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ABSTRACT 

Visual inspection of printed circuit boards has generally 

depended on human inspectors. However, a system has been developed 

which allows for automated visual inspection using robotics and 

modern image processing techniques. This paper first ·introduces 

automatic visual inspection processes, overviews the Automatic Board 

Assembly, Inspection and Test (ABAIT) system, reviews image process­

ing concepts and describes the Circular Pipeline Video Processor 

(CPVP). Image data from the CPVP is analyzed and an investigation 

into alternate segmentation algorithms to identify circuit board 

features is presented. The relative performance of these algorithms 

is compared and conclusions drawn. 
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CHAPTER 1 

AUTOMATED VISUAL INSPECTION 

The Need for Automation 

In mass production facilities, product 

to insure that the quality standards are 

inspection is required 

being met. Further-

more, products manufactured for military and aerospace applications 

usually require a 100 percent inspection rate, both while under con­

struction and in their completed state. 

Visual inspection of products for the detection of both func­

tional and cosmetic defects is one of the most difficult of the 

inspection processes. Past methods have usually relied on human 

inspectors to determine presence or absence of defects. Aids such 

as a magnifying lens and a video display system can increase efficien­

cy. However, visual inspection is a repetitive, monotonous procedure 

and studies (Chin and Harlow 1982) show that the accuracy of human 

visual inspection declines with dull and routine jobs. 

Automated visual inspection has justifiable advantages over 

human inspectors (Chin and Harlow 1982). As pointed out by Chin 

and Harlow, these advantages include: 

1. freeing humans from the dull and routine; 

2. saving human labor costs; 

3. performing inspection in unfavorable environments; 

4. reducing demand for highly skilled human inspectors; 
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5. analyzing statistics on test information and keeping records 

for manufacturing decisions; and 

6. matching high-speed production with high-speed inspection. 

Despite the apparent advantages of automated visual inspection, it 

has not been aggresively implemented in most production facilities. 

A major drawback is the lack of general purpose, ready to deliver 

systems. Most of the present systems are either highly specialized, 

slow, bulky, expensive, or require large host computers. 

Current Inspection System Availability 

Simple electro-optical gauging equipment is available commer­

cially (Chin and Harlow 1982). This equipment bases its pass/fail 

decision on simple measurement techniques operating on an object's 

boundaries. Simple edge detection circuitry is used on binary images 

to determine these boundary locations. General purpose visual in­

spection systems ·which are software based are also commercially 

available. The operation of these systems requires a training phase, 

in which a human operator must teach the system the features and 

allowable tolerances, and an inspection phase, when the system scans 

the product to be inspected comparing the measured features against 

the previously stored limits. 

Advances in vision systems in 1983 made systems capable of 

identifying and processing shades of gray available. These new 

systems are based on a hardware/software combination. This is an 

attempt to decrease processing time, yet maintain some flexibility. 

Ford Motor Company is planning to use a vision system developed by 

Synthetic Vision Systems of Ann Arbor, Michigan to check electronic 
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circuits . in automotive electronic control modules (Kaplan 1984). 

Control Automation Inc. of Princeton, N.J. has introduced a visual 

inspection system which is to be used to inspect printed circuit 

boards to verify that components are properly inserted (Kaplan 

1984). Itran Corporation of Manchester, N.H. has developed an auto­

mated vision inspection system requiring minimal set up time and 

little knowledge of computer programming. After being programmed 

the system is capable of inspecting objects on a production line. 

One of the most extensively inspected subassemblies of elec­

tronic equipment is the printed circuit board (PCB). Typical flaws 

consist of conductor-to-conductor spacing, shorts, opens, conductor 

width, hole size and hole placement. Furthermore, the artwork 

(photomask) used to produce the PCBs must also be inspected for 

similar flaws. Though human inspectors can easily locate obvious 

flaws, small flaws and tolerances in the 2 to 5 mil range are 

difficult to detect. Automated visual inspection is well suited 

for these instance~. 

Four Basic Inspection Processes 

Four basic approaches to automated visual inspection of PCB's 

are image subtraction, feature matching, dimensional verification 

and the syntactic approach. Image subtraction is the most straight­

forward approach. The basic premise calls for an image of the area 

under inspection to be compared directly against a perfect image 

of that area which has previously been stored in a data base. The 

difference in the two images is analyzed for error information. 

Implementation schemes using video disc data storage and masked 
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illumination techniques (Chin and Harlow 1982) have been tried, but 

the basic problems remain. These problems are the requirement of 

an extremely large data base, precise PCB alignment, constant illumi­

nation and accurate scanners. 

A second approach to PCB inspection is feature matching. Dif­

ferent features such as edges, land placement and holes are extracted 

and compared against the features extracted from a good PCB. Chin 

and Harlow (1982) used an interactive system to train an inspection 

system to look only for specific features on a PCB under test and 

compare against stored feature data. The requirement for the entire 

PCB image to be scanned or stored is eliminated, but the system still 

requires a large data base and is still a comparison based system. 

For a more specialized type flaw, the expansion-contraction 

method can be used. In its operation, areas identified as lands 

are expanded (enlarged) in all directions. Small gaps become filled 

in. These same areas are then contracted to a state smaller than 

the original size. Small artifacts are thus eliminated. After 

expansion back to the original size, the image subtraction method 

is used to identify all gaps and artifacts. 

Dimensional verification is straightforward and involves measur­

ing land widths, hole widths, spacing, etc., directly. Problems arise 

in determining where to make measurements for any given PCB configu­

ration. Large data bases and large processing times are drawbacks 

to this approach. These first three approaches are illustrated in 

figure 1. 
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The syntactic approach uses priTiitive patterns and structures 

(i.e. corners, lines, etc.) to describe the PCB. Once the PCB des­

cription is complete, the primitives of an area under inspection 

can be searched for known defects. Some studies have been made in 

this area (Chin and Harlow 1982), though computational requirements 

are still large and time consuming. 

In summary, a 100 percent inspection rate is often required 

of today's manufactured products. The visual inspection of printed 

circuit boards is an area of growing importance and has generally 

relied on human inspectors. Several approaches have been developed 

for automated visual inspection processes and are especially suited 

for PCB inspection. 



CHAPTER 2 

AUTOMATIC BOARD ASSEMBLY, INSPECTION AND TEST 

A System Overview 

In an effort to maintain high quality stanqards and at the same 

time increase efficiency while decreasing cost, Martin Marietta 

Orlando Aerospace is developing a computer controlled printed circuit 

board assembly line termed the Automated Board Assembly, Inspection 

and Test (ABAIT) system. The system includes raw printed circuit 

board inspection, component insertion, wave solder and cleaning 

stations. The part of the system discussed in this report is the 

visual inspection detail station. 

The Visual Inspection Detail Station 

The visual inspection detail station consists of both the visual 

inspection processing equipment and the robot. The layout of the ' 

visual inspection station is illustrated in figure 2 and a picture 

of the station during development and integration is shown in figure 

3. 

Following the layout of figure 2, typical operation of the 

detail station is as follows: 

1. PCB' s to be inspected are pl aced on tab 1 e A. 

2. The PCB is placed on the feeder tray by the robot and the 

PCB's bar code is read. 

3. The PCB is fed onto the X-Y translation table. 

7 
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Fig. 3. Visual inspection detail station during system integration 
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4. The PCB is clamped to the table and the table is stepped 

through a predetermined sequence. 

5. An image of a section of the PCB is obtained at each step 

by the overhead camera and processed by the image processing 

equipment. 

6. When the inspection is completed, the ·robot places the PCB 

onto table B or C, depending on the inspection outcome. 

7. Board flaws and their location are printed. 

8. The next PCB, having been placed on the feeder tray, is 

loaded onto the X-Y table and the procedure is repeated. 

Objectives of the Inspection Station 

The ultimate goal of the visual inspection station is to provide 

a 100% inspection of the artwork, inner layers of multi-layer PCBs 

and unpopulated PCB's being produced at the Ocala manufacturing 

facility. This goal will allow Martin Marietta to find manufacturing 

defects before they are integrated into major assemblies and thus 

improve overall product quality. Specific parameters to be inspected 

for are: 

1. Conductor width (minimum) 

2. Conductor spacing (minimum) 

3. Annular rings 

4. Broken conductors 

5. Nicks 

6. Pinholes 

7. Hole sizes 
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Targeted success rates cal~ for a 95% detection rate of detecting 

actual defects and a maximum error rate of 10% for identifying a 

flaw when none is present. Furthermore, the system thru-put should 

be maximized while maintaining a minimum resolution of 0.001 11
, the 

current industry standard. Eventually, the system is to reliably 

inspect up to 200,000 PCB's (or artwork) per year with a ~inimal 

amount of human intervention. 



CHAPTER 3 

IMAGE PROCESSING CONCEPTS 

Fundamentals of Image Processing 

"Picture processing or image processing is concerned with the 

manipulation and analysis of pictures by computer" (Rosenfeld and 

Kak 1982). The two main areas of application for image processing 

are the " ••• improvement of pictorial information for human interpre­

tation and processing of scene data for autonomous machine percep­

tion." (Gonzales 1977). For all cases in this paper, an image is 

defined by a two-dimensional function f(x,y), where x and y are spa­

tial co-ordinates in the image plane, and the value of the function 

at any point (x,y) is a measure of the brightness of the image at 

that point. For monochromatic or black and white images the bright­

ness values are termed gray levels. 

Processing by computer requires digital data. Therefore, images 

must be digitized before they are of use. A digital image results 

when a sampling process is used to discretize the image in both spa­

tial co-ordinates and brightness (Gonzales 1977). Samples in the 

spatial domain are usually taken at a regularly spaced array of 

points and the sample brightness is usually the image brightness 

quantized to a set of discrete equally spaced gray levels. A single 

element of the digitized image is called a pixel, an abbreviation 

for picture element. 

12 
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Cartesian co-ordinates are a common choice for spatial represen­

tations. This convention is shown in figure 4a. Often the neighbor­

hood of a particular pixel is specified, where a neighborhood is 

simply a predefined set of pixels in the vicinity of the pixel under 

scrutiny. A common convention for identifying the co-ordinates of 

a pixel and its eight closest neighbors follows the Cartesian conven­

tion and is shown in figure 4b. This is called a 3x3 neighborhood. 

Operations on digital images, whether for enhancement or the 

extraction of information, fall into one of three main categories; 

point, local, or geometric operations. In point operations, the 

output gray level of a pixel depends only on the value of that pixel 

at the input and the operation performed. For local operations, 

the output level of a pixel depends only on the input levels of a 

neighborhood of that point. In geometric operations, the output 

level of a pixel depends only on the input level(s) of some other 

point(s) defined by a geometrical transformation (Rosenfeld and Kak 

1982). Furthermore, these operations can be combined to meet 

processing requirements. 

Image Enhancement 

The improvement of pictorial information is known as image 

enhancement. Enhancement techniques seek to process an image so 

that the result is better suited for analysis. It differs from image 

restoration in that there is no concentrated effort to restore the 

image to its ideal state. Actually, there is no general standard 

for image enhancement because there is no general standard for the 

image quality required for beneficial analysis. The standard is 
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Fig. 4. Cartesian co-ordinate convention. (a) Pixel identification 
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highly dependent on the particular application. Furthermore, the 

definition of image enhancement stops short of information extraction 

(Pratt 1978). 

The three common areas of image enhancement are gray scale modi­

fication, sharpening, and smoothing. Gray scale modifications can 

be made directly through contrast manipulations or indirectly through 

histogram modifications and a subsequent gray level transformation. 

The direct method is straightforward and can simply consist of multi­

plying each gray level by the same constant. Alternatively, consider 

an image quantized to J levels, where J is the integer denoting the 

maximum number of gray levels, but whose range is a subset of J. Re­

stricting the output to J levels and using a linear mapping scheme, 

the image range can be enhanced as shown in figure 5. This method 

assumes non-uniform spacing side-effects are acceptable. 

A non-linear enhancement known as contrast stretching is pre­

sented by Gonzalez (1977). Let r denote any gray level in the original 

image and s denote the corresponding transformed gray level in the en­

hanced image given by the transformation s=T(r). If T(r) has the form 

of figure 6a, the resultant image tends to have a higher contrast. 

Levels below m are compressed and darkened and levels above m are 

expanded and lightened. In the limiting case, see figure 6b, a 

binary image results. 

An indirect method of contrast enhancement is through the gray 

level histogram. The gray level histogram is a function showing, 

for each gray level, the number of pixels in the image that have 

that gray level (Castleman 1979). Normalizing the histogram by 
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dividing by the area of the image yields the probability density 

function (pdf) of the image. The histogram of an image is unique 

but the converse is not true since the histogram contains no spatial 

information on the pixels. A sample histogram is shown in 

figure 7. 

In contrast enhancement through histogram modification tech­

niques, the original image is rescaled so that the histogram of the 

resultant image follows some predetermined form. Enhanced images 

possessing exponential, hyperbolic, Rayleigh and uniform shaped 

histograms have been studied (Pratt 1978). The most common of these 

is the uniform shape resulting from histogram equalization. The 

equalization process can be considered to be a point transformation 

s=T(r) such that the output is uniform over some range. An illustra­

tion of this principle is shown in figure 8. 

Images with accented edges are often more visually pleasing 

than the original image. Sharpening or edge crispening is used to 

accentuate edges. Techniques for edge enhancement include passing 

the image through a high-frequency bandpass filter, unsharp masking 

(Pratt 1978), and direct convolutional filtering. The bandpass 

filter is normally implemented using Fourier transforms. The unsharp 

masking is a method which requires an image to be scanned at normal 

resolution and then at a lower resolution. The two images are com­

bined in a way that gives sharper edges with slight overshoot and 

undershoot. Discrete convolutional filtering employs the use of 

a convolutional array or convolutional mask. In general, an output 

MxM image array Q is formed by discrete convolution of the input 
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NxN image array F with the Lxl convolutional array H according to 

the relation 

N-2 
Q(m1 ,m2) = L 

n
1 

=1 

N-2 
L F(n1 ,n

2
) H(m

1
-n

1
+1,rn 2 -n2+1). 

n 2 =1 

Some typical high-pass masks are shown in figure 9. 

Image smoothing is the term used to refer to an operation used 

to reduce the noise in digital images. The approach can be either 

classical in nature or via "spatial ad hoc processing techniques" 

(Pratt 1978). Classical techniques normally imply a two-dimensional 

lowpass filter. A transfer function is derived to meet frequency 

specifications and implemented through either Fourier transforms 

or difference equations. The Circular Pipeline Video Processor per-

forms most efficiently using spatial filtering techniques due to 

its specialiized architecture. The rest of this section presents 

several spatial smoothing techniques. 

Neigbborhood averaging is the simplest case of smoothing. Given 

an NxN image, a smoothed image is generated by replacing the center 

pixel of each neighborhood with the average gray level value of that 

neighborhood. For a 3x3 neighborhood centered at co-ordinates (x,y) 

with value f(x,y), the new gray level becomes 

g(x,y) = i [f(x-1,y-1 )+f(x,y-1 )+f(x+1,y-1 )+f(x-1,y) 

+f(x+1,y)+f(x-1,y+1 )+f(x,y+1 )+f(x+1,y+1 )] . 

Variations on this scheme include different neighborhoods, including 

the pixel itself in the average and requiring that the neighborhood 
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average and pixel value differ by some minimum threshold before re-

placing the pixel. 

Convolutional masks may also be used for lowpass spatial 

filtering. Following discrete convolution with a 3x3 mask, a 

neighborhood of the resulting image is shown in figure 10, where 

Qi ,i=l,2 ••• 8, represents the outputs of the convolution and Xis the 

pixel under test. The operation is now similar to that of averaging 

a neighborhood. Several lowpass form convolutional masks are shown 

in figure 11. 

Averaging of multiple images is another smoothing technique 

given it is possible to obtain multiple images of the same scene. 

If a noisy image is denoted as 

g(x,y) = f(x,y) = f(x,y) + n(x,y) 

where f(x,y) is the original image and n(x,y) is a noise component 

which is assumed to be uncorrelated with zero mean, then an image 

g(x,y) is formed by averaging M different noisy images 

M 

g(x,y) =-M1~ ( ) ~ gi x, y . 

i =1 

Papoulis (1965), Castleman (1979), and Gonzales (1977) all show 

that as the number of images increases the resultant image g(x,y) 

more closely resembles the original image f(x,y). Expressing this 

mathematically 

and 
2 1 2 

0 g(x,y)_.M 0 n(x,y) 

as M -..o.Q. 



22 

As M increases, the variability of each pixel decreases and the signal 

to noise ratio increases by a factor equal to the square root of 

the number of images averaged. Practical constraints involve the 

ability to maintain precise image alignment and the inaccuracy 

evolving from recursive averaging. 

The median filter is a non-linear signal processing technique 

that is especially useful for noise suppression in images. In the 

one dimensional case, the median filter consists of a sliding window 

covering an odd number of pixels. The center pixel is replaced with 

the median value of the window. The median value is defined as that 

value for which (N-1)/2 pixels are smaller or equal and (N-1)/2 

pixels 

filter. 

pressed. 

are larger or equal. The median filter is an edge preserving 

Steps and ramps are left undisturbed while noise is sup­

The median filter is extended to two dimensions by extend-

ing the window to cover a neighborhood of pixels. The center pixel 

is then replaced by the median value. As pointed out by Pratt 

(1978), the median filter is much more effective in reducing high 

frequency noise than smoothly generated noise. He cautions that 

the median filter is an ad hoc tool whose performance should be 

monitored to determine its usefulness. 

Segmentation 

Given an image, image analysis must be performed to extract 

a meaningful description of the image contents for further process­

ing. A meaningful description, of course, is a function of the 

information required from the image. Segmentation is the term 

applied to the procedure for dividing the image contents into 
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separate regions. Numerous segmentation methods are dVailable. The 

choice is dependent on factors such as accuracy required, speed and 

hardware restrictions. The segmentation evaluation criteria is 

clearly a function of the usefulness of the segmented image. 

Segmentation classifies individual pixels into classes or 

states. Classification methods may depend on an individual pixel's 

gray level, local properties or global characteristics. The simplest 

segmentation scheme uses only an individual pixel's brightness for 

classification. Given a fixed brightness level, all pixels brighter 

than this level are grouped in one class and all the rest are grouped 

in another class. This is the same concept presented in the limiting 

histogram equalization example of figure 6. The method can easily 

be expanded by adding information from the entire scene or from local 

neighborhoods to dynamically adjust the threshold gray level. 

For images composed of relatively few kinds of regions, the 

gray level histogram is likely to contain concentrated areas of pixel 

populations. A simple segmentation approach for this type of image 

is to select gray level thresholds which separate these populated 

regions into separate groups and classify each pixel according to 

the group to which it belongs. This is termed amplitude segmenta­

tion. 

Extending amplitude segmentation to include images with spectral 

information leads to a spectral classification technique. Spectral 

classification uses a clustering or grouping technique to identify 

similar regions by their color. The color of the pixel defines a 

point in (red, green and blue) space and pixels in close proximity 
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are grouped together. 

Local properties provide numerous features to use as segmenta­

tion criteria. Edges, lines and spots can be detected by local 

operators and used to segment images. The busyness of a pixel based 

on its neighborhood can help separate regions of different texture. 

The average neighborhood gray level is a basic local property. 

Spatial classification utilizes several local properties to 

provide a more powerful approach. For example, a property or charac­

teristic of a pixel or its neighborhood such as gray level is com­

pared against the average gray level of a set of neighborhoods to 

determine the degree of similarity. A pixel is thus classified based 

on a spatially related set of pixels and neighborhoods. 

Combinations of the above methods are often used. Local proper­

ties can be used to assign an edge value to a pixel based on the 

strength of the edge. Amplitude segmentation is then used to identi­

fy only those pixels with an edge value greater than a minimum thres­

hold as true edges. 

The CPVP classifies pixels into states using amplitude segmen-

tation. The threshold(s) is dynamically adjusted using scene infor­

mation contained in the global histogram of the image. Although the 

implementation of such a scheme is relatively straightforward, the 

scheme is not ideal. As will be demonstrated later, a greater emphasis 

must be placed on prior knowledge of scene content and image ·en-

hancement for the approach to be successful. 



CHAPTER 4 

THE CIRCULAR PIPELINE VIDEO PROCESSOR 

The System Hardware 

The image processing required by the visual inspection process 

is performed by the Circular Pipeline Video Processor (CPVP). The 

CPVP is shown in figure 12 and a block diagram highlighting its 

internal functions as well as certain external support functions 

is shown in figure 13. It is not the purpose of this paper to pro­

vide a detailed description of the CPVP hardware and software. How­

ever, to appreciate the data analysis performed, analysis tools 

required and the direction taken in investigating alternate segment­

ing routines, a basic understanding of the CPVP and its support 

equipment is necessary. 

Using figure 13 as a guide, the following list briefly describes 

the CPVP system. 

1. Host Computer - The host computer is a Hewlett Packard 

HP9836 and is responsible for executive control of 

the entire visual inspection station. Control is 

exercised over the HP Interface Bus. 

2. Mass Storage - Mass storage is supplied by an HP7908 hard 

disc and is responsible for storing all programs, 

algorithms, and data bases required by the inspection 

process. 

25 
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Fig. 12. The Circular Pipeline Video Processor 



27 

:,.. ~ 
!Sc ... . .. 
== ~ "' .. 

•oz- .. o• 
•O• . 

i ~ .. • .. > c > 
... .. . 
c 8 

~ 
u 

• l 
Q) 

..r: 
+.> 

c+-

·-~ 
0 . 
E . 

~ . 
; 

ttl 

.. i 
~ 

• e e O'l 

0 

ro 
•r-.. 0 

~ : 
z N 

"O . ... 
... .. . .. ,_... ... ... •• 
0 .. r • ~i 

ro 
ao - 0 c: . c • . .. . .. • • :• 0 
az e • +.> 

u 
c: 
::s 

lJ_ 

.. ~c~-·~-v• 
M 
-4 

• i z--.. o•••• O'l 
•r-
lJ_ 

•·•oar"' __ .. ., .. 
·~- o-e~t11•• 

>-•-o •-·o 

••:11.0• .. 
>-• •O 



28 

3. Printer - The HP2671 printer provides a hard copy listing 

of flaw type and flaw location for each PCB inspected. 

4. Z8000 Controller - The CPVP controller is an Advanced Micro 

AM96/4116A MonoBoard Computer. It is a Z8002 based 

single board computer including both serial and 

parallel ports and a vectored fnterrupt structure. 

It is responsible for executing all algorithms and 

commands within the CPVP itself. 

5. Interface - The interface provides an HPIB port for the 

Z8000 controller. 

6. Video Sensors - The video sensors are four Fairchild CCD3100 

solid-state black and white television cameras. The 

sensor device is a 488x380 element buried-channel 

charge-coupled-device. 

7. Video Mux - The video mux selects one of four video lines 

for input to the CPVP while distributing sync signals 

to all four cameras. 

8. Video Digitizer - The video digitizer is based on the 

TRW1007 A/D converter and converts the raster scan 

video to 8 bit standard TTL levels. 

9. Sidecar Memory - Sidecar memory is a utility memory capable 

of holding one line of video information. It provides 

an interface between the frame storage memories and 

the ZBOOO controller. 



29 

10. Histogram - The histogram hardware computes and stores the 

global histogram of an image as it enters the main 

memory. 

11. Memory Controller - The memory controller controls all high 

speed data transfers into or out of any of the 

memories. 

12. Main Memory - The main memory is capable of storing two 

8 bit images and serves as the working memory for most 

processes. 

13. Auxiliary Memory - Auxiliary memory is used for off line 

storage and can hold four complete images. 

14. PVP PrograrT111er - The pipeline video processor prograrrmer 

controls real time data acquisition and high speed 

pipe operations. 

15. ALU - The arithmetic logic unit permits algebraic 

manipulation of an image or between two images. 

16. Convolver - The convolver allows discrete convolution of 

the image with a 3x3 mask. 

17. ITT - The image transform table performs a mapping 

function. Pixel values may be mapped to new values 

or it may be used to create a pseudo-color output. 

18. Monitor Interface - The monitor interface provides sync 

signals and D/A conversion for displaying the contents 

of main memory. 

19. Monitor - The monitor is an RGB color monitor capable of 

accepting external sync signals. 
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20. Cellular Array Processor - The cellular array processor 

(CAP) performs operations on a pixel based on its own 

state and/or the state of a set of its neighbors. 

With the basic functional blocks of the CPVP explained, the 

over a 11 operation of the system can be illustrated. The term 

circular pipeline video processor is indicative of the image pro-

cessing hardware architecture. As seen in figure 14, the data can 

be envisioned as leaving main memory, traveling through a pipe of 

processing operations and returning to main memory. This type of 

architecture permits multiple operations to occur with each pass 

through the pipe, thus reducing processing time. 

The System Software 

Software associated with the CPVP is concentrated in three main 

areas; HP Basic, CAPS Macros, and Z8000 assembly language. HP Basic 

is used by the HP9836 host computer to control the visual inspection 

station. Commands are issued and responses interpreted using Basic 

programs. 

CAPS Macros are the algorithms developed by the Martin Marietta 

Image Processing Lab for flaw detection on PCB's. CAPS is discussed 

in greater detail in the data analysis section. 

ZBOOO Assembly language is used for internal CPVP operations. 

Most debug and test routines are written in assembly code. CAPS 

Macros are also reduced to assembly code for implementation. 

An Operational Illustration 

In order to tie the hardware and software together, a sample 

processing sequence is illustrated in figure 14 and described below: 
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Fig. 14. A possible CPVP operational sequence 
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Initialization: 

1. An image of a PCB is captured and stored in one half of 

main memory. 

2. The same scene is again captured and stored in the other 

half of main memory. 

First Pass: 

1. These two images (image A and image B) are averaged together 

pixel by pixel in the ALU. 

2. The resulting image is smoothed via neighborhood averaging 

in the convolver. 

3. The ITT and CAP stages perform no operation. 

4. A global histogram is computed as the image returns to 

memory. 

Second Pass: 

1. The image passes through the ALU and convolver unaffected. 

2. Based on the global histogram, a threshold value is deter­

mined and the ITT maps the gray levels into two states 

corresponding to land and background. 

3. The CAP stages perform a non-destructive (no land is 

obliterated) uniform shrink on all lands. Assuming a ten 

pixel minimum land width, any land reduced to a two pixel 

width in less than four shrinks is too thin and tagged 

accordingly. Note that one shrink removes one pixel from 

each side of the land. 
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4. Sections of the image which have been tagged as containing 

flaws are reported to the host computer. Flaw descriptions 

are printed and the process is ready to repeat with a new 

image. 



CHAPTER 5 

IMAGE DATA ANALYSIS 

Purpose of Investigation 

The principles and feasibility of the automated visual inspec­

tion station, including the CPVP, have been proven in numerous demon­

strations. However, there has been concern over the accuracy of 

the current segmentation algorithms. All flaw detection schemes 

in the CPVP operate on images segmented into two or three states 

as compared to the unsegmented 256 states. Obviously, the ability 

of the CPVP to correctly identify PCB features to a high degree of 

accuracy is of paramount importance if the flaw detection algorithms 

are to yield reasonable results. 

In the early development of smoothing, segmentation, and flaw 

detection algorithms, simulated image data was used. Since that 

time the CPVP hardware has become operational and the final camera 

configuration and lighting conditions established. Printed circuit 

boards from the Ocala manufacturing facility have been obtained and 

used as demonstration boards. The flaw detection success rate has 

not been 100 percent with these boards. In addition to other 

reasons, inconsistent and inaccurate segmentation is viewed as a 

possible cause for the degraded operation. The rest of this paper 

contains an analysis of the CPVP using actual image data and investi­

gates alternate segmentation techniques. The purpose of this 

analysis and investigation is to provide a basis for improving the 

34 
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accuracy and reliability of the visual inspection process. 

Investigative Tools 

The first requirement for analyzing image data was to develop 

the capability to collect the image data and transport it to an image 

processing facility. Subsequent analysis could then take advantage 

of current on - site systems. Investigative tools were developed in 

HP Basic, Z8000 assembly code, Fortran and CAPS. DEC control lan­

guage routines were also invoked. The following list details the 

software required for the image transfer: 

1. Assembly code to present quarter-line segments of the CPVP 

main memory to an HPIB accessible I/O buffer. 

2. Assembly code to transfer Z8002 RAM contents to the HPIB 

interface. 

3. HP Basic to read Z8002 ROM (or ZSCAN emulator RAM) as ASCII 

data. 

4. HP Basic to interrogate the CPVP for image data and store 

this data on an IPL formatted floppy disc. 

5. DCL to transfer an image from an IPL formatted disc to an 

image plane in the DeAnza Array Processor. 

This software development was a significant task and involved the 

efforts of a group of engineers working separately and collectively. 

The image transfer path is shown in figure 15. 

The purpose of the image transfer to the CAPS system was to 

use its capabilities to evaluate image data. The CAPS system 

includes the CAPS language, a minicomputer to decode CAPS instruc-

tions and an array processor to execute the instructions. Features 
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Fig. 15. Image transfer path 
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of the system include: 

1. PDP 11/34 software which sets the various registers, 

transformation tables, etc. of the DeAnza array processor 

to operate on two 512x512 pixel images in 1/30 second. 

2. Four unique 512x512 pixel images accessible for image array 

processing. 

3. Fast image plane to image plane transfer (1/30 second). 

4. Fast image transfer between the DeAnza array processor and 

either magnetic tape or disc via PDP 11/34 buffering. 

5. Image scroll and zoom capability. 

6. Display cursor control in both movement and size manually 

available at joystick console. 

Image Data Description 

The CPVP image data collected for analysis was obtained during 

the final days of the visual inspection detail station integration. 

This section describes the sample images and the conditions under 

which they were made. 

The procedure for obtaining an image used the following steps: 

1. A sample PCB was manually loaded onto the X-Y table. 

2. The restraining system (clamps and vacuum) were activated. 

3. The X-Y table was manually positioned. 

4. A frame capture cofTITland was issued to the CPVP. 

5. The captured image was transferred to the CAPS system as 

outlined previously. 

System lighting included a combination of circular and linear 

fluorescent lights. The luminance was not measured, but uncontrolled 
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external sources such as room lighting and light from a large window 

provided minimal illumination as compared to the direct lighting. 

Camera system #2 was used for all image captures. Associated 

camera settings are provided by figure 16. 

Twenty sample images were transferred from the CPVP to the CAPS 

system and are listed in Table 1. A few floppy discs contained 

several bad sectors of 128 bytes each resulting in invalid image 

data. For the images transferred on discs containing bad sectors, 

a linear interpolation scheme was used to replace invalid pixels 

with the average value of their upper and lower neighbors. Official 

background material for artwork had not been established. Two sheets 

of HP thermal paper provided a suitable background while providing 

a basis for future repeatability. Images 16 through 20 were captured 

in immediate succession without disabling the restraining system 

or repositioning the X-Y table. However, an additional terminating 

load was apparently placed on the camera during the capture of image 

19. The result was a uniform decrease in intensity below the level 

of images 16 through 18 and 20. These repetitive captures provided 

a basis for implementing multiple image and histogram averaging 

techniques. This report deals predominately with inner layers, 

though the concepts and results can be extended to cover outer layers 

and artwork. 

System Response 

In order to study segmentation using the CPVP, it was necessary 

to know how the system "sees" the PCB under test. In effect, this 

is the system response. The system in this sense includes the 
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Image 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
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TABLE 1 

IMAGE DATA BASE 

Description 

Inner layer 
Inner layer 
Inner layer 
Inner layer 
Inner layer 
Inner layer 
Outer layer 
Outer later 
Outer layer 
Outer layer 
Artwork 
Artwork 
Artwork 
Artwork 
Resolution chart 
Inner layer 
Inner layer 
Inner layer 
Inner layer 
Inner layer 
Inner layer 
Inner layer 
Inner layer 

Comments 

Three interpolated 1/4 line segments 
Refl owed so 1 der 
Not re fl owed 
Not refl owed 
Not re fl owed 

Three interpolated 1/4 line segments 

16 through 20 are different captures 
of the same image. 

Multiple image average of 16 and 17. 
Multiple image average of 16, 17, 18. 
Multiple image average of 16, 17, 18 

and 20. 
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comp lete image path from the surface of the PCB, through the optics, 

the camera, the video preprocessor, the digitizer and into the CPVP 

memory. Although each section of this pathway has its own response, 

affected by shadows, CCD blooming and antialiasing filters, the pri­

mary concern was to determine total system effects and to draw some 

correlation between the actual PCB and the PCB as seen by the CPVP. 

The approach chosen to model the system response was to model 

the response in the X and Y directions independently as two first 

order responses. Although an image normally has a high degree of 

correlation between the horizontal and vertical directions, there 

are valid reasons for the independently modeled approach. 

The CCD sensor is inherently a two-dimensional system since 

all cells are illuminated simultaneously. The output video signal, 

however, is in a raster scan format resulting in a one-dimensional 

time varying signal. This signal is subsequently subjected to fil­

tering and processing in the one dimensional domain before being 

stored in memory. Also, PCB fault finding algorithms perform many 

operations in the X and Y directions independently, especially di­

mensional checks. Since accurate segmentation is critical for dimen­

sional checks, the effects of segmentation based on system response 

in the X and Y directions is important. 

Edge plots in the X and Y direction were constructed from sample 

edge regions of images 16, 17, 18 and 20. Using the CAPS system, 

pixel values from corresponding regions of each image were obtained. 

The average pixel value for a given co-ordinate was then computed 

and plotted. Edge plots based on the original stored image data 
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are shown in figures 17a and 18a. Treating the transition from back­

ground to land and vice versa as step inputs to the system, the 

rise and fall times and associated bandwidths based on first-order 

models representing the system response in the X and Y direction 

are listed in Table 2. 

An immediate result of the edge plots and models is the ability 

to determine the pixel resolvability. Based on the rise and fall 

times of the edge plots (or the frequency response of the first-order 

model) there is an amount of pixel classification uncertainty. Assum­

ing that a pixel must be less than or equal to the average background 

level to be classified as background and greater than or equal to 

the average land level to be classified as a land, then there are 

regions of classification uncertainty. The number of uncertain 

pixels corresponding to this classification strategy for figures 

17 and 18 are listed in Table 3. 

The uncertainty problem is compounded by smoothing techniques 

employed by the CPVP. Smoothing is necessary to reduce noise and 

sensor anomalies. But, the most easily implemented approach of 

neighborhood smoothing is also very costly in terms of system re­

sponse and resolvability. To illustrate this, images 16, 17, 18 and 

20 were subjected to the left-most lowpass convolutional mask of 

figure 11. The same edge regions were then examined as for the 

original images and the edge plots constructed. These edge plots 

and the corresponding system parameters are shown in figures 17b 

and 18b and Table 2. The number of uncertain pixels has increased 

as shown in Table 3. 
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Original 
Image 

Average 
Smoothed 
Image 

Medi an 
Smoothed 
Image 

TABLE 2 

EDGE RESPONSE 

X Edge 

Rise Time 575 ns 
Bandwidth 609 KHz 

Fa 11 Time 575 ns 
Bandwidth 609 KHz 

Rise Time 741 ns 
Bandwidth 472 KHz 

Fa 11 Time 695 ns 
Bandwidth 504 KHz 

Rise Time 574 ns 
Bandwidth 609 KHz 

Fall Time 574 ns 
Bandwidth 609 KHz 
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Y Edge 

445 ns 
787 KHz 

334 ns 
1050 KHz 

649 ns 
540 KHz 

463 ns 
755 KHz 

463 ns 
755 KHz 

426 ns 
821 KHz 



Original 
Image 

Average 
Smoothed 
Image 

Median 
Smoothed 
Image 

TABLE 3 

PIXEL UNCERTAINTY 

Number of Uncertain Pixels 

X Edge Y Edge 

Rising Edge 3 3 

Falling Edge 3 2 

Rising Edge 4 4 

Falling Edge 4 3 

Rising Edge 3 3 

Falling Edge 3 3 
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Although not readily implemented via the CPVP hardware, the 

effects of a median filter were also studied and illustrated in the 

same manner as the previous two cases. Note the edge preserving 

quality of the median filter. 

Additionally, a USAF #1951 target was used as a resolution 

chart. An unsmoothed X-edge profile was taken using this chart and 

is shown in figure 19. The edge profile characterizes a 0.0005 

millimeter wide bar on a clear film. Background material was the 

normal white paper. The bar width of 16.5 pixels was determined 

by using thresholds equal to 10% and 90% of the difference between 

the average bar (object) gray level and the average background gray 

level for the leading and trailing edges respectively. The 16.5 

pixel width corresponds to 0.303 millimeters per pixel or 0.0012 

inches per pixel. This spatial relationship between pixel count 

and object size, along with the pixel uncertainty discussed earlier, 

can be used to aid in choosing an acceptable threshold at which to 

segment the image. 

An obvious selection scheme is to choose a threshold such that 

the segmented land has the same dimensions as the true land. This 

implies that a single threshold cannot be placed at either the 

average object or the average background level. These schemes would 

place the threshold in a noisy region, particularly near the 

background level. Also, experience has shown that PCB backgrounds 

posess a degree of non-uniformity. Background levels vary with 

respect to their location on the PCB. 
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The threshold must be selected to segment the image in the un­

certain area to avoid serious noise problems. Furthermore, the level 

chosen is a function of the system response, the smoothing technique 

employed and the pixel values present. In order to properly segment 

the image to the degree of accuracy desired, a consistent segmenta­

tion method must be used and the true dimensions determined using 

prior established knowledge of the system response. The next chapter 

looks at several approaches for choosing a threshold for subsequent 

segmentation. 



CHAPTER 6 

ALTERNATE SEGMENTATION TECHNIQUES FOR THE CPVP 

Background Research of Threshold Techniques 

This section describes various threshold selection techniques 

as presented in recent publications and used in industry with varying 

degrees of success. Most of the techniques presented will be limited 

to dealing with images comprised of two types of regions, background 

and object, or background and land in the PCB case. 

For the general case, a threshold operator can be viewed as 

a test involving a function T of the form 

T(x,y,N(x,y), g(x,y)) 

where g(x,g) is the gray level of the pixel at co-ordinate (x,y), 

N(x,y) involves a local property at (x,y) and x and y are position 

dependent variables. Each point (x,y) is tested and if g(x,y) > 

T(x,y,N(x,y), g(x,y)) then (x,y) is classified as an object point. 

Otherwise, it is a background point (Weszka 1977). 

One of the earliest techniques for thresholding was the standard 

histogram method. This technique called for the threshold to be 

placed at the minimum between the peaks of the histogram. Drawbacks 

include long flat valleys making threshold selection difficult and 

the exclusion of edge information in the decision process. Weszka 

(1977) points out that Doyle has suggested that a "p-tile" method 

can enhance the standard histogram method providing the objects 

occupy a known percentage of the image. This scheme selects a 
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threshold which causes at least q% of gray levels to map into the 

object, where q is a predetermined percentage. According to Weszka 

(1977), others have suggested an alternate approach for making the 

standard method more useful. Basically, they computed a histogram 

in which all pixels were not weighted equally. Rather, the value 

of a difference operator at a point influenced that point's weight 

in the histogram. Higher weight was given to low edge value points, 

thus sharpening the histogram. 

For histograms with broad valleys and unequal size peaks, Weszka 

(1977) suggested the use of a digital "Laplacian" operator to produce 

a strongly bimodal histogram. The "Laplacian" is computed by taking 

the absolute difference between a pixel's gray level and the average 

gray level of its neighborhood. Using only points which have Lapla­

cian values in the upper percentile to construct the histogram re­

sults in a relatively symmetrical histogram with a sparsely populated 

valley. Analogous techniques to the Laplacian based technique have 

been developed using gradient operators and histogranvning only those 

points with high gradient values. The valley should correspond to 

the gray levels at which edge transitions are the strongest. 

In an attempt to minimize the misclassification error, a process 

of ·Gaussian curve fitting has been used. Rosenfeld and Kak (1982), 

Weszka (1977) and numerous others have derived the formulation for 

which the average probability of error is minimized. For a bimodal 

histogram, the threshold is chosen at the intersection of the two 

Gaussian curves representing the two peaks with the restriction that 

the intersection occurs between the two m cxies. 
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Thresholding schemes have also been devised for turning valleys 

into peaks (Weszka 1977), sharpening the peaks (Peleg 1977), and 

combining peaks. Additional schemes incorporate greater scene infor­

mation in the decision process using local and geometric properties. 

Scatter plots are often used to incorporate more variables than the 

histogram contains. Basically, though, the thresholding process 

reduces to the task of finding a value T which separates the image 

into background and object. 

Most thresholding schemes developed measure their effectiveness 

by their ability to segment images into recognizable or at least 

usable parts. Furthermore, suggested improvements are, more often 

than not, costly to implement in hardware. The CPVP relies strictly 

on standard histogram techniques for threshold selection. Hardware 

and time constraints limit the invocation of local properties into 

histograms. Therefore, the rest of this paper deals with thres­

holding techniques restricted to the constraints of the CPVP. 

Histogram Enhancement 

There are two possible avenues for histogram improvement. The 

image can be processed to improve the histogram before it is computed 

or the histogram can be operated on directly. The two techniques 

will be referred to as image smoothing and histogram smoothing. 

As discussed in Chapter 3, image smoothing reduces noise in 

the image. Another result of image smoothing is a smoother histo­

gram. Images obtained for use in multiple histogram averaging were 

used to create images smoothed by a median filter and smoothed by a 

lowpass convolutional mask. Results for one and two passes of the 
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lowpass mask were included. The corresponding histograms are given in 

figures ~O and 21 based on linear and logarithmic scales respectively. 

The log scale emphasizes histogram valley region activity. 

Direct histogram smoothing techniques have not been discussed 

yet. The histogram smoothing techniques employed for this paper 

are the uniformly weighted averaging window and the median filter 

window. The algorithms used for histogram manipulation were 

developed on the HP9836 computer for reasons of accessibility. A 

listing of these smoothing subroutines is contained in appendix A. 

The first histogram smoothing operation applied was the window 

averaging method. Basically, a variable length window of 3,5,7 or 

9 bins was moved along the histogram. The histogram value at the 

center bin of the window was replaced by the average value of the 

histogram within the window. The resulting smoothed histograms 

corresponding to image 16 are shown in figure 22. 

The second histogram smoothing technique is similar to the 

averaging window except that the center histogram value was replaced 

by the median value within the window. This approach attempts to 

remove artificially low or high value bins while preserving the 

sharpness of the peaks. In particular, images 1 through 5 each had 

a bin an order of magnitude lower than its neighbors. This seemed 

a highly unlikely occurrence and would severely affect threshold 

selection if not compensated for. The median filter is able to do 

what the averaging window cannot in a case such as this. Results 

of the median smoothing can be seen in figure 23. 
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Fig. 20. Linear scaled histograms of smoothed images. (a) Image 
16 unsmoothed (b) Image 16 median smoothed (c) Image 16 
average smex>thed once (d) Image 16 average smoothed twice 
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Fig. 21 . Log sea 1 ed histograms of smoothed images. (a) Image 16 
unsmoothed (b) Image 16 median sw.oothed (c) Image 16 
average smoothed once (d) Image 16 average smex>thed twice 
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Fig. 22. Average smoothed histograms for window sizes 1, 3, 5 
and 7 
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Fig. 23. Median smoothed histograms for window sizes 1, 3, 5 
and 7 
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The third histogram smoothing technique useo the histograms 

of images 16, 17, 18 and 20, four histograms of the same image. 

The histograms were averaged together as a group to provide the 

resultant histogram. Given N histograms with values a. 
1 

0,1, .•• 255, . then the resulting histogram values are given by 

N 

b(i) =~I.: 
j = 1 

a. J. 
l, 

for i = 0, 1 , .... 2 5 5 

where a.· =the value at the ith bin of the jth histogram l,J 

= the bin 

N = number of histograms and 

b(i) =the resultant bin value. 

Figure 24 shows the result of this method. 

Histogram Model 

i = 

In addition to the basic histogram enhancement techniques, a 

model for a typical bimodal histogram was developed. The purpose 

of the model was to use general tendencies of the original histograms 

to construct histograms which were more easily and consistently 

assigned threshold values. The histogram model consists of two 

Gaussian based functions representing the two peaks and a polynomial 

function for the valley region. The subroutine used to create the 

model is given in Appendix A. Since many of the threshold selections 

to follow depend on parameters directly or indirectly derived from 

the modeling subroutine, the procedure used is briefly explained 

below. Wherever possible, variable names are kept consistent between 

the description and the actual program. Figure 25 serves as a guide. 



" 

0 

40 80 120 160 200 240 

HISTOGRAM NO. 16 

(a) 

LOG 

40 80 120 160 200 240 

HISTOGRAM NO. 22 
( c) 

LOG 

e 

e 

40 ee 120 1se 200 240 

HISTOGRAM NO. 21 
( b) 

LOG 

40 10 120 1&0 2ee 240 

HISTOGRAM NO. 23 
( d ) 

LOG 

Fig. 24. Multiple histograms averaged together. (a) Image 16 
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Fig. 25. Histogram model parameters 
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1. Alpha_O and Beta 0 were determined. Alpha_O and Beta O 

are defined as the first and last bins which contain a 

minimum of 10 pixels and have at least 9 adjacent bins with 

a minimum of 10 pixels each. The value 10 was large enough 

eliminate insignificant bins but small enough to impose 

boundaries without noticeably affecting fesults. 

2. A Breakpoint value of (Alpha_O + Beta_0)/2 was established 

to provide a temporary peak separation point. 

3. The Lower mode and Upper_mode, defined as the bins in 

the lower and upper peaks which contained the most pixels, 

were found. 

4. The Low_breakpoint and High_breakpoint, which correspond 

to the bins diametrically opposed to Alpha_O and Beta 0 

with respect to Lower_mode and Upper_mode were determined. 

5. The sum of the histogram values for each region of the 

histogram were computed. Lower_sum equals the summation 

of histogram values from Alpha_O to Low_breakpoint, in­

clusive. Middle sum is the summation from Low_breakpoint 

to High_breakpoint, exclusive, and Upper_sum is the sum­

mation from High_breakpoint to Beta_O, inclusive. 

6. The lower and upper regions were divided by their respective 

sums to create peaks normalized to an area of one. 
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7. The mean and variance of these two regions were computed 

by: 

Low_breakpoint 

Lower mean = o1 = L: i•b(i) 

i = Alpha_O 

Low_ breakpoint 

Lower_variance = 0 1
2 = L: (i - t 1 ) 2 •b(i) 

i = Alpha_ O 

Beta 0 

Upper_mean = ou = L i•b(i) 

i = High_breakpoint 

Upper_variance = a 2 
u 

Beta 0 

= L: (i - b ) 2 •b(i) 
u 

i = High_breakpoint 

where i is the histogram bin and b( i) is the histogram 

value at bin i. 

8. Treating the two normalized peaks as probability density 

functions, the mean and variance of each peak were used 

to model the peaks as discrete Gaussian probability func­

tions. Each modeled peak was determined by the relation 

Pdf(i) = 
1 

Ga 
e 

-(i - b) 2 

20 2 

for i 

where i = the histogram bin number 

= Alpha_O to 3eta_O 

a = lower or upper variance respectively and 

b = lower or upper mean respectively. 
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9. Subject to several constraints, the modeled histogram peaks 

were scaled to maintain proportionality to each other and 

to the original histogram and then subtracted from the 

original histogram. The result was the dashed center region 

of figure 25. The start and stop bins are functions of 

the original histogram values, model values, and statistics 

of the associated density function and were established 

to avoid abrupt slope changes. 

10. The resultant center region was modeled as various order 

polynomial functions. 

11. The resulting bimodal histogram model is of the following 

form: 

b(i) 

+[K 2i 5 +K
3

i 4 +K
4

i 3 +K 5i 2 +K 6i+K 7] 

8 (i-Start bin)o1 (stop bin-i) 
1 - -

[ 

-(i-b )
2

) 

+ K 1 e 20u~ 6
1

(i-Alpha_0)6 1 (Beta_O-i) 
8 "2TI 0 2 

u 

for i = 0, 1 , ••• 2 5 5 

where K
1 

and Ks are proportionality constants K2 through K7 

are polynomial coefficients and o1 is the unit step function. 

With the basic premise for developing the histogram model estab-

lished, a more detailed look at a few items is needed. First, 
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although the Gaussian density model is based on a sample mean and 

variance, initial approximations were not satisfactory. The parti­

tioning of the original histogram into three regions left the lower 

and upper regions with significantly greater values at the respective 

breakpoints than at the absolute lower and upper limits. This caused 

the mean value of the peaks to shift toward the center. Therefore, 

the final modeling program substituted the modes for the means of 

the two peaks. 

The polynomial equation representing the histogram valley is 

based on a least squares curve fitting routine utilizing the Gauss­

Jordan elimination method to solve for the coefficients. The curve 

fit subroutine was adapted from a program by Miller (1981). As 

currently dimensioned, it allows up to 256 data points and a fifth 

order solution, both of which can be increased. The adapted subrou­

tine can be found in Appendix A and a brief explanation of the Gauss­

Jordan method in Appendix B. To determine the order of the polynomial 

to be used and the type of smoothing to use on the histogram before 

modeling, the valley region of a series of histograms was modeled. 

Unsmoothed, averaging window smoothed, and median window smoothed 

histogram valley regions were modeled using second, third, fourth, 

and fifth order polynomials. Eleven histograms of inner layer boards 

were modeled. For each curve fit of the valley region a correlation 

coefficient based on a comparison of the calculated model values 

and the original values was calculated. Appendix C contains an ex­

planation of the equation used by the histogram modeling subroutine 

for computing the correlation coefficient. 
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In order to reduce the data to a manageable amount and still 

be able to observe the effects of pre-processing the histogram and 

using various order polynomial models, the mean correlation coeffi­

cient value for each method of Qre-processing (in conjunction with 

the third, fourth, and fifth order polynomial models) was computed. 

These mean values were then plotted to demonstrate the effects of 

histogram smoothing and polynomial order. These plots are shown 

in figures 26 and 27. The most obvious conclusion drawn from these 

plots is that the fifth order polynomial consistently provides the 

highest levels of correlation. After an initial improvement, cor­

relation values tend to decrease as larger median filter windows 

are used to smooth the histogram. Small median filter windows remove 

large excursions while large windows create a staircase effect. 

Averaging windows, on the other hand, reduce the large excursions, 

but tend to create smoother bin to bin transitions as the window 

size is increased. Hence, the correlation coefficient generally 

improves as the window size increases. 

Because of the relatively high mean correlation coefficients 

of the fifth order curve fits and the ease of window averaging a 

histogram, it was initially decided to model only the original 

histogram and a three bin wide averaging window smoothed version 

using a fifth order approximation for the valley region. The data 

base established for these histograms, however, pointed out an 

apparent discrepancy. Though excursions from , the true curve were 

indeed minimized, the polynomial curve tended to oscillate about 

the original set of data points. Reducing the order of the 
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polynomial model reduced the oscillation effect while increasing 

the residual errors. In keeping with the goal of determining the 

general characteristics of the valley region, models using second, 

third and fourth order polynomial curve fits for the window averaged 

histogram were added to the histogram data base. A comparison of 

a histogram and its model is shown in figure 28. 

Threshold Selection 

The histogram enhancement and modeling techniques discussed 

in the previous section were used to create a histogram data base 

to facilitate an investigation into alternate thresholding algo­

rithms. As with previous work, the histogram data base was restrict­

ed to inner layer board histograms. This resulted in a group of 

bimodal histograms with the dominate population occurring at the lower 

pixel values. 

Once the data base was established, several thresholding schemes 

were implemented. Though the approaches varied from relatively 

simple to moderately difficult, a prime constraint was the ability 

to easily implement these algorithms using the current CPVP configu­

ration. The median smoothing filter used to smooth an image is an 

exception to this constraint, but, a median smoothed image has been 

included because of the unique yet promising median filter character­

istics. The following paragraphs describe the threshold selection 

techniques performed on the histogram data base by the program in 

Appendix A. 

Method 1 - The first approach used was the standard histogram 

method of selecting the segmentation threshold as the histogram bin 
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Fig. 28. Comparison of a histogram and its model 
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with the minimum number of pixels. There is, of course, the added 

restriction that the threshold occur in the valley region of the 

bimodal histogram to avoid trivial cases. This restriction was 

included in all threshold selections. There were two other possi­

bilities taken into account. In the case of multiple non-neighboring 

minimum bins (a minimum bin is the bin which contains the least 

number of pixels) the bin closest to the upper mode was selected. 

In the case of adjacent minimum bins, the center bin of the group 

was selected. Occasionally this led to a half-bin increment which 

was reported for the sake of thoroughness. 

Method 2 - The second method selected the threshold as the bin 

halfway between the lower and upper modes. Though not realizable 

in hardware, bin values with remainders of 0.5 were reported to avoid 

a loss of information. The threshold can easily be rounded up or 

truncated, but once done the remainder information is not retriev­

able. 

Method 3 - The third approach chose the threshold as the bin 

halfway between the absolute minimum and absolute maximum active 

histogram bins. The method is similar to that used by several 

automatic television tracker systems. The tracker approach also 

allows for different offsets between the minimum and maximum limits 

to adjust the sensitivity of the system. Though simplistic in its 

approach, the simple features of a PCB seemed to make a look at this 

approach worthwhile. 

Method 4 - The fourth method is identical to the third method 

with two exceptions. First, the minimum pixel count for a bin to 



71 

be considered valid was increased from one to ten. Second, a bin 

had to have at least ten adjacent valid neighboring bins to be con­

sidered an absolute minimum or maximum. The result was a noise 

cleaning effect on the histograms and is noticeable in the modeled 

histograms such as those of figure 28. This noise cleaning approach 

synthesizes the integration effects found in the analog circuitry 

of several television tracking systems. 

Method 5 - The fifth approach is based on minimizing the pixel 

classification error based on the probability densities of the two 

populations corresponding to background and land. As discussed 

earlier, an interim step of the histogram modeling process was to 

compute Gaussian based functions to describe the two histogram 

peaks. Based on this interim model (one that does not include the 

valley region approximation) a threshold was found to minimize pixel 

misclassification. A general derivation for the optimum threshold 

is given by Rosenfeld and Kak (1982). For the two class Gaussian 

density modeled histogram the optimum threshold reduces to the bin 

between the two modes with the minimum pixel count which corresponds 

to the intersection of the two functions. Therefore, the threshold 

selection reported for this approach was the intersection bin of 

the two Gaussian functions. 

Method 6 - The sixth method utilized the completed histogram 

model for selecting the threshold. The polynomial curve used to 

represent the valley region provided a smoothed approximation 

exhibiting the general tendencies of the original histogram. The 
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threshold was again selected based on a relative minimum as in method 

one. 

Implementation of these threshold methods resulted in a 

collection of possible threshold values to use for segmenting 

images. With these thresholds established, original plans called 

for each image in the data base to be displayed via the CAPS system, 

manually thresholded at a continuously increasing intensity and the 

results noted. Bearing in mind that thresholding at too low a level 

causes background to be classified as land and thresholding at too 

high a level causes land areas to be classified as background, a 

suitable threshold range which would effectively eliminate background 

clutter and still maintain sufficient land width for subsequent 

processing was to be determined. Evaluation of the different thres­

holding schemes could then include a comparison of the various 

threshold results against the acceptable range. Because of equipment 

failure the images stored on magnetic tape and also on a hard disc 

unit were not retrievable in the time frame necessary for this paper. 

However, several general tendencies of the generated thresholds 

can be noted. The thresholds computed by the different algorithms 

are given in Table 4. Including both smoothed and unsmoothed histo­

grams the most consistent thresholds occurred at the center bin 

between the two modes, at the center bin between the minimum and 

maximum bins with T=lO and at the minimum bin of the Gaussian curve 

fit. Maximum threshold variations were two, three and five bins 

for these three cases. The least consistent selection occurred for 

the standard histogram method or the minimum valued bin between the 
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modes. Values varied up to 35 bins. Consistency of the polynomial 

curve fits fell between these two extremes. 

Obviously the effectiveness of each method is not directly pro­

portional to the complexity of the algorithm. Thresholds based on 

geometrical 

than those 

properties are much easier and much faster to compute 

based on Gaussian or polynomial modeling. Based on 

implementation effort, processing time and consistency, the geometri­

cal based algorithms seem to provide the best alternative. Though 

this paper arbitrarily chose the midpoint between the two modes as 

the threshold, it could easily be fixed elsewhere or adjusted dynami­

cally. Of course parameters discussed elsewhere in this paper must 

be considered. For example, a geometrical based amplitude threshold­

ing scheme must assume that background and land areas are uniform 

in intensity and different enough that a threshold in the "uncertain" 

region would not mislabel a background region. This would require 

some control over the characteristics of the PCB's and the dynamic 

range of the image. The greater the dynamic range the more flexi­

bility in the threshold range. Most importantly a definitive cor­

relation between true land size, segmented land size and threshold 

level would have to be established. 

Table 4 points out general tendencies but does not attempt to 

provide an absolutely final answer. Further work to be done must 

include establishing a larger data base and developing tools to more 

easily collect image and threshold data. It is felt that the results 

in this paper help to point out areas needing further investigation 

while providing the foundation necessary for carrying out -this work. 



SUMMARY AND CONCLUSION 

This paper progressed from introducing the concept of automated 

visual inspection in general to looking at specific threshold selec­

tion algorithms. The need for automated visual inspection was 

examined and several current vision systems attempting to meet these 

needs were presented, Four basic approaches to automated printed 

circuit board inspection were given. 

The Automatic Board Assembly, Inspection and Test (ABAIT) system 

was described, In particular, emphasis was placed on the visual 

inspection detail station, its operation, and its objectives. To 

establish a .·foundation for further work, fundamentals of image 

processing were reviewed, Image enhancement including image smooth­

ing and image sharpening was stressed along with segmentation princi­

ples. Th'e Circular Pipeline Video Processor (CPVP) was then intro­

duced. The CPVP hardware and related software were described 

followed by a sample operational illustration, 

The purpose for investigating alternate segmentation approaches 

was discussed followed by an analysis of captured CPVP imagery. 

The analysis was introduced by a description of the analysis tools 

developed during the course of this paper, particularly the image 

transfer capability, and a description of the subsequent image data 

base, An analysis of these images resulted in the evaluation of the 

CPVP image capture path as having a first order response, 

The investigation of alternate segmentation techniques began 
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with researching techniques presented in recent publications and 

in general industry use. Histogram enhancement was discussed and 

a histogram model developed. A histogram data base was established 

using captured CPVP imagery and the various histogram enhancement and 

modeling techniques developed earlier in the paper. Thresholds for 

segmentation based on several algorithms were selected using this 

histogram data base. A comparison of the relative performance of these 

algorithms indicated that the consistency of the thresholds was not 

directly proportional to the complexity of the algorithm. The most 

consistent threshold selection was made based only on the modes of the 

histogram. 

Evaluating the results obtained from the image analysis and the 

alternate segmentation techniques, a threshold selection scheme which 

selects the threshold based on the histogram modes, CPVP bandwidth 

and pixel resolvability appears to be the most promising. 

The concept of the automated visual inspection process has been 

successfully demonstrated and with the incorporation of the analysis 

tools developed in this paper, the results of the image analysis and 

the results of the alternate threshold selection techniques it is felt 

that the system will be able to progress from a proof of principle 

system to a fully operational system capable of accurately inspecting 

printed circuit boards for Martin Marietta Aerospace. 



APPENDIX A 

CCJv1PUTER PROGRAM 

10! RE-STORE "101 RE-STORE 8 HIS,.OGRAH7 " 
20 OPTION BASE 0 
3C DIM Nora_histc _val( 0: 255}, Pdf a H: 255) ,Pdfb (G: 255> ,Pdf (0 =·25:} 
40 DIM Pdfc(0:255),Pdfd(0:255),Pdfut0:255),Pdfu(0:255) 1Histo_ual_sum(0:255) 
50 DIH Const_vector(6l,Coeff(6 16) 1Scln_vector(6},Error_vector(6) 
60 DIH Soln_matrix(6,1),B_coeff(6,6),X_value(256),Data_vector(12C) 
?O DIH Y_data(246},Y_calculated(25b) 1Residual(256) 1Data_1atrix(120,6} 
80 INTEGER risto_val(0:255),Hedian_value(0:255),Histo_value(1:5,0:255) 
90 INTEbEP. Histo_brn ·' Top_of _sort ,Sort_ value, Teap(9) ,Bin_number 
1eo INTEGER Work_~atrix(6,3) 
110 INTEGER Nu1_rows 1 Nu1_colu1ns,Num_const_uctrs,Ro~_index,Colu1n_index 
120 INiEGE~ Poly_order,Hax_length,J,K,L,H 
130 ON ERP.OF. GDSUB Error_handler 
140 FOR J=O TO 9 ! TURN OFF OPERATING SYSTEM KEY LABELS 
150 ON KEY J LABE~ B I GOTO 150 
160 NEXT J 
l?O PRINT CHR~(12) ! CLEAR TEXT. 
180 DISP CHRtt12 ) ! CLEAR DIS?LA1. 
190 GCLEAR ! CLEAR GRAPHICS. 
200 GRAPHICS OFF ! DISABLE GRAPHICS. 
210 Loopl: ! LABEL AND ACTIVATE SOFT KEYS. 
220 ON KEY 0 LABEL aINPUT_HISTOs SOSUB Input_histo ! READ HISTO FROM KEYBOARb. 
230 ON KEY 1 LABEL wPRINT_HISTOn GOSUB Print_histo ! PRINT THE HISTO FILE. 
240 O~ KEY 2 LABEL 'CHANSE_FILEa SOSUB Change_file ! CHANGE VALUES IN FILE. 
250 ON KEY 3 LABEL 1 PLOT_HISTDu GOSUB Plot_histo ! PLOT THE HISTOSP.AH. 
260 ON KEY 5 LABEL 8 AVERAGE_SHOOTH 0 GOSUB Average_s1ooth! SMOOTH HISTOGRAM. 
270 ON KEY 6 LABEL 'MEDIAN SHOOTH 1 GOSUB Hedian s1ooth ! SHOOTH HISTOGRAM. 
280 ON KEY 7 LABEL 'GROUP _AVERAGE" SOSUB Group_average ! AVG HISTOS TOGETHER. 
290 ON KEY 8 LABEL 'PDF_HODEL" GOSUB Pdf_1odel ! HODEL THE HISTOGRAM. 
300 GOTO Loopl 
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310 Input_histo: ! THIS SUBROUTINE READS IN HISTOGRAM VALUES FROM THE 
321 KEYBOARD A~D WRITES THEM TO A HISTO FILE. 
330 PRINT CHP.t(!c) 
140 GCLEAR 
350 GRAPHICS OFF 
lbO PRINT TABXY(l,20>; 1 ENTER THE HISTOGRAM FILE HUMBER THAT VALUESu 
3?0 PRINT ~ ARE TO BE STORED IN. u 

180 INPUT File_number ! INPUT FILE_NUHBER FROH KEYBOARD. 
390 PRINT CHR$(12l 
400 IF File_nu1ber<O OR File_number>100 THEN ! ERROR TRAP. 
410 PP.INT MFILE NUMBER HUST BE 0 TO 100 INCLUSIVE~ 
~20 BEEP 1500,.3 
430 GOTD Input_histo 
440 END iF 
450 PRINT CHU( 12) 

460 DISP CHP.$(12i 
~?O FOR Bin_nu1ber=O TO 255 ! LOOP READS IN V~LUES FROM KEYBOAR~. 
480 DISP " ENTER BINu;Bin_numberiaVALUE 8

; 

490 INPUT Histo_val\Bin_number) 
500 PRINT TAB((Bin_number HOD 10)*?+6);Histo_val(Bin_numnerl; 
510 NEXT Bin_nu1ber 
520 Correct: ! THIS SECTION ALLOWS FOR CORRECTIONS 
530 PRINT CHP.$(12) AFTER VALUES ARE READ IN. 
5~0 FOR Bin_number=O TO 255 ! PP.INT FORMATTED HISTO VALUES. 
550 PP.INT TAB((Bin_number HOD 10)*8) .iHisto_vaUBin_nu1bed; 
5b0 NEXT Bin_nu1ber 
5?0 DISP "IS A CORRECTION NECESSARY? (Y/N) '; 
580 INPUi Correction_necl 
590 IF Correction_necS()uyu THEN GOTO Create_file 
600 DISP 1 HOW HANY VALUES NEED TO BE COP.RECTED 1

; 

610 INPUT Correction_nut 
620 IF Correction_num>O THEN 
630 FOR Correction=l TO Correction num 
640 DISP " WHICH HISTOGRAM BIN IS TO BE CHANGED'j 
650 INPUT Bin_nu1ber 
660 DISP • WHAT IS THE CORRECT HISTOGRAM VALUER; 
6?0 INPUT Corrected_value 
680 Histo_valtBin_nu1ber)=Corrected_value ! HISTO_VAL IS CORRECTED. 
690 NEXT Correction 
?00 GOTO Correct 
?10 END IF 
?20 GOSUB Create_file 
?30 DISP 1 READY 0 

140 BEEP 1500,.2 
750 RETURN 



?60 Print_histo: ! THIS SUBROUTINE PRINTS HISTOSRAM VALUES 
PREVIOUSLY STORED ON DISC. 1?0 

?BO 
790 
80 0 
Bl 0 
820 
830 

PRitfT 
GCLEAR 
DISP CHR~<12);nENTER HISTO FILE NUMBER TO PRINT &; 
INPUT File_nu1ber 
GOSUB Get_histo_file 
DISP "IS PRINTOUT TO GO TO THE PRINTER (Y/N) ti;! GOES TO SCREEN IF <>Y~ 

840 INPUT Print_device* 
ISO IF Print_deuice~= n Y' THEN PRINTER IS 706 
860 PRINi 
870 PRIN7 TAB<26)iuHISTOGRAH NO. 1 ;File_nu1ber 
BBO PRINT 
890 FOR Col_neader=O TO 9 

PRINT TAB(Col_header*?+6);Col_header; 
NEXT Col_header 
PRINT 
PRINT 

! 706 IS LINE PRINTER. 

! PRINT COLUMN LABELS. 90 0 
91J 
920 
930 
940 
950 
%0 
970 
980 
991 
1000 
1011 
102C 

FOR Bin number=O TO 255 ! PRINT ROW LABELS AND HISTO VALUES. 
IF I~T(Bi~_number/lO)=Bin_number/10 THEN PRINT TAB(O};Bin_nu1ber/10J 
PRINT TAB((Bin_nu1ber MOD 10>•7+b);Histo_val(B1n_nu1ber); 

NEXT Bin_nullber 
PRINT 
PRINTER IS 1 
BEEP 1500,.2 
DISP 'READY II 

RETURN 

! REASSIGN SCREEN AS PRINT DEVICE. 
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103C Change_file: 
10~0 

THIS SUBROUTINE ALLOWS INDIVIDUAL VALUES IN THE HISTO 
FILES TO BE CHANGED (CORRECTED) AND THE FILE UPDATED. 

1050 GCLEAR 
1061 PRINT CHRl(12) 
1070 DISP uENTER HISTO FILE NO. TO HAVE VALUES CHANGED 
1080 INPUT File_nu1ber 
1091 GOSUB Get_histo_file 
1100 Input_change: 
1111 PRINT TAB(26';"HISTOGRAM N0. 1 ;File_nu1ter 
1120 PP.INT 
1138 FOR Col_header=O TO 9 
1140 PP.INT TAB(Col_header*?+6);Col_header; 
1151 NEXT Col_header 
llbO PP.INT 
11?1 PRINT 
1180 FOR Bin_number=O TO 255 

H • 
J 

1190 IF INTtBin_nuaber/10)=Bin_number/10 THEN PRINT TAE(O);Bin_nuaber/10; 
1200 PRINT TAB((Bin_nur.ber HOD 10)J.?+6);Histo_valtBin_nusber); 
1218 NEXT B:n_number 
1220 DISP 'HOW HANY VALUES NEED TO BE CORRECTED ? (0 TO END) 0

; 

1230 INPUT Ccrrection_nui 
1241 IF Correction_num>O THEN 
1250 FOR Correction=l TO Correction_nul 
1261 DISP 1 WHICH HISTO~RAM BIN IS TO BE CHANGED 1

; 

1270 INPUT Bin_nu1ber 
128& D!SP ~ WHAT IS THE CORRECT HISTOGRAM VALUE a; 
1290 INPUT Corrected_value 
1301 Histo_val<Bin_nuaber)=Corrected_ualue 
1310 NEXT Correction 
1322 SOTO Input_change 
1330 END IF 
1340 PURGE •HISTOu&VALS(File_nu1ber) ! DELETE THE INCORRECT FILE. 
1350 GOSUB Create_file ! RESTORE WITH UPDATED FILE. 
1361 BEEP 1500,.1 
13?0 PRINT CHRS(12) 
138i DISP 'READYu 
1390 RETURN 

82 



1408 Plot_histo: THIS SUBROUTINE PLOTS A HISTOGRAM FILE ON A LINEAR OR 
1410 LObARITHHIC SCALE WITH SOLID BARS OR ONLY THE OUTLINE . 
1420 PRINT 
1431 GCLEAR 
1440 Xorg=120 ! GRAPHICS X ORIGIN. 
1450 Yorg=320 ! GRAPHICS Y ORIGIN. 
1461 DISP 1 ENTER HISTO FILE NUMBER TO PLOT 1

; 

1410 INPUT File_nu1ber 
1481 GOSUB Get_histo_file 
1490 Enter_scale : ! INPUT WHAT SCALE IS TO BE USED IN PLOTTING. 
1SOt DISP •LINEAR OR LOGARITHHIC SCALE tLIN OR LOS) 'i 
1511 INPUT Scale$ 
1520 IF ScaleS<> "LIN 1 AND ScaleS(}uLOGh THEN 
1530 PRINT CHRS(12); 1 INVALID SCALE ENTERED. TRY AGAIN" 
1541 BEEP 1500 , .2 
1550 SOTO Enter_scale 
1568 END IF 
1510 PRINT CHRill2) 
1581 DISP ·rs PLOT POINT-TO-POINT INSTEAD OF BARS (Y/N) '; 
1590 INPUT Point_tc_pcint$ 
lbOI GINIT ! INITIALIZE GRAPHICS. 
1610 GCLEAR t CLEAR GRAPHICS OH SCREE~. 

1 EtERblZE GRAPHICS. 1b2e GRAPHICS ON 
1630 
1641 
1650 
!661 
1610 
1688 
1690 
1700 
1710 
1720 
1731 
1140 
175t 
1760 
1178 
1?80 
1796 
1800 
1811 
1820 
1831 
1840 

PEN 1 

Previous_x=Xorg/4 
Previous_y=Yorg/4 
FOR Hi:to_bin=O TO 255 

IF INTtH1sto_bin/40>=Histo_b1n/40 THEN 
HOVE tXorg-10)i4,tYor9-Histo_b1n)/4 
DRA~ Xorg/4,(Yorg-Histo_binl/4 
ELSE 

! NORMAL POLARITY tBLK ON WHT). 
! INITIALIZE VALUE. 
! INITIALIZE !JALUE. 

! DRAW HAJOR TIC HARKS. 

IF INT(Histo_bin/lO>=Histo_bin/10 THEN 
HOVE (Xorg-4)/4,tYorg-Histo_bin)/~ 

DRAW Xorg/4,(Yorg-Histo_bin)/4 ! DRAW MINOR TIC HARKS. 
ELSE 

HOVE Xorg/4,(Yorg-Histo_bin)/4 ! DEFAULT START IS THE AXIS. 
IF Point_to_pointS='YG THEN DRAW Xorg/4 1 tYorg-Histo_bin)/~ 

END IF 
END IF 
IF Point_to_points=•yn THEN HOVE Previous_x,Previous_y 
IF Histo_val(Histo_binl{=O THEN ! THEP.E SHOULD BE NO NEbATIVE 

DRAW Xorg/4 1 (Yorg-Histo_bin)/4 
Previous_x=Xorg/4 
Previous_y=(Yorg-Histo_bin)/4 

HISTO VALUES. DEFAULT TO 0. 

! UPDATE POSITIONIN~ VALUES TO 
BE USED AFTER AXIS IS DRAWN. 
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185& ELSE 
1860 IF ScaleS= 0 LINu THEN ! DRAW LINEAR PLOT. 
1870 DRAW (Xor9+Histo_valtH1sto_bin)/60i/4 1 (Yorg-Histo_bin)/4 
1880 Previous_x=(Xorg+Histo_val(Histo_binl/60)/4 
1890 Prewious_y=(Yorg-Histo_bin)/4 
1901 END IF 
1910 IF Scalef="LOG 6 THEN ! DRAW LOG tBASE 10) PLOT. 
1920 DRAW (Xorg+LGT(Histo_val<Histo_binil*70)/4,<Yorg-Histo_bin)/4 
1939 Previous_x=\Xorg+LGT(Histo_~al(Histo_binll*70)/4 
1940 Previous_y=(Ycrg-Histo_binl/4 
1958 END IF 
1960 END IF 
1971 NEXT Histo_bin 
1980 DRAW Xorg/4,<Yorg-2561/4 CLOSE RIGHT END OF PLOT. 
1990 HOVE (Xorg-52114,(Yorgi/4 RELATIVE POSITION FOR LABEL. 
2008 DEG DEGREE MODE FOP. LDIR. 
2010 LDIR 279 LABEL DIRECTION IS VERTICAL. 
2821 CSIZE 5 
2030 LABEL 'HISTOGRAM NO. 1 ;File_nu1ber;H 1 ;ScaleS ! WRITE LAEEL . 
2040 FOR Bin_number=O TO 240 STEP 40 ! THIS LOOP LABELS 
2059 HOVE <Xorg-24i/4,(Yorg+l6-Bin_nu~berl/4 TIC HARKS. 
2060 CSIZE 3 
2071 LABEL Bin_number 
2080 NEXT Bin_number 
2091 PRINT "IS PLOT TO GO TO PRINTER ALSO? tY/N)w 
2100 INPUT Printer_plotS 
2110 IF Printer_plots=•y• THEN ! IF PLOT GOES TO PRINTER THEN 
2120 DUMP DEVICE IS 706 ASSIGN DUHP DEVICE TO 
2130 DUMP GRAPHICS PRINTER AND DUMP GRAPHICS. 
2140 END IF 
2150 PRINT CHRS(12) 
2160 DISP ~READY 1 

2171 BEEP 1500,.15 
218J RETURN 
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2190 Avera9e_s1ooth: 
2210 
2210 
2228 GCLEAR 

THIS SUBROUTINE ALLOWS FOR AVERAGING HISTOGRAM 
VALUES OF A STORED HISTO FILE USINb VARIOUS 
SIZE WINDOWS. 

2230 DISP "ENTER H!STO FILE NUMBER TO SMOOTH '; 
2240 INPUT File_nu1ber 
2251 PP.IN: CHRS(12l 
2260 GOSUB Get_histo_file 
22?1 Av9_win_size: 
2280 DISP 'ENTER WINDOW SIZE <3 iHRU 9) '; 
2298 INPUT Windo~_size 
2300 IF Windo~_size<3 OR Windo~_size>9 THEN 
2311 PRINT 0 WINDOW SIZE INVALID" 
2320 BEEP 1200,.3 
233& GOTO Avg_•in_size 
2340 END IF 
2356 DISP 'NOW SMOOTHING .... PLEASE WAIT" 
2360 Initial_bin=(Window_size/2)-.5 
23?1 F1nal_bin=255-(Window_size/2)+.5 
2380 FOR Histo_bi~=lnitidl_bin TO Final_bin 
2391 Suam=O 
2410 FOR J=O TO Windo~_size-1 
2410 Su11=Histo_val(H1sto_bin-(Window_size/2-.51+J)+Su~~ 

2421 NEXT J 
2430 Histo_valtHisto_bin)=Su11/~ir.dow_size 

244 0 NEXT Histo_bin 
2458 DISP 'DO YOU WISH TO STORE THIS HISTOGRAM <Y/N; 1

; 

2460 INPUT Store_avg_histo$ 
24?1 IF Store_avg_histoS= 1 Y0 THEN 
2480 DISP 'ENTEP. HISTO FILE NUMBER 1

; 

2491 INPUT File_nu1ber 
2500 GOSUB Create_f ile 
2511 END IF 
2520 DISP 1 READY 11 

2531 BEEP 1500,.2 
2540 RETURN 
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2550 "edian_s1ooth: 
2560 

! THIS SUBROUTINE ALLOWS FOR HEDIAN SHOOTHING OF 
A STORED HISTO FILE WITH VARIABLE SIZE WINDOWS. 

2570 GCLEAR 
2581 DISP 'ENTER HISTO FILE NUMBER TO SHOOTH u; 
2590 INPUT File_nu1ber 
2601 PRINT CHRS(12) 
2610 GOSUB Set_histo_file 
2621 Input_•in_size: ! 
2630 DIS? 1 ENTER WINDOW SIZE (3,5,7 OR 9) '; 
2648 INPUT Window_size 
2650 Win_size=Windo•_size 
2668 IF Win_size<>3 AND Win_size<>S AND Win_si2e{)? AND Win_size\}9 THEN 
26?0 PRINT "WINDO~ SIZE HUST BE 3,5,? OR 9.u 
2689 BEEP 1500,.3 
2690 GOTO Input_~in_size 
2700 END IF 
2710 DISP "NOW SMOOTHING ... PLEASE WAIT• 
2720 Initial_bin=<Windo~_size/2)-.5 

2731 Final_bin=255-<Windo~_size/2)+.5 
2740 FOR Histo_bin=Initial_bin TO Final_b1n 
2751 FOR J=O TO Window_size-1 
2760 Te1p(J)=Histo_val<Histo_bin-(Windo~_si2e/2-.5)+J) 

2771 NEXT J 
2780 FOR Top_of_sort=O TO Windo~_size-2 
2790 FOR Sort_value=Top_of _sort+l TO Window_size-1 
28CI IF Te1p<Sort_ualue)<Te1p<Top_of_sort) THEN 
2810 Hold_value=Te1p<Top_of _sort) 
2821 Te1p<Top_of _sort>=Te1p(Sort_ualue) 
2830 Te1p(Sort_ualue)=Hold_ualue 
2841 END IF 
2850 NEXT Sort_ualue 
2860 NEXT Top_of _sort 
2870 Hedian_ualuetHisto_bin)=Teap((Window_size/2-.5)) 
2880 NEXT Histo_bin 
2891 BEEP 1500,.15 
2980 DISP 'DO YOU WISH TO STORE THIS HISTOGRAM (Y/N) M; 
2910 INPUT Store_1dn_histoS 
2921 IF Store_1dn_histoS= 1 Y1 THEN 
2930 DISP 'ENTER HISTO FILE NUHBER 1

; 

2941 INPUT File_nuaber 
2950 FOR J=O TO 255 
2961 Histo_ual(J)=Hedian_value(J) 
2970 NEXT J 
2981 GOSUB Create_file 
2990 END IF 
3001 »ISP 'READYH 
3010 BEEP 1508,.2 
3021 RETURN 
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3030 broup_average: 
30~0 

! THIS SECTION ALLOWS FROH t TO 5 HISTOGRAHS TO 
BE AVERAGED TOGETHER AND THE RESULT STORED. 

SCLEAR 
PRINT CHRi<12) 

3050 
1060 
3010 
3080 
3090 
3100 
3118 
3120 
1130 
3140 
1151 
3160 
ll?D 
3180 
3191 
3200 
321G 
3220 
3230 
3240 

DISP aHOw MANY HISTOGRAMS TO AVERAGE TOGETHER •; 
INPUT Histo_~uantity 
IF Histo_quantity>S THEN GOTO Group_average ! HAXIHUM OF 5 HISTOS. 
IF His~o-~uantity<2 THEN GOTO Group_avg_end ! HINIHUH OF 2 HISTOS. 
FOR J=l TO Histo_quantity ! READ HISTOGRAMS AND TRANSFER INTO 

! A TWO DIHENSIONAL ARRAY. 
DISP "ENTER HISTOGRAM FILE NUHBER~;J;• •; 
INPUT File_nu1ber 
GOSUB ~et_histo_file 
FOR Histo_bin=O TO 255 

Histo_value(J,Histo_b1nl=Histo_val(Histo_bin) 
NEXT Histo_bin 

NEXT J 
misP ·woRKING ... PLEASE WAITP 
FOR Histo_bin=O TO 255 ! PERFORM AVERAGING ALGORITH". 

Histo_val_su1\Histo_bin)=O ! INITIALIZE ARRAY. 
FOR J=l TO Histo_quantity 

Histo_val_su1<Histo_binl=Histo_val_su1<Histo_oin)+Histo_ualue(J,Hi 
sto_bin) 
3251 NEXT J 
3260 Histo_val(Histo_bin)=Histo_val_sum(Histo_bin)/Histo_quantity 
3270 NEXT Histo_bin 
3280 BEEP 1500 7 .1 
3290 DISP 'DO YOU WISH TO STORE THE RESULTANT HISTOGRAM (Y/N} '; 
3300 INPUT Store_resultantS 
3311 IF Store resultantf='Y 1 THEN 
3320 DISP- 1 ENTER HISTG FILE NUHBER '; 
3331 INPUT File_nu1ber 
3340 GOSUB Create_file ! STORE THE RESULTANT HISTOGRAM. 
3350 END IF 
3361 Group_aug_end: 
3370 DISP 1 READYe 
3388 BEEP 1500,.2 
3390 RETURN 
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3400 Pdf _model: 
3410 
3420 
3431 GCLEAF. 

! THIS SUBROUTI~E MODELS THE HISTOGRAM BASED ON A 
COHBINATION OF GA~SSIAN BASED FUNCT!ONS AND A 
POLYNOMIAL FUNCTION. 

3440 PRINT CHR$i12> 
3451 DISP 1 ENTER HISTO FILE NUHBE~ TO HODEL a; 
3460 INPUT File_nu1ber -
3471 GOSUB Get_histo_file 
3480 lnput_1odel: 
3498 PRINT CHRS(12) 
3500 HodelS= 0 Gb ! GAUSSIAN BASED HODEL 

! SET HISTOGRAM VALUES. 

3510 PRINT "HISTO FILE NUHBER ";File_nu;ber 
!52t PRINT 
3530 Find_alpha_O: 
l54t FOR H1sto_bin=O TO 255 
3550 FOR Offset=O TO 9 
356e IF Histo_val(Histc_bin+Offset><=lO THEN GOTO 3600 
3570 NE XT Qf fse~ 
3581 Alpha_O=Histo_ci~ 
3590 GOTO Find_beta_O 
3601 NEXT Histo_bin 
3610 Find_beta_O: 
lb2& FOP. Histo_bin=255 TO 0 STEP -1 
3630 FOR Offset=O TO -9 STEP -1 
3649 IF Histo_val(Histo_bin+Offset)(10 THEN GOTO 3680 
3650 NEXT Off set 
le66 Beta_O=H1sto_bi~ 
3670 GOTO Set_breakpoint 
3681 NEXT Histo_bin 
3690 Set_breakpoint: 
3?01 Breakpoint=<Alpha_O+Beta_0)/2 
3710 PRINT 1 B~EAKPOINT 8 ;Breakpoi n t 

3721 PP. INT 
3730 PRINT 1 ALPHA_On;Alpha_O;TAB<41); 1 BETA_O";Beta_O 
3740 Find_modes: ! 
3751 Hax histo val 1=0 ! INITIALIZE MAXIMUM VALUES. 
3760 Hax=histo:val:u=O 
l??I FOR Histo_bin=Alpha_O TO Breakpoint 
3?80 IF Histo val(Histo bin}>Hax histo val 1 THEN 
3791 Max_histo_val_i=Histo_valtHisto_bin} 
3800 Lower_1ode=Histo_bin 
lBl I END IF 
3820 NEXT Histo_bin 
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3838 FOR Histo_bin=Breakpoint TO Beta_O 
J840 IF Histo val(Histo binl>Hax histo ual u THEN 
3850 Hax_histo_val_~=Histo_val(Histo_binl 
1861 Upper_1ode=Histo_bin 
3870 END IF 
3881 NEXT Histo_bin 
JB90 PRINT 1 HAX_HISTO_VAL_L 8 ;Hax_histo_val_l;TAB<41);'HAX_HISTO_VAL_Un;Hax_hist 
o_val_u 
3901 PRINi 'LOWER HODEh;Lower_1ode;TAB<41); 1 UPPER HODE 1 ;Upper_mode 
3910 DISP ·woRKING ... PLEASE ~AIT" 
3921 Find_histo_sus: 
3930 Histo_su1=0 
3941 FOR Histo_bin=Alpha_O TO Beta_O 
3950 Histo_su1=Histo_su1+Histo_ualtHisto_bin) 
3968 NEXT Histo_bin 
3970 Compute_pdf: ! 
3988 IF Hodelf=•sa THEN 
3990 Lower_su~=O 

4001 Middle_sua=O 
4010 Upper_su1=t 
4028 Lo•er_sua_sqrd=O 
4fi30 Upper_sum_sqrd=O 
4041 Lo•_breakpoint=2*Lo~er_1ode-Alpha_C 
4050 High_breakpoint=2*Upper_1ode-Beta_O 
4061 PRINT •LOW_BREAY.POIHT H;Low_breakpoint;TABt41); 1 HIGH_BREAK?OINTu;High_br 
eakpoint 
40?1 
4080 
4091 
4100 
4111 
4120 
4130 
4140 
4150 
4161 
41?0 
4181 
4190 
4208 
4210 
4221 
4230 
4241 
4250 
4261 

FOR Histo_bin=Alpha_O TO Beta_O 
IF Histo_b1n<=Lo~_breakpoint THEN 

Lo~er_su1=Lower_su1+Histo_ual(Histo_bin) 

END IF 
IF Histo_bin>Lo~_breakpoint AND Histo_bin<High_breakpoint THEN 

Hiddle_su1=Hiddle_su1+Histo_val<Histo_bin) 
END IF 
IF Histo_bin>=High_breakpoint THEN 

Upper_su1=Upper_su1+Histo_valtHisto_bin) 
END IF 

NEXT Histo_bin 
Total_su1=L0Ner_su1+Hiddle_su1+Upper_su1 
Lower_exp_val=O 
Upper_exp_val=O 
Lower_uariance=O 
Upper_uariance=O 
FOR Histo_bin=Alpha_O TO Low_breakpoint 

Nora histo val(Histo bin)=Histo_val<Histo_bin)/Lower_su1 
Lowe;_exp_~al=Lower_;xp_ual+(Histo_bintNora_histo_val(Histo_bin)) 

NEXT Histo_bin 

89 



90 

~271 FOR Histo_bin=Lo~_breakpoint+1 TO High_breakpoint-1 
4280 Norri histo valtHisto bin)=Histo val(Histo bin)/Middle su1 
4290 NEXT Histo_bin - - - -
4300 Hiddle_average=Middle_sum/tHigh_breakpoint-Lo~_breakpoint-2) 
4310 FOR Histo_bin=High_breakpoint TO Beta_O 
4321 Nor1_histo_val(Histo_b1n)=Histo_val(Histo_bin)/Upper_su1 
4330 Upper_exp_ual=Upper_exp_val+tHisto_bin*Nora_histo_val(Hi~to_bin)) 
4340 NEXT Histo_bin 
4350 N_lower=Lo~_breakpo1nt-Alpha_O 
4368 H_aiddle=High_breakpoint-Lo•_breakpoint-1 
4370 N_upper=Beta_O-High_breakpoint 
4388 FOR Histc_bin=Alpha_O TO Lo~_breakpoint 
4390 Lo~er_variance=Lower_variance+(Histo_bin-Lo~er _1ode)A2•Norm_histo ua 
ltHis to _bin) 
4400 NEXT Histo_bin 
4411 FOR Histo_bin=High_breakpoint TO Beta_O 
4420 Upper_variance=Upper_variance+(Histo_bin-Upper_;ode)A2tNorm_histo_•a 
l(His~o_bin) 

4420 NEXT Histo_bin 
4440 PRINT 
4450 PRINT 'LOWEr. EXPECTED VALUEw;Lo~er_exp_val, 
4460 PRINT 0 UPPER EXPECTED VALUE 8 ;Upper_e1p_val 
44?1 PRI~T 'LOWER VARIANCE";Lower_variance,R s, 
4480 PRINT wUPPER VAR!ANCE';Upper_variance 
4491 PRINT 'LOWER STANDARD DEVIATIONA;SQR(Lo~er_variance), 
4500 PRINT uUPPER STANDARD DEVIATION"JSQR<Upper_variancel 
4510 PRINT 'NUHBER OF LOWER ELEHENiSR;N_lo•er 
4520 PRINT 'NUMBER OF HIDDLE ELEHENTS 1 ;N_1iddle 
4531 PRINT ·NuHBER OF UPPER ELEHENTS 8 ;N_upper 
4540 PRINT 
4551 PRINT 'LOWER SUH';Lower_sum: 
4560 PRINT 'HIDDLE SUH 1 ;Hiddle_su1, 
45?1 PRINT 'UPPER SUM 1 ;Upper_sum 
4580 A=Lower_su1/Total_sum 
459& B=Upper_su1/Total_sum 
4600 C=Hiddle_sua/Total_su~ 

4611 PRINT 1 A=u;A,"C= 1 ;C,•B= 8 ;B 
4620 PRINT 
4631 Normalized su1=0 
4640 Start bin=INT(Lower 1ode+1.50•SQR(Lower variancel+.5) 
4650 Stop_bin=INT(Upper_;ode-1.00*SQP.(Upper_;ariancel+.5) 
4b61 Start bin flao=O 
46?0 FOR Histo_bin=Alpha_O TO Beta_O 
4681 Pdfa(Histo_binl=A/SQRt2*PI)/SQRtLcwer_variance>•EXP(-1t(Histo_bin-Lower 
1ode)A2/2/Lower variance) 

ib91 Pdfb<Histo_bin)=B/SQR<21PI)/SQR(Upper_variance)1EXP(-l*(Histo_bin-Upper 
_1ode)A2/2/Upper_variance) 
4?01 Pdfv(Histo_bint=D 
4?10 H=Histo_bin 



4?28 IF Hi~to_bin>=Start_bin AND Histo_bin(=Stop_bin AND (Histo_ualtH)/Total 
_su;><Pdfa(M)+Pdfb(H)}) THEN 
4730 IF Start_bin_flag=O THEN 
4?4i Ne~_start_bin=Histo_bin 
4150 Start_bin_flag=l 
4?68 END IF 
4770 Ne~_stop_bin=Histo_bin 

4781 Pdfv(Histo_bin•=Histo_ual(Histo_bin}/Total_sum-Pdfa(Histo_bin)-Pdfbi 
Histo_bird 
4?91 IF Pdf~(Histo_bin)<O THEN 
4800 PRINT nPDFAu;Pdfa(H)j 8 PDFB 1 ;Pdfb(H}; 1 PDFV 0 ;Pdfu(M)i 1 HISTO_VAL" 
;Histo_~al(Mt/Total_sum 

481& Pdfv(Histo_bin)=O 
4820 END IF 
4838 END IF 
4840 Pdfa(H)=O !************ .. **OPTION****~********•* 
4850 Pdfb(~i=O !***************OPTION*********•***** 
486& Pdfv(H)=O !**~************OPTION*************** 
4870 Pdf(H>=Pdfa(Ht+Pdfv(Ht+Pdfb(H) !*****OPiION***~ 

4881 ND:T Histo_bir; 
489C END lF 
4901 GOSUB Curve_fit 
4910 FOR Histo_bin=Alpha_O TO Beta_O 
492~ Pdf(Histc_bin>=Pdfa(H1sto_bin)+Pdfv(Histo_bin)+Pdfb(Histo_bin) 
4930 Nor1alized_sum=Ncrmalized_sum+Pdf(Histo_bin) 
4940 NEXT Histo_bin 
4950 FOR Histo bin=O TO 255 
4961 IF Histo_bin<Alpha_O OR Histo_bin>Beta_O THEN 
4910 Histo_ual(Histo_bin)=O 
4981 ELSE 
4990 Histo_val(Histo_bin)=PdftHisto_bin)tTotal_sum 
5000 END IF 
5D11 NEXT Histo_bin 
5020 PRINT 
5031 DISP 'DO YOU WISH TO STORE THE MODELED HISTO (Y/N) '; 
5040 BEEP 1500,.1 
5851 INPUT Store_pdff 
5060 IF Store_pdfS<> 1 Y• THEN SOTO 5110 
5071 DISP •ENTER HISTO_FILE NUHBER TO STORE VALUES IN •; 
5080 INPUT File_nu1ber 
5091 GOSUB Create_file 
5100 PRINT CHRS<12) 
5111 DISP 'READY' 
5120 BEEP 1500,.1 
5131 RETURN 
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5140 Curve_ht: ! THIS SUBROL'TINE MODELS THE VALLEY PORTimi 
5150 OF THE HISTOGRAH WITH A POLYNOMIAL FUNCTION. 
5160 GOSUE Set_data 
51?1 GOSUB Set_up_1atrix 
5180 GOSUB Square_matrix 
5191 GOSUB Sauss_jordan 
5200 GOSUB Print_results 
5210 RETURN 
5220 Get_data: 
5231 PRINT 'START BIN a;Start_bin, 1 STOP EINa;Stop_bin 
5240 PRINT NNEW START BIN 1 ;New_start_bin;uNEW STOP BIN°;New_s1op_bin 
525& Nu1_rows=New_stop_bin-New_start_bin+1 
52b0 IF Num_rows<lO OR Nu1_rows>120 THEM 
52?1 DISP 1 NUHBER OF DATA POINTS OVER/UNDER RANGE:EXECUTION HALTED" 
5280 PRINT CHP.$(12) 
5291 PRINT TABXY(0,14);'NEW_START_EIN •7Ne~_start_bin, 1 NEW_STDP_BIN 1 ;Ne~_st 
op_bin 
5308 PRINT TABXY\0 1 15);•NUH_ROwS ';Num_ro~s 
5310 BEEP 1500,.2 
5321 STOP 
5330 END lF 
5348 BEEP 1500,.1 
5350 DISP 'INPUT POLYNOMIAL ORDER a; 
53e0 INPUT Poly_order 
53?1 IF Poly_order>S OR Poly_order<l THEN 
5380 PR!Ni TABXY(0 115);"0RDER HUST BE 1 THRU S11 

5391 BEEP 1500,.2 
5400 GOTO Get_data 
5411 END IF 
5420 DISP 'WORKING ... PLEASE WAITR 
5430 Nu1_colu1ns=Poly_order+l 
5441 FOR 1=1 TO Nu1_rows 
5450 X valuetil=New start bin-1+1 
5•61 Y-data(!l=INTtPdfv(Ne• start bin-t+ll*Total su1) - - - -54?0 NEXT I 
5481 RETURN 
5490 Set_up_1atrix: 
5501 FOR 1=1 TO Nu1_rows 
5510 Data_aatrixtl,1)=1 
5521 FOR J=2 TO Nu1 colu1ns 
5530 Data_1atri;tI,Jl=Data_1atrixtI 1J-l)tX_valuetl) 
5541 NEXT J 
5550 Data_vectortl)=Y_data(l) 
5560 NEXT I 
5511 RETUP.N 
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5580 Square_riatrix: ! THE MATRIX IS SQUARED UP 1 NOT LITERALLY SQUARED. 
5590 FOR K=1 TO Nu1_colu1ns 
5600 FOR L=l TO K 
Sb1B Coeff(K 1L)=0 
5620 FOR I=l TO Nu~_ro•s 
5631 Coeff(K 1L)=Coeff(K 1L)+Data_aatrix(I 1L)•Data_aatrix(l 1K) 

IF <K<>L) THEN Coefftl,K)=Coeff(K,L) 564C 
5~51 
56t0 

NEXT I 
NEXT L 

5678 Const_vector(Ki=O 
5b80 FOR I=l TO Num_ro~s 
5b9@ Const vector(K)=Const vector(K)+Y data(l)•Data aatrix(I,K) 
5100 NEXT I - - - - . 
5111 tiEXT K 
5126 RETURN 
5738 Gauss_jordan: 
5740 Error_flag=O 
5751 Inv_print_flag=O 
5160 Nua_const_vctrs=l 
5771 FOR I=1 TO Num_colu1ns 
S?BO FOR J=l TO Nul_columns 
5?91 B_coeff(l,J)=Coeff (I,J> 
5800 NEXT J 
5811 Soln_r.atrix(l 11)=Const_vector(l) 
5820 Work_1atrix(I 13i=O 
5838 NEXT I 
5840 D3=1 
5851 FOR I=l TO Nu1_columns 
5860 Biggest_value=O 
5871 FOR J=1 TO Num_coluans 
5880 IF <Work_matrix(J,3)=1) THEN SOTO Continue_l 
5891 FOR K=l TO Nua_columns · 
5900 IF Work_1atrix<K ,3) >1 THEN GOTO Error _1 
5911 IF Work_tatrix<K,3)=1 THEN GOTO Continue_2 
5920 IF Biggest_value>=ABS(B_c~efftJ,K)I THEN SOTO Continue_2 
5930 Row_index=J 
5940 Colu;n_index=K 
5951 Biggest_value=AEStB_coeff(J,K)) 
5960 Continue_!= 
597& NEXT K 
5980 Continue_l: ! 
5991 NEXT J 
bOIO Wcrk_1atrix(Colu1n_index,3)=Work_1atrixtColu1n_index,3)+1 
b010 Work_aatrix(I,tl=Row_index 
6021 Work_1atrixtI,21=Colu1n_index 
6030 IF Row_index=Coluan_index THEN GOTO Divide_pivot 

93 



6041 D3=-1*D3 
bOSO FOR l=l TO Num_columns 
60b0 Hold_value=B_coeff(Ro~_inaex,L) 
61?1 B_coeff(Ro~_index,L>=B_coeff(Colu1n_index,L) 
6080 B_coeff(Column_index,L)=Hold_value 
6098 NEXT L 
bl&O IF Num_const_vctrs<l THEN GOTO Divide_pivot 
611~ FOR L=l TO Num_const_vctrs 
6121 Hold_value=Soln_1atrix(Row_index

1
L) 

6130 Soln_1atr1x(Row_index,L)=So l ~_1atrix(Colu1n_index ; L> 
6140 Soln_matr1x(Colu1n_index,L)=Hcld_value 
615t NEXT L 
6161 Divide_pivot: ! 
6170 Pivot_index=B_coeff(Columr_index,Cclu;n_index} 
6180 D3=D3*Pi~ot_index 
6190 B_cGeff(Column_index 1Coluin_index>=l 
62 u0 FOR L=l TO Nui_:oluP.ns 
6i1e B_coeff(Colu1n_index 1L>=E_coeff(Cclu1n_index 1L)/Pivct_index 
62'0 NEXT L 
6231 IF Num_const_vctrs<l THEN GOTO Reduce_nonpivot 
6240 FOR L=l TO NJr._const_vctrs 
6250 Scln_matri~(Colut.n_index 1 L)=Scln_1atrix(Colu1n_index 1 L)/Pivot_1ndex 
626G NEXi L 
62?1 Reduce_nonpivot : 
628G FOF. M=l TO Num_columns 
6291 IF H=Column_index THEN GOTO Continue_3 
6300 T=B_coefftM,Colu1n_index) 
6311 B_coeff(M,Coluan_index)=C 
6320 FOR L=l TO Nu1_colu1ns 
6331 B_coeff(M 1L>=B_coeff(M,L>-B_coeff(Cclu1n_index,L)1T 
6340 NEXT L 
6358 IF Nur._const_vctrs<l THEN GOTO Continue_3 
6360 FOR L=1 TO Num_const_vctrs 
6378 Soln_1atrix<M,L)=Soln_1atrixtH,L)-Soln_1atrix(Colu1n_index,L)*T 
6380 NEXT L 
6398 Continue_3: 
b400 NEXT ~ 

6411 NEXT 1 
6420 Interchange_col: 
643e FOR 1=1 TO Nu1_colu1ns 
6440 L=Nu1 coluans-I+1 
645t IF Wo;k 1atrix<L,l>=Work_1atrix(L,2) THEN GOTO Continue_4 
6460 Row_index=Work_1atrix<L,1) 
6471 Colu1n_index=Work_1atrix(L,2) 
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6488 FOR K=l TO Hum_columns 
6490 Hold_value=B_coeff(K 7Ro•_index) 
6500 B_coeff(k,Ro~_index)=B_coeff(K 7 Colu1n_index) 
6518 B_coeff<K,Colu1n_index)=Hold_value 
6520 NEXT K 
6531 Continue_4: 
6540 NEXT I 
6551 FOR K=l TO Num_colu1ns 
6560 I~ Work_aatrix(K,3){}1 T~EN GOTO Error_l 
6571 NEXT K 
6580 Error_flig=O 
6598 FOR I=1 TO Hui ccluans 
6600 Soln_vector(!)=Soln_1atrix(l,1) 
6618 NEXT 1 
6620 IF lnv_print_flag=l THEN GOTO G_j_return 
6630 RETu~N 

6648 Error_l: 
6650 Error _f lag=l 
6661 PRINT 1 ERP.OR . . . HATRIX SINGULAR~ 
66?C BEEP 1500, .3 
6661 G_j_return : 
-6690 P.ETURN 
6708 Print_results: 
6710 Sum_cf _y=O 
6726 Sum_of _y_sqrd=C 
6730 Sum_res_sqrd=O 
6748 FOR I=l TO Num rows 
6750 Y_calc=O -
6761 FOR J=l TO Num_columns 
67?0 Y_calc=Y_calc+Soln_vector(J)*Data_matrix(l,J) 
6786 NEXT J 
6?9C Residual(!)=INT(Y_calc+.5)-Y_data(l) 
680 0 Y_calculated(ll=INT(Y_calc+.5) 
681D Su1_res_sqrd=Su1_res_sqrd+Residual(ll*Residual(l) 
6820 Sum_of _y=Sum_of _y+Y_data(l) 
6838 Su1_cf _y_sqrd=Su1_of_y_sqrd+Y_data(l)•Y_data(l) 
6840 NEXT I 
6850 Corr_coeff=SQR(1-Su1_res_sqrd/(Su1_of_y_sqrd-Su1_of_y1Sum_cf_y/Num_ro~s)) 

b860 IF Num_rows=Nu1_colu1ns THEN ES=SQR(Sum_res_s~rd) 
6878 IF Num_rows<>Nu1_colu1ns THEN E5=SQR(Su1_res_sqrd/tNu1_ro~s-Nu1_colu1ns)) 
6080 FOR J=1 TO Nu1_colu1ns 
6890 Error_vector(J)=E5*SQRtABS(B_coeff(J,J))) 
6900 NEXT J 
6911 PRINT 
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6921 PRINT II x y Y_CALCULATED RESIDUALS 
b930 PRINT 
6940 FOR I=l TO Nu;_rows 
b9SO PRINT X_value(l),Y_data(!),TAB\25);Y_calculated(l),TAB(46);Residual(I~ 
6960 Pofv(Ne~_start_bin-l+I>=Y_calculated(!)/Totcl_sum 

69?Q NEXT I 
6980 PRINT 
6998 PRINT 
7010 PRINT " COEFFICIENTS 1 ! ERRORS" 
1010 PRINT uw;Soln_ve:tor(1);TAB(22) !;Error_vector(l);u (ZEROETH ORDER TE 
R") I 

7020 FOR 1=2 TO Num_colu1ns 
1030 PRINT Soln_vector(I);TABt22) !;Error_vector(l) 
1040 NEXT I 
1059 PP.INT 
7060 PRIN7 11 CORRELATION COEFFICIENT ·~corr_coeff 

1010 RETURN 
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?080 Create_file: ! THIS SUBPRObRAM WRITES THE HJSTOGRA~ TO THE DISC. 
7090 CREATE BDAT 1 HIST0 1 &V~LS(File_nu1ber),l 1 512 
?100 PRINT CHR$(12) 
7111 ASSIGN @Histo_file TO RHIST0 1 &VAL~(File_nu~ber) 
1120 OUTPUT @Histo_file;Histo_val(*) 
7131 ASSIGN @Histo f1le TO * 
?140 RETURN -
7151 Get_histo_file: ! THIS SUBROUTINE REA~S A HISTC FILE FROH DISC. 
?160 ASSIGN ~Histo_file TO uHIST0 1 &VALS(File_nu1ber) ! SET HISTObRAN VALUES 
7170 PRINT CHRit12) 
1180 ENTER @~istc_file;Histo_~al(JJ 
?190 ASS!GN @Histo_f1le TO * 

FROM THE FILE ON 
THE DISK. 

'720D RETURN 
7210 Error _handler: 
?220 

! THIS SUBROUTINE ALLOWS RECOVERY FROH THE MOST 
COHHON K~YBOARD l~PUT ERRORS. 

1231 
1240 
nso 
7261 
7270 
1281 
?290 
1308 
1310 
1321 
1330 
7340 
nso 
?360 
13?0 
1380 
1398 
?~00 
7411 
7420 
'7431 

IF ERRN=54 THEN 
PRINT TABXY(l,lb)j 1 DJPLICATE FILE NUHBER SPECIFIED ... TRY AGAIN" 
BEEP 1500,.3 
DISP "ENTER FILE_NUMBER 'i 
INPUT File_numter 

END IF 
IF ERRN=Sb THEN 

PRINT TABXY<1,16); 1 NOH-EXISTANT FILE SPECIFIED ... TRY AGAIN" 
BEEP 1500,.3 
DISP •ENTER FILE NUMBER "; 
INPUT File_number 

END IF 
IF ERRN<>54 AND ERRN<>5o THEN 

PRINT TABXH0,15); 11 SOFTWARE UNRECOVERABLE ERROR HAS OCCURRED 11 

PRINT TABXYt0,16); 1 PROGRAM EXECUTION IS HALTEDu 
PRINT TABXY(0,17); 1 ERRN u;ERRN 
BEEP 1500,.3 
STOP 

END IF 
RETURN 

END 
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APPENDIX B 

THE LEAST-SQUARES CURVE FITTING ALGORITHM 

The curve fitting algorithm employed to . model the histogram 

valley region is based on the least-squares criterion and uses the 

Gauss-Jordan method of elimination for solving the resulting simul­

taneous equations. The theory behind this approach is briefly 

described in this appendix. 

Let the vector r contain the elements r; which are defined as 

the residuals and can be expressed by 

where Y; are the actual y values corresponding to an x of an (x,y) 

pair and Y; are the calculated values. The least-squares criterion 

requires that the sum of the residuals squared be minimized. For 

example, assuming a second order polynomial curve-fitting equation 

of the form 

y. =A+ Bx. + Cx. 2 

l l l 

Then by substitution 

r. =A+ Bx. + Cx. 2 Yi· 
l l l 

and the sum of the residuals squared is 
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n n 

L r. 2 = L: (A + 2 B,- + Cx. y. ) 2 l .... . -
i=1 

l l l 
i=1 

where n is the number of data points. 

To find the values for A, Band C that minimize the previous 

expression, the derivative with respect to each unknc:Mn must be taken 

and set equal to zero. This can be expressed as 

cS Ir. 2 

l 

oA = 0, 
cSir. 2 

l 

cSB = 0 and 
cS Ir. 2 

l 

cS e = 0 . 

Substituting the expression for r; and taking derivatives yields 

cS !. r. 2 2 I(A+Bx.+ex. 2 -y. )cS I(A+Bx.+Gx. 2 -v.) 
l l l l l l "i · 

= cSA cSA 

= 2 I (A+ Bx. +ex. 2 -y. ) 
l l l 

= 0 

and 

cS Ir . 2 2 I (A+Bx . +ex. 2 -y. )cS I (A+Bx. +ex . 2 -y.) 
l l l l l l l 

cS B = cSB 

= 2 I (A+ Bx.+ ex. 2 -y. ) I ( x . ) 
l l l l 

= 0 

and 

cS I.r. 2 

l 
2 I (A+Bx . +ex . 2 -y. )cS I (A+Bx. +ex. 2 -y.) 

l l l l l l = cS c c5 c 

= 2 I (A+ Bx. +ex. 2 -y . ) I ( x. 2 
) 

l l l l 

= 0 
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The set of three equations can be expressed as 

ALn + BLx. + CLx. 2 = L y. 
l l l 

ALx. + BLx . 2 + CLx . 3 = Lx. v. 
l l l l u l 

ALx. 2 + BLx . 3 + CLx. 4 = Lx . 2 y .. 
l l l l l 

The solution of these three simultaneous equations gives the values 

for A, B and C which minimize the sum of the residuals squared and, 

hence, the best least-squares curve fit. 

The Gauss-Jordan method of solving simultaneous equations is 

used for reasons of execution time and expandability. For the second 

order polynomial the coefficient matrix [K] and constant matrix [G] 

become 

L:n Lx. 
l 

L:x . 2 
l LYi 

[K] = l:x. Lx. 2 L:x. 3 and [G] = L:x.y. 
l l l l l 

Lx.2 L:x . 3 Lx. 4 
Lx. zy. 

l l 
l l l 

where all summations can be determined directly from the input data. 

The simultaneous equations can then be written as 

[K] [;] = [G] . 
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The Gauss-Jordan method reduces [K] to a unity matrix to yield 

[i : :J r:J = [E] 

where the matrix [S] is now the solution matrix. 

The methodology is the same and the derivation is similar for 

other order polynomials than the example shown here. However, care 

must be exercised because the increased number of multiplies, 

divides, and adds for high order polynomials contributes to losses 

in accuracy. 



APPENDIX C 

COMPUTATia~ OF THE CORRELATION COEFFICIENT 

The correlation coefficient computed by the histogram 

modeling subroutine provides a measure of the accuracy of the 

polynomial curve used to model the histogram valley. The correlation 

coefficient compares the variance of the computed curve values (about 

the mean of the true curve) to the variance of the true curve (about 

its own mean). This can be expressed as 

where p = correlation coefficient 

Y· = true curve values 
1 

- value of true y = mean curve 
,.... 

calculated curve values and Y· = 1 

N = number of data points. 

All summations in this appendix are over the interval i = 1 to N. 

The variance of the true curve can be expressed as 

_N1 L ( y . - y ) 2 = _N1 L ( y . - y . ) 2 +-N1 L ( y . -y ) 2 +-N2 L ( y . - y . ) ( y i" - y ) . 
l l l "l l l 
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The last summation in the preceding equation is zero because all terms 

in that sum have factors of the fonn 

a x 2 
2 + ••• +a xn 

n 

which are zero by virtue of the solution of the simultaneous 

equations. Substituting the second equation into the first equation 

yields 

P = [~L(yi -)2 ~L(yi -yi)r . - y -

1 z=r -)2 N \y i - y, 

It f 011 ows directly that 

[1 
~)yi -yi)T . 

p = 
L(y. - y) 2 

l 

As the correlation between the true curve and the calculated curve 

improves, the correlation coefficient approaches the value 1. Very 

dissimilar curves have a low correlation coefficient. 

The histogram modeling subroutine uses this final equation to 

compute the correlation coefficient. 
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