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SECTION I 

INTRODUCTION 

Systems comprised of one or more human elements many times 

evade reliable mathematical description. In complex tasks, such as 

aircraft control, human performance is deeply embedded in many sub­

systems. Extracting information about crew performance requires 

direct and indirect measurement of many variables and poses extreme 

methodological challenges. Therefore, it is no surprise that policy 

makers, training managers, instructors and scientists make many 

decisions without the aid of valid human performance information. 

The search for human performance measurement necessitated the 

development of 'ridge• discriminant analysis. This new adaptation of 

discriminant analysis has been instrumental in the successful imple­

mentation of an automated performance measurement system. So far, 

utilized solely on its face value, more work is needed to adequately 

describe and validate the properties of this new statistical tool. 

In this paper, the author will attempt to highlight the rele­

vant background information that led to the generation of 'ridge' 

discriminant analysis. A review of discriminant analysis theory 

and evidence of the merits of the 'ridge• version will also be 

presented. 
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Background 

The underlying concept of the performance measurement develop­

ment method, mentioned previously, was to have a combined analytical 

and empirical technique to define performance measures for automated 

training of instrument flight maneuvers (IFM) in a simulator. The 

final measure set was to represent a comprehensive, yet minimum set 

of measures which ·were sensitive to the skill changes that occurred 

during training. 

The criteria for measurement selection and the fundamental 

techniques and algorithms for selecting measures were developed by 

Vreuls, Obermayer, Goldstein and Lauber (1973) and by Vreuls, Ober­

mayer and Goldstein (1974). After careful search of the literature 

and due consideration, it was felt by these researchers that a form 

of multivariate discriminant analysis was the best statistical 

technique to incorporate into the measurement selection and weight­

ing scheme. The measures, dnce selected, could be weighted and com­

bined in a simple first order equation upon which an automated 

training system could track a student's comparative skill level. 

Vreuls and Obermayer implemented programs directly from Cooley 

and Lohnes' book entitled Multivariate Data Analysis (1971). Their 

analysis a~gorithm centered primarily around the MANOVA and DISCRIM 

programs. A set of candidate performance measures was .iteratively 

reduced on the basis of low communality until all members of the 

set retained a communality above some minimum value. The last dis­

criminant analysis in the cycle provided the coefficients for the 
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performance measurement model. Figure 1 is a simplified flow chart 

of this portion of their analysis. 

Analyses of empirical data were performed. The measures were 

selected~ weighted and summarily combined into linear equations de­

scribing student learning on four basic IFM exercises. The automated 

training device using these equations was then to be implemented and 

evaluated by comparing its relative efficiency to other scoring 

algorithms. It was during debugging for the evaluation phase of the 

study that certain scoring system insufficiencies became apparent. 

When introduced to simulator training, many novice, private 

pilots performed quite erratical.ly at first. This initial perfor­

mance in the simulator was unlike anything observed in the student 

population used to develop the performance measurement models. The 

discriminant linear models were very sensitive to these pilot be­

haviors and tended to misclassify some obvious novice pilots as 

experts. 

A combination of incorrect sign and inappropriate magnitude 

of the discriminant coefficients was felt to contribute most to the 

instability of the measurement models. Other researchers have also 

observed contradictory coefficients when using multivariate regress­

ion analysis. Ridge regression has shown great success in damping 

these instabilities by biasing the model in a controlled and rational 

fashion. An analog to ridge regression was developed by the author 

for discriminant analysis and implemented for reanalysis of the per­

formance measurement data. The resulting performance models were 

found to have merit when compared to existing measurement methods. 
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The performance measurement study, described above, is anec~ 

dotal evidence for the necessity and possible validity of multi­

variate ridge discriminant analysis. More detail on performance 

measure selection is contained in later sections of this report, 

along with a complete description of 'ridget discriminant analysis. 

A simulation technique, using actual performance data, will be de­

scribed and used to estimate the relative validities of different 

performance measurement analyses. 



SECTION II 

METHODS 

Discriminant Analysis 

Decision making requires intelligent integration of information. 

A linear model is usually the most convenient and optimal method for 

combining component variables. Merely testing for significance or 

performing analysis of variance is not often adequate for optimally 

determining group differentiation with respect to more than one 

variable. The discriminant model is useful for reducing this multi-

variate problem by the determination of a linear function of the 

variates which maxi mizes the difference between populations: 

In review, multiple discriminant analysis projects data points 

from their initial measurement space into a suitable subspace. This 

subspace is univariate and usually referred to as discriminant space. 

The discriminant model determines those components which best sepa-

rate the groups in measurement space and weights them to maximize 

this difference in discriminant space. The geometric interpretation 

of discriminant analysis can be seen, for the case of two groups and 

two variates, in figure 2. 

In figure 2 can be seen two partially overlapping bivariate­

normal scatter diagrams projected onto a new axis rr . The two new 
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Figure 2. Different Linear Combinations 
for Two Variables 
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overlapping distributions represent the two groups projected onto an 

arbitrary discriminant axis. The degree of overlap can be manipulated 

by varying the discriminant coefficients used to transform the multi-

variate points onto the resulting discriminant axis. The objective 

of discriminant analysis is to find a set of coefficients which min-

imize this projected overlap for two or more groups consisting of 

many normally distributed variables. 

Via Maurice Tatsuoka (1970) comes a simplified mathematical 

interpretation of the multivariate discriminant solution starting 

with a measure of the overlap between the two distributions n 1 and 

n 2 . This difference could be calculated by dividing the difference 

between the two group means, rr 1 and rr 2 , by the standard deviation of 

one of t he groups. For example, 

s 
rr ,2 

would describe the distance between the group 1 rr-mean and the group 

2 rr-mean in units of standard deviation of rr in the second group. 

This unit of distance favors one group over t he other, depend­

ing on the choice of standard deviation. The pooled within-groups 

standard diviation, elemental in the t-test of significance of the 

difference .between two means, would help provide a less biased esti-

mate of the distance. Using 
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a "neutral" . measure of degree of overlap becomes 

s 
'TT,W • 

f becomes smaller as the degree of overlap becomes greater. As a 

convenience, to avoid negative values, the final measure of the sepa­

ration between the distributions of two groups projected in discrim-

inant space becomes 

Thus, by computing f 2 for systematic ~ariation in the linear combi­

nations, the optimum combination could be found when f 2 is largest. 

To avoid numerous computations, an expression is needed of f 2 that 

is a function of the coefficients b1 , b2 through bn. Differential 

calculus can be used to determine the set of b. values which will 
1 

maximize f 2 (b b b ) 1' z, ... , n · 

Before this can be done, the index, f 2 , must be generalized 

to be used for cases involving two or more groups. It is a natural 

extension of the two group case that the square of the difference 

between the means is also provided by the variance of three or more 

quantities. 

When three or more groups (l~3) are being compared 

fi = Va r (rr) 

s2 
7f,W 



where 

with 

and 
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l 
Var(rr) == 2: (rr1 -rrz) 2 

g== 1 

l-1 

l 

N-l 

s 2 is now the within-groups mean-square, MSw; used in the analysis 
n ,W 

of variance. The total sample size is 

l 
N = E 

g=l 
n . 

g 

In t he f 2 the Var(n ) does not account for unequal groups. The 

size of each group can be accounted for by replacing Var(n) by the 

between-groups mean-square 

l 
MS = E n Cn -n.; ) 2 

b g= 1 g g 

l-1 

where TI ... = 

N 

is the grand mean of n in the total sample comprised of all l groups. 

Using the notation of analysis of variance, 

f 2 = MS z b 
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To further simplify 

N-l 

and discarding (N-l)/(Z-1), since it is constant for any given 

problem, 

where 

and 

f 2 = SS = A l b 

z 
ssb = r n

9 
(n -11 ... )2 

g=l g 

Z n
9 SS = L L (- - )2 w rr_ g~i-rrg • 

g=1 i=1 . 

The quantity A is called the discriminant criterion. The next 

step of defining ssb' ssa and the linear combination rr in terms of 

the unknown coefficients b1 , b2 , •.• , b will require matrix n 

notation. 

If we define the vectors 

b = bl 

b2 

b n , 

X = 
' XI X = 

' 9 
x2 

. 

the foregoing expressions become 

n = b ... X . g,j g,l 

xl,g 
x l,g 

X l,g 

~ and x = xl 
x2 
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and 

where b~ is the transpose of b, the row vector {b 1 , b2 , .•• , b
0

}. 

The IT-scores for all N individuals can be expressed as 

and it follows that 

II" = b_.X J 
g g 

and If_. = v .... XJ 

where XJ = [xxx x] 
and IT .... = [rrnrr n] 
for N repeated columns and 

Since 'TTl nl , i rrl (i = 1' 2, nl) 
'i = ... ' 

and 1T2 = Tl2 rr2 (i = 1' 2, n2) 
'i , i ... , 

and so on, ss = (II - rr
9

) .... ( rr - rr ) . w g 

In order to express the right-hand side of the previous for-

mul' a in terms of b::t substitute 

rr .... -rr.... = b .... X_b .... Xj 
9 g 

= b'(X-XJ ) g 

and find b~(X-XJ9 ) b .... (X-XJ
9

) 

= b" (X-XJ
9

) (X-XJ
9

)" b. 

Note for future reference that the within-groups sum-of-squares of 

X form the diagonal elements and the within-groups sum-of-cross-
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products between the elements of X form the off-diagonal elements 

of (X-XJ
9

)(X-XJ
9

) ... , which is usually denoted by W. This is called 

the within-groups sums-of-squares-and-cross-products (SSCP) matrix. 

Thus, SS = b ... Wb. w 

Following the previous example 

ss = (n - n) ... ( n - rr) b g g 

::::: b ... (XJ
9

-XJ) b ... XJg-XJ) ... 

::::: b... ( XJ - XJ) ( XJ -XJ) b g g 

or ssb = b ... Bb. 

B is called the between-groups SSCP matrix where the between-groups 

sum-of-squares of X make up the diagonal elements and the between-

groups sum-of-cross-products are the off-diagonal elements. 

Now the discriminant criterion 

can be expressed as 

A = SS 
b 

The coefficients in discriminant analysis are the result of maxi­

mizing the ratio of the among-groups variance over the between-groups 

variance: 

A = b ... Ab 

b'"Wb maximum 
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subject to the restriction 

b ... b = 1. 

The maximum value A and the associated vector of weights b are 

found using the largest eigen value and its eigenvector of the 

equation 

(W-lA-AI)b=O (Tatsuoka 1970). 

The purpose for the inclusion of this extensive derivation of 

the discriminant criterion is to give the reader an intuitive feel 

for the meaning of the among- and between-groups SSCP matrices. It 

is this understanding that was critical to the development of 'ridge• 

discriminant analysis. 

•Ridge• Dtscrtmina~t Analysis 

It makes no difference to the formal logic of the discriminant 

model whether the variates in measurement space are the dependent 

variables and the discriminant function is the independent pre­

dictor vector or the groups consist. of independent treatment vari­

ables and group membership is the dependent variable vectors. In 

the case of the performance measurement development, previously 

discussed, the groups represented relative skill levels of pilots 

composed of dependent and uncontrolled performance measures and the 

group memb~rship was the only controlled independent variable. 

Undesigned Experimer.ts 

Charles Simon (1975) would refer to this kind of method for 

developing a performance model as an 11 Undesigned" experiment. An 

11 Undesigned 11 experiment, according to Simon, is one in which some 
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experimental variables cannot or are not controlled by the experi­

menter. Each variable is known or measured only at the time of 

measurement during the experiment. Therefore, variables in an 

undesigned experiment may often be correlated mathematically to some 

degree. This correlation can dramatically effect the results of a 

multivariate analysis. 

For example, in the performance measurement study, mentioned 

above, many of the aircraft parameters that were transformed to 

provide the measures were dynamically related. The aircraft attitude 

is usually directly linked to the pilots' control actions. Also, 

various measures are sometimes just different transforms of the same 

parameter. Even so, the interrelationships between the resulting 

measures are complex and the aspects of performance they mutually 

describe (i.e., their simple correlation) are unpredictable for any 

new maneuver. In other words, even though a relationship between 

basic aircraft and aircraft control parameters can be demonstrated, 

transformed measures of these parameters may not always be perfectly 

correlated. Elimination from the analysis is suggested for one 

measure from a near-perfectly correlated pair, since they obviously 

describe the same aspect or variance of the performance. 

A different kind of mathematical dependence can occur, which 

is an artifact of the uncontrolled experimental conditions at the 

time of measurement. These accidental or artifical correlations are 

not a result of any casual relationship between the predictor 

variables. 
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Regardless of the source, even seemingly small correlations 

have the potential for producing less than satisfactory models for 

some applications, and it is not intended to argue here the merits 

of "designed .. versus 11 Undesigned 11 experiments other than to reiter-

ate Charles Simon's viewpoint: 

"The goals of a good experiment should be to obtain new, 
relevant, important, and lasting information which is 
capable of explaining most of the performance variability 
associated with a particular real-world task. In the be­
havioral sciences, unlike the physical sciences, perfor­
mance cannot be examined or evaluated independly of the 
context in which it occurs and can only be described or 
predicted as a function of this context. The more gener­
alizable data therefore will be derived from experiments 
in which critical context factors are varied rather than 
he l. d constant. 

If, however, an investigator decides to study behavior in 
a realistic context, he may find himself in circumstances 
where his ability to control and adjust the levels of 
critical parameters is sorely limited. This means that 
he can no longer plan and carry out a totally designed 
experiment and must either limit the questions he can ask 
or resort to another approach. The undesigned experiment-­
along or in conjunction with a balanced design--offers a 
viable alternative.'1 

Interpretation of 11 Undesigned 11 Experiments 

When the predictor variables are correlated with each other, 

the intercorrelation matrix will have non-zero correlations in the 

off-diagonal positions. A hypothetical intercorrelation matrix for 

the discriminant situation appears in table 1. This table can be 

broken into three parts: 1) the predictor matrix of correlations 

among each predictor variable and every other predictor variable; 

2) the diagnonal of the matrix which is the correlation of each pre­

dictor variable to itself; and, 3) the group membership row vector 
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of correlations between each predictor variable and group membership. 

Note that since each predictor variable correlates perfectly 

and positively with itself, the diagonal values are all one. Since 

the off-diagonal elements are not zero, the matrix is said to be 

ill-conditioned and the original experimental design is classified 

as non-orthogonal. 

A multivariate least-squares regression as well as a multi-

variate discriminant analysis will both suffer from similar failings 

when applied to data characterized by an ill-conditioned inter-

correlations matrix. Indeed, there is a popular contention that 
·~ 

the regression and discriminant models should always find the ~arne 

solution for any given data. It has been suggested that any notable 

differences are due to computational problems. The author feels 

that the regression criterion 

(Y-Xb)~(Y-Xb) I 
r~li n 

and the discriminant criterion 

behave somewhat differently under adverse conditions. Should the 

groups have significantly different shapes, be non-normally distrib­

uted or frqm 11 Undesigned 11 experiments, the two criteria may result 

in quite different discriminant models. Until this relationship 

is mathematically or practically proven, the author reserves the 

right to discuss the two methods as different, yet analogous, 
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procedures. For the time being~ it is this analogy that is of crit-

i ca 1 importance. 

Users of either analysis technique, McDonald and Schwing (1973) 

for instance, have noted certain instabilities in the resulting 

ordinary coefficients when analyzing non-orthogonal systems. Some 

coefficients have extreme magnitudes or incorrect signs resulting in 

lin~ar functions that respond unsatisfactorily when supplied with 

new data. This erratic behavior was also noted in the Vreuls and 

Wooldridge (1976) performance measurement study when new pilots were 

obviously misclassified by the normal discriminant functions. 

Hoerl and Kennard (1970?,b} suggested adding a small positive 

quantity, k, to the unit diagonal of the intercorrelation matrix, 

x~x, of the predictor variables in regression analysis. The conven-

tional least-squares fit is done using this new matrix to produce 

what are called 'ridge• coefficients. The standard regression 

b = (x~x)- 1 x~v 

becomes b = (x~x + kr)-lx~v 

where I is the unit diagonal matrix. 

The 'ridge' comes from the fact, that as k increases, the var-

iance error decreases more rapidly than the bias error increases. 
--

As can be seen in figure 3, for some value of k, the sum of the 

bias error and variance error (the mean-square error) is minimized 

and smaller than it would be for the conventional coefficients. 

Although the 'ridge' can be mathematically demonstrated to exist, 

little success has been made in calculating a specific value of k 
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that minimizes the mean-square error. Lindley and Smith (1972); 

Mallows (1973); and Farebrother (1975), to name a few, all suggest 

various mathematical criteria for selecting a value of k which would 

improve the set of coefficients without unduly biasing the estimate. 

Hoerl and Kennard did not feel that a mathematical solution 

for selecting the best k was justified. They proposed visual in-

spection of the •ridge• trace. Figure 4 is an example 'ridge' trace. 

This plots the change in regression coefficients various values of k 

between 0 and 1. 

The following conditions should be looked for when selecting 

the value of k (in lieu of a mathematical formula): 

1. The beta values and particularly their orders of magni­

tudes have begun to stabilize. 

2. The coefficients no longer have unrealistically large 

absolute values. 

3. The coefficients with logically incorrect signs are 

approaching or have reached the proper sign. 

4. The residual sum-of-squares is not unreasonably inflated. 

5. The ridge trace (representing the mean-square error) is 

smaller than the unbiased least-squares variance. 

Mathematical Rationale for 'Ridge' 
Discriminant Analysis 

Hoerl and Kennard (1970q.) were able to mathematically demo-

strate the existence of the ridge estimator for regression by cal­

culating the expected value of the squared distance between B* and 
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" B. B is . the vector of the true regression coefficients and e* is 

the 'ridge' 

becomes 

or 

estimates of s. This function 

E 

E 

[ L 2 ( K)J 
"' "' = ( B*- S) ... ( S*- 8) 

[L2(K)J 
p 

= a 2 L: A./(A-+K) 2 + 
1 1 1 

K2 S"(X"X+KI )- 2 s 

E [ L 2 ( K)J = Yl ( K}+y2 ( K). 

The first term, y 1 (K), can be shown to be the sum of the variances, 

or total variance, of the estimate. y 2 (K) can be considered the 
A A 

square of the bias resulting when 8* is used rather than s. The 

function y 1 {K) is a monotonic decreasing function of K, while y 2 (K) 

is monotonic increasing. As previously discussed, the sum of the 

two provide the 'ridge'. 

An existence theorem can demonstrate that, although the 

deri va ti ve of E [ L 2 ( K)J is positive as K approaches =, there always 

exists a K>O such that dE [ L2 (K)J /dK<O. This describes the property 

of E [ L2(K)J of always going through a minimum as K goes from 0 to=. 

Appropriate values of K have been looked for by various solutions to 

the first derivative of E [ L2 (K)J . 

Development of a similar expectation function for a 'ridge' 

discriminant analog poses a challenge which this author may not have 

to overcome. Although the author advances demonstration by simula­

tion, it is useful to examine the discriminant function to grasp an 

intuitive feel for the existence of the 'ridge' adjustment. 
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In review, discriminant analysis attempts to maximize the 

criterion, 

A = b'Ab 

Finding the smallest eigen value of W to maximize A is reasonably 

comparable to finding the largest eigen value of w-IA used to solve 

(w-IA-AI)b=O. The smallest eigenvalue of W, A1 , would be very 

1 Smal1' if two or more experimental variables were co~related. Then 

if b were chosen to correspond to A1 of W then, 

since b~b~l. Since A1 is 'small•, b~Ab is very 'large'. Undesir­
AI 

ably, the solution would disregard or be insensitive to the values 

found in A. Somewhat larger eigen values of W would be more desi~-

able. One way to force the eigen values to be larger is to replace 

W with W+IK, where K is a small scalar. Then, 

b~(R+IK)b=A 1 +K. 

Now, regardless of how small the smallest eigenvector of W is, the 

size of A1+K can be no smaller than K. K being of reasonable size, 

b~Ab would not be as large as b ... Ab. In maximizing b~Ab , A 
b""(W+ I K) b 

would determine more of b_..s direction than before. Thus, a very 

small bias~ K, would have the beneficial result of improving the 

sensitivity of A to values found in A. Again, as in 'ridge' regress­

ion there is a trade-off between bias error and variance. It is 

hypothesized that the adjusted discriminant function has similar 
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minimizable properties as in the case of least-squares regression. 

A simulation would also be expected to demonstrate these properties. 

Predictably, one characteristic of the 'ridge 1 discriminant 

analysis will be quite different from that of the regression version. 

Usually~ the regression case requires only very small values of K~ 

much smaller than 1, usually less than 0.1. to minimize E [L 2 (K)J. 

The mathematics of the situation suggests that the discriminant 

analysis may require adjustments much larger than those typical for 

regression. 

To explain further~ remember that W contains the within-groups 

sum-of--squares of X on the diagonal elements and the within-groups 

sum-of-cross--products of X form the off-diagonal elements. x~x 

relates to W when xx~ is expressed as the correlation matrix, r. 

When x~x=r, it follows that 

r. . = W; j 
lJ 

a.a. 
1 J 

Thus, the elements of W can be much larger in magnitude than those 

of x~x; to be precise~ aiaj times greater. As a result, it can take 

larger values of K to affect the eigen structure of w- 1 . 

Monte Carlo Va 1 i dati on of • Ri dge•1 

Discriminant Analysis 

Given the lack of 'ridge' discriminant analysis application 

experience and the absence of a rigorous mathematical proof, a 

Monte Carlo simulation (Gordon 1969) would be a practical way to 

demonstrate the effectiveness of this new multivariate technique 
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(Bittner 1974). Using simulated data, the percentage of classifi­

cation error could be calculated for various values of k. Thus 

providing an immediate indication of the relative improvement in 

the discriminant function associated with each value of k. 

As was previously discussed, several researchers when using 

'ridge) regression have chosen values for k based on a wide variety 

of mathematical or pragmatic criteria. This simulation technique, 

on the other hand, can provide pseudo-empirical evidence for the 

selection of a near-optimal discriminant function for any sample 

simply by finding the minimum classification error as the value of k 

increases from zero. Rather than base a decision on a highly con­

testable mathematical assumption, perhaps a data simulation should 

be incorporated as the criteria whenever using a 'ridge' analysis. 

Mathematical Basis for Simulation 

As a first consideration, the simulated data must have a multi­

variate distribution much like the original sample. For the most 

part, human performance data are normally distributed with error 

scores having highly skewed normal or translated poisson distribu­

tions. This mixture of distributions could be satisfactorily simu­

lated with random vectors generated from a multivariate normal 

population .. Since the interrelationships existing in the perfor­

mance measures was the undesirable characteristic responsible for 

the development of 'ridge' analyses, it is crucial that the same 

variance-covariance structure of the data be represented in the 

simulation. Thus it was important not only to simulate a 
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multivariate normal population, but to also be able to specify the 

variance-covariance matrix of the population. 

Scheuer and Stoller (1960) suggest a method for generating 

random vectors from a multivariate normal popul ation with a specified 

variance covariance matrix based on matrix equations. To simplify 

description of the technique, it will be assumed at first that the 

mean of the random vectors is zero. The result i s no loss in gen-

erality, for a vector x with a mean of zero and a variance-covariance 

matrix r, the vector x+~ has the same variance- covariance matrix r 

and mean vector u. It is then possible to concentrate on generating 

a random vector x=(x 1 , x2 , _ ••• xn) from N(O~r)~ the mult ivariate 

nonnal distribution with mean vector zero and var·a ce-covariance 

matrix : 

r = 

a nn . 

Let y be distributed N(O,I ), where I is the un i t matrix of 
n n 

size n, and let x=Cy. Then x is distributed N(o,cc~). It is re -

quired that cc~ be equal to r in this case. The matrix C i s unique 

and readily determined if C is lower triangular. The elements of 

C are determined recursively as follows: 



c .. = 
1J 

c .. = 
lJ 

(J •• 
lJ 

c .. = 0' 1J 

j-1 
- L 

k=1 
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1 < i ~n, 

cik cjk /cjj' 1 < j ~ i < n 

i < j < n. 

This technique is referred to as the "square root" method and C is 

the 11 square root" of L:. · 

Once C has been determined, x is obtained by 

where y 1 , 

i 
x; = L C; jY j' i = 1, ... , n 

j=l 

y are independent standard normal variables, N(0,1). 
n 

Box and Miller (1958) suggest a method for computation of ran-

dom normal deviates. This approach has been shown to be more accu-

rate than other known methods for generating normal deviates from 

independent ramdom numbers; 1) the inverse Gaussian function of 

the uniform deviates, 2) Teichroew's approach, 3) a rational approxi-

mation such as that developed by Hastings, 4) the sum of a fixed 

number of uniform deviates, and 5) rejection type approach. 

The method may be used to generate a pair of random deviates 

from the same normal distribution starting from a pair of random 

numbers. Letting U1 and U2 be independent variables from the same 

rectangular density function on the interval (0,1), 
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y 1 = (-2 Loge U 1 )~ COS 2nU 2 and 

Y2 = (-2 Loge U 1 )~ SIN 2TIU2 

provides a pair of independent random variables, (y 1 , y 2 ), from the 

same normal distribution with mean zero, and unit variance. 

The new random vector x can now be computed given the original 

lJ and E as 

i 

X· = 2: c .. y. 
1 lJ 1 

+ , ... ,· = 1 n ,...., .,. , . , .. ' . 

j=l 

A program was then written which would compute any number of 

new independent random vectors with the same means and variance-

covariance matrix. The simulation would require a predetermined 

number of generated vectors from each population to then be classi-

fied as to their respective populations using various discriminant 

functions. The resulting misclassifications can then be used to 

compare the discriminant functions by calculating their respective 

percent error of classification. An acceptable criterion must be 

developed to optimally classify vectors for each discriminant 

function. 

The score s will be calculated by: 

where the b•s are the discriminant coefficients for n number of 

performance measures or x•s. In other words, the b•s make up the 

discriminant function for the sample vector composed of n number 

of x's. s is now a new variate in discriminant space belonging 
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to one of two distributions in this case. The cost function can be 

derived using the score distributions in discriminant space of the 

sample used to empirically develop the discriminant function, s. 

There will be two of these distributions: TI 1 and TI 2 • Any single 

score, s, will then fall somewhere in these distributions, with 

probabilities of P1 (s) and P2 (s). 

p 

--+--------------------+--------------------------~ s 
s 

Figure 5. Two Distributions in Discriminant Space 

In classifying s as belonging to distribution TI 1 or TI 2 , t\vo 

errors can be made. If s actually belonged to distribution TI 1 , an 

error would be made if s was classified as belong to TI 2 (see figure 

5). 

On the other hand, s could belong to rr 2 and be classified as 

belonging to TI 1 . There is a cost associated with each type of 

error. Let C(2ll) be the cost of the first type of error and C(lj2) 

be the cost of the second. Table 2 is a logic table of the costs 

of correct and incorrect classification. It follows, that an 

effective classification scheme should minimize the cost of 

classification. 
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TABLE 2 

CLASSIFICATION 

1Tl 

Til 0 

'IT2 C(ll2) 

nz 

C(2!1) 

0 

If we select a score, s, in discriminant space, the potential 

cost of using that point for classification can be estimated. The 

probability that swill be classified as belonging to n 2 even 

though it belongs to n- 1 is 
(X) 

P(2\l,s) =~ P1 (s)ds. 
s 

Given that we already have an actual sample distribution where the 

number of observations in n 1 , n 1 , is known and the number of scores 

1 e s s than s i n n 1 can be summed as m 1 , 

The probability of misclassification of an observation from n- 2 is 

then s 

P(lj2,s) =f 
-oo 

where n2 is the number of observations in n 2 and m2 is the number 

of scores in n 2 less than s. 
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The probability of a n 1 pilot achieving a particular score, 

s, is P 1 (s). This probability can be calculated using the number 

of observations in n 2 falling in the period of integration bounded 

by s, m , divided by n 1 or simply 
S,l 

Thus, the probability associated with misclassifying a score 

from n 1 is 

and the probability of misclassifying a score from n 2 is 

The average or expected loss from costs of misclassification 

is the sum-of-the-products costs of each misclassification multi-

plied by the probability of its occurrence; 

C(2ll)P(2Il,s)P 1 (s) + C(I!2)P(ll2,s)P2 (s), or 

C ( 2jl) n 1 -·m 1 m 
S,l 

+ 

If C(ll2) = C(2ll) = 1, the expected loss is 

nl-ml m1, s 
+ c- n2-m2) ms ,2. 

nl nl n2 n2 
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Assuming 1r 1 and 1r 2 are normally distributed, for a given score 

s, the probability of misclassification is minimized by assigning s 

to the sample that has the higher conditional probability. Thus, 

the rule is: 

1r 1 is chosen if 

and n 2 is chosen if 

n1 -m 1 m5 , 1 < (1- n2 -m2 )-. m5 , 2 • 

n 1 n1 n2 n2 

This line of reasoning follows closely the deriva t ion put forth 

by Anderson (1958) for discriminant classification criteria. For the 

purposes of this research, it suffers from two fatal problems. First, 

the computation of P1 (s) and P2 (s) relies on the arbitrary determi­

nation of a period of integration. Since these values can change 

directly with the length of the integration period selected, the 

cost function itself becomes a problem to define. Secondly, the dis­

tributions to be analyzed are known not to be no rmally distributed . 

This upsets the decision rule described above. 

A slight departure from these results may provide a practical 

decision algorithm for realistic data analysis conditions. Assuming 

that the intrinsic cost associated with misclassifications of both 

kinds is still 1, the total probability of misclassification for 

any s provides a relative metric for comparison. The to t al proba­

bility of misclassification is 
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P(ll2~s) + P(2!l,s) or 

nl-ml +( 1- n2-m2) 
nl n2 

' . 
For an existing sample, P(ll2,s) and P(2ll,s) are simply the 

percentage of misclassifications of u1 and u2 respectively. Their 

sum is the total percentage of misclassifications for s in discrimi-

nant space. Given a sample, this total percentage can be evaluated 

along the entire discriminant space to locate the minimum error that 

will occur somewhere between the means of n 1 and u 2 • The value in 

discriminant space where the minimum error occurs will be called the 

break even point. 

Several potential discriminant functions can be derived for 

each sample of data. A classification criteria for each function 

can be detennined by finding the break even point using the sample 

discriminant scores, and the discriminant functions can then be 

compared using their respective percentage of classification errors 

on generated independent variates resembling the original sample. 

The simulation concept is now complete. 



SECTION III 

ANALYSIS SOFTWARE ARCHitECTURE 

All of the simulation elements were then coded and assembled 

into a single analysis algorithm. The heart of the program was the 

existing discriminant analysis shown in figure 1 of the Introduction. 
-
As can be seen in figure 6, the generation of random variables, the 

'ridge ' adjustment, and simulated test of the discriminant model 

have been added to the original program. 

First, a thousand simulated measurement vecto-rs are generated 

for each of the two groups analyzed. These 'measures 1 are saved on 

a disc and reused to test each set of discriminant coefficients 

resulting from the various stages of analysis. An economy of compu-

tational time is realized by only generating one large set of simu-

lated data. The statistical reliability that would be gained by 

recalculating the test sample for each discriminant model would be 

insignificant. Figure 7 shows the functional step involved in the 

generation of the test data and follows closely the conceptual 

material presented in the previous sections. 

Disc~iminant analysis is then iteratively performed, removing 

measures which contribute least to the model, until all remaining 

measures retain a communality higher than some arbitrary minimal 

value. Communality is therefore the criterion for retention in the 

model. Control of this process is done by varying the minimum 
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I 
DO I = 1,1000 )II-.,_ __ _ 
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YES 

Figure 7. Function Flow of Random Test 
Data Generation Program forM Variates 
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communality allowed or by initial inclusion of measures at the start 

of the process. 

Once the final set of measures has been determined, the •ridge• 

adjustment to the model is made. A predetermined increment is added 

to K, which in turn is added to the diagonal of the W matrix, and the 

discriminant analysis is performed again. This cycle is repeated 

until the •ridge• adjustment, K, is greater than the limit set by 

the operator. 

In between each discriminant analysis, during the •ridge• 

adjustment cycles, each set of discriminant coefficients undergoes 

the simulation test. As shown in figure 8, the resulting coeffi­

cients are first applied to the actual data, using the cost function, 

to find a break-even point. The predicted error of classification 

can also be calculated by summing the misclassifications and 

dividing by the total number of observations. The simulated data 

are then weighted by the discriminant coefficients and the same 

break point is used as the classification criterion. The percentage 

of misclassifications then becomes a gauge of the relative reliability 

of the resulting models. 
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SECTION IV 

APPLICATION OF THE 1 RIDGE' 
DISCRIMINANT ANALYSIS 

The 'ridge' adjusted discriminant analysis was used, without 

the benefit of the simulation feature, to develop performance 

measurement models (Vreuls, Wooldridge 1976). These mode ls were 

capable of differentiating between trained and untrained pilots in 

an instrument flight simulator. The implementation of these empiri­

cally derived models resulted in a 40 percent reduction in the time 

required to train pilots to a fixed level of proficiency. In the 

context of that study, the discriminant model represented an improve-

ment in control criteria for an automated training system. 

Fortunately, the successful results of the first empirical 

measurement study lent a degree of validity to an untested, new sta-

tistical procedure. During the analysis stage of that study, the 

'ridge' adjustment seemed to produce the desired effects on the 

coefficients without unduly disturbing the significance of the dis­

·crimination. Otherwise, very little else was known about the effects 

of the adjustment on the discriminant models. The level of adjust-

ment was detennined purely by visual inspection of the 'ridge• trace. 

Values of K were selected when the unrealistically large coefficients 

began to stabilize at lower levels and before any noticeable, undesir­

able changes in the R2 or x2 resulted. 
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To review in more detail, the data (used in the Vreuls and 

Wooldridge study) were gathered during an experiment, sponsored by 

the Naval Training Equipment Center (NTEC) to develop automated 

performance measurement for an instrument flight maneuvers simulator. 

This simulator, the Training Device Computer System (TRADEC) located 

at NTEC, was configured as a fixed-wing aircraft (F-4E). The TRADEC 

primary hardware included an XDS Sigma-7 computer and associated 

peripherals and an aircraft cockpit mounted on top of a motion plat­

form. The cockpit contained all of the necessary flight controls 

and instrument displays found in a jet fighter front seat. A 

digital computer program provided the basic flight simulation. 

Twelve relatively low-time students and private pilots were used 

as trainees. All participants had some familiarity with instrument 

flight, but were unskilled as jet fighter pilots. Each participant 

was trained to fly four basic instrument flight maneuvers, straight 

and level flight, standard rate climbs and descents, level turns and 

climbing and descending turns. Aircraft weight and resultant center­

of-gravity (C.G.) shift, and turbulence were varied according to a 

predetermined schedule during training. Each pilot was trained on 

each experimental condition, for example, straight and level flight 

with fore C.G. and no turbulence, 12 times during a training day. 

For any particular condition, 12 trainees would provide 144 observa­

tions on any single training day. 

It was assumed that after seven days of training, the pilots 

would become relatively proficient at the basic maneuvers. There­

fore, a comparison of performance differences between day 1 and 
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day 7 would reveal those measures which were sensitive to the skill 

change that occurred during training. Discriminant analysis was 

selected as a method to highlight these performance differences. 

During the execution of each exercise, performance data were 

collected on several continuous variables. The transforms or 

summary statistics performed on these system variables constitute 

the performance measures to be analyzed. For example, the 15 candi­

date measures for the level turn exercises are contained in table 3. 

Level turns required the trainee to hold a constant bank angle (30 

degrees) while holding the aircraft altitude and airspeed constant. 

The level turn exercise with no turbulence and fore C.G. was 

arbitrarily chosen from the instrument flight maneuvers syllabus to 

provide the example data used to develop a working version of the 

Monte Carlo simulation. After a complete standard analysis only six 

measures were found to have any significant contribution to the dis­

criminant function. An exhaustive simulation of the 'ridge' adjusted 

discriminant models was then performed on these remaining measures. 

This was done by iteratively performing a discriminant analysis and 

incrementing the value of K between each iteration as previously 

described. Monte Carlo classification tests we r e performed on the 

discriminant functions resulting from 64 discrete values of K between 

0 and 400. A cost function minimizing the sum of Type I and Type II 

error was recalculated for every case. Appendix A contains tables of 

a few of these discriminant analyses. 
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The trace of the coefficients for values of K between 0 and 3 

is -shown in figure 9. Most of the change in the magnitude of the 

discriminant coefficients was found where K was less than 3 in this 

case. The increments in K used for the analysis in this region were 

.05 in order to maximize the resolution where the most activity 

occurs. Larger increments, ranging between 0.1, 0.5, 1.0, 5.0, 10.0, 

and 50.0 wer,e· used as K became larger and the differential impact on 

the discriminant analyses became more miniscule. Inspection of the 

coefficient trace shows a definite effect brought about by the addi­

tion of a small amount of bias, K. 

It is not until one observes the change in the simulated percent 

of group misclassifications caused by differing values of K, that the 

benefit of the 'ridge' adjustment becomes apparent. Figure 10 shows 

the average total percent of Monte Carlo group membership misc1assifi­

cations for values of K between 0 and 300. With the exception of 

minor 1 to 3 percent fluctuations, an obvious trend appears. The 

misclassification error for the standard discriminant model is 35.2 

percent, but decreases to a minimum 15.8 percent when K is 1.8. It 

is evident that a global minimum occurs between the extreme values 

of K used in this series of simulations producing a classical 'ridge' 

trace. As predicted, though, the effectiveness of the discriminant 

model is improved with values of K of far greater magnitude than those 

usual for 'ridge' regression. 

This was only one opportunity to use the si mulation feature 

coupled with the 'ridge' discriminant analysis. Thus it constitutes 

only a limited demonstration of a developing performance measurement 
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modeling philosophy. All of the measures had rel i, 1 

alities and there was plenty of room for impro vem 

discriminant function. Hence, inadvertently, the re '~ - 11'' 

ditions under which to affect an improvement. Another 

needed to further demonstrate the procedure and to repl· t 

successful application under entirely different conditi 

A more recent study provided these data with an en · 

different complexion. A preliminary ana lysis showed t ha 

discriminant model with 13 variables resulted in a very s 

fication error of 9.6 percent. The set of measures was CvJn~~v~~~~ 

mixture of those with very high communalities and a 

communalities and questionable contribution to the disc ri m 

This was the extreme opposite from the previous situation. 

a.ddition bi as to the analysis immediately detract f r om t he 

crimina tory ability or is there s ti 11 room for i mpro veme + 

A Naval Training Equipment Center and Air Force 

Laboratory jointly sponsored research study, entitled 

Maneuvering Performance Measurement' provided thi s 

analyze 'fresh' data. This study was to devel op a 

Combat Maneuvering Performance Meas urement f or t e 

on-one free engagements on the Simulator fo r A1r- · 

at Luke AFB, Arizona (Kelly, Wooldridge, e t al )~ 

The SAAC is composed of two F-4 cockp- s 

computer system. Each cockpit has a 296° 

field-of-view system. For this study the 

(( 
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computer generated scene around each cockpit which included a sun, 

sky, horizon, and 'checker-board' ground. The opponent's aircraft 

was a computer controlled aircraft model electronically superimposed 

into each pilot's visual scene which realistically presented the 

opponent•s flight activity. Acceleration cues were only provided by 

an inflatable G-seat and G-suit. 

Thirty F-4 pilots were divided into three groups of ten pilots 

each, representing three experience levels ranging from novice to 

expert. Six pilots (two from each experience group) 'flew' each 

week for five consecutive weeks. Each of the pilots flew against the 

other five pilots three times that week. Three initi~l starting 

positions were used for each pair of pilots which gave neither pilot 

an advantage. Various other engagements were flown to comprise the 

total, but they will not be discussed, as they were not used in any 

formal analysis to date. 

Twenty-eight candidate performance measures were developed that 

could be collected automatically during ACM engagements on the SAAC. 

These were measures of aircraft maneuvering, control activity, energy 

management, engagement outcome, and relative aircraft position. Three 

variables were added for analysis purposes to account for any learning 

effect and any difference between the three set-up conditions. The 

final set of 31 variables are listed in table 4. 

A two-group analysis was desired; one that would simply delin­

eate between the lesser skilled pilots and those more competent. As 

was mentioned~ each pilot in this study fell into one of three cate­

gories, each representing a different level of skill or experience. 
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A rationale was determined for parsing the pilots into two distinct 

and justifiable groups. It was felt that the least experienced 

pilots, those that fell into category one, would always be doing 

something during any engagement that would be characteristic of 

their capability, regardless of the engagement outcome. Category 

three pilots, the most experienced in the study, would likewise 

exhibit their more advanced skills, regardless of the opponent or 

engagement outcome. Preliminary analyses also showed that the cate­

gory two group of pilots formed a distinct intermediate group some­

where in between the two other groups. Therefore, all category one 

engagements, and all category three engagements, regardless of the 

opponents category, represented the extreme skill levels with the 

most promising capability to highlight differing ACM performance 

characteristics. 

All of the data from category one and three pilots were then 

sorted into one of two respective groups for analysis. To keep things 

simple, the category two proponent data were excluded from these two 

groups, since it was not known precisely what part of the skill spec­

trum they represented. Of course, their effect would show up as an 

opponent 1 s influence whenever another pilot from the other two cate­

gories engaged them. The results df this sort were 130 group one, 

or novice observations and 130 group two, expert observations of 31 

performance measures each. 

Several performance measures were eliminated on the basis of 

their low communalities, and, therefore, lack of contribution to the 

discriminant model. Some measures, such as 'Bingo Kill Success' or 
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'Ground Kill Success', were removed for being ultimate engagement 

outcomes, as the final model was to measure intermediate control or 

strategy skill devoid of ultimate criteria. 

The same iterative 'ridge' adjusted discriminant analysis was 

performed on the remaining 13 measures. Appendix B contains tables 

of a few of these discriminant analyses. 

The trace of the coefficients for values of K between 0 and 3 

is shown in figure 11. As before, most of the change in the coeffi­

cients occurred in this range. There were 31 analyses performed 

with K ranging from 0 to 10. Examination of the trace indicates a 

somewhat less orderly change in the coefficients than in the 

previous example. There exist discontinuities and/or several points 

of inflection on each trace. 

Figure 12 shows that these traits are reflected in the total 

percent misclassifications for increasing values of K. Most of the 

points plotted between 0.0 and 0.4 can be seen to be slight improve­

ments over the original 9.6 percent. After 0.35 there is general 

trend upwards with a few exceptions in either direction. The entire 

trend is hardly as clear-cut as in the previous example. An improve­

ment of over 1.5 percent was gained with a very small (0.3) 'ridge' 

adjustment, whereas a slightly higher bias produced a less satis-

factory result. 

In this example, great care would be needed to select an appro­

priate value for K. There was no indication in the usual discriminant 

statistics of the rapid breakdown in discriminability evidenced by the 

simulation. 
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Coefficients 

0 K 
2 

Figure 11. Coefficient Trace for Selected Measures for 
ACM Example 
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SECTION V 

CONCLUSIONS 

Circumstances surrounding performance measurement research 

underway at the NTEC Human Factors Laboratory necessitated the 

invention of 'ridge' adjusted discriminant analysis. For lack of 

rigorous mathematical proof, this new technique was applied to 

research only on the basis of educated supposition and positive 

empirical evidence. A Monte Carlo simulation was devised to provide 

a more thorough demonstration of the relative effectiveness of these 

biased discriminant models. 

Two characteristically different sets of data have been sub­

jected to a comprehensive 'ridge' discriminant analysis. Monte Carlo 

simulations were used to estimate the percentage of expected misclassi­

fications for each level of adjustment. Both series of analyses 

exhibited fundamentally similar results. In both cases there were 

some coefficients which shrunk in magnitude and even a few that 

changed sign. Thus, indicating a reduction of 'overfit'. The simu­

lations provided further evidence of improvements in the discrimi-

nant functions for certain levels of bias (K). 

There were notable dissimilarities in the results between the 

two examples. The first example, the IFM data, exhibited a smoothly 

changing set of coefficients as a function of K. The simulation 

demonstrated a highly robust and unmistakable trend with a minimum 
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error that has approx imately 17 percent better than the unbiased 

discriminant model. 

On the other hand, the ACM data, produced a coefficient trace 

with discontinuities and greater variability. The outcome of the 

simulation reflected these less desirable traits with noticeable 

variability and only spurious improvements in the percentage of 

misclassifications. Several features of the ACM data may explain 

these differences. Examination of Appendix B shows that a few of 

the variables included to satisfy practical criteria added little 

to the discriminant model, as evidenced by their relatively small 

communalities. These measures may have contributed undesirable 

elements of variability. Two of the measures, INIT2 and GUN, were 

discrete, coded dummy variables which may have negatively effected 

the discriminant analysis as well as the simulation. There was no 

facility for the generation of binomial distributions in the simu­

lation program. Such a departure from the multivariate normal dis­

tribution assumed by discriminant analysis would also more than 

likely have negative effects on the resulting discriminant functions. 

Lastly, since there was less than a 10 percent overlap of the two 

distributions in discriminant space, any simulation would have been 

dramatically effected by the ability to simulate the •tails• of the 

two distributions. Even though generating a thousand data points, 

using the extremes of the distributions may have taxed the capability 

of the simulation. Combinations of any or all of the above explana­

tions would be enough to cause the 1 to 3 percent variability in the 

simulation results with small changes in K. 
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In general, the simulation had only the capability to generate 

multivariate normal distributions. The data being_ simulated was not 

so restricted. Thus, the Monte Carlo misclassifications are only 

proportioned to the actual expected misclassifications had the model 

been validated with empirical data. It is also not clear which 

direction these estimates are biased. The genera1izability of the 

simulation would be enhanced by the ability to simulate distribu­

tions of various characteristics at will. Inclusion of a Pearson 

distribution technique (Thomas 1966) which generates distributions, 

with the first four moments specifiable, might provide this added 

f 1 ex i b i 1 i ty . 

The simulation, as implemented, did provide a relative metric 

for choosing one bias level over another. This capability is 

advantageous over educated guess work and should probably be incor­

porated as a standard feature in future discriminant analyses. The 

'ridge' discriminant analysis, through the use of the simulation 

feature, demonstrated a controllable improvement in discrimination 

over the standard analysis. 
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