
7. SUMMARY AND CONCLUSION 77
APPENDIX A - COMPUTER PROGRAM 79
APPENDIX B - THE LEAST-SQUARES CURVE FITTING ALGORITHM 98
APPENDIX C - COMPUTATION OF THE CORRELATION COEFFICIENT 102
LIST OF REFERENCES 104

LIST OF TABLES

1. Image Data Base 40
2. Edge Response 45
3. Pixel Uncertainty 46
4. Threshold Values 73

LIST OF FIGURES

1. Basic Approaches to Automated Visual Inspection 5
2. Visual Inspection Detail Station Layout 8
3. Visual Inspection Detail Station During System Integration 9
4. Cartesian Co-ordinate Convention 14
5. Discrete Image Contrast Enhancement 16
6. Gray Level Transformation Functions for Contrast Enhancement 16
7. A Histogram and its Probability Density Function Representation 18
8. Illustration of the Uniform Density Transformation Method 18
9. Several High Pass Masks 20
10. A Neighborhood Representation after Discrete Convolution with a 3×3 Mask 20
11. Several Lowpass Masks 20
12. The Circular Pipeline Video Processor 26
13. Functional Diagram of the CPVP 27
14. A Possible CPVP Operational Sequence 31
15. Image Transfer Path 36
16. Camera Settings for Image Captures 39
17. X-Edge Profiles 43
18. Y-Edge Profiles 44
19. Resolution Chart Edge Profile 47
20. Linear Scaled Histograms of Smoothed Images 54
21. Log Scaled Histograms of Smoothed Images 55
22. Average Smoothed Histograms for Window Sizes 1, 3, 5 and 7 56
23. Median Smoothed Histograms for Window Sizes 1, 3, 5 and 7 57
24. Multiple Histograms Averaged Together 59
25. Histogram Model Parameters 60
26. Comparison of Mean Correlation Coefficients for Various Order Polynomial Fits for Median Smoothed Histograms 66
27. Comparison of Mean Correlation Coefficients for Various Order Polynomial Fits for Average Smoothed Histograms 67
28. Comparison of a Histogram and its Model 69

CHAPTER 1

AUTOMATED VISUAL INSPECTION

The Need for Automation

In mass production facilities, product inspection is required to insure that the quality standards are being met. Furthermore, products manufactured for military and aerospace applications usually require a 100 percent inspection rate, both while under construction and in their completed state.

Visual inspection of products for the detection of both functional and cosmetic defects is one of the most difficult of the inspection processes. Past methods have usually relied on human inspectors to determine presence or absence of defects. Aids such as a magnifying lens and a video display system can increase efficiency. However, visual inspection is a repetitive, monotonous procedure and studies (Chin and Harlow 1982) show that the accuracy of human visual inspection declines with dull and routine jobs.

Automated visual inspection has justifiable advantages over human inspectors (Chin and Harlow 1982). As pointed out by Chin and Harlow, these advantages include:

1. freeing humans from the dull and routine;
2. saving human labor costs;
3. performing inspection in unfavorable environments;
4. reducing demand for highly skilled human inspectors;
5. analyzing statistics on test information and keeping records for manufacturing decisions; and
6. matching high-speed production with high-speed inspection. Despite the apparent advantages of automated visual inspection, it has not been aggresively implemented in most production facilities. A major drawback is the lack of general purpose, ready to deliver systems. Most of the present systems are either highly specialized, slow, bulky, expensive, or require large host computers.

Current Inspection System Availability
Simple electro-optical gauging equipment is available commercially (Chin and Harlow 1982). This equipment bases its pass/fail decision on simple measurement techniques operating on an object's boundaries. Simple edge detection circuitry is used on binary images to determine these boundary locations. General purpose visual inspection systems which are software based are also commercially available. The operation of these systems requires a training phase, in which a human operator must teach the system the features and allowable tolerances, and an inspection phase, when the system scans the product to be inspected comparing the measured features against the previously stored limits.

Advances in vision systems in 1983 made systems capable of identifying and processing shades of gray available. These new systems are based on a hardware/software combination. This is an attempt to decrease processing time, yet maintain some flexibility. Ford Motor Company is planning to use a vision system developed by Synthetic Vision Systems of Ann Arbor, Michigan to check electronic
circuits in automotive electronic control modules (Kaplan 1984). Control Automation Inc. of Princeton, N.J. has introduced a visual inspection system which is to be used to inspect printed circuit boards to verify that components are properly inserted (Kaplan 1984). Itran Corporation of Manchester, N.H. has developed an automated vision inspection system requiring minimal set up time and little knowledge of computer programming. After being programmed the system is capable of inspecting objects on a production line.

One of the most extensively inspected subassemblies of electronic equipment is the printed circuit board (PCB). Typical flaws consist of conductor-to-conductor spacing, shorts, opens, conductor width, hole size and hole placement. Furthermore, the artwork (photomask) used to produce the PCBs must also be inspected for similar flaws. Though human inspectors can easily locate obvious flaws, small flaws and tolerances in the 2 to 5 mil range are difficult to detect. Automated visual inspection is well suited for these instances.

Four Basic Inspection Processes

Four basic approaches to automated visual inspection of PCB's are image subtraction, feature matching, dimensional verification and the syntactic approach. Image subtraction is the most straightforward approach. The basic premise calls for an image of the area under inspection to be compared directly against a perfect image of that area which has previously been stored in a data base. The difference in the two images is analyzed for error information. Implementation schemes using video disc data storage and masked
illumination techniques (Chin and Harlow 1982) have been tried, but the basic problems remain. These problems are the requirement of an extremely large data base, precise PCB alignment, constant illumination and accurate scanners.

A second approach to PCB inspection is feature matching. Different features such as edges, land placement and holes are extracted and compared against the features extracted from a good PCB. Chin and Harlow (1982) used an interactive system to train an inspection system to look only for specific features on a PCB under test and compare against stored feature data. The requirement for the entire PCB image to be scanned or stored is eliminated, but the system still requires a large data base and is still a comparison based system.

For a more specialized type flaw, the expansion-contraction method can be used. In its operation, areas identified as lands are expanded (enlarged) in all directions. Small gaps become filled in. These same areas are then contracted to a state smaller than the original size. Small artifacts are thus eliminated. After expansion back to the original size, the image subtraction method is used to identify all gaps and artifacts.

Dimensional verification is straightforward and involves measuring land widths, hole widths, spacing, etc., directly. Problems arise in determining where to make measurements for any given PCB configuration. Large data bases and large processing times are drawbacks to this approach. These first three approaches are illustrated in figure 1.

MASTER IMAGE

(b)

(c)

Fig. 1. Basic approaches to automated visual inspection. (a) Image subtraction (b) The expansion-contraction method (c) Dimensional verification
(Chin and Harlow 1982; redrawn by author)

The syntactic approach uses prinitive patterns and structures (i.e. corners, lines, etc.) to describe the PCB. Once the PCB description is complete, the primitives of an area under inspection can be searched for known defects. Some studies have been made in this area (Chin and Harlow 1982), though computational requirements are still large and time consuming.

In summary, a 100 percent inspection rate is often required of today's manufactured products. The visual inspection of printed circuit boards is an area of growing importance and has generally relied on human inspectors. Several approaches have been developed for automated visual inspection processes and are especially suited for PCB inspection.

CHAPTER 2

AUTOMATIC BOARD ASSEMBLY, INSPECTION AND TEST

A System Overview

In an effort to maintain high quality standards and at the same time increase efficiency while decreasing cost, Martin Marietta Orlando Aerospace is developing a computer controlled printed circuit board assembly line termed the Automated Board Assembly, Inspection and Test (ABAIT) system. The system includes raw printed circuit board inspection, component insertion, wave solder and cleaning stations. The part of the system discussed in this report is the visual inspection detail station.

The Visual Inspection Detail Station
The visual inspection detail station consists of both the visual inspection processing equipment and the robot. The layout of the visual inspection station is illustrated in figure 2 and a picture of the station during development and integration is shown in figure 3.

Following the layout of figure 2, typical operation of the detail station is as follows:

1. PCB's to be inspected are placed on table A.
2. The PCB is placed on the feeder tray by the robot and the PCB's bar code is read.
3. The PCB is fed onto the $X-Y$ translation table.

Fig. 2. Visual inspection detail station layout

Fig. 3. Visual inspection detail station during system integration
4. The PCB is clamped to the table and the table is stepped through a predetermined sequence.
5. An image of a section of the PCB is obtained at each step by the overhead camera and processed by the image processing equipment.
6. When the inspection is completed, the robot places the PCB onto table B or C, depending on the inspection outcome.
7. Board flaws and their location are printed.
8. The next PCB, having been placed on the feeder tray, is loaded onto the $X-Y$ table and the procedure is repeated.

Objectives of the Inspection Station

The ultimate goal of the visual inspection station is to provide a 100% inspection of the artwork, inner layers of multi-layer PCB's and unpopulated PCB's being produced at the Ocala manufacturing facility. This goal will allow Martin Marietta to find manufacturing defects before they are integrated into major assemblies and thus improve overall product quality. Specific parameters to be inspected for are:

1. Conductor width (minimum)
2. Conductor spacing (minimum)
3. Annular rings
4. Broken conductors
5. Nicks
6. Pinholes
7. Hole sizes

Targeted success rates cali for a 95% detection rate of detecting actual defects and a maximum error rate of 10% for identifying a flaw when none is present. Furthermore, the system thru-put should be maximized while maintaining a minimum resolution of $0.001^{\prime \prime}$, the current industry standard. Eventually, the system is to reliably inspect up to 200,000 PCB's (or artwork) per year with a minimal amount of human intervention.

CHAPTER 3

IMAGE PROCESSING CONCEPTS

Fundamentals of Image Processing

"Picture processing or image processing is concerned with the manipulation and analysis of pictures by computer." (Rosenfeld and Kak 1982). The two main areas of application for image processing are the "...improvement of pictorial information for human interpretation and processing of scene data for autonomous machine perception." (Gonzales 1977). For all cases in this paper, an image is defined by a two-dimensional function $f(x, y)$, where x and y are spatial co-ordinates in the image plane, and the value of the function at any point (x, y) is a measure of the brightness of the image at that point. For monochromatic or black and white images the brightness values are termed gray levels.

Processing by computer requires digital data. Therefore, images must be digitized before they are of use. A digital image results when a sampling process is used to discretize the image in both spatial co-ordinates and brightness (Gonzales 1977). Samples in the spatial domain are usually taken at a regularly spaced array of points and the sample brightness is usually the image brightness quantized to a set of discrete equally spaced gray levels. A single element of the digitized image is called a pixel, an abbreviation for picture element.

Cartesian co-ordinates are a common choice for spatial representations. This convention is shown in figure 4a. Often the neighborhood of a particular pixel is specified, where a neighborhood is simply a predefined set of pixels in the vicinity of the pixel under scrutiny. A common convention for identifying the co-ordinates of a pixel and its eight closest neighbors follows the Cartesian convention and is shown in figure $4 b$. This is called a 3×3 neighborhood.

Operations on digital images, whether for enhancement or the extraction of information, fall into one of three main categories; point, local, or geometric operations. In point operations, the output gray level of a pixel depends only on the value of that pixel at the input and the operation performed. For local operations, the output level of a pixel depends only on the input levels of a neighborhood of that point. In geometric operations, the output level of a pixel depends only on the input level(s) of some other point(s) defined by a geometrical transformation (Rosenfeld and Kak 1982). Furthermore, these operations can be combined to meet processing requirements.

Image Enhancement

The improvement of pictorial information is known as image enhancement. Enhancement techniques seek to process an image so that the result is better suited for analysis. It differs from image restoration in that there is no concentrated effort to restore the image to its ideal state. Actually, there is no general standard for image enhancement because there is no general standard for the image quality required for beneficial analysis. The standard is

(a)

$$
\begin{array}{lll}
(x-1, y-1) & (x, y-1) & (x+1, y-1) \\
(x-1, y) & (x, y) & (x+1, y) \\
(x-1, y+1) & (x, y+1) & (x+1, y+1)
\end{array}
$$

(b)

Fig. 4. Cartesian co-ordinate convention. (a) Pixel identification (b) Co-ordinates of a 3×3 neighborhood of the pixel at (x, y)
highly dependent on the particular application. Furthermore, the definition of image enhancement stops short of information extraction (Pratt 1978).

The three common areas of image enhancement are gray scale modification, sharpening, and smoothing. Gray scale modifications can be made directly through contrast manipulations or indirectly through histogram modifications and a subsequent gray level transformation. The direct method is straightforward and can simply consist of multiplying each gray level by the same constant. Alternatively, consider an image quantized to J levels, where J is the integer denoting the maximum number of gray levels, but whose range is a subset of J. Restricting the output to J levels and using a linear mapping scheme, the image range can be enhanced as shown in figure 5 . This method assumes non-uniform spacing side-effects are acceptable.

A non-linear enhancement known as contrast stretching is presented by Gonzalez (1977). Let r denote any gray level in the original image and s denote the corresponding transformed gray level in the enhanced image given by the transformation $s=T(r)$. If $T(r)$ has the form of figure 6 a , the resultant image tends to have a higher contrast. Levels below m are compressed and darkened and levels above m are expanded and lightened. In the limiting case, see figure 6 b , a binary image results.

An indirect method of contrast enhancement is through the gray level histogram. The gray level histogram is a function showing, for each gray level, the number of pixels in the image that have that gray level (Castleman 1979). Normalizing the histogram by

Fig. 5. Discrete image contrast enhancement (Pratt 1978; redrawn by author)

Fig. 6. Gray level transformation functions for contrast enhancement (Gonzalez 1977; redrawn by author)
dividing by the area of the image yielcs the probability density function (pdf) of the image. The histogram of an image is unique but the converse is not true since the histogram contains no spatial information on the pixels. A sample histogram is shown in figure 7.

In contrast enhancement through histogram modification techniques, the original image is rescaled so that the histogram of the resultant image follows some predetermined form. Enhanced images possessing exponential, hyperbolic, Rayleigh and uniform shaped histograms have been studied (Pratt 1978). The most common of these is the uniform shape resulting from histogram equalization. The equalization process can be considered to be a point transformation $s=T(r)$ such that the output is uniform over some range. An illustration of this principle is shown in figure 8.

Images with accented edges are often more visually pleasing than the original image. Sharpening or edge crispening is used to accentuate edges. Techniques for edge enhancement include passing the image through a high-frequency bandpass filter, unsharp masking (Pratt 1978), and direct convolutional filtering. The bandpass filter is normally implemented using Fourier transforms. The unsharp masking is a method which requires an image to be scanned at normal resolution and then at a lower resolution. The two images are combined in a way that gives sharper edges with slight overshoot and undershoot. Discrete convolutional filtering employs the use of a convolutional array or convolutional mask. In general, an output MxM image array Q is formed by discrete convolution of the input

Fig. 7. A histogram and its probability density function representation

(a)

(b)

(c)

Fig. 8. Illustration of the uniform density transformation method. (a) Original probability, density function (b) Transformation function (c) Resulting uniform density
(Gonzalez 1977; redrawn by author)
$\mathrm{N} \times \mathrm{N}$ image array F with the LxL convolutional array H according to the relation

$$
Q\left(m_{1}, m_{2}\right)=\sum_{n_{1}=1}^{N-2} \sum_{n_{2}=1}^{N-2} F\left(n_{1}, n_{2}\right) H\left(m_{1}-n_{1}+1, m_{2}-n_{2}+1\right) .
$$

Some typical high-pass masks are shown in figure 9.
Image smoothing is the term used to refer to an operation used to reduce the noise in digital images. The approach can be either classical in nature or via "spatial ad hoc processing techniques" (Pratt 1978). Classical techniques normally imply a two-dimensional lowpass filter. A transfer function is derived to meet frequency specifications and implemented through either Fourier transforms or difference equations. The Circular Pipeline Video Processor performs most efficiently using spatial filtering techniques due to its specialized architecture. The rest of this section presents several spatial smoothing techniques.

Neighborhood averaging is the simplest case of smoothing. Given an $N \times N$ image, a smoothed image is generated by replacing the center pixel of each neighborhood with the average gray level value of that neighborhood. For a 3×3 neighborhood centered at co-ordinates (x, y) with value $f(x, y)$, the new gray level becomes

$$
\begin{aligned}
g(x, y)= & \frac{1}{8}[f(x-1, y-1)+f(x, y-1)+f(x+1, y-1)+f(x-1, y) \\
& +f(x+1, y)+f(x-1, y+1)+f(x, y+1)+f(x+1, y+1)] .
\end{aligned}
$$

Variations on this scheme include different neighborhoods, including the pixel itself in the average and requiring that the neighborhood

$$
\left[\begin{array}{rrr}
-1 & -1 & -1 \\
-1 & 9 & -1 \\
-1 & -1 & -1
\end{array}\right] \quad\left[\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0
\end{array}\right] \quad\left[\begin{array}{rrr}
1 & -2 & 1 \\
-2 & 5 & -2 \\
1 & -2 & 1
\end{array}\right]
$$

Fig. 9. Several high pass masks

	O_{1}	o_{2}	o_{3}	
	O_{8}	\times	O_{4}	
	O_{7}	O_{6}	O_{5}	

Fig. 10. A neighborhood representation after discrete convolution with a 3×3 mask
(Pratt 1978; redrawn by author)
$\frac{1}{8}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right] \quad \frac{1}{9}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] \quad \frac{1}{10}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1\end{array}\right] \quad \frac{1}{16}\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1\end{array}\right]$

Fig. 11. Several lowpass masks
average ànd pixel value differ by some minimum threshold before replacing the pixel.

Convolutional masks may also be used for lowpass spatial filtering. Following discrete convolution with a 3×3 mask, a neighborhood of the resulting image is shown in figure 10 , where $0_{i}, i=1,2 \ldots 8$, represents the outputs of the convolution and X is the pixel under test. The operation is now similar to that of averaging a neighborhood. Several lowpass form convolutional masks are shown in figure 11.

Averaging of multiple images is another smoothing technique given it is possible to obtain multiple images of the same scene. If a noisy image is denoted as

$$
g(x, y)=f(x, y)=f(x, y)+n(x, y)
$$

where $f(x, y)$ is the original image and $n(x, y)$ is a noise component which is assumed to be uncorrelated with zero mean, then an image $g(x, y)$ is formed by averaging M different noisy images

$$
g(x, y)=\frac{1}{M} \sum_{i=1}^{M} g_{i}(x, y)
$$

Papoulis (1965), Castleman (1979), and Gonzales (1977) all show that as the number of images increases the resultant image $g(x, y)$ more closely resembles the original image $f(x, y)$. Expressing this mathematically

$$
E\{\bar{g}(x, y)\} \rightarrow f(x, y) \quad \text { and } \quad \sigma_{\bar{g}}^{2}(x, y) \rightarrow \frac{1}{M} \sigma_{n}^{2}(x, y)
$$

as $M \rightarrow \infty$.

As M increases, the variability of each pixel decreases and the signal to noise ratio increases by a factor equal to the square root of the number of images averaged. Practical constraints involve the ability to maintain precise image alignment and the inaccuracy evolving from recursive averaging.

The median filter is a non-linear signal processing technique that is especially useful for noise suppression in images. In the one dimensional case, the median filter consists of a sliding window covering an odd number of pixels. The center pixel is replaced with the median value of the window. The median value is defined as that value for which $(N-1) / 2$ pixels are smaller or equal and $(N-1) / 2$ pixels are larger or equal. The median filter is an edge preserving filter. Steps and ramps are left undisturbed while noise is suppressed. The median filter is extended to two dimensions by extending the window to cover a neighborhood of pixels. The center pixel is then replaced by the median value. As pointed out by Pratt (1978), the median filter is much more effective in reducing high frequency noise than smoothly generated noise. He cautions that the median filter is an ad hoc tool whose performance should be monitored to determine its usefulness.

Segmentation

Given an image, image analysis must be performed to extract a meaningful description of the image contents for further processing. A meaningful description, of course, is a function of the information required from the image. Segmentation is the term applied to the procedure for dividing the image contents into
separate regions. Numerous segmentation methods are available. The choice is dependent on factors such as accuracy required, speed and hardware restrictions. The segmentation evaluation criteria is clearly a function of the usefulness of the segmented image.

Segmentation classifies individual pixels into classes or states. Classification methods may depend on an individual pixel's gray level, local properties or global characteristics. The simplest segmentation scheme uses only an individual pixel's brightness for classification. Given a fixed brightness level, all pixels brighter than this level are grouped in one class and all the rest are grouped in another class. This is the same concept presented in the limiting histogram equalization example of figure 6. The method can easily be expanded by adding information from the entire scene or from local neighborhoods to dynamically adjust the threshold gray level.

For images composed of relatively few kinds of regions, the gray level histogram is likely to contain concentrated areas of pixel populations. A simple segmentation approach for this type of image is to select gray level thresholds which separate these populated regions into separate groups and classify each pixel according to the group to which it belongs. This is termed amplitude segmentation.

Extending amplitude segmentation to include images with spectral information leads to a spectral classification technique. Spectral classification uses a clustering or grouping technique to identify similar regions by their color. The color of the pixel defines a point in (red, green and blue) space and pixels in close proximity
are grouped together.
Local properties provide numerous features to use as segmentation criteria. Edges, lines and spots can be detected by local operators and used to segment images. The busyness of a pixel based on its neighborhood can help separate regions of different texture. The average neighborhood gray level is a basic local property.

Spatial classification utilizes several local properties to provide a more powerful approach. For example, a property or characteristic of a pixel or its neighborhood such as gray level is compared against the average gray level of a set of neighborhoods to determine the degree of similarity. A pixel is thus classified based on a spatially related set of pixels and neighborhoods.

Combinations of the above methods are often used. Local properties can be used to assign an edge value to a pixel based on the strength of the edge. Amplitude segmentation is then used to identify only those pixels with an edge value greater than a minimum threshold as true edges.

The CPVP classifies pixels into states using amplitude segmentation. The threshold(s) is dynamically adjusted using scene information contained in the global histogram of the image. Although the implementation of such a scheme is relatively straightforward, the scheme is not ideal. As will be demonstrated later, a greater emphasis must be placed on prior knowledge of scene content and image enhancement for the approach to be successful.

CHAPTER 4

THE CIRCULAR PIPELINE VIDEO PROCESSOR

The System Hardware

The image processing required by the visual inspection process is performed by the Circular Pipeline Video Processor (CPVP). The CPVP is shown in figure 12 and a block diagram highlighting its internal functions as well as certain external support functions is shown in figure 13. It is not the purpose of this paper to provide a detailed description of the CPVP hardware and software. However, to appreciate the data analysis performed, analysis tools required and the direction taken in investigating alternate segmenting routines, a basic understanding of the CPVP and its support equipment is necessary.

Using figure 13 as a guide, the following list briefly describes the CPVP system.

1. Host Computer - The host computer is a Hewlett Packard HP9836 and is responsible for executive control of the entire visual inspection station. Control is exercised over the HP Interface Bus.
2. Mass Storage - Mass storage is supplied by an HP7908 hard disc and is responsible for storing all programs, algorithms, and data bases required by the inspection process.

Fig. 12. The Circular Pipeline Video Processor

Fig. 13. Functional diagram of the CPVP
3. Printer - The HP2671 printer provides a hard copy listing of flaw type and flaw location for each PCB inspected.
4. Z8000 Controller - The CPVP controller is an Advanced Micro AM96/4116A MonoBoard Computer. It is a $Z 8002$ based single board computer including both serial and parallel ports and a vectored interrupt structure. It is responsible for executing all algorithms and commands within the CPVP itself.
5. Interface - The interface provides an HPIB port for the Z8000 controller.
6. Video Sensors - The video sensors are four Fairchild CCD3100 solid-state black and white television cameras. The sensor device is a 488×380 element buried-channel charge-coupled-device.
7. Video Mux - The video mux selects one of four video lines for input to the CPVP while distributing sync signals to all four cameras.
8. Video Digitizer - The video digitizer is based on the TRW1007 A/D converter and converts the raster scan video to 8 bit standard TTL levels.
9. Sidecar Memory - Sidecar memory is a utility memory capable of holding one line of video information. It provides an interface between the frame storage memories and the $Z 8000$ controller.
10. Histogram - The histogram hardware computes and stores the global histogram of an image as it enters the main memory.
11. Memory Controller - The memory controller controls all high speed data transfers into or out of any of the memories.
12. Main Memory - The main memory is capable of storing two 8 bit images and serves as the working memory for most processes.
13. Auxiliary Memory - Auxiliary memory is used for off line storage and can hold four complete images.
14. PVP Programmer - The pipeline video processor programmer controls real time data acquisition and high speed pipe operations.
15. ALU - The arithmetic logic unit permits algebraic manipulation of an image or between two images.
16. Convolver - The convolver allows discrete convolution of the image with a 3×3 mask.
17. ITT - The image transform table performs a mapping function. Pixel values may be mapped to new values or it may be used to create a pseudo-color output.
18. Monitor Interface - The monitor interface provides sync signals and D/A conversion for displaying the contents of main memory.
19. Monitor - The monitor is an RGB color monitor capable of accepting external sync signals.
20. Cellular Array Processor - The cellular array processor (CAP) performs operations on a pixel based on its own state and/or the state of a set of its neighbors.

With the basic functional blocks of the CPVP explained, the overall operation of the system can be illustrated. The term circular pipeline video processor is indicative of the image processing hardware architecture. As seen in figure 14 , the data can be envisioned as leaving main memory, traveling through a pipe of processing operations and returning to main memory. This type of architecture permits multiple operations to occur with each pass through the pipe, thus reducing processing time.

The System Software

Software associated with the CPVP is concentrated in three main areas; HP Basic, CAPS Macros, and Z8000 assembly language. HP Basic is used by the HP9836 host computer to control the visual inspection station. Commands are issued and responses interpreted using Basic programs.

CAPS Macros are the algorithms developed by the Martin Marietta Image Processing Lab for flaw detection on PCB's. CAPS is discussed in greater detail in the data analysis section.

Z8000 Assembly language is used for internal CPVP operations. Most debug and test routines are written in assembly code. CAPS Macros are also reduced to assembly code for implementation.

An Operational Illustration

In order to tie the hardware and software together, a sample processing sequence is illustrated in figure 14 and described below:

Fig. 14. A possible CPVP operational sequence

Initialization:

1. An image of a PCB is captured and stored in one half of main memory.
2. The same scene is again captured and stored in the other half of main memory.

First Pass:

1. These two images (image A and image B) are averaged together pixel by pixel in the ALU.
2. The resulting image is smoothed via neighborhood averaging in the convolver.
3. The ITT and CAP stages perform no operation.
4. A global histogram is computed as the image returns to memory.

Second Pass:

1. The image passes through the ALU and convolver unaffected.
2. Based on the global histogram, a threshold value is determined and the ITT maps the gray levels into two states corresponding to land and background.
3. The CAP stages perform a non-destructive (no land is obliterated) uniform shrink on all lands. Assuming a ten pixel minimum land width, any land reduced to a two pixel width in less than four shrinks is too thin and tagged accordingly. Note that one shrink removes one pixel from each side of the land.
4. Sections of the image which have been tagged as containing flaws are reported to the host computer. Flaw descriptions are printed and the process is ready to repeat with a new image.

CHAPTER 5

IMAGE DATA ANALYSIS

Purpose of Investigation

The principles and feasibility of the automated visual inspection station, including the CPVP, have been proven in numerous demonstrations. However, there has been concern over the accuracy of the current segmentation algorithms. All flaw detection schemes in the CPVP operate on images segmented into two or three states as compared to the unsegmented 256 states. Obviously, the ability of the CPVP to correctly identify PCB features to a high degree of accuracy is of paramount importance if the flaw detection algorithms are to yield reasonable results.

In the early development of smoothing, segmentation, and flaw detection algorithms, simulated image data was used. Since that time the CPVP hardware has become operational and the final camera configuration and lighting conditions established. Printed circuit boards from the Ocala manufacturing facility have been obtained and used as demonstration boards. The flaw detection success rate has not been 100 percent with these boards. In addition to other reasons, inconsistent and inaccurate segmentation is viewed as a possible cause for the degraded operation. The rest of this paper contains an analysis of the CPVP using actual image data and investigates alternate segmentation techniques. The purpose of this analysis and investigation is to provide a basis for improving the
accuracy and reliability of the visual inspection process.

Investigative Tools

The first requirement for analyzing image data was to develop the capability to collect the image data and transport it to an image processing facility. Subsequent analysis could then take advantage of current on-site systems. Investigative tools were developed in HP Basic, Z8000 assembly code, Fortran and CAPS. DEC control language routines were also invoked. The following list details the software required for the image transfer:

1. Assembly code to present quarter-line segments of the CPVP main memory to an HPIB accessible I/O buffer.
2. Assembly code to transfer $Z 8002$ RAM contents to the HPIB interface.
3. HP Basic to read Z8002 ROM (or ZSCAN emulator RAM) as ASCII data.
4. HP Basic to interrogate the CPVP for image data and store this data on an IPL formatted floppy disc.
5. DCL to transfer an image from an IPL formatted disc to an image plane in the DeAnza Array Processor.

This software development was a significant task and involved the efforts of a group of engineers working separately and collectively. The image transfer path is shown in figure 15.

The purpose of the image transfer to the CAPS system was to use its capabilities to evaluate image data. The CAPS system includes the CAPS language, a minicomputer to decode CAPS instructions and an array processor to execute the instructions. Features

Fig. 15. Image transfer path
of the system include:

1. PDP $11 / 34$ software which sets the various registers, transformation tables, etc. of the DeAnza array processor to operate on two 512×512 pixel images in $1 / 30$ second.
2. Four unique 512×512 pixel images accessible for image array processing.
3. Fast image plane to image plane transfer ($1 / 30$ second).
4. Fast image transfer between the DeAnza array processor and either magnetic tape or disc via PDP 11/34 buffering.
5. Image scroll and zoom capability.
6. Display cursor control in both movement and size manually available at joystick console.

Image Data Description

The CPVP image data collected for analysis was obtained during the final days of the visual inspection detail station integration. This section describes the sample images and the conditions under which they were made.

The procedure for obtaining an image used the following steps:

1. A sample PCB was manually loaded onto the $X-Y$ table.
2. The restraining system (clamps and vacuum) were activated.
3. The $X-Y$ table was manually positioned.
4. A frame capture command was issued to the CPVP.
5. The captured image was transferred to the CAPS system as outlined previously.

System lighting included a combination of circular and linear fluorescent lights. The luminance was not measured, but uncontrolled
external sources such as room lighting and light from a large window provided minimal illumination as compared to the direct lighting.

Camera system \#2 was used for all image captures. Associated camera settings are provided by figure 16.

Twenty sample images were transferred from the CPVP to the CAPS system and are listed in Table 1. A few floppy discs contained several bad sectors of 128 bytes each resulting in invalid image data. For the images transferred on discs containing bad sectors, a linear interpolation scheme was used to replace invalid pixels with the average value of their upper and lower neighbors. Official background material for artwork had not been established. Two sheets of HP thermal paper provided a suitable background while providing a basis for future repeatability. Images 16 through 20 were captured in immediate succession without disabling the restraining system or repositioning the $X-Y$ table. However, an additional terminating load was apparently placed on the camera during the capture of image 19. The result was a uniform decrease in intensity below the level of images 16 through 18 and 20. These repetitive captures provided a basis for implementing multiple image and histogram averaging techniques. This report deals predominately with inner layers, though the concepts and results can be extended to cover outer layers and artwork.

System Response

In order to study segmentation using the CPVP, it was necessary to know how the system "sees" the PCB under test. In effect, this is the system response. The system in this sense includes the

Fig. 16. Camera settings for image captures

TABLE 1
IMAGE DATA BASE

Image Number	Description	Comments
1	Inner layer	
2	Inner layer	
3	Inner layer	
4	Inner layer	
5	Inner layer	
6	Inner layer	Three interpolated $1 / 4$ line segments
7	Outer layer	Reflowed solder
8	Outer later	Not reflowed
9	Outer layer	Not reflowed
10	Outer layer	Not reflowed
11	Artwork	
12	Artwork	Three interpolated $1 / 4$ line segments
13	Artwork	
14	Artwork	
15	Resolution chart	
16	Inner layer	16 through 20 are different captures
17	Inner layer	of the same image.
18	Inner layer	
19	Inner layer	
20	Inner layer	
21	Inner layer	
22	Inner layer	Multiple image average of $16,17,18$.
23	Inner layer	Multiple image average of $16,17,18$ and 20.

complete image path from the surface of the PCB, through the optics, the camera, the video preprocessor, the digitizer and into the CPVP memory. Although each section of this pathway has its own response, affected by shadows, CCD blooming and antialiasing filters, the primary concern was to determine total system effects and to draw some correlation between the actual PCB and the PCB as seen by the CPVP.

The approach chosen to model the system response was to model the response in the X and Y directions independently as two first order responses. Although an image normally has a high degree of correlation between the horizontal and vertical directions, there are valid reasons for the independently modeled approach.

The CCD sensor is inherently a two-dimensional system since all cells are illuminated simultaneously. The output video signal, however, is in a raster scan format resulting in a one-dimensional time varying signal. This signal is subsequently subjected to filtering and processing in the one dimensional domain before being stored in memory. Also, PCB fault finding algorithms perform many operations in the X and Y directions independently, especially dimensional checks. Since accurate segmentation is critical for dimensional checks, the effects of segmentation based on system response in the X and Y directions is important.

Edge plots in the X and Y direction were constructed from sample edge regions of images $16,17,18$ and 20. Using the CAPS system, pixel values from corresponding regions of each image were obtained. The average pixel value for a given co-ordinate was then computed and plotted. Edge plots based on the original stored image data
are shown in figures $17 a$ and 18a. Treating the transition from background to land and vice versa as step inputs to the system, the rise and fall times and associated bandwidths based on first-order models representing the system response in the X and Y direction are listed in Table 2.

An immediate result of the edge plots and models is the ability to determine the pixel resolvability. Based on the rise and fall times of the edge plots (or the frequency response of the first-order model) there is an amount of pixel classification uncertainty. Assuming that a pixel must be less than or equal to the average background level to be classified as background and greater than or equal to the average land level to be classified as a land, then there are regions of classification uncertainty. The number of uncertain pixels corresponding to this classification strategy for figures 17 and 18 are listed in Table 3.

The uncertainty problem is compounded by smoothing techniques employed by the CPVP. Smoothing is necessary to reduce noise and sensor anomalies. But, the most easily implemented approach of neighborhood smoothing is also very costly in terms of system response and resolvability. To illustrate this, images $16,17,18$ and 20 were subjected to the left-most lowpass convolutional mask of figure 11. The same edge regions were then examined as for the original images and the edge plots constructed. These edge plots and the corresponding system parameters are shown in figures 17 b and 18 b and Table 2. The number of uncertain pixels has increased as shown in Table 3.

Fig. 17. X-edge profiles. (a) Original image (b) Average smoothed image (c) Median smoothed image

(a)

(b)

(c)

Fig. 18. Y-edge profiles. (a) Original image (b) Average smooth image (c) Median smoothed image

TABLE 2
EDGE RESPONSE

		X Edge	Y Edge
Original Image	Rise Time Bandwidth Fall Time Bandwidth	$\begin{aligned} & 575 \mathrm{~ns} \\ & 609 \mathrm{KHz} \end{aligned}$ 575 ns 609 KHz	$\begin{gathered} 445 \mathrm{~ns} \\ 787 \mathrm{KHz} \\ 334 \mathrm{~ns} \\ 1050 \mathrm{KHz} \end{gathered}$
Average Smoothed Image	Rise Time Bandwidth Fall Time Bandwidth	741 ns 472 KHz 695 ns 504 KHz	649 ns 540 KHz 463 ns 755 KHz
Median Smoothed Image	Rise Time Bandwidth Fall Time Bandwidth	574 ns 609 KHz 574 ns 609 KHz	463 ns 755 KHz 426 ns 821 KHz

TABLE 3

PIXEL UNCERTAINTY

	Number of Uncertain Pixels		
Original Image	Rising Edge	Ydge	Y Edge
Average Smoothed Image	Rising Edge	3	3
Median Smoothed Image	Falling Edge	3	2

Fig. 19. Resolution chart edge profile

Although not readily implemented via the CPVP hardware, the effects of a median filter were also studied and illustrated in the same manner as the previous two cases. Note the edge preserving quality of the median filter.

Additionally, a USAF \#1951 target was used as a resolution chart. An unsmoothed X-edge profile was taken using this chart and is shown in figure 19. The edge profile characterizes a 0.0005 millimeter wide bar on a clear film. Background material was the normal white paper. The bar width of 16.5 pixels was determined by using thresholds equal to 10% and 90% of the difference between the average bar (object) gray level and the average background gray level for the leading and trailing edges respectively. The 16.5 pixel width corresponds to 0.303 millimeters per pixel or 0.0012 inches per pixel. This spatial relationship between pixel count and object size, along with the pixel uncertainty discussed earlier, can be used to aid in choosing an acceptable threshold at which to segment the image.

An obvious selection scheme is to choose a threshold such that the segmented land has the same dimensions as the true land. This implies that a single threshold cannot be placed at either the average object or the average background level. These schemes would place the threshold in a noisy region, particularly near the background level. Also, experience has shown that PCB backgrounds posess a degree of non-uniformity. Background levels vary with respect to their location on the PCB.

The threshold must be selected to segment the image in the uncertain area to avoid serious noise problems. Furthermore, the level chosen is a function of the system response, the smoothing technique employed and the pixel values present. In order to properly segment the image to the degree of accuracy desired, a consistent segmentation method must be used and the true dimensions determined using prior established knowledge of the system response. The next chapter looks at several approaches for choosing a threshold for subsequent segmentation.

CHAPTER 6

ALTERNATE SEGMENTATION TECHNIQUES FOR THE CPVP

Background Research of Threshold Techniques

This section describes various threshold selection techniques as presented in recent publications and used in industry with varying degrees of success. Most of the techniques presented will be limited to dealing with images comprised of two types of regions, background and object, or background and land in the PCB case.

For the general case, a threshold operator can be viewed as a test involving a function T of the form

$$
T(x, y, N(x, y), g(x, y))
$$

where $g(x, g)$ is the gray level of the pixel at coordinate (x, y), $N(x, y)$ involves a local property at (x, y) and x and y are position dependent variables. Each point (x, y) is tested and if $g(x, y) \geq$ $T(x, y, N(x, y), g(x, y))$ then (x, y) is classified as an object point. Otherwise, it is a background point (Weszka 1977).

One of the earliest techniques for thresholding was the standard histogram method. This technique called for the threshold to be placed at the minimum between the peaks of the histogram. Drawbacks include long flat valleys making threshold selection difficult and the exclusion of edge information in the decision process. Weszka (1977) points out that Doyle has suggested that a "p-tile" method can enhance the standard histogram method providing the objects occupy a known percentage of the image. This scheme selects a
threshold which causes at least $q \%$ of gray levels to map into the object, where q is a predetermined percentage. According to Weszka (1977), others have suggested an alternate approach for making the standard method more useful. Basically, they computed a histogram in which all pixels were not weighted equally. Rather, the value of a difference operator at a point influenced that point's weight in the histogram. Higher weight was given to low edge value points, thus sharpening the histogram.

For histograms with broad valleys and unequal size peaks, Weszka (1977) suggested the use of a digital "Laplacian" operator to produce a strongly bimodal histogram. The "Laplacian" is computed by taking the absolute difference between a pixel's gray level and the average gray level of its neighborhood. Using only points which have Laplacian values in the upper percentile to construct the histogram results in a relatively symmetrical histogram with a sparsely populated valley. Analogous techniques to the Laplacian based technique have been developed using gradient operators and histogramming only those points with high gradient values. The valley should correspond to the gray levels at which edge transitions are the strongest.

In an attempt to minimize the misclassification error, a process of Gaussian curve fitting has been used. Rosenfeld and Kak (1982), Weszka (1977) and numerous others have derived the formulation for which the average probability of error is minimized. For a bimodal histogram, the threshold is chosen at the intersection of the two Gaussian curves representing the two peaks with the restriction that the intersection occurs between the two modes.

Thresholding schemes have also been devised for turning valleys into peaks (Weszka 1977), sharpening the peaks (Peleg 1977), and combining peaks. Additional schemes incorporate greater scene information in the decision process using local and geometric properties. Scatter plots are often used to incorporate more variables than the histogram contains. Basically, though, the thresholding process reduces to the task of finding a value T which separates the image into background and object.

Most thresholding schemes developed measure their effectiveness by their ability to segment images into recognizable or at least usable parts. Furthermore, suggested improvements are, more often than not, costly to implement in hardware. The CPVP relies strictly on standard histogram techniques for threshold selection. Hardware and time constraints limit the invocation of local properties into histograms. Therefore, the rest of this paper deals with thresholding techniques restricted to the constraints of the CPVP.

Histogram Enhancement

There are two possible avenues for histogram improvement. The image can be processed to improve the histogram before it is computed or the histogram can be operated on directly. The two techniques will be referred to as image smoothing and histogram smoothing.

As discussed in Chapter 3, image smoothing reduces noise in the image. Another result of image smoothing is a smoother histogram. Images obtained for use in multiple histogram averaging were used to create images smoothed by a median filter and smoothed by a lowpass convolutional mask. Results for one and two passes of the
lowpass mask were included. The corresponding histograms are given in figures $\angle 0$ and 21 based on linear and logarithmic scales respectively. The \log scale emphasizes histogram valley region activity.

Direct histogram smoothing techniques have not been discussed yet. The histogram smoothing techniques employed for this paper are the uniformly weighted averaging window and the median filter window. The algorithms used for histogram manipulation were developed on the HP9836 computer for reasons of accessibility. A listing of these smoothing subroutines is contained in appendix A.

The first histogram smoothing operation applied was the window averaging method. Basically, a variable length window of 3,5,7 or 9 bins was moved along the histogram. The histogram value at the center bin of the window was replaced by the average value of the histogram within the window. The resulting smoothed histograms corresponding to image 16 are shown in figure 22.

The second histogram smoothing technique is similar to the averaging window except that the center histogram value was replaced by the median value within the window. This approach attempts to remove artificially low or high value bins while preserving the sharpness of the peaks. In particular, images 1 through 5 each had a bin an order of magnitude lower than its neighbors. This seemed a highly unlikely occurrence and would severely affect threshold selection if not compensated for. The median filter is able to do what the averaging window cannot in a case such as this. Results of the median smoothing can be seen in figure 23.

Fig. 20. Linear scaled histograms of smoothed images. (a) Image 16 unsmoothed (b) Image 16 median smoothed (c) Image 16 average smoothed once (d) Image 16 average smoothed twice

Fig. 21. Log scaled histograms of smoothed images. (a) Image 16 unsmoothed (b) Image 16 median smoothed (c) Image 16 average smoothed once (d) Image 16 average smoothed twice

HISTOGRAM NO. 76 LOG

Fig. 22. Average smoothed histograms for window sizes $1,3,5$ and 7

HISTOGRAM NO. 196 LOG
HISTOGRAM NO. 226 LOG

Fig. 23. Median smoothed histograms for window sizes $1,3,5$ and 7

The third histogram smoothing technique usea the histograms of images $16,17,18$ and 20 , four histograms of the same image. The histograms were averaged together as a group to provide the resultant histogram. Given N histograms with values $a_{i}, i=$ $0,1, \ldots 255$, then the resulting histogram values are given by

$$
b(i)=\frac{1}{N} \sum_{j=1}^{N} a_{i, j} \text { for } i=0,1, \ldots .255
$$

where $a_{i, j}=$ the value at the i th bin of the j th histogram
$i=$ the bin
$\mathrm{N}=$ number of histograms and
$b(i)=$ the resultant bin value.
Figure 24 shows the result of this method.

Histogram Model

In addition to the basic histogram enhancement techniques, a model for a typical bimodal histogram was developed. The purpose of the model was to use general tendencies of the original histograms to construct histograms which were more easily and consistently assigned threshold values. The histogram model consists of two Gaussian based functions representing the two peaks and a polynomial function for the valley region. The subroutine used to create the model is given in Appendix A. Since many of the threshold selections to follow depend on parameters directly or indirectly derived from the modeling subroutine, the procedure used is briefly explained below. Wherever possible, variable names are kept consistent between the description and the actual program. Figure 25 serves as a guide.

Fig. 24. Multiple histograms averaged together. (a) Image 16 histogram (b) Average of image 16 and 17 histograms
(c) Average of image 16,17 and 18 histograms
(d) Average of image $16,17,18$ and 20 histograms

Fig. 25. Histogram model parameters

1. Alpha_0 and Beta_0 were determined. Alpha_0 and Beta_0 are defined as the first and last bins which contain a minimum of 10 pixels and have at least 9 adjacent bins with a minimum of 10 pixels each. The value 10 was large enough eliminate insignificant bins but small enough to impose boundaries without noticeably affecting results.
2. A Breakpoint value of (Alpha_0 + Beta_0)/2 was established to provide a temporary peak separation point.
3. The Lower_mode and Upper_mode, defined as the bins in the lower and upper peaks which contained the most pixels, were found.
4. The Low_breakpoint and High_breakpoint, which correspond to the bins diametrically opposed to Alpha_O and Beta_0 with respect to Lower_mode and Upper_mode were determined.
5. The sum of the histogram values for each region of the histogram were computed. Lower_sum equals the summation of histogram values from Alpha_ 0 to Low_breakpoint, inclusive. Middle_sum is the summation from Low_breakpoint to High_breakpoint, exclusive, and Upper_sum is the summation from High_breakpoint to Beta_0, inclusive.
6. The lower and upper regions were divided by their respective sums to create peaks normalized to an area of one.
7. The mean and variance of these two regions were computed by:

$$
\begin{aligned}
& \text { Low_breakpoint } \\
& \text { Lower_mean }=b_{1}=\sum i \cdot b(i) \\
& i=A l p h a _0 \\
& \text { Low_breakpoint } \\
& \text { Lower_variance }=\sigma_{1}{ }^{2}=\sum_{i=A l p h a _0}\left(i-\bar{B}_{1}\right)^{2} \cdot b(i) \\
& \text { Upper_mean }=\bar{b}_{u}=\sum_{i=\text { High_breakpoint }}^{\text {Beta_0 }} \\
& \text { Beta_0 } \\
& \text { Upper_variance }=\sigma_{u}{ }^{2}=\sum\left(i-\bar{b}_{u}\right)^{2} \cdot b(i) \\
& \text { i = High_breakpoint }
\end{aligned}
$$

where i is the histogram bin and $b(i)$ is the histogram value at bin i.
8. Treating the two normalized peaks as probability density functions, the mean and variance of each peak were used to model the peaks as discrete Gaussian probability functions. Each modeled peak was determined by the relation
$\operatorname{Pdf}(i)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(i-\bar{b})^{2}}{2 \sigma^{2}}}$ for $i=A l p h a_{-} 0$ to Beta_o
where $i=$ the histogram bin number
$\sigma=$ lower or upper variance respectively and
$\overline{\mathrm{b}}=$ lower or upper mean respectively.
9. Subject to several constraints, the modeled histogram peaks were scaled to maintain proportionality to each other and to the original histogram and then subtracted from the original histogram. The result was the dashed center region of figure 25. The start and stop bins are functions of the original histogram values, model values, and statistics of the associated density function and were established to avoid abrupt slope changes.
10. The resultant center region was modeled as various order polynomial functions.
11. The resulting bimodal histogram model is of the following form:

$$
\begin{aligned}
& b(i)=K_{1}\left[\frac{1}{\sqrt{2 \pi \sigma_{1}{ }^{2}}} e^{\frac{-\left(i-\bar{b}_{1}\right)^{2}}{2 \sigma l^{2}}}\right] \delta_{1}\left(i-A l p h a _0\right) \delta_{1}(\text { Beta_O-i) } \\
& +\left[K_{2} i^{5}+K_{3^{\prime}} i^{4}+K_{4} i^{3}+K_{5^{i}}{ }^{2}+K_{6} i+K_{7}\right] \\
& \delta_{1} \text { (i-Start_bin) } \delta_{1} \text { (Stop_bin-i) } \\
& +K_{8}\left[\frac{1}{\sqrt{2 \pi} \sigma_{u}{ }^{2}} e^{\frac{-\left(i-\bar{b}_{u}\right)^{2}}{2 \sigma_{u}{ }^{2}}}\right] \delta_{1}\left(i-A l p h a_{-} 0\right) \delta_{1}(\text { Beta_0-i) } \\
& \text { for } i=0,1, \ldots 255
\end{aligned}
$$

where K_{1} and K_{8} are proportionality constants K_{2} through K_{7} are polynomial coefficients and δ_{1} is the unit step function. With the basic premise for developing the histogram model established, a more detailed look at a few items is needed. First,
although the Gaussian density model is based on a sample mean and variance, initial approximations were not satisfactory. The partitioning of the original histogram into three regions left the lower and upper regions with significantly greater values at the respective breakpoints than at the absolute lower and upper limits. This caused the mean value of the peaks to shift toward the center. Therefore, the final modeling program substituted the modes for the means of the two peaks.

The polynomial equation representing the histogram valley is based on a least squares curve fitting routine utilizing the GaussJordan elimination method to solve for the coefficients. The curve fit subroutine was adapted from a program by Miller (1981). As currently dimensioned, it allows up to 256 data points and a fifth order solution, both of which can be increased. The adapted subroutine c an be found in Appendix A and a brief explanation of the GaussJordan method in Appendix B. To determine the order of the polynomial to be used and the type of smoothing to use on the histogram before modeling, the valley region of a series of histograms was modeled. Unsmoothed, averaging window smoothed, and median window smoothed histogram valley regions were modeled using second, third, fourth, and fifth order polynomials. Eleven histograms of inner layer boards were modeled. For each curve fit of the valley region a correlation coefficient based on a comparison of the calculated model values and the original values was calculated. Appendix C contains an explanation of the equation used by the histogram modeling subroutine for computing the correlation coefficient.

In order to reduce the data to a manageable amount and still be able to observe the effects of pre-processing the histogram and using various order polynomial models, the mean correlation coefficient value for each method of pre-processing (in conjunction with the third, fourth, and fifth order polynomial models) was computed. These mean values were then plotted to demonstrate the effects of histogram smoothing and polynomial order. These plots are shown in figures 26 and 27. The most obvious conclusion drawn from these plots is that the fifth order polynomial consistently provides the highest levels of correlation. After an initial improvement, correlation values tend to decrease as larger median filter windows are used to smooth the histogram. Small median filter windows remove large excursions while large windows create a staircase effect. Averaging windows, on the other hand, reduce the large excursions, but tend to create smoother bin to bin transitions as the window size is increased. Hence, the correlation coefficient generally improves as the window size increases.

Because of the relatively high mean correlation coefficients of the fifth order curve fits and the ease of window averaging a histogram, it was initially decided to model only the original histogram and a three bin wide averaging window smoothed version using a fifth order approximation for the valley region. The data base established for these histograms, however, pointed out an apparent discrepancy. Though excursions from the true curve were indeed minimized, the polynomial curve tended to oscillate about the original set of data points. Reducing the order of the

Fig. 26. Comparison of mean correlation coefficients for various order polynomial fits for median smoothed histograms

Fig. 27. Comparison of mean correlation coefficients for various order polynomial fits for average smoothed histograms
polynomial model reduced the oscillation effect while increasing the residual errors. In keeping with the goal of determining the general characteristics of the valley region, models using second, third and fourth order polynomial curve fits for the window averaged histogram were added to the histogram data base. A comparison of a histogram and its model is shown in figure 28.

Threshold Selection

The histogram enhancement and modeling techniques discussed in the previous section were used to create a histogram data base to facilitate an investigation into alternate thresholding algorithms. As with previous work, the histogram data base was restricted to inner layer board histograms. This resulted in a group of bimodal histograms with the dominate population occurring at the lower pixel values.

Once the data base was established, several thresholding schemes were implemented. Though the approaches varied from relatively simple to moderately difficult, a prime constraint was the ability to easily implement these algorithms using the current CPVP configuration. The median smoothing filter used to smooth an image is an exception to this constraint, but, a median smoothed image has been included because of the unique yet promising median filter characteristics. The following paragraphs describe the threshold selection techniques performed on the histogram data base by the program in Appendix A.

Method 1 - The first approach used was the standard histogram method of selecting the segmentation threshold as the histogram bin

Fig. 28. Comparison of a histogram and its model
with the minimum number of pixels. There is, of course, the added restriction that the threshold occur in the valley region of the bimodal histogram to avoid trivial cases. This restriction was included in all threshold selections. There were two other possibilities taken into account. In the case of multiple non-neighboring minimum bins (a minimum bin is the bin which contains the least number of pixels) the bin closest to the upper mode was selected. In the case of adjacent minimum bins, the center bin of the group was selected. Occasionally this led to a half-bin increment which was reported for the sake of thoroughness.

Method 2 - The second method selected the threshold as the bin halfway between the lower and upper modes. Though not realizable in hardware, bin values with remainders of 0.5 were reported to avoid a loss of information. The threshold can easily be rounded up or truncated, but once done the remainder information is not retrievable.

Method 3 - The third approach chose the threshold as the bin halfway between the absolute minimum and absolute maximum active histogram bins. The method is similar to that used by several automatic television tracker systems. The tracker approach also allows for different offsets between the minimum and maximum limits to adjust the sensitivity of the system. Though simplistic in its approach, the simple features of a PCB seemed to make a look at this approach worthwhile.

Method 4 - The fourth method is identical to the third method with two exceptions. First, the minimum pixel count for a bin to
be considered valid was increased from one to ten. Second, a bin had to have at least ten adjacent valid neighboring bins to be considered an absolute minimum or maximum. The result was a noise cleaning effect on the histograms and is noticeable in the modeled histograms such as those of figure 28 . This noise cleaning approach synthesizes the integration effects found in the analog circuitry of several television tracking systems.

Method 5 - The fifth approach is based on minimizing the pixel classification error based on the probability densities of the two populations corresponding to background and land. As discussed earlier, an interim step of the histogram modeling process was to compute Gaussian based functions to describe the two histogram peaks. Based on this interim model (one that does not include the valley region approximation) a threshold was found to minimize pixel misclassification. A general derivation for the optimum threshold is given by Rosenfeld and Kak (1982). For the two class Gaussian density modeled histogram the optimum threshold reduces to the bin between the two modes with the minimum pixel count which corresponds to the intersection of the two functions. Therefore, the threshold selection reported for this approach was the intersection bin of the two Gaussian functions.

Method 6 - The sixth method utilized the completed histogram model for selecting the threshold. The polynomial curve used to represent the valley region provided a smoothed approximation exhibiting the general tendencies of the original histogram. The
threshold was again selected based on a relative minimum as in method one.

Implementation of these threshold methods resulted in a collection of possible threshold values to use for segmenting images. With these thresholds established, original plans called for each image in the data base to be displayed via the CAPS system, manually thresholded at a continuously increasing intensity and the results noted. Bearing in mind that thresholding at too low a level causes background to be classified as land and thresholding at too high a level causes land areas to be classified as background, a suitable threshold range which would effectively eliminate background clutter and still maintain sufficient land width for subsequent processing was to be determined. Evaluation of the different thresholding schemes could then include a comparison of the various threshold results against the acceptable range. Because of equipment failure the images stored on magnetic tape and also on a hard disc unit were not retrievable in the time frame necessary for this paper.

However, several general tendencies of the generated thresholds can be noted. The thresholds computed by the different algorithms are given in Table 4. Including both smoothed and unsmoothed histograms the most consistent thresholds occurred at the center bin between the two modes, at the center bin between the minimum and maximum bins with $\mathrm{T}=10$ and at the minimum bin of the Gaussian curve fit. Maximum threshold variations were two, three and five bins for these three cases. The least consistent selection occurred for the standard histogram method or the minimum valued bin between the
TABLE 4
threshold values

Histogram Number	Minimum Bin Between Modes	Center Bin Between Modes	Center Bin Between 4 and β_{0} $\mathrm{T}=0$	Center Bin Between α_{6} and B_{0} $T=10$	Minimum Bin of Gaussian Fit	Minimum Bin of 2nd Order Curve Fit	Minimum Bin of 3rd Order Curve Fit	Minimum Bin of 4th Order Curve Fit	Minimum Bin of 5th Order Curve Fit
0	137	142.5	140.5	140	142	132	124.5	142	144
30	136	143	159	140	141	128	128.5	125	126
60	135	142	160.5	141	139	126	129	137.5	126.5
150	136.5	141.5	155.4	140	139	124	130	140.5	143
180	135	142	157.5	140	140	125	129	141	142.5
1	124	152	166	151.5	146	129.5	129.5	152	128
31	137	152	160	154	143	130.5	131	151	130
61	136	152	158.5	153.5	144	131.5	132	151	131
151	158.5	152	171	154	144	129	129	148.5	153.5
181	137.5	152	159.5	154	145	161.5	142	142.5	152.5
2	124	154	151	150.5	150	135	139.5	150	150.5
32	124	154	151.5	150.5	150	136	138.5	152	153
62	147	153	152.5	151	148	132	135	152	150.5
152	148	153.5	151.5	150.5	149	134	140	150.5	151
182	146.5	153	151.5	150.5	149	132	137	151.5	151

TABLE 4 - Continued

TABLE 4 - Continued

16	176	164.5	173.5	171.5	151	174	154	148.5	148
46	175	164.5	173.5	171.5	151	171	153.5	148.5	149
76	157	164.5	173	171.5	152	172.5	154	150.5	151
166	175.5	164.5	173	171.5	150	171	153	147	145.5
196	156	164.5	173	171.5	151	172	153.5	147.5	145.5
17	175	168.5	174.5	173	156	183	151.5	150.5	140
47	164	167	174.5	173	155	174.5	156.5	15 ?	152.5
77	163	167.5	174	172.5	156	176	157	155.5	157
167	164	166.5	174	173	153	174	156	150.5	150.5
197	165.5	167.5	173	173	155	175.5	156.5	151.5	150.5
18	175	166.5	175	171	154	176.5	152	145.5	140
48	164	167	159	172	156	175.5	156.5	151.5	151.5
78	163	167	156.5	171.5	156	175	156.5	154.	156
168	163	167	174.5	171.5	156	176	156	151.5	150.5
198	163	166.5	158	172	154	174	155.5	152.5	153
20	175	164.5	173	169.5	154	177.5	154.5	149.5	
50	158	164.5	172.5	169	154	178	155	149.5	146.5
80	157	164	158	169	153	172	153.5	149.	148
170	158.5	163	173	170	149	171	152	147.5	147
200	157.5	163.5	173	170	150	175	154	156.5	153

modes. Values varied up to 35 bins. Consistency of the polynomial curve fits fell between these two extremes.

Obviously the effectiveness of each method is not directly proportional to the complexity of the algorithm. Thresholds based on geometrical properties are much easier and much faster to compute than those based on Gaussian or polynomial modeling. Based on implementation effort, processing time and consistency, the geometrical based algorithms seem to provide the best alternative. Though this paper arbitrarily chose the midpoint between the two modes as the threshold, it could easily be fixed elsewhere or adjusted dynamically. Of course parameters discussed elsewhere in this paper must be considered. For example, a geometrical based amplitude thresholding scheme must assume that background and land areas are uniform in intensity and different enough that a threshold in the "uncertain" region would not mislabel a background region. This would require some control over the characteristics of the PCB's and the dynamic range of the image. The greater the dynamic range the more flexibility in the threshold range. Most importantly a definitive correlation between true land size, segmented land size and threshold level would have to be established.

Table 4 points out general tendencies but does not attempt to provide an absolutely final answer. Further work to be done must include establishing a larger data base and developing tools to more easily collect image and threshold data. It is felt that the results in this paper help to point out areas needing further investigation while providing the foundation necessary for carrying out this work.

SUMMARY AND CONCLUSION

This paper progressed from introducing the concept of automated visual inspection in general to looking at specific threshold selection algorithms. The need for automated visual inspection was examined and several current vision systems attempting to meet these needs were presented, Four basic approaches to automated printed circuit board inspection were given.

The Automatic Board Assembly, Inspection and Test (ABAIT) system was described. In particular, emphasis was placed on the visual inspection detail station, its operation, and its objectives. To establish a foundation for further work, fundamentals of image processing were reviewed. Image enhancement including image smoothing and image sharpening was stressed along with segmentation principles. The Circular Pipeline Video Processor (CPVP) was then introduced. The CPVP hardware and related software were described followed by a sample operational illustration,

The purpose for investigating alternate segmentation approaches was discussed followed by an analysis of captured CPVP imagery. The analysis was introduced by a description of the analysis tools developed during the course of this paper, particularly the image transfer capability, and a description of the subsequent image data base. An analysis of these images resulted in the evaluation of the CPVP image capture path as having a first order response,

The investigation of alternate segmentation techniques began
with researching techniques presented in recent publications and in general industry use. Histogram enhancement was discussed and a histogram model developed. A histogram data base was established using captured CPVP imagery and the various histogram enhancement and modeling techniques developed earlier in the paper. Thresholds for segmentation based on several algorithms were selected using this histogram data base. A comparison of the relative performance of these algorithms indicated that the consistency of the thresholds was not directly proportional to the complexity of the algorithm. The most consistent threshold selection was made based only on the modes of the histogram.

Evaluating the results obtained from the image analysis and the alternate segmentation techniques, a threshold selection scheme which selects the threshold based on the histogram modes, CPVP bandwidth and pixel resolvability appears to be the most promising.

The concept of the automated visual inspection process has been successfully demonstrated and with the incorporation of the analysis tools developed in this paper, the results of the image analysis and the results of the alternate threshold selection techniques it is felt that the system will be able to progress from a proof of principle system to a fully operational system capable of accurately inspecting printed circuit boards for Martin Marietta Aerospace.

APPENDIX A

COMPUTER PROGRAM

$10!$	RE-STORE "10! RE-STORE "HISTOGRAM7"
20	OPTION BASE O
30	DIM Norm_histo_val (0:255), Pdfa ($0: 255)$, Pdfb (0:255), $\mathrm{Pdf}(0: 255)$
40	DIM Pdfci0:255), Pdfot(0:255), Pdful(0:255), Pdfu(0:255), Histo_vol_sum (0:255)
50	DIM Const_vector (6), Coeff (6,6 , ,Soln_vector (6), Error_vector (6)
60	DIM Soln_matrix(6,11 , B_coeff(6,6$), x^{2}$ value(256), Data_vector (120)
70	DIM Y_data 246), Y_calculated(256), Residual (256), Data_matrix (120,6)
80	INTEGER Histo_val (0: 255), Median_value (0: 255), Histo_value (1:5,0:255)
90	INTEEER Histo_bin, Top_of_sort, Sort_value, Teap (9), Bin_number
160	INTEGER Hork_tatrix(6,3)
110	INTEGER NuI_rous, NuE_colums, Nut_const_vetrs, Row_index, Column_index
120	INTEGE? Poly_order, Max_length, J, $\mathrm{K}, \mathrm{L}, \mathrm{M}$
130	ON ERPOF GOSUE Error_handier
140	FOR $\mathrm{J}=0$ TO 9 ! TURN OFF OPERATING SYSTEM KEY LAEELS
150	ON KEY J LABE_ * GOTC 150
160	NEXT J
170	Print Chrs 12) ! CLEAR TEXT.
180	DIS ${ }^{\circ}$ CHP \ddagger (12) ! CLEAR DISPLAY.
190	GCLEAR ! CLEAR GRAPhics.
200	GRAPHICS OFF ! DISABLE GRAPHICS.
	Loopl: ! LABEL AND ACTIVATE SOFT KEYS.
220	ON KEY O LABEL "INPUT_HISTO" GOSUB Input histo! READ HISTO FROM KEYBOARD.
230	ON KEY 1 LABEL "PRINT HISTO" GOSUB Print_nisto ! PRINT THE HISTO FILE.
240	ON KEY 2 LABEL "CHANGE_FILE" GOSUB Change_file! CHANGE VALUES IN FILE.
250	ON KEY 3 LABEL "PLOT_HISTO" GOSUB Plot_histo ! PLOT THE HISTOGPAM.
260	ON KEY 5 LABEL "AUERAGE_SHOOTH" GOSUB Aver age smooth! SMOOTH HISTOGRAM.
270	ON KEY \in LABEL "MEDIAN_SMOOTH" GOSUB Median_smooth! SMOOTH HISTOGRAM.
280	ON KEY 7 LABEL "GROUF_AUERAGE" GOSUB Group_average! AVG HISTOS TOGETHER.
290	ON KEY 8 LABEL "PDF_MODEL" GOSUB Pdf_mode! ! MODEL THE HISTOGRAM.
300	GOTO Loop!

310 Input_histo: ! THIS SUBroutine reads in histogram values from the
321 ! KEYBOARD AND WRITES THEM TO A HISTO FILE.
330 PRINT CHRS(!2)
340 GCLEAR
350 GRAPHICS OFF
360 PRINT TABXY(1,20) ; "ENTER THE HISTOGRAM FILE NUMBER THAT VALUES"
370 PRINT " ARE TO EE STORED IN. "
380 INPUT File_number ! INPUT FILE_NUMBER FROM KEYBOARD.
390 PRINT CHRS(12)
400 IF File_number(0 OR File_number) 1100 THEN ERPOR TRAP.
410
420
430
440
450
460 DISP CHRS(12)
470 FOR Bin_number $=0$ TO 255 ! LOOP READS IN VALUES FROM KEYBOARI.
480 DISP " ENTER BIN"; Bin_number; "VALUE ";
490 INPUT Histo_val(Bin_number)
500 PRINT TAE((Bin_number MOD 10)*7+6) ; Histo_val(Bin_number);
510 NEXT Bin_number
520 Correct: ! ! THIS SECTION ALLOWS FOR CORRECTIONS
530 PRINT CHRS(12) ! AFTER VALUES ARE READ IN.
540 FOR Bin_number $=0$ TO 255 ! PRINT FORMATTED HISTO VALUES.
550 PRINT TAB ((Bin_number MOD 10)*8); Histo_val(Bin_number);
560 NEXT Bin_number
570 DISP "IS A CORRECTION NECESSARY? (Y/N) ";
580 INPUT Correction_necs
590 IF Correction_nec $\$$
MY THEN GOTO Create_file DISP "HOW MANY VALUES NEED TO BE CORRECTED ';
INPUT Correction_nun
IF Correction_num)O THEN
FOR Correction=1 TO Correction nue
DISP " WHICH HISTOGRAM BIN IS TO BE CHANGED';
INPUT Bin_number
DISP " WHÄT IS THE CORRECT HISTOGRAM VALUE";
INPuT Corrected_value
Histo_val(Bin_number)=Corrected_value ! HISTO_VAL IS CORPECTED.
NEXT Correction
GOTO Correct
END IF
GOSUB Create_file
DISP "READY"
BEEP 1500, 2
750 RETURN

```
760 Print_histo: ! THIS SUBROUTINE PRINTS HISTOGRAM VALUES
770 ! PREUIOUSLY STORED ON DISC.
7 8 0 ~ P R I N T ~
190 GCLEAP
800 DISP CHR$(12);"ENTER HISTO FILE NUMBER TO PRINT ";
810 INPUT File_number
820 GOSUB Get_histo_file
830 DISP "IS PRINTOUT TO GO TO THE FRINTER (Y/N) ";! GOES TO SCREEN IF ()Y.
840 INPUT Print_device*
850 IF Print_devices="Y" THEN PRINTER IS 706 ! }706\mathrm{ IS LINE PRINTER.
860 PRINT
870 PRIN: TAB(26);"HISTOGRAM NO.";File_number
880 PPINT
890 FOR CO1_neader=0 TO 9
        PRINT TAB(CO:_header*7+6);CO1_header ; ! PRINT COLUMNL LABELS.
        NEXT Col_header
        PRINT
        PRINT
        FOR Bin_number=0 TO 255 ! PRINT ROW LAEELS AND HISTO VALUES.
        IF INT(Bin_number/10)=Bin_number/10 THEN PRINT TAB(0);Bin_nunber/10;
            PRINT TABliBin_number MOD 10)*7+6);Histo_val(Bin_number);
        NEXT Bin_number
        PRINT
    991 PRINTER IS 1 ! REASSIGN SCREEN AS PRINT DEUICE.
    1000 EEEP 1500,.2
    1011 DISP "READY"
1020 RETURN
```

	Change_file: ! THIS SUBROUTINE ALLOWS INDIUIDUAL VALUES IN THE HISTO
1040	FILES TO BE CHANGED (CORRECTED) AND THE FILE UPDATED
1050	GCLEAR
1061	PFINT CHRS(12)
1070	disp "enter histo file no. to have values changed ";
1080	INPUT File number
1091	GOSUB Get_histo file
1100	Input_change:
1111	PRINT TAB(26); "HISTOGRAM NO. "; File_number
1120	Print
1131	FOR CO1_header $=0$ TO 9
1140	PRINT TAB(CO1 header*? ${ }^{\text {a }}$) ; Col header;
1151	NEXT CO1_header
1100	PPINT
1171	Print
1180	FOR Bin_number $=0$ TO 255
1190	IF INT(Bin_number/10)=Bin_nuaber/10 THEN PRINT TAE (0) ; Ein_number/10;
1200	PRINT TAE((Bin_nusber MOD 10)*7+6); ;isto_val(Bin_nuaber);
1210	NEXT Bin_number
1220	
1230	INPU: Correction_nue
1241	IF Correction_num) ${ }_{\text {THEN }}$
1250	FOR Correction=1 TO Correction_nur
1261	DISP - WHICH HISTOGRAM BIN IS TS BE CHANGED ';
1270	INPUT Bin_nuaber
1281	DISP * WHAT IS THE CORRECT HISTOGRAM VALUE *;
1290	INPUT Corrected_value
1301	Histo_val(Bin_nuaber) $=$ Corrected_value
1310	NEXT Correction
1321	GOTO Input_change
1330	ENI IF
1340	PURGE "HISTO"SUALs(File_number) ! DELETE THE INCORRECT FILE.
1350	GOSUB Create_file ! RESTOPE HITH UPDATED FILE.
1361	BEEP $1500, .1$
1370	PRINT CHRs 112)
1381	DISP 'READY"
1390	RETURN

1400 Plot_histo: ! THIS SUBROUTINE PLOTS A HISTOGRAM FILE ON A LINEAR OR
1410 ! LOGARITHMIC SCALE HITH SOLID BARS OR ONLY THE OUTLINE.
1420 PRINT
1431 GCLEAR
1440 Xorg $=120$! GRAPHICS X ORIGIN.
1450 Yorg $=320$! GRAPHICS Y ORIGIN.
1461 DISP "ENTER HISTO FILE NUMBER TO PLO" ";
1470 INPUT File_nuaber
1481 GOSUB Get histo_file
1490 Enter_scale: ! INPUT WHAT SCALE IS TO BE USED IN PLOTTING.
1506 DISP "LINEAR OR LOSARITHMIC SCALE (LIN OR LOS) ';
1511 INPUT Scale§
1520 IF Scale§()"LIN" AND Scales()"LOG" THEN
1530 PRINT CHRS(12);"INUALID SCALE ENTERED. TRY AGAIN"
1541 BEEP 1500.. 2
1550 GOTO Enter_scale
1561 END IF
1570 PRINT CHR (12)
1581 DISP 'IS PLOT POINT-TO-POINT INSTEAD OF BARS $(\mathrm{Y} / \mathrm{N})$ ';
1590 INPUT Point_to_points
1601 GINIT ! INIIIALIZE GRAPHICS.
1610 GCLEAF : CLEAF GRAPHICS ON SCREEY.
1621 GRAPHICS ON ! ENERGIZE GRAPHICS.
1630 PEN ! I NORMAL POLARITY (BLK ON WHT).
1641 Previous_x=Xorg/4 ! INITIHLIZE VALLE.
1650 Previous_y=Yorg/4 ! INITIALIZE VALUE.
1661 FOR Histo_bin=0 TO 255
1670 IF INT(H1sto_bin/40)=His to_bin/40 THEN
1681 MOUE (Xorg-10)/4,(Yorg-Histo_ban)/4
1690 DRAW XORg/4,(YORg-Histo_din)/4 ! DRAK MAJOR TIC MARKS.
1700 ELSE
1710 IF INT(Histo_bin/10)=Histo_bin/10 THEN
$: 720 \quad$ MOUE (Xorg-4)/4, (Yorg-Histo_tin)/4
1731
DRAW Xorg/4, (Yorg-Histo_bin)/4 ! DRAW MINOR TIC HARKS. ELSE

MOUE Xorg/4, (Yorg-Histo bin)/4 ! DEFAULT START IS THE AXIS.
IF Point_to_point $s==$ Y" THEN DRAW Xorg/4, (Yorg-Histo_bin)/4 END IF
END IF
IF Point_to_points ${ }^{\text {' }}$ F ${ }^{\text {E }}$ THEN MOUE Previous_ x, Previous_y
IF Histo_val(Histo_bin) $=0$ THEN THEPE SHOULD BE NO NEEATIUE
! HISTO VALUES. DEFAULT TO 0.
1820 DRAW Xorg/4, (Yorg-Histo_bin)/4
1831 Previous_ $x=$ Yorg $/ 4$! UPDATE POSITIONIN: VALUES TO
1840 Previous_y=(Yorg-Histo_bin)/4! BE USED AFTER AXIS IS DRAWK.
$185!$
186
1870
1880
1890
1901
1910
1920
1939
1940
$195 t$
1960
1971 NEXT Histo_bin
1980 DRAW Xorg/4,(Yorg-256)/4
1990 MOVE (Xorg-52)/4,(Yorg)/4
2000 DEG
2010 LDIR 270 ! LAEEL DIRECTION IS VERTICAL.
2021 CSIZE 5
2030 LABE "HISTOGRAM NO. ";File_nunber;" ";Scales ! WRITE LABEL.
2040

2091 PRINT "IS PLOT TO GO TO PRINTER ALSO? (Y/N)*
2100 INPUT Printer_plots
2110 IF Printer_plot $\$=1$ Y' THEN PLOT GOES TO PRINTER THEN
2120 DUMP DEVICE IS 706 ASSIGN DUMF DEVICE TO
2130 DUMP GRAPHICS ! PRINTER AND DUMP GRAPHICS.
2140 END IF
2150 PRINT CHRミ(12)
2160 DISP "READY'
2171 BEEP $1500, .15$
2183 RETURN

```
2190 Average_5mooth: ! THIS SUBROUTINE ALLOWS FOR AVERAGING HISTOGRAM
2 2 1 0 ! ~ V A L U E S ~ O F ~ A ~ S T O R E D ~ H I S T O ~ F I L E ~ U S I N E ~ V A R I O U S ~
2210
    SIZE HINDOWS.
22Z1 GCLEAR
2230 DISP "ENTER HISTO FILE NUMBER TO SMOOTH ";
2240 INPUT File_number
2251 PRINT CHRS(12)
2260 GOSUB Get_histo_file
2271 Aug_win_size:
2280 DISP "ENTER WINDOW SIZE (3 THRU 9) ';
i291 INPUT Window_size
2300 IF Window_size\3 OR Window_size\9 THEN
2311 PRINT "WINDOH SIZE INUALID"
2320 BEEP 1200,.3
2331 GOTO Avg_win_size
2340 END IF
2350 DISP "NOW SMOOTHING....PLEASE WAIT"
2360 Initial_bin=(Window_size/2)-.5
2371 Final_bin=255-(Window_size/2)+.5
2380 FOR Histo_tin=Initial_bin TO Final_bin
2391 SUMm=0
2410 FOR J=0 TO Window_size-1
2410 SUmR=Histo_val(Hasto_bin-(Window_size/2-.5i+J) +5unm
2421 NEXT J
2430 Histo_val(Histo_bin)=Sun/window_size
2440 NEXT Histo_bin
2451 DISP 'DO YOU WISH TO STORE THIS HISTOGRAM (Y/N) ";
2460 INPUT Store_avg_histo$
2471 IF Store_avg_histos="Y" THEN
2480 DISP "ENTER HISTO FILE NUMBER ';
2491 INPUT File_number
2500 GOSUS Create_file
2511 END IF
2520 DISP "READY"
2531 BEEP 1500,.2
2540 RETURN
```

```
2550 Hedian_5mooth: ! THIS SUBPOUTINE ALLOWS FOR MEDIAN SMOOTHING OF
2560 ! A STORED HISTO FILE HITH VARIABLE SIZE HINDOWS.
2570 GCLEAR
2581 DISP "ENTER HISTO FILE NUMBER TO SMOOTH ";
2590 INPUT File_number
2601 PRINT CHRS(12)
2610 GOSUB Get_histo_file
2621 Input_win_size:
2630 DISP "ENTER HINDOW SIZE (3,5,7 OR 9) ';
2641 INPUT Window_size
2650 Win_size=Window_size
2668 IF Win_size(>3 AND Win_size\\5 AND Win_size\)7 AND Win_size\\9 THENi
2670 PRINT "WINDOK SIZE MUST BE 3,5,7 OR 9."
2680 BEEP 1500,.3
2690 GOTO Input_win_size
2700 END IF
2710 DISP "NOW SMOOTHING...PLEASE WAIT"
2720 Initial_bin=(Window_size/2)-.5
2731 Final_bin=255-(window_size/2)+.5
2740 FOR Histo_bin=Initial_bin TO Final_ban
2751 FOR J=0 TO Window_size-1
2760 Temp(J)=Histo_val(Histo_bin-(Window_size/2-.5)+J)
2771 NEXT J
2780 FOR TOP_of_sort=0 TO Hindow_size-2
2790 FOR Sort_value=Top_of_50rt+1 TO Window_size-1
28C1 IF Temp(Sort_value)(Teap(Top_of_sort) THEN
2810 Hold_value=Teap (TOp_of_sort)
2821 Teap(Top_of_sort)=Temp(Sort_value)
2830 Teap(Sort_value)=Hold_value
2841 END IF
2850 NEXT Sort_value
2860 NEXT TOp_of_50rt
2870 Median_value(Histo_bin)=Tenp((Windom_5ize/2-.5))
2880 NEXT Histo_bin
2B91 BEEP 1500,.15
2900 DISP "DO YOU HISH TO STORE THIS HISTOGRAM (Y/N) ";
2910 INPUT Store_monn_histos
2921 IF Store_odn_histos="Y" THEN
2930 DISP "ENTER HISTO FILE NUMBER ";
2941 INPUT File_number
2950 FOR J=0 TO 255
                    Histo_val(J)=Median_value(J)
                    NEXT J
            GOSUB Create_file
        END IF
        DISP 'READY"
3010 BEEP 1500,.2
302I RETURN
```

```
3030 Group_average: ! THIS SECTION ALLOWS FROM 2 TO 5 HISTOGRAMS TO
3040
3050 GCLEAR
3061 PRINT CHP$(12)
3070 DISP "HOW MANY HISTOGRAMS TO AUERAGE TOGETHER *;
3080 INPUT Histo_quantity
3090 IF Histo_quantity>5 THEN GOTO Group_average ! MAXIMUM OF 5 HISTOS.
3100 IF His:o_quantity<2 THEN GOTO Group_avg_end ! MINIMUM OF 2 HISTUS.
3111 FOR J=1 TO Histo_quantity ! READ HISTOGRAMS AND TRANSFER INTO
3 1 2 0 ) ! ~ A ~ T W O ~ D I M E N S I O N A L ~ A R R A Y .
3!30 DISP "ENTER HISTOGRAM FILE NUMBER";j;" ";
3140 INPUT File_number
3!50 GOSUB Get_histo_file
3100 FOR Histo_bin=0 TO 255
3170 Histo_value(J,Histo_bin)=Histo_val(Histo_bin)
3180 NEXT Histo_bin
3191 NEXT J
32JO DISP "WORKINE...PLEASE HAIT"
321] FOR.Histo_bin=0 TO 255 ! PERFORM AUERAGING ALGORITHM.
J220 Histo_val_suR(Histo_bin)=0 ! INITIALIZE ARRAY.
3230 FOR J=1 TO Histo_quantity
3240 Histo_val_5u(Histo_bin)=Histo_val_sum(Histo_Din)+Histo_valve(J,Hi
5to_bin)
3251 NEXT J
3260 Histo_val(Histo_bin)=Histo_val_sum(Histo_bin)/Histo_quantity
3270 NEXT Histo_bin
3280 BEEF 1500,.1
3290 DISP "DO YOU HISH TO STORE THE RESULTANT HISTOGRAM (Y/N) ";
3300 INPUT Store_resultants
3311 IF Store_resultants='Y" THEN
3320 DISP "ENTER HISTC FILE NUMBEP ';
3331 INPUT File_number
3346 GOSUB Create_file ! STORE THE RESULTANT HISTOGRAM.
3350 END IF
3361 Group_avg_end: !
3370 DISP "READY"
3381 BEEP 1530,.2
3390 RETURN
```

```
3400 Pdf_model: ! THIS SUBPOLTINE MODELS THE HISTOGPAM BASED ON A
3410 ! COMBINATION OF GALSSIAN BASED FUNLTIONS AND A
3420 ! POLYNOMIAL FUNCTION.
3431 GCLEAF
3440 PRINT CHE$:12)
3451 DISP "ENTER HISTO FILE_NUMBER TO MODEL ";
3460 INPUT File_nunter
3471 GOSUB Get_histo_file ! GET HISTOGRAM VALUES.
3480 Input_rodel:
3491 PRINT CHR$(12)
3500 Model }$="G" ! GAUSSIEN BASED MOLEL
3510 PRINT "HISTO FILE NUMBER ";File_number
3521 PRINT
3530 Find_alpha_0: !
354% FOR H15to_bin=0 TO 255
3550 FOR Offset=0 TO 9
3551 IF Histo_val(Histc_bin+0ffset)(=10 THEN GOTO 3600
3570 NEXT EIffse:
3581 Alpha_O=Histo_tir
3590 GOTO Find_beta_O
3601 NEXT Histo_bin
3610 Find_beta_0: !
362i FOR Histo_bin=255 TO O STEP -1
3630 FOR Offset=0 TO -9 STEP -1
3640 IF Histo_val(Histo_bin+Offset)<10 THEN 60TO 3680
3650 NEXT Offset
3660 Beta_O=H1sto_Din
3670 60T0 Set_breakpoint
3681 NEXT Histo_bin
3690 Set_breakpoint:
3701 Breakpoint=(Alpha_O+Beta_0)/2
3710 PRINT "BKEAKPOINT";Breakpoint
3721 PRINT
3730 PRINT "ALPHA_O";Alpha_O;TAB(41);"BETA_O";Beta_O
3740 Find_modes:
3751 Max_histo_val_1=0 ! INITIALIZE MAXIMUM VALUES.
3760 Max_histo_val_u=0
3771 FOR Histo_bin=Alpha_O TO Breakpoint
3780 IF Histo_val(Histo_Din)\Hax_histo_val_1 THEN
                                    Max_histo_val_1=Histo_val(Histo_bin)
                    Lower_node=Histo_bin
        END IF
3 8 2 0 ~ N E X T ~ H i s t o , b i n ~
```

```
3 8 3 1
3840
3 8 5 0
364
3870
381
380
0_val_u
3901 PRINT "LOWER MODE";Lower_mode;TAB(41); 'UPPER MODE";UPPer_mode
3910 DISP "HORKING...PLEASE WAITT"
392I Find_histo_sum: !
3930 Histo_sun=0
3941 FOR Histo_bin=Alpha_O TO Beta_O
    Histo_sun=Histo_sun+Histo_val(Histo_bin)
    NEXT Histo_bin
3970 Compute_pdf: !
3981 IF Models="G" THEN
3990 Lower_sun=0
4001 Hiddle_sua=0
4010 Upper_sua=1
4020 Lower_sum_sqrd=0
4030 Upper_sum_sqrd=0
4 0 4 1 ~ L o m \& b r e a k p o i n t = 2 * L O w e r ~ m o d e - A l p h a \& O ~
4 0 5 0 ~ H i g h ~ b r e a k p o i n t = 2 * U p p e r ~ m o d e - B e t a , O ~
4061 PRINT "LOH_BREAKPOINT" ;LOM_breakpOint;TAB(41);"HIGH_BREAKPOINT";High_br
eakpoint
4071 FOR Histo_tin=Alpha_O TO Beta_O
4 0 8 0 ~ I F ~ H i s t o ~ b i n c = L o w ~ b r e a k p o i n t ~ T H E N
4091 Lower_sum=Lower_sum+Histo_val(Histo_bin)
4 1 0 0 ~ E N D ~ I F ~
4 1 1 0 ~ I F ~ H i s t o \& b i n ) L o w , b r e a k p o i n t ~ A N D ~ H i s t o ~ b i n ( H i g h ~ b r e a k p o i n t ~ T H E N ~
4!20 Middle_sum=Middle_sun+Histo_val(Histo_bin)
4130 END IF
4 1 4 0 ~ I F ~ H i s t o ~ b i n \ = H i g h ~ b r e a k p o i n t ~ T H E N ~
4150 Upper_sun=Upper_sun+Histo_val(Histo_bin)
4 1 6 1 ~ E N D ~ I F ~
4170 NEXT Histo_bin
4181 Tota!_sua=Lower_sua+Hiddle_sum+Upper_suE
4190 Lower_exp_val=0
$201 Upper_exp_val=0
4210 Lower_variance=0
4221 Upper_variance=0
4230 FOR Histo_bin=Alpha_O TO Low_breakpoint
4 2 4 1 ~ N o r , ~ h i s t o ~ v a l ( H i s t o , b i n ) = H i s t o ~ v a l ( H i s t o ~ b i n ) / L o m e r \_ s u m ~
4250 Lower_exp_val=LOwer_exp_val+(Histo_bin*Norn_histo_val(Histo_bin))
4260 NEXT Histo_bin
```



```
4 7 2 0 ~ I F ~ H i s t o \_ D i n > = S t a r t \& b i n ~ A N D ~ H i s t o \& b i n < = S t o p \& D i n ~ A N D ~ ( H i s t o . v a l ( M ) / T o t a l ~
_5v:\(Pdfa(M)+Pdfb(M))) THEN
4730 IF Start_bin_flag=0 THEN
4 7 4 1 ~ N e w . s t a r t ~ b i n = H i s t o \& b i n ~
4 7 5 0 ~ S t a r t \_ b i n \_ f l a g = 1 ~
4 7 6 0 ~ E N D ~ I F
4 7 7 0 ~ N e m . 5 t o p \& b i n = H i s t o \& b i n ~
4781 Pdfu(Histo_bin)=Histo_val(Histo_bin)/Total_sum-Pdfa(Histo_bin)-Pdfbi
Histo_bin)
4 7 9 1 ~ I F ~ P d f v ( H i s t o ~ b i n ) < O ~ T H E N
4800 PRINT "PDFA";Pdfa(M);"PDFB ";Pdfb(M);"PDFV ";Pdfv(M) "HISTC UAL"
;Histo_val(M)/Total_sum
4 8 1 6 ~ P d f v ( H i s t o \_ b i n ) = 0
4820 END IF
4 8 3 1 ~ E N D ~ I F ~
4840! Pdfa(M)=0!****************OPTION***************
```



```
4870! Pof(M)=Pdfar(M)+Pdfu(M)+Pdfb(M)!*****PPTION****
4 8 8 1 ~ N E X T ~ H i s t o , b i r i m
4890 END IF
4 9 0 1 ~ G O S U B ~ C u r v e \& f i t ~
49:0 FOR Histo_bin=Alphz_O TO Beta_O
4921 Pdf(Histo_bin)=Pdfa(H1sto_bin)+Pdfu(Histo_bin)+Pdfb(Histo_bin)
4930 Normalized_sum=Normalized_sun+Pdf(Histo_bin)
4 9 4 0 ~ N E X T ~ H i s t o , b i n ~
4950 FOR Histo_bin=0 TO 255
4 9 0 1 ~ I F ~ H i s t o ~ b i n < A l p h a , O ~ O R ~ H i s t o ~ b i n \ B e t a \_ O ~ T H E N ~
4970 Histo_val(Histo_Din)=0
4 9 8 1 ~ E L S E ~
            Histo_val(Histo_bin)=Pdf(Histo_bin)*Total_sum
            END IF
        NEXT Histo_bin
5 0 2 0 ~ P R I N T
5031 DISP 'DO YOU WISH TO STORE THE MODELED HISTO (Y/N) ';
5040 BEEP 1500,.1
5051 INPUT Store_pdf\xi
5060 IF Store_pdfs<)"Y" THEN 6OTO 5110
5071 DISP "ENTER HISTO_ FILE NUMBER TO STORE VALUES IN ";
5080 INPUT File_nuaber
5091 GOSUB Create_file
5100 PRINT CHR$(12)
5111 DISP "READY"
5120 BEEP 1500,.1
5I31 RETURN
```

```
5140 Curve_fit: ! THIS SUBROUTINE MODELS THE VALLEY POPTION
5150 ! OF THE HISTOGRAM WITH A POLYNOMIAL FUNCTION.
5 1 6 0 \text { GOSUE Get_data}
5171 GOSUB Set_uf_matrix
5180 GOSUB Square_matrix
5191 GOSUB Gauss_jordan
5200 GOSUB Print_results
5210 RETURN
5220 Get_data:
5231 PRINT "START BIN ";Start_bin,"STOP BIN";Stop_bin
5240 PRINT "NEW START BIN";New_start_bin;"NEW STOP BIN';New_stop_bin
5250 Num_roms=New_stop_bin-New_start_bin+1
5200 IF Num_rows(IC OR NUE_rOMS)I2O THEM
5271 DISP "NUMBER OF DATA POINTS OUER/UNDER RANGE:EXECUTION HALTED"
5280 PRINT CHR$(12)
5291 PRINT TABXY(0,14);'NEW_START_EIN ';New_start_bin,"NEW_STOP_BIN ";New_st
op_bin
5301 PRINT TABXY(0,15); "NUM_ROWS ';NUM_ROW5
5310 BEEP 1500,.2
5 3 2 1 ~ S T O F
5330 END IF
534| BEEP 1500,.1
5 3 5 0 ~ D I S P ~ ' I N P U T ~ P O L Y N O M I A L ~ O R D E R ~ " ; ~ ;
5 3 6 0 ~ I N P U T ~ P O l y \& o r d e r ~
5371 IF POly_order \5 OR POly_order {1 THEN
5330 PRINT TABXY(0,15);"ORDER MUST BE 1 THPU 5"
5391 BEEF 1500,.2
5400 GOTO Get_data
541I END IF
5420 DISP 'WORKING...PLEASE WAIT"
5430 Num_columns=Poly_order+1
5440 FOR I=1 TO Nun_rows
5450 X_value(I)=New_start_bin-1+I
5461 Y_data(I)=INT(Pdfu(New_start_bin-1+I)*Total_sum)
5470 NEXT I
5481 RETURN
5490 Set_up_matrix:
5501 FOR I=1 TO Nun_rows
5510 Data_matrix(I,1)=1
5521 FOR J=2 TO Num_columns
5530 Data_matrix(I, J)=Data_matrix(I,J-1)*X_value(I)
5541 NEXT J
5550 Data_vector(I)=Y_data(I)
5 5 6 0 \text { NEXT I}
5571 RETURN
```

```
5580 Square_matrix: ! THE MATRIX IS SQUARED UP, NOT LITERALLY SQUARED.
5590 FOR K=: TO Num_columns
5600 FOR L=1 TO K
5611 Coeff(K,L)=0
5620 FOR I=1 TO Num_roms
5631 Coeff(K,L)=Coeff(K,L)+Data_matrix(I,L)*Data_matrix(I,K)
5640 IF (K()ん) THEN Coeff(L, K)=Coeff(K,L)
5650 NEXT I
5600 NEXT :
5670 Const_vector (k)=0
5680 FOR I=1 TO Num_ROME
5691 Const_vector (K)=Const_vector(K)+Y_data(I)*Data_matrix(I,K)
5 7 0 0 ~ N E X T ~ I ~
5711 NEXT K
5728 RETUFN
5730 Gauss_jordan:
5740 Error_flag=0
5751 Inv_print_flag=0
5760 Num_const_vetrs=1
5771 FOR. I=: TO Num_columns
5780 FOR J=1 TO NUE_columns
5790 B_coeff(I,J)=E0eff(I,J)
5 8 . 0 ~ N E X T ~ J ~
5811 Soln_matrix(I,1)=Const_vector(I)
5820 Work_atrix(I,3)=0
5831 NEXT I
5840 D3=1
5851 FOR I=1 TO Num_coluans
5 8 6 0 ~ B i g g e s t + v a l u e = 0
5871 FOR J=1 TO Num_columns
5880 IF (Work_matrix(J,3)=1) THEN GOTO Continue_1
58%1 FOR K=1 TO Nu_columns
5900 IF Work_matrix(k,3i)1 THEN GOTO Error_1
5911 IF Work_matrix(k,3)=1 THEN GOTO Continue_2
5920 IF Biggest_value)=ABS(B_coeff(J,K)) THEN GOTO Continue_2
5930 Row_index=J
5940 Column_index=K
5951 Biggest_value=ABS(B_coeff(J,K))
5960 Continue_2: !
5970 NEXT K
5980 Continue_1: !
5991 NEXT J
6010 Work_atrix(Colum_index,3)=Work__atrix(Coluan_index,3)+1
6010 Work_atrix(I, I)=Row_index
6021 Work_matrix(I,2)=Coluen_index
6030 IF ROW_index=COlumn_indēx THEN GOTO Divide_pivot
```

```
6 0 4 0
6 0 5 0
6 0 6 0
67%
6 0 8 0
6 0 9 8
6100 IF Nun_const_vctrs\1 THEN GOTO Divide_pivot
6110 FOR L=1 TO Num_const_vctrs
6121 Hold_value=Soln_matrix(Row_index,L)
6130 Soln_matrix(Row_index,L)=S01r_matrix(Colum_index;L)
6140 Soln_matrix(Coluan_index,L)=HCld_value
6!5` NEXT L
6161 Divide_pivot:
6170 Pivot_index=B_coeff(Columr_index,Coluan_index)
6!80 D3=D3*Pivot_index
6190 B_cceff(Column_index,Coluen_index)=1
6200 FOR L=! TO NuE_COlumns
6210 B_coeff(Colum__index,L)=E_coeff(Colum_index,L)/Pivot_index
6200 NEXT L
6231 IF Num_const_vetrs\1 THEN GOTO Reciuce_nonpivot
b240 FOR L=1 TO Nur_const_vctrs
6250 Soln_matrixiColum_index,L)=SoIn_matrix(Colum_index,L)/Pivot_Index
6260 NEXT L
6271 Reduce_nonpivot:
t280 FOK M=1 TO NuE_columns
6290 IF M=COlum_index THEN GOTO Continve_3
6300 T=E_coeff(M,Colvim_index)
631! B_coeff(M,Colum_index)=0
6320 FOR L=1 TO NuB_colums
6331 B_coeff(M,L)=\mp@subsup{B}{-}{\primecoeff(M,L)-E_coeff(Colvan_index,L)*T}\T
6340 NEXT L
6351 IF Nun_const_uctrs(1 THEN GOTO Continue_3
6360 FOR L=1 TO NUm_const_vetrs
6370 Soln_matrix(M,L)=Soln_matrix(M,L)-Soln_matrix(ColUMn_index,L)*i
6380 NEXT L
6391 Continue_3:
640% NEXT H
6 4 1 1 ~ N E X T ~ I ~
6420 Interchange_col: !
643! FOR I=1 TO Nu__columns
6440 L=Nus_colvans-I+1
6451 IF WOrk_matrix(L,1)=Work_matrix(L,2) THEN GOTO COntinue_4
6460 Row_index=Hork_matrix(L,I)
6471 Colvan_index=Work_matrix(L,2)
```

```
6 4 8 0
6490
6 5 0 0
6 5 1 0
6 5 2 0
653: Continue
650 NEXT I
651 FOR k=1 TO Num_colums
650 IF Work_atrix(k,3)<\1 THEN GOTO Error_1
6 5 7 1 ~ N E X T ~ K
6 5 8 0 ~ E r r o r ~ f i a g = 0 ~ ( 0 ) ~
650 FOR I=1 TO Num_columns
6600 Soln_vector(I)=Soln_matrix{I,I)
6 6 1 8 \text { NEXT I}
6620 IF Inv_print_flag=1 THEN GOTO G_j_return
6 6 3 0 ~ R E T U F N
648 Error_1: !
6 6 5 0 ~ E r r o r ~ f l a g = 1 ~
6601 PRINT 'ERROR...MATRIX SINGULAR:
667% BEEP 1500,.3
661 G_j_return: !
6 6 9 0 ~ R E T U R N ~
6700 Print_results:
6 7 1 0 \text { Sum_of_y=0}
6 7 2 0 \text { Sum_of_y_sqrd=0}
6730 Sun_res_sqrd=0
670 FOR I=1 TO NUE_ROWE
6750 Y_calc=0
6 7 6 1 ~ F O R ~ J = 1 ~ T O ~ N u m , c o l u m n s
6770 Y_calc=Y_calc+Soln_vector(J)*Data_matrix(I,J)
6 7 8 0 ~ N E X T ~ J ~
6790 Residual(I)=INT(Y_calct.5)-Y_data(I)
6000 Y_calculated(I)=INT(Y_calct.5)
6810 Sun_res_sqrd=Sum_res_sqrd+Residual(I)*Residual(I)
6820 Sun_of_y=Sun_of_y+Y_data(I)
    Su__of_y_sqrd=Su__of_y_sqrd+Y_data(I)*Y_data(I)
6 8 4 0 ~ N E X T ~ I ~
```



```
6860 IF NUw_rows=Nu__columns THEN E5=SQR(Sum_res_sqrd)
687 IF Num_rows{)NUM_coluans THEN E5=SQR(Sum_res_5qrd/(Num_rows-Num_columsi)
6880 FOR J=1 TO Nu:_coluens
6 8 9 0 ~ E r r o r \_ v e c t o r ( J ) = E 5 * S Q R ( A B S ( B \_ c o e f f ( J , J ) ) ) ,
6 9 0 0 ~ N E X T ~ J ~
6 9 1 1 ~ P R I N T
```

```
6 9 2 1 ~ P R I N T ~ " X ~ Y ~ Y . C A L C U L A T E D ~ R E S I D U A L " '
6 9 3 0 ~ P R I N T ~
6940 FOR I=1 TO NUM___rows
6950 PRINT X_value(I),Y_data(I),TABi25);Y_calculated(I),TAB(46);Residual(I)
6960 Pofu(New_start_bin-1+I)=Y_calculated(I)/Total_sum
6 9 7 0 \text { NEXT I}
6 9 8 0 \text { PRINT}
6 9 9 0 ~ P R I N T
7000 PRINT " COEFFICIENTS * ! ERRORS"
7010 PRINT "";SOln_vector(1);TAE(22) ! ERror_vector(1);" (ZEROETH ORDER TE
RH)"
7020 FOR I=2 TO Num_columns
7030 PRINT Soln_vector(I);TAE(22) ! ;Error_vector(I)
7 0 4 0 ~ N E X T ~ I ~
7051 PRINT
7060 PRIN:" CORRELATION COEFFICIENT ";CORT_coeff
7070 RETURN
```

7080 Create_file: ! THIS SUBPROGRAM WRITES THE HISTOGRAK TO THE DISC.
7090 CREATE BDAT "HISTO"\&VALS(File_nU部er) , 1,512
7100 PRINT CHR $\$(12)$
1111 ASSIGN PHisto_file TO "HISTO"\&VALS(File_nubber)
7120 OUTPUT QHisto_file;Histo_val(*)
7131 ASSIGN EHisto_file TO *
7140 RETURN
7151 Get_histo_file: ! THIS SUBROUTINE REASS A HISTC FILE FROM DISC.
7160 ASSIGN EHisto_file TO "HISTO"\&VALs(File_nuaber) ! GET HISTOGRAM UALUES
7170 PRINT CHRz(12)
7180 ENTER PHisto_file;Histo_val(*) ! FROM THE FILE ON
7190 ASS:GN EHisto_file TO * ! THE DISK.
7201 RETURN
7210 Error_handler: ! THIS SUBROUTINE ALLOWS RECOUERY FROM THE MOST
$722 \mathbb{1}$! COMMON KEYBOARD INPUT ERRORS.
1231 IF ERRN $=54$ THEN
7240 PRINT TABXY $(1,16)$; "DJPLICATE FILE NUMBER SPECIFIED...TRY AGAIN"
7250 BEEP 1500,. 3
7261 DISP "ENTER FILE NUMBER ";
7270 INPUT File_number
1281 END IF
7290 IF ERRN=56 THEN
7300 PRINT TABXY(1
7310 BEEP 1500,. 3
7321 DISP "ENTER FILE NUMBER ";
7330 INPUT File_number
1340 END IF
7350 IF ERRN $\ 54$ AND ERRN $\>50$ THEN
7360 PRINT TABXY $(0,15)$; "SOFTWARE UNRECOUERABLE ERPOR HAS OCCLIRRED"
7370 PRINT TABXY(0,16);"PROGRAM EXECUTION IS HALTED"
7380 PRINT TABXY(0,17); "ERRN ";ERRN
1391 BEEP 1500, 3
7400 STOP
7411 END IF
7420 RETURN
7431 END

APPENDIX B

THE LEAST-SQUARES CURVE FITTING ALGORITHM

The curve fitting algorithm employed to model the histogram valley region is based on the least-squares criterion and uses the Gauss-Jordan method of elimination for solving the resulting simultaneous equations. The theory behind this approach is briefly described in this appendix.

Let the vector \bar{r} contain the elements r_{i} which are defined as the residuals and can be expressed by

$$
r_{i}=\hat{y}_{i}-y_{i}
$$

where y_{i} are the actual y values corresponding to an x of an (x, y) pair and \hat{y}_{j} are the calculated values. The least-squares criterion requires that the sum of the residuals squared be minimized. For example, assuming a second order polynomial curve-fitting equation of the form

$$
\hat{y}_{i}=A+B x_{i}+C x_{i}^{2} .
$$

Then by substitution

$$
r_{i}=A+B x_{i}+C x_{i}^{2}-y_{i}
$$

and the sum of the residuals squared is

$$
\sum_{i=1}^{n} r_{i}^{2}=\sum_{i=1}^{n}\left(A+B x_{i}+C x_{i}^{2}-y_{i}\right)^{2}
$$

where n is the number of data points.
To find the values for A, B and C that minimize the previous expression, the derivative with respect to each unknown must be taken and set equal to zero. This can be expressed as

$$
\frac{\delta \Sigma r_{i}{ }^{2}}{\delta A}=0, \quad \frac{\delta \Sigma r_{i}{ }^{2}}{\delta B}=0 \text { and } \frac{\delta \Sigma r_{i}{ }^{2}}{\delta C}=0
$$

Substituting the expression for r_{i} and taking derivatives yields

$$
\begin{aligned}
\frac{\delta \Sigma r_{i}^{2}}{\delta A} & =\frac{2 \Sigma\left(A+B x_{i}+C x_{i}{ }^{2}-y_{i}\right) \delta \Sigma\left(A+B x_{i}+C x_{i}{ }^{2}-y_{i}\right)}{\delta A} \\
& =2 \Sigma\left(A+B x_{i}+C x_{i}{ }^{2}-y_{i}\right) \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\delta \Sigma r_{i}^{2}}{\delta B} & =\frac{2 \Sigma\left(A+B x_{i}+C x_{i}^{2}-y_{i}\right) \delta \Sigma\left(A+B x_{i}+C x_{i}^{2}-y_{i}\right)}{\delta B} \\
& =2 \Sigma\left(A+B x_{i}+C x_{i}^{2}-y_{i}\right) \Sigma\left(x_{i}\right) \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\delta \Sigma r_{i}^{2}}{\delta C} & =\frac{2 \Sigma\left(A+B x_{i}+C x_{i}^{2}-y_{i}\right) \delta \Sigma\left(A+B x_{i}+C x_{i}^{2}-y_{i}\right)}{\delta C} \\
& =2 \Sigma\left(A+B x_{i}+C x_{i}^{2}-y_{i}\right) \Sigma\left(x_{i}^{2}\right) \\
& =0 .
\end{aligned}
$$

The set of three equations can be expressed as

$$
\begin{aligned}
& A \sum n+B \sum x_{i}+C \sum x_{i}^{2}=\sum y_{i} \\
& A \sum x_{i}+B \sum x_{i}^{2}+C \sum x_{i}^{3}=\sum x_{i} y_{i} \\
& A \sum x_{i}^{2}+B \sum{x_{i}}^{3}+C \sum{x_{i}}^{4}=\sum{x_{i}}^{2} y_{i} .
\end{aligned}
$$

The solution of these three simultaneous equations gives the values for A, B and C which minimize the sum of the residuals squared and, hence, the best least-squares curve fit.

The Gauss-Jordan method of solving simultaneous equations is used for reasons of execution time and expandability. For the second order polynomial the coefficient matrix $[\mathrm{K}]$ and constant matrix [G] become

$$
[k]=\left[\begin{array}{lll}
\sum n & \sum x_{i} & \sum x_{i}{ }^{2} \\
\sum x_{i} & \sum x_{i}{ }^{2} & \sum x_{i}{ }^{3} \\
\sum x_{i}{ }^{2} & \sum x_{i}{ }^{3} & \sum x_{i}{ }^{4}
\end{array}\right] \quad \text { and } \quad[c]=\left[\begin{array}{l}
\sum y_{i} \\
\sum x_{i} y_{i} \\
\sum x_{i} y_{i}
\end{array}\right]
$$

where all summations can be determined directly from the input data. The simultaneous equations can then be written as

$$
[K]\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]=[G] \text {. }
$$

The Gauss-Jordan method reduces $[K]$ to a unity matrix to yield

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]=[S]
$$

where the matrix $[S]$ is now the solution matrix.
The methodology is the same and the derivation is similar for other order polynomials than the example shown here. However, care must be exercised because the increased number of multiplies, divides, and adds for high order polynomials contributes to losses in accuracy.

APPENDIX C
 COMPUTATION OF THE CORRELATION COEFFICIENT

The correlation coefficient computed by the histogram modeling subroutine provides a measure of the accuracy of the polynomial curve used to model the histogram valley. The correlation coefficient compares the variance of the computed curve values (about the mean of the true curve) to the variance of the true curve (about its own mean). This can be expressed as

$$
\rho=\left[\frac{\frac{1}{N} \sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\frac{1}{N} \sum\left(y_{i}-\bar{y}\right)^{2}}\right]^{\frac{1}{2}}
$$

where $\rho=$ correlation coefficient

$$
y_{i}=\text { true curve values }
$$

$$
\bar{y}=\text { mean value of true curve }
$$

$$
\hat{y}_{i}=\text { calculated curve values and }
$$

$$
N=\text { number of data points. }
$$

All summations in this appendix are over the interval $i=1$ to N.
The variance of the true curve can be expressed as

$$
\frac{1}{N} \sum\left(y_{i}-\bar{y}\right)^{2}=\frac{1}{N} \sum\left(y_{i}-\hat{y}_{i}\right)^{2}+\frac{1}{N} \sum\left(\hat{y}_{i}-\bar{y}\right)^{2}+\frac{2}{N} \sum\left(y_{i}-\hat{y}_{i}\right)\left(\hat{y}_{i}-\bar{y}\right)
$$

The last summation in the preceding equation is zero because all terms in that sum have factors of the form

$$
y-a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}
$$

which are zero by virtue of the solution of the simultaneous equations. Substituting the second equation into the first equation yields

$$
\rho=\left[\frac{\frac{1}{N} \sum\left(y_{i}-\bar{y}\right)^{2}-\frac{1}{N} \sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{\frac{1}{N} \sum\left(y_{i}-\bar{y}\right)^{2}}\right]^{\frac{1}{2}} .
$$

It follows directly that

$$
\rho=\left[1-\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}\right]^{\frac{1}{2}}
$$

As the correlation between the true curve and the calculated curve improves, the correlation coefficient approaches the value 1. Very dissimilar curves have a low correlation coefficient.

The histogram modeling subroutine uses this final equation to compute the correlation coefficient.

LIST OF REFERENCES

Castleman, Kenneth R. Digital Image Processing. Englewood Cliffs, N.J.: Prentice-Ha11, 1979.

Chin, Roland T., and Harlow, William A. "Automated Visual Inspection: A Survey." IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-4 (November 1982): 557-562.

Gonzalez, Rafael C., and Wintz, Paul. Digital Image Processing. London: Addison-Wesley, 1977.

Kaplan, Gadi. "Industrial Electronics." IEEE Spectrum 21 (January 1984): 68-71.

Miller, Alan R. Basic Programs for Scientists and Engineers. Berkeley: Sybex, 1981.

Papoulis, Athanasios. Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill, 1965.

Peleg, Shmuel. Iterative Histogram Modification, 2. College Park, Maryland: University of Maryland, 1977.

Pratt, William K. Digital Image Processing. New York: Wiley and Sons, 1978.

Rosenfeld, Azriel, and Kak, Avinash C. Digital Picture Processing, 2 vols. New York: Academic Press, 1982.

Weszka, Joan S. Threshold Evaluation Techniques. College Park, Maryland: University of Maryland, 1977.

