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ABSTRACT 

This thesis discusses and presents the design of 

a 

processing. 

systolized 

systolic arrays used in modern real time signal 

A methodology to map a given algorithm into 

VLSI implementation is described. The architectural 

algorithm are alternatives for a given signal processing 

discussed and investigated at a function level using a 

simulation package that has been developed using the "C" 

programming language. 

The similarities and differences between wavefront array 

processors and systolic array processors are presented. 
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INTRODUCTION 

As we drift into an age of information it becomes 

obvious that the early ages of computer architecture are 

doomed to change. Due to an ever-increasing demand in 

computational power, it is necessary to investigate new 

architectures better suited for signal processing in terms 

of speed volume and cost. 

A look at the computer industry shows a rapid transition 

from single processor to parallel processor machines. This 

is due to the fact that single processor machines, in order 

to improve their throughput, need faster and more expensive 

circuitry. At the end of the scale, circuit speed reaches 

its limits; as in order to improve the speed distances 

between components are reduced to a compactness that exceeds 

the ability of the circuit to dissipate heat. 

On the other hand, concurrent array 

achieve a greater speed by dividing 

processing its parts simultaneously 

processors (CAP) 

the program, and 

by different 

processors. Processors range from custom made applications 

to standard microprocessor units. They can be combined in 

different ways and linked via a variety of communication 

schemes. 
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This new architecture has already resulted in a range of 

machines that are aimed at markets sectors as diverse as on 

line transaction processing and fluid flow simulation 

studies. 



CHAPTER l 

REAL TIME SIGNAL PROCESSING USING ARRAYS OF PROCESSORS 

l. APPLICATIONS IN SIGNAL PROCESSING 

The applications of signal processing are numerous and 

multiple in the present world of electronics. In the domain 

of consumer electronics, goods such as telephones, radios 

and televisions receivers, disks and tape players are 

tangible examples of how signal processing directly affects 

us. In the domain of commercial electronics, applications 

in telecommunications and control systems create a big 

demand for signal processing. Similarly, in military radars 

and sonars the demand for high quality components is strong. 

Finally, but not the last man-machine interfaces in 

artificial intelligence requires strong signal processing 

tools. Due to the sharp penetration of signal processing 

techniques in today's electronics it is important to 

optimize quality and costs. This is achieved by using 

digital signal processing (DSP) in conjunction with VLSI 

implementation. 

2. DIGITAL SYSTEMS ARCHITECTURES FOR SIGNAL PROCESSING 

In digital signal processing, operations such as 

averaging, differentiation etc., are performed on a sequence 

of numbers that represent samples of some analog signal. 

Many of today's signal processing applications require 

3 
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immediate interaction between the user or system and the 

machine. In other words real time processing is required. 

In the domain of real time signal processing some tasks are 

difficult to perform due to the inability to match the 

computational rate to the data input rate. Because time is 

a constraint, measures such as response time and throughput 

are becoming increasingly critical. 

addresses this need for additional power. 

Array processing 

Specific tasks that need to be performed in real time in 

modern signal processing systems include matrix 

multiplication, or solution of linear equations. It has 

been shown [8] that these tasks can be easily solved using a 

concurrent processor array architecture. 

The characteristic of this architecture is the use of a 

number of arithmetic units each concurrently performing a 

specific function on a data set. This is a considerable 

improvement when compared to architectures using a single 

arithmetic and logic unit a main task can be broken up into 

subtasks that are processed by different processor elements 

in a parallel and/or overlap fashion. This concept of 

concurrently operating arithmetic units is the core concept 

of array processing. In order to support this new field it 

is important to formulate new computational models which 

support parallelism. It must be noted that array structures 

can be easily implemented in VLSI. Furthermore, the level 
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of performances in array processing are in part dictated by 

advances in VLSI technology. 

3. DIGITAL SIGNAL PROCESSING AND VLSI TECHNOLOGY 

The rapid innovation in VLSI technology in terms of low 

cost, high density, and speed is having an impact in modern 

signal processing. The trend is to translate computational 

models into promising VLSI implementation technologies. 

Array architectures that were previously hampered by memory 

cost (i.e., local memories) are now being reexamined and 

implemented. Those new perspectives are heralding a new era 

of signal processing using VLSI. 

While VLSI is well suited for digital signal processing 

there are constraints. The level of integration will not 

always be expandable. Current state of the art chips are 

fabricated with a minimum feature size of 1 to 2 

micrometers. This size could be reduced in the next couple 

of years to 0.5 micrometer. This reduction in size implies 

an increase in throughput rate (i.e., clock speed times gate 

density) from 5 x 10**11 Hz gates/cm**2 to 10**13 Hz gates 

/cm**2. [9] Beyond this point it seems that higher levels 

of integration will require more time, effort and money. 

This is the reason why the throughput rate must be improved 

through new and more advanced architectures. 

Some of the restrictions associated with the use of 

integrated circuit technology are directly translated into 

new problems to be solved in signal processlng. For 
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example, the requirement of local communication between 

array elements in array processing is due to the fact that 

interconnections in VLSI must be minimized. 

In summary, the increase in performance demanded by real 

time signal processing has shifted the attention from Von 

Neuman single instruction stream single data stream (SISD) 

structures to array structures. VLSI signal processing, 

using these structures, can be the answer to many of the 

problems requiring high throughput rate in order to support 

tremendous computations capabilities in terms of volume and 

speed. 

4. TYPES OF VLSI ARRAY STRUCTURES 

An array structure is a network of interconnected 

processor 

fashion. 

for an 

elements (PE) which process data in a controlled 

The different types of control mechanism provide 

architectural classification of these array 

structures. For instance, if a synchronous control scheme 

is used the array is referred as systolic. In the case of an 

asynchronous control mechanism, a wavefront array is 

obtained. However, all these architectures capitalize on 

regular and modular structures with different types of 

interconnections as shown in Figure 1. The choice of array 

structure depends on the communication required by the given 

algorithm and application. Also, the PE's can be dedicated 

or programmable. A dedicated PE is said to be hardwired; 

this leads to an inflexible structure and therefore might 
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a) Linear Connected 

I I I I 

I I l I 

b) Orthogonally Connected 

c) Hexagonally connected 

Figure 1. Mesh Connected Array Processors 
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limit the range of application of a given machine. A 

programmable PE offers the advantage of replication as well 

as flexibility. The disadvantage is the additional control 

complexity associated with dynamic interconnections or array 

reconfiguration. The trade-off between a dedicated and a 

programmable processor element is a very fundamental issue. 

In order to come up with an optimum choice, the designer 

must decide how much flexibility will be included in the 

special purpose computer. Two types of arrays are 

considered: the systolic array and the wave front array. The 

major difference is in the control mechanism. 

4.1 Systolic Arrays 

According to Kung and Leiserson [8], "A systolic array 

is a network of processors which rhythmically compute and 

pass data through the system.'' Systolic arrays use 

multiprocessing and pipelining to achieve greater 

throughput. Multiprocessing indicates that various PE's are 

processing data simultaneously in the array structure. 

Pipelining takes advantages of dependencies among 

computations to propagate the result of one PE to the next 

PE for further data processing. This concept of overlap is 

important as the data is being used within the pipe thus 

reducing input output and memory bandwidth requirements. In 

a systolic pipe the movement of the data is restricted to 

neighboring PE's and take place in a periodic manner. Within 

the pipe each processor can perform a given computational 
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task. For example, a common processor element structure is 

one which executes the short computation Y <--- Y + A*B 

(see Figure 2). It is important to realize that the data is 

passed rhythmically along the pipe. 

A systolic array possesses the following 

characteristics: 

a) Spatial locality 

The array is a network of PE's with local 

interconnections. Any PE which is providing the input 

data for the next PE to process it must be physically 

close to that next PE. This condition addresses the 

cost of interconnections in VLSI technology. 

desirable to have a minimum number 

It is also 

of short 

interconnections between adjacent PE's. Again, the 

connections or communication between neighboring 

modules should be minimized. 

b) Temporal Locality 

The array should present temporal locality. The 

results of a predecessor module are available to the 

next module at the next clock time. This condition is 

a control characteristic which restricts the systolic 

array to a classical pipeline stucture. 

c) Regularity 

The array is a network of PE's which are largely of the 

same type. However there may be some atypical cases at 

the boundaries of the array or in critical paths. The 



A 

Figure 2. Function Level Architecture of Discussed PE . 
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condition of modularity is needed to achieve area 

efficient layouts as required in VLSI 

d) synchrony 

A global clock is used to step the data in a rythmic 

fashion through the system. There is need for a global 

timing scheme to ensure that the data is available at a 

specific time. 

d) Order(M) Speedup Factor 

The systolic array must present an order M speed up 

factor where M is the number of stages within the pipe. 

The processing time for the array realization must be 

less than the processing time for a single processor 

machine. 

Chapter 2 presents further discussion of these 

characteristics and includes examples. 

4.2 Wavefront Array Processor 

A wavefront array processor is a data driven machine 

which has a throughput rate which is potentially higher than 

that of a systolic array. The spatial locality requirements 

are essentially the same as those established above for the 

systolic array. Also regularity and modularity are required. 

In contrast to a systolic array, the control mechanism is 

based on the occurrence of a sequence of events rather than 

on a global synchronous clock. To be more specific, the 

triggering of instructions depends on the availability of 

operands and resources required. Therefore the da~a driven 
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operation of each PE requires the adoption of handshaking 

protocols to synchronize data flow. 

5. EFFORTS IN THE DESIGN OF ARRAY PROCESSING SYSTEMS 

Many real time digital signal processing systems can be 

implemented using special purpose computer systems or 

components. There are also a number of applications that 

require the performances associated with a VLSI 

implementation. In both cases, design tools and methodology 

are critical in the design, analysis and development process. 

A noteworthy effort to provide a complete design 

automation system for VLSI signal processing is the 

Cathedral project [1]. It has produced a silicon compiler 

for bit serial structures which can include systolic type 

array processing. However this subset of the design spectrum 

has not been emphasized. Design techniques specific to 

systolic and wavefront array processing for VLSI are 

currently being investigated by a number of research groups, 

most notably the group at Carnegie-Mellon University (T.C. 

Kung ) and at the University of Southern California (S.Y. 

Kung). Of major interest is the investigation of methods of 

systolizing algorithms. Applying these techniques to signal 

processing applications include the following steps or 

phases. 

1. The first 

specification. 

phase will develop the application 

It is important to clearly define the 

performances requirements since this determlnes the 
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need and degree of array processing. 

2. The system function must be developed. The alternative 

representations of the system function will lead to 

computational models that can be investigated for 

systolization. A formulation which provide for 

spatial locality is crucial. 

3. The computing structure must be identified. This is 

achieved by applying the systolization procedure to a 

recurrence form of the algorithm or a Signal Flow 

Graph representation form of the algorithm. This is a 

critical step as it determines the overall 

architecture of the array. 

4. The array architecture is then examined. This includes 

a simulation at the function level to examine the 

correctness, "gross" timing information, and 

time trade offs of the solution. Following 

space 

those 

results the designer may want to investigate new 

architectures. 

5. The array processor is fabricated and tested 

6. TASK DESCRIPTION 

The objective of this thesis paper is to provide the basis 

for the design and development of digital signal array 

processing design facilities at UCF. To this end, examples 

of applications of the above methodology steps 3 and 4 are 

provided. A simulation package for examining the behavioral 
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or computational model and the structural or systolized 

model is developed. 



CHAPTER 2 

ALGORITHM TO ARCHITECTURE 

The procedures and requirements necessary to derive an 

array architecture given a specific algorithm are 

investigated. 

1. ALGORITHM TO ARCHITECTURE METHODOLOGY 

As established before, an array processor is a direct 

hardware implementation of a special computational model 

used to solve a given problem with speedup. This 

characteristic is crucial as the objective is to implement 

an algorithm by a high performance parallel network. Many 

of the algorithms encountered may not seem to be suited for 

parallel processing. However, through manipulation and 

optimization techniques, many real time signal processing 

algorithms can be made efficient. A necessary step is to 

reformulate a given algorithm in order to identify any 

recurrence within its structure. By recurrence we mean any 

set of operations that are repeated within the formulation. 

Each operation is given the name of iteration. By 

assigning an individual processor or processors for each 

iteration in the recurrence, concurrency is achieved by 

overlap. This is the objective of pipelining. As is also 

for the case of two dimensional arrays, parallelism is often 

achieved. 

15 
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A requirement for array processing is to have the 

communication between the iterative step processor be of the 

local type. The input and output data are labelled with time 

and space indices (i.e., location of the processor within 

the array). Spatial locality is achieved if the space index 

separation within two successive iterations is within a 

certain limit [8]. 

For systolic arrays an additional requirement is 

temporal locality. The simple control mechanism of a single 

global clock imposes the constraint of concurrent data 

arrival at the input of each array processing element (PE). 

This is achieved by manipulation of the delays within the 

array and/or the addition of delays. This method is also 

referred to as the systolization procedure. 

2. REPRESENTATION FORMS OF THE COMPUTATIONAL MODEL 

There are two common representation forms; a recurrence 

expression and a signal flow graph. 

expression has indices of space and time. 

The recurrence 

For reference the 

recurrence expression of a square matrix multiplication C = 

A*B is presented: 

is the time index. 

c 

The superscript in the following relation 

For k = 1 to N 

0 
c - 0 
i,j 

k k-1 k k 
- c + a b 

i,j i,j i j 



k 
a 

i 
a 
ik 
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k 
b = b 

j kj 

Spatial and temporal locality can be investigated using 

algorithms which manipulate index sets and derived data 

dependence vectors [8]. However this mathematical approach 

is cumbersome and prone to errors. 

An easier method is to use a signal flow graph (SFG) 

which provides a graphical representation of the recurrence 

formula. This method is more common to DSP and provides 

a visual statement of the characteristics of the 

computational model. Spatial and temporal locality are 

investigated by examining node connections and path delays. 

This later representation is used in this report. 

Signal Flow Graph Representation 

The signal flow graph is one of the most useful 

representation of a signal processing system. A SFG is a 

collection of nodes and edges. Nodes represent logic or 

mathematical functions performed with zero delay. Nodes are 

connected by edges. Three types of operations are used in 

the following discussion and examples: summation, 

multiplication and delay. A node with more than one input 

edge identifies a summation. An edge with a constant 

identifies a multiplication of the result of the preceding 

node with the constant. A D over an output edge indicates a 

time delay of the results coming from the node (see Figure 

3) • 



edge edge 
------->O -----> 

node 

function 
edge 

a 
-----> 

Figure 3: SFG Components 

Delay 
edge 

D 
-----> 

3. EXAMINATION OF A SFG FOR SYSTOLIC ARRAY IMPLEMENTATION 

i=M 
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Given a function y(k) =Sum b x(k-i), the corresponding 
i=l i 

SFG is drawn in Figure 4 and investigated for systolic 

attributes. 

3.1 Spatial Locality 

As established in Chapter 1, the length and number of 

connections between PE's should be minimized and restricted 

to neighboring PE's. For the SFG of Figure 4 an 

implementation of the computational model requires M (where 

M is arbitrary) connections to the summing node, of the 

pipeline. Due to the parallel nature of the network the 

use of a linear connected structure (see Figure 1) will 

result in some PE's being closer than others to the summing 

node. Use of a hexagonally connected structure will allow 

all the PE's to be separated from the summing node by the 

same distance. In the first case for an increasing M (M is 

the number of iteration and is arbitrary) PE's on the 

boundaries will be separated from the summing node by 

increased distances and will not be spatially local. In the 

second case, the type of structure changes with M and the 

length of the interconnections cannot be minimized. Thus the 

characteristics of spatial locality are not present. 
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3.2 Temporal locality 

Because the results of the parallel multiplications are 

available to the summing node at the same clock time as they 

are computed, no temporal locality is achieved. In order to 

achieve temporal locality, latches must be added to the b 

labelled edges. 

3.3 Regularity 

The process of multiplication, b x(k-i) is investigated 
i 

as the target PE process for the SFG of Figure 4. Using this 

partitioning of processes, regularity can be seen as the 

partitions are modular since each element performs an 

identical function on the data set. 

3.4 Synchrony 

No synchrony is achieved as the data in the b branches 

is available at the inputs of the summing node without a 

clocking process. However, synchrony can be achieved with 

the addition of delays. This results in the data being 

stepped through the system in a rythmic fashion. 

3.5 Order(M) Speedup Factor 

The array presents an order M speed up factor where M is 

the number of stages within the pipe. Speedup is achieved in 

this array realization by having parallelism in the b 

branches and having overlap in the D path. Once the pipe is 

full output samples will be available at each clock cycle. 

As a consequence the processing time for the array 
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realization is less than the processing time for a single 

processor machine. 

It will be shown in the next example that a more 

appropriate starting point is a SFG derived from a 

recurrence formula of the system equation. Identifying the 

recurrence formulation of the preceding system as: 

For i = 1 to M 

k k-1 
x x 

i i-1 

k k k 
s = s + b x 

i i-1 i i 

k k 
x x . s = 0 I 

0 in 0 

and drawing the corresponding SFG (see Figure 5); the 

spatial locality is apparent. However temporal locality is 

not present as the data on the lower path is fed through a 

zero delay path. As a consequence some new provisions must 

be established so that the temporal locality criterion is 

specified by the SFG. 

4 • MODULARITY 

The major decision in the implementation of the 

algorithm as an array structure is the type or types of 

element to be used. Relating this to a SFG, the 

partitioning used defines the characteristics of the 

hardware implementation. It can range from a single element 

for each iteration to a large number of elements within the 
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iteration. This decision strongly impacts throughput and 

response time. By having smaller partitions, a finer 

granularity is achieved (i.e., the number of stages is 

increased) . Using this principle, a higher throughput rate 

might be achieved [7]. Unfortunately, the response time or 

latency may also be higher. It is also common to have 

dissimilar stages. In the above example the array PE 

processes one 

multiplication, 

iteration; a delay 

followed by a summation. 

followed by a 

Using different 

partitions, or cuts, parallelism can be increased within the 

PE thus decreasing the stage process time and thus 

increasing the throughput. However, there is a potential 

cost of increased communication paths and response time. It 

should be noted that in this example, the multiplication

summation sequence should not be partitioned if the 

multiplication is implemented as a successive addition 

process; as is the case if CSA trees are used [6]. 

Partitioning requires a careful examination of temporal 

locality. Kung provides a cut set procedure that advocates 

lower communication requirements and addresses the temporal 

issue of systolization [8]. This is presented in section 6. 

5 MEASURE OF PERFORMANCES 

A pipeline is said to have speedup if N sequential tasks 

can be performed faster by a pipeline than it could be 

performed by a single processor. A pipeline provides for a 
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speedup of order M where M is the number of stages in the 

pipe. The order is determined by data dependence. Note that 

in the case of a large system processing a small data set, 

the latency of the pipe may have an influence on the level 

of performance (the fill and flush time might be greater 

than the processing time.) 

Another performance measure of the system is the 

throughput rate. In DSP the throughput is the number of 

samples processed per clock cycle. In the ideal case the 

throughput will be equal to the clock frequency. The clock 

frequency can be increased through two methods: 

1) Find a finer granularity of the partitioning. 

2) Identifying parallelism within the PE. 

In contrast to speedup, the throughput is a function of the 

stage delay time and not of the number of stages. 

6. SYSTOLIZATION PROCEDURE 

A systolic array has all of the characteristics of a 

classical pipeline [6]. Each stage of the pipe is 

processing a 

process must 

sequential portion of the system task. Each 

be completed for each clock time. As a 

consequence the data for each PE must be available at each 

clock time and must be provided by a spatially local process 

(i.e., the preceding stage). Thus broadcast paths must be 

eliminated and paths with zero delays must include 

provisions for extra delays in order to preserve 

synchronization. A key step in the manipulation of a SFG to 
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achieve temporal locality is the subtraction of delays from 

the input of a node and the addition of delays to the 

output. An SFG can be retimed using this step. Also the 

timing relationships between inputs and outputs must be 

respected. These concepts are embodied in the systolization 

procedure presented below. 

An SFG derived from a recurrence formulation gives a 

good starting point for an array realization. Having 

achieved spatially local interconnections and modularity 

Kung [8] has derived a graphical method to systolize a SFG. 

First he defines a cut set as being "a minimal set of edges 

which partitions the SFG into two parts." As should be noted 

the emphasis is on reducing the number of interconnection as 

required in VLSI. It is important to realize that not all 

cut sets present the attribute of being a "good cut set." A 

good cut set should only include: 

l) the target edge or selected zero delay edge. 

2) non zero delay edges going in either direction 

3) zero delay edges going in the same direction as the 

target edge. 

A bad cut set will cut zero delay edges going in the 

opposite direction of the target edge. Based on this 

partitioning theory the temporal localization procedure can 

be identified. The objective of this procedure is to 

eradicate zero delay edges between modular sections. The 



25 

temporal localization procedure is based on two simple 

rules: 

1. TIME SCALING 

All delays D may be scaled, i • e • I D->aD', by a single 

positive integer , a. Correspondingly the input and output 

rates also have to be scaled by a factor a (with respect to 

the new time unit D'). 

retiming by Glasser [5]. 

This process is referred to as 

2. DELAY TRANSFER 

Given any cut set of the SFG, we can group the edges 

into inbound edges and outbound edges, depending upon the 

directions assigned to the edges. Rule 2 allows advancing 

k (D') time units on all the outbound edges and delaying k 

time units on the inbound edges, and vice versa. All initial 

timing relationship must be preserved. 

Given the information established in the previous 

section it is now possible to define the systolization 

procedure as given below. 

l) Define the basic processor element. 

2) Select good cut sets. 

3) Apply the localization rules 

7. EXAMPLES 

This section presents specific examples of the 

algorithm to architecture step. First, the one dimensional 

FIR algorithm is investigated using three different SFGs, 
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then the matrix multiplication algorithm; a two dimensional 

example is presented. 

7.1. FIR Filter 

This filter is described by the linear difference 

equation: 

y (k) 
M 

SUM b x(k-i) 
i=l i 

We restrict our example to the case of three iterations per 

sample cycle. 

7.1.1 First SFG 

A recurrence formulation for this equation is: 

For i=l to 3 

k k-1 
x x 

i i-1 

k k k 
s = s + b x 

i i-1 i i 

k k 
x = x . s = 0 , 

0 in 0 

The recurrence formulation provides for pipelining because 

the i-1 iteration of the equation can be performed at the 

same time as the i iteration. Mapping this equation results 

in the SFG shown in Figure 6. The selected cuts identify the 

target PE performing a single iteration (see Figure 7). 
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7.1.1.1 Spatial Locality 

It can be seen that the condition of spatial locality is 
k-1 k k 

present. The input x 
i-1 

is local 

k 

to x 
i 

and input s 
i-1 

is 

also spatially local to s (i.e., space indexes i are 

i separated by a factor of 1) . 

7.1.1.2 Temporal Locality 

However, temporal locality is not achieved as there is a 

zero delay path indicated by arrow 2 in Figure 6. By 

introducing a delay in the lower branch the zero delay path 

is eliminated. Also, in order to preserve the input-input 

timing relationship (Rule #2 of the systolization 

procedure) , an extra delay is inserted in the upper branch. 

This concludes the systolization procedure (see Figure 8). 

The new recurrence formula for this systolic case is 

given below for reference only. 

7.1.2 Second SFG 

For i=l to 3 

k 
x 

i 

k 
s s 

i 

k 
x = x 

O in 

k-2 
= x 

i-1 

k-1 
+ b x 

i-1 i 

k 
; s = 0 

0 

k 

i 

In the above SFG, the filter input and output are 

distant in space. It may be desirable to have them 

spatially local. Observing the associative property of the 
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summing process (i.e., A+ (B + C) = (A+ B) + C) a second 

SFG can be derived from the above SFG (see Figure 9) which 

provides for x and y to be spatially local. 

7.1.2.1 Spatial locality 

Again the SFG is visually spatialy local for the same 

target PE. 

7.1.2.2 Temporal Locality 

Because of the zero delay sum path the SFG is missing 

temporal locality. The systolization procedure is 

initiated. First, following rule #1; delay D is rescaled as 

20'. Then applying rule #2, the inbound edge is delayed by 

D' while the outbound edge is advanced by D'. As a result 

the array is now systolic (see Figure 11). However, the time 

rescaling required by the systolization process impacts the 

input rate. For correct operation two beats or clock times 

are required per input sample. The first beat moves the 

data through the required (algorithm) delay and the second 

beat latches the MA process and synchronizes the upper and 

lower path movement. In order to preserve the input-output 

relationship lost during time rescaling (original delay 

difference between input and output paths) zeros must be 

interleaved in the input data stream. To generalize, it can 

be said that for non-systolic SFG having inputs and outputs 

propagating in different directions, time rescaling is 

required and it will lead to interleaving the input data 

stream by a number z of zeros function of the rescaling 
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factor. This impacts throughput by a factor of l/Z. 

7.l.3 FIR Computational Model 

A third example is the case of an SFG that is not 

temporally localized. Note that the zero path has not been 

removed thus allowing the data to propagate immediately 

across the summing path (see Table l). A non optimum 

implementation can be derived from this case by noting that 

each MA has a given latency and before another input can be 

piped in, the system has to wait for the sum to ripple 

through all the n MAs. In the case of very large systems the 

delay associated with this ripple will slow the clock rate 

and thus the throughput. 

TABLE l FIR COMPUTATIONAL MODEL TIMING 

Xin Xl X2 X3 so Sl S2 Y=S3 

l 0 0 0 0 0 0 0 

2 l 0 0 0 bl bl bl 

3 2 l 0 0 2bl 2bl+b2 2bl+b2 

4 2 l 0 3bl 3bl+2b2 3bl+2b2+b3 

Table l assumes that the pipe has been previously purged. 

7.2. Matrix Multiplication 

A systolic architecture can be viewed as the 

implementation of a set of recurrence relations by a set of 

identical cells. In this example a systolic cell is derived 

to compute the matrix product C = A*B. A and B are assumed 

to be n x n matrices. 



As a general formula each element c is given by: 
ij 

M 
c Sum a * b 
ij k=l ik kj 

A recurrence formulation for this equation is: 

For k = l to M 

k k-1 k k 
c c + a * b 
ij ij i j 

where 

k k 
a = a ; b = b 

i ik i ik 

with 

0 
c = 0 
i,j 
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Such summations may be evaluated via recurrences by having 
k-1 

the partial sum c moving through the structure, or by 
ij 

accumulating partial sums in place. Choosing the latter case 

a SFG representation of the function is given in Figure 12. 

Note that the delay associated with the partial sum 

calculation acts as a small memory element used to store in 

place, the result of the summation. Observing Figure 12, 

two zero delay paths can be found for each cell. They 

correspond to the data paths of input matrixes A and B. A 

cut set is identified in Figure 13. Observing that the loop 

is cut by the partition, we can apply rule #2 thus advancing 

the outbound edges by D'and delaying the inbound edge by D'. 
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Thus, each cut set adds a delay in the A and B paths. The 

accumulated delays are added to the inputs of the A and B 

paths (see Figure 13). These delays at the array input can 

be omitted by adding leading zeroes to the respective A and 

B data streams. This timing (leading zeroes) is a start up 

condition and can be viewed as an initialization of the 

state variables 

(Figure 15) . 

initialized to 

(D's) associated with the data paths 

The in place state variable must be 

zero. This leads to the PE architecture 

shown in Figure 14. 

De. 

The in place state variable is labelled 

Remark that the I/O lines to the PE cin and cout are not 

used in this particular array realization. However to 

provide with more flexibility as to the future use of this 

PE they are included in the realization. 
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Because 

CHAPTER 3 

VERIFICATION OF SYSTOLIZATION PROCESS 

of the cost associated with the physical 

implementation of VLSI devices; it is important to be able 

to simulate the operation of a given architecture, so that 

the errors in the design phase can be easily corrected. The 

transformed SFG can be verified by analytical techniques or 

by simulation. The latter method is the most frequently 

used by digital architects. Snapshots of the transformed SFG 

reveal not only correctness at the behavioral level, but 

also other key measures such as throughput, response time, 

PE utilization etc. This chapter presents the development 

of a simulator for verifying the correctness of the 

systolization process. This newly developed simulation 

package will reference some work developed in [2] and uses 

the "C" programming language. 

1. LANGUAGE SELECTION FOR THE SIMULATION PACKAGE 

The selection of "C" is based on many criteria. First 

is the fact that the structures of "C" allows for a very 

flexible implementation of specific functions and thus the 

creation of a library of modelling parts (functions). 

Another consideration is the fact that the "C" 

language is a fairly new language with 

penetration in the scientific and engineer 

37 

programming 

a very fast 

world. This 



38 

should ensure an easier understanding of the coding and 

availability of cost effective compilers. 

"C" is a programming language that was designed by 

Dennis Ritchie of Bell Laboratories. It was created to be 

the systems language of the UNIX operating system. Today 

the Unix world is ever-expanding and is found widely on 

university campuses around the world. Because of its tight 

connection to the Unix operating system the "C" programming 

language is on the way to becoming one of the most important 

programing languages. However, this interconnection to Unix 

is not the only reason for the importance of "C". Its 

portability, size, elegance and power are other reasons of 

its wide success. "C" is easily portable and inexpensive 

compilers can be found in the market place (e.g., Borland 

turboC sells for under $100) . The portability comes from 

omitting system dependent functions from the language. 

Libraries are created to include new utilities written to 

conform with the constraints associated with the new system. 

"C" is a small language which is another advantage when 

considering portability as lesser constructs need to be 

translated. The language is very powerful as it allows for 

any logical combination between structure arrays or 

enumeration types. Also a very important feature of "C" is 

the ability to perform address arithmetic using pointers. 

This allows for very flexible structures as well as great 

modularity when programming. 
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2.STRUCTURAL DEFINITION OF THE SIMULATION PACKAGE 

The simulation package developed uses the dynamic memory 

allocation provided through the proper use of the "C" 

library (malloc) in order to increase the speed. Through a 

selective use of pointers the efficiency of the coding is 

tremendously increased. A reason for the use of pointers is 

that the number of inputs is not restricted as it is the 

case when using arrays. For instance arrays are bounded by a 

specific value while pointers can address an infinite number 

of locations. 

structures 

limitation 

are 

is 

As a consequence any number of data 

allowed to be stored in 

function of the memory 

memory. The 

available in 

only 

the 

computer and the storage capacity of the external devices. 

Microsoft "C" is used to develop this package. 

3.PROGRAM LAYOUT 

The simulator is a dedicated one in the sense that once 

the simulation requirements are set there is a need to 

recompile and assemble the code in order to run a different 

environment. However multiple sets of data can be simulated 

on a specific system without the need of the recompilation 

phase. The input and output to the simulation is achieved by 

reading and writing to files structured on a peripheral 

device. This is to shorten the input output stages of the 

simulation. Also, the user can by the means of another 

program create the information (input data) needed to set up 

the simulation environment. The output file can be used by 
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many commercially available plotting programs. The user can 

in this way obtain an accurate representation of the 

results . 

The package is divided into three different and 

overlapping units : Input -> Processing -> Output. The first 

unit deals with the input function where the package creates 

the environment for the simulation from an input data file 

previously created by the user. This input data file is 

named Input.dat and is an ASCII file. The input format will 

be defined later. The second unit is the core of the 

simulator. In there is found the main program and a small 

library of parts that will be used to create the pipe. The 

control mechanism is investigated and the data paths are 

defined in the main file. The third part is the output of 

the results to an output data file identified during the run 

of the simulation. As established before, it is a convenient 

way to store the data as the user will have a variety of 

programs to process and analyze the results. The output of 

the simulation may be plotted using a commercial plotting 

program such as Omniplot. 

4.PROGRAM DESCRIPTION 

The programs used in this simulation have been 

implemented with provisions to increase the size of the 

pipe. Consequently the user can, within the input file, 

specify the number of stages within the pipe. The only 

restriction associated with the size of the pipe is the 
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memory size of the machine where the simulation is run. The 

package consists of four simulation files plus two standard 

header files. These files are interconnected through a 

selective use of the include statement as shown in Figure 

16. From the point of view of the user, the only concern is 

to create the right environment within the input data file; 

and specify the proper data interconnection paths among the 

PEs in the main program. In other words, care must be taken 

to type the input.dat file with the correct format (see 

section e) and to develop a selected pipe architecture using 

the library of parts or new defined PE's. To run the program 

the user should type the name of the program that is to be 

executed. The results will be found in an output data 

file(s) whose name(s) is/are specified during the run of a 

program. From a programming point of view a brief 

description of each file is given in the following sections. 

a)def.h 

This file defines the data structures, constants and 

indexes used during the simulation. The indexes are 

provided for clarity and define a position within the array 

structure. A structure data in is used to store all the 

information pertinent to the pipe for each clock cycle. The 

first field of this structure indicates the time at which 

the readings are being taken. In this version of the package 

this field will only be used for labelling purposes. 

However, future versions may want to include provisions to 
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make it part of the clocking mechanism. The second field 

specifies an array of data elements whose size 

by the datasize field found in the input.dat 

is restricted 

file. Two 

internal pointers next and prev are then defined and will 

be used during the link list process. If necessary they also 

can be used to take care of latency constraints associated 

with the different PE's in future versions of this package. 

However, through the course of this simulation, latency 

constraints are not used. The array identified as "bcte" 

holds any constant associated with the pipelining process. 

Note that label is another array whose function is to hold 

character strings that could be used to label the outputs. 

It is not used in this version of the simulation package. 

b) parts.h 

This is the library of parts used to create the 

different simulations. Four parts are included 

library: a virtual FIR PE (virtfir), a systolic 

(forwfir), another systolic FIR PE (backfir) and a 

matrix multiplier PE (matmult). This is the core 

in the 

FIR PE 

square 

of the 

program as the internal architecture of the different PE's 

are modelled according to the SFG specifications. All of 

the parts are implemented as functions which are called in 

the main program. The parameters which are passed reference 

first the time frame during which the part is used and the 

spatial links used to interconnect the PE function within 

the time frame. Also, some specific constants can be passed. 
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In resume the proper format to call a given function is 

illustrated below: 

function-name(time frame,inconnect(s),cst(s) ,outconnect(s)) 

The software implementation of a given PE depends on its 

specific architecture and data can be moved within the same 

structure or a different one when temporal condition are 

encountered. 

c) simio.h 

This file manages the input output section of the 

program. It is composed of two different functions getdata 

and printdata. 

The first function, referred to as getdata, reads data 

from an input file properly formatted and stores the data 

input in memory to allow for faster computational rates. The 

data input file is opened through the use of the statement 

fp= fopen("input.dat,"r"). The pointer fp, points to the 

file named input.dat and the mode indicated by r states that 

the file is open for reading. Using the function fscanf the 

data is transferred from the external file into the data 

structure 

memory of 

dynamically 

data-in. Through the use of malloc, a block of 

the size defined in data-in is allocated 

and the starting address of the memory block is 

assigned to the pointer, pdata. In order to link those newly 

created blocks of memory two internal pointers, next and 

prev of each structure, are used. As the name indicates, the 

pointer next will have the starting address of the next 
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block of memory. Also, the pointer prev will have the 

starting address of the previous block of memory. This 

process creates a double linkage between successive 

structures. Two extra pointers (HEAD and TAIL) are provided 

to indicate the first and last linked memory blocks. The 

function getdata is passed with a parameter n that defines 

the dimension of the array. An n=l indicates that the data 

input is formatted for a uni-dimensional linear array. A n=2 

is used to properly read the input data for a n*n 2 

dimensional array. If necessary, 

be tailored to specific needs. 

new reading functions can 

A requirement will be to 

specify a different passing parameter. 

The second function printdata is called with the passing 

parameter n (n=l,2,3). Its only objective is to write data 

to an output data file. In order to provide the opportunity 

to cascade and label a large number of PE's, the titles are 

written to the file using a control loop statement. The 

arguments of the function fprintf are: l) the pointer to the 

file that indicate which file is to be written upon; 2) the 

control format that specifies in what fashion the data is to 

be written to the output.file and 3) the actual data. For 

each value of the passing parameter corresponds a different 

output format. A n=l is used for one-dimensional arrays. 

While n=2 or n=3 are used for matrix representation. Based 

on specific needs, these functions can be tailored to a 

different output format. 
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d) Main File 

This is the executable part of the simulation package 

and a .C extension is given to these files. Four example 

files are provided: FORWFIR.C, BACKFIR.C, VFIR.C and 

MATRIX.C. Each of these files creates a given pipe structure 

by calling the required PE functions and specifying correct 

data interconnections. Data interconnections are performed 

within control loops that allow for any number of cascaded 

PE's as specified in the input.dat file. In the examples the 

pipes are composed of identical PE's. However this file can 

accept any set of different PE's defined in parts.h and 

interconnect them according to the specification of the 

pipe. In addition, each file calls the function getdata and 

printdata for a proper I/O. If a specific architecture needs 

to be examined the user will have to establish the pipe 

structure by writing an executable file similar to the ones 

provided. The only restriction is to use the PE's developed 

in the parts.h file or to add new PE's. 

e) Input Data File 

This file is only concerned with creating the right 

environment for the simulation. It is the responsibility of 

the user to follow the format given below. Each field within 

a line is separated by a blank space. 

LINE l: Type in the datasize (integer). This specifies 

the number of external inputs to the array. 

LINE 2: Type in the pipesize (integer). This indicates the 



LINE 3: 

LINE 4: 

LINE 5: 

LINE 6: 
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number of PE's in the pipe. 

Type in the bctesize (integer). This indicates the 

number of constants used in the pipe. 

Type in the constants (integer) associated with 

the simulation. 

Type in the clock cycle (integer). This is used for 

labelling only. Future versions of this package 

will use it to assure a correct clocking mechanism. 

Type in the data input (integers). The number of 

data inputs is restricted by datasize. 

Repeat line 3 until all the data is passed. 

File terminator. hit <CR>. 

In the case of the matrix array lines 2 and 3 are omitted. 

5.DATA STRUCTURE 

The data input is stored in an array within the 

structure data-in. This stucture is addressed through the 

use of the pointer, pdata. The array is initialized with 

zeroes and intermediate results are stored at proper array 

locations. The time frame pointer pdata is always 

incremented by 1. This ensures a clocked process. It is 

important to realize that for each clock frame there is an 

associated structure containing all intermediate results. 

This allows for an accurate representation of the process 

for each clock cycle. For clarification, pt->data[#] 

indicates which array location within the structure must be 

accessed and the data at this location is used in 
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different computations. 

When pt->next->data[#] is used it indicates that pt is 

pointing to the next structure at the address specified by 

data[#]. In short, next points to the data structure for the 

next clock cycle. 

6.RESULTS 

6.1 Finite Impulse Response filter (FIR). 

The FIR filter was implemented in three distinct 

architectures: a virtual FIR, a forward FIR and a backward 

FIR. The terms forward and backward refer to the direction 

of the sum propagation. 

6.1.1 Virtual Case 

The first architecture referred to as the virtual 

VIRTFIR includes zero delay paths and is a direct 

implementation of the SFG of the FIR. It is a very fast 

machine as the data is immediately available at the output. 

This can be seen in the output data file by watching the 

broadcast of sl across the pipe for clock 1. In this 

instance we are assuming that the multiplication-addition 

function is performed without delay. This idealized model 

is no longer true if the pipe is allowed to grow bigger as 

all the latencies of the individual function will be added 

and cannot be considered as negligible. The condition of 

spatial locality can be observed by watching the data 

flowing to the neighboring nodes. The rate of utilization 



TABLE 2. VIRTUAL FIR SIMULATION RESULTS 

elk XO x1 x2 x3 b1x1 b2x2 b3x3 so s1 s2 s3 
1 1 0 0 0 0 0 0 0 0 0 0 
2 2 1 0 0 1 0 0 0 1 1 1 
3 3 2 1 0 2 1 0 0 2 3 3 
4 4 3 2 1 3 2 1 0 3 5 6 
5 5 4 3 2 4 3 2 0 4 7 9 
6 6 5 4 3 5 4 3 0 5 9 12 
7 7 6 5 4 6 5 4 0 6 11 15 
8 8 7 6 5 7 6 5 0 7 13 18 
9 9 8 7 6 8 7 6 0 8 15 21 

10 0 9 8 7 9 8 7 0 9 17 24 
11 1 0 9 8 0 9 8 0 0 9 17 
12 2 1 0 9 1 0 9 0 1 1 10 
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of the pipe is maximal as all the PE's are used for a given 

clock cycle. The throughput is one clock cycle (ideal case) 

as it takes only one clock cycle to obtain a correct result 

at the output of the pipe. When compared to a sequential 

machine the speed up is 3. For a better vizualization, refer 

to Table 8 . This case was only presented to reference what 

would be the ideal case; however, due to delays associated 

with the MA's processes it is not wise to implement this 

architecture. 

6.1.2 Forward FIR 

In the systolic model the data is piped cyclically for 

both the x's and the sums. As a consequence, no major timing 

consideration needs to be addressed except for the fact that 

a clock skew may induce some errors if the pipe is very 

long. This simulation and the following one illustrate the 

fact that different SFG mappings lead to distincts 

architectures with different performances. In this case the 

two delay path in the x's can be observed in Table 3 by 

noting that the first available digit, a l in this case is 

passed to xl only at clock cycle #3. Therefore there is a 

delay of 2 clock cycles. Also, the one delay in the sum 

path can be seen by observing the propagation of the l in 

the sums from clock cycle 3 to 5. In terms of performances 

the utilization rate of the PE's is maximal as all PE's are 

operating at each clock cycle. 

once the pipe is filled is 

The throughput of the system 

one clock cycle. The only 



TABLE 3 • FORWARD FIR SIMULATION RESULTS 

elk XO xl x2 x3 blxl b2x2 b3x3 so sl s2 s3 
1 1 0 0 0 0 0 0 0 0 0 0 
2 2 0 0 0 0 0 0 0 0 0 0 
3 3 1 0 0 1 0 0 0 1 0 0 
4 4 2 0 0 2 0 0 0 2 1 0 
5 5 3 1 0 3 1 0 0 3 3 1 
6 6 4 2 0 4 2 0 0 4 5 3 
7 7 5 3 1 5 3 1 0 5 7 6 
8 8 6 4 2 6 4 2 0 6 9 9 
9 9 7 5 3 7 5 3 0 7 11 12 

10 0 8 6 4 8 6 4 0 8 13 15 
11 1 9 7 5 9 7 5 0 9 15 18 
12 2 0 8 6 0 8 6 0 0 17 21 
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TABLE 4. BACKWARD FIR SIMULATION RESULTS 

elk XO xl x2 x3 blxl b2x2 b3x3 so sl s2 s3 
1 1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 1 0 0 1 0 0 0 0 
3 2 0 1 0 0 1 0 0 0 0 1 
4 0 1 0 2 1 0 2 0 0 1 0 
5 3 0 2 0 0 2 0 0 1 0 3 
6 0 2 0 3 2 0 3 0 0 3 0 
7 4 0 3 0 0 3 0 0 2 0 6 
8 0 3 0 4 3 0 4 0 0 5 0 
9 5 0 4 0 0 4 0 0 3 0 9 

10 0 4 0 5 4 0 5 0 0 7 0 
11 6 0 5 0 0 5 0 0 4 0 12 
12 0 5 0 6 5 0 6 0 0 9 0 
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difference when compared to the ideal case is the latency of 

the pipe which is now 4 clock cycles as compared to only one 

clock cycle. 

6.1.3 Backward FIR 

The need to interleave the input data stream with zeroes 

reduces the performance of the machine as a correct output 

is available only every two clock cycles. Analyzing Table 4 

it can be seen that the utilization rate is reduced to 50%. 

A major improvement to this scheme will be to include 

provisions for multiplexing so that a full utilization of 

the pipe can be achieved. In other words, the PE's that are 

not currently used at a given clock cycle create a virtual 

path that can be used by another input data stream. It is 

easy to see that the performance of the backward case is 

lower than the forward case. The result of this 

architecture is a lower throughput, a lower utilization 

rate, and a speed up of 1.5. 

6.2 Square Matrix Multiplier 

In this simulation the multiplication of two square 

matrix A and B is investigated. 

C = A * B 

1 2 3 4 
A = B = 5 6 7 8 

9 10 11 12 
13 14 15 16 

The result of this simulation can be found in two 

independent data files. The first one emphasizes the 

concurrent activities in the pipe for a given clock cycle. 



TABLE 5. MATRIX SIMULATION SNAPSHOTS 

elk time 
propagation of matrix A 

1 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

propagation of matrix 
1 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

matrix c 
0 0 
0 0 
0 0 
0 0 

propagation 
2 1 
5 0 
0 0 
0 0 

propagation 
5 2 
1 0 
0 0 
0 0 

0 
0 
0 
0 

0 
0 
0 
0 

of matrix 
0 0 
0 0 
0 0 
0 0 

of matrix 
0 0 
0 0 
0 0 
0 0 

matrix c 
1 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

B 

elk time 
A 

B 

1 

2 
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elk time 3 
propagation of matrix A 

3 2 1 0 
6 5 0 0 
9 0 0 0 
0 0 0 0 

propagation of matrix B 
9 6 3 0 
5 2 0 0 
1 0 0 0 
0 0 0 0 

matrix c 
11 2 0 0 

5 0 0 0 
0 0 0 0 
0 0 0 0 

elk time 4 
propagation of matrix A 

4 3 2 1 
7 6 5 0 

10 9 0 0 
13 0 0 0 

propagation of matrix B 
13 10 7 4 

9 6 3 0 
5 2 0 0 
1 0 0 0 

matrix c 
38 14 3 0 
35 10 0 0 

9 0 0 0 
0 0 0 0 

elk time 5 
propagation of matrix A 

0 4 3 2 
8 7 6 5 

11 10 9 0 
14 13 0 0 

propagation of matrix B 
0 14 11 8 

13 10 7 4 
9 6 3 0 
5 2 0 0 

matrix c 
90 44 17 4 
98 46 15 0 
59 18 0 0 
13 0 0 0 
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elk time 6 
propagation of matrix A 

0 0 4 3 
0 8 7 6 

12 11 10 9 
15 14 13 0 

propagation of matrix B 
0 0 15 12 
0 14 11 8 

13 10 7 4 
9 6 3 0 

matrix c 
90 100 50 20 

202 116 57 20 
158 78 27 0 

83 26 0 0 

elk time 7 
propagation of matrix A 

0 0 0 4 
0 0 8 7 
0 12 11 10 

16 15 14 13 
propagation of matrix B 

0 0 0 16 
0 0 15 12 
0 14 11 8 

13 10 7 4 
matrix c 

90 100 110 56 
202 228 134 68 
314 188 97 36 
218 110 39 0 

elk time 8 
propagation of matrix A 

0 0 0 0 
0 0 0 8 
0 0 12 11 
0 16 15 14 

propagation of matrix B 
0 0 0 0 
0 0 0 16 
0 0 15 12 
0 14 11 8 

matrix C 
90 100 110 120 

202 228 254 152 
314 356 218 116 
426 260 137 52 
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elk time 9 
propagation of matrix A 

0 0 0 0 
0 0 0 0 
0 0 0 12 
0 0 16 15 

propagation of matrix B 
0 0 0 0 
0 0 0 0 
0 0 0 16 
0 0 15 12 

matrix c 
90 100 110 120 

202 228 254 280 
314 356 398 248 
426 484 302 164 

elk time 10 
propagation of matrix A 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 16 

propagation of matrix B 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 16 

matrix c 
90 100 110 120 

202 228 254 280 
314 356 398 440 
426 484 542 344 

elk time 11 
propagation of matrix A 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

propagation of matrix B 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

matrix c 
90 100 110 120 

202 228 254 280 
314 356 398 440 
426 484 542 600 
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Table 6 gives snapshots of the data propagation within the 

matrix. It is a very convenient way to observe the correct 

propagation of the data along the paths as well as the 

computational process. It should be noted that this 

architecture emcompasses both parallelism and overlap. 

This can be seen by observing the cut sets derived in 

Figure 13 

structure 

the wave. 

as the data propagates as a wave in the array 

and multiple PE's are operating at each edge of 

The throughput of the multiplier is 11 clock 

cycles. 

computed. 

This is the time it takes for all the data to be 

The 

7.CONCLUSION 

simulator is a useful tool to observe the 

correctness of a given systolic array. It is a very 

convenient way to simulate the SFG to architecture step. 

However this simulator can be improved by adding new parts 

to the library and by creating specific functions that could 

give an on screen information of the performances of the 

architecture simulated. It is interesting to note that this 

program has some common characteristics with a commercial 

language OCCAM used to program "off the shelf" array parts 

into a specific array architectures. 
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Table 8 : Performance characteristics 

ARCHITECTURE CLOCK TROUGHPUT LATENCY SPEEDUP INTERLEAF 
MODEL RATE # 

Virtual FIR lOMHz lmicros lmicros 3 0 
Forward FIR lOMHz lmicros 4micros 3 0 
Backward FIR lOMhz 2micros 2micros 1.5 l 
Matrix Mult lOMHz llmicros 5micros 0 

Future work on this package include writing an 

additional program to create the input data file. The main 

objective of that program is to prompt the user with the 

right sequence of questions, so that the keyed in inputs can 

be written directly to the input data file. The output 

process should be made more flexible by including provisions 

to print in the output data file labels which will have been 

previously typed in the input data file sequences. Note that 

the label array is already included in the package to 

perform this objective. Finally the program should be made 

more user friendly by making it menu driven. 



CHAPTER 4 

CONTROL STRATEGIES 

Systolic arrays are based on parallelism and 

pipelineability but still emphasize the classical approach 

of sequencing the processes by a global clock. Wavefront 

array processors in contrast are data driven machines which 

means that processes are executed as soon as all operands 

are available. This new technique goes one step beyond as 

no global clock is required to sequence the operations. As 

a result the level of performances is increased. 

1. TIMING CONSIDERATIONS 

Highly parallel structures consist of many 

interconnected PEs operating simultaneously. To have a 

proper propagation of the data, some restrictions must be 

associated with the control schemes. Systolic arrays use a 

global timing scheme while wavefront array processor (WAP) 

use asynchronous control schemes based on handshaking 

techniques. In the following paragraphs we will address 

some of the advantages and limitation of both control 

schemes. 

1.1 Synchronization in a Globally Timed System 

When using a global clock data is rhythmically 

along the pipe at a constant frequency. For small 

(a few cascaded PE's) this scheme is preferred 
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systems 

as the 
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control mechanism is simple, 

the PE. 

cost effective and external to 

However, 

clock is 

associated 

as the system grows physically bigger, a global 

difficult to implement because of problems 

with clock skew. Clock skew refers to the 

problem of a global clock signal arriving at individual PE's 

at different times. 

in the clock path. 

clock signals to 

The time differences are due to delays 

For instance, the time required for the 

propagate on the wires is not 

instantaneous. Due to the characteristics of the wire (i.e., 

resistivity, capacitance) a diffusion delay occurs; for 

large systems this cannot be ignored. For reference, the 

diffusion equation is given below as RC(dV/dt) = 

d(dV/dt)/dt. Its solution is complex but it can be stated 

that the time for a transient to propagate a distance x is 

proportional to x**2. Because of fan out problems a clock 

signal is generally distributed in a tree stucture with each 

branch consisting of a chain of inverters. Again a problem 

can be seen as the propagation delay through each inverter 

will cause a clock skew. For large systems those added 

delays will cause a collapse of the synchronization. 

Therefore synchronous systems present timing problems in the 

case of a large array implementation. 

l.2 Synchronization in a Self-Timed System 

In the self-timed or asynchronous case, each PE starts 

to compute as soon as all the incoming data from the 



63 

previous cells are present at its input. The control logic 

associated with this scheme is more complex and is achieved 

by handshaking between processors. 

A simple two line handshaking scheme includes the 

familiar signals, ready (R) and acknowledge (A) • The 

transfer of data between two processors is accomplished by 

the source processor raising its ready line when data is 

available and the target processor raising the acknowledge 

line when the data has been accepted. In a WAP, each 

processing element "fires" or raises its ready line when all 

the operands are ready and the results are available, thus 

data flows at a maximum rate. A negligible time T is 

contributed by the control mechanism. Thus, the major delays 

are due to actual processing times of the processor 

elements. 

WAP are better suited for large array implementation as 

there is no problem associated with clock distribution. It 

has the added advantage that the time to propagate from one 

cell to the other is independent of the pipe length but 

instead depends on the latency of each individual PE; 

allowing for a higher throughput rate. 

2. WAVEFRONT ARRAY 

thus 

A wavefront array is a computing network with almost the 

same characteristics as expressed for systolic arrays. 
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2.1 Modularity and Local Interconnections 

The array consists of a regular set of PEs with local 

interconnections. The spatial locality is dictated by 

constraints associated with VLSI implementation. The size 

of the array can be extended indefinitely as the timing is 

not a constraint. 

2.2 Control 

The sequencing of the data through the system is achieved in 

a self-timed environment based on handshaking techniques. 

This allows for faster throughput rate as different PE's may 

have different latencies. In contrast the maximum clock rate 

for systolic arrays is function of the slowest stage in the 

pipe. 

2.3 Speed up 

The speed up is linear as for the case of systolic arrays. 

It is important to realize that the condition of 

temporal locality is no longer necessary as no specific 

timing reference exists in a data driven environment. The 

name wavefront array comes from the fact that each PE acts 

as a secondary source and is responsible for the propagation 

of the wavefront. 

3. TRANSFORMATION OF A SFG TO A WAP 

An SFG is transformed into a WAP by partitioning the SFG 

into interconnected PE's. Delay operators associated with 

incoming operands are realized by storage devices within the 
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PE. The PE control mechanism synchronizes the use of inputs 

and the availability of outputs. 

4. EXAMPLES OF SFG TO WAP TRANSFORMATION 

Because a WAP is a direct implementation of an SFG, the 

only concern lays with including the correct control 

mechanism within the given PE. In other words the 

handshaking protocol should be clearly defined. Below is 

given the pseudocode of such a controller for an FIR PE. 

1. if READY1 = 0 go to 5 
else 

Latch data 
raise ACK1 
READY1 = 0 
ACK1 = 0 

5. if READY2 = 0 go to 1 
else 

Latch data 
raise ACK2 
READY2 = 0 
ACK2 = 0 

READY1 identifies available data on the x line 
READY2 identifies available data on the sum line 



Systolic 

CHAPTER 5 

CONCLUSION 

arrays are network of processor elements 

interconnected in a regular and local manner and 

synchronized with a global clock. The importance of 

systolic arrays lays in the improved throughput achieved 

when computational intensive algorithms are mapped into 

these architectures. Systolic arrays are particularly 

suited for real time signal processing which provides very 

fast data input rates due to to a high sampling frequency. 

However, not all real time algorithms are suited for a 

systolic implementation. For instance, these algorithms must 

be recursive and perform simple and, if possible, identical 

operations so that modularity can be achieved. One must 

understand that most systolic arrays are hardware 

implementations of a given algorithm. Special purpose 

systolic arrays are currently being developed but the 

complexity associated with the reconfiguration of the pipe 

have reduced their cost effectiveness. 

Because the structure of the array is strongly dependent 

on the recursive algorithm, there is an emphasis on mapping 

complex algorithms into SFG's. The advantage of the SFG is a 

better understanding of the inherent properties of the 

algorithm. Also, this graphical representation lends itself 
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to a systolization procedure based on the principle of cut 

sets. The systolization methodology was presented in Chapter 

2 and resulted in spatial and temporal locality. As noted 

in the examples, the condition of temporal locality involved 

time rescaling of the inputs and outputs and for some cases 

the necessity to interleave the inputs with a number of 

zeros. 

As it is important to verify the correctness of the data 

path through the array structure a simulator using the "C" 

programing language was developed. In addition to providing 

snapshots of the activity of the pipe, it provides 

observation of performances measures such as throughput, 

utilization rate, latency and speedup. This is presented in 

Chapter 3. 

In large systems synchronization problems may arise due 

to clock skew. In order to avoid catastrophic 

synchronization failures, an asynchronous scheme can be 

adopted at a higher hardware cost. In this scheme, also 

referred to as self-timed, a given processor 

performs its computational requirement on the 

condition that all incoming data be present at its 

This control mechanism requires the definition 

handshaking protocol between PE's. The trade-off 

both systems involve cost and efficiency. In a 

element 

express 

inputs. 

of a 

between 

systolic 

version, the control mechanism is very simple and thus less 

expensive. However the throughput is function of the 
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slowest stage in the pipeline. On the other side, wavefront 

array processor, have dedicated control elements within each 

PE to perform the handshaking mechanism. The advantage of 

these arrays is an improved throughput as it is not 

dependent on the delay of one given stage. This advantage 

shrinks if the array is implemented with an identical PE. 

This could lead to a slower throughput because of the need 

to wait for the control mechanism to be finished. 

Improvement of systolic arrays performances are strongly 

dictated by advances in VLSI/WSI. Their regularity and 

modularity provide for very efficient area layouts. 



APPENDIX A 
TUTORIAL 



TUTORIAL 

The construction and running of a simulation which uses 

a new processing element and a new interconnection scheme is 

presented. 

1.1 New Processing Element 

If a new processing element is needed the user should: 

l) Edit the file parts.h and include a software model of the 

processor element following the specifications of the signal 

flow graph (see Figures 17, 20). The model should respect 

the package format (see examples in section 2 ). 

2) Create a main program where the pipe architecture is 

specified. This file should be labelled with a .c 

extension. The object of this file is to interconnect the 

different processor elements, according to a selected pipe 

architecture (see example in section 2). 

1.2 New Pipe Structure 

If a new pipe is desired the new interconnection path · 

should be specified by creating a new main program. 

1.3 Running The Program 

After editing the proper files the program should be 

compiled and linked via a C compiler/linker software 

package. Once the executable file is created the user only 

needs only to type the file name in order to have a 

simulation run. Note that in Simio.h the printdata function 

can be customized to have a specific output format. 

70 



x 
in 

s 
0 

20 x 

b 
1 

1 

b 
2 

20 ><s 

b 
3 

s 
3 

0 

Figure 17. Forward Systolized FIR 

bin 

sin dsin 
~-----1 

Figure 18. PE for Forward Fl R Filter 

Figure 19. Systolic Forward Fl R Filter 

71 

Y(n) 

sout 



72 

2 Examples 

Two examples are presented: -Forward FIR 

-Matrix Multiplication 

2.1 Forward FIR 

The PE architecture is defined in parts.h and the pipe 

structure is created in FORWFIR.C 

2.1.1 PE Architecture 

The SFG model is shown in Figure 17 and the PE 

architecture (see Figure 18) is identified by creating the 

function forwfir in parts.h. A proper listing of the code is 

shown in Table 8. 

TABLE 8 

1 forwfir(pt,xin,sin,bin,xout,sout,bxout) 
2 int xin,sin,bin,xout,sout,bxout; 
3 struct data in *pt; 

{ 
4 pt->data[bxout] = bcte[bin] * pt->data[xout]; 
5 pt->data[sout]=pt->data[dsin]+pt->data[bxout]; 
6 pt->next->next->data[xout]=pt->data[xin]; 
7 pt->next->data[dsin]=pt->data[sin]; 

} 

xin,sin,xout,sout,bxout represent data locations within the 

array data. Remark that next is a time frame pointer. As a 

consequence delays identified in the PE architecture are 

implemented using this pointer (see lines 6 and 7). Because 

sout is not reused between consecutive time frame the 

intermediate delayed value of sin (dsin) can be replaced by 

sout. Although it is not a correct representation of the 

physical process the software model allows for this slight 

transgression. 
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The following comments apply: 

Line 1 -The function parameters are identified, they 

consist of: 

--pt time frame pointer 

--xin x input to forwf ir 

--sin sum input to forwf ir 

--bin an internal constant used in the PE 

--xout x output of forwf ir 

--sout sum output of forwf ir 

--bxout the result of an internal 

computation within forwfir 

Line 2 -This is a local declaration of the parameter list 

Line 3 -This is a local declaration of pt being a pointer to 

struct data in 

Line 4 -The architecture of the PE is now defined 

-bxout = constant * xout 

Line 5 -sout = sout + bxout 

2D 
Line 6 -xout = xin 

lD 
Line 7 -sout = sin 

Remark that lines 4 to 6 give a mathematical representation 

of the computational model. Line 6 identifies a delay of two 

clock cycles in the x path while line 7 represents a delay 

of 1 clock cycle in the sum path. 
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2.1.2 Pipe Structure (main program) 

Due to the implementation of the simulator each time 

frame contains the total information of the pipe. This pipe 

consists of three identical PE's found in parts.h (see 

Figure 19). The proper code format is identified below 

/* this is the FIR program for the forward case 
for bigger pipes define INPUTSIZE as: ((3*pipesize) + 2) 

*/ 
#define INPUTSIZE 11 
#define CTESIZE 3 
#include "simio.h" 
main () 
{ 
getdata(l); 

pt=head; 

while (pt->next != NULL) 
{ 
forfir (pt, 
forfir (pt, 
forfir (pt, 

} 
pt=pt->next; 
} 

printdata(l); 
} 

o, 7, o, 
1, 8, 1, 
2, 9, 2, 

1, 
2, 
3, 

The following comments apply 

line 1 define statements 

8, 4) ; 
9, 5) ; 
10, 6) ; 

-INPUTSIZE total number of variables in the pipe 

-CTESIZE total number of internal constants in the 
pipe 

line 2 include statements for proper linking 

line 3 call getdata to input data 

line 4 set pointer to first time frame. 

line 5 time frame terminator criterion 



line 6 interconnection as follows from the SFG 

forfir (pt, O, 7, O, 1, 8, 4) 
forfir (pt, 1, 8, 1, 2, 9, 5) 
forfir (pt, 2, 9, 2, 3, 10, 6) 
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The interconnections can be seen by observing that xout 

for forwfir i is equal to xin for forwfir i+l. 

line 7 printdata 

To make the pipe structure more general control loops are 

included to increase the pipe size as shown in the following 

listing. 

/* this is the FIR program for the forward case 
for bigger pipes define INPUTSIZE as: ((3*pipesize) + 2) 

*/ 
#define INPUTSIZE 11 
#define CTESIZE 3 
#include "simio.h" 
main () 
{ 
getdata(l); 

pt=head; 

while (pt->next != NULL) 
{ 
i=O; 
k= i + pipesize +1; 
l= k + pipesize; 
m=O; 
for(j=O;j<pipesize;j++) 

{ 
ni = l+i; 
nl = 1+1; 
forfir(pt,i,l,m,ni,nl,k); 
m++; 
k++; 
i++; 
l++; 
} 

pt=pt->next; 
} 

printdata(l); 
} 
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2.1 Matrix Multiplier 

The PE architecture is defined in parts.h and the pipe 

structure is created in Matrix.c 

2.1.1 PE Architecture 

The SFG model of an individual PE is shown in Figure 20 

the corresponding PE architecture (see Figure 21) is 

identified by creating the function matmult in parts.h. A 

proper listing of the code is shown in Table 9. 

TABLE 9 

l matmul(pt,ain,bin,cin,aout,bout,cout) 
2 int ain,bin,cin,aout,bout,cout; 
3 struct data in *pt; 

{ 
4 pt->data[cout]=pt->data[cin] 

+ (pt->data[aout]) * (pt->data[bout]); 
5 pt->next->data[aout]=pt->data[ain]; 
6 pt->next->data[bout]=pt->data[bin]; 
7 pt->next->data[cin]=pt->data[cout]; 

} 

ain,bin,cin,aout,bout,cout represent data locations within 

the array data. The following comments apply : 

Line l -The function parameters are identified, they 

consist of: 

--pt : time frame pointer 

--ain horizontal input to matmult 

--bin vertical input to matmult 

--cin an internal intermediate term used 

in the PE 

--aout horizontal output of matmult 

--bout vertical output of matmult 

--cout contains the result of the internal 
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computation within matmult. 

Line 2 -This is a local declaration of the parameter list 

Line 3 -This is a local declaration of pt being a pointer to 

struct data in 

Line 4 -The architecture of the PE is now defined 

-cout = cin + ( aout * bout ) 

lD 
Line 5 -aout = ain 

lD 
Line 6 -bout = xin 

lD 
Line 7 -cout = cin 

Remark that lines 4 to 7 give a mathematical representation 

of the computational model. Lines 5, 6 and 7 identify a time 

delays of l clock cycle for each out parameter. 

2.1.2 Pipe Structure (main program) 

Due to the implementation of the simulator each time frame 

contains the total information of the pipe. This pipe 

consists of sixteen identical PE's (see Figure 22) found in 

parts.h. The proper code format of this main file is shown 

below. 

/* this program multiplies two square matrix of size n 
data input is in integer if the matrix size is going 

to be incremented INPUTSIZE is (3*n + 2*n) */ 

l #define INPUTSIZE 58 
l #define CTESIZE 3 
2 #include "simio.h" 

main () 
{ 

3 getdata(2); 



4 pt=head; 

5 while (pt->next != NULL) 
{ 

6 matmult (pt, l, 1,37, 2, 5,37) 
6 matmult (pt, 2' 2,38, 3' 6,38) 
6 matmult (pt, 3' 3,39, 4, 7,39) 
6 matmult (pt, 4, 4,40, 53,8,40) 
6 matmult (pt, 5, 5,41, 6, 9' 41) 
6 matmult (pt, 6, 6,42, 7, 10,42) 
6 matmult (pt, 7, 7,43, 8, 11,43) 
6 matmult (pt, 8, 8,44,54, 12,44) 
6 matmult (pt, 9, 9,45, 10, 13,45) 
6 matmult (pt, 10,10,46,11, 14,46) 
6 matmult (pt, ll,ll,47,12,15,47) 
6 matmult (pt, 12,12,48,55, 16,48) 
6 matmult (pt, 13,13,49,14,17,49) 
6 matmult (pt, 14,14,50,15,18,50) 
6 matmult (pt, 15,15,51,16,19,51) 
6 matmult (pt, 

} 

7 printdata(2); 
7 printdata(3); 

} 

16,16,52,56, 

The following comments apply. 

line l define statements 

20,52) 

-INPUTSIZE total number of variables in the pipe 

-CTESIZE reserves space for bcte array 

line 2 include statements for proper linking 

line 3 call getdata to input data 

line 4 set pointer to first time frame. 

line 5 time frame terminator criterion 

line 6 interconnection as follows from the SFG 

matmult (pt, l, 1,37, 2, 5,37) 
matmult (pt, 2, 2,38, 3, 6,38) 
matmult (pt, 3, 3,39, 4, 7,39) 
matmult (pt, 4, 4,40, 53,8,40) 
matmult (pt, 5, 5,41, 6, 9,41) 
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matmult (pt, 6, 6,42, 7, 10,42) 
matmult (pt, 7, 7,43, 8, 11,43) 
matmult (pt, 8, 8,44,54, 12,44) 
matmult (pt, 9, 9,45, 10, 13,45) 
matmult (pt, 10,10,46,11, 14,46) 
matmult (pt, 11,11,47,12,15,47) 
matmult (pt, 12,12,48,55, 16,48) 
matmult (pt, 13,13,49,14,17,49) 
matmult (pt, 14,14,50,15,18,50) 
matmult (pt, 15,15,51,16,19,51) 
matmult (pt, 16,16,52,56, 20,52) 
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The interconnections can be seen by observing that aout 

for matmult i is equal to ain for matmult i+1 and that bout 

for matmult i is equal to bin for matmult i+1. 

line 7 printdata 

To make the pipe structure more general control loops are 

included to increase the pipe size as shown in the code 

below. 

/* this program multiplies two square matrix of size n 
data input is in integer if the matrix size is going 

to be incremented INPUTSIZE is (3*n + 2*n) */ 

#define INPUTSIZE 58 
#define CTESIZE 10 
#include "simio.h" 

main() 
{ 
getdata(2); 

pt=head; 
while (pt->next != NULL) 

{ 
outa= 3*matlength + matsize + 1; 
i=1; 
j=matlength+1; 
k=(2*matlength)+ matsize +1; 
for(m=O;m<matsize;m++) 

{ 
for(l=1;l<=matsize;l++) 

{ 
if (l<matsize) 

{ 
ni = i+1; 
nj = j+4; 



matmul(pt,i,j,k,ni,nj,k); 
i++; 
j++; 
k++; 
} 

if (l==matsize) 
{ 

} 

ni = i+l; 
nj = j+4; 
matmul(pt,i,j,k,outa,nj,k); 
i++; 
j++; 
k++; 
} 

outa++; 
} 

pt=pt->next; 
} 

printdata(2); 
printdata(3); 
} 
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APPENDIX B 
FAULT TOLERANCE 



FAULT TOLERANCE 

Because of the intrinsic nature of an array architecture 

the overall performance of the pipe must not be affected by 

the occurrence of faulty processors. If a fault tolerant 

scheme is not devised by the VLSI engineer such occurrences 

can be catastrophic for the entire pipeline and will result 

in higher costs. The fault tolerant scheme must be resolved 

by the VLSI engineer in such a fashion that the overall 

performance of the array will not be degraded. A solution 

to that problem is to bypass all faulty processors. An 

example is given in Figure 23 for the case of a linear uni 

direction arraye When a faulty processor is encountered the 

data is fed through the bypass register delaying it one unit 

cycle time. Thus to the overall system it appears as if the 

iteration i was not performed. Another scheme will be to 

reroute faulty cells to operating ones during the testing 

phase. This solution implies higher costs because of the 

rerouting process but will not degrade the performance of 

the array. Others schemes exists for different architecture 

and it must be the responsibility of the engineer to include 

fault tolerance in its final design. 
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I bypass registerl 
I I 

PE 

I bypass register! 
I I 

a) PE Bypass Register Scheme 

b) Array with Fault Tolerance Provision 

Figure 23. Fault Tolerance Scheme for Unidirectional Array 
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APPENDIX C 

INPUT FILES & PROGRAM LISTINGS 



1 
3 
3 1 1 1 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
10 0 
11 1 
12 2 
9 9 

INPUT DATA FILE FOR FIR SIMULATION 
(VIRTUAL AND FORWARD CASE) 
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1 
3 
3 1 1 1 
1 1 
2 0 
3 2 
4 0 
5 3 
6 0 
7 4 
8 0 
9 5 
10 0 
11 6 
12 0 
9 9 

INPUT DATA FILE FOR FIR SIMULATION 
(BACKWARD CASE) 
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• 
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MATRIX DATA INPUT 

8 
1 1 0 0 0 1 0 0 0 
2 2 5 0 0 5 2 0 0 
3 3 6 9 0 9 6 3 0 
4 4 7 10 13 13 10 7 4 
5 0 8 11 14 0 14 11 8 
6 0 0 12 15 0 0 15 12 
7 0 0 0 16 0 0 0 16 
8 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 
12 8 8 8 8 8 8 8 8 



/* this is the FIR program for the virtual case 
for bigger pipes define INPUTSIZE as: ((3*pipesize) + 2) 

*/ 
#define INPUTSIZE 11 
#define CTESIZE 10 
#include "simio.h" 
main () 
{ 
getdata(l); 

pt=head; 

while (pt->next != NULL) 
{ 
i=O; 
k= i + pipesize +l; 
l= k + pipesize; 
m=O; 
for(j=O;j<pipesize;j++) 

{ 
ni = l+i; 
nl = l+l; 
virtualfir(pt,i,l,m,ni,nl,k); 
m++; 
k++; 
i++; 
l++; 
} 

pt=pt->next; 
} 

printdata(l); 
} 
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/* this is the FIR program for the forward case 
for bigger pipes define INPUTSIZE as: ((3*pipesize) + 2) 

*/ 
#define INPUTSIZE 11 
#define CTESIZE 10 
#include "simio.h" 
main () 
{ 
getdata(l); 

pt=head; 

while (pt->next != NULL) 
{ 
i=O; 
k= i + pipesize +l; 
l= k + pipesize; 
m=O; 
for(j=O;j<pipesize;j++) 

{ 
ni = l+i; 
nl = l+l; 
forfir(pt,i,l,m,ni,nl,k); 
m++; 
k++; 
i++; 
l++; 
} 

pt=pt->next; 
} 

printdata(l); 
} 
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/* this is the FIR program for the backward case 
for bigger pipes define INPUTSIZE as: ((3*pipesize) + 2) 

*/ 
#define INPUTSIZE ll 
#define CTESIZE 10 
#include "simio.h" 
main () 
{ 
getdata(l); 

pt=head; 

while (pt->next != NULL) 
{ 
i=O; 
ni pipesize; 
k= 2*pipesize; 
l= 3*pipesize + l; 
m= O; 
for(j=O;j<pipesize;j++) 

{ 
nl = 1-l; 
backfir(pt,i,l,m,ni,nl,k); 
m++; 
i = ni; 
ni--; 
k--; 
1--; 
} 

pt=pt->next; 
} 

printdata(l); 
} 
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/* this program multiplies two square matrix of size n 
data input is in integer if the matrix size is going 

to be incremented INPUTSIZE is (3*n + 2*n) */ 

#define INPUTSIZE 58 
#define CTESIZE 10 
#include "simio.h" 

main () 
{ 
getdata(2); 

pt=head; 

while (pt->next != NULL) 
{ 
outa= 3*matlength + matsize + l; 
i=l; 
j=matlength+l; 
k=(2*matlength)+ matsize +l; 
for(m=O;m<matsize;m++) 

{ 
for(l=l;l<=matsize;l++) 

{ 
if (l<matsize) 

{ 
ni = i+l; 
nj = j+4; 
matmul(pt,i,j,k,ni,nj,k); 
i++; 
j++; 
k++; 
} 

if (l==matsize) 
{ 

} 

ni = i+l; 
nj = j+4; 
matmul(pt,i,j,k,outa,nj,k); 
i++; 
j++; 
k++; 
} 

outa++; 
} 

pt=pt->next; 
} 

printdata(2); 
printdata(3); 

} 
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/* FILENAME: SIMIO.H 

This is the input output file that reads and writes to 
the data files 

*/ 

#include <stdio.h> 
#include "parts.h" 

FILE *fp,*fpo, *fopen(), *fclose(); 

linkdata () 
{ 

} 

if (head == NULL) 
{ 
head=pdata; 
tail=pdata; 
pdata->prev=NULL; 
pdata->next=NULL; 
} 

else 
{ 
pdata->prev=tail; 
tail->next=pdata; 
tail=pdata; 
pdata->next=NULL; 
} 

getdata(n) 
int n; 

I* 

*I 

{ 
fp = fopen ("input. dat", "r") ; 

printf("%s\n","simulation running please wait"); 

fscanf(fp,"%d", &datasize); 

fscanf(fp,"%d", &labelsize); 
for(j=O;j<labelsize;j++) fscanf(fp," %s",label[j]); 

if (n==l) 
{ 

printf("%s\n","the results are to be found in output.dat"); 

fscanf(fp,"%d", &pipesize); 

fscanf(fp,"%d", &bctesize); 



for(j=O;j<bctesize;j++) fscanf(fp, "%d", & (bcte[j])); 

head=NULL; 
tail=NULL; 

while(fscanf (fp, "%d", &c) != EOF) 
{ 
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pdata = (struct data in*) malloc(sizeof(struct data in)); 
pdata->time = c; 
for(j=O;j<datasize;j++) 
fscanf ( fp," %d", & (pdata->data [ j J) ) ; 

for(j=datasize;j<INPUTSIZE;j++) 
(pdata->data[j]=O); 

linkdata(); 
} 

fclose(fp); 
} 

if (n==2) 
{ 
printf("%s\n","simulation running please wait"); 

printf("%s\n","the results are to be found in output2.dat"); 
printf("%s\n","and output3.dat for snapshots"); 

head=NULL; 
tail=NULL; 
matsize = datasize / 2; 
matlength = matsize*matsize; 
while(fscanf(fp,"%3d",&c) != EOF) 

{ 
pdata = (struct data in*) malloc(sizeof(struct data_in)); 

pdata->time = c;-

} 

for(j=O;j<INPUTSIZE;j++) (pdata->data[j ]=O); 
i =l; 
for(j=O;j<matsize;j++) 

{ 
fscanf(fp," %d",&(pdata->data[i])); 
i = i+4; 
} 

k = (matsize*matsize) + l; 
for(j=O;j<matsize;j++) 

{ 
fscanf(fp," %d",&(pdata->data[k])); 
k++; 
} 

linkdata(); 
} 

fclose(fp); 
} 



I* AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA */ 
/* A OUTPUT SECTION A */ 
/* AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA */ 

printdata(n) 
int n; 

{ 
if (n==1) 

{ 
fpo = fopen("output.dat","w"); 

fprintf (fpo, "%5s", "elk"); 
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for ( j =O; j <=pipesize; j ++) fprintf ( fpo, "%4 s%d", "x", j) ; 
for(j=1;j<=pipesize;j++) fprintf(fpo, "%2s%d%s%d", "b" ,j, "x" ,j) 
for(j=O;j<=pipesize;j++) fprintf (fpo, "%4s%d", "s" ,j); 
fprintf ( fpo, "\n") ; 

pdata=head; 

while (pdata->next != NULL) 
{ 
fprintf(fpo,"%5d",pdata->time); 

for(j=O;j<INPUTSIZE;j++) fprintf(fpo,"%5d", pdata->data[j]); 
fprintf(fpo, "\n"); 
pdata=pdata->next; 
} 

printf ("bye bye\n"); 
} 

if (n==2) 
{ 

fpo = fopen("output3.dat","w"); 
pdata=head; 

while (pdata->nex!= NULL) 
{ 
fprintf(fpo,"%30s%3d\n", "elk time",pdata->time); 
fprintf(fpo,"%20s\n", "propagation of matrix A"); 
k=1; 

for(l=O;l<matsize;l++) 
{ 

for(j=O;j<matsize;j++) 
{ 
fprintf(fpo,"%5d", pdata->data[k]); 
k++; 
} 

fprintf ( fpo, "\n") ; 
} 

fprintf(fpo,"%20s\n", "propagation of matrix B"); 
k=matlength +1; 



} 

for(l=O;l<matsize;l++) 
{ 

for(j=O;j<matsize;j++) 
{ 
fprintf(fpo,"%5d", pdata->data[k]); 
k++; 
} 

fprintf ( fpo, "\n") ; 
} 

fprintf (fpo, "%15s\n", "matrix C"); 
k=(matlength*2)+5; 
for(l=O;l<matsize;l++) 
{ 

for(j=O;j<matsize;j++) 
{ 
fprintf(fpo,"%5d", pdata->data[k]); 
k++; 
} 

fprintf ( fpo, "\n") ; 
} 

fprintf (fpo, "\n"); 
fprintf ( fpo, "\n") ; 
pdata=pdata->next; 
} 

if (n==3) 
{ 

fpo = fopen("output2.dat","w"); 
pdata=head; 
fprintf(fpo, "%5s", "elk"); 

96 

for ( j =l; j <=mat length; j ++) fprintf ( fpo, "%3 s%2d", "a", j) ; 
fprintf ( fpo, "\n") ; 

while (pdata->next != NULL) 
{ 

k=l; 
fprintf(fpo,"%5d",pdata->time); 
for(j=O;j<matlength;j++) 

{ 
fprintf(fpo,"%5d", pdata->data[k]); 
k++; 
} 

fprintf ( fpo, "\n") ; 

pdata=pdata->next; 
} 

fprintf(fpo,"\n"); 
fprintf(fpo,"\n"); 

fprintf ( fpo, "% 5s", "elk") ; 



} 

for ( j =1; j <=matlength; j ++) fprintf ( fpo, "%3s%2d", "b", j) ; 
fprintf ( fpo, "\n") ; 

pdata = head; 

while (pdata->next != NULL) 
{ 

} 

k=matlength +1; 
fprintf(fpo,"%5d",pdata->time); 
for(j=O;j<matlength;j++) 

{ 
fprintf(fpo,"%5d", pdata->data[k]); 
k++; 
} 

fprintf ( fpo, "\n") ; 

pdata=pdata->next; 

fprintf ( fpo, "\n") ; 
fprintf ( fpo, "\n") ; 

fprintf (fpo, "%5s", "elk"); 
for ( j =1; j <=matlength; j ++) fprintf ( fpo, "%3 s%2d", "c", j) ; 
fprintf ( fpo, "\n") ; 

pdata=head; 

while (pdata->next != NULL) 
{ 

} 

k=(matlength*2)+5; 
fprintf(fpo,"%5d",pdata->time); 
for(j=O;j<matlength;j++) 

{ 
fprintf(fpo,"%5d", pdata->data[k]); 
k++; 
} 

fprintf (fpo, "\n"); 

pdata=pdata->next; 
} 
printf ("bye bye\n"); 
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/* FILENAME: PARTS.H */ 

#include "def .h" 

/* This is the library of parts used for parallel processing 
simulation. Each part is implemented in a function. Each 
processor element is assumed to have a latency of l word 

FIR IMPLEMENTATION AND MATRIX MULTIPLICATION 

These functions implements a Finite Impulse Response 
filter (virtualfir, forwfir, backfir) and a 
multiplier (matmult). 
*I 

virtualfir(pt,xin,sin,bin,xout,sout,bxout) 
int xin,sin,bin,xout,sout,bxout; 
struct data_in *pt; 

{ 
pt->data[bxout] = bcte[bin] * pt->data[xout]; 
pt->data[sout]=pt->data[sin]+pt->data[bxout]; 
pt->next->data[xout]=pt->data[xin]; 
} 

forwfir(pt,xin,sin,bin,xout,sout,bxout) 
int xin,sin,bin,xout,sout,bxout; 
struct data_in *pt; 

{ 
pt->data[bxout] = bcte[bin] * pt->data[xout]; 
pt->data[sout]=pt->data[sout]+pt->data[bxout]; 
pt->next->next->data[xout]=pt->data[xin]; 
pt->next->data[sout]=pt->data[sin]; 
} 

backfir(pt,xin,sin,bin,xout,sout,bxout) 
int xin,sin,bin,xout,sout,bxout; 
struct data_in *pt; 

{ 

(FIR) 
matrix 

pt->data[bxout] = bcte[bin] * pt->data[xout]; 
pt->next->data[sin]=pt->data[sout]+pt->data[bxout]; 
pt->next->data[xout]=pt->data[xin]; 
} 

matmul(pt,ain,bin,cin,aout,bout,cout) 
int ain,bin,cin,aout,bout,cout; 
struct data_in *pt; 

{ 
pt->data[cout]=pt->data[cin]+(pt->data[aout])*(pt->data[bout]); 

pt->next->data[aout]=pt->data[ain]; 
pt->next->data[bout]=pt->data[bin]; 
pt->next->data[cin]=pt->data[cout]; 
} 



#include <ctype.h> 
/* FILENAME: DEF.H 
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This file defines the data structures and constants used 
for the simulation. It is the declaration part of the main 
program. 

*/ 

#define namesize 20 
#define OUTSIZE 10 

struct data in 
{ 
int time; 
int data[INPUTSIZE]; 
struct data in *next; 
struct data=in *prev; 
} data array; 

struct data_in *pdata,*head,*tail,*pt; 

char a[lO],b[lO],label[l0][12]; 
int c,i,datasize,labelsize,bctesize,pipesize,ni,nl; 
int matsize,matlength,nj,l,m,time,j=O,k,l,m,outa; 
int bcte[CTESIZEJ; 



APPENDIX D 



MODULARIZING AN SFG 

Digital signal processing involves the sampling of a 

continuous process. This example shows that through the 

manipulation of a SFG modularity can be achieved. For the 

purpose of the presentation an ARMA filter (IIR) is 

presented. The filter transfer function is given by : 

N -k 
Sum b z 

H ( z) = k=l k 
N -k 

1 + Sum a z 
k=l k 

This equation can be rewritten as 

N N 
y(n)= Sum x(n-k)b + sum y(n-k)a 

k=l k k=l k 

It becomes apparent by analyzing this equation that we need 

to remember the history of the previous samples in terms of 

both output and inputs. As a consequence we need to include 

provisions for storage or delay of those values. By 

inspection of the algorithm we can derive the direct form 1 

flow graph shown in Figure 24. It is important to realize 

that the value is broadcast along the nodes. Since the 

coefficients b correspond to the numerator polynomial and 
k 

the coefficients a correspond to the denominator. 
k 

We can 

redraw the S.F.G. as a cascade of the denominator and 

numerator circuits. (see Figure 25) . To eliminate the 

redundancy in the use of delays we combine the delays as 

shown in Figure 26 . By inspection we can redraw this last 
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figure to come to the representation shown in Figure 27. 

At this stage of the design we need to apply the 

systolization procedure in order to have a localizable 

S.F.G. 

First we redraw the circuit as shown in Figure 28. This is 

a straight representation of Figure 27. Given the fact 

that the array is regular; cut sets can be selected (dashed 

lines in Figure 29. Applying the localization rules we need 

to rescale the delays associated with the representation 

assume D' = 2D. Now by subtracting one delay to the left 

bound edges and adding one delay to the right bound edges we 

yield to Figure 30. This complete the systolization 

procedure as we have locality in both time and space. 
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