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ABSTRACT 

A simple and powerful new paraxial ray formalism is shown to provide an alternate 

method for designing Gaussian Beam Resonators. The theory utilizes the Delano or yybar 

diagram approach and is an extension of the recent work by Shack and Kessler for laser 

systems. The method is shown to be complementary to the conventional ABCD method 

and is founded upon J.A. Arnaud's pioneering ideas for complex rays. 

The thesis develops an analytic formulation of a ray based complex wavefront 

curvature and yields a clearly generalized description of spherical wave propagation, for 

which Gaussian beams are considered a special case. The resultant theory unifies the 

complex q parameter and the ABCD law, with the yybar complex ray components and 

also suggests that the ABCD law for the complex q parameter has its origin in the yybar 

complex ray. 

New fundamental equations for designing stable multi -element resonators using the 

yybar coordinates are derived, and it is shown that the yybar diagram provides a novel 

method for defining automatically stable resonators. Various applications for the yybar 

design technique are also discussed, including the setting of convenient design constraints, 

the description of M2 beams, generating phase diagrams, and resonator synthesis and 

analysis. 
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CHAPTER! 

INTRODUCTION 

"There are new and exciting problems arising that are a combination of traditional 
lens design and new device-oriented photonics applications. In many of these new 
problems, the geometrical model is not adequate, nor is a beam propagation model 
adequate on its own. Integrating these design tools and developing the understanding of 
how to use them are still in their early stages. 

The recent meeting of the lens designer and the photonics physicist was a start 
toward development of this field. Those who fail to work toward a union of these optical 
opportunities will likely be left behind." 

R. R. Shannon, 1993 [ 1. 1] 

The field of laser engineering has continually evolved since the invention of the 

laser in 1960, both with regard to technological advances, as well as to theoretical 

models. In particular, the Gaussian beam model of a laser resonator has achieved 

tremendous attention in this field, mainly because of its great effectiveness as a tool for 

predicting beam behavior. 

Various techniques of implementing the Gaussian model to solve beam 

propagation and resonator problems, have also evolved. In the mid 1960s, H. Kogelnik of 

Bell Telephone Laboratories developed what is now termed the ABCD method of 

solution [1.2]. While its matrix formulation is well suited to computer calculation, it's 

'ABCD Law' is also convenient for algebraically predicting resonator stability, beam size 

and radius of curvature at a chosen plane, given the mirror radii and the distance between 
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them. The method is now practically exclusive and is typically the foundation of virtually 

all text books on laser theory. 

The purpose of this work is to introduce a new and alternate paraxial ray 

technique, termed the yy (pronounced and hereafter called, the 'yybar') method, for 

solving Gaussian beam resonator problems. The theory is based on J. A. Arnaud's 

pioneering ideas for complex rays [1.3, 1.4], and is an extension of the powerful yybar 

formalism recently presented by Kessler and Shack for laser beam propagation [ 1. 5, 1. 6]. 

The thesis will .develop an analytic formulation of a ray based complex wavefront 

curvature and yield a clearly generalized description of spherical wave propagation, for 

which Gaussian beams are considered a special case. The connection between the 

complex q parameter, the ABCD law, and the yybar complex ray components will also be 

explored, and then we will depart from the traditional ABCD 'eigenvalue' method, 

concentrating instead on confining a special pair of rays within an optical resonator. 

New fundamental equations for designing stable multi-element resonators using the 

yybar coordinates will be derived, and it will be shown that the yybar diagram (also 

referred to as the Delano diagram) provides a novel method for defining automatically 

stable resonators. It will also be shown that this new method is complementary to the 

ABCD technique, and that it is capable of yielding complete ABCD component 

information, given the. desired ray trace of the cavity, and yielding a complete ray trace, 

given the ABCD component information. The formalism will also demonstrate that the 
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yybar technique allows one to conveniently synthesize and analyze complicated 

multi-element resonator designs, while constraining each design to be automatically stable. 

The work begins with a brief history of the general yybar diagram and reviews 

some previous theory related to the application of yybar principles to Gaussian laser 

beams. After a review of the conventional resonator ray description, the second chapter 

then introduces the concept of a complex yybar ray, based on Arnaud's formulations, 

and shows how it is linked to the complex q parameter for Gaussian beams. Since the 

ABCD law is now the most familiar and conventional method of designing laser 

resonators, chapter two goes on to show that its origin is effectively found in complex ray 

formalism. The chapter also discusses the important (but historically reversed) link 

between the ABCD method and the classic ray trace formalism, on which the yybar 

method is based. 

Chapter three begins with a brief outline of yybar diagram principles, ideas, and 

method of construction, and then introduces the main concepts and formalism required to 

define yybar laser resonators. The resonator stability conditions are then derived in terms 

of yybar variables, and then the collection of common two mirror resonators are mapped 

onto the yybar plane. The methods are then extended to more complicated resonators, 

those having multiple internal optical components. 

In chapter four, some applications for the yybar method are discussed, including 

the setting of convenient design constraints, the design of M2 beam resonators, the use of 

the yybar diagram as a phase diagram, beam size analysis (given the ABCD matrices), and 
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the synthesizing of resonators. The work conchides with a summary and some 

recommendations for future research of this invaluable new tool. 

1.1 Brief History of the General vvbar Diagram 

In 1963, E. Delano introduced a new method for graphically determining the 

first-order layout of an arbitrary" ... optical system of axially symmetric refracting or 

reflecting surfaces" [ 1. 7]. Rather than using the properties of the optical elements as the 

defining parameters of an optical system, his yybar diagram method chose the height of the 

marginal ray (y), the height of the chief ray (ybar), the Lagrange invariant (H), and a pair 

of object and image reference planes. The next year, R. J. Pegas demonstrated a 

numerical yybar method for "Semiautomatic Generation ·of Optical Prototypes" [1.8]. 

Given first order constraints, a yybar diagram was automatically generated and optimized 

for the lowest speed. The ray angle (u and ubar) information was then used while varying 

the individual surface properties to minimize third order Seidel aberrations. 

In 1970, F. J. L6pez-L6pez introduced a normalization process, y by the entrance 

pupil height, and ybar by the image height [ 1. 9]. This allowed tP.e additional constraints of 

system focal length, numerical aperture, and field aperture to be easily applied, while 

varying any number of refractions and transfers. Several years later, Roland Shack 

popularized the yybar diagram further with practical examples and also provided new 

insight into its elegance, utility, and power [1.11]. At the same time, F. J. L6pez-L6pez 

developed additional analytical tools for analyzing and synthesizing system properties, 
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using vector geometry [ 1. 1 0]. Other contributions include the work of Walter 

Besenmatter pertaining to zoom lens design [1.12], and the GRIN design applications of 

Harrigan, Loce, and Rogers [ 1. 13, 1. 14]. 

In addition to using the yybar diagram as an optical design tool, the use of yybar 

variables on their own, provides a powerful method of optical design, when used with the 

optical invariant condition. This is demonstrated, for example, by P. Trotta [ 1. 15 ] . 

1.2 Previous Related Theory Applied to Gaussian Laser Beams 

In 1969, J. A. Arnaud [1.3-1.5] attached physical significance to Kogelnik's 

complex paraxial definition, q=X/( dX/dz), for Gaussian beam propagation [ 1.2], by 

showing that the imaginary and real components of the complex ray, represent real rays 

which are directly related to the beam size and beam radius. He also recognized that the 

components could be used to form a real skew ray and that the projection of the 

components formed an interesting phase diagram. Although equivalent to a yybar 

diagram, it was not recognized as one. 

In 1983, Herloski et al used Arnaud's theory to define a waist ray height (y1) and a 

divergence ray height (y2) to define Gaussian beam propagation through a conventional 

ABCD matrix system [ 1.16]. Using Code V and the relationship, ro 2 = YI + y~ , the beam 

size could be set as a numerical constraint, or tracked through the system. In 1984 and 

1992, D. Kessler and R. V. Shack formally showed that the two Gaussian beam paraxial 

rays could be represented on a yybar diagram, resulting in a new method for analyzing and 
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synthesizing complicated laser beam optical systems [ 1. 5, 1. 6]. The use of strictly yybar 

variables (without the yybar diagram), together with the Lagrange Invariant condition, has 

also become recently popular for describing Gaussian laser beams [ 1. 1 7 ] . Apparently, 

none of the previous work has applied yybar formalism to (laser type) resonator design. 



CHAPTER2 

RELATING THE COMPLEX RAY TO THE GAUSSIAN COMPLEX RADIDS 

AND THE ABCD METHOD 

2.1 A Review of Conventional Resonator Ray Description 

Let us review the conventional ABCD method of confining rays within a cavity. 

First, consider the displacement, rn of an arbitrary ray in an optical medium. In 

conventional ABCD matrix form, we have, 

[ 
r ~ ] = [ A B ][ r ~-1 ] 

r 0 C D rn-1 .· 
(2.1) 

where the matrix elements, A, B, C, and D, are the ray coefficients, usually for a 

compound system of elements. This 'bundle' of arbitrary rays is shown to have an 

oscillation solution when confined to a cavity like structure. The solution has the form 

(see, for example, Siegman [2.1], Yariv [2.5], or Verdeyen [2.6]): 

r n = rocos 8n +so sin 8n (2.2) 

where n is the number of sections, r 0 and s0 are the initial ray properties, and the 

condition, -1 ~ cos 8 ~ 1 , is found to be necessary for a stable solution, where 

cos 8 = (A+ D)/2. The so-called eigenvalues are given by: 'A 1, 'A2 = exp±j8. 

7 
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Ordinarily, this is the -entire scope of ray displacement theory and analysis for the 

ABCD method of solution for resonators; any other quantitative information on beam size 

and location is usually derived in terms of the A, B, C, and D coefficients, not in terms of 

the ray or 'eigenray' quantities. In this work, it is normally the desired ray properties that 

are made convenient to choose, with the consequence that the coefficient values are 

determined secondarily, simply as a result of this choice, and as a matter of convenience. 

2.2 Arnaud's Complex Rays 

Consider an 'Arnaud' ray which is complex valued, such that both its real and 

imaginary components represent real rays. Such a ray could be defined in terms of the 

standard rand r' nomenclature, as follows: 

and r' = r~ + ir~ (2.3) 

However, it is convenient at this time to define a special ray, Y , which we will 

call the yybar complex ray, and which has as its real and imaginary components, the two 

real y and ybar rays respectively. Its unique property will be defined later when we apply 

a strategic and convenient magnitude for it. For now, let us simply define it: 

y =y+iy and U=u+iu=dY/dz (2.4) 
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2.3 ABCD Law for C·omplex Rays 

Since the standard ray transfer equations apply to both the complex and real 

components of this special complex ray, they also apply to the complete ray: 

(2.5) 

and, 

(2.6) 

Here, A,B,C and Dare the conventional (real valued) matrix ray coefficients, for the 

optical element or system between position 1 and 2. By dividing the two equations, we 

arrive at a general form of the familiar ABCD law, in this case for complex rays: 

(2.7) 

Also, the complex paraxial angle, U, is related to a complex radius of curvature, R, by the 

subtending geometric expression, 

U=YIR 

With this definition, we can see that the complex paraxial radius has a very basic 

interpretation: it simply represents the complex distance which the wavefront has 

propagated from its (complex) source. By direct substitution, we obtain, 

R2 = (ARt + B)/(CRt +D) 

(2.8) 

(2.9) 
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2.4 Relating the Complex-Ray Radius to the Complex g Parameter 

The real radius of curvature for the wavefront defined by this complex ray is 

obtained by splitting the last equation into its real and imaginary parts. This can be done in 

two ways. First, we solve for the inverse of R: 

(2.10) 

The inverse of the real part of this expression is the wavefront radius, 

(2.11) 

Now recognizing that H= uy- yii is the Lagrange invariant, the expression for 1/R can be 

re-written as, 

(2.12) 

Let us also solve for R directly: 

R = (y + iY)/(u +iii) = (iiy + uy)/(u 2 + ii2
) + iH/(u 2 + ii2

) (2.13) 

These last two expressions are derived purely from paraxial ray principals. They are 

completely general, and thus can be applied to any type of spherical wave propagation. 

Both equations allow one to determine both the radius of the wavefront and its phase 

properties. The second equation has the explicit form to determine how far the wav,efront 

has propagated from its complex source point. 
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Consider now the -~pecial case of an unaberrated, untruncated, and symmetric 

Gaussian beam, having radius, ro, at a chosen z plane. In this case, the effective complex 

radius of curvature is given by the well known expressions, 

1/q = 1/R- iA./nro 2 and q = q o + z = inro 6/A. + z (2.14) 

by comparison to the previous two equations, we can see that TEM00 Gaussian beam 

propagation can be considered as just a particular case of our general complex beam 

radius formulation. 

Therefore, if we wish to constrain our y and ybar rays to describe Gaussian beam 

propagation, we simply equate the two complex radii, q=R=YIU, to give: 

H = uy- yil = A-In (2.15) 

z = (uy + uy)/(u 2 + u2
) (2.16) 

We immediately arrive at four very important transformation relationships. The first two 

equations were derived previously by Arnaud, while the last two were recently derived 

with a geometric method by Kessler and Shack. Collectively, these definitions allow us to 

state a general ABCD law of transformation: 

(2.17) 
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Thus, for Gaussian beams, there is a simple relationship between the yybar 

variables, the complex q parameter, and the ABCD law of transformation. In fact, this 

expression shows the origin and conveniently proves the general validity of the ABCD law 

for the q parameter (at least for the presently assumed case of real valued A,B, C, and D 

coefficients). According to Verdeyen, it is generally considered "very difficult" to prove 

the ABCD law for the q parameter by common formalism (except through the methods of 

comparison and verification). 

The reader is reminded here that this ABCD law, when combined with the 

so-called 'self-consistency condition', q2=q1 , is the central equation utilized in 

conventional resonator design. It is used to force the wavefront radius and the beam size 

to equal themselves at a single chosen plan after a round'trip (characterized by the round 

trip system coefficients, A,B,C, and D). Although one could apply this same law to the 

yybar complex radius, and presumably determine equivalent information at the chosen 

plane, we shall fmd a far more fruitful method can be found for characterizing the 

resonator, at all planes. First, we need to expand on the topic of resonator ray tracing. 

2.5 Converting the ABCD Matrices to Ray Trace Variables 

To broaden the scope of conventional resonator ray analysis, we begin by relating 

the ABCD information to standard ray trace variables. Although the A,B, C, and D 

coefficients normally represent the compound effects of multiple optical elements (i .e. 

representing the total system matrix), let us consider the individual component matrices, 
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imposing for our purposes~ tha1 each matrix represents the effects of a single optical 

element, situated just in front of the incoming rays from the previous element. 

Instead of an arbitrary ray 'bundle' set, { r}, let us select the two very special y, and 

ybar 'beam' rays, which are constrained to obey strict and chosen conditions. While both 

they and ybar rays, and their respective propagation derivatives, u and ubar, conform to 

the conventional matrix format above (they are, of course, members of the general 'r' ray 

bundle defined previously), we shall write them out in the explicit ray trace format: 

Yn = AYn-1 + Bun-l,n (2.18) 

Un,n+l = Cyn + DUn-l,n Un,n+l = Cyn + Diin-l,n (2.19) 

In order that these ABCD coefficients conform to the Lagrange or 'Optical' invariant 

condition, we require, 

(2.20) 

and by substitution, 

- -
Yn+l Un+l ,n+2- Un+l ,n+2Yn+l = 

(2.21) 
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Therefore, AD - BC = 1 is· a necessary condition for using the coefficients. Sipce many 

optical components used in resonators have already been characterized in terms of ABCD 

matrix coefficients which meet this condition, these equations can assist us in determining 

the yybar paraxial representation of matrix elements. 

In most cases, the value of the A and B coefficients is unity; but there are 

exceptions: for example, in GRIN type media, the A and B coefficients have sinusoidal 

arguments [2.5], and then this simplification cannot be made. Keeping this in mind, but 

assuming the values are unity, then, 

Yn = Yn-1 + BUn-1,n Un,n+1 = Cyn + Un-1 ,n (2.22) 

Yn = Yn-1 + Biin-1,n Un,n+1 = Cy~ +Un-1,n (2.23) 

By inspection, we find that the B coefficient represents the (reduced) distance between the 

n, n-1 planes, and -C represents the optical power of the element located at plane n. To 

match ray trace convention, we replace the symbols B, and -C with the 't, and <P 

respectively, to give: 

Yn = Yn-1 + 'tn-1,nlln-1,n Un,n+1 = Un-1 ,n- <f>n-l ,n,n+1 Yn (2.24) 

Yn = Yn-1 + 'tn-1 ,nUn-1,n (2.25) 



CHAPTER3 

FORMALISM FOR THE yybar RESONATOR DESIGN 

3.1 Basic YYbar Diagram Principles 

While the yybar diagram method is generally applicable to any image based optical 

system, the basic technique has not achieved as much popularity as it deserves. 

Unfamiliar readers are strongly urged to thoroughly read the previously cited references, 

especially the heavily referenced paper by Kessler and Shack [ 1. 6]. What follows is an 

extremely brief review, for the strict purpose of introducing only the needed central 

concepts. 

Let us first consider a basic (two dimensional) single lens image system. After 

tracing two merdional rays (choosing the marginal and chief rays), one can plot the two 

ray displacements as the abscissa and ordinates on what is termed a yybar diagram, as 

shown below: 

I 

0 

Figure 3. 1 : yybar Diagram for Single Lens Imaging 

15 
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At its most basic level, the yybar diagram provides a simple and effective method 

for generating and analyzing an optical system by tracing through any two different rays. 

In the previous work of Delano and Shack, the concept is reduced further to a single 

skew ray trace which has as its orthogonal components a marginal and a chief ray. 

Although Arnaud (independent ofDelano's work) also originated a skew ray "generator" 

for Gaussian beams, we will avoid its use. 

Instead, we will choose to use the yybar coordinate information directly, and 

associate the y and ybar values with what Kessler and Shack refer to as the y and ybar 

rays, respectively. (This is also what was done, effectively, by Herloski et al [ 1.16]). With 

the two rays defined in this manner, they become equivalent to they and ybar rays we 

discussed in Chapter 2; and, in particular, they can represent the Gaussian beam rays we 

derived earlier--namely as real and imaginary components of the complex Y ray, which are 

constrained to define the magnitude of the beam size. With this y and ybar ray 

representation, we shall find that the Gaussian beam resonator is easily defined. 

Reducing the skew ray co.ndition not only offers further simplicity for defining 

Gaussian beam yybar formalism, it also removes Delano's axially symmetric requirement, 

thus allowing the two yybar rays to lie in a meridional plane. As Herloski et al recognized, 

this also allowed their yybar-like variables to be used for simply astigmatic systems. 

(These simplifications can also be applied to image based systems). 

Even with the changes we have made to suit our Gaussian beam formalism, most 

of the yybar concepts still apply. They include: 
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-· 
( 1) Area on the diagram represents distance. 

(2) Points represent planes. 

(3) Any straight line passing through the origin represents a conjugate line, 
with object and image planes defined by the ray trace intersections. 

( 4) The y and ybar axis represent conjugate lines. 

3.1.1 Equations Required for Computation 

The yybar variables themselves can be used to supplement the diagram with 

analytical formulations. Let us now summarize the key equations required for an 

analytical determination of the yybar trace in the customary manner: 

Refraction: (3.1) 

Transfer: (3.2) 

Lagrange Invariant: H = Yi ii i,i+ 1 - Yi u i,i+ 1 ; i = 1. . n (3.3) 

Distance: (3.4) 

As Delano has shown, the last two equations are derived by substituting the Transfer and 

~efraction equations into the Lagrange Invariant relation, respectively. 
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3.1.2 Constructing YY·bar1'ables 

We now wish to determine the required focal length of the lens system in the yybar 

diagram of figure 3 .1. It is convenient to determine the unknown lens power by using the 

table filling technique shown below [ 1. 11]: 

Table 3.1: yybar Table for a Single Imaging Lens System 

-
y y 't u u 

Y1 0 

't 12 (y2 - Y1)/-r 12 (Y2 - y 1)/-r 12 

Y2 Y2 
~ 

't23 (y3 - Y2)/-r23 (Y3 - y2)/-r23 

Y3 0 

Since, 
-' 

't12 = Y1Y2IH and 't23 = -y3y2/H 

then, 

which yields the imaging law, 

1.- _1_ _1_ 
f- 't12 + 't23 

<P 

Y2(y1 - Y2)/H-r 12't23 

(3.5) 

(3.6) 

(3.7) 

This ends the brief outline of the basic yybar diagram principles, and we are now 

at a point where we can define an optical resonator with yybar formalism. 
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3.2 Defining the vvbar-:R;sonator Geometry 

Consider any two arbitrary points, (Y1, YI) and (Y2, y2) on the yybar diagram. 

Without any loss of generality, we can represent the two points such that the line from the 

origin perpendicular to the segment which joins them, lies along the positive y axis 

(refer to figure 3.2 below): 

y 

y 

Figure 3.2: Simple yybar Diagram Describing Gaussian Beam Propagation Between Two 
Arbitrary Points. 

Note the reason there is no loss in generality for this choice of configuration is because 

coordinate rotation about the origin is allowed, since all points retain their respective 

spacing with respect to the origin. A rotation with our formalism can be interpreted as 

choosing an equivalent, but different, pair of paraxial y and ybar paraxial rays [ 1. 7]. 
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By definition, the -line joining the two points represents the propagation of a 

Gaussian wavefront. The diagram depicts area as the distance the beam propagates, 

normals terminating at the origin as beam waists, and the angle between points as the 

phase of the wavefront. The beam size, ro, is represented by the distance from the origin 

to the trace, and can be determined at any plane along the path of the beam. In figure 3. 2 

the beam size is indicated at the two end points; however, it can easily be defined at any 

other point along the trace. The beam waist is indicated along the y axis and occurs there 

only because we have chosen the beam trace to be perpendicular to that axis. 

If we 'confine' the beam by placing two mirrors at these coordinates with radii 

determined from, R = (y2 + y2)/(iiy + uy), then the Gaussian radiation is continually 

re-mapped, or reflected in between the two points. Since the mirror radii exactly matched 

the wave front radii, the resultant 'resonance' is automatically stable, and all radiation is 

thus constrained to remain within this fundamentally defined resonator (see figure 3 . 3). 

y,y-aXIs 

····· · ···· : · ·· · ·· ·· · ···-~·----- - - - ----------·-----

Figure 3. 3: Gaussian Beam Resonator Showing the Defining y and ybar Rays. 
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3.3 Resonator Length,_Mode Volume, and Confocal Parameter 

The resonator is characterized by mirror spot sizes, ro 1 , ro 2 and intra-cavity 

beam waist, roo , and by cavity length, 

L = (y1y2- Y2Y1)/H 

The beam waist can be expressed as, 

roo = (y~ + y~) 112 = H/(u~ + u~) 112 

The mode volume within the resonator is [2. 6]: 

Furthermore, the optical cavity will have confocal parameter, b, where, 

and Rayleigh range, 

The far field semi angle of divergence is given by, 

8 = A./(nroo) = H(y~ + y~)-112 = (u~ + u~) 112 

(3 .8) 

(3.9) 

(3.10) 

(3 .11) 

(3.12) 

(3 .13) 
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Other relationships· between variables can be easily determined by constructing a 

yybar table. In this case, the table is constructed to determine the required Gaussian beam 

wavefront radii at the chosen mirror locations. Note that the yybar resonator is stabilized 

simply by setting the mirror radii equal to the respective (incident Gaussian beam) 

wavefront radii: 

Table 3.2: yybar Values for an Arbitrary 2-Mirror Cavity 

- R y y 't u u 
-

Y1 Y2 

L12 (y2- Y1)/L12 <Y2- Y1)IL12 

Y2 Y2 R2 = (y~ +y~)/(ii12Y2 +u12Y2) 

L21 (y1 - Y2)/L21 <Y1 - y2)IL21 

Y1 0 R1 = (yr +yr)/(ii12Yl +u12Y1) 

From this, we can determine relationships for the mirror radii, solely in terms of the yybar 

variables: 

( 2 -2) R _ Y2+Y2 
2 - [y2(Y2-Yl)IL+y2(Y2-Yl)IL] 

(3.14) 

Therefore, 

(3.15) 
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And similarly, 

(3.16) 

If we equate the common term, we obtain the useful mirror spot size relationship, 

(3 .17) 

3.4 Defining the g1,g2 Stability Equations 

The previous equation can be re-expressed as, 

(3 .18) 

Where g1, g2 are the conventional 'g-parameters' used to quantify resonator stability. In 

terms of the yybar variable, they are: 

(3.19) 

(3.20) 

Although the cavity is stable (by definition), we can use the g parameters to prove this is 

so. Recall the condition for resonator stability: 

(3 .21) 
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By substitution, we have -· ·- ·· -

(3.22) 

Taking one inequality at a time, we can immediately see, 

(3 .23) 

is true for all real values of (Y1, y1), 6'2, Y2). Taking the second inequality, we have: 

(3.24) 

which then reduces to, 

or (3.25) 

Therefore, the second inequality is also true for all real values of (y 1, y 1), (Y 2, y 2); 

a~d thus, we have the remarkable result that any two yybar coordinates form a stable 

resonator (in accordance with our definitions). 

It is a simple matter to arrive at the yybar representation for the stability 'minima'. 

For a simple two-mirror resonator, the condition, g1 g2 =0 corresponds to, 

(3.26) 

or, 

(3 .27) 
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which is the confocal resonatOr condition, while the condition, g
1 
g2 = 1 corresponds to, 

or, 

3.5 Graphing Common Two Mirror Cavities 

Consider the yybar diagram below: 

y 
Plano-Plano .__infinity 

Large Radius Mirrors 

Symmetric Confocal 

Plano-Conc.q.;e 

SJ(~er'cal 0 
45 

~~----------~---

Hemi-spherical 

Figure 3. 4: Representation of Common Two Mirror Resonator Cavities 

(3.28) 

(3.29) 

All common (linear) optical resonators can be simply represented on the yybar plane. For 

example, the confocal cavity is known to have mirror spot sizes exactly fi times the 
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beam waist. Therefore, a __ c_onfocal resonator is easily formed by simply defining two 

points having a common y-value and intersecting they=± ybar lines. The plano-plano 

resonator occurs for infinite beam waist. The spherical resonator approaches a zero beam 

waist, and thus, in the limit, its yybar beam trace passes through the origin. Conveniently, 

all extreme locations of the yybar coordinates correspond to g1 g2 ~ 1, i.e., borderline 

cavity stability. 

3.6 Resonators with Intra-Cavity Components 

It has been shown that any two yybar coordinates form a stable optical resonator, 

if it is assumed that mirrors are located at these points, with radii of curvature equal to the 

Gaussian wavefront. Let us now consider a generalized resonator, containing N 

intra-cavity optical components: 

Figure 3. 5: Generalized N-Element yybar Resonator 
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By connecting each point-t6-tne origin, a series of triangular area segments are formed, 

representing the reduced distances traversed in traveling between the respective 

components. If light is traveling from left to right, the area is swept out clockwise and is 

considered positive. If the light is traveling from right to left, the area swept out is 

counterclockwise, and is considered negative, since the Lagrange invariant is also negative 

in this case [1. 7]. 

Since any arbitrary pair of adjacent coordinates, <Yi-1, Yi-1), (Yi, Yi) forms a stable, 

self-consistent, resonating path, then collectively, the sum total path must form a stable, 

self-consistent resonator, with mirrors located at points (Y1, y1), (YN, YN) . This follows 

from the observation that each point along the yybar resonator diagram, which represents 

an optical component, has exactly the optical power to match wavefronts to the adjacent 

points. In effect, the optical powers are a consequence of the yybar constraints 

manifesting the refraction and translation processes. 

We can now generalize the method of defining an optical resonator having N 

optical elements (including the mirrors). The total length of the resonator is defined as, 

(3.30) 

The beam size at any arbitrary location is, 

(3.31) 

The power of the ith optical element can be determined from a yybar table: 
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Table 3.3: yybar Table-for Determining the Power of the ith Intra-Cavity Element 

-
<I> y y 't u u 

Yi-1 Yi-1 

'ti,i-1 (yi - Yi-1)/-ri,i-1 <Yi- Yi-1)/-ri,i-1 
-

<f>i-1 ,i,i+1 = {Ui-1,i- Ui,i+1)/yi Yi Yi 

't i+ 1,i (yi+1 - Yi)/'ti+1,i <Yi+1 - Yi)/-ri+1 ,i 

-
Yi+1 Yi+1 

The radius of curvature of the wavefront, at the ~ element, is 

(3.32) 

which allows a determination of one of the required mirror radii. As in the two element 

resonator, the other (i.e. first) mirror radius can be detemuned by considering the light 

traveling from right to left: 

(3.33) 

In regard to the stability of these more complicated (optical system) resonators, it 

is useful to employ the following phase expression (although well known, this equation is 

conveniently derived using the yybar 4iagram, in chapter 4): 

(3 .34) 

The extreme values of a , where g1 g2 =0, 1, are: 



29 

a e = nn/2 n = ±1 , ±2, ... (3 .35) 

So that, for n odd, g 1 g2 =0, and for n even g 1 g2 = 1. This result has a very simple 

interpretation, when viewing the yybar diagram (see figure 3.6): Whenever the end mirror 

coordinates are phase separated by a multiple of n/2 , the resonator is at a stability minima, 

with odd multiples corresponding to quarter wave difference cavities, modulo four 

multiples corresponding to zero phase difference resonators, and odd multiples of 1t 

corresponding to 180° phase difference resonators. The special cases ofn = 0, n = 1, n = 

2 correspond to conventional plano, confocal, and spherical-type resonators, respectively. 

The case of zero phase difference ( n = 4, 8 ... ) corresponds to the degenerate class of 

cavities which have been studied in depth by Arnaud [ 1. 3]. 

y 

Figure 3. 6: Defining the Full Resonator Phase Angle, a 



CHAPTER4 

APPLICATIONS FOR THE yybar METHOD 

4.1 Techniques for Applying Design Constraints 

A particularly powerful advantage of the yybar diagram method is its ability to 

conveniently set and sustain a variety of useful beam and resonator design constraints, 

regardless of how complicated the internal optical system may be. In contrast to 

conventional resonator design procedures, the yybar method allows mirror radii and 

internal lens focal power to 'float' in value, while retaining what may be more important 

constraints. For example, one may wish to fix the resonator length and stability 

characteristic, while adding any number of intra-cavity components for beam 

manipulation. In another example case, we may wish to set the mirror spot sizes and waist 

size, while adjusting imaging properties and lens power. After the system design is 

basically established, the mirror radii and lens powers can be chosen appropriately. 

The yybar method also accommodates the more conventional design constraint 

method of first choosing the mirror and lens powers and their respective spacing, and then 

determining the resonator stability and beam properties via the yybar coordinates. 

However, with the yybar information, we are then equipped with a substantial byproduct: 

a complete resonator ray trace is derived, simply by plotting the yybar diagram. This topic 

is discussed later in the section entitled, "Generating the yybar Diagram, Given the 

30 
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ABCD Matrices. For the cii~ent discussion, let's examine three important and useful 

techniques of setting yybar resonator constraints: Using normalization, locking the 

resonator phase angle, and setting the magnitude of the beam 'vector'. 

The advantage gained by normalizing the yybar set has been discussed by 

L6pez-L6pez. Here, we apply the normalization method in order to constrain the optical 

resonator length to a chosen value, regardless of the number of intra-cavity components. 

We define a normalization length, 

[ 1 N - ] 112 
JL = L [l:i=l 0 i+1Yi- Yi+lYi)] (4.1) 

By dividing the yybar set by this length, i.e., 

Y= y/ JL and y = y/ JL (4.2) 

and then using the reduced set, { y 9 y }, the cavity length, L, is always preserved. 

The second constraint technique of locking the phase angle, has the advantage of 

securing the stability characteristic of the resonator, while adding any number of 

intra-cavity elements or changing the length of the resonator. The prescription for using 

this strategy is as follows: 

(1) Choose the desired phase angle or stability characteristic. 

(2) Sketch the yybar diagram for a resonator which subtends the required 
phase angle with respect to the origin, and which achieves the desired 
beam path and image properties. 
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(3) Normalize all -yybar coordinates by the desired resonator length. 

(4) Fill in a yybar table with the normalized coordinates, and compute the 
required mirror and lens powers. 

( 5) Adjust the length, if required to obtain the desired beam dimensions 
and/ or commercially available mirror radii, and iterate, if necessary. 

The third and final constraint technique discussed here is the most basic, and 

involves the setting of the beam vector magnitude. This particular design tool represents a 

very practical capability, since one may choose, at the very outset of selecting a resonator 

design, to simply choose the desired beam size at any desired location in the resonator. A 

prescription for using this constraint method is as follows: 

(1) Choose the desired beam spot size for the first mirror. 

(2) Determine starting yybar coordinates by using the beam vector magnitude 

I . J 2 -2 re atlon, co 1 = y 1 + y 1 

(3) Plot the coordinate on a yybar diagram, and then choose any other desired 
points in a clockwise manner, ending with the second end mirror. Realize 
that the chosen points determine the desired beam size via the beam 
vector magnitude relation. Use the area swept out by the beam vector to 
determine the reduced distance between coordinates. 

( 4) Choose the location of the beam waists by setting the yybar trace 
perpendicular to the beam vector. 

( 5) Determine the required resonator length and the lens and mirror focal 
powers by filling out a yybar table. 
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4.2 Obtaining Other llnPortant Beam Equations 

The yybar diagram and variables also allow new methods of deriving important 

resonator beam relationships. The following two examples elegantly demonstrate the 

simplicity the method offers. The reader is encouraged to find and compare conventional 

resonator algebra methods of deriving these key equations. 

In the first example, we will derive the general mirror spot size equations. Consider 

the area of the parallelogram, formed by the yybar origin and any two (non-zero) 

coordinates (see Figure 4.1): 

(4.3) 

which is simply the 'beam vector' cross-product (the beam vector is defined in the section 

on Phase Diagrams). This gives, 

(4.4) 

If we multiply this equation by the relation, ro dro2 = (g2/g1) 112, we obtain, 

or, (4.6) 

and similarly, 

(4.7) 
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Y .. ···· ···· ... 

········ .. : .. 
··.{.y2' y2) 

. .. :• 
( yl , yl ) ..... .... 

•: ...... . 

a .··r r 

r ··················· ... 
-
y 

Figure 4. 1: yybar Representation of the Beam Vector Cross-Product 

In the second example, we will prove the important phase relationship, 

(3 .33) 

Proof: 

Angle between two lines passing through the origin is, 

(4.8) 

where s1 and s2 are the line slopes. Therefore, 

- -
tan a Y2Yl-Y2Yl 

YlY2-YlY2 
(4.9) 

The numerator was just shown to be co 1 co 2 sin a in the previous example, while the 
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denominator is just ro I g 1 ~ Se we have, 

(4.10) 

- +(gl) 1/2( 1) 1/cosa- _ g
2 

g1 ( 4.11) 

or, 

4.3 Defining Real Beams with the M~ Parameter 

Consider a modified, but untruncated beam such that [ 4. 1 ], 

(4.12) 

The M2 parameter in this equation represents a modification to the gaussian beam to 

account for so-called 'real laser beam' qualities, such as multi-mode effects. Siegman 

defines M2 = 4naoas , where ao and as are the beam's minimal spatial variance and 

spatial frequency variance, respectively [2.2-2.4]. 

By comparing this modified definition for the complex q parameter to the general 

equations, the value of relating the yybar variables to a general complex radius of 

curvature is again made evident. We can immediately see that the M2 parameter simply 

represents a scale factor for the TEM00 Lagrange Invariant: 

(4.13) 
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Equivalently, we -ca~ determine the modified yybar and uubar parameters in terms 

of their original values. Since, 

(4.14) 

then, the transformation equations for representing generalized Gaussian beams become, 

YM=My UM=Mu ( 4.15) 

(4.16) 

Therefore, 

(4.17) 

and, 

( 4.18) 

These relations conform exactly with Siegman's real beam definitions. Although 

the optical invariant is in general different for our new beam, we can conveniently 

represent it as a scaled version of its intrinsic (M2 = 1) mode. By plotting both beam 

modes on the yybar plane (Figure 4.2), we obtain a very simple technique for 

characterizing their differences. Since most optical resonators have inherent 

non-gaussian, aberration and diffraction properties, the M2 version of the Lagrange 

Invariant is extremely useful. For yybar purposes, we can also assign a special value to 
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M2 for conveniently scaling the diagram to suit wavelength effects, as well. If we let 

M~ = A2/A 1 , where A2 ~ A 1 , and A 1 represents our base Invariant wavelength, then we 

can effectively achromatize the yybar system in the manner described by Kessler and 

Shack, enabling us to describe properly scaled multi-wavelength resonators. 

y 
( ~, ~) 

(.l) M2 

-
y 

Figure 4.2: Graphical Definition of the M2 Beam Parameter on the yybar Diagram 

4.4 Using the yybar Diagram as a Phase Diagram 

The normalized gaussian beam solution to the wave equation is [2.1] : 

\f(z) = ( ~) 
112 
C~zJ exp(-j<i>(z))exp[-jkr2 /2q(z)] (4.19) 

where <f>(z) is the 'Guoy' phase shift measured with respect to z = 0. Recalling, 

tan ( <P) = Azl nro ~ (4.20) 
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We then have by substitution, 

tan( <P) = z( U~z + U~z) 112 IH 

or, 

Consider the case u0z = 0. Let this phase angle be <Poz: 

tan<f>oz = YziYz 

Therefore, 

Y* = ro(y/ro - jy/ro) = ro exp(-j<f>oz) 

and so, 

1/Y* = (1/ro )exp( -j<f>oz) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

The definition of the phase angle in this form was previously prescribed by Arnaud. 

In terms of the yybar variables, the gaussian solution becomes, 

'tf(z) =Y*exp(-jkYr2/2Y) (4.26) 

so that, 

'P(z) = \j/(z) Jf exp(-jkz) (4.27) 
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The yybar diagram -a:nows an extremely convenient interpretation of the Guoy 

phase shift (see Figure 4. 3) when the starting reference point (in this case the first 

mirror) is located along they axis (i.e. ybar=O), and for this special case of u0z = 0: It is 

simply the yybar polar angle, measured with respect to they-axis. Note that a 

simple rotation of the yybar system can transform the position of the beam waist so that 

Uo = 0. ( As was mentioned in Chapter 3, a rotation effectively defines an alternate, but 

equivalent, pair of paraxial rays.) 

· .. 
.. ...... 

-
y 

Figure 4. 3: Guoy Phase Shift Definition on a yybar Diagram 

Another convenient and useful method of defining the phase of a resonator is as 

follows. As before, consider an optical resonator with mirrors defined by two arbitrary 

points on the yybar diagram; this allows u0z to be any finite value. Let's also define the 

more general polar angle, 8 : 

(4.28) 

which defines the location and magnitude of the beam vector, IDi (see Figure 4.4). 

By geometry, the relative phase shift along the complete cavity is: 
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(4.29) 

This yields the useful relationship, 

( 4.30) 

Finally, if the first mirror is specially chosen such that y 1 = 0, then we have simply, 

(4.31) 

y 

Figure 4. 4: Diagram Showing the Beam Vector Geometry 
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4.5 Determining Resonant Frequencies 

For a resonant standing wave cavity, the total round trip phase difference is an 

integer multiple of 2n: 

(4.32) 

The resonant wavelengths are: 

( 4.33) 

and the resonant frequencies are: 

(4.34) 

The Optical Resonator Lagrange Invariant, H = 'Ar12n, is thus shown to actually 

have multiple, discrete values. 

4.6 Generating the yybar Diagram, Given the ABCD Matrices 

Consider the general case of a pre-defined optical resonator with two end mirrors 

and an internal lens system. In this case, mirror radii, lens focal lengths, and all respective 

spacing are already specified. A method is proposed here to determine the yybar system 

representation and effectively obtain a complete resonator ray trace, using the specified 

radii constraints: 
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(1) Determine the-overall optical system ray coefficients, A,B,C, and D. 

(2) Compute the g1 , g2 values using the relations Kogelnik derived in 1965: 

(4.35) 

(3) Determine the starting y coordinate for the first mirror by computing the 
mirror spot size. Set the corresponding ybar coordinate to zero. 

( 4) Use the relations, u=y/R, and ubar=Hiy, to determine the starting 
paraxial angles. 

(5) Compute they and ybar coordinates for each intra-cavity component by 
using the standard ABCD transfer relations. 

4. 7 Synthesizing Resonators 

"It is apparent that the yybar diagram is useful in the analysis of given systems 
because of the ease which one can determine all the first-order characteristics ... however, 
the greatest value is in the synthesis rather than analysis."' -- Roland Shack [ 1.11]. 

This observation is generally applicable to all yybar optical systems, but it is 

especially appropriate for optical resonators where dynamic effects (such as thermal 

lensing) can be important and where the constraints of cavity length and wavefront 

curvature apply. In all cases, the system is completely deduced, automatically, as soon as 

the yybar diagram is established. Furthermore, this strategic graphical device can 

immediately identify allowable changes in the system. Chosen constraints can be applied, 

while varying other selected parameters; and the resultant component optics can be 

synthesized from these constraints. 
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Several examples -should serve to demonstrate the power of yybar synthesis: 

Consider an optical resonator with two arbitrary internal lenses and two flat mirrors, 

having the yybar diagram pictured below: 

Ll 
r-------------~y----~L2 

Ml 

(~, ~) 
co;···-----... _____ _ ... M2 

---------------------·-·co; ·· y 

Figure 4.5: Flat-Flat Resonator with Two Intra-cavity Lenses 

According to the yybar principles, the total length of the resonator is proportional 

to the enclosed area of the pentagon. Consequently, we can form an alternative resonator, 

if we choose Ml, M2 and length as example constraints, and vary the Ll, L2 focal lengths 

and spacing. 

One possible configuration is a telescopic conjugating resonator, with the beam 

waists imaged on each other. It is a simple matter to compose such a configuration on a 

yybar diagram: 

.4l y 

Ll' L2' 
I 

COo 

C02 (y2' Y) y .. ... 
Ml M2 

Figure 4.6: Synthesized 'Afocal' Flat-Flat Resonator 
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In this case, we have-atso chosen to maintain the same beam spot sizes at the flat 

mirrors. Note that the area of the enclosed rectangle is the same as the pentagon area. 

Therefore, the value of ro~ can be determined. The remaining quantities are readily 

evaluated [ 1. 6]. The distance between the lenses is fi + fi . The distance from the mirror, 

M1, to the first lens is fi . Similarly, the distance from the second lens to the mirror, M2, 

is fi . The magnification, m = -ro 2/ro 1 =-filii. The focal lengths of the lenses are then 

related to the cavity length by L = 2(fi + fi) = 2fi ( 1 + ro 2/ ro 1) . 

As a second example, assume we are given a simple two-mirror cavity. Depicted 

on the yybar plans, the diagram is: 

/ 

y MIRROR 2 

MIRROR 1 

y 

Figure 4. 7: Initial Confocal Laser Resonator 

Our problem is to modify the cavity to allow a tight intra-cavity focus, but maintain the 

same beam curvature at M1, and the same beam size at M1 and M2. One approach is to 

form an intra-cavity relay arrangement (reference LASERSCOPE Patent #5,025,446). 

The yybar diagram can be easily employed to demonstrate the principle utilized in this type 
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of design. Referring to tlie -figure below, we can simply 'wrap' a cycle around the origin, 

assuming cavity length is not a constraint: 

INTRA-CAVITY 
XTAL 

\ CONJUGATING LINE 

y 

Figure 4.8: Synthesized Conjugating (Confocal) Intra-cavity Doubling Resonator 

Here, a two-mirror arrangement is used to relay the mirror, M2 to M2' . The beam 

size at the two mirrors is maintained, while the curvature ofM2 is not. The cavity g1g2 

parameters are kept constant. 

The most noteworthy feature of the new design is the tight intra-cavity focus, 

allowing for efficient frequency conversion if a non-linear crystal were to be placed at this 

location. In addition, the crystal location can be made conjugate to where the laser rod is 

possibly situated. Such an arrangement is reported to minimize thermal lensing effects in 

the frequency doubling process. It is interesting to note that a thorough reading of the 

cited patent for a design of this type will not yield nearly as much insight into the system 

principles as has this simple process of synthesizing an equivalent compound yybar cavity, 

from the given constraints. 



SUMMARY AND RECOMMENDATIONS 

5.1 Summarizing the New vvbar Resonator Design Method 

The Gaussian beam resonator formalism using the yybar method has been 

shown to: 

( 1) present a novel and useful method for designing automatically stable resonators. 

(2) suggest insight into the origin of the ABCD law for the conventional complex q 
parameter. 

(3) provide an elegant, simple and effective method for complete Gaussian beam 
resonator ray tracing, given the conventional ABCD ray coefficients. 

( 4) contribute some new and simpler ways for obta~ng important resonator beam 
equations. 

( 5) offer a potentially complete and powerful tool for designing, optimizing, analyzing, 
and synthesizing complicated multi-element resonator designs: 

( 6) conveniently describe resonator phase properties and M2 beams. 

5.2 Recommendations for Further Development to the Theory 

( 1) Generate computer software program to implement the yybar resonator formalism 

(2) Compare software results to other commercial software (apply test cases and 
debug, if necessary). 

(3) Demonstrate the software for at least three practical resonator problems: 

(a) Thermal lensing 
(b) Astigmatic effect in 1 z-fold 1 cavity 
(c) Mode matching 
(d) Laser system integration 

( 4) Extend the model to account for important third order aberration effects. 

46 
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(5) Implement 'complex' components (Gaussian mirrors, Kerr medium, gain guiding) 

( 6) Define unstable and ring cavities 

(7) Add additional information to the yybar diagram (intensity, back-reflections) 

(8) Study mis-alignment effects 
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