Image Reconstruction After Transform Coding Using Relative Entropy and Maximum Entropy

John S. Bodenschatz
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/rtd
University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

STARS Citation

Bodenschatz, John S., "Image Reconstruction After Transform Coding Using Relative Entropy and Maximum Entropy" (1987). Retrospective Theses and Dissertations. 5095.
https://stars.library.ucf.edu/rtd/5095

IMAGE RECONSTRUCTION AFTER TRANSFORM CODING USING RELATIVE ENTROPY AND MAXIMUM ENTROPY

BY
JOHN S. BODENSCHATZ, II
B.S.E.E., University of Virginia, 1986

THESIS
Submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering in the Graduate Studies Program of the College of Engineering University of Central Florida Orlando, Florida

Fall Term

1987

ABSTRACT

Presented are two new methods based on entropy for reconstructing images compressed with the Discrete Cosine transform. One method is based upon a sequential implementation of the Minimum Relative Entropy Principle; the other is based upon the Maximum Entropy Principle. These will be compared with each other and with the conventional method employing the Inverse Discrete Cosine transform.

Chapter 2 describes the traditional use of the Discrete Cosine transform for image compression. Chapter 3 explains the theory and implementation of the entropy-based reconstructions. It introduces a fast algorithm for the Maximum Entropy Principle. Chapter 4 compares the numerical performance of the three reconstruction methods. Chapter 5 shows the theoretical convergence limit of the iterative implementation of the Minimum Relative Entropy Principle to equal the limit of the convergence of the Maximum Relative Entropy method.

Preliminary results of this thesis were presented at Southeastcon '87 in Tampa. Final results will be presented at the Annual Meeting of the American Optical Society in Rochester on October 19, 1987.

ACKNOWLEDGEMENTS

I would like to thank my committee for their help and patience during the past year, especially my committee chairman Dr. N. S. Tzannes, upon whose ideas this work is based; and Dr. Belkerdid, who acted as my advisor in Dr. Tzannes' absence. Dr. Myler gave me much assistance as I was using the Gould computer.

TABLE OF CONTENTS

LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF SYMBOLS viii
Chapter

1. INTRODUCTION 1
2. BACKGROUND 3
Introduction 3
Statement of the Problem 3
Transforms 4
DCT and Data Reduction 7
Introduction 7
Definition of DCT 7
Advantages 8
Choosing the Coefficients to be Retained 9
Usual Method of Reconstruction (IDCT) 9
Conclusion 13
3. ENTROPIC METHODS FOR RECONSTRUCTION OF TRANSFORM CODED IMAGES 14
Introduction 14
Treatment of Images as Pmfs 14
Relative Entropy 15
MEP 16
Introduction 16
Theory and Formulas of MEP 17
Fast MEP for Transform-Coded Images 19
Zeroing a Function with Known Partial Derivatives 24
MREP 25
Introduction 25
Iterative MREP 29
Conclusion 31
4. APPLICATION 32
Introduction 32
Binary Images 32
Introduction 32
Advantages of 16×16 Binary Images 33
Test Images 33
MREP mse vs. IDCT mse 34
MREP Convergence 34
MEP mse vs. IDCT mse 35
MREP mse vs. MEP mse 36
Distance Measures Between the Reconstructions Themselves 37
Picture of the Golden Gate Bridge 38
Introduction 38
Blocksize 38
Number of Retained Coefficients 38
MEP mse vs. IDCT mse 39
Mse of MREP 39
Number of MEP Iterations 39
Error Allowed in Numerical Solution of Non-Linear Equations 41
Error of Non-Linear Solution 41
Conclusion 41
5. THEORETICAL ANALYSIS OF MREP CONVERGENCE 43
Introduction 43
An Illustration 43
Non-rigorous Proof 46
Conclusion 52
Appendices
A. SQDCF, A MAPPING FUNCTION 54
B. COMPUTER PROGRAMS 56
C. BINARY TEST IMAGES AND GOLDEN GATE BRIDGE 96
D. GRAPHS AND TABLES OF ERROR BETWEEN RECONSTRUCTION AND ORIGINAL FOR MEP AND IDCT FOR ALL 4 BINARY IMAGES 99
E. MEASUREMENT OF THE DISTANCE BETWEEN THE RECONSTRUCTIONS FOR THE IMAGE A5 112
REFERENCES 123

LIST OF TABLES

1. MREP mse vs. IDCT mse 34
2. MEP mse vs. IDCT mse 36
3. MEP Speed with a 4×4 Blocksize 40
4. MEP Speed with an 8×8 Blocksize 40

LIST OF FIGURES

1. Discrete Cosine Transform Image Compression and
Reconstruction Flowchart 4
2. Discrete Cosine Transform Basis Vectors; $N=8$; p Denotes Coefficient Order10
3. Karhunen-Loeve Transform Basis Vectors; $\mathrm{N}=8$;
p = 0.91; p Denotes Coefficient Order11
4. Energy "Packing" Efficiency n_{E} as a Function of Transform Block Size, $p=0.9 F$. (a) DCT and KLT (0.91), (b) Slant Transform, (c) KLT (0.36),
(d) WHT and Haar Transforms, (e) DFT, and (f) DST 12

LIST OF SYMBOLS

Symbol

C(m)
$C(m, n)$
C_{k}

DC
DCT
$\operatorname{DCT}\{X\}(m, n)$
or
$\operatorname{DCT}\{X\}$

FT
f1(x)
f2 (x, y)
g(i,m)
$g(i, j, m, n)$
m-th one-dimensional transform coefficient
the value of a transform coefficient in a two-dimensional matrix
the k-th coefficient, same as $C(m, n)$, except the frequency is denoted by the subscript (see $\left.g_{k}\right)$. For example:
$C_{0}=C(0,0)$
$C_{1}=C(0,1)$
$C_{9}^{1}=C(1,1)$ for 8×8 matrix
Discrete Cosine
Discrete Cosine Transform

2-dimensional DCT of vector X; identical to $C(m, n)$, except the latter does not specify the data-domain vector or the type of transform

Fourier Transform
Any one-dimensional function
Any two-dimensional function
A single value of a transform vector for a one-dimensional transform; i refers to the corresponding pixel; m refers to the coefficient

A single value of a transform vector for a two-dimensional transform; i and j refer to the corresponding pixel; m and n refer to the coefficient

$g_{k}(\mathbf{i}, \mathrm{j})$	The $k-t h$ DCT vector, same as $g(i, j, m, n)$, except the frequency is denoted by the subscript (see C_{k}). For example: $\begin{aligned} & g_{0}(i, j)=g(i, j, 0,0) \\ & g_{1}(i, j)=g(i, j, 0,1) \\ & g_{g}(i, j)=g(i, j, 1,1) \text { for } 8 \times 8 \end{aligned}$
IDCT	Inverse Discrete Cosine Transform
$\begin{aligned} & \operatorname{IDCT}\{\mathrm{fl}(\mathrm{x})\}(\mathrm{i}) \\ & \text { or } \end{aligned}$	
IDCT\{f1\}(i)	Value of a pixel resulting from the use of the one-dimensional IDCT upon the vector f1(x)
$\begin{aligned} & \operatorname{IDCT}\{f 2(x, y)\}(i, j) \\ & \text { or } \end{aligned}$	
$\operatorname{IDCT}\{\mathrm{f} 2\}(\mathrm{i}, \mathrm{j})$	Value of a data-domain pixel resulting from the use of the two-dimensional IDCT upon the vector f2 (x, y).
i and j	Designate the pixel in a data-domain matrix
K	Number of coefficients retained less one
KLT	Karhunen-Loeve Transform
k	Integer increment used for looping through the frequencies or coefficients of the DCT
MEP	Maximum Entropy Principle; a reconstruction based on the MEP
MREP	Minimum Relative Entropy Principle; a reconstruction based on the MREP
mse	1. Mean squared error, MEP mse would be mse between the MEP reconstruction and the original image 2. The function that is minimized in the implementation of the MEP algorithm
m and n	Designate the coefficient in a frequencydomain matrix
N	Number of pixels along one edge of a square matrix

p
p()
pmf
q
$r \times r$
RE
SQDCF
$X(i)$ or
$X(i, j)$
$x(i)$ or
$x(i, j)$
x and y

Pixel value in a uniform prior
An array used as a prior
Probability mass function
Integer increment used to designate Lagrangian multipliers

Size of matrix of retained coefficients
Relative Entropy (same as cross-entropy)
Square DC function, a new mapping function (see Appendix A)

One- or two-dimensional vector of Lagrangian multipliers

Pixel value of a one or two-dimensional signal
Integers

CHAPTER 1

INTRODUCTION

This thesis will evaluate three methods of reconstruction for images coded with the Discrete Cosine Transform (DCT): the Inverse Discrete Cosine Transform (IDCT), the sequential implementation of the Minimum Relative Entropy Principle (MREP), and the Maximum Entropy Principle (MEP). Several factors will be compared: accuracy of reconstruction, computational speed, and the "characteristics" of the reconstruction. "Characteristics" refers to probing the nature of the reconstructed image, in hopes of answering such questions as "Does the MREP converge with several passes through the coefficients?" and "Is the MREP reconstruction closest to the MEP reconstruction, the IDCT reconstruction, or to the original?" The analysis will be performed on artificially created binary 16×16 images, as well as on a conventional $512 \times 152,256$ grayness-level picture.

Binary 16×16 images will hopefully provide insights that would be harder to see with more complex images. The initial binary value of the pixels is represented by either a one or a two. Reconstruction produces images with pixel values that are real numbers. Two numerical distance measures, mean squared error and relative entropy, will be employed to find the distance between the reconstruction and the original. To obtain a binary
image, the real numbered images are processed by a thresholding routine that sets the pixels to either one or two (one if below threshold, two if above). The analysis will be primarily numerical, because of the large number of reconstructed versions images.

The Gould IP8000 image processor will be used to manipulate and display the pictures. The hard copies will be obtained on a HP LaserJet printer. The reconstructions will be compared via aforesaid numerical measures of distance.

The second chapter, "Background," defines the problem of image compression, showing the advantages of the DCT method. The usual method of reconstruction using the IDCT is discussed.

The third chapter introduces an alternative method of reconstruction using entropic methods. It includes a discussion of the theoretical basis and the algorithm for the sequential implementation of the MREP and the MEP.

The fourth chapter tabulates the numerical results of this thesis. The work with the binary images is covered first; then, the work with the picture of the Golden Gate bridge is covered. The distances of between the reconstructions and the originals are measured to evaluate the reconstruction methods.

The fifth chapter is entitled "Theoretical Analysis of the MREP Convergence." It shows the iterative MREP to converge to the MEP with repeated passes through coefficients; although, this work does not include a proof that the convergence actually occurs.

CHAPTER 2

BACKGROUND

Introduction

This chapter provides background information. It begins by stating the problem of image reconstruction after transform coding. It provides the definition of a transform and enumerates the advantages of using the Discrete Cosine Transform for image compression. The implementation of the conventional reconstruction method, the Inverse Discrete Cosine Transform, is described. The chapter concludes by highlighting the advantages and disadvantages of this method.

Statement of the Problem

The general area of this thesis is reconstruction of images that have been shortened in some way. More specifically, this thesis focuses on images compressed by a transform. The Discrete Cosine Transform was chosen for this work.

The following diagram shows the process.

Figure 1. Discrete Cosine Transform Image Compression and Reconstruction Flowchart.

It is desired that the reconstruction be close to the original image. To achieve this, the three different methods are used in Step 3. The object of this thesis is to find the optimal method.

Transforms

Transform coding, a frequency-domain technique, is the representation of a signal in terms of pre-determined basis functions. The signal is mapped onto a corresponding set of coefficients. This section defines a transform and its inverse in terms of the basis vectors. The properties of a basis vector are discussed, and several popular transforms are mentioned (Shore 1984) .

This discussion will use a one-dimensional transform for simplicity. The coefficients are obtained by taking the dot
product, the original signal $f(i)$ and the basis vector $g_{m}(i)$. Since the basis vector is two-dimensional, it will be written as $g(i, m)$. The output transform coefficients are the inner product of the basis vector and the data. This constitutes the forward transform:

$$
\begin{equation*}
C(m)=\sum_{i=0}^{N-1} g(m, i) \cdot f(i) \tag{2.1}
\end{equation*}
$$

where the original signal $f(i)$ is N components long, and $C(m)$ is defined for $m=0,1,2, \ldots, N-1$ ($N=$ blocksize).

There is a one-to-one correspondence between the original signal and the transform. The signal can be reconstructed by taking a weighted sum of the basis functions; this function weighting is determined by the corresponding coefficient (Tzannes 1985). The inverse transform follows:

$$
\begin{equation*}
f(i)=\sum_{i=0}^{N-1} g(m, i) \cdot C(m) \tag{2.2}
\end{equation*}
$$

The previous two equations make up a transform pair.
The transform is defined by its basis vector, which must be orthonormal; each component must be orthogonal with every other component:

$$
\begin{equation*}
0=\sum_{i=0}^{N-1} g(m, i) \cdot g(n, i) \tag{2.3}
\end{equation*}
$$

for all m, n when m <> n , and they must be normal (Tzannes 1985):

$$
\begin{equation*}
1=\sum_{i=0}^{N-1} g^{2}(m, i) \quad \text { for all } m \tag{2.4}
\end{equation*}
$$

The two-dimensional forward transform is:

$$
\begin{equation*}
C(m, n)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i, j, m, n) \cdot f(i, j) \tag{2.5}
\end{equation*}
$$

where:

$$
\begin{aligned}
& C(m, n) \text { is defined for } m, n=0,1,2, \ldots, N-1 \\
& f(i, j) \text { is defined for } i, j=0,1,2, \ldots, N-1 \\
& j=0,1,2, \ldots, N-1 \\
& N \times N \text { is the blocksize of } f(i, j)
\end{aligned}
$$

The two-dimensional inverse transform is:

$$
\begin{equation*}
f(i, j)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i, j, m, n) \cdot C(m, n) \tag{2.6}
\end{equation*}
$$

There are many types of transforms used in signal processing: Slant, Walsh-Hadamard, Hadamard-Walsh, Harr, Discrete Fourier, Discrete Cosine, and Karhunen-Loeve. The amount of data compression possible is dependent upon the properties of the transform, the statistics of the data, and the quality required in the reconstructed image.

DCT and Data Reduction

Introduction
This section begins by defining the DCT. Then, its advantages for image compression are discussed. Finally, the method for reducing the data by dropping high order coefficients is explained.

All transforms can be defined in terms of the basis vectors. The DCT basis vectors will be written as $g(i, m)$ and $g(i, j, m, n)$ for the one-dimensional and two-dimensional cases respectively, and the coefficients as $C(m)$ and $C(m, n)$. $C(m)$ corresponds to Clarke's $C(p)$ with m equalling p (Clarke 1984). The two-dimensional transformations in this work are all square, although the results would apply to other shapes. The one- and two-dimensional transforms are given by equations (2.1), (2.2), (2.5), and (2.6) using the following definitions for the basis vectors.

$$
\begin{equation*}
g(m)=\frac{c(m)}{\sqrt{N}} \cdot \cos \frac{(2 i+1) m \pi}{2 n} \tag{2.7}
\end{equation*}
$$

$$
\begin{aligned}
& g(i, j, m, n)=\frac{c(m) c(n)}{N} \cos \frac{(2 i+1) m \pi}{2 N} \cos \frac{(2 j+1) m \pi}{2 N} \\
& c(1)=1 \quad 1=0 \\
& =2 \quad 1<>0
\end{aligned}
$$

This is a common definition used by A. K. Jain, F. A. Kamangar and K. R. Rao, etc. (Jain 1979, Kamangar 1982). It satisfies the criteria for orthogonality as given by equations (2.3) and (2.4). There are some variations in use, some of them do not divide the vector by the square root of the size in the reverse transform and divide by the size (not its root) in the forward direction (Ahmed 1974). The reconstruction methods in this paper could be performed with these different versions, or they could be performed with any other transform whose basis vectors are known.

Advantages

There were several reasons that the DCT was chosen for these studies. Its performance with conventional image data having high inter-element correlation is virtually identical to that of the Karhunen-Loeve (KLT). The DCT basis vectors are quite similar to those of the KLT for a data correlation of 0.91 . (see figures 2
and 3). Energy packing efficiency was measured as the energy in the largest N/2 coefficients. The DCT had the highest. This efficiency is desirable as it represents the effectiveness of the possible data reduction (see Figure 4) (Clarke 1984). The symmetry of the DCT transform has permitted the development of many fast algorithms for its computation (Haque 1985; Ahmed, Natarajan, and Rao 1974; Karmangar and Rao 1982). However, the KLT is very slow, as the basis vectors need to be recalculated for each image. Thus, the DCT is widely used in image processing (Shore 1984).

Choosing the Coefficients to be Retained
There are two main ways to choose the coefficients to be saved during the compression. They can be chosen by magnitude (the n largest coefficients) or position (the n lowest frequency coefficients). The latter method requires that information about the position must be sent. This position information takes up a significant amount of transmission data, and choosing by magnitude does not seem to be significantly better than by position (Mailaender 1985). This work will use the method of choosing coefficients by position.

Usual Method of Reconstruction (IDCT)
The usual way to reconstruct a transform-code image is to use the corresponding inverse transform, setting the unknown

Figure 2. Discrete Cosine Transform Basis Vectors; $N=8$; p Denotes Coefficient Order.

Figure 3. Karhunen-Loeve Transform Basis Vectors; $N=8$; p $=0.91$; p Denotes Coefficient Order.

Figure 4. Energy "Packing" Efficiency n_{E} as a Function of Transform Block Size, $p=0.91$. (a) DCT and KLT (0.91), (b) Slant Transform, (c) KLT (0.36), (d) WHT and Haar Transforms, (e) DFT, and (f) DST.
coefficients to zero. The formula for the inverse transform was given by equation (2.2) for the one-dimensional (1D) version and equation (2.6) for the two-dimensional (2D) version. The basis vector was given by equation (2.7) for the 10 transform and equation (2.8) for the $2 D$ transform. The IDCT can be performed very quickly due to the symmetry of the transform (Haque 1985).

Conclusion

Transform coding is useful for compressing data before transmission or storage. The DCT is employed in this thesis, as it is very popular for data reduction (Clarke 1984). Many coefficients can be dropped without losing much information. The IDCT is the normal method of image reconstruction after DCT coding.

CHAPTER 3

ENTROPIC METHODS FOR RECONSTRUCTION OF TRANSFORM CODED IMAGES

Introduction

This chapter discusses a new method based on probability theory for reconstructing transform-coded images. The second section shows that the functions representing the images can be viewed as pmfs. The third describes Relative Entropy as a measure of distance for pmfs. The next applies the MEP and develops a fast implementation. The fifth illustrates the use of the MREP to satisfy the coefficients sequentially and a variation that makes additional passes through the sequence of coefficients.

Treatment of Images as Pmfs

The image data will be treated as a probability mass function (pmf). There are two main restrictions on pmfs; they must be positive everywhere, and the sum of the element values must be unity. The images used in this work were positive everywhere. The second restriction is not numerically necessary for the algorithms in this work, if the images have the same grayness level.

Relative Entropy

Relative Entropy has many other names: cross-entropy, discrimination information, directed divergence, and KullbackLeibler number. It is a means of measuring the distance of two probability mass functions (pmfs). If two signals are identical, the RE between them is zero. Relative Entropy between two pmfs $f(i)$ and $p(i)$ is defined as:

$$
\begin{equation*}
R E=\int f(x) \log \frac{f(x)}{p(x)} d x \tag{3.1}
\end{equation*}
$$

Applying this to discrete signals yields

$$
\begin{equation*}
R E=\sum_{i=0}^{N-1} f(i) \log \frac{f(i)}{p(i)} \tag{3.2}
\end{equation*}
$$

the two-dimensional version is simply:

$$
\begin{equation*}
R E=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f(i, j) \quad \log \frac{f(i, j)}{p(i, j)} \tag{3.3}
\end{equation*}
$$

This gives a working definition of RE (Shore 1984).
This measure of distance was chosen to be extremized because it satisfies four criteria: uniqueness, invariance, system independence, and subset independence (Shore 1984).

Entropy itself is defined as:

$$
H=-\sum_{n=0}^{N-1} p(n) \log p(n)
$$

(units are in bits if the logarithm base is two)
This is a measure of the information in the realization of a random variable described by the pmf $p(n)$. Because of the negative sign, maximizing this entropy corresponds to minimizing RE with respect to a uniform prior.

MEP

Introduction

The following subsection discusses the theoretical basis for the reconstruction after transform coding based upon the Maximum Entropy Principle (MEP). The simultaneous equations to implement this reconstruction are given. The third subsection discusses a new (as far as research shows) algorithm that greatly simplifies the calculations to solve these simultaneous equations. This algorithm results in a function to be driven to zero and the value of each partial derivative. This function is written in terms of the unknowns of the simultaneous equations; when it is zeroed, the solution is found. The last subsection gives a brief description of the numerical method used to zero a function when each partial derivative is known. In summary, the second section introduces a set of simultaneous equations; the third uses them to produce a function, and the fourth zeroes the function.

Theory and Formulas of MEP

The MEP technique produces an image that has maximum entropy (equation 3.4) which is equivalent to minimum relative entropy (equation 3.3) with a uniform prior. All the known constraints are simultaneously satisfied. Nothing is assumed about the unknown coefficients, unlike the inverse transform method.

These constraints are the coefficients $C(m, n)$. Each constraint corresponds to an equation that must be satisfied. The equation is given by equation (2.5). It can be rewritten:

$$
\begin{equation*}
0=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i, j, m, n) f(i, j)-C(m, n) \tag{3.5}
\end{equation*}
$$

where:

$$
\begin{aligned}
& N \times N \text { is the size of the block that was coded; } \\
& \text { pixel locations are } i, j=0,1,2, \ldots, N-1 \\
& \text { before data reduction } m, n=0,1,2, \ldots, N-1 \\
& \text { after data reduction } m, n=0,1,2, \ldots, r \\
& \text { an } r \times r \text { block of coefficients is retained }
\end{aligned}
$$

Equation (3.5) must be satisfied for each known coefficient.
The mathematics of extremization yield a solution:

$$
\begin{equation*}
f(i, j)=p \cdot \exp \left[\sum_{m=0}^{r-1} \sum_{n=0}^{r-1} X(m, n) g(i, j, m, n)\right] \tag{3.6}
\end{equation*}
$$

where:
X is the Lagrangian multiplier
p is the value of a pixel in a uniform prior

The Lagrangian multiplier is normally written as a lowercase 1 ambda.

The Xs are found by the simultaneous solution of:

$$
\begin{equation*}
C(m, n)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f(i, j) C(i, j, m, n) \tag{3.7}
\end{equation*}
$$

for each known $C(m, n)$.
Consider that a low frequency square of coefficients has been retained. The square contains $r * r$ coefficients (each side is r long). Substitution of equation (3.6) into equation yields:
$C(m, n)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i, j, m, n) \cdot p \cdot \exp \left[\sum_{m m}^{r-1} \sum_{n n}^{r-1} x(m m, n n) \cdot g(i, j, m m, n n)\right]$
for each known $C(m, n)$.
For the RE to hold, the gray level of the reconstruction must equal the gray level of the prior. This gray level is given by the lowest-order coefficient. Assuming a uniform prior:

$$
\begin{equation*}
p=C(0,0) / N \tag{3.9}
\end{equation*}
$$

For a non-uniform prior, this value would be a function $p(i, j)$ in the above equations.

Thus, equations (3.6) and (3.8) are used for image reconstruction after transform coding using MEP.

Fast MEP for Transform-Coded Images

This section introduces a fast method of implementing MEP for transform-coded images; equations (3.6) and (3.8) are solved using a minimum of calculation. This section was written using the DCT; however, the solution is more general. Any transform whose basis vectors are known could be substituted for the DCT. The IDCT, which is used in the fast MEP reconstruction, would obviously be replaced by the inverse of the transform used for compression. The Square Discrete Cosine mapping Function (SQDCF), which is introduced in this subsection, could be replaced by another function defined in terms of the basis vectors of the compression transform (see Appendix A).

Basically, equations (3.6) and (3.8) will be rewritten in terms of the DCT, the IDCT and the SQDCF. Because of their symmetry, many fast algorithms are available for implementation.

The formula for the image, once the Lagrangian multipliers are known, is given by equation (3.6). Note that the exponent $X(m, n) * g(m, n, i, j)$ is an IDCT. If we can replace the equation with:

$$
\begin{equation*}
f(i, j)=p \cdot \exp [\operatorname{IDCT}\{X\} \quad(i, j)] \tag{3.10}
\end{equation*}
$$

if $X(m, n)=0$ for $m, n \geq r$. IDCT $\{X\}(i, j)$ is the two-dimensional coefficient vector. It is written this way to indicate it is a transform of $X(m, n)$, and its members are designated by (i, j). Note that the IDCT only needs to be evaluated once per image block.

The method for calculating the Lagrangian multipliers involves similar substitutions. These multipliers come from the simultaneous solution of equation (3.8) for each known $C(m, n)$. Call the right-hand side of this equation $F\{X\}(m, n)$, to indicate that it is a function of all of the known Lagrangian multipliers $X(m m, n n)$ and that it is two-dimensional. It can be considered a mapping, analogous to the DCT; both are written the same manner in this paper. Thus:

$$
\begin{align*}
F\{X\}(m, n) & =\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i, j, m, n) \cdot p \cdot \exp \left[\sum_{m m}^{r-1} \sum_{n n}^{r-1} X(m m, n n) \cdot g(i, j, m m, n n)\right] \\
C(m, n) & =F\{X\}(m, n) \quad \text { for each } m, n=0,1,2, \ldots, r-1
\end{align*}
$$

Consider the standard distance measure mse:

$$
\begin{equation*}
m s e=\sum_{m=0}^{r-1} \sum_{n=0}^{r-1}[C(m, n)-F\{X\}(m, n)]^{2} \tag{3.13}
\end{equation*}
$$

If the mse is zero, the two vectors are identical. Thus, it suffices to drive the mse to zero to solve equation (3.8). This corresponds to (Shore 1984):

$$
\begin{equation*}
\sum_{r=0}^{M} a_{r}\left[\int_{s_{r}}(x) q^{t}(x) d x-\bar{s}_{r}\right]^{2} \leq \varepsilon^{2} \tag{3.14}
\end{equation*}
$$

where:
s_{r} is the basis vectors
\bar{s}_{r} is the constraints
q^{t} is the unknown pmf

The method employed for finding the zeros of a function requires the value of that function and every first order partial derivative. Take the derivative of mse (equation 3.12) with respect to $\mathrm{F}\{\mathrm{X}\}(\mathrm{m}, \mathrm{n})$ and call this derivative dmse:
$d m s e(m, n)=2 \cdot \sum_{m=0}^{r-1} \sum_{n=0}^{r-1}[C(m, n)-F\{X\}(m, n)] \cdot d F\{X\}(m, n)$
where $d F\{X\}(m, n)$ is the derivative of $F\{X\}(m, n)$.
Take the derivative of $\operatorname{F}\{X\}(m, n)$ (from equation 3.11) with respect to $X(m, n)$:

$$
\begin{align*}
& \operatorname{dF}\{X\}(m, n)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i, j, m, n)^{2} \cdot p \cdot \\
& \exp \left[\sum_{m m}^{r-1} \sum_{n n}^{r-1} X(m m, n n) \cdot g(i, j, m m, n n)\right] \cdot d X(m, n) \tag{3.16}
\end{align*}
$$

for each $m, n=0,1,2, \ldots, r-1$.
The exponent in equations (3.11) and (3.16) can be replaced with an IDCT, after setting $X(m, n)=0$ for n or $m>r-1$:

$$
\begin{gather*}
F\{X\}(m, n)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i, j, m, n) \cdot p \cdot \exp \{\operatorname{IDCT}\{X\}(i, j)] \tag{3.17}\\
d F\{X\}(m, n)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i, j, m, n)^{2} \cdot p \cdot \exp [\operatorname{IDCT}\{X\}(i, j)] \cdot d X(m, n) \tag{3.18}
\end{gather*}
$$

Take the constant prior outside of the summation:

$$
\begin{align*}
& F\{X\}(m, n)=p \cdot \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i, j, m, n) \cdot \exp [\operatorname{IDCT}\{X\}(i, j)] \tag{3.19}\\
& d F\{X\}(m, n)=p \cdot \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i, j, m, n)^{2} \cdot \exp [\operatorname{IDCT}\{X\}(i, j)] \cdot d X(m, n) \tag{3.20}
\end{align*}
$$

The double summation in the equation for $F\{X\}(m, n)$ is an IDCT. The equation for $\operatorname{dF}\{X\}(m, n)$ can be modified in a similar manner. A new mapping function SQDCF is defined. It is similar to the DCT. The only difference is that its basis vector is the square of the basis vector of the DCT. The coefficients are given by:

$$
\begin{equation*}
\operatorname{SQDCF}\{f\}(m, n)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i, j, m, n)^{2} \cdot f(i, j) \tag{3.21}
\end{equation*}
$$

Much of the symmetry employed for fast evaluation of the DCT also applies to this function. This SQDCF mapping function will be investigated in Appendix A. The author has not seen the SQDCF in literature. Thus, equations (3.19) and (3.20) become:

$$
\begin{align*}
& F\{X\}(m, n)=p \cdot \operatorname{DCF}\{\exp [\operatorname{IDCT}\{X\}]\}(m, n) \cdot d X(m, n) \tag{3.22}\\
& d F\{X\}(m, n)=p \cdot \operatorname{SQDCF}\{\exp [\operatorname{IDCT}\{X\}]\}(m, n) \cdot d X(m, n) \tag{3.23}
\end{align*}
$$

Note that the i and j of $\operatorname{DCT}\{X\}$ are no longer present, because of the outer mapping function and that nothing needs to be set to zero before taking the DCT or the SQDCF.

The term $\exp [\operatorname{IDCT}\{X\}]$ is the same in both equations and only needs to be evaluated once per block (not once for every m,n as it is not a function of m or n). The DCT and the SQDCF only need to be performed once per block to find $F\{X\}(m, n)$ and $d F\{X\}(m, n)$. Look back at mse and dmse (equations 3.13 and 3.15), the only other calculations per block required are taking the exponent of the $\operatorname{IDCT}\{X\}\left(N^{*} N\right.$ exponential calculations), the subtraction of $[C(m, n)-F\{X\}(m, n)](N * N$ subtractions), the multiplications in the above formula for dmse and multiplying by prior $\left(2^{*} N^{*} N\right.$ multiplications) for finding dmse and mse. These are not much overhead. Thus, each step in the iterative solution for the

Lagrangian multipliers takes little more time than calculating the DCT thrice. As N becomes larger, the time becomes equal to the time required to take the DCT thrice. This calculation is necessary for each step in the convergence of the nonlinear solution. The procedure that solves the simultaneous equations is covered in Appendix A. This fast MEP algorithm could be applied to any transform with a known transform vector.

Zeroing a Function with Known Partial Derivatives
This section gives a quick description of a method to zero an equation when all of the partial derivatives are known. This method is used to calculate the numerical solution to equation (3.13) with the partial derivatives given by equation (3.15). It is a very sophisticated technique that the author wrote without consulting a reference.

It is easiest to view this problem spacially, where the solution is a point in a space where every axis corresponds to one unknown. In this application, the initial guess was zero. The second guess is related to the first by a step. The direction of the step is the direction in which the value of the function is diminishing the fastest. The size of the first step is an arbitrary value. The second step is 1.25 times the first step, as long as the value of the function at the second point is lower than the value of the function at the first. If the second
function value is higher, the stepsize is cut in half and the algorithm backtracks to the first point.

The algorithm can also be view in terms of a man walking to the bottom of a hill. He steps in the downhill direction. If he is lower than he was before, he takes a larger step downhill; if he is higher than he was before, he goes back to his previous position and takes a smaller step downhill.

There is one additional point to make. The above stepsize is only a factor in the true stepsize and is not used directly. The true stepsize also takes into account the slope and height of the hill at the current location.

The algorithm is resilient. Its method will not diverge, as a standard 1D Newton method can. It can become stuck at a local minimum or at an inflection point; however, neither occur during the MEP calculation.

MREP
 Introduction

The following subsection justifies the use of Minimum Relative Entropy (MREP) and discusses the implementation to reconstruct images coded with the DCT. The third subsection explains the iterative variation that is computationally more complex.

Shore and Johnson originally proposed the MREP as a means of reconstructing a function. The method combines a previous
estimate of the signal with additional information to obtain a second estimate. This additional information (prior knowledge) comes from the coefficients of the DCT. The prior knowledge is given by equations (2.1) and (2.5). Thus, MREP is applied to reconstruction after transform coding.

Previously, N.S. Tzannes and M.S. Tzannes (1986) introduced a new universal method of decoding transform-coded images using the principle of Minimum Relative Entropy (MREP). In this paper, we examine the MREP's iterative convergence properties by applying MREP to image data compressed by the Discrete Cosine Transform (DCT) and running the iterative algorithm until it stabilizes.

The minimization of a two-dimensional function subject to many constraints, and the usual lack of a prior guess makes the use of the regular MREP quite difficult to implement in practice. However, it can be done if one assumes a uniform prior; then, it is identical to the MEP. To alleviate these problems, the following sequential MREP algorithm was suggested in "Reconstruction of Transform-Coded Data by RE Minimization" (Tzannes and Tzannes 1986).

1. It is desirable to treat the image as a probability mass function (pmf) and there are physical justifications for this treatment (Shore 1984). This could be accomplished by normalizing the image so that its pixel values add up to unity. However, this normalization is not numerically necessary, for this algorithm. If each image in a group has the same sum of pixel values (same dc level), the images can be treated as pmfs, for this work.
2. Assume $p(j, k)$ is a uniform image and maximize the entropy of $f(j, k)$ subject to a single constraint that is specified by the first retained coefficient. This results in a first estimate of the reconstructed image. Maximization of the entropy of the image refers to maximizing RE of $f(i, j)$ when $p(i, j)$ is uniform. This maximization of the entropy reduces to merely producing a uniform image with the same grayness level as the original. The IDCT given the first coefficient and the rest set to zero would produce an identical image. Thus:

$$
\begin{equation*}
f_{0}(i, j)=C(0,0) / N \tag{3.24}
\end{equation*}
$$

for $i, j=0,1,2, \ldots, N-1$. This is analogous to equation (3.9) for the MEP prior.
3. The first estimate obtained by the previous step is now used as the prior $p(j, k)$ in the MREP with the second retained coefficient as a constraint. The minimization is simple since only one constraint is used and one Lagrangian multiplier needs to be evaluated. The result is the second estimate of the reconstruction.
4. Repeat step 3 using as a prior the previous estimate and, as a constraint, the next coefficient until all retained coefficients are used. The n 'th estimate is given by:

$$
\begin{equation*}
f_{k}(i, j)=f_{k-1}(i, j) e^{-x_{k} g_{k}(i, j)} \tag{3.25}
\end{equation*}
$$

where:
f_{k-1} is prior
X is the Lagrangian multiplier
$g_{k}()$ is the transform basis vector
for the one-dimensional case. The X is found by applying the constraint:

$$
\begin{equation*}
C_{k}=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f_{k}(i, j) g_{k}(i, j) \tag{3.26}
\end{equation*}
$$

where the subscript on the " f " refers to the k 'th estimate, and the subscript on the "C" designates that the k'th coefficient is being used.

Substitution yields (Tzannes and Tzannes 1986):

$$
\begin{equation*}
C_{k}=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f_{k-1}(i, j) e^{-X_{k} g_{k}(i, j)} \tag{3.27}
\end{equation*}
$$

where $g_{k}(j, k)$ is the transform basis element whose average over the image represents the k 'th coefficient.

This differs slightly from Shore's MREP extremization (1984):

$$
\begin{equation*}
q(X)=p(x) \exp \left[-\tau-\sum_{r=0}^{M} \beta_{r} s_{r}(x)\right] \tag{3.28}
\end{equation*}
$$

where the β_{r} and τ are Lagrangian multipliers. β is determined by the restriction that the $d c$ level of the prior equal the dc level of the original. is determined by the new information (the constraint) (Shore 1984).

In this implementation, the dc level restriction is relaxed. It is the same as Shore's when $\tau=0$. This reduces the system to have one equation and one unknown. Subsequently, each pixel is multiplied by a constant, to normalize the dc level. The difference in dc level is less than one percent, for the binary images. Thus, while there is a theoretical difference, the methods are numerically close enough for practical purposes.

This method will be referred to as the one-pass MREP or the sequential MREP, as all of the constraints are passed through one time. Preliminary results presented by N.S. Tzannes and M.A. Tzannes (1986) showed that this algorithm performs well, often better than the IDCT under the same compression ratios. Its use can lead to greater compression of an image for transmission or storage.

Iterative MREP

The above algorithm suffers from one fundamental theoretical deficiency which is investigated in this paper. The MEP and MREP, originally proposed for estimating pmfs or spectra demand that the extremization of the functionals be performed under under the simultaneous satisfaction of all prior knowledge (in the form of constraints). The progressive algorithm discussed above does not
do this; it utilizes one constraint at a time and uses the solution obtained in each step as a prior for the next step. Each recursive solution obtained in this manner satisfies only the most recent constraint and not all the previous ones, and thus the last solution satisfies only the last constraint and not all of them. Of course, it is obvious that the information contained in each constraint is not lost -- it gets incorporated in the resultant estimate which is the prior for the next solution. Therefore, the last solution is not only the last constraint, it is also weighted by the prior which embodies in it information about all the previous constraints. Thinking of the Relative Entropy as a distance, the last solution is closest to the prior (which satisfies the previous constraint), which is closest to the previous prior (which satisfies the constraint before), etc. Thus, philosophically, at least, the information in all the constraints is carried on to the last solution. Mathematically, however, the final reconstruction only satisfies the last constraint with no guarantee that all the other constraints are satisfied.

There are three methods to studying this problem.

1. Theoretically
2. Practically, by comparing the results of the progressive algorithm to the regular approach, the IDCT, and seeing which performs better under the same conditions.
3. Practically, by using the last reconstruction as a prior, and running through the constraints a second, a third time, etc., until the solution stabilizes. These will be referred to as additional passes through the constraints. This will be referred to as the iterative MREP, when more than one pass through the coefficients is used.

All three methods are investigated. Methods 2 and 3 are covered in Chapter 4. Method 1 is the subject of Chapter 5.

Conclusion

Relative entropy provides alternative methods for reconstructing transform-coded images. If the images are treated as pmfs, the principles of Maximum and Minimum Entropy can be applied. Two algorithms for entropic reconstruction have been presented: one based upon Maximum Entropy and one based upon Minimum Relative Entropy. The former was optimized for speed.
passes is increased. In the sixth, the MEP mse is compared to the IDCT mse. The seventh measures MREP mse relative to the MEP mse to compare the methods and to test for MREP convergence. Finally, in the last subsection, the distance between all of the reconstructions themselves is measured.

Advantages of 16×16 Binary Images

The size of the binary images yielded two advantages. Firstly, it facilitated program development; secondly, it allowed very long calculations to be performed. An example of a long calculation is the MREP reconstruction of a 16×16 image, using 1 through 10 pass, for $1 \times 1,2 \times 2,3 \times 3, \ldots, 16 \times 16$ coefficients retained.

Test Images
Five images were used: A5, E, EO, New0, and the 0 (see Appendix C). The $E O$ is sometimes referred to as the $O E$. The New0 is a symmetric "o"; the other one is non-symmetric. The first four were used in all of the studies (see Appendix C).

CHAPTER 4

APPLICATION

Introduction

The three methods of reconstruction, the IDCT, the MREP, and the MEP, will be applied to two types of images: binary images and a black-and-white picture of the Golden Gate Bridge. The second section describes the work with the binary image; the third describes the work with the bridge picture. The fourth section discusses the error of the numerical solution to the non-linear equations.

Binary Images

Introduction
This section focuses on the methodology and results from the 16×16 binary images. The next subsection explains why the 16×16 binary images were studied. In the following subsection, the test images are described. The fourth analyzes the mse distance between the reconstructions and the original to judge MREP performance relative to the IDCT. The fifth subsection notes the convergence of the iterative MREP by checking the mse and RE between the reconstruction and the original as the number of

MREP mse vs. IDCT mse

TABLE 1

MREP mse vs. IDCT mse

RANGE OF COEFFICIENTS WHERE MREP MSE WAS LESS THAN IDCT MSE	NUMBER OF PASSES	IMAGE USED
$3 \times 3,5 \times 5-9 \times 9$	1	A5
$3 \times 3-15 \times 15$	>1	A5
$5 \times 5-8 \times 8$	1,2	E
$5 \times 5-8 \times 8,13 \times 13$	>2	E
$4 \times 4,7 \times 7-12 \times 12,14 \times 14$	1	E0
$3 \times 3-4 \times 4,6 \times 6-15 \times 15$	2	E0
$3 \times 3-15 \times 15$	>2	E0
$3 \times 3-13 \times 13$	1	New0
$3 \times 3-15 \times 15$	>1	New0

One of the largest differences in mse occurred with the image New0. With 13×13 coefficients retained, the MREP 3 -pass had an mse that was 20% less than the mse of the IDCT.

MREP Convergence

This data shows that the reconstruction improves markedly with the second pass and some with the third. Additional passes are not very significant.

Examination of the tables reveals that the RE between the reconstruction and the original, $\mathrm{H}(\mathrm{rec}, \mathrm{org}$), is monotonically decreasing. The mse between the reconstruction and the original decreases except for infrequent small jumps. These jumps in mse do correspond to reductions in RE. For instance, with the image A5, for 6×6 coefficients retained, between the 4 th and the 5 th pass, the mse goes up from 5.53993154 to 5.53993470 ; the RE declines from 10.47380396 to 10.47380261 . Another important observation is the behavior when all 16×16 coefficients are retained; MREP converges to zero mse and zero RE, as the number of passes increases.

MEP mse vs. IDCT mse
The ratio of the MEP mse over the IDCT mse was plotted for images $A 5, E, E 0$, and New 0 for a convergence limit of $1 / 10^{3}$. The other 0 was tabulated, but not plotted. The A5 ratio was also plotted for a convergence of $1 / 10$. The following table (Table 2) will be made by just reading the tables where the graphs do not have sufficient resolution.

TABLE 2

MEP mse vs. IDCT mse

RANGE OF COEFF IC IENTS WHERE MEP MSE WAS LESS THAN IDCT MSE	IMAGE USED
$3 \times 3-15 \times 15$	A5
$5 \times 5-8 \times 8,13 \times 13$	
$3 \times 3-15 \times 15$	E
$3 \times 3-15 \times 15$	New0
Convergence 1 imit was $1 / 10^{3}$	

Thus, the MEP performance exceed the IDCT in the same cases as the MREP with 3 or more passes.

MREP mse vs. MEP mse

A different approach was tried. The ratio of MEP mse to MREP mse was plotted as a function of the number of retained coefficients. This allowed the MREP 1-pass /MEP to be on a different scale than the MREP 2-pass /MEP. The graphs were plotted for 1-, 2-, 3-, 4-, and 10 -pass MREP. Thus, the convergence could be viewed from graph to graph.

An improvement on the graphs was achieved by only to plotting up to 13×13 or 14×14 retained coefficients. The graphs tend toward extremes at the ends, and this can make the scale so large
that one cannot see what is going on over the majority of the coefficient range.

The results illustrated convergence very well. The following discussion of this ratio range is valid for 2×2 to 13×13 coefficients retained. For one and two passes, the MREP performed worse than the MEP; the ratio was greater than one. The mse ratio after one pass was as high as 10 (approximately). The two-pass ratio was less than 1.1. After three passes, the MREP mse was within 1% of the MEP mse (and within 0.1% for two of the pictures). Skipping to the 10 -pass MREP, the difference in mse between the two methods was less than 0.01%.

A similar procedure was used to see if the MREP mse or the MREP reconverged to that of the IDCT. The ratio of the MREP re to the IDCT was plotted as a function of coefficients retained. Each different graph corresponded to a different number of passes. This procedure made the convergence of the MREP to the MEP obvious; the lack of convergence of the MREP to the IDCT was also obvious.

> Distance Measures Between the Reconstructions Themselves

At this time, it was decided to directly measure distance between the reconstructed images themselves. This is the subject of Appendix E. A quick look shows that MREP converges to MEP.

Picture of Golden Gate Bridge

Introduction
The picture of the Golden Gate Bridge (see Appendix C) was included to test the performance of the algorithms upon realistic data. The picture is composed of 512×512 pixels with 256 greyness levels. The information content in bits per pixel was 6.28 for the pixels taken one at a time (equation 3.4).

The second subsection discusses the blocksizes used in the calculations; the third states the number of coefficients retained. In the fourth, the performance of the MEP is compared to that of the IDCT under the mse criteria. The fifth describes the mse of the MREP. The amount of calculation for the MEP relative to the DCT is tabulated in the sixth subsection.

Blocksize

The 512×512 picture is broken up into smaller blocks for processing. The compression and reconstruction are then performed upon each separately. This is much faster than working with the picture as a whole. The block sizes are $4 \times 4,8 \times 8$, and 16×16. Blocking in these sizes is common in video processing (Haque 1985 and Mailaender 1985).

Number of Retained Coefficients

The three methods of reconstruction were used: IDCT, MREP, and MEP. For each blocksize $1 \times 1,2 \times 2,3 \times 3$, and 4×4 coefficients are retained.

MEP mse vs. IDCT mse
The mse between the reconstructions and the original were measured for the picture of the Golden Gate Br idge. The MEP was superior to the IDCT for five out of nine cases (Appendix H).

Mse of MREP

The second pass of the MREP can decrease the mse by over 1%. The MREP 2-pass method produces a mse that was within 0.1% of the mse of the MEP. Generally, the third pass of the MREP does little to change the mse. The only exception to the above observations occurred in the case of a 4×4 blocksize and 4×4 coefficients retained; the mse decreases from 176.7 with one pass, to 20.4 with two passes, and to 4.6 with 3 passes. This implies a convergence 1 imit of 0.0 mse, which is reasonable.

Number of MEP Iterations

The average number of iterations per block were calculated for the MEP algorithm. The image was the picture of the Golden Gate Br idge; the blocksize was 4×4.

For 3×3 coefficients retained, the MEP required 4.4 (approximately) iterations per block. With each iteration taking about three times as long as an IDCT, the time for reconstruction was about 13.2 times the time required for an IDCT.

For a blocksize of 8×8, Table 4 is obtained.

TABLE 3
MEP SPEED WITH A 4 X 4 BLOCKSIZE

AVERAGE ITERATIONS PER BLOCK	COEFFICIENTS RETAINED
1	1×1
3.77338	2×2
4.41498	3×3
4.75409	4×4

TABLE 4
MEP SPEED WITH AN 8X8 BLOCKSIZE

AVERAGE ITERATIONS PER BLOCK	COEFFICIENTS RETAINED
1	1×1
4.94165	2×2
5.63916	3×3
5.95435	4×4
6.16553	5×5

Error Allowed in Numerical Solution of Non-linear Equations

There are two functions that are iteratively driven to zero to find the Lagrangian multipliers. These two functions are equation (3.22) for the MEP and equation (3.28) for the MREP. The numerical solution necessitates an error value; if the absolute value of the function is less than the error value, the iteration stops.

Error of Non-1 inear Solution

Two limits of error for the numerical non-linear equation solution algorithm were widely used: $1 / 10^{6}$ and $1 / 10^{3}$. The former was used for the comparisons presented in this thesis (unless otherwise noted), although there was only a small difference in performance. A limit of $1 / 100$ increases the mse of the reconstruction. From a standpoint of computational efficiency, $1 / 10^{3}$ is optimal.

Conclusion

The work with the binary images illustrated the general superiority of MEP and the MREP 3-pass to the IDCT. The reconstructions of the Golden Gate Bridge picture showed the MEP and MREP 3 -pass were only slightly superior to the IDCT. Unfortunately, one grey-level picture is not sufficient to judge the overall performance of these reconstruction methods on
pictorial data. The studies found the MREP to converge to the MEP, as the number of passes increased.

More work needs to be done to perform quantitative and qualitative analysis of the reconstructions after coding real picture data. One could test the affect of the order of the coefficient sequence is important for the MREP technique. Also, one could employ additional prior knowledge in the reconstruction. For example, "extremize the entropy to produce an image that satisfies the knowledge we have about the coefficients (include quantization error) and has integer pixel values between 1 and 256, inclusive."

CHAPTER 5

THEORETICAL ANALYSIS OF MREP CONVERGENCE

Introduction

This chapter shows that the limit of the convergence of the MREP is the same as that of the MEP, as the set of equations in the MREP are the same as the equations in the MEP. No attempt will be made to prove that this convergence does actually occur.

The next section illustrates the convergence limit in a simple one-dimensional example where two coefficients are retained and gives some more information about the implementation of the MREP algorithm. The third section presents a slightly more formal proof.

An Illustration

MREP, looping once through all the known, was said to only satisfy the last coefficient, but contain information from the previous constraints. It was shown numerically to converge for one constraint at a time. When one is solved for one variable, the solution is effectively substituted into the next equation. This constitutes a set of nonlinear equations.

MREP assumes a uniform prior and satisfies the first unknown. The one-dimensional version of the satisfaction of the
known constraint is given by equation (3.28); the resulting solution is given by equation (3.26). Solving these for the first constraint (with $k=1$):

$$
\begin{array}{r}
C_{1}=\sum_{i=0}^{N-1} f_{0}(i) e^{-X_{1} g_{1}(i)} g_{2}(i) \\
f_{1}(i)=f_{0}(i) e^{-x_{1} g_{1}(i)} \tag{5.2}
\end{array}
$$

with $k=2$ for the $2 n d$ constraint.

$$
\begin{equation*}
c_{2}=\sum_{i=0}^{N-1} f_{1}(i) e^{-x_{2} g_{2}(i)} g_{2}(i) \tag{5.3}
\end{equation*}
$$

Substituting in solution for f_{1} :

$$
\begin{equation*}
c_{2}=\sum_{i=0}^{N-1} f_{0}(i) e^{-X_{1} g_{1}(i)-x_{2} g_{2}(i)} g_{2}(i) \tag{5.4}
\end{equation*}
$$

simplifying:

$$
\begin{equation*}
c_{2}=\sum_{i=0}^{N-1} f_{0}(i) e^{-x_{1} g_{1}(i)-x_{2} g_{2}(i)} g_{2}(i) \tag{5.5}
\end{equation*}
$$

If there were only two coefficients (not including the zero-order coefficient) retained in this one-dimensional matrix, the above equations represent one pass.

For a second pass, the solution for x_{2} would be put into:

$$
\begin{equation*}
c_{1}=\sum_{i=0}^{N-1} f_{0}(i) e^{-\left(x_{3}+x_{1}\right) g_{1}(i)-x_{2} g_{2}(i)} g_{1}(i) \tag{5.6}
\end{equation*}
$$

and X_{3} would be the unknown. This can be written as solving for X_{1}, where $X_{1}=$ sum of all prior solutions $=X_{3}+X_{1}$.

$$
\begin{equation*}
c_{1}=\sum_{i=0}^{N-1} f_{0}(i) e^{-X_{2} g_{2} V(i)} g_{1}(i) \tag{5.7}
\end{equation*}
$$

Then X_{2} would be solved for as the unknown, with X_{1} constant.

$$
\begin{equation*}
c_{2}=\sum_{i=0}^{N-1} f_{0}(i) e^{-x_{1} g_{1}(i)-x_{2} g_{2}(i)} g_{2}(i) \tag{5.8}
\end{equation*}
$$

Additional passes would iterate through the previous two equations.

These two equations, that are being driven to zero, are the same as the equation (3.6) for the MEP. Technically, the MEP would also be solving for x_{0}, by the MREP notation. This is also solved by the MREP, via the normalization after finding each

Lagrangian multiplier. Thus, MREP solves the same simultaneous equation as the MEP.

The zero-order coefficient could be looped through once per pass, instead of being satisfied after every non-linear solution; this method would probably converge. There are two main advantages in performing the normalization each time.

Firstly, it is very quick, as it simply entails summing the pixels and multiplying them by a factor. Actually, it would probably suffice to add the same constant to each pixel. Since addition is faster than multiplication, it would probably be a bit faster. This was not investigated numerically.

Secondly, the definition of relative entropy requires that the two images have the same dc level; that is the basis of the MREP equation. Although, the success of the "simultaneous" method implies that the normalization might only be necessary once per pass.

Non-rigorous Proof

This proof assumes that a system of simultaneous equations (specifically the MEP equation, 3.7) can be solved with the following algorithm. Assume all unknowns, save one, are set to an initial value and solve one equation for that unknown. Substitute this solution into the next equation and solve for another unknown, setting the other unknowns equal to the initial value. Repeat until all the equations are used. (The one-pass MREP is an
implementation of this method upon the MEP equation.) This loop through the equations is repeated until the values obtained for the unknowns cease to change (converge). If this happens, the solution to the set of simultaneous equations has been found; there is no proof that this will occur for an arbitrary set of equations.

The main task is to show that the iterative MREP equations reduce to the MEP set of simultaneous equations. This is straightforward. Two "compressions" are involved. First, an expression for the solution after the one-pass MREP is obtained from the separate equations. Secondly, this expression is "compressed" to show the result after several passes of the MREP. The generalized form will correspond to the MEP equation.

The main problem lies in the notation. Many different subscripts and increments will be used and it may become confusing. A quick overview will be helpful. The data-domain increments are "i" and "j." The frequency-domain increments are " m " and " n;" however, they are not used because each known frequency coefficient corresponds to a separate non-linear equation. The equations are more easily visualized sequentially; thus, the subscript " k " will designate the frequency. There are K known coefficients. The range of " k " will be 1 to k. If $k=0$, the prior for a given pass is indicated. The Lagrangian multipliers, "X," will be superscripted by a "q,r." The
frequency is designated by " q " ($q=0$ means zero frequency) and " r " is used to designate the pass ($r=1$ means the first pass). The expression for the solution after one pass is:

$$
f_{K, 1}(i, j)=f_{0,1}(i, j) e^{\sum_{q=0}^{k} x_{q, 1} g_{q}(i, j)}
$$

The ",1" means this is the first pass. Each $X_{q, 1}$ came from:

$$
C_{K}=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f_{0,1}(i, j) e^{\sum_{q=0}^{k} x_{q, 1} g_{q}(i, j)}
$$

for $k=1,2,3, \ldots, k$.
The above form represents K separate equations. It is solved for $k=1,2, \ldots, k$ in sequence. The unknown Lagrangian multipliers are assumed to be zero. (The fact that $X_{1,1}$ represents the greyness level is not important. It will be treated as any other Lagrangian multiplier.) After the first multiplier, $x_{1,1}$, is found, k is set to 2 to find the second. The estimate of $x_{1,1}$ is used to find $x_{2,1}$. The estimates of $x_{1,1}$ and $x_{2,1}$ are used to find $x_{3,1}$. This process continues until the first pass is complete, using all the known coefficients.

Next, the generalized form of the MREP solution after several passes will be developed. The solution after the second pass of the MREP is:

$$
f_{k, 2}(i, j)=f_{0,2} e^{\sum_{q=0}^{k} x_{q, 2} g_{q}(i, j)}
$$

Substituting in the value of $f_{0,2}(i, j)$ yields:
$f_{k, 2}(i, j)=f_{0,2} e^{\sum_{q=0}^{k} x_{q, 1} g_{q}(i, j)} \cdot e^{\sum_{q=0}^{k} x_{q, 2} g_{q}(i, j)}$
where $f_{0,1}$ is the uniform prior of the first pass.
Note that:

$$
\begin{equation*}
f_{0,2}(i, j)=f_{K, 1}(i, j) \tag{5.13}
\end{equation*}
$$

as the prior of the second pass equals the value of the solution after the first pass. More generally, with " r " for the number of the pass:

$$
\begin{equation*}
f_{0, r}(i, j)=f_{k, r-1}(i, j) \tag{5.14}
\end{equation*}
$$

The Lagrangian multipliers for equation (5.12) are obtained from:

$$
\sum_{q=0}^{k} x_{q, 2} g_{q}(i, j)
$$

for $k=1,2,3, \ldots, k$.
This is identical to equation (5.10) except for the change of the second subscript of the $f()$ and the $X($) from a " 1 " to a "2."

The value of prior $f_{0,2}(i, j)$ can be substituted in to yield:

$$
C_{K}=\sum_{i=0}^{N-1 \sum_{j=0}^{N-1} f_{0,1}(i, j) e^{\sum_{q=0}^{k} X_{q, 1} g_{q}(i, j)} \cdot e^{\sum_{q=0}^{k} X_{q, 2} g_{q}(i, j)}} \cdot g_{K}(i, j)
$$

for $k=1,2,3, \ldots, k$.
This was the same substitution that was performed between equations (5.11) and (5.12). Equation (5.12) gives the image after the second pass; equation (5.16) gives the Lagrangian multipliers after the second pass. A more general solution is desired. Next, the equations for a third pass will be written to clarify the pattern.
$f_{K, 3}(i, j)=f_{0,1} e^{\sum_{q=1}^{k} X_{q, 1} g_{q}(i, j)} \quad . e^{\sum_{q=1}^{k} X_{q, 2} g_{q}(i, j)} . e^{\sum_{q=1}^{k} X_{q, 3} g_{q}(i, j)}$
where $f_{0,1}$ is the uniform prior of the first pass.
$C_{K}=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f_{0,1}(i, j) e^{\sum_{q=1}^{k} X_{q, 1} g_{q}(i, j)} \cdot e^{\sum_{q=1}^{k} x_{q, 2} g_{p}(i, j)} \quad . e^{\sum_{q=1}^{k} X_{q, 3} g_{q}(i, j)}$
for $k=1,2,3, \ldots, k$.
The previous two equations have three arrays of Lagrangian multipliers. The solution of the each non-linear equation comes up with a new value for each Lagrangian multiplier. This new solution is in effect merely added to the old solution. This is the way the algorithm is implemented.

There is another way of viewing this process that is numerically equivalent. The old solution of a Lagrangian multiplier can be considered discarded when it is solved for again. It does not affect the new solution (except for the addition). The three arrays of unknowns can be algebraically combined into one. This new array will be called Y(). Rewriting the two MREP equations yields:

$$
f(i, j)=f_{0,1} e^{\sum_{q=0}^{k} Y_{q} g_{q}(i, j)}
$$

where $f_{0,1}$ is the uniform prior of the first pass.

$$
\begin{equation*}
C_{K}=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f_{0,1}(i, j) e^{\sum_{q=1}^{K} Y_{q} g_{q}(i, j)} \cdot g_{K}(i, j) \tag{5.20}
\end{equation*}
$$

for $k=1,2,3, \ldots, k$.
At every pass, the $Y() s$ are solved for again. The old value corresponding to the one being solved for is only used as a prior, it is otherwise discarded. The other old values are used in the equation. There is now only one array of unknowns, no matter how many passes are made. Equation (5.20) represents one set of simultaneous equations derived from the sequence of equations from the iterative MREP. With the use of " m, n " in lieu of "q" to designate the frequence, equations (5.19) and (5.20) are identical to equations (3.6) and (3.8) of the MEP solution.

Conclusion

Thus, if the iterative MREP algorithm does converge, it is mathematically equivalent to MEP. However, no attempt has been made to prove that this convergence actually does occur.

APPENDICES

APPENDIX A
 SQDCF, A MAPPING FUNCTION

This appendix contains a short description of a mapping function called Squared Discrete Cosine Function and the calculation of the SQDCF via the DCT. This unusual function is of interest as it is used in the fast MEP method.

The difference between this function and the DCT is that the "basis vectors" of the SQDF are the DCT vectors squared. As these vectors are not orthogonal, it is not a transform, only a mapping function. The mapping of a one-dimensional vector, X, of length N is:

$$
\begin{equation*}
\operatorname{SQDCF}\{X\}(m)=\sum_{i=0}^{N-1} X(i) * \cos ^{2} \frac{(2 i+1) m \pi}{2 N} \tag{A.1}
\end{equation*}
$$

The two-dimensional version is:

$$
\begin{equation*}
\operatorname{SQDCF}\{X\}(m, n)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} X(i, j) * \cos ^{2} \frac{(2 i+1) m \pi}{2 N} * \cos ^{2} \frac{(2 j+1) n \pi}{2 N} \tag{A.2}
\end{equation*}
$$

The next part shows the calculation of the SQDCF via the DCT. By using the simple substitution, equation (A.1) can be written:

$$
\begin{gather*}
\operatorname{SQDCF}\{X\}(m)=\sum_{i=0}^{N-1} X(i) * \frac{1}{2} *\left\{1+\cos \frac{(2 i+1) m \pi}{N}\right\} \tag{A.3}\\
\operatorname{SQDCF}\{X\}(m)=\frac{1}{2} * \sum_{i=0}^{N-1} X(i)+\frac{1}{2} \sum_{i=0}^{N-1} X(i) * \cos \frac{(2 i+1) m \pi}{N} \tag{A.4}
\end{gather*}
$$

The calculation of equation (A.4) is only slightly slower than the calculation of the standard DCT.

APPENDIX B
 COMPUTER PROGRAMS

The following program performs reconstruction of a 512×512 picture using MEP and IDCT.
c
C
c
C
c
c
c
c
c
c
c
c
c
c
C
c
c
c
program main
tues 7/14
su $7 / 12$ removed calc of $g(,,,$,
removed extra writes
made in terms of 16 for subsititution(routine def_g.)
changed loop thru blocks to stop at a
function of block size (not 31 but 512/siz-1)
in re changed output filenames
It will take the 2 d -dct w/o using 1d-dct's.
The idct is done in a similar manner.
the non-integer variables are : double precision
the simultaneous will converge to
$1 / 10 * * 3$ in lieu of $1 / 10 * 3$
the iterative will comverge to $1 / 10 * * 3$ in lieu of $1 / 10 * 3$
sul1m0s6 mrep not used sim to $10^{* *}-6$
sul1m0s20 mrep not used sim to 10**-20
wk
1110 remove - x used x
1100 speed drtni
1050 wk
sul050 sim to $1 / 10$ ** 12
su850 removed some extra writes
845 wk
su845 the simultaneous will converge to $1 / 10 * * 7$ in lieu of $1 / 10 * 3$
the iterative will comverge to
$1 / 10 * * 7$ in lieu of $1 / 10 * 3$
650 wk
su650 1-10 passes thru coef
640 wk
su640 correctly labels the output files (no of iter)
su630 wk is fastest, the mrep uses previous output as prior
s500 wk
shifts simultaneous satifaction output
uses coef $1 \times 1-16 \times 16$

C
C
C
C C C
double precision $g(16,16,16,16), g 1(16,16), g s q(16,16)$
$\mathrm{g}(16,16,16,16)$ only used in re.f but left to keep proper
spacing for common block
common g ,gl,gsq
call defglsq
call menu
stop
end
end
subroutine defglsq
integer i,m
double precision $g(16,16,16,16)$, $\mathrm{g} 1(16,16), \mathrm{gsq}(16,16)$, pie, c, y
common g, gl ,gsq
$y=-1.0$
pie $=d a \cos (y)$
do $10 \mathrm{~m}=1,16$
if (m.eq.1) then
$c=1.0$
else
$c=2.0 * * 0.5$
end if
do $20 \mathrm{i}=1,16$
$g 1(i, m)=c /((16.0) * * 0.5) * d \cos ((2.0 * i-1.0) *(m-1.0) *$ pie/2.0/16.0)
gsq(i,m) $=$ g1 ($i, m)^{* *} 2.0$
write (*,*) 'dfgl: ', g1(i,m)
continue
character $\mathrm{tp} 11 * 80, \mathrm{tp} 12 * 80, \mathrm{tp} 13 * 80, \mathrm{tp} 14 * 80, \mathrm{tp} 15 * 80, \mathrm{tpout} 20 * 20$
double precision tp $(0: 15,0: 15)$

```
    subroutine menu
    integer c,fifteen, iter, i, j, vblockno,hblockno
        \(c=\) number of non-zero dct coefficients
            integer*2 bigorg(0:511,0:511), bigidct(0:511,0:511)
            integer*2 bigsim(0:511,0:511)
            integer retain
            double precision \(\operatorname{dcta}(0: 15,0: 15), \operatorname{orga}(0: 15,0: 15), \operatorname{idcta}(0: 15,0: 15)\)
```

 double precision rela(0:15,0:15),temp(0:15,0:15), sima(0:15,0:15)
 character name*20
 read (*,*) retain
 c retain =3
call redar(bigorg)
c loop thru ea 16x16 block
do 10 vblockno=0,(512/16)-1
do 11 hblockno=0,(512/16)-1
do 20 j=0,15
do }30\textrm{i}=0,1
orga(i,j) = float(bigorg(i+vblockno*16,j+hblockno*16))
30 continue
20 continue
cal1 cmtdct(orga,dcta,1)
call afilter(dcta,retain)
call d2mm(retain,dcta,sima)
do 40 j=0,15
do }50\quadi=0,1
bigsim(i+vblockno*16,j+hblockno*16)= int(sima(i,j)+0.5)
continue
continue
c
c write (*,*) 'did a block !!! ',hblockno,'vbk= ',vblockno
1 1 continue
c write (*,*) ' Fortran: vblockno= ', vblockno,'
10 continue
name = 'me'
call printa(bigsim,name)
end
C
C
subroutine d2mm(p,coef,outa)
double precision outa(1:16,1:16)
double precision coef(16,16)
integer p
C
integer i,siz
integer ier,iend
double precision prior,xst,eps,rsiz
double precision dexpo(16,16),x(16,16)
double precision g2(16,16,16,16)
common g2
logical zeros
siz = 16
rsiz = 16.0
if your going to subroutine ascale
prior = coef(1,1)/rsiz
write (*,*) 'd2m: cof(11) ',coef(1,1),' prior ',prior,' siz',siz
eps = 1.0/10.0**3.0

```
```

 iend \(=500\)
 xst \(=0.0\)
 call m2drtni(x,xst,eps,iend,ier,coef,zeros,p)
 if (zeros) then
 write (*,*) ' ********* zero slope **'
 end if
 do 10 ij=1,siz
 do 20 jj=1,siz
 dexpo(ii,jj)= 0
 do \(30 \mathrm{~mm}=1\), p
 do \(40 \mathrm{nn}=1, \mathrm{p}\)
 if (((mm.eq.1).and.(nn.eq.1)).eq..false.) then
 dexpo(ii,jj)=dexpo(ii,jj)+x(mm,nn)*g2(ii,jj,mm,nn)
 end if
 continue
 continue
 dexpo(ii,jj) \(=\operatorname{dexp}(\operatorname{dexpo}(i i, j j))\)
 continue
 continue
 \(x(1,1)=0.0\)
 call afilter \((x, p)\)
 call cmtdct(x,dexpo,2)
 do \(50 \mathrm{j}=1\), siz
 do \(60 \mathrm{j}=1, \mathrm{siz}\)
 write (*,*) '284 prior = ',prior,' dexp= ', dexpo(i,j)
 outa(i,j) \(=\operatorname{prior*} \operatorname{dexp}(\operatorname{dexpo}(\mathrm{i}, \mathrm{j}))\)
 continue
 continue
 call shift(coef,outa,dexpo)
 call copy (dexpo,outa)
 end
 subroutine m2drtni(x,xst,eps,iend,ier, coef,zeros,p)
 double precision \(x(16,16), x s t, e p s, \operatorname{coef}(16,16)\)
 integer iend,ier, p
 logical zeros
 c
integer m, n,irept
double precision stepfactor,oldf,f,derfsum ,stepsize
double precision $01 d x(16,16), \operatorname{derf}(16,16)$
isiz $=16$
siz $=16.0$
ier $=0$
oldf=10000
stepfactor $=2.0$
call set(x,xst)
$x(1,1)=0$
call m2fct(x,f,derf,coef,p)
irept=0
continue

```
```

 zeros= .true.
 derfsum=0.0
 do 40 m=1,p
 do 50 n = 1,p
 if (((m.eq.1).and.(n.eq.1)).eq..false.) then
 derfsum=derfsum+(\operatorname{derf}(m,n))**2
 end if
 50 continue
 40 continue
 derfsum= derfsum**0.5
 stepsize = f/derfsum*stepfactor
 do }60\textrm{m}=1,
 do 70 n = 1 , p
 if (((m.eq.1).and.(n.eq.1)).eq..false.) then
 oldx(m,n) = x(m,n)
 if ((derf(m,n).eq.0).eq..false.) then
 zeros=.false.
 x(m,n)=x(m,n)-stepsize*derf(m,n)/derfsum
 end if
 end if
 70 continue
 6 0 ~ c o n t i n u e
 oldf=f
 call m2fct(x,f,derf,coef,p)
 if ((oldf.lt.f) .and. (stepfactor.gt. 0.0001)) then
 do 75 i = 1,p
 do 80 j = 1,p
 x(i,j) = oldx(i,j)
 80 continue
 75 continue
 call copy(oldx,x)
 f = oldf
 stepfactor = stepfactor/2
 write (*,*) 'm2drtni: -- stepfctr= ',stepfactor
 else
 if (stepfactor.gt.0.0001) then
 stepfactor=stepfactor*1.25
 write (*,*) 'm2drtni: ++ stepfactor= ',stepfactor
 else
 stepfactor=10
 end if
 end if
 if ((irept.lt.iend).and.((zeros).eq..false.)
 .and.(dabs(f).gt.eps)) goto 30
 write (*,*) 'irept =',irept
 write (*,*) 'zeros = ',zeros
 write (*,*) ' f = ',f
 end
 subroutine m2fct (x,f,derf,coef,p)
 integer ii,jj,m,n,isiz,p
    ```
```

double precision sum1(16,16),sum2(16,16),dexpo(16,16)
double precision g2(16,16,16,16),derf(16,16)
double precision x (16,16),coef(16,16) ,fac
common g2
double precision, siz,f
siz = 16.0
isiz =16
do 10 ij=1,isiz
do 20 jj=1,isiz
dexpo(ii,jj) =0.0
do }30\textrm{mm}=1,
do 40 nn=1,p
dexpo(ii,jj)= dexpo(ii,jj)+x(mm,nn)*g2(ii,jj,mm,nn)
continue
continue
dexpo(ii,jj)= dexp(dexpo(ii,jj))
continue
continue
call afilter(x,p)
call cmtdct(x,dexpo,2)
fac = coef (1,1)/siz
do 11 ij=1,isiz
do 12 jj=1,isiz
dexpo(ii,jj)= fac*dexp(dexpo(ii,jj))
continue
continue
write (*,*) 'finished dexp loop'
f=0.0
do }100\textrm{m}=1,\textrm{p
do }110n=1,
sum1(m,n) = 0.0
sum2(m,n) = 0.0
do 120 i=1,isiz
do 130 j=1,isiz
sum1 (m,n)=sum1(m,n)+g2(i,j,m,n) *dexpo(i,j)
sum2(m,n)=sum2(m,n)+g2(i,j,m,n)**2*dexpo(i,j)
continue
continue
continue
continue
take dct of dexpo put into suml
unneeded suml's will go unused
cal1 cmtdct(dexpo,suml,1)
call cmtdct(dexpo,sum2,3)
do 200 m=1,p
do 210 n=1,p
if (((n.eq.1).and.(m.eq.1)).eq..false.) then
f=f+(sum1 (m,n)-\operatorname{coef}(m,n))**2
derf(m,n)=\operatorname{sum2}(m,n)*2*}(\operatorname{sum1}(m,n)-\operatorname{coef}(m,n)
end if

```
C
C
C
C
c
C
c 40
    30
    20
    10
    12
    11
C
c
c
c
C
c
C
c
C
c 130
c 120
c 110
c 100
C
c
c
```

 210 continue
 200 continue
 end
 c
C
199 format(a20)
open(15, file=chr ,status='old')
rewind }1
do }100\textrm{i}=1,51
do 200 j=1,512
read (15,*) ireconi(i,j)
200 continue
c write (*,*) 'redar: i= ',i
100 continue
close (15)
return
end
C
subroutine printa (ireconi,chr)
integer*2 ireconi(512,512)
integer i,j
character chr*20
199 format(a20)
open(15, file=chr ,status='new')
do }100\quad\textrm{i}=1,51
do 200 j=1,512
write (15,*) ireconi(i,j)
200 continue
c write (*,*) 'printa: i= ',i,' chr= ',chr
100 continue
close (15)
return
end
C
C
subroutine ascale(dcta,rela,thres,13)
double precision dcta(16,16),rela(16,16)
double precision thres(16,16),f,sum
character 13*80,t3*45,t4*11
call sumbl(rela,sum)
f= dcta(1,1)*16/sum
write (*,*) 'ascale: factor = ',f
call multbl(rela,f,thres)
t3= 'rel ent w/ 1 -pass. normalized '
t4= ' factor = '

```
```

c write (13,47) t3, t4,f
c 47 format (a41, a22, f8.4)
return
end
C
20 continue
10 continue
return
end
C
subroutine sumbl(rela, sum)
double precision rela($0: 15,0: 15$), sum
integer i, j
sum $=0.0$
do $12 \mathrm{i}=0,15$
do $22 \mathrm{j}=0,15$
sum $=$ rela($\mathrm{i}, \mathrm{j})+$ sum
22 continue
return
end
C
subroutine multbl(rela,f,thres)
double precision rela($0: 15,0: 15$), thres $(0: 15,0: 15), f$
integer i, j
do $10 \quad \mathrm{i}=0,15$
do $20 \mathrm{j}=0,15$
thres(i,j) =rela(i,j)*f
continue
continue
return
end
C
C
subroutine afilter(orga,j)
double precision orga($0: 15,0: 15$)
integer $j, 1, n$
do $120 \mathrm{n}=0,15$
do $140 \quad l=j, 15$
$\operatorname{orga}(n, 1)=0$
continue

```
```

 continue
 do 35 n=0,15
 do 45 l=j,15
 orga(1,n)= 0
 continue
 continue
 end
    ```
C
    subroutine cmtdct(in,out,q)
    double precision in(0:15,0:15), out ( \(0: 15,0: 15\) ), temp( \(0: 15,0: 15\) )
    double precision \(x(0: 15), y(0: 15)\)
    integer i,q,j
c write (*,*) 'cmtdct'
    do \(10 \mathrm{i}=0,15\)
        do \(20 \mathrm{j}=0,15\)
                        \(x(j)=i n(i, j)\)
        continue
        if (q.eq.1) then
            call mtdct( \(x, y\) )
    end if
    if (q.eq.2) then
            call mtidct( \(x, y\) )
    end if
    if (q.eq.3) then
            call mtsqdct \((x, y)\)
    end if
    do \(25 \mathrm{j}=0,15\)
                temp \((i, j)=y(j)\)
            continue
        continue
c
c write (*,*) 'cmtdct temp(3,7) = ',temp(3,7)
    do \(40 \mathrm{i}=0,15\)
        do \(50 \mathrm{j}=0,15\)
            \(x(j)=\operatorname{temp}(j, i)\)
        continue
            call mtdct \((x, y)\)
    if (q.eq.1) then
            call \(\operatorname{mtdct}(x, y)\)
    end if
    if (q.eq.2) then
            call mtidct( \(x, y\) )
        end if
        if (q.eq.3) then
            call mtsqdct \((x, y)\)
        end if
        do \(60 \mathrm{j}=0,15\)
            out (j,i)=y(j)
        continue
        continue

C
C
return
end
C
```

subroutine set(orga,r)

```
sets orga \(=r\)
double precision \(\operatorname{orga}(16,16), r\)
```

 integer i,j
 do 10 i=1,16
 do 20 j=1,16
 orga(i,j) =r
 continue
 continue
 return
 end
 subroutine copy(ina,outa)
 double precision ina(16,16),outa(16,16)
 integer i,j
 do }10\quad\textrm{i}=1,1
 do 20 j=1,16
 outa(i,j) = ina(i,j)
 continue
 10 continue
 return
 end
 subroutine xpobl(rela,thres)
 double precision rela(0:15,0:15),thres(0:15,0:15)
 integer i,j
 do }10\quad\textrm{i}=0,1
 do 20 j=0,15
 thres(i,j) = dexp(rela(i,j))
 continue
 continue
 return
 end
    ```
The following program performs \(512 \times 512\) picture
reconstruction with MREP and IDCT.
c program main
c Sun 7./12 removed extra writes
C
C
C
C
c
c
C
c the non-integer variables are : double precision
C
c
c
c
                                    made equ in terms of 16 for substitution
                    chnaged big loop (thru blocks) to
                    be a function of block size
                    changed output filenames to
                        r1p r2p r3p
            It will take the \(2 d\)-dct w/o using 1d-dct's.
            The idct is done in a similar manner.
            the simultaneous will converge to
        \(1 / 10^{* *} 3\) in lieu of \(1 / 10 * 3\)
        the iterative will comverge to
        \(1 / 10^{* *} 3\) in lieu of \(1 / 10 * 3\)
```

double precision g(16,16,16,16) ,g1(16,16),gsq(16,16)
common g ,gl,gsq
call defineg
call defg1sq
call menu
stop
end
subroutine defineg
integer i,j,m,n
double precision pie,y ,s,c,d
double precision g(16,16,16,16)
common g
y=-1.0

```
c
```

 s = 16.0
 pie = dacos(y)
 do }10\textrm{i}=1,1
 do 20 j=1,16
 do }30\textrm{m}=1,1
 if (m.eq.1) then
 c=1
 else
 c= 2.0**0.5
 end if
 do 40 n=1,16
 if (n.eq.1) then
 d=1.0
 else
 d= 2.0**0.5
 end if
 g(i,j,m,n)=c*d/ s*dcos(((2*i-1)*(m-1)*pie)/(2*s))*
 1
 continue
 continue
 continue
 continue
end
C
subroutine defglsq
integer i,m
double precision g(16,16,16,16),g1(16,16),gsq(16,16), pie,c,y
double precision s,sq
common g, gl ,gsq
s = 16.0
sq = s**0.5
y = -1.0
pie = dacos(y)
do 10 m = 1 ,16
if (m.eq.1) then
c = 1.0
else
c= 2.0**0.5
end if
do 20 i = 1,16
g1(i,m) = c/sq*dcos ((2.0*i-1.0)*(m-1.0)*pie/2.0/s)
gsq(i,m)= g1(i,m)**2.0
write (*,*) 'dfg1: ', gl(i,m)
20 continue
10 continue
end
c double precision x
c character $r 11 * 80, r 12 * 80, r 13 * 80, r 14 * 80, r 15 * 80$
c character t11*80,t12*80,t13*80,t14*80,t15*80
c character $011 * 80,012 * 80,013 * 80,014 * 80,015 * 80$
subroutine menu
integer c,fifteen,iter,i,j,vblockno,hblockno
$c=$ number of non-zero dct coefficients
integer*2 bigorg(0:511,0:511)
integer*2 bigre11(0:511,0:511)
integer*2 bigre $12(0: 511,0: 511)$, bigre $13(0: 511,0: 511)$
integer retain
double precision dcta $(0: 15,0: 15), \operatorname{orga}(0: 15,0: 15), \operatorname{idcta}(0: 15,0: 15)$
double precision rela($0: 15,0: 15$), temp $(0: 15,0: 15)$, $\operatorname{sima}(0: 15,0: 15)$
character name*20
read (*,*) retain
retain =3
call redar(bigorg)
loop thru ea 16×16 block
do 10 vblockno $=0,(512 / 16)-1$
do $11 \mathrm{hblockno}=0,(512 / 16)-1$
do $20 \mathrm{j}=0,15$
do $30 \quad i=0,15$
orga($\mathrm{i}, \mathrm{j})=$ float $($ bigorg $(i+v b l o c k n o * 16, j+h b l o c k n o * 16))$
write (*,*) 'orga= ',orga(i,j)
30 continue
20 continue
call cmtdct(orga,dcta,1)
iter $=1$
call mrereco(retain,dcta,rela,iter)
do $80 \mathrm{j}=0,15$
do $90 \mathrm{i}=0,15$
bigrel1(i+vblockno*16,j+hblockno*16) $=\operatorname{int}(r e l a(i, j)+0.5)$
continue
80 continue
iter $=2$
call mrereco(retain,dcta,rela,iter)
do $81 \mathrm{j}=0,15$
do $91 \mathrm{i}=0,15$
bigrel2(i+vblockno*16,j+hblockno*16)= int(rela(i,j)+0.5)
91 continue
81 continue
iter $=3$
call mrereco(retain,dcta,rela,iter)
do $82 \mathrm{j}=0,15$
do $92 \mathrm{i}=0,15$
bigrel3(i+vblockno*16,j+hblockno*16) $=\operatorname{int}(\mathrm{rela}(\mathrm{i}, \mathrm{j})+0.5)$
continue
82 continue

```
c
    11 continue
c write (*,*) ' Fortran: vblockno= ', vblockno,' *************'
    1 0 ~ c o n t i n u e
        name = 'rl'
    call printa(bigrel1,name)
    name = 'r2'
    call printa(bigre12,name)
    name = 'r3'
    call printa(bigrel3,name)
    end
C
C
C
    subroutine redar (ireconi)
    integer*2 ireconi(512,512)
    integer i,j
    character chr*20
    chr = 'inp'
    format(a20)
    open(14, file=chr ,status='old')
    rewind }1
    do }100\textrm{i}=1,51
        do 200 j=1,512
        read (14,*) ireconi(i,j)
    continue
    100 continue
    close (14)
    return
    end
C
    subroutine printa (ireconi,chr)
    integer*2 ireconi(512,512)
    integer i,j
    character chr*20
C 199 format(1x,i3)
    open(14, file=chr ,status='new')
    do }100\quad\textrm{i}=1,51
        do 200 j=1,512
                                    write (14,*) ireconi(i,j)
    continue
    continue
    close (14)
    return
    end
C
C
    subroutine ascale(dcta,rela,thres,13)
    double precision dcta(16,16),rela(16,16)
    double precision thres(16,16),f,sum
```

```
character 13*80,t3*45,t4*11
call sumbl(rela,sum)
f= dcta(1,1)*16/sum
call multbl(rela,f,thres)
return
end
```

C
subroutine sumbl(rela, sum)
double precision rela($0: 15,0: 15$), sum
integer i,j
sum $=0.0$
do $12 \mathrm{i}=0,15$
do $22 \mathrm{j}=0,15$
sum $=r e l a(i, j)+$ sum
continue
continue
return
end
C
10 continue
return
end
subroutine cmtdct(in,out, q)
double precision in $(0: 15,0: 15)$, out $(0: 15,0: 15)$, temp $(0: 15,0: 15)$
double precision $x(0: 15), y(0: 15)$
integer i,q,j
C
subroutine multbl(rela,f,thres)
double precision rela($0: 15,0: 15$), thres $(0: 15,0: 15), f$
integer i,j
do $10 \quad \mathrm{i}=0,15$
do $20 \mathrm{j}=0,15$
thres(i,j) $=\operatorname{rela}(i, j) * f$
continue
write (*,*) 'cmtdct'
do $10 \mathrm{i}=0,15$
do $20 \quad j=0,15$
$x(j)=i n(i, j)$
continue
if (q.eq.1) then
call $\operatorname{mtdct}(x, y)$
end if
if (q.eq.2) then
call mtidct(x, y)
end if
if (q.eq.3) then
call mtsqdct(x, y)
end if
do $25 \mathrm{j}=0,15$
$\operatorname{temp}(\mathrm{i}, \mathrm{j})=\mathrm{y}(\mathrm{j})$

```
    25
    10
C
c write (*,*) 'cmtdct temp(3,7) = ',temp(3,7)
        do 40 i= 0,15
        do 50 j=0,15
        x(j)= temp(j,i)
        continue
        if (q.eq.1) then
            call mtdct(x,y)
    end if
    if (q.eq.2) then
        call mtidct(x,y)
    end if
    if (q.eq.3) then
        call mtsqdct(x,y)
    end if
        do 60 j=0,15
                out(j,i)=y(j)
    continue
    continue
        write (*,*) 'cmtdct out(3,7) = ',out(3,7)
            return
            end
C
            subroutine mtdct(x,y)
        integer i,k
            double precision x(0:15),y(0:15)
            double precision g2(16,16,16,16), g1(0:15,0:15)
            common g2,g1
            do 20 k=0,15
                y(k)=0.0
                do 10 i=0,15
                        y(k)=y(k) + x(i)*g1(i,k)
            continue
            continue
            write (*,*) 'mtdct y(3) = ',y(3)
            return
            end
        subroutine mtidct( }x,y\mathrm{ )
        integer i,k
            double precision x(16),y(16)
        double precision g2(16,16,16,16), g1(16,16)
        common g2,g1
            do 20 i=1,16
                y(i) = 0.0
                do 10 k=1,16
                        y(i)=y(i) +x(k)*g1(i,k)
        continue
```

 continue
 return
 end
    ```
    subroutine mtsqdct \((x, y)\)
    integer i,k
        double precision \(x(16), y(16)\)
        common g2,g1,gsq
        do \(20 \mathrm{i}=1,16\)
            \(y(i)=0.0\)
            do \(10 \mathrm{k}=1,16\)
                \(y(i)=y(i)+x(k) * g s q(k, i)\)
    continue
    continue
        return
        end
    subroutine mrereco( \(p, y, o l d\), iter \()\)
    \(\mathrm{n}=\mathrm{ibl}=\) image block length
    cross entropy me
    double precision \(f, d e r f, x, x\) st,eps,s,y \((16,16)\)
    integer \(p, k, n, i, i i, i e n d, i t e r\)
    common g
    character ch80*80
    n=16
    xst=0.0
    iend=500
    eps \(=0.001\)
eps \(=1.0 / 10.0 * * 6.0\)
    write (*,*) 'reconstructing with ',p,' coef'
    \(\mathrm{k}=1\)
    \(\mathrm{s}=\) float \((\mathrm{n})\)
    if (iter.eq.1) then
        \(f a c=y(1,1) / s\)
        call set(old,fac)
    end if
    do \(12 \mathrm{i}=1\),iter
do \(14 \mathrm{~mm}=1, \mathrm{p}\)
            write (*,*) ' next row mm= ',mm
        double precision g2 \((16,16,16,16)\), g1 \((16,16)\), gsq \((16,16)\)
    procedure for image reconstruction using iterative minimum
    double precision \(\operatorname{ascin}(16,16), o l d(16,16), g(16,16,16,16)\)
        do \(89 \mathrm{nn}=1, \mathrm{p}\)
if ( \((\operatorname{not}(m m . e q .1))\) or. ( not (nn.eq. 1\())\) ) then
    if (ier.ne.0) print*,'ier=',ier
    do \(35 \mathrm{i}=1, \mathrm{n}\)
                do \(45 \mathrm{j}=1, \mathrm{n}\)
                    \(\operatorname{ascin}(i, j)=\operatorname{old}(i, j) * \operatorname{dexp}\left(x^{*} g(i, j, m m, n n)\right)\)
                continue
            continue
                        call ascale(y,ascin,old,ch80)
            end if
        continue
    continue
            continue
Write (*,*) 'ne mre fini: old \((1,1)=\) ', old \((1,1)\)
return
end
subroutine drtni
purpose
to solve general nonl inear equations of the form \(f(x)=0\)
by means of newton-s iteration method.
usage
    call drtni (x,f,derf,fct,xst,eps,iend,ier,mm, nn)
    parameter fct requires an external statement.
description of parameters
    \(x\)-double precision resultant root of equ \(f(x)=0\)
    \(f\)-double precision resultant function value at root \(x\)
    derf-double precision resultant value of derivative :aa root \(x\)
    fct -name of the external subroutine used. it computes
            to given argument \(x\) function value \(f\) and derivative
            derf. its parameter list must include \(x, f, \operatorname{derf}\), where
            all parameters are double precision.
    xst -double precision input value which specifies the
            intitail guess of the root \(x\).
    eps -single precision input value which specifies the
            upper bound of the error of result \(x\).
    iend-max. nu. of iteration steps specified.
    ier -resultant error parameter coded as follows
                ier=0 - no error
                ier=1 - no convergence after iend iteration steps
                ier=2 - at any iteration step derivative derf was
                    equal to zero.
remarks
    the procedure is bypassed and gives the error message ier =2
c
c
C
c
c
c
c
c
c
C
c
C
C
c
c
c
C
C
C
c
c
c
c

C
c
if at any iteration step derivative of \(f(x)\) is equal to 0 . possibly the procedure would be successful if it is started once more with another intial guess xst.
subroutines and function subprograms required the external subroutine fct(x,f,derf,?,?) must be furnished by the user.
method
solution of equation \(f(x)=0\) is done by means of newton-s iteration method, which starts at the initial guess xst of a root \(x\). convergence is quadratic if the derivative of \(f(x)\) at root \(x\) is not equal to zero. one iteration step requires one evalution of \(f(x)\) and one evaluation of the derivative of \(f(x)\). for test on satisfactory accuracy see formula (2) of mathematical description. for reference, see \(r\). zurmuehl, praktische mathematik fuer ingenieure und physiker, springer, berlin/goettingen/ heidelberg, 1963, pp. 12-17.
subroutine \(\operatorname{drtni}(x, f, \operatorname{derf}, x s t, e p s, i e n d, i e r, m m, n n, s b, y, n)\)
double precision \(x, f, d e r f, x\) st,eps, \(d x\)
double precision \(b(430,16,16)\), \(y(16,16), \operatorname{sb}(16,16)\)
double precision \(y(16,16), \operatorname{sb}(16,16)\)
integer i,n,iend,ier,mm,nn
prepare iteration
ier \(=0\)
\(x=x\) st
call fct( \(x, f, \operatorname{derf}, m m, n n, s b, y, n)\)
start iteration loop
\(\mathrm{i}=0\)
if (f) \(1,7,1\)
equation is not satisfied by \(x\)
1 if (derf) 2,8,2
iteration is possible
\(2 x=x+f /\) derf
\(i=i+1\)
\(x=x-d x\)
call fct( \(x, f, \operatorname{derf}, m m, n n, s b, y, n)\)
test on satisficatory accuracy
if (i.gt.iend) goto 20
if (dabs(f).gt.eps) goto 1
end of iteration loop
return
c no convergence after iend iteration steps. error return. 20 continue write (*,*) 'drtni: failed to converge in ',i,' steps' ier=1
7 return
c
c error return in case of zero divisor
8 ier=2
return
end
C
subroutine \(f c t(x, f, \operatorname{derf}, m m, n n, s b, y, n)\)
double precision x,f,derf,sum1,sum2
double precision \(\operatorname{sb}(16,16), y(16,16), g(16,16,16,16)\)
double precision newl \((16,16), \operatorname{sb}(16,16)\)
common g
integer \(n\)
sum1 \(=0.0\)
sum2 \(=0.0\)
do \(10 \quad i=1, n\) do \(20 \quad j=1, n\)
newl \((i, j)=s b(i, j) * \operatorname{dexp}\left(x^{*} g(i, j, m m, n n)\right) * g(i, j, m m, n n)\) sum1 \(=\) sum1 + new \(1(i, j)\)
sum2 \(=\) sum2 + new1 \((i, j) * g(i, j, m m, n n)\)
continue
20 cont
\(f=\operatorname{suml} 1-y(m m, n n)\)
\(\operatorname{der} f=-\) sum2
return
end
C
subroutine set(orga,r)
c \(\quad\) sets orga \(=r\)
double precision orga \((16,16), r\)
integer \(\mathrm{i}, \mathrm{j}\)
do \(10 \mathrm{i}=1,16\)
do \(20 \mathrm{j}=1,16\)
\(\operatorname{orga}(i, j)=r\)
20
continue
10
continue
return
end

The following program works with binary images performing the MREP, MEP, and IDCT reconstructions. It was used to generate Appendix F.
the non-integer variables are : double precision the simultaneous will converge to 1/10**6 the iterative will comverge to 1/10**6
double precision \(g(16,16,16,16), g 1(16,16), g s q(16,16)\)
common g ,gl,gsq
call defineg
call defg1sq
call menu
stop
end
subroutine defineg
integer \(\mathrm{i}, \mathrm{j}, \mathrm{m}, \mathrm{n}\)
double precision pie,y ,s,c,d
double precision \(g(16,16,16,16)\)
common g
\(y=-1.0\)
\(s=16.0\)
pie \(=\operatorname{dacos}(y)\)
do 10 i=1,16
do \(20 j=1,16\)
do \(30 \mathrm{~m}=1,16\)
if (m.eq.1) then
\(\mathrm{c}=1\)
else
\(c=2.0^{* *} 0.5\)
end if
do \(40 \mathrm{n}=1,16\)
if (n.eq.1) then
\(\mathrm{d}=1.0\)
else
\(d=2.0 * * 0.5\)
end if
\(g(i, j, m, n)=c * d / s^{*} d \cos \left(\left(\left(2^{*} i-1\right) *(m-1) * p i e\right) /\left(2^{*} s\right)\right)\) *
continue
continue
continue
continue
end
subroutine defglsq
integer i,m
double precision \(g(16,16,16,16)\), g1 \((16,16), g s q(16,16)\), pie, c,y
```

 common g, g1 ,gsq
 y = -1.0
 pie = dacos(y)
do 10 m = 1 ,16
if (m.eq.1) then
c = 1.0
else
c= 2.0**0.5
end if
do 20 i = 1,16
g1(i,m) = c/4.0*dcos ((2.0*i-1.0)*(m-1.0)*pie/32.0)
gsq(i,m)= gl(i,m)**2.0
write (*,*) 'dfg1: ', g1(i,m)
20 continue
10 continue
end
c
C
C
c do 946 incc=(incb+3),(incb+3)
C
fifteen = 15
c= 16
c write (*,*) ' what do you want with the arrrays'
call redar(orga,012,013)
call cmtdct(orga,dcta,1)
subroutine menu
integer c,k,fifteen,iter
c = number of non-zero dct coefficients
double precision dcta(0:15,0:15),orga(0:15,0:15),idcta(0:15,0:15)
double precision rela(0:15,0:15),temp(0:15,0:15),thres(0:15,0:15)
double precision mepa(0:15,0:15)
character tp11*80,tp12*80,tp13*80,tp14*80,tp15*80,tpout20*20
double precision tp(0:15,0:15)
double precision x
character r11*80,r12*80,r13*80,r14*80,r15*80
character t11*80,t12*80,t13*80,t14*80,t15*80
character 011*80,012*80,013*80,014*80,015*80
character d11*80,d12*80,d13*80,d14*80,d15*80
character i11*80,i12*80,i13*80,i14*80,i15*80
character tempi13*80
character str0*3,str1*3,str2*3,out20*20
controls the number of pixels used in reconstruction
i15=' METHOD MSE RE1'
r15=' R2'
write (*,288) il5, r15
format (a30,a30)
do 129 inc=0,14

```
```

 c= 16 -inc
 C
call afilter (dcta,c)
call cmtdct(dcta,idcta,2)
call mse(idcta,orga,il5)
write (*,245) ' idct/org ',il5
245 format (a12,a62)
C
call d2mm(c,dcta,mepa)
call mse(mepa,orga,t15)
write (*,245) ' mep/org ',t15
call mse(mepa,idcta,t15)
write (*,245) ' mep/idct ',t15
m=16
do 283, iter = 1,10
call mrereco(c,dcta,rela,m,iter)
call ascale(dcta,rela,thres,r13)
call copy(thres,rela)
call mse (rela,orga,r15)
write (*,853) ' rel ',iter,' /org',r15
call mse (rela,idcta,r15)
write (*,853) ' rel ',iter,' /idct ',r15
call mse (rela,mepa,r15)
write (*,853) ' rel ',iter,' /mep ',r15
c write (r13,397) 'iterative min relative entropy: ',iter,' passes'
c 397 format (a34,i2,a8)
c 282 format (a1,i2)
853 format(a5,i2,a5,a60)
283 continue
C
c end iterative loop begin simulateous
c call label (str0,str1,n1,str2,n12,out20)
129 continue
C
C
end
C
C
C
C
subroutine d2mm(p,coef,outa)
double precision outa(1:16,1:16)
C
C
double precision coef(16,16)
integer p
integer i,siz
integer ier,iend
double precision prior,xst,eps,rsiz
double precision dexpo(16,16),x(16,16)

```
```

 double precision g2(16,16,16,16)
 common g2
 logical zeros
 siz = 16
 rsiz = 16.0
 C
C
c do 10 ij=1,siz
c do 20 jj=1,siz
dexpo(ii,jj)=0
do }30\textrm{mm}=1,\quad\textrm{p
do 40 nn=1, p
if (((mm.eq.1).and.(nn.eq.1)).eq..false.)then
dexpo(ii,jj)=dexpo(ii,jj)+x(mm,nn)*g2(ii,jj,mm,nn)
end if
continue
continue
dexpo(ii,jj) = dexp(dexpo(ii,jj))
continue
continue
x(1,1) = 0.0
call afilter(x,p)
call cmtdct(x,dexpo,2)
do 50 i=1,siz
do 60 j=1,siz
write (*,*) '284 prior = ',prior,' dexp= ', dexpo(i,j)
outa(i,j) = prior*dexp(dexpo(i,j))
continue
50 continue
call shift(coef,outa,dexpo)
call copy (dexpo,outa)
end
C
subroutine m2drtni(x,xst,eps,iend,ier,coef,zeros,p)
double precision x(16,16),xst,eps,coef (16,16)
integer iend,ier,p
logical zeros
c
integer m,n,irept
double precision stepfactor,oldf,f,derfsum ,stepsize
double precision oldx}(16,16),\operatorname{derf}(16,16
isiz =16

```
```

 siz =16.0
 ier= 0
 oldf=10000
 stepfactor = 2.0
 call set(x,xst)
 C
30 continue
zeros= .true.
derfsum=0.0
do 40 m=1,p
do 50 n = 1,p
c if (((m.eq.1).and.(n.eq.1)).eq..false.) then
derfsum=derfsum+(derf(m,n))**2
end if
5 0 ~ c o n t i n u e
40 continue
derfsum= derfsum**0.5
stepsize = f/derfsum*stepfactor
do 60 m=1 , p
do 70 n = 1, p
c if (((m.eq.1).and.(n.eq.1)).eq..false.) then
oldx(m,n)=x(m,n)
if ((derf(m,n).eq.0).eq..false.) then
zeros=.false.
x(m,n)=x(m,n)-stepsize*derf(m,n)/derfsum
end if
end if
7 0 ~ c o n t i n u e
6 0 ~ c o n t i n u e
oldf=f
call m2fct(x,f,derf,coef,p)
if ((oldf.1t.f) .and. (stepfactor.gt. 0.0001)) then
do 75 i = 1,p
do 80 j = 1,p
x(i,j) = oldx(i,j)
80 continue
75 continue
call copy(oldx,x)
f = oldf
stepfactor = stepfactor/2
write (*,*) 'm2drtni: -- stepfctr= ',stepfactor
else
if (stepfactor.gt.0.0001) then
stepfactor=stepfactor*1.25
write (*,*) 'm2drtni: ++ stepfactor= ',stepfactor
else
stepfactor=10
end if

```
```

 end if
 if ((irept.lt.iend).and.((zeros).eq..false.)
 .and.(dabs(f).gt.eps)) goto 30
 write (*,*) 'irept =',irept
 write (*,*) 'zeros = ',zeros
 write (*,*) ' f = ',f
 end
 subroutine m2fct (x,f,derf,coef,p)
 integer ii,jj,m,n,isiz,p
 double precision sum1 (16,16),sum2(16,16),dexpo(16,16)
 double precision g2(16,16,16,16),derf(16,16)
 double precision x(16,16),coef(16,16) ,fac
 common g2
 double precision, siz,f
 siz = 16.0
 isiz =16
 do 10 ij=1,isiz
 do 20 jj=1,isiz
 dexpo(ii,jj) =0.0
 do }30\textrm{mm}=1,\textrm{p
 do 40 nn=1,p
 dexpo(ii,jj)= dexpo(ii,jj)+x(mm,nn)*g2(ii,jj,mm,nn)
 40 continue
30 continue
dexpo(ii,jj)= dexp(dexpo(ii,jj))
continue
continue
call afilter(x,p)
call cmtdct(x,dexpo,2)
fac = coef (1,1)/siz
do 11 ii=1,isiz
do 12 jj=1,isiz
dexpo(ii,jj)= fac*dexp(dexpo(ii,jj))
continue
continue
write (*,*) 'finished dexp loop'
f=0.0
do }100\textrm{m}=1,\textrm{p
do }110\textrm{n}=1,\textrm{p
sum1 (m,n) = 0.0
sum2(m,n) = 0.0
do 120 i=1,isiz
do }130\textrm{j}=1,\mathrm{ ,isiz
sum1(m,n)=sum1(m,n)+g2(i,j,m,n) *dexpo(i,j)
sum2(m,n)=sum2(m,n)+g2(i,j,m,n)**2*dexpo(i,j)
continue
continue
continue
continue
take dct of dexpo put into suml

```
c unneeded suml's will go unused
call cmtdct(dexpo,sum1,1)
call cmtdct(dexpo,sum2,3)
do \(200 \mathrm{~m}=1, \mathrm{p}\)
do \(210 \mathrm{n}=1, \mathrm{p}\)
C
if (((n.eq.1).and.(m.eq.1)).eq..false.) then \(f=f+(\operatorname{sum1}(m, n)-\operatorname{coef}(m, n)) * * 2\) \(\operatorname{der} f(m, n)=\operatorname{sum} 2(m, n) * 2 *(\operatorname{sum} 1(m, n)-\operatorname{coef}(m, n))\) end if
c
210 continue
200 continue end
c
c
c
C
subroutine redar (ireconi,12,13)
double precision ireconi(16, 16)
integer i,j
character chr*20,12*80,13*80 chr = 'inp'
format(a20)
open(15, file=chr ,status='old')
rewind 15
do \(100 \quad \mathrm{i}=1,16\)
do \(200 \mathrm{j}=1,16\)
read \((15, *)\) ireconi(i,j)
continue
continue
\(11=1\) '
close (15)
return
end
C
subrout ine mse(orga,temp,15)
character 15*80
double precision orga( 16,16 ), \(\operatorname{temp}(16,16)\)
integer \(i, j\)
double precision \(x, y, z\)
\(x=0.0\)
do \(10 \quad \mathrm{i}=1,16\)
do \(20 \mathrm{j}=1,16\) \(x=x+(\operatorname{orga}(i, j)-\operatorname{temp}(i, j)) * * 2\)
continue
continue
\(y=x * * 0.5\)
call relent (orga, temp,x)
call relent (temp,orga,z)
write \((15,47) \quad ', y, 1 \quad\) ', \(x, ' \quad\) ' \(z\)
47 format ( \(1 \mathrm{x}, \mathrm{a} 2, \mathrm{f} 12.8, \mathrm{a}, \mathrm{f} 12.8, \mathrm{a}, \mathrm{f} 12.8\) )
```

 end
 C
C
continue
return
end
C
subroutine ascale(dcta,rela,thres,13)
double precision dcta(16,16),rela(16,16)
double precision thres(16,16),f,sum
character 13*80,t3*45,t4*11
call sumbl(rela,sum)
f= dcta(1,1)*16/sum
write (*,*) 'ascale: factor = ',f
call multbl(rela,f,thres)
t3= 'rel ent w/ 1 -pass. normalized '
t4= ' factor = '
write (13,47) t3,t4,f
format (a41,a22,f8.4)
return
end
c
subroutine shift(dcta,rela,thres)
integer i,j
double precision dcta(16,16),rela(16,16)
double precision thres(16,16),f,sum
call sumbl (rela,sum)
f=(dcta(1,1)*16.0-sum) /256.0
do 10 i=1,16
do 20 j=1,16
thres(i,j) =rela(i,j)+f
continue
subroutine sumbl(rela,sum)
double precision rela(0:15,0:15),sum
integer i,j
sum = 0.0
do }12\textrm{i}=0,1
do 22 j=0,15
sum =rela(i,j)+ sum
continue
continue
return
end
subroutine multbl(rela,f,thres)
double precision rela(0:15,0:15),thres(0:15,0:15),f
integer i,j
do 10 i=0,15
do 20 j=0,15
thres(i,j) =rela(i,j)*f
continue

```
end if
if (k.eq.3) then
        write \((12,25)(\operatorname{orga}(i, j), j=0,15)\)
                    format (1x,16f5.2)
    end if
    if (k.eq.4) then
                write \((12,121)(\operatorname{orga}(i, j), j=0,15)\)
121
    end if
    subroutine afileout(orga, \(11,12,13,14,15, c, k\), ch8,
    * tp,tp11,tp12,tp13,tp14,tp15,a,b,tpout20)
    double precision orga( \(0: 15,0: 15\) )
    integer \(i, j, k, c, a, b\)
    character ch8*20,11*80,12*80,13*80,14*80,15*80, ch(0:15)*1
    character tp11*80,tp12*80,tp13*80,tp14*80,tp15*80,tpout20*20
    double precision \(\operatorname{tp}(0: 15,0: 15)\)
    write (*,*) 'afilout: opening ch8= ',ch8,' k= ',k
    write (*,*) '13 = ', 13
    open ( 12,file=ch8, status='new')
    write (*,*) ' \(1=\) fast, \(2=\) one digit, \(3=\) reg \(4=2 d i g, 5=x-1\)
    do \(110 \mathrm{i}=0,15\)
        if (k.eq.1) then
            write \((12,20)\) (orga( \(i, j), j=0,15)\)
            format (1x,16f3.0)
    end if
    if (k.eq.2) then
        write \((12,120)(\operatorname{orga}(i, j), j=0,15)\)
            format (1x,16f5.0)
    if (k.eq.3) then
```

 1 1 0 \text { continue}
 if (k.eq.5) then
 do }112\textrm{i}=0,1
 do }132\textrm{j}=0,1
 if (orga(i,j).eq.0) then
 ch(j)='
 end if
 if (orga(i,j).eq.1) then
 ch(j)='-'
 end if
 if (orga(i,j).eq.2) then
 ch(j)='x'
 end if
 continue
 write (12,122) (ch(j),j=0,15)
 format (1x,16a1)
 continue
 end if
 write (12,*) ' '
 write (12,*) 11
 write (12,*) 12
 write (12,*) 13
 write (12,*) }1
 if (k.eq.5) write (12,911) 15
 911 format (1x,1a17)
if ((k.eq.5).eq..false.) write (12,*) 15
write (12,*)
write (12,*) 'an n*n coefficient matrix was used with n= ',c
C
C
if k=5 print out the next one
if (k.eq.5) then
do }512\textrm{i}=0,1
do 532 j=0,15
if (orga(i,j).lt.0.5) then
ch(j)='
end if
if (tp(i,j).eq.1) then
ch(j)='-'
end if
if (tp(i,j).eq.2) then
ch(j)='x'
end if
continue
write (12,522) (ch(j),j=0,15)
522 format (1x,16al)
5 1 2 ~ c o n t i n u e
write (12,*) ' '
write (12,*) tpl1
write (12,*) tpl2

```
```

 write (12,*) tp13
 write (12,*) tpl4
 if (k.eq.5) write (12,511) tpl5
 5 1 1
 format (1x,1a17)
 if ((k.eq.5).eq..false.) write (12,*) tpl5
 write (12,*)
 write (12,*) 'an n*n coefficient matrix was used with n= ',c
 close (12)
 end if
 end
 C
C
subroutine afilter(orga,j)
double precision orga(0:15,0:15)
integer j,l,n
do 120 n=0,15
do 140 l=j,15
orga(n,1)=0
continue
continue
do 35 n=0,15
do 45 l=j,15
orga(1,n)=0
continue
continue
end
C
C

```
subroutine cmtdct(in,out,q)
```

subroutine cmtdct(in,out,q)
double precision in(0:15,0:15),out(0:15,0:15),temp(0:15,0:15)
double precision in(0:15,0:15),out(0:15,0:15),temp(0:15,0:15)
double precision x(0:15),y(0:15)
double precision x(0:15),y(0:15)
integer i,q,j
integer i,q,j
write (*,*) 'cmtdct'
write (*,*) 'cmtdct'
do }10\textrm{i}=0,1
do }10\textrm{i}=0,1
do 20 j=0,15
do 20 j=0,15
x(j)=in(i,j)
x(j)=in(i,j)
continue
continue
if (q.eq.1) then
if (q.eq.1) then
cal1 mtdct(x,y)
cal1 mtdct(x,y)
end if
end if
if (q.eq.2) then
if (q.eq.2) then
call mtidct(x,y)
call mtidct(x,y)
end if
end if
if (q.eq.3) then
if (q.eq.3) then
call mtsqdct(x,y)
call mtsqdct(x,y)
end if
end if
do 25 j=0,15
do 25 j=0,15
temp(i,j)=y(j)
temp(i,j)=y(j)
continue
continue
continue
continue
c write (*,*) 'cmtdct temp(3,7) = ',temp $(3,7)$ do $40 \mathrm{i}=0,15$
do $50 \mathrm{j}=0,15$
$x(j)=\operatorname{temp}(j, i)$
continue
call mtdct (x, y)
if (q.eq.1) then
call $\operatorname{mtdct}(x, y)$
end if
if (q.eq.2) then
call mtidct (x, y)
end if
if (q.eq.3) then
call mtsqdct (x, y)
end if
do $60 \mathrm{j}=0,15$
out $(j, i)=y(j)$
continue
60
40 continue
c write (*,*) 'cmtdct out $(3,7)=$ ',out $(3,7)$
C
return
end
c
subroutine $\operatorname{mtdct}(x, y)$
integer i, k double precision $x(0: 15), y(0: 15)$
double precision $\mathrm{g} 2(16,16,16,16)$, g1 ($0: 15,0: 15$)
common g2,g1
do $20 \mathrm{k}=0,15$
$y(k)=0.0$
do $10 \quad i=0,15$
$y(k)=y(k)+x(i) * g 1(i, k)$
continue
20 continue
C
continue
write (*,*) 'mtdct $y(3)=', y(3)$
return
end
subroutine mtidct (x, y)
integer i,k
double precision $x(16), y(16)$
double precision $\mathrm{g} 2(16,16,16,16)$, g1 $(16,16)$
common g2,g1
do $20 \quad \mathrm{i}=1,16$
$y(i)=0.0$
do $10 k=1,16$
$y(i)=y(i)+x(k) * g 1(i, k)$
continue
return
end

C

C
c
.
-

r
.

```
    subroutine mtsqdct( \(x, y\) )
    integer i,k
        double precision \(\mathrm{x}(16), \mathrm{y}(16)\)
        double precision \(\mathrm{g} 2(16,16,16,16), \mathrm{gl}(16,16)\), gsq \((16,16)\)
        common g2,g1,gsq
        do \(20 \mathrm{i}=1,16\)
            \(y(i)=0.0\)
            do \(10 k=1,16\)
            \(y(i)=y(i)+x(k) * g s q(k, i)\)
    continue
    continue
        return
    end
```

 return
 end
 from file ddrtni.ftn
subroutine mrereco($p, y, o l d, n$, iter $)$
$p=$ no of coef to reconstruct with
sub= input array of coef.
reconsu= output recon array
$\mathrm{n}=\mathrm{ibl}=$ image block length (either 4 or 8)
procedure for image reconstruction using iterative minimum
cross entropy me

```
```

double precision f,derf,x,xst,eps,s,y(16,16)

```
```

double precision f,derf,x,xst,eps,s,y(16,16)
integer p,k,n,i,ii,iend,iter
integer p,k,n,i,ii,iend,iter
double precision ascin}(16,16),old(16,16),g(16,16,16,16
double precision ascin}(16,16),old(16,16),g(16,16,16,16
common g
common g
character ch80*80
character ch80*80
write (*,*) 'p= ',p
write (*,*) 'p= ',p
xst=0.0
xst=0.0
iend=500
iend=500
eps = 1.0/10.0**6.0
eps = 1.0/10.0**6.0
pie=3.141592654
pie=3.141592654
write (*,*) 'reconstructing with ',p,' coef'
write (*,*) 'reconstructing with ',p,' coef'
k=1
k=1
s=float(n)

```
```

s=float(n)

```
```

 continue
 continue
 c
c write (*,*) 'ne mre fini: old (1,1) = ',old(1,1)
return
end
if (iter.eq.1) then
$\mathrm{fac}=\mathrm{y}(1,1) / \mathrm{s}$
call set(old,fac)
end if
do $12 \mathrm{i}=1$,iter
do $15 \mathrm{~mm}=1, \mathrm{p}$
write (*,*) ' next row mm= ',mm
do $16 \mathrm{nn}=1, \mathrm{p}$
if ((not(mm.eq.1)).or. (not (nn.eq.1))) then
call drtni(x,f,derf, xst,eps, iend, ier,mm,nn,old, y, n)
write (*,*) ' $\mathrm{nn}=1, \mathrm{nn},{ }^{1} \mathrm{x}=1, \mathrm{x}$
if (ier.ne.0) print*,'ier=',ier
do $35 \mathrm{i}=1, \mathrm{n}$
do $45 \quad j=1, n$
$\operatorname{ascin}(i, j)=\operatorname{old}(i, j) * \operatorname{dexp}\left(x^{*} g(i, j, m m, n n)\right)$
continue
continue
call ascale(y,ascin,old, ch80)
end if
continue
subroutine drtni
purpose
to solve general nonl inear equations of the form $f(x)=0$
by means of newton-s iteration method.
usage
call drtni (x,f,derf,fct,xst,eps,iend,ier,mm,nn)
parameter fct requires an external statement.
double precision $x, f, d e r f, x s t, e p s, d x$
c double precision $b(430,16,16), y(16,16), \operatorname{sb}(16,16)$
double precision $y(16,16), \operatorname{sb}(16,16)$
integer i, n, iend, ier, mm,nn
c
c prepare iteration
ier =0
$\mathrm{x}=\mathrm{xst}$
call fct(x, f,derf,mm,nn,sb,y,n)
C
c start iteration loop
$\mathrm{i}=0$
if (f) $1,7,1$
equation is not satisfied by x
1 if (derf) 2,8,2
C
c iteration is possible
$2 x=x+f /$ derf
$i=i+1$
c $\quad x=x-d x$
call fct(x,f,derf,mm,nn,sb,y,n)
c test on satisficatory accuracy
if (i.gt.iend) goto 20
if (dabs(f).gt.eps) goto 1
c end of iteration loop
return
C
C
20 continue
write (*,*) 'drtni: failed to converge in ',i,' steps'
ier=1
7 return
c
c error return in case of zero divisor
8 ier=2
return
end
C
subroutine $\mathrm{fct}(\mathrm{x}, \mathrm{f}, \operatorname{derf}, \mathrm{mm}, \mathrm{nn}, \mathrm{sb}, \mathrm{y}, \mathrm{n})$
double precision x, f, derf,sum1,sum2
double precision $\operatorname{sb}(16,16), y(16,16), g(16,16,16,16)$
double precision newl $(16,16), \operatorname{sb}(16,16)$
common g
integer n
sum1 $=0.0$
sum $2=0.0$
do $10 \quad i=1, n$
do $20 \quad j=1, n$
newl $(i, j)=s b(i, j) * \operatorname{dexp}\left(x^{*} g(i, j, m m, n n)\right) * g(i, j, m m, n n)$
suml $=$ sum1 + new $1(i, j)$
sum2 $=\operatorname{sum} 2+n e w 1(i, j) * g(i, j, m m, n n)$
continue
continue
$\mathrm{f}=\mathrm{suml}-\mathrm{y}(\mathrm{mm}, \mathrm{nn})$

```
    derf=-sum2
    return
    end
C
C
C
c makes a x1,y1 to x2,y2 rect of orga = to r
C
10 continue
    return
    end
C
c sets orga = r
    double precision orga(16,16),r
    integer i,j
    do 10 i=1,16
        do 20 j=1,16
        orga(i,j) = r
    continue
20
continue
            return
    end
    subroutine copy(ina,outa)
    double precision ina(16,16),outa(16,16)
    integer i,j
    do }10\textrm{i}=1,1
    do 20 j=1,16
        outa(i,j) = ina(i,j)
```

```
2 0 ~ c o n t i n u e
10 continue
return
end
subroutine xpobl(rela,thres)
double precision rela(0:15,0:15),thres(0:15,0:15)
integer i,j
do }10\textrm{i}=0,1
    do 20 j=0,15
            thres(i,j) = dexp(rela(i,j))
c 20 continue
c 10 continue
c return
c end
```


APPENDIX C

 Binary Test images and the golden gate bridge

 Binary Test images and the golden gate bridge}

Binary Test Images

Image A5:

```
----x-----------
---xxx----------
--xx-xx---------
-xx---xx--xxxxx-
-xx---xx--xxxxx-
-xxxxxxx--xx----
-xxxxxxx---xx----
-xx---xx--xxxx--
-xx---xx--xxxxx-
-------------xx-
-------------xx-
------------xx--
-----------xxx--
xx---
```

Image E :
---xxxxxxxxx----
---xxxxxxxxx----
---xxxxxxxxx----
---xxx----------
---xxx----------
---xxxxxxxxx----
---xxxxxxxxxx----
---xxx----------
---xxx----------
---xxxxxxxxx----
---xxxxxxxxx----
---XXXXXXXXX----

Image EO:

Image 0 :

Picture of the Golden Gate Bridge

APPENDIX D
 GRAPHS AND TABLES OF ERROR BETWEEN RECONSTRUCTION AND ORIGINAL FOR MEP AND IDCT FOR ALL 4 BINARY IMAGES

Note: The "NewO" is simply the "0". The convergence 1 imit is the limit of the error as the Newton non-linear solution method converges to zero.

MSE

Ratio of MEP mse / IDCT mse for image: A5 X-value is number of coeffficients retained

Convergence Limit: 1/10**3
Variables: double precision

2.0000E+00

MSE
Ratio of MEP mse / IDCT mse for image: E X value is the number of coefficients retained Convergence Limit: 1/10**3 Variables:

MSE
Ratio or MEP mse / IDCT mse for image: New 0 X value is the number of coefficients retained

Convergence Limit: 1/10**3
Variables: double precision
the non-integer variables are : double precision the MEP will converge to 1/10**6
this includes a shift to normalize greyness level after reconstruction.

Image used:

Number
of Coef.
Retained
NxN
N
Method
MSE
RE: recn x org
org x recn

2	MEP	7.03829980	17.55254011	16.69795912
2	idct	7.02090915	17.46160240	16.61680268
3	MEP	6.32082376	13.97969985	13.87475769
3	idct	6.36202443	14.20157969	14.10041438
4	MEP	6.10283319	12.84424271	12.96620230
4	idct	6.10544076	12.88445234	13.01326134
5	MEP	5.74751512	11.31845586	11.62258414
5	idct	5.76460163	11.42050742	11.74303887
6	MEP	5.53994606	10.47380389	10.88036800
6	idct	5.56642803	10.61233813	11.02811602
7	MEP	5.14235868	9.06846993	9.45839005
7	idct	5.21114184	9.38685482	9.81343355
8	MEP	3.56399912	4.45828612	4.49391813
8	idct	3.68085725	4.97073488	5.08986580
9	MEP	3.04125694	3.25320072	3.29729913

Number of Coef. Retained NxN

N	Method	MSE	RE: recn x org	org \times recn
9	idct	3.17117118	3.79406342	3.87543085
10	MEP	2.58887596	2.31295558	2.32669551
10	idct	2.66266656	2.78152339	2.77142393
11	MEP	2.08976767	1.51229971	1.53419167
11	idct	2.17505877	1.87922527	1.89026210
12	MEP	1.68077699	0.98254266	0.98713372
12	idct	1.74112547	1.18964096	1.18847816
13	MEP	1.47311918	0.76261123	0.76289828
13	idct	1.53459202	0.92121287	0.91844357
14	MEP	1.19701624	0.54595815	0.54613127
14	idct	1.33268600	0.71199815	0.71072539
15	MEP	0.81654311	0.24653073	0.24660839
15	idct	0.87922835	0.29691391	0.29694794
16	MEP	0.00060147	0.0000011	0.00000011
16	idct	0.00000651	0.00000000	0.00000000

the non-integer variables are : double precision the MEP will converge to 1/10**6
this includes a shift to normalize greyness level after reconstruction.

Image used:

(@egin table header Number of Coef.
image: E Retained NxN
N Method MSE RE: recn x org org x recn

2	MEP	7.42647217	19.41535038	18.75045136
2	idct	7.41426495	19.34781578	18.68809214
3	MEP	6.24295589	13.17777392	13.58772884
3	idct	6.19361329	13.01751550	13.45375296
4	MEP	6.12206731	12.62029543	12.91067104
4	idct	6.02158157	12.22882584	12.53840961
5	MEP	5.08777726	8.91046625	9.12265575
5	idct	5.13099455	9.13802366	9.40274754
6	MEP	4.95422327	8.49376116	8.71753859
6	idct	5.03315263	8.85517599	9.14595402
7	MEP	3.52056939	4.40051993	4.44646187
7	idct	3.68530018	5.07184480	5.18721664
8	MEP	3.46991543	4.25643046	4.26109111
8	idct	3.59124497	4.77561921	4.82475678
9	MEP	2.75246215	2.37331856	2.38960168

107

9	idct	2.54684581	2.18686439	2.21766550
10	MEP	2.65265636	2.10727950	2.12197931
10	idct	2.35564268	1.84137701	1.85665896
11	MEP	2.38662019	1.78299641	1.79715849
11	idct	2.18544627	1.56552610	1.57714640
12	MEP	2.23384062	1.65980487	1.67251826
12	idct	2.16548059	1.60193204	1.61282084
13	MEP	1.79555222	1.10852040	1.11308786
13	idct	1.80048554	1.15481731	1.15841623
14	MEP	1.68070209	0.90047981	0.90600541
14	idct	1.55860038	0.78998025	0.79487563
15	MEP	0.88111794	0.24609731	0.24621556
15	idct	0.82383574	0.23621649	0.23623482
16	MEP	0.00068268	0.00000015	0.00000015
16	idct	0.00000566	0.00000000	0.00000000

the non-integer variables are : double precision the MEP will converge to 1/10**6

this includes a shift to normalize greyness level after reconstruction.

Image used:

Number of Coef. Retained NxN
N Method MSE RE: recn x org org x recn

2	MEP	6.53362235	15.18025775	14.33138122
2	idCt	6.51773649	15.11009328	14.27189510
3	MEP	6.26661886	13.82616926	13.39508712
3	idCt	6.26824483	13.84590611	13.41555343
4	MEP	5.99221136	12.62895147	12.41981804
4	idct	6.03331887	12.83409744	12.61611859
5	MEP	5.46855199	10.29525531	10.40675203
5	idCt	5.46868138	10.34249012	10.46485075
6	MEP	5.26218285	9.50412345	9.69595757
6	idCt	5.27142147	9.57383575	9.78700400
7	MEP	4.83970506	8.08462452	8.23188319
7	idCt	4.88013297	8.28491321	8.48429076
8	MEP	4.32590819	6.56474977	6.70376881
8	idCt	4.44467868	7.00792825	7.20123445
9	MEP	3.05199053	3.39905102	3.50567841

Number of Coef. Retained NxN

N	Method	MSE	RE: recn x org	org x recn
9	idct	3.29917863	4.15522499	4.27066004
10	MEP	2.59946370	2.50060912	2.58259891
10	idct	2.86602679	3.21878528	3.31853367
11	MEP	2.19884963	1.78938969	1.83514347
11	idct	2.42849988	2.35734738	2.41158263
12	MEP	1.78998806	1.19386106	1.21747120
12	idct	1.99396027	1.62459983	1.65523208
13	MEP	1.64603270	1.02621158	1.03881964
13	idct	1.85723033	1.44881061	1.45326012
14	MEP	1.42568738	0.82996977	0.84293201
14	idct	1.71120174	1.25510071	1.26439450
15	MEP	1.07012494	0.48566309	0.48892441
15	idct	1.32209837	0.75993542	0.76331346
16	MEP	0.00071602	0.0000016	0.00000016
16	idct	0.00000634	0.00000000	0.00000000

the non-integer variables are : double precision the MEP will converge to 1/10**6

this includes a shift to normalize greyness level after reconstruction.

Image used:

Number
of Coef.
Retained
NxN

N	Method	MSE	RE: recn x org	org x recn
2	MEP	4.61570972	7.68271919	7.02134043
2	idct	4.59666398	7.61426789	6.96593476
3	MEP	4.45878877	7.15044939	6.68926407
3	idct	4.47877368	7.23118480	6.75682492
4	MEP	4.31022707	6.56972896	6.31289914
4	idct	4.31262126	6.58345621	6.32421455
5	MEP	4.11673428	5.93538239	5.83127486
5	idct	4.12675073	5.99244636	5.88027436
6	MEP	4.04312391	5.78573834	5.68628590
6	idct	4.09590764	5.96288290	5.85228764
7	MEP	3.21032272	3.71663728	3.82409522
7	idct	3.39773091	4.22096877	4.32565759
8	MEP	2.75799320	2.83530838	2.92334164
8	idct	3.02608006	3.49304366	3.57760520
9	MEP	2.75670635	2.83436082	2.92274056

Number of Coef. Retained NxN

N	Method	MSE	RE: recn x org	org x recn
9	idct	3.02608006	3.49304366	3.57760520
10	MEP	2.28969895	2.03126447	2.12097045
10	idct	2.62445554	2.68400454	2.80450370
11	MEP	1.65508925	1.13067732	1.15712482
11	idct	2.00816666	1.70314425	1.73972000
12	MEP	1.64865002	1.11332245	1.13856183
12	idct	1.98458733	1.65447229	1.68694463
13	MEP	1.35157099	0.79083811	0.79716533
13	idct	1.70321000	1.27702900	1.28587638
14	MEP	0.54470436	0.14302950	0.14287747
14	idct	0.75788227	0.27840163	0.27760304
15	MEP	0.39325096	0.06899315	0.06900538
15	idct	0.50762974	0.11626281	0.11617604
16	MEP	0.00043888	0.00000006	0.00000006
16	idct	0.00000471	0.00000000	0.00000000

APPENDIX E

MEASUREMENT OF THE DISTANCES BETWEEN RECONSTRUCTIONS FOR THE IMAGE A5

rel 3 refers to the 3 -pass MREP

RE1 of IDCT/ORG means $\operatorname{IDCT}(i) \ln \frac{\operatorname{IDCT}(i)}{\operatorname{ORG}(i)} i$
RE2 of IDCT/ORG = RE1 of ORG/IDCT

Image: A5
Convergence 1 imit $=1 / 10^{9}$ for MEP and $1 / 10^{6}$ for MREP
METHOD

MSE
RE1
RE2

IDCT/ORG	0.00000651	0.000000000	0.00000000
MEP/ORG	0.00001473	0.00000000	0.00000000
MEP/IDCT	0.00001890	0.00000000	0.00000000
rel 1/ORG	1.03763134	0.40061775	0.39760002
rel 1/IDC	1.03763340	0.40061888	0.39760118
rel 1/MEP	1.03762859	0.40061571	0.39759796
rel 2/ORG	0.21942138	0.01650705	0.01652786
rel 2/IDC	0.21942515	0.01650760	0.01652840
rel 2/MEP	0.21941921	0.01650676	0.01652757
rel 3/ORG	0.05070269	0.00110973	0.00111136
rel 3/IDC	0.05070276	0.00110974	0.00111137
rel 3/MEP	0.05070291	0.00110975	0.00111138
rel 4/ORG	0.01269510	0.00006108	0.00006109
rel 4/IDC	0.01269267	0.00006106	0.00006107
rel 4/MEP	0.01269635	0.00006109	0.00006110
rel 5/ORG	0.00275554	0.00000322	0.00000322
rel 5/IDC	0.00275322	0.00000322	0.00000322
rel 5/MEP	0.00275694	0.00000322	0.00000322
rel 6/ORG	0.00077066	0.00000026	0.00000026
rel 6/IDC	0.00077059	0.00000026	0.00000026
rel 6/MEP	0.00077166	0.00000026	0.00000026
rel 7/ORG	0.00021295	0.00000002	0.00000002
rel 7/IDC	0.00021484	0.00000002	0.00000002
rel 7/MEP	0.00021306	0.00000002	0.00000002

rel 8/ORG	0.00005453	0.00000000	0.00000000
rel 8/IDC	0.00005676	0.00000000	0.00000000
rel 8/MEP	0.00005519	0.00005519	0.00000000
rel 9/ORG	0.00001588	0.00000000	0.00000000
rel 9/IDC	0.00001725	0.00000000	0.00000000
rel 9/MEP	0.00002082	0.00000000	0.00000000
rel 10/ORG	0.00000453	0.00000000	0.00000000
rel 10/IDC	0.00000708	0.00000000	0.00000000
rel 10/MEP	0.00001543	0.00000000	0.00000000
IDCT/ORG	0.87922835	0.29694794	0.29691391
MEP/ORG	0.81651727	0.24660878	0.24652897
MEP/IDCT	0.12979615	0.00764820	0.00764471
rel	0.12979615	0.00764820	0.00764471
rel 1/ORG	1.29840862	0.62333789	0.61757791
rel 1/IDC	1.01651895	0.38111109	0.37869482
rel 1/MEP	1.00803508	0.37376299	0.37104740
rel 2/ORG	0.83825212	0.26097953	0.26116281
rel 2/IDC	0.24181764	0.02222242	0.02227911
rel 2/MEP	0.20328875	0.01461039	0.01463393
rel 3/ORG	0.81701481	0.81701481	0.24753373
rel 3/IDC	0.13952738	0.00866355	0.00865944
rel 3/MEP	0.04867307	0.00101334	0.00101474
rel 4/ORG	0.81672295	0.24665722	0.24657988
rel 4/IDC	0.13033496	0.00770181	0.00769566
rel 4/MEP	0.01162809	0.00005095	0.00005096
rel 5/ORG	0.81659099	0.24661375	0.24653157
rel 5/IDC	0.12978652	0.00765132	0.00764737
rel 5/MEP	0.00247682	0.00000265	0.00000265
rel 6/ORG	0.81652090	0.24660935	0.24652913
rel 6/IDC	0.12979264	0.00764836	0.00764493
rel 6/MEP	0.00069369	0.00000021	0.00000021
rel 7/ORG	0.81651299	0.24660868	0.24652894
rel 7/IDC	0.12979684	0.00764818	0.00764474
rel 7/MEP	0.00018128	0.00000001	0.00000001
rel 8/ORG	0.81651531	0.24660867	0.24652892
rel 8/IDC	0.12979650	0.00764820	0.00764473
rel 8/MEP	0.00004700	0.00000000	0.00000000
rel 9/ORG	0.81651629	0.24660867	0.24652892
rel 9/IDC	0.12979614	0.00764821	0.00764473
rel 9/MEP	0.00002052	0.00000000	0.00000000
rel 10/ORG	0.81651636	0.24660867	0.24652892
rel 10/IDC	0.12979609	0.00764821	0.00764473
rel 10/MEP	0.00001668	0.00000000	0.00000000
IDCT/ORG	1.33268600	0.71072539	0.71199815
MEP/ORG	1.19699510	0.54613265	0.54595441
MEP/IDCT	0.24030941	0.02568248	0.02561445
rel 1/ORG	1.50905440	0.88073178	0.86845742
rel 1/IDC	0.96548334	0.34856069	0.34811867
rel 1/MEP	0.93350907	0.32362576	0.32250158
re			

rel 2/ORG	1.20093295	0.55540888	0.55695840
rel 2/IDC	0.30603676	0.03654588	0.03661904
rel 2/MEP	0.17563390	0.01099327	0.01100470
rel 3/ORG	1.19685483	0.54637599	0.54664116
rel 3/IDC	0.24470610	0.02635486	0.02630138
rel 3/MEP	0.04087351	0.00068639	0.00068697
rel 4/ORG	1.19733956	0.54613499	0.54598154
rel 4/IDC	0.24013321	0.02571239	0.02564173
rel 4/MEP	0.00847850	0.00002726	0.00002726
rel 5/ORG	1.19708184	0.54614332	0.54595535
rel 5/IDC	0.24022140	0.02568437	0.02561555
rel 5/MEP	0.00156517	0.00000107	0.00000107
rel 6/ORG	1.19699543	0.54613527	0.54595435
rel 6/IDC	0.24030696	0.02568261	0.02561455
rel 6/MEP	0.00039963	0.00000007	0.00000007
rel $7 / 0 \mathrm{RG}$	1.19698913	0.54613221	0.54595428
rel 7/IDC	0.24031355	0.02568246	0.02561449
rel $7 / \mathrm{MEP}$	0.00009486	0.00000000	0.00000000
rel 8/ORG	1.19699191	0.54613193	0.54595428
rel 8/IDC	0.24031095	0.02568248	0.02561448
rel 8/MEP	0.00003041	0.00000000	0.00000000
rel 9/ORG	1.19699286	0.54613200	0.54595428
rel 9/IDC	0.24031000	0.02568249	0.02561448
rel 9/MEP	0.00002462	0.00000000	0.00000000
rel 10/0RG	1.19699292	0.54613203	0.54595428
rel 10/IDC	0.24030993	0.02568249	0.02561448
rel 10/MEP	0.00002432	0.00000000	0.00000000
IDCT/ORG	1.53459202	0.91844357	0.92121287
MEP/ORG	1.47308789	0.76289587	0.76260831
MEP/IDCT	0.35111643	0.04900938	0.04870938
rel 1/ORG	1.72610107	1.08547402	1.06771285
rel 1/IDC	0.98131218	0.35442341	0.35381503
rel 1/MEP	0.90953643	0.30585226	0.30510443
rel $2 / 0 \mathrm{RG}$	1.47641425	0.77114591	0.77265722
rel 2/IDC	0.39866770	0.05887913	0.05875872
rel 2/MEP	0.16918666	0.01004538	0.01004942
rel 3/ORG	1.47243826	0.76284795	0.76322586
rel 3/IDC	0.35391766	0.04959869	0.04932697
rel 3/MEP	0.03936991	0.03936991	0.00061719
rel 4/ORG	1.47327085	0.76284723	0.76263223
rel 4/IDC	0.35096703	0.04903331	0.04873332
rel 4/MEP	0.00797966	0.00002394	0.00002394
rel $5 / 0 \mathrm{RG}$	1.47314812	0.76290439	0.76260915
rel 5/IDC	0.35105470	0.04901089	0.04871026
rel 5/MEP	0.00140899	0.00000086	0.00000086
rel 6/ORG	1.47309075	0.76290036	0.76260834
rel 6/IDC	0.35111287	0.04900952	0.04870945
rel 6/MEP	0.00035122	0.00000005	0.00000005
rel $7 / 0 \mathrm{RG}$	1.47308471	0.76289604	0.76260829

rel 7/IDC	0.35111946	0.04900934	0.04870940
rel 7/MEP	0.00007689	0.00000000	0.00000000
rel 8/ORG	1.47308599	0.76289530	0.76260829
rel 8/IDC	0.35111825	0.04900934	0.04870940
rel 8/MEP	0.00002210	0.00000000	0.00000000
rel 9/ORG	1.47308655	0.76289533	0.76260829
rel 9/IDC	0.35111765	0.04900934	0.04870940
rel 9/MEP	0.00001461	0.00000000	0.00000000
rel 10/ORG	1.47308660	0.76289537	0.76260829
rel 10/IDC	0.35111758	0.04900934	0.04870940
rel 10/MEP	0.00001364	0.00000000	0.00000000
IDCT/ORG	1.74112547	1.18847816	1.18964096
MEP/ORG	1.68074670	0.98712890	0.98253943
MEP/IDCT	0.41612845	0.07038479	0.06972954
rel 1/ORG	1.89243231	1.29438568	1.26428790
rel 1/IDC	0.97438525	0.35216393	0.35147928
rel 1/MEP	0.87159773	0.28189370	0.28174653
rel 2/ORG	1.68236810	0.99407223	0.99071977
rel 2/IDC	0.45012960	0.07827378	0.07791045
rel 2/MEP	0.15180280	0.00817620	0.00818103
rel 3/ORG	1.68008965	0.98694000	0.98297481
rel 3/IDC	0.41751437	0.07080120	0.07016514
rel 3/MEP	0.03331223	0.00043546	0.00043564
rel 4/ORG	1.68090569	0.98704267	0.98255458
rel 4/IDC	0.41601567	0.07040393	0.06974488
rel 4/MEP	0.00626106	0.00001527	0.00001527
rel 5/ORG	1.68078905	0.98712709	0.98253979
rel 5/IDC	0.41610882	0.07038575	0.06973011
rel 5/MEP	0.00107057	0.00000048	0.00000048
rel 6/ORG	1.68074902	0.98713231	0.98253934
rel 6/IDC	0.41612847	0.07038473	0.06972966
rel 6/MEP	0.00023986	0.00000002	0.00000002
rel $7 / 0 \mathrm{RG}$	1.68074399	0.98712915	0.98253932
rel $7 / I D C$	0.41612933	0.07038475	0.06972963
rel $7 /$ MEP	0.00005672	0.00000000	0.00000000
rel 8/ORG	1.68074476	0.98712825	0.98253931
rel 8/IDC	0.41612874	0.07038479	0.06972963
rel 8/MEP	0.00002471	0.00000000	0.00000000
rel 9/ORG	1.68074513	0.98712819	0.98253931
rel 9/IDC	0.41612860	0.07038479	0.06972963
rel 9/MEP	0.00002184	0.00000000	0.00000000
rel 10/ORG	1.68074517	0.98712821	0.98253931
rel 10/IDC	0.41612860	0.07038479	0.06972963
rel 10/MEP	0.00002167	0.00000000	0.00000000
IDCT/ORG	2.17505877	1.89026210	1.87922527
MEP/ORG	2.08974301	1.53418394	1.51229428
MEP/IDCT	0.55463822	0.12546744	0.12336016
rel 1/ORG	2.23185020	1.81134653	1.75381757
rel 1/IDC	0.98027819	0.36803651	0.36488448

rel 7/ORG	2.58883987	2.32668406	2.31295071
rel 7/IDC	0.63618408	0.17424921	0.17010502
rel 7/MEP	0.00002717	0.00000000	0.00000000
rel 8/ORG	2.58883980	2.32668358	2.31295071
rel 8/IDC	0.63618376	0.17424916	0.17010502
rel 8/MEP	0.00002300	0.00000000	0.00000000
rel 9/ORG	2.58883974	2.32668350	2.31295071
rel 9/IDC	0.63618378	0.17424914	0.17010502
rel 9/MEP	0.00002308	0.00000000	0.00000000
rel 10/ORG	2.58883973	2.32668350	2.31295071
rel 10/IDC	0.63618379	0.17424914	0.17010502
rel 10/MEP	0.00002312	0.00000000	0.00000000
IDCT/ORG	3.17117118	3.87543085	3.79406342
MEP/ORG	3.04123094	3.29728492	3.25319297
MEP/IDCT	0.63617124	0.16048044	0.15810993
rel 1/ORG	3.11974020	3.51409872	3.42563743
rel 1/IDC	0.94300255	0.33348927	0.33055524
rel 1/MEP	0.66698487	0.17237829	0.17244344
rel 2/ORG	3.04164789	3.30271603	3.25663954
rel 2/IDC	0.65220548	0.16387511	0.16155691
rel 2/MEP	0.10111241	0.00344737	0.00344679
rel 3/ORG	3.04123518	3.29725921	3.25329982
rel 3/IDC	0.63584194	0.16062756	0.15821698
rel 3/MEP	0.01627981	0.00010702	0.00010704
rel 4/ORG	3.04121057	3.29717925	3.25319476
rel 4/IDC	0.63609370	0.16047722	0.15811192
rel 4/MEP	0.00220610	0.00000192	0.00000192
rel 5/ORG	3.04122373	3.29726926	3.25319290
rel 5/IDC	0.63617193	0.16047869	0.15811006
rel 5/MEP	0.00032292	0.00000005	0.00000005
rel 6/ORG	3.04122867	3.29728417	3.25319286
rel 6/IDC	0.63617525	0.16048028	0.15811002
rel 6/MEP	0.00006489	0.00000000	0.00000000
rel 7/ORG	3.04122869	3.29728451	3.25319285
rel 7/IDC	0.63617397	0.16048041	0.15811001
rel 7/MEP	0.00002973	0.00000000	0.00000000
rel 8/ORG	3.04122863	3.29728416	3.25319285
rel 8/IDC	0.63617367	0.16048040	0.15811001
rel 8/MEP	0.00002924	0.00000000	0.00000000
rel 9/ORG	3.04122862	3.29728409	3.25319285
rel 9/IDC	0.63617366	0.16048039	0.15811001
rel 9/MEP	0.00002926	0.00000000	0.00000000
rel 10/ORG	3.04122861	3.29728409	3.25319285
rel 10/IDC	0.63617366	0.16048039	0.15811001
rel 10/MEP	0.00002925	0.00000000	0.00000000
IDCT/ORG	3.68085725	5.08986580	4.97073488
MEP/ORG	3.56396930	4.49390578	4.45827851
MEP/IDCT	0.64810045	0.15764811	0.15689488
rel 1/ORG	3.66091645	4.72323491	4.62941239
r			
res			

rel 1/IDC	0.96333998	0.33204187	0.32802938
rel 1/MEP	0.68673106	0.17216526	0.17113301
rel 2/ORG	3.56237217	4.49755327	4.46133204
rel 2/IDC	0.66327465	0.16057026	0.15994876
rel 2/MEP	0.09332134	0.00305181	0.00305402
rel 3/ORG	3.56344370	4.49340908	4.45836425
rel 3/IDC	0.64837869	0.15766943	0.15698078
rel 3/MEP	0.01453231	0.00008586	0.00008590
rel 4/ORG	3.56393328	4.49378621	4.45827975
rel 4/IDC	0.64799337	0.15764311	0.15689627
rel 4/MEP	0.00189874	0.00000132	0.00000132
rel 5/ORG	3.56397455	4.49390234	4.45827845
rel 5/IDC	0.64808781	0.15764869	0.15689498
rel 5/MEP	0.00022035	0.00000002	0.00000002
rel 6/ORG	3.56397027	4.49390795	4.45827843
rel 6/IDC	0.64810364	0.15764828	0.15689495
rel 6/MEP	0.00003852	0.00000000	0.00000000
rel 7/ORG	3.56396852	4.49390594	4.45827843
rel 7/IDC	0.64810356	0.15764809	0.15689495
rel 7 MEP	0.00002002	0.00000000	0.00000000
rel 8/ORG	3.56396840	4.49390566	4.45827843
rel 8/IDC	0.64810327	0.15764808	0.15689495
rel 8/MEP	0.00001859	0.00000000	0.00000000
rel 9/ORG	3.56396842	4.49390567	4.45827843
rel 9/IDC	0.64810323	0.15764808	0.15689495
rel 9/MEP	0.00001821	0.00000000	0.00000000
rel 10/ORG	3.56396843	4.49390568	4.45827843
rel 10/IDC	0.64810324	0.15764808	0.15689495
rel 10/MEP	0.00001819	0.00000000	0.00000000
IDCT/ORG	5.21114184	9.81343355	9.38685482
MEP/ORG	5.14234834	9.45834966	9.06846657
MEP/IDCT	0.37767784	0.05917869	0.05879711
rel 1/ORG	5.16699009	9.53435462	9.12250212
rel 1/IDC	0.52063656	0.11416658	0.11283262
rel 1/MEP	0.37020363	0.05436192	0.05403359
rel 2/ORG	5.14230749	9.46509084	9.06929391
rel 2/IDC	0.38384706	0.05999590	0.05962461
rel 2/MEP	0.04668706	0.00082714	0.00082753
rel 3/0RG	5.14219136	9.45845803	9.06848449
rel 3/IDC	0.37797761	0.05918233	0.05881513
rel 3/MEP	0.00637613	0.00001804	0.00001804
rel 4/ORG	5.14233071	9.45830509	9.06846687
rel 4/IDC	0.37765879	0.05917835	0.05879750
rel 4/MEP	0.00093526	0.00000037	0.00000037
rel 5/ORG	5.14234725	9.45834607	9.06846650
rel 5/IDC	0.37767294	0.05917881	0.05879714
rel 5/MEP	0.00010490	0.00000000	0.00000000
rel 6/ORG	5.14234787	9.45835149	9.06846650
rel 6/IDC	0.37767856	0.05917872	0.05879713

rel 6/MEP	0.00001830	0.00000000	0.00000000
rel 7/ORG	5.14234766	9.45835155	9.06846650
rel 7/IDC	0.37767914	0.05917869	0.05879713
rel 7/MEP	0.00001706	0.00000000	0.00000000
rel 8/ORG	5.14234763	9.45835148	9.06846650
rel 8/IDC	0.37767912	0.05917869	0.05879713
rel 8/MEP	0.00001766	0.00000000	0.00000000
rel 9/ORG	5.14234762	9.45835146	9.06846650
rel 9/IDC	0.37767911	0.05917869	0.05879713
rel 9/MEP	0.00001773	0.00000000	0.00000000
rel 10/ORG	5.14234762	9.45835146	9.06846650
rel 10/IDC	0.37767911	0.05917869	0.05879713
rel $10 / \mathrm{MEP}$	0.00001773	0.00000000	0.00000000
IDCT/ORG	5.56642803	11.02811602	10.61233813
MEP/ORG	5.53993731	10.88033247	10.47380261
MEP/IDCT	0.24699515	0.02471669	0.02467061
rel 1/ORG	5.54656090	10.89048553	10.49762167
rel 1/IDC	0.33959755	0.04860747	0.04848951
rel 1/MEP	0.23866196	0.02387087	0.02381792
rel 2/ORG	5.54009548	10.88592757	10.47411522
rel 2/IDC	0.24997580	0.02503159	0.02498328
rel 2/MEP	0.02770889	0.00031249	0.00031259
rel 3/ORG	5.53993154	10.88065839	10.47380396
rel 3/IDC	0.24703560	0.02471748	0.02467198
rel 3/MEP	0.00176711	0.00000137	0.00000137
rel 4/ORG	5.53993470	10.88034016	10.47380261
rel 4/IDC	0.24699779	0.02471674	0.02467063
rel 4/MEP	0.00020401	0.00000002	0.00000002
rel 5/ORG	5.53993676	10.88033310	10.47380259
rel 5/IDC	0.24699586	0.02471669	0.02467061
rel 5/MEP	0.00002905	0.00000000	0.00000000
rel 6/0RG	5.53993694	10.88033425	10.47380259
rel 6/IDC	0.24699606	0.02471669	0.02467061
rel 6/MEP	0.00001432	0.00000000	0.00000000
rel $7 / 0 \mathrm{RG}$	5.53993694	10.88033443	10.47380259
rel 7/IDC	0.24699612	0.02471669	0.02467061
rel 7/MEP	0.00001402	0.00000000	0.00000000
rel 8/ORG	5.53993694	10.88033445	10.47380259
rel 8/IDC	0.24699613	0.02471669	0.02467061
rel 8/MEP	0.00001402	0.00000000	0.00000000
rel 9/ORG	5.53993694	10.88033445	10.47380259
rel 9/IDC	0.24699613	0.02471669	0.02467061
rel 9/MEP	0.00001402	0.00000000	0.00000000
rel 10/ORG	5.53993694	10.88033445	10.47380259
rel 10/IDC	0.24699613	0.02471669	0.02467061
rel 10/MEP	0.00001402	0.00000000	0.00000000
IDCT/ORG	5.76460163	11.74303887	11.42050742
MEP/ORG	5.74750597	11.62276946	11.31845460
MEP/IDCT	0.26472093	0.02780918	0.02777577

1/ORG	5.75566913	11.62887343	11.33818607
rel 1/IDC	0.34137343	0.04764255	0.04750711
1/MEP	0.22178003	0.01974736	0.01973153
2/ORG	5.74746231	11.62532604	11.31355510
2/IDC	0.26564762	0.02790963	0.02787629
1 2/MEP	0.01547255	0.00010049	0.00010050
3/ORG	5.74750095	11.62288178	11.31845536
el 3/IDC	0.26475436	0.02780985	0.02777653
rel 3/MEP	0.00134868	0.00000076	0.00000076
el 4/ORG	5.74750443	11.62276160	11.31845460
4/IDC	0.26472051	0.02780918	0.02777578
rel 4/MEP	0.00011926	0.00000001	0.00000001
rel 5/ORG	5.74750595	11.62276780	11.31845459
rel 5/IDC	0.26472074	0.02780918	0.02777577
rel 5/MEP	0.00001072	0.00000000	0.00000000
rel 6/ORG	5.74750600	11.62276923	11.31845459
rel 6/IDC	0.26472093	0.02780918	0.02777577
rel 6/MEP	0.00000253	0.00000000	0.00000000
rel 7/0RG	5.74750599	11.62276930	11.31845459
rel 7/IDC	0.26472094	0.02780918	0.02777577
rel 7/MEP	0.00000213	0.00000000	0.00000000
rel 8/ORG	5.74750599	11.62276930	11.31845459
rel 8/IDC	0.26472094	0.02780918	0.02777577
rel 8/MEP	0.00000211	0.00000000	0.00000000
rel 9/ORG	5.74750599	11.62276930	11.31845459
rel 9/IDC	0.26472094	0.02780918	0.02777577
rel 9/MEP	0.00000211	0.00000000	0.00000000
rel 10/ORG	5.74750599	11.62276930	11.31845459
rel 10/IDC	0.26472094	0.02780918	0.02777577
rel $10 / \mathrm{MEP}$	0.00000211	0.00000000	0.00000000
IDCT/ORG	6.10544076	13.01326134	12.88445234
MEP/ORG	6.10283924	12.96622734	12.84424307
MEP/IDCT	0.21854120	0.01949673	0.01946911
rel 1/ORG	6.10816076	12.94902322	12.86104487
rel 1/IDC	0.29278188	0.03649500	0.03627065
rel 1/MEP	0.20251676	0.01680982	0.01680190
rel 2/ORG	6.10288836	12.96629615	12.84426084
rel 2/IDC	0.21857600	0.01951869	0.01948682
rel 2/MEP	0.00648485	0.00001776	0.00001776
rel 3/ORG	6.10283940	12.96627092	12.84424315
rel 3/IDC	0.21854537	0.01949678	0.01946913
rel 3/MEP	0.00038444	0.00000006	0.00000006
rel 4/ORG	6.10283943	12.96623518	12.84424309
rel 4/IDC	0.21854373	0.01949669	0.01946907
rel 4/MEP	0.00002673	0.00000000	0.00000000
rel 5/ORG	6.10283942	12.96623397	12.84424309
rel 5/IDC	0.21854367	0.01949669	0.01946907
rel 5/MEP	0.00002369	0.00000000	0.00000000
rel 6/ORG	6.10283942	12.96623397	12.84424309

rel 6/IDC	0.21854367	0.01949669	0.01946907
rel 6/MEP	0.00002376	0.00000000	0.00000000
rel 7/ORG	6.10283942	12.96623397	12.84424309
rel 7/IDC	0.21854367	0.01949669	0.01946907
rel $7 / \mathrm{MEP}$	0.00002376	0.00000000	0.00000000
rel 8/ORG	6.10283942	12.96623397	12.84424309
rel 8/IDC	0.21854367	0.01949669	0.01946907
rel 8/MEP	0.00002376	0.00000000	0.00000000
rel 9/ORG	6.10283942	12.96623397	12.84424309
rel 9/IDC	0.21854367	0.01949669	0.01946907
rel 9/MEP	0.00002376	0.00000000	0.00000000
rel 10/0RG	6.10283942	12.96623397	12.84424309
rel 10/IDC	0.21854367	0.01949669	0.01946907
rel $10 / \mathrm{MEP}$	0.00002376	0.00000000	0.00000000
IDCT/ORG	6.36202443	14.10041438	14.20157969
MEP/ORG	6.32082559	13.87477387	13.97970140
MEP/IDCT	0.23906526	0.02478753	0.02473879
rel 1/ORG	6.32795006	13.84475586	13.99627013
rel 1/IDC	0.29027932	0.04179758	0.04130707
rel 1/MEP	0.19181175	0.01663347	0.01656810
rel 2/ORG	6.32101931	13.87306095	13.97976706
rel 2/IDC	0.23870557	0.02486837	0.02480430
rel 2/MEP	0.01216930	0.00006554	0.00006553
rel 3/ORG	6.32083210	13.87466969	13.97970182
rel 3/IDC	0.23903829	0.02478866	0.02473906
rel 3/MEP	0.00084153	0.00000030	0.00000030
rel 4/ORG	6.32082582	13.87477098	13.97970151
rel 4/IDC	0.23906488	0.02478754	0.02473876
rel 4/MEP	0.00004645	0.00000000	0.00000000
rel 5/ORG	6.32082543	13.87477660	13.97970151
rel 5/IDC	0.23906649	0.02478749	0.02473876
rel 5/MEP	0.00001287	0.00000000	0.00000000
rel 6/ORG	6.32082541	13.87477693	13.97970151
rel 6/IDC	0.23906658	0.02478749	0.02473876
rel 6/MEP	0.00001292	0.00000000	0.00000000
rel $7 / 0 \mathrm{RG}$	6.32082541	13.87477695	13.97970151
rel 7/IDC	0.23906659	0.02478749	0.02473876
rel 7/MEP	7.00001294	0.00000000	0.00000000
rel 8/ORG	6.32082541	13.87477695	13.97970151
rel 8/IDC	0.23906659	0.02478749	0.02473876
rel 8/MEP	0.00001294	0.00000000	0.00000000
rel 9/ORG	6.32082541	13.87477695	13.97970151
rel 9/IDC	0.23906659	0.02478749	0.02473876
rel 9/MEP	0.00001294	0.00000000	0.00000000
rel 10/0RG	6.32082541	13.87477695	13.97970151
rel 10/IDC	0.23906659	0.02478749	0.02473876
rel 10/MEP	0.00001294	0.00000000	0.00000000
IDCT/ORG	7.02090915	16.61680268	17.46160240
MEP/ORG	7.03829741	16.69795548	17.55254213

MEP/IDCT	0.06893337	0.00192879	0.00192650
rel 1/ORG	7.03832156	16.69339138	17.55366342
rel 1/IDC	0.08516566	0.00305704	0.00304777
rel 1/MEP	0.05232799	0.00112153	0.00112132
rel 2/ORG	7.03829957	16.69785573	17.55254313
rel 2/IDC	0.06891978	0.00192993	0.00192750
rel 2/MEP	0.00158706	0.00000100	0.00000100
rel 3/ORG	7.03829729	16.69795292	17.55254213
rel 3/IDC	0.06893255	0.00192880	0.00192650
rel 3/MEP	0.00001704	0.00000000	0.00000000
rel 4/ORG	7.03829727	16.69795405	17.55254213
rel 4/IDC	0.06893291	0.00192879	0.00192650
rel 4/MEP	0.00000589	0.00000000	0.00000000
rel 5/ORG	7.03829727	16.69795406	17.55254213
rel 5/IDC	0.06893291	0.00192879	0.00192650
rel 5/MEP	0.00000592	0.00000000	0.00000000
rel 6/ORG	7.03829727	16.69795406	17.55254213
rel 6/IDC	0.06893291	0.00192879	0.00192650
rel 6/MEP	0.00000592	0.00000000	0.00000000
rel 7/ORG	7.03829727	16.69795406	17.55254213
rel 7/IDC	0.06893291	0.00192879	0.00192650
rel 7/MEP	0.00000592	0.00000000	0.00000000
rel 8/ORG	7.03829727	16.69795406	17.55254213
rel 8/IDC	0.06893291	0.00192879	0.00192650
rel 8/MEP	0.00000592	0.00000000	0.00000000
rel 9/ORG	7.03829727	16.69795406	17.55254213
rel 9/IDC	0.06893291	0.00192879	0.00192650
rel 9/MEP	0.00000592	0.00000000	0.00000000
rel 10/ORG	7.03829727	16.69795406	17.55254213
rel 10/IDC	0.06893291	0.00192879	0.00192650
rel 10/MEP	0.00000592	0.00000000	0.00000000

REFERENCES

Ahmed, N., and Roa, K.P. Orthogonal Transforms for Digital Signal Processing. New York: Springer-Verlag, 1975.

Ahmed, N.; Natarjan, T.; and Roa, K.R. "Discrete Cosine Transform." IEEE Transactions on Computers (January 1974): 90-93.

Clarke, R.J. Transform Coding of Images. New York: Academic Press, 1985.

Healy, D.J., and Michell, R.O. "Video Bandwidth Compression Using Block Truncation Coding." IEEE International Conference on Communications (June 1981): 14-15.

Jain, A.K. "A Sinusoidal Family of Unitary Transforms." IEEE Transactions on Pattern Analysis and Machine Intelligence. (October 1979): 356-365.

Jaynes, E.T. "Prior Probabilities." IEEE Transactions on Systems Science and Cybernetics SSC-4 (September 1968): 227-241.

Karmangar, F.A., and Rao, K.R. "Fast Algorithms for the 2-D Discrete Cosine Transform." IEEE Transactions on Computers. (September 1982): 899-906.

Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language. Englewood Cliffs, NJ: Prentice-Hall, 1978.

Mailaender, Laurence E. "Transform Domain Vector Quantization for Low-Rate Image Coding." Master's thesis, University of Virginia, May 1985.

Mailaender, Laurence E. Interview by author, January 1986, at Stanford Telecommunications, McLean, VA.

Oppenheim, A.V., and Schafer, R.W. Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

Shore, J.E. "Inversion as Logical Inference-Theory and Applications of Maximum Entropy and Minimum Cross-Entropy." SIAMA-AMS Proceedings 14, 1984.

Shore, J.E. "Minimum Cross-Entropy Spectral Analysis." IEEE Transactions Acoustics, Speech and Signal Processing ASSP-29 (April 1981).

Tzannes, Michael A. "Transform Coded Data Reconstruction Using the Principles of Maximum Entropy and Minimum Relative Entropy." Senior project, University of Michigan-Ann Arbor, 1985.

Tzannes, N.S. Communication and Radar Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985.

Tzannes, N.S., and Bodenschatz, J.S. "Iterative Reconstruction of Transform-Coded Images Using Relative Entropy." In Proceedings of the IEEE Southeastcon '87, Tampa, FL, April 5-8, 1987 .

Tzannes, N.S.; Thacker, J.A.; and Tzannes, M.A. "EntropyPreserving Block Truncation Coding." In Proceedings of the IEEE Southeastcon '86.

Tzannes, N.S., and Tzannes, M.A. "Reconstruction of TransformCoded Data by RE Minimization." In Proceedings of the 12th Annual Conference on Information Sciences, Princeton University, March 1986.

