
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1987

Real Time Signal Processing Using Systolic Arrays Real Time Signal Processing Using Systolic Arrays

Jack Boulay
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Boulay, Jack, "Real Time Signal Processing Using Systolic Arrays" (1987). Retrospective Theses and
Dissertations. 5058.
https://stars.library.ucf.edu/rtd/5058

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F5058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/5058?utm_source=stars.library.ucf.edu%2Frtd%2F5058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

REAL TIME SIGNAL PROCESSING
USING SYSTOLIC ARRAYS

BY

JACK BOULAY
B.S.E, University of Central Florida, 1985

THESIS

Submitted in partial fulfillment of the requirements
for the Degree of Master of Science in Engineering

in the Graduate Studies Program of the College of Engineering
University of Central Florida

Orlando, Florida

Fall Term
1987

ABSTRACT

This thesis discusses and presents the design of

a

processing.

systolized

systolic arrays used in modern real time signal

A methodology to map a given algorithm into

VLSI implementation is described. The architectural

algorithm are alternatives for a given signal processing

discussed and investigated at a function level using a

simulation package that has been developed using the "C"

programming language.

The similarities and differences between wavefront array

processors and systolic array processors are presented.

ACKNOWLEDGEMENTS

This author wishes to express his appreciation to the

many people who contributed toward the preparation of this

thesis. Dr. Brian Petrasko deserves special thanks for his

valuable advice, creative ideas, and, most of all, patience

with the author. Also, special thanks are extended to my

family that made this thesis a reality by supporting me

through my years of school. Thanks Alex. Thanks Debby.

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

INTRODUCTION . l

CHAPTER ONE - REAL TIME SIGNAL PROCESSING USING ARRAY
OF PROCESSORS 3

Applications in Signal Processing . 3
Digital Systems Architectures for Signal Processing 3
Digital signal processing and VLSI technology . 5
Types of VLSI Structures 6
Efforts in the design of array processing systems . 12
Task description 13

CHAPTER TWO - ALGORITHM TO ARCHITECTURE 15
Algorithm to Architecture methodology . 15
Representation form of The Computational Model 16
Examination of a SFG For Systolic Array
Implementation 18
Modularity 21
Measure of Performances . 22
Systolization procedure . 23
Examples 25

CHAPTER THREE - VERIFICATION OF SYSTOLIZATION PROCESS 37
Language selection for the simulation package . 37
Structural definition of the simulation package . 39
Program layout 39
Program description . 40
Data structure 47
Results . 48
Conclusion 59

CHAPTER FOUR - CONTROL STRATEGIES 61
Timing consideration 62
Wavefront Array . 63
Transformation of a SFG to a WAP 64
Examples of SFG to WAP transformation . 65

CONCLUSION . 66

iv

APPENDIX .
A. Tutorial .
B. Fault Tolerance
c. Program listings .
D. Modularizing an SFG

REFERENCES .

v

68
69
82
85

. 100

. 106

LIST OF TABLES

l. Virtual FIR Timing Requirements . 31

2 . Virtual FIR Simulation Results 49

3 . Forward FIR Simulation Results 51

4. Backward FIR simulation Results . 52

5. Matrix Simulation Snapshots . 54

6. Matrix Simulation Results . 58

7. Performance Characteristics . 60

vi

l.

2 .

3 •

4.

5.

6.

7.

8.

9.

LIST OF FIGURES

Mesh Connected Array Processors

Function level Architecture of Discussed PE.

S.F.G. Components

S.F.G. of parallel Form

S.F.G. with Spatial Locality .

Virtual FIR

Identifying cut sets .

Forward Systolized FIR .

Local SFG for Backward FIR .

10. Cut sets for Backward FIR

11. Systolic Backward FIR

12. Spatialy local SFG for Matrix Multiplication .

13. Matrix Systolization Process .

14. PE for Matrix Multiplication .

15. Array processor for Matrix Multiplication

16. File Linking Structure .

17. Forward Systolized FIR SFG .

18. PE for Forward FIR Filter

19. Systolic Forward FIR Array interconnections

20. S.F.G. for Matrix Multiplication PE.

21. PE for Matrix Multiplication .

22. Array processor for Matrix Multiplication

23. Fault Tolerance Scheme for unidirectional Array

vii

7

10

18

19

19

26

26

26

30

30

30

34

35

36

36

41

71

71

71

76

76

76

84

24. S.F.G. Arma Filter Direct Form l .

25. S.F.G. with Minimum Number Of Delays .

26. S.F.G. Direct Form 2 .

27. Linear representation of Arma Filter .

28. Arma filter Cut Set Selection

29. Arma filter time rescaling .

30. sytolized Arma Filter

viii

. 103

103

104

. 104

. 105

. 105

105

INTRODUCTION

As we drift into an age of information it becomes

obvious that the early ages of computer architecture are

doomed to change. Due to an ever-increasing demand in

computational power, it is necessary to investigate new

architectures better suited for signal processing in terms

of speed volume and cost.

A look at the computer industry shows a rapid transition

from single processor to parallel processor machines. This

is due to the fact that single processor machines, in order

to improve their throughput, need faster and more expensive

circuitry. At the end of the scale, circuit speed reaches

its limits; as in order to improve the speed distances

between components are reduced to a compactness that exceeds

the ability of the circuit to dissipate heat.

On the other hand, concurrent array

achieve a greater speed by dividing

processing its parts simultaneously

processors (CAP)

the program, and

by different

processors. Processors range from custom made applications

to standard microprocessor units. They can be combined in

different ways and linked via a variety of communication

schemes.

2

This new architecture has already resulted in a range of

machines that are aimed at markets sectors as diverse as on

line transaction processing and fluid flow simulation

studies.

CHAPTER l

REAL TIME SIGNAL PROCESSING USING ARRAYS OF PROCESSORS

l. APPLICATIONS IN SIGNAL PROCESSING

The applications of signal processing are numerous and

multiple in the present world of electronics. In the domain

of consumer electronics, goods such as telephones, radios

and televisions receivers, disks and tape players are

tangible examples of how signal processing directly affects

us. In the domain of commercial electronics, applications

in telecommunications and control systems create a big

demand for signal processing. Similarly, in military radars

and sonars the demand for high quality components is strong.

Finally, but not the last man-machine interfaces in

artificial intelligence requires strong signal processing

tools. Due to the sharp penetration of signal processing

techniques in today's electronics it is important to

optimize quality and costs. This is achieved by using

digital signal processing (DSP) in conjunction with VLSI

implementation.

2. DIGITAL SYSTEMS ARCHITECTURES FOR SIGNAL PROCESSING

In digital signal processing, operations such as

averaging, differentiation etc., are performed on a sequence

of numbers that represent samples of some analog signal.

Many of today's signal processing applications require

3

4

immediate interaction between the user or system and the

machine. In other words real time processing is required.

In the domain of real time signal processing some tasks are

difficult to perform due to the inability to match the

computational rate to the data input rate. Because time is

a constraint, measures such as response time and throughput

are becoming increasingly critical.

addresses this need for additional power.

Array processing

Specific tasks that need to be performed in real time in

modern signal processing systems include matrix

multiplication, or solution of linear equations. It has

been shown [8] that these tasks can be easily solved using a

concurrent processor array architecture.

The characteristic of this architecture is the use of a

number of arithmetic units each concurrently performing a

specific function on a data set. This is a considerable

improvement when compared to architectures using a single

arithmetic and logic unit a main task can be broken up into

subtasks that are processed by different processor elements

in a parallel and/or overlap fashion. This concept of

concurrently operating arithmetic units is the core concept

of array processing. In order to support this new field it

is important to formulate new computational models which

support parallelism. It must be noted that array structures

can be easily implemented in VLSI. Furthermore, the level

5

of performances in array processing are in part dictated by

advances in VLSI technology.

3. DIGITAL SIGNAL PROCESSING AND VLSI TECHNOLOGY

The rapid innovation in VLSI technology in terms of low

cost, high density, and speed is having an impact in modern

signal processing. The trend is to translate computational

models into promising VLSI implementation technologies.

Array architectures that were previously hampered by memory

cost (i.e., local memories) are now being reexamined and

implemented. Those new perspectives are heralding a new era

of signal processing using VLSI.

While VLSI is well suited for digital signal processing

there are constraints. The level of integration will not

always be expandable. Current state of the art chips are

fabricated with a minimum feature size of 1 to 2

micrometers. This size could be reduced in the next couple

of years to 0.5 micrometer. This reduction in size implies

an increase in throughput rate (i.e., clock speed times gate

density) from 5 x 10**11 Hz gates/cm**2 to 10**13 Hz gates

/cm**2. [9] Beyond this point it seems that higher levels

of integration will require more time, effort and money.

This is the reason why the throughput rate must be improved

through new and more advanced architectures.

Some of the restrictions associated with the use of

integrated circuit technology are directly translated into

new problems to be solved in signal processlng. For

6

example, the requirement of local communication between

array elements in array processing is due to the fact that

interconnections in VLSI must be minimized.

In summary, the increase in performance demanded by real

time signal processing has shifted the attention from Von

Neuman single instruction stream single data stream (SISD)

structures to array structures. VLSI signal processing,

using these structures, can be the answer to many of the

problems requiring high throughput rate in order to support

tremendous computations capabilities in terms of volume and

speed.

4. TYPES OF VLSI ARRAY STRUCTURES

An array structure is a network of interconnected

processor

fashion.

for an

elements (PE) which process data in a controlled

The different types of control mechanism provide

architectural classification of these array

structures. For instance, if a synchronous control scheme

is used the array is referred as systolic. In the case of an

asynchronous control mechanism, a wavefront array is

obtained. However, all these architectures capitalize on

regular and modular structures with different types of

interconnections as shown in Figure 1. The choice of array

structure depends on the communication required by the given

algorithm and application. Also, the PE's can be dedicated

or programmable. A dedicated PE is said to be hardwired;

this leads to an inflexible structure and therefore might

I I I I I I I I

a) Linear Connected

I I I I

I I l I

b) Orthogonally Connected

c) Hexagonally connected

Figure 1. Mesh Connected Array Processors

7

8

limit the range of application of a given machine. A

programmable PE offers the advantage of replication as well

as flexibility. The disadvantage is the additional control

complexity associated with dynamic interconnections or array

reconfiguration. The trade-off between a dedicated and a

programmable processor element is a very fundamental issue.

In order to come up with an optimum choice, the designer

must decide how much flexibility will be included in the

special purpose computer. Two types of arrays are

considered: the systolic array and the wave front array. The

major difference is in the control mechanism.

4.1 Systolic Arrays

According to Kung and Leiserson [8], "A systolic array

is a network of processors which rhythmically compute and

pass data through the system.'' Systolic arrays use

multiprocessing and pipelining to achieve greater

throughput. Multiprocessing indicates that various PE's are

processing data simultaneously in the array structure.

Pipelining takes advantages of dependencies among

computations to propagate the result of one PE to the next

PE for further data processing. This concept of overlap is

important as the data is being used within the pipe thus

reducing input output and memory bandwidth requirements. In

a systolic pipe the movement of the data is restricted to

neighboring PE's and take place in a periodic manner. Within

the pipe each processor can perform a given computational

9

task. For example, a common processor element structure is

one which executes the short computation Y <--- Y + A*B

(see Figure 2). It is important to realize that the data is

passed rhythmically along the pipe.

A systolic array possesses the following

characteristics:

a) Spatial locality

The array is a network of PE's with local

interconnections. Any PE which is providing the input

data for the next PE to process it must be physically

close to that next PE. This condition addresses the

cost of interconnections in VLSI technology.

desirable to have a minimum number

It is also

of short

interconnections between adjacent PE's. Again, the

connections or communication between neighboring

modules should be minimized.

b) Temporal Locality

The array should present temporal locality. The

results of a predecessor module are available to the

next module at the next clock time. This condition is

a control characteristic which restricts the systolic

array to a classical pipeline stucture.

c) Regularity

The array is a network of PE's which are largely of the

same type. However there may be some atypical cases at

the boundaries of the array or in critical paths. The

A

Figure 2. Function Level Architecture of Discussed PE .

10

ll

condition of modularity is needed to achieve area

efficient layouts as required in VLSI

d) synchrony

A global clock is used to step the data in a rythmic

fashion through the system. There is need for a global

timing scheme to ensure that the data is available at a

specific time.

d) Order(M) Speedup Factor

The systolic array must present an order M speed up

factor where M is the number of stages within the pipe.

The processing time for the array realization must be

less than the processing time for a single processor

machine.

Chapter 2 presents further discussion of these

characteristics and includes examples.

4.2 Wavefront Array Processor

A wavefront array processor is a data driven machine

which has a throughput rate which is potentially higher than

that of a systolic array. The spatial locality requirements

are essentially the same as those established above for the

systolic array. Also regularity and modularity are required.

In contrast to a systolic array, the control mechanism is

based on the occurrence of a sequence of events rather than

on a global synchronous clock. To be more specific, the

triggering of instructions depends on the availability of

operands and resources required. Therefore the da~a driven

12

operation of each PE requires the adoption of handshaking

protocols to synchronize data flow.

5. EFFORTS IN THE DESIGN OF ARRAY PROCESSING SYSTEMS

Many real time digital signal processing systems can be

implemented using special purpose computer systems or

components. There are also a number of applications that

require the performances associated with a VLSI

implementation. In both cases, design tools and methodology

are critical in the design, analysis and development process.

A noteworthy effort to provide a complete design

automation system for VLSI signal processing is the

Cathedral project [1]. It has produced a silicon compiler

for bit serial structures which can include systolic type

array processing. However this subset of the design spectrum

has not been emphasized. Design techniques specific to

systolic and wavefront array processing for VLSI are

currently being investigated by a number of research groups,

most notably the group at Carnegie-Mellon University (T.C.

Kung) and at the University of Southern California (S.Y.

Kung). Of major interest is the investigation of methods of

systolizing algorithms. Applying these techniques to signal

processing applications include the following steps or

phases.

1. The first

specification.

phase will develop the application

It is important to clearly define the

performances requirements since this determlnes the

13

need and degree of array processing.

2. The system function must be developed. The alternative

representations of the system function will lead to

computational models that can be investigated for

systolization. A formulation which provide for

spatial locality is crucial.

3. The computing structure must be identified. This is

achieved by applying the systolization procedure to a

recurrence form of the algorithm or a Signal Flow

Graph representation form of the algorithm. This is a

critical step as it determines the overall

architecture of the array.

4. The array architecture is then examined. This includes

a simulation at the function level to examine the

correctness, "gross" timing information, and

time trade offs of the solution. Following

space

those

results the designer may want to investigate new

architectures.

5. The array processor is fabricated and tested

6. TASK DESCRIPTION

The objective of this thesis paper is to provide the basis

for the design and development of digital signal array

processing design facilities at UCF. To this end, examples

of applications of the above methodology steps 3 and 4 are

provided. A simulation package for examining the behavioral

14

or computational model and the structural or systolized

model is developed.

CHAPTER 2

ALGORITHM TO ARCHITECTURE

The procedures and requirements necessary to derive an

array architecture given a specific algorithm are

investigated.

1. ALGORITHM TO ARCHITECTURE METHODOLOGY

As established before, an array processor is a direct

hardware implementation of a special computational model

used to solve a given problem with speedup. This

characteristic is crucial as the objective is to implement

an algorithm by a high performance parallel network. Many

of the algorithms encountered may not seem to be suited for

parallel processing. However, through manipulation and

optimization techniques, many real time signal processing

algorithms can be made efficient. A necessary step is to

reformulate a given algorithm in order to identify any

recurrence within its structure. By recurrence we mean any

set of operations that are repeated within the formulation.

Each operation is given the name of iteration. By

assigning an individual processor or processors for each

iteration in the recurrence, concurrency is achieved by

overlap. This is the objective of pipelining. As is also

for the case of two dimensional arrays, parallelism is often

achieved.

15

16

A requirement for array processing is to have the

communication between the iterative step processor be of the

local type. The input and output data are labelled with time

and space indices (i.e., location of the processor within

the array). Spatial locality is achieved if the space index

separation within two successive iterations is within a

certain limit [8].

For systolic arrays an additional requirement is

temporal locality. The simple control mechanism of a single

global clock imposes the constraint of concurrent data

arrival at the input of each array processing element (PE).

This is achieved by manipulation of the delays within the

array and/or the addition of delays. This method is also

referred to as the systolization procedure.

2. REPRESENTATION FORMS OF THE COMPUTATIONAL MODEL

There are two common representation forms; a recurrence

expression and a signal flow graph.

expression has indices of space and time.

The recurrence

For reference the

recurrence expression of a square matrix multiplication C =

A*B is presented:

is the time index.

c

The superscript in the following relation

For k = 1 to N

0
c - 0
i,j

k k-1 k k
- c + a b

i,j i,j i j

k
a

i
a
ik

17

k
b = b

j kj

Spatial and temporal locality can be investigated using

algorithms which manipulate index sets and derived data

dependence vectors [8]. However this mathematical approach

is cumbersome and prone to errors.

An easier method is to use a signal flow graph (SFG)

which provides a graphical representation of the recurrence

formula. This method is more common to DSP and provides

a visual statement of the characteristics of the

computational model. Spatial and temporal locality are

investigated by examining node connections and path delays.

This later representation is used in this report.

Signal Flow Graph Representation

The signal flow graph is one of the most useful

representation of a signal processing system. A SFG is a

collection of nodes and edges. Nodes represent logic or

mathematical functions performed with zero delay. Nodes are

connected by edges. Three types of operations are used in

the following discussion and examples: summation,

multiplication and delay. A node with more than one input

edge identifies a summation. An edge with a constant

identifies a multiplication of the result of the preceding

node with the constant. A D over an output edge indicates a

time delay of the results coming from the node (see Figure

3) •

edge edge
------->O ----->

node

function
edge

a
----->

Figure 3: SFG Components

Delay
edge

D
----->

3. EXAMINATION OF A SFG FOR SYSTOLIC ARRAY IMPLEMENTATION

i=M

18

Given a function y(k) =Sum b x(k-i), the corresponding
i=l i

SFG is drawn in Figure 4 and investigated for systolic

attributes.

3.1 Spatial Locality

As established in Chapter 1, the length and number of

connections between PE's should be minimized and restricted

to neighboring PE's. For the SFG of Figure 4 an

implementation of the computational model requires M (where

M is arbitrary) connections to the summing node, of the

pipeline. Due to the parallel nature of the network the

use of a linear connected structure (see Figure 1) will

result in some PE's being closer than others to the summing

node. Use of a hexagonally connected structure will allow

all the PE's to be separated from the summing node by the

same distance. In the first case for an increasing M (M is

the number of iteration and is arbitrary) PE's on the

boundaries will be separated from the summing node by

increased distances and will not be spatially local. In the

second case, the type of structure changes with M and the

length of the interconnections cannot be minimized. Thus the

characteristics of spatial locality are not present.

..... -x -x -x
2 1 o---~

D
b

1

D
b

2

D
b

3

D
b

4

b
M-1

D
b

M /2)
--+

(2)

Figure 4. SFG of Parrallel Form

..... -x -x -x
2 1 0 D

x x x
D 2 D 3

x
D M-1 D

.... Y. -y -y
2 1 0

x
M

_____--____ ___.~ ____ .,_ - - - - - - - - - - - - - - --------------

s1 s
2

------------·

s
3

Figure 5. SFG with Spatial Locality

19

s
M-1

, __ ·_·_·_· _Y2_-__ Y1 -yo

s
M

20

3.2 Temporal locality

Because the results of the parallel multiplications are

available to the summing node at the same clock time as they

are computed, no temporal locality is achieved. In order to

achieve temporal locality, latches must be added to the b

labelled edges.

3.3 Regularity

The process of multiplication, b x(k-i) is investigated
i

as the target PE process for the SFG of Figure 4. Using this

partitioning of processes, regularity can be seen as the

partitions are modular since each element performs an

identical function on the data set.

3.4 Synchrony

No synchrony is achieved as the data in the b branches

is available at the inputs of the summing node without a

clocking process. However, synchrony can be achieved with

the addition of delays. This results in the data being

stepped through the system in a rythmic fashion.

3.5 Order(M) Speedup Factor

The array presents an order M speed up factor where M is

the number of stages within the pipe. Speedup is achieved in

this array realization by having parallelism in the b

branches and having overlap in the D path. Once the pipe is

full output samples will be available at each clock cycle.

As a consequence the processing time for the array

21

realization is less than the processing time for a single

processor machine.

It will be shown in the next example that a more

appropriate starting point is a SFG derived from a

recurrence formula of the system equation. Identifying the

recurrence formulation of the preceding system as:

For i = 1 to M

k k-1
x x

i i-1

k k k
s = s + b x

i i-1 i i

k k
x x . s = 0 I

0 in 0

and drawing the corresponding SFG (see Figure 5); the

spatial locality is apparent. However temporal locality is

not present as the data on the lower path is fed through a

zero delay path. As a consequence some new provisions must

be established so that the temporal locality criterion is

specified by the SFG.

4 • MODULARITY

The major decision in the implementation of the

algorithm as an array structure is the type or types of

element to be used. Relating this to a SFG, the

partitioning used defines the characteristics of the

hardware implementation. It can range from a single element

for each iteration to a large number of elements within the

22

iteration. This decision strongly impacts throughput and

response time. By having smaller partitions, a finer

granularity is achieved (i.e., the number of stages is

increased) . Using this principle, a higher throughput rate

might be achieved [7]. Unfortunately, the response time or

latency may also be higher. It is also common to have

dissimilar stages. In the above example the array PE

processes one

multiplication,

iteration; a delay

followed by a summation.

followed by a

Using different

partitions, or cuts, parallelism can be increased within the

PE thus decreasing the stage process time and thus

increasing the throughput. However, there is a potential

cost of increased communication paths and response time. It

should be noted that in this example, the multiplication

summation sequence should not be partitioned if the

multiplication is implemented as a successive addition

process; as is the case if CSA trees are used [6].

Partitioning requires a careful examination of temporal

locality. Kung provides a cut set procedure that advocates

lower communication requirements and addresses the temporal

issue of systolization [8]. This is presented in section 6.

5 MEASURE OF PERFORMANCES

A pipeline is said to have speedup if N sequential tasks

can be performed faster by a pipeline than it could be

performed by a single processor. A pipeline provides for a

23

speedup of order M where M is the number of stages in the

pipe. The order is determined by data dependence. Note that

in the case of a large system processing a small data set,

the latency of the pipe may have an influence on the level

of performance (the fill and flush time might be greater

than the processing time.)

Another performance measure of the system is the

throughput rate. In DSP the throughput is the number of

samples processed per clock cycle. In the ideal case the

throughput will be equal to the clock frequency. The clock

frequency can be increased through two methods:

1) Find a finer granularity of the partitioning.

2) Identifying parallelism within the PE.

In contrast to speedup, the throughput is a function of the

stage delay time and not of the number of stages.

6. SYSTOLIZATION PROCEDURE

A systolic array has all of the characteristics of a

classical pipeline [6]. Each stage of the pipe is

processing a

process must

sequential portion of the system task. Each

be completed for each clock time. As a

consequence the data for each PE must be available at each

clock time and must be provided by a spatially local process

(i.e., the preceding stage). Thus broadcast paths must be

eliminated and paths with zero delays must include

provisions for extra delays in order to preserve

synchronization. A key step in the manipulation of a SFG to

24

achieve temporal locality is the subtraction of delays from

the input of a node and the addition of delays to the

output. An SFG can be retimed using this step. Also the

timing relationships between inputs and outputs must be

respected. These concepts are embodied in the systolization

procedure presented below.

An SFG derived from a recurrence formulation gives a

good starting point for an array realization. Having

achieved spatially local interconnections and modularity

Kung [8] has derived a graphical method to systolize a SFG.

First he defines a cut set as being "a minimal set of edges

which partitions the SFG into two parts." As should be noted

the emphasis is on reducing the number of interconnection as

required in VLSI. It is important to realize that not all

cut sets present the attribute of being a "good cut set." A

good cut set should only include:

l) the target edge or selected zero delay edge.

2) non zero delay edges going in either direction

3) zero delay edges going in the same direction as the

target edge.

A bad cut set will cut zero delay edges going in the

opposite direction of the target edge. Based on this

partitioning theory the temporal localization procedure can

be identified. The objective of this procedure is to

eradicate zero delay edges between modular sections. The

25

temporal localization procedure is based on two simple

rules:

1. TIME SCALING

All delays D may be scaled, i • e • I D->aD', by a single

positive integer , a. Correspondingly the input and output

rates also have to be scaled by a factor a (with respect to

the new time unit D').

retiming by Glasser [5].

This process is referred to as

2. DELAY TRANSFER

Given any cut set of the SFG, we can group the edges

into inbound edges and outbound edges, depending upon the

directions assigned to the edges. Rule 2 allows advancing

k (D') time units on all the outbound edges and delaying k

time units on the inbound edges, and vice versa. All initial

timing relationship must be preserved.

Given the information established in the previous

section it is now possible to define the systolization

procedure as given below.

l) Define the basic processor element.

2) Select good cut sets.

3) Apply the localization rules

7. EXAMPLES

This section presents specific examples of the

algorithm to architecture step. First, the one dimensional

FIR algorithm is investigated using three different SFGs,

0 X x -x -x 1
0 0 x

3
2 1 01--------110r-----..... ----.. -----....

so

.... x -x -x
2 1 0

.... x -x -x
2 1 0

b 1 b2 b3

2

Figure 6. Virtual Fl R

0 x, 0 0

b 1 b2 b3

Figure 7. Identifying Cut Sets

s
0

20 x
1

b 1

0

20 ~

b2 b3

x
3

Figure 8. Forward Systolized FIR

26

S3
.... y -y -y

2 1 0

.... y -y -y
2 1 0

27

then the matrix multiplication algorithm; a two dimensional

example is presented.

7.1. FIR Filter

This filter is described by the linear difference

equation:

y (k)
M

SUM b x(k-i)
i=l i

We restrict our example to the case of three iterations per

sample cycle.

7.1.1 First SFG

A recurrence formulation for this equation is:

For i=l to 3

k k-1
x x

i i-1

k k k
s = s + b x

i i-1 i i

k k
x = x . s = 0 ,

0 in 0

The recurrence formulation provides for pipelining because

the i-1 iteration of the equation can be performed at the

same time as the i iteration. Mapping this equation results

in the SFG shown in Figure 6. The selected cuts identify the

target PE performing a single iteration (see Figure 7).

28

7.1.1.1 Spatial Locality

It can be seen that the condition of spatial locality is
k-1 k k

present. The input x
i-1

is local

k

to x
i

and input s
i-1

is

also spatially local to s (i.e., space indexes i are

i separated by a factor of 1) .

7.1.1.2 Temporal Locality

However, temporal locality is not achieved as there is a

zero delay path indicated by arrow 2 in Figure 6. By

introducing a delay in the lower branch the zero delay path

is eliminated. Also, in order to preserve the input-input

timing relationship (Rule #2 of the systolization

procedure) , an extra delay is inserted in the upper branch.

This concludes the systolization procedure (see Figure 8).

The new recurrence formula for this systolic case is

given below for reference only.

7.1.2 Second SFG

For i=l to 3

k
x

i

k
s s

i

k
x = x

O in

k-2
= x

i-1

k-1
+ b x

i-1 i

k
; s = 0

0

k

i

In the above SFG, the filter input and output are

distant in space. It may be desirable to have them

spatially local. Observing the associative property of the

29

summing process (i.e., A+ (B + C) = (A+ B) + C) a second

SFG can be derived from the above SFG (see Figure 9) which

provides for x and y to be spatially local.

7.1.2.1 Spatial locality

Again the SFG is visually spatialy local for the same

target PE.

7.1.2.2 Temporal Locality

Because of the zero delay sum path the SFG is missing

temporal locality. The systolization procedure is

initiated. First, following rule #1; delay D is rescaled as

20'. Then applying rule #2, the inbound edge is delayed by

D' while the outbound edge is advanced by D'. As a result

the array is now systolic (see Figure 11). However, the time

rescaling required by the systolization process impacts the

input rate. For correct operation two beats or clock times

are required per input sample. The first beat moves the

data through the required (algorithm) delay and the second

beat latches the MA process and synchronizes the upper and

lower path movement. In order to preserve the input-output

relationship lost during time rescaling (original delay

difference between input and output paths) zeros must be

interleaved in the input data stream. To generalize, it can

be said that for non-systolic SFG having inputs and outputs

propagating in different directions, time rescaling is

required and it will lead to interleaving the input data

stream by a number z of zeros function of the rescaling

.... X -X -X
D x 1

2 1 0

D x
2 D

b
3

s 0 b L, b

2

s

--0~-2 -----l y -y -y
0 1 2

Figure 9. Local SFG for Backward FIR

X I
D 2 D i x - x - x --~-----4----r----~~-~--------,

X1 D

2 1 0
I

x

s

I b x

3

b I

2 i 3 3

I
I

l

S I S j s S

1j~j (J+-l +-j j'----. '

! !
y -y -y ---Y----1

0 1 2
I I

Figure 10. Cut Sets for Backward FIR

D' x 1 D' x D' x -x -x 2
2 1 0

L b b2 b x
1 3 3

s 0 D' s2 D' s
D'

~_L y -y -y 04 04 0 1 2

Figure 11. Systolic Backward FIR

30

31

factor. This impacts throughput by a factor of l/Z.

7.l.3 FIR Computational Model

A third example is the case of an SFG that is not

temporally localized. Note that the zero path has not been

removed thus allowing the data to propagate immediately

across the summing path (see Table l). A non optimum

implementation can be derived from this case by noting that

each MA has a given latency and before another input can be

piped in, the system has to wait for the sum to ripple

through all the n MAs. In the case of very large systems the

delay associated with this ripple will slow the clock rate

and thus the throughput.

TABLE l FIR COMPUTATIONAL MODEL TIMING

Xin Xl X2 X3 so Sl S2 Y=S3

l 0 0 0 0 0 0 0

2 l 0 0 0 bl bl bl

3 2 l 0 0 2bl 2bl+b2 2bl+b2

4 2 l 0 3bl 3bl+2b2 3bl+2b2+b3

Table l assumes that the pipe has been previously purged.

7.2. Matrix Multiplication

A systolic architecture can be viewed as the

implementation of a set of recurrence relations by a set of

identical cells. In this example a systolic cell is derived

to compute the matrix product C = A*B. A and B are assumed

to be n x n matrices.

As a general formula each element c is given by:
ij

M
c Sum a * b
ij k=l ik kj

A recurrence formulation for this equation is:

For k = l to M

k k-1 k k
c c + a * b
ij ij i j

where

k k
a = a ; b = b

i ik i ik

with

0
c = 0
i,j

32

Such summations may be evaluated via recurrences by having
k-1

the partial sum c moving through the structure, or by
ij

accumulating partial sums in place. Choosing the latter case

a SFG representation of the function is given in Figure 12.

Note that the delay associated with the partial sum

calculation acts as a small memory element used to store in

place, the result of the summation. Observing Figure 12,

two zero delay paths can be found for each cell. They

correspond to the data paths of input matrixes A and B. A

cut set is identified in Figure 13. Observing that the loop

is cut by the partition, we can apply rule #2 thus advancing

the outbound edges by D'and delaying the inbound edge by D'.

33

Thus, each cut set adds a delay in the A and B paths. The

accumulated delays are added to the inputs of the A and B

paths (see Figure 13). These delays at the array input can

be omitted by adding leading zeroes to the respective A and

B data streams. This timing (leading zeroes) is a start up

condition and can be viewed as an initialization of the

state variables

(Figure 15) .

initialized to

(D's) associated with the data paths

The in place state variable must be

zero. This leads to the PE architecture

shown in Figure 14.

De.

The in place state variable is labelled

Remark that the I/O lines to the PE cin and cout are not

used in this particular array realization. However to

provide with more flexibility as to the future use of this

PE they are included in the realization.

MATRIX B INPUTS

D D D D

Q ~ Q ~
'? M

A D D D D

T

Q Q I?+ Q R LB
x

D D D D

A Q Q Q
N

p D D D D

u Q Q Q Q T

s

Figure 12. Spatially Local SFG for Matrix Multiplication

34

D D

D

D. '' D

D
,'

D D D
--------t M A 1------~--------1 M A ,___ _____ __,M A 1------~---1M A 1-----

D D D D
- - - - - - - - - - -

D D D D
MA MA MA MA

' •

D D D D
- - - - - - - - -

D D D D D , ·
MA MA MA MA

D D D D

1-------:----1 M A 1------------lM A 1----------l M A 1----

D D D D D D

Figure 13. Matrix Systolization Process

35

b in

a in a out
D

D

c in cout

bout

Figure 14. PE. for Matrix Multiplication

b44

b43 b34

b42 b33 b24
b41 b32 b23 b14

b31 b22 b13 a
b21 b12 a a
b11 a a a

a14 a13 a12 a11
c, 4

a24 a23 a22 a21 a

a34 a33 a32 a31 a a

a44 a43 a42 a41 a a a

Figure 15. Array Processor for Matrix Multiplication

36

Because

CHAPTER 3

VERIFICATION OF SYSTOLIZATION PROCESS

of the cost associated with the physical

implementation of VLSI devices; it is important to be able

to simulate the operation of a given architecture, so that

the errors in the design phase can be easily corrected. The

transformed SFG can be verified by analytical techniques or

by simulation. The latter method is the most frequently

used by digital architects. Snapshots of the transformed SFG

reveal not only correctness at the behavioral level, but

also other key measures such as throughput, response time,

PE utilization etc. This chapter presents the development

of a simulator for verifying the correctness of the

systolization process. This newly developed simulation

package will reference some work developed in [2] and uses

the "C" programming language.

1. LANGUAGE SELECTION FOR THE SIMULATION PACKAGE

The selection of "C" is based on many criteria. First

is the fact that the structures of "C" allows for a very

flexible implementation of specific functions and thus the

creation of a library of modelling parts (functions).

Another consideration is the fact that the "C"

language is a fairly new language with

penetration in the scientific and engineer

37

programming

a very fast

world. This

38

should ensure an easier understanding of the coding and

availability of cost effective compilers.

"C" is a programming language that was designed by

Dennis Ritchie of Bell Laboratories. It was created to be

the systems language of the UNIX operating system. Today

the Unix world is ever-expanding and is found widely on

university campuses around the world. Because of its tight

connection to the Unix operating system the "C" programming

language is on the way to becoming one of the most important

programing languages. However, this interconnection to Unix

is not the only reason for the importance of "C". Its

portability, size, elegance and power are other reasons of

its wide success. "C" is easily portable and inexpensive

compilers can be found in the market place (e.g., Borland

turboC sells for under $100) . The portability comes from

omitting system dependent functions from the language.

Libraries are created to include new utilities written to

conform with the constraints associated with the new system.

"C" is a small language which is another advantage when

considering portability as lesser constructs need to be

translated. The language is very powerful as it allows for

any logical combination between structure arrays or

enumeration types. Also a very important feature of "C" is

the ability to perform address arithmetic using pointers.

This allows for very flexible structures as well as great

modularity when programming.

39

2.STRUCTURAL DEFINITION OF THE SIMULATION PACKAGE

The simulation package developed uses the dynamic memory

allocation provided through the proper use of the "C"

library (malloc) in order to increase the speed. Through a

selective use of pointers the efficiency of the coding is

tremendously increased. A reason for the use of pointers is

that the number of inputs is not restricted as it is the

case when using arrays. For instance arrays are bounded by a

specific value while pointers can address an infinite number

of locations.

structures

limitation

are

is

As a consequence any number of data

allowed to be stored in

function of the memory

memory. The

available in

only

the

computer and the storage capacity of the external devices.

Microsoft "C" is used to develop this package.

3.PROGRAM LAYOUT

The simulator is a dedicated one in the sense that once

the simulation requirements are set there is a need to

recompile and assemble the code in order to run a different

environment. However multiple sets of data can be simulated

on a specific system without the need of the recompilation

phase. The input and output to the simulation is achieved by

reading and writing to files structured on a peripheral

device. This is to shorten the input output stages of the

simulation. Also, the user can by the means of another

program create the information (input data) needed to set up

the simulation environment. The output file can be used by

40

many commercially available plotting programs. The user can

in this way obtain an accurate representation of the

results .

The package is divided into three different and

overlapping units : Input -> Processing -> Output. The first

unit deals with the input function where the package creates

the environment for the simulation from an input data file

previously created by the user. This input data file is

named Input.dat and is an ASCII file. The input format will

be defined later. The second unit is the core of the

simulator. In there is found the main program and a small

library of parts that will be used to create the pipe. The

control mechanism is investigated and the data paths are

defined in the main file. The third part is the output of

the results to an output data file identified during the run

of the simulation. As established before, it is a convenient

way to store the data as the user will have a variety of

programs to process and analyze the results. The output of

the simulation may be plotted using a commercial plotting

program such as Omniplot.

4.PROGRAM DESCRIPTION

The programs used in this simulation have been

implemented with provisions to increase the size of the

pipe. Consequently the user can, within the input file,

specify the number of stages within the pipe. The only

restriction associated with the size of the pipe is the

STDIO.H

I
SIM.C - SIMIO.H - PARTS.H - DEF.H

I
CTYPE.H

Figure 16. File Linking Structrure

41

42

memory size of the machine where the simulation is run. The

package consists of four simulation files plus two standard

header files. These files are interconnected through a

selective use of the include statement as shown in Figure

16. From the point of view of the user, the only concern is

to create the right environment within the input data file;

and specify the proper data interconnection paths among the

PEs in the main program. In other words, care must be taken

to type the input.dat file with the correct format (see

section e) and to develop a selected pipe architecture using

the library of parts or new defined PE's. To run the program

the user should type the name of the program that is to be

executed. The results will be found in an output data

file(s) whose name(s) is/are specified during the run of a

program. From a programming point of view a brief

description of each file is given in the following sections.

a)def.h

This file defines the data structures, constants and

indexes used during the simulation. The indexes are

provided for clarity and define a position within the array

structure. A structure data in is used to store all the

information pertinent to the pipe for each clock cycle. The

first field of this structure indicates the time at which

the readings are being taken. In this version of the package

this field will only be used for labelling purposes.

However, future versions may want to include provisions to

43

make it part of the clocking mechanism. The second field

specifies an array of data elements whose size

by the datasize field found in the input.dat

is restricted

file. Two

internal pointers next and prev are then defined and will

be used during the link list process. If necessary they also

can be used to take care of latency constraints associated

with the different PE's in future versions of this package.

However, through the course of this simulation, latency

constraints are not used. The array identified as "bcte"

holds any constant associated with the pipelining process.

Note that label is another array whose function is to hold

character strings that could be used to label the outputs.

It is not used in this version of the simulation package.

b) parts.h

This is the library of parts used to create the

different simulations. Four parts are included

library: a virtual FIR PE (virtfir), a systolic

(forwfir), another systolic FIR PE (backfir) and a

matrix multiplier PE (matmult). This is the core

in the

FIR PE

square

of the

program as the internal architecture of the different PE's

are modelled according to the SFG specifications. All of

the parts are implemented as functions which are called in

the main program. The parameters which are passed reference

first the time frame during which the part is used and the

spatial links used to interconnect the PE function within

the time frame. Also, some specific constants can be passed.

44

In resume the proper format to call a given function is

illustrated below:

function-name(time frame,inconnect(s),cst(s) ,outconnect(s))

The software implementation of a given PE depends on its

specific architecture and data can be moved within the same

structure or a different one when temporal condition are

encountered.

c) simio.h

This file manages the input output section of the

program. It is composed of two different functions getdata

and printdata.

The first function, referred to as getdata, reads data

from an input file properly formatted and stores the data

input in memory to allow for faster computational rates. The

data input file is opened through the use of the statement

fp= fopen("input.dat,"r"). The pointer fp, points to the

file named input.dat and the mode indicated by r states that

the file is open for reading. Using the function fscanf the

data is transferred from the external file into the data

structure

memory of

dynamically

data-in. Through the use of malloc, a block of

the size defined in data-in is allocated

and the starting address of the memory block is

assigned to the pointer, pdata. In order to link those newly

created blocks of memory two internal pointers, next and

prev of each structure, are used. As the name indicates, the

pointer next will have the starting address of the next

45

block of memory. Also, the pointer prev will have the

starting address of the previous block of memory. This

process creates a double linkage between successive

structures. Two extra pointers (HEAD and TAIL) are provided

to indicate the first and last linked memory blocks. The

function getdata is passed with a parameter n that defines

the dimension of the array. An n=l indicates that the data

input is formatted for a uni-dimensional linear array. A n=2

is used to properly read the input data for a n*n 2

dimensional array. If necessary,

be tailored to specific needs.

new reading functions can

A requirement will be to

specify a different passing parameter.

The second function printdata is called with the passing

parameter n (n=l,2,3). Its only objective is to write data

to an output data file. In order to provide the opportunity

to cascade and label a large number of PE's, the titles are

written to the file using a control loop statement. The

arguments of the function fprintf are: l) the pointer to the

file that indicate which file is to be written upon; 2) the

control format that specifies in what fashion the data is to

be written to the output.file and 3) the actual data. For

each value of the passing parameter corresponds a different

output format. A n=l is used for one-dimensional arrays.

While n=2 or n=3 are used for matrix representation. Based

on specific needs, these functions can be tailored to a

different output format.

46

d) Main File

This is the executable part of the simulation package

and a .C extension is given to these files. Four example

files are provided: FORWFIR.C, BACKFIR.C, VFIR.C and

MATRIX.C. Each of these files creates a given pipe structure

by calling the required PE functions and specifying correct

data interconnections. Data interconnections are performed

within control loops that allow for any number of cascaded

PE's as specified in the input.dat file. In the examples the

pipes are composed of identical PE's. However this file can

accept any set of different PE's defined in parts.h and

interconnect them according to the specification of the

pipe. In addition, each file calls the function getdata and

printdata for a proper I/O. If a specific architecture needs

to be examined the user will have to establish the pipe

structure by writing an executable file similar to the ones

provided. The only restriction is to use the PE's developed

in the parts.h file or to add new PE's.

e) Input Data File

This file is only concerned with creating the right

environment for the simulation. It is the responsibility of

the user to follow the format given below. Each field within

a line is separated by a blank space.

LINE l: Type in the datasize (integer). This specifies

the number of external inputs to the array.

LINE 2: Type in the pipesize (integer). This indicates the

LINE 3:

LINE 4:

LINE 5:

LINE 6:

47

number of PE's in the pipe.

Type in the bctesize (integer). This indicates the

number of constants used in the pipe.

Type in the constants (integer) associated with

the simulation.

Type in the clock cycle (integer). This is used for

labelling only. Future versions of this package

will use it to assure a correct clocking mechanism.

Type in the data input (integers). The number of

data inputs is restricted by datasize.

Repeat line 3 until all the data is passed.

File terminator. hit <CR>.

In the case of the matrix array lines 2 and 3 are omitted.

5.DATA STRUCTURE

The data input is stored in an array within the

structure data-in. This stucture is addressed through the

use of the pointer, pdata. The array is initialized with

zeroes and intermediate results are stored at proper array

locations. The time frame pointer pdata is always

incremented by 1. This ensures a clocked process. It is

important to realize that for each clock frame there is an

associated structure containing all intermediate results.

This allows for an accurate representation of the process

for each clock cycle. For clarification, pt->data[#]

indicates which array location within the structure must be

accessed and the data at this location is used in

48

different computations.

When pt->next->data[#] is used it indicates that pt is

pointing to the next structure at the address specified by

data[#]. In short, next points to the data structure for the

next clock cycle.

6.RESULTS

6.1 Finite Impulse Response filter (FIR).

The FIR filter was implemented in three distinct

architectures: a virtual FIR, a forward FIR and a backward

FIR. The terms forward and backward refer to the direction

of the sum propagation.

6.1.1 Virtual Case

The first architecture referred to as the virtual

VIRTFIR includes zero delay paths and is a direct

implementation of the SFG of the FIR. It is a very fast

machine as the data is immediately available at the output.

This can be seen in the output data file by watching the

broadcast of sl across the pipe for clock 1. In this

instance we are assuming that the multiplication-addition

function is performed without delay. This idealized model

is no longer true if the pipe is allowed to grow bigger as

all the latencies of the individual function will be added

and cannot be considered as negligible. The condition of

spatial locality can be observed by watching the data

flowing to the neighboring nodes. The rate of utilization

TABLE 2. VIRTUAL FIR SIMULATION RESULTS

elk XO x1 x2 x3 b1x1 b2x2 b3x3 so s1 s2 s3
1 1 0 0 0 0 0 0 0 0 0 0
2 2 1 0 0 1 0 0 0 1 1 1
3 3 2 1 0 2 1 0 0 2 3 3
4 4 3 2 1 3 2 1 0 3 5 6
5 5 4 3 2 4 3 2 0 4 7 9
6 6 5 4 3 5 4 3 0 5 9 12
7 7 6 5 4 6 5 4 0 6 11 15
8 8 7 6 5 7 6 5 0 7 13 18
9 9 8 7 6 8 7 6 0 8 15 21

10 0 9 8 7 9 8 7 0 9 17 24
11 1 0 9 8 0 9 8 0 0 9 17
12 2 1 0 9 1 0 9 0 1 1 10

49

50

of the pipe is maximal as all the PE's are used for a given

clock cycle. The throughput is one clock cycle (ideal case)

as it takes only one clock cycle to obtain a correct result

at the output of the pipe. When compared to a sequential

machine the speed up is 3. For a better vizualization, refer

to Table 8 . This case was only presented to reference what

would be the ideal case; however, due to delays associated

with the MA's processes it is not wise to implement this

architecture.

6.1.2 Forward FIR

In the systolic model the data is piped cyclically for

both the x's and the sums. As a consequence, no major timing

consideration needs to be addressed except for the fact that

a clock skew may induce some errors if the pipe is very

long. This simulation and the following one illustrate the

fact that different SFG mappings lead to distincts

architectures with different performances. In this case the

two delay path in the x's can be observed in Table 3 by

noting that the first available digit, a l in this case is

passed to xl only at clock cycle #3. Therefore there is a

delay of 2 clock cycles. Also, the one delay in the sum

path can be seen by observing the propagation of the l in

the sums from clock cycle 3 to 5. In terms of performances

the utilization rate of the PE's is maximal as all PE's are

operating at each clock cycle.

once the pipe is filled is

The throughput of the system

one clock cycle. The only

TABLE 3 • FORWARD FIR SIMULATION RESULTS

elk XO xl x2 x3 blxl b2x2 b3x3 so sl s2 s3
1 1 0 0 0 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0 0 0 0
3 3 1 0 0 1 0 0 0 1 0 0
4 4 2 0 0 2 0 0 0 2 1 0
5 5 3 1 0 3 1 0 0 3 3 1
6 6 4 2 0 4 2 0 0 4 5 3
7 7 5 3 1 5 3 1 0 5 7 6
8 8 6 4 2 6 4 2 0 6 9 9
9 9 7 5 3 7 5 3 0 7 11 12

10 0 8 6 4 8 6 4 0 8 13 15
11 1 9 7 5 9 7 5 0 9 15 18
12 2 0 8 6 0 8 6 0 0 17 21

51

TABLE 4. BACKWARD FIR SIMULATION RESULTS

elk XO xl x2 x3 blxl b2x2 b3x3 so sl s2 s3
1 1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 1 0 0 0 0
3 2 0 1 0 0 1 0 0 0 0 1
4 0 1 0 2 1 0 2 0 0 1 0
5 3 0 2 0 0 2 0 0 1 0 3
6 0 2 0 3 2 0 3 0 0 3 0
7 4 0 3 0 0 3 0 0 2 0 6
8 0 3 0 4 3 0 4 0 0 5 0
9 5 0 4 0 0 4 0 0 3 0 9

10 0 4 0 5 4 0 5 0 0 7 0
11 6 0 5 0 0 5 0 0 4 0 12
12 0 5 0 6 5 0 6 0 0 9 0

52

53

difference when compared to the ideal case is the latency of

the pipe which is now 4 clock cycles as compared to only one

clock cycle.

6.1.3 Backward FIR

The need to interleave the input data stream with zeroes

reduces the performance of the machine as a correct output

is available only every two clock cycles. Analyzing Table 4

it can be seen that the utilization rate is reduced to 50%.

A major improvement to this scheme will be to include

provisions for multiplexing so that a full utilization of

the pipe can be achieved. In other words, the PE's that are

not currently used at a given clock cycle create a virtual

path that can be used by another input data stream. It is

easy to see that the performance of the backward case is

lower than the forward case. The result of this

architecture is a lower throughput, a lower utilization

rate, and a speed up of 1.5.

6.2 Square Matrix Multiplier

In this simulation the multiplication of two square

matrix A and B is investigated.

C = A * B

1 2 3 4
A = B = 5 6 7 8

9 10 11 12
13 14 15 16

The result of this simulation can be found in two

independent data files. The first one emphasizes the

concurrent activities in the pipe for a given clock cycle.

TABLE 5. MATRIX SIMULATION SNAPSHOTS

elk time
propagation of matrix A

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

propagation of matrix
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

matrix c
0 0
0 0
0 0
0 0

propagation
2 1
5 0
0 0
0 0

propagation
5 2
1 0
0 0
0 0

0
0
0
0

0
0
0
0

of matrix
0 0
0 0
0 0
0 0

of matrix
0 0
0 0
0 0
0 0

matrix c
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

B

elk time
A

B

1

2

54

elk time 3
propagation of matrix A

3 2 1 0
6 5 0 0
9 0 0 0
0 0 0 0

propagation of matrix B
9 6 3 0
5 2 0 0
1 0 0 0
0 0 0 0

matrix c
11 2 0 0

5 0 0 0
0 0 0 0
0 0 0 0

elk time 4
propagation of matrix A

4 3 2 1
7 6 5 0

10 9 0 0
13 0 0 0

propagation of matrix B
13 10 7 4

9 6 3 0
5 2 0 0
1 0 0 0

matrix c
38 14 3 0
35 10 0 0

9 0 0 0
0 0 0 0

elk time 5
propagation of matrix A

0 4 3 2
8 7 6 5

11 10 9 0
14 13 0 0

propagation of matrix B
0 14 11 8

13 10 7 4
9 6 3 0
5 2 0 0

matrix c
90 44 17 4
98 46 15 0
59 18 0 0
13 0 0 0

55

elk time 6
propagation of matrix A

0 0 4 3
0 8 7 6

12 11 10 9
15 14 13 0

propagation of matrix B
0 0 15 12
0 14 11 8

13 10 7 4
9 6 3 0

matrix c
90 100 50 20

202 116 57 20
158 78 27 0

83 26 0 0

elk time 7
propagation of matrix A

0 0 0 4
0 0 8 7
0 12 11 10

16 15 14 13
propagation of matrix B

0 0 0 16
0 0 15 12
0 14 11 8

13 10 7 4
matrix c

90 100 110 56
202 228 134 68
314 188 97 36
218 110 39 0

elk time 8
propagation of matrix A

0 0 0 0
0 0 0 8
0 0 12 11
0 16 15 14

propagation of matrix B
0 0 0 0
0 0 0 16
0 0 15 12
0 14 11 8

matrix C
90 100 110 120

202 228 254 152
314 356 218 116
426 260 137 52

56

elk time 9
propagation of matrix A

0 0 0 0
0 0 0 0
0 0 0 12
0 0 16 15

propagation of matrix B
0 0 0 0
0 0 0 0
0 0 0 16
0 0 15 12

matrix c
90 100 110 120

202 228 254 280
314 356 398 248
426 484 302 164

elk time 10
propagation of matrix A

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 16

propagation of matrix B
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 16

matrix c
90 100 110 120

202 228 254 280
314 356 398 440
426 484 542 344

elk time 11
propagation of matrix A

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

propagation of matrix B
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

matrix c
90 100 110 120

202 228 254 280
314 356 398 440
426 484 542 600

57

3

;, :.=

.- 1

5

8

10

TABLE 6. MATRIX SIMULATION RESULTS

D --

5

10
· ~ 11

8

i_i

,,

i _ ~

t: ,;., :; t

i)

'i
8 13 if)

i)

')

0

; I
l l.

c 2 : - - ~ c - c 6 -

.,

! / 98
so 116

100 11 (::
l i)!.) 110 120 202 228

90 100 110
~10 120 202 228 254

~'O 100 110 120 i::J2 254

~ - a

I . i .

:)

t 8 ~

0
u 5

- 8 - c10
iJ
i)

-~)

59

280 314 7;::1
-~· -JO

58

15

39:3

398

~12

._,

~ ~ ·-·
0
0

0 13
0 : 4 13

i·-:;

110
116 426 260
24B 426 484

484
184

:d5 a.16

3

i)

137
302

542

0
0
t)

f)

b16

f)

0

i_i

600

59

Table 6 gives snapshots of the data propagation within the

matrix. It is a very convenient way to observe the correct

propagation of the data along the paths as well as the

computational process. It should be noted that this

architecture emcompasses both parallelism and overlap.

This can be seen by observing the cut sets derived in

Figure 13

structure

the wave.

as the data propagates as a wave in the array

and multiple PE's are operating at each edge of

The throughput of the multiplier is 11 clock

cycles.

computed.

This is the time it takes for all the data to be

The

7.CONCLUSION

simulator is a useful tool to observe the

correctness of a given systolic array. It is a very

convenient way to simulate the SFG to architecture step.

However this simulator can be improved by adding new parts

to the library and by creating specific functions that could

give an on screen information of the performances of the

architecture simulated. It is interesting to note that this

program has some common characteristics with a commercial

language OCCAM used to program "off the shelf" array parts

into a specific array architectures.

60

Table 8 : Performance characteristics

ARCHITECTURE CLOCK TROUGHPUT LATENCY SPEEDUP INTERLEAF
MODEL RATE #

Virtual FIR lOMHz lmicros lmicros 3 0
Forward FIR lOMHz lmicros 4micros 3 0
Backward FIR lOMhz 2micros 2micros 1.5 l
Matrix Mult lOMHz llmicros 5micros 0

Future work on this package include writing an

additional program to create the input data file. The main

objective of that program is to prompt the user with the

right sequence of questions, so that the keyed in inputs can

be written directly to the input data file. The output

process should be made more flexible by including provisions

to print in the output data file labels which will have been

previously typed in the input data file sequences. Note that

the label array is already included in the package to

perform this objective. Finally the program should be made

more user friendly by making it menu driven.

CHAPTER 4

CONTROL STRATEGIES

Systolic arrays are based on parallelism and

pipelineability but still emphasize the classical approach

of sequencing the processes by a global clock. Wavefront

array processors in contrast are data driven machines which

means that processes are executed as soon as all operands

are available. This new technique goes one step beyond as

no global clock is required to sequence the operations. As

a result the level of performances is increased.

1. TIMING CONSIDERATIONS

Highly parallel structures consist of many

interconnected PEs operating simultaneously. To have a

proper propagation of the data, some restrictions must be

associated with the control schemes. Systolic arrays use a

global timing scheme while wavefront array processor (WAP)

use asynchronous control schemes based on handshaking

techniques. In the following paragraphs we will address

some of the advantages and limitation of both control

schemes.

1.1 Synchronization in a Globally Timed System

When using a global clock data is rhythmically

along the pipe at a constant frequency. For small

(a few cascaded PE's) this scheme is preferred

61

passed

systems

as the

62

control mechanism is simple,

the PE.

cost effective and external to

However,

clock is

associated

as the system grows physically bigger, a global

difficult to implement because of problems

with clock skew. Clock skew refers to the

problem of a global clock signal arriving at individual PE's

at different times.

in the clock path.

clock signals to

The time differences are due to delays

For instance, the time required for the

propagate on the wires is not

instantaneous. Due to the characteristics of the wire (i.e.,

resistivity, capacitance) a diffusion delay occurs; for

large systems this cannot be ignored. For reference, the

diffusion equation is given below as RC(dV/dt) =

d(dV/dt)/dt. Its solution is complex but it can be stated

that the time for a transient to propagate a distance x is

proportional to x**2. Because of fan out problems a clock

signal is generally distributed in a tree stucture with each

branch consisting of a chain of inverters. Again a problem

can be seen as the propagation delay through each inverter

will cause a clock skew. For large systems those added

delays will cause a collapse of the synchronization.

Therefore synchronous systems present timing problems in the

case of a large array implementation.

l.2 Synchronization in a Self-Timed System

In the self-timed or asynchronous case, each PE starts

to compute as soon as all the incoming data from the

63

previous cells are present at its input. The control logic

associated with this scheme is more complex and is achieved

by handshaking between processors.

A simple two line handshaking scheme includes the

familiar signals, ready (R) and acknowledge (A) • The

transfer of data between two processors is accomplished by

the source processor raising its ready line when data is

available and the target processor raising the acknowledge

line when the data has been accepted. In a WAP, each

processing element "fires" or raises its ready line when all

the operands are ready and the results are available, thus

data flows at a maximum rate. A negligible time T is

contributed by the control mechanism. Thus, the major delays

are due to actual processing times of the processor

elements.

WAP are better suited for large array implementation as

there is no problem associated with clock distribution. It

has the added advantage that the time to propagate from one

cell to the other is independent of the pipe length but

instead depends on the latency of each individual PE;

allowing for a higher throughput rate.

2. WAVEFRONT ARRAY

thus

A wavefront array is a computing network with almost the

same characteristics as expressed for systolic arrays.

64

2.1 Modularity and Local Interconnections

The array consists of a regular set of PEs with local

interconnections. The spatial locality is dictated by

constraints associated with VLSI implementation. The size

of the array can be extended indefinitely as the timing is

not a constraint.

2.2 Control

The sequencing of the data through the system is achieved in

a self-timed environment based on handshaking techniques.

This allows for faster throughput rate as different PE's may

have different latencies. In contrast the maximum clock rate

for systolic arrays is function of the slowest stage in the

pipe.

2.3 Speed up

The speed up is linear as for the case of systolic arrays.

It is important to realize that the condition of

temporal locality is no longer necessary as no specific

timing reference exists in a data driven environment. The

name wavefront array comes from the fact that each PE acts

as a secondary source and is responsible for the propagation

of the wavefront.

3. TRANSFORMATION OF A SFG TO A WAP

An SFG is transformed into a WAP by partitioning the SFG

into interconnected PE's. Delay operators associated with

incoming operands are realized by storage devices within the

65

PE. The PE control mechanism synchronizes the use of inputs

and the availability of outputs.

4. EXAMPLES OF SFG TO WAP TRANSFORMATION

Because a WAP is a direct implementation of an SFG, the

only concern lays with including the correct control

mechanism within the given PE. In other words the

handshaking protocol should be clearly defined. Below is

given the pseudocode of such a controller for an FIR PE.

1. if READY1 = 0 go to 5
else

Latch data
raise ACK1
READY1 = 0
ACK1 = 0

5. if READY2 = 0 go to 1
else

Latch data
raise ACK2
READY2 = 0
ACK2 = 0

READY1 identifies available data on the x line
READY2 identifies available data on the sum line

Systolic

CHAPTER 5

CONCLUSION

arrays are network of processor elements

interconnected in a regular and local manner and

synchronized with a global clock. The importance of

systolic arrays lays in the improved throughput achieved

when computational intensive algorithms are mapped into

these architectures. Systolic arrays are particularly

suited for real time signal processing which provides very

fast data input rates due to to a high sampling frequency.

However, not all real time algorithms are suited for a

systolic implementation. For instance, these algorithms must

be recursive and perform simple and, if possible, identical

operations so that modularity can be achieved. One must

understand that most systolic arrays are hardware

implementations of a given algorithm. Special purpose

systolic arrays are currently being developed but the

complexity associated with the reconfiguration of the pipe

have reduced their cost effectiveness.

Because the structure of the array is strongly dependent

on the recursive algorithm, there is an emphasis on mapping

complex algorithms into SFG's. The advantage of the SFG is a

better understanding of the inherent properties of the

algorithm. Also, this graphical representation lends itself

66

67

to a systolization procedure based on the principle of cut

sets. The systolization methodology was presented in Chapter

2 and resulted in spatial and temporal locality. As noted

in the examples, the condition of temporal locality involved

time rescaling of the inputs and outputs and for some cases

the necessity to interleave the inputs with a number of

zeros.

As it is important to verify the correctness of the data

path through the array structure a simulator using the "C"

programing language was developed. In addition to providing

snapshots of the activity of the pipe, it provides

observation of performances measures such as throughput,

utilization rate, latency and speedup. This is presented in

Chapter 3.

In large systems synchronization problems may arise due

to clock skew. In order to avoid catastrophic

synchronization failures, an asynchronous scheme can be

adopted at a higher hardware cost. In this scheme, also

referred to as self-timed, a given processor

performs its computational requirement on the

condition that all incoming data be present at its

This control mechanism requires the definition

handshaking protocol between PE's. The trade-off

both systems involve cost and efficiency. In a

element

express

inputs.

of a

between

systolic

version, the control mechanism is very simple and thus less

expensive. However the throughput is function of the

68

slowest stage in the pipeline. On the other side, wavefront

array processor, have dedicated control elements within each

PE to perform the handshaking mechanism. The advantage of

these arrays is an improved throughput as it is not

dependent on the delay of one given stage. This advantage

shrinks if the array is implemented with an identical PE.

This could lead to a slower throughput because of the need

to wait for the control mechanism to be finished.

Improvement of systolic arrays performances are strongly

dictated by advances in VLSI/WSI. Their regularity and

modularity provide for very efficient area layouts.

APPENDIX A
TUTORIAL

TUTORIAL

The construction and running of a simulation which uses

a new processing element and a new interconnection scheme is

presented.

1.1 New Processing Element

If a new processing element is needed the user should:

l) Edit the file parts.h and include a software model of the

processor element following the specifications of the signal

flow graph (see Figures 17, 20). The model should respect

the package format (see examples in section 2).

2) Create a main program where the pipe architecture is

specified. This file should be labelled with a .c

extension. The object of this file is to interconnect the

different processor elements, according to a selected pipe

architecture (see example in section 2).

1.2 New Pipe Structure

If a new pipe is desired the new interconnection path ·

should be specified by creating a new main program.

1.3 Running The Program

After editing the proper files the program should be

compiled and linked via a C compiler/linker software

package. Once the executable file is created the user only

needs only to type the file name in order to have a

simulation run. Note that in Simio.h the printdata function

can be customized to have a specific output format.

70

x
in

s
0

20 x

b
1

1

b
2

20 ><s

b
3

s
3

0

Figure 17. Forward Systolized FIR

bin

sin dsin
~-----1

Figure 18. PE for Forward Fl R Filter

Figure 19. Systolic Forward Fl R Filter

71

Y(n)

sout

72

2 Examples

Two examples are presented: -Forward FIR

-Matrix Multiplication

2.1 Forward FIR

The PE architecture is defined in parts.h and the pipe

structure is created in FORWFIR.C

2.1.1 PE Architecture

The SFG model is shown in Figure 17 and the PE

architecture (see Figure 18) is identified by creating the

function forwfir in parts.h. A proper listing of the code is

shown in Table 8.

TABLE 8

1 forwfir(pt,xin,sin,bin,xout,sout,bxout)
2 int xin,sin,bin,xout,sout,bxout;
3 struct data in *pt;

{
4 pt->data[bxout] = bcte[bin] * pt->data[xout];
5 pt->data[sout]=pt->data[dsin]+pt->data[bxout];
6 pt->next->next->data[xout]=pt->data[xin];
7 pt->next->data[dsin]=pt->data[sin];

}

xin,sin,xout,sout,bxout represent data locations within the

array data. Remark that next is a time frame pointer. As a

consequence delays identified in the PE architecture are

implemented using this pointer (see lines 6 and 7). Because

sout is not reused between consecutive time frame the

intermediate delayed value of sin (dsin) can be replaced by

sout. Although it is not a correct representation of the

physical process the software model allows for this slight

transgression.

73

The following comments apply:

Line 1 -The function parameters are identified, they

consist of:

--pt time frame pointer

--xin x input to forwf ir

--sin sum input to forwf ir

--bin an internal constant used in the PE

--xout x output of forwf ir

--sout sum output of forwf ir

--bxout the result of an internal

computation within forwfir

Line 2 -This is a local declaration of the parameter list

Line 3 -This is a local declaration of pt being a pointer to

struct data in

Line 4 -The architecture of the PE is now defined

-bxout = constant * xout

Line 5 -sout = sout + bxout

2D
Line 6 -xout = xin

lD
Line 7 -sout = sin

Remark that lines 4 to 6 give a mathematical representation

of the computational model. Line 6 identifies a delay of two

clock cycles in the x path while line 7 represents a delay

of 1 clock cycle in the sum path.

74

2.1.2 Pipe Structure (main program)

Due to the implementation of the simulator each time

frame contains the total information of the pipe. This pipe

consists of three identical PE's found in parts.h (see

Figure 19). The proper code format is identified below

/* this is the FIR program for the forward case
for bigger pipes define INPUTSIZE as: ((3*pipesize) + 2)

*/
#define INPUTSIZE 11
#define CTESIZE 3
#include "simio.h"
main ()
{
getdata(l);

pt=head;

while (pt->next != NULL)
{
forfir (pt,
forfir (pt,
forfir (pt,

}
pt=pt->next;
}

printdata(l);
}

o, 7, o,
1, 8, 1,
2, 9, 2,

1,
2,
3,

The following comments apply

line 1 define statements

8, 4) ;
9, 5) ;
10, 6) ;

-INPUTSIZE total number of variables in the pipe

-CTESIZE total number of internal constants in the
pipe

line 2 include statements for proper linking

line 3 call getdata to input data

line 4 set pointer to first time frame.

line 5 time frame terminator criterion

line 6 interconnection as follows from the SFG

forfir (pt, O, 7, O, 1, 8, 4)
forfir (pt, 1, 8, 1, 2, 9, 5)
forfir (pt, 2, 9, 2, 3, 10, 6)

75

The interconnections can be seen by observing that xout

for forwfir i is equal to xin for forwfir i+l.

line 7 printdata

To make the pipe structure more general control loops are

included to increase the pipe size as shown in the following

listing.

/* this is the FIR program for the forward case
for bigger pipes define INPUTSIZE as: ((3*pipesize) + 2)

*/
#define INPUTSIZE 11
#define CTESIZE 3
#include "simio.h"
main ()
{
getdata(l);

pt=head;

while (pt->next != NULL)
{
i=O;
k= i + pipesize +1;
l= k + pipesize;
m=O;
for(j=O;j<pipesize;j++)

{
ni = l+i;
nl = 1+1;
forfir(pt,i,l,m,ni,nl,k);
m++;
k++;
i++;
l++;
}

pt=pt->next;
}

printdata(l);
}

D

D

D

c
ij

Figure 20. S F G For Matrix Multiplication PE

b in

a in a out

D

cin cout
D

bout

Figure 21. PE. for matrix multiplication

b44
b43 b34

b42 b33 b24
b41 b32 b23 b14
b31 b22 b13 a
b21 b12 a a
b11 a a a

a14 a13 a12 a11 c,, c, 4

a24 a23 a22 a21 a

a34 a33 a32 a31 a a
a44 a43 a42 a41 0 0 a

Figure 22. Array processor for Matrix Multiplication

76

77

2.1 Matrix Multiplier

The PE architecture is defined in parts.h and the pipe

structure is created in Matrix.c

2.1.1 PE Architecture

The SFG model of an individual PE is shown in Figure 20

the corresponding PE architecture (see Figure 21) is

identified by creating the function matmult in parts.h. A

proper listing of the code is shown in Table 9.

TABLE 9

l matmul(pt,ain,bin,cin,aout,bout,cout)
2 int ain,bin,cin,aout,bout,cout;
3 struct data in *pt;

{
4 pt->data[cout]=pt->data[cin]

+ (pt->data[aout]) * (pt->data[bout]);
5 pt->next->data[aout]=pt->data[ain];
6 pt->next->data[bout]=pt->data[bin];
7 pt->next->data[cin]=pt->data[cout];

}

ain,bin,cin,aout,bout,cout represent data locations within

the array data. The following comments apply :

Line l -The function parameters are identified, they

consist of:

--pt : time frame pointer

--ain horizontal input to matmult

--bin vertical input to matmult

--cin an internal intermediate term used

in the PE

--aout horizontal output of matmult

--bout vertical output of matmult

--cout contains the result of the internal

78

computation within matmult.

Line 2 -This is a local declaration of the parameter list

Line 3 -This is a local declaration of pt being a pointer to

struct data in

Line 4 -The architecture of the PE is now defined

-cout = cin + (aout * bout)

lD
Line 5 -aout = ain

lD
Line 6 -bout = xin

lD
Line 7 -cout = cin

Remark that lines 4 to 7 give a mathematical representation

of the computational model. Lines 5, 6 and 7 identify a time

delays of l clock cycle for each out parameter.

2.1.2 Pipe Structure (main program)

Due to the implementation of the simulator each time frame

contains the total information of the pipe. This pipe

consists of sixteen identical PE's (see Figure 22) found in

parts.h. The proper code format of this main file is shown

below.

/* this program multiplies two square matrix of size n
data input is in integer if the matrix size is going

to be incremented INPUTSIZE is (3*n + 2*n) */

l #define INPUTSIZE 58
l #define CTESIZE 3
2 #include "simio.h"

main ()
{

3 getdata(2);

4 pt=head;

5 while (pt->next != NULL)
{

6 matmult (pt, l, 1,37, 2, 5,37)
6 matmult (pt, 2' 2,38, 3' 6,38)
6 matmult (pt, 3' 3,39, 4, 7,39)
6 matmult (pt, 4, 4,40, 53,8,40)
6 matmult (pt, 5, 5,41, 6, 9' 41)
6 matmult (pt, 6, 6,42, 7, 10,42)
6 matmult (pt, 7, 7,43, 8, 11,43)
6 matmult (pt, 8, 8,44,54, 12,44)
6 matmult (pt, 9, 9,45, 10, 13,45)
6 matmult (pt, 10,10,46,11, 14,46)
6 matmult (pt, ll,ll,47,12,15,47)
6 matmult (pt, 12,12,48,55, 16,48)
6 matmult (pt, 13,13,49,14,17,49)
6 matmult (pt, 14,14,50,15,18,50)
6 matmult (pt, 15,15,51,16,19,51)
6 matmult (pt,

}

7 printdata(2);
7 printdata(3);

}

16,16,52,56,

The following comments apply.

line l define statements

20,52)

-INPUTSIZE total number of variables in the pipe

-CTESIZE reserves space for bcte array

line 2 include statements for proper linking

line 3 call getdata to input data

line 4 set pointer to first time frame.

line 5 time frame terminator criterion

line 6 interconnection as follows from the SFG

matmult (pt, l, 1,37, 2, 5,37)
matmult (pt, 2, 2,38, 3, 6,38)
matmult (pt, 3, 3,39, 4, 7,39)
matmult (pt, 4, 4,40, 53,8,40)
matmult (pt, 5, 5,41, 6, 9,41)

79

matmult (pt, 6, 6,42, 7, 10,42)
matmult (pt, 7, 7,43, 8, 11,43)
matmult (pt, 8, 8,44,54, 12,44)
matmult (pt, 9, 9,45, 10, 13,45)
matmult (pt, 10,10,46,11, 14,46)
matmult (pt, 11,11,47,12,15,47)
matmult (pt, 12,12,48,55, 16,48)
matmult (pt, 13,13,49,14,17,49)
matmult (pt, 14,14,50,15,18,50)
matmult (pt, 15,15,51,16,19,51)
matmult (pt, 16,16,52,56, 20,52)

80

The interconnections can be seen by observing that aout

for matmult i is equal to ain for matmult i+1 and that bout

for matmult i is equal to bin for matmult i+1.

line 7 printdata

To make the pipe structure more general control loops are

included to increase the pipe size as shown in the code

below.

/* this program multiplies two square matrix of size n
data input is in integer if the matrix size is going

to be incremented INPUTSIZE is (3*n + 2*n) */

#define INPUTSIZE 58
#define CTESIZE 10
#include "simio.h"

main()
{
getdata(2);

pt=head;
while (pt->next != NULL)

{
outa= 3*matlength + matsize + 1;
i=1;
j=matlength+1;
k=(2*matlength)+ matsize +1;
for(m=O;m<matsize;m++)

{
for(l=1;l<=matsize;l++)

{
if (l<matsize)

{
ni = i+1;
nj = j+4;

matmul(pt,i,j,k,ni,nj,k);
i++;
j++;
k++;
}

if (l==matsize)
{

}

ni = i+l;
nj = j+4;
matmul(pt,i,j,k,outa,nj,k);
i++;
j++;
k++;
}

outa++;
}

pt=pt->next;
}

printdata(2);
printdata(3);
}

81

APPENDIX B
FAULT TOLERANCE

FAULT TOLERANCE

Because of the intrinsic nature of an array architecture

the overall performance of the pipe must not be affected by

the occurrence of faulty processors. If a fault tolerant

scheme is not devised by the VLSI engineer such occurrences

can be catastrophic for the entire pipeline and will result

in higher costs. The fault tolerant scheme must be resolved

by the VLSI engineer in such a fashion that the overall

performance of the array will not be degraded. A solution

to that problem is to bypass all faulty processors. An

example is given in Figure 23 for the case of a linear uni

direction arraye When a faulty processor is encountered the

data is fed through the bypass register delaying it one unit

cycle time. Thus to the overall system it appears as if the

iteration i was not performed. Another scheme will be to

reroute faulty cells to operating ones during the testing

phase. This solution implies higher costs because of the

rerouting process but will not degrade the performance of

the array. Others schemes exists for different architecture

and it must be the responsibility of the engineer to include

fault tolerance in its final design.

83

I bypass registerl
I I

PE

I bypass register!
I I

a) PE Bypass Register Scheme

b) Array with Fault Tolerance Provision

Figure 23. Fault Tolerance Scheme for Unidirectional Array

84

APPENDIX C

INPUT FILES & PROGRAM LISTINGS

1
3
3 1 1 1
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 0
11 1
12 2
9 9

INPUT DATA FILE FOR FIR SIMULATION
(VIRTUAL AND FORWARD CASE)

86

1
3
3 1 1 1
1 1
2 0
3 2
4 0
5 3
6 0
7 4
8 0
9 5
10 0
11 6
12 0
9 9

INPUT DATA FILE FOR FIR SIMULATION
(BACKWARD CASE)

87

•

88

MATRIX DATA INPUT

8
1 1 0 0 0 1 0 0 0
2 2 5 0 0 5 2 0 0
3 3 6 9 0 9 6 3 0
4 4 7 10 13 13 10 7 4
5 0 8 11 14 0 14 11 8
6 0 0 12 15 0 0 15 12
7 0 0 0 16 0 0 0 16
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 8 8 8 8 8 8 8 8

/* this is the FIR program for the virtual case
for bigger pipes define INPUTSIZE as: ((3*pipesize) + 2)

*/
#define INPUTSIZE 11
#define CTESIZE 10
#include "simio.h"
main ()
{
getdata(l);

pt=head;

while (pt->next != NULL)
{
i=O;
k= i + pipesize +l;
l= k + pipesize;
m=O;
for(j=O;j<pipesize;j++)

{
ni = l+i;
nl = l+l;
virtualfir(pt,i,l,m,ni,nl,k);
m++;
k++;
i++;
l++;
}

pt=pt->next;
}

printdata(l);
}

89

/* this is the FIR program for the forward case
for bigger pipes define INPUTSIZE as: ((3*pipesize) + 2)

*/
#define INPUTSIZE 11
#define CTESIZE 10
#include "simio.h"
main ()
{
getdata(l);

pt=head;

while (pt->next != NULL)
{
i=O;
k= i + pipesize +l;
l= k + pipesize;
m=O;
for(j=O;j<pipesize;j++)

{
ni = l+i;
nl = l+l;
forfir(pt,i,l,m,ni,nl,k);
m++;
k++;
i++;
l++;
}

pt=pt->next;
}

printdata(l);
}

90

/* this is the FIR program for the backward case
for bigger pipes define INPUTSIZE as: ((3*pipesize) + 2)

*/
#define INPUTSIZE ll
#define CTESIZE 10
#include "simio.h"
main ()
{
getdata(l);

pt=head;

while (pt->next != NULL)
{
i=O;
ni pipesize;
k= 2*pipesize;
l= 3*pipesize + l;
m= O;
for(j=O;j<pipesize;j++)

{
nl = 1-l;
backfir(pt,i,l,m,ni,nl,k);
m++;
i = ni;
ni--;
k--;
1--;
}

pt=pt->next;
}

printdata(l);
}

91

/* this program multiplies two square matrix of size n
data input is in integer if the matrix size is going

to be incremented INPUTSIZE is (3*n + 2*n) */

#define INPUTSIZE 58
#define CTESIZE 10
#include "simio.h"

main ()
{
getdata(2);

pt=head;

while (pt->next != NULL)
{
outa= 3*matlength + matsize + l;
i=l;
j=matlength+l;
k=(2*matlength)+ matsize +l;
for(m=O;m<matsize;m++)

{
for(l=l;l<=matsize;l++)

{
if (l<matsize)

{
ni = i+l;
nj = j+4;
matmul(pt,i,j,k,ni,nj,k);
i++;
j++;
k++;
}

if (l==matsize)
{

}

ni = i+l;
nj = j+4;
matmul(pt,i,j,k,outa,nj,k);
i++;
j++;
k++;
}

outa++;
}

pt=pt->next;
}

printdata(2);
printdata(3);

}

92

93

/* FILENAME: SIMIO.H

This is the input output file that reads and writes to
the data files

*/

#include <stdio.h>
#include "parts.h"

FILE *fp,*fpo, *fopen(), *fclose();

linkdata ()
{

}

if (head == NULL)
{
head=pdata;
tail=pdata;
pdata->prev=NULL;
pdata->next=NULL;
}

else
{
pdata->prev=tail;
tail->next=pdata;
tail=pdata;
pdata->next=NULL;
}

getdata(n)
int n;

I*

*I

{
fp = fopen ("input. dat", "r") ;

printf("%s\n","simulation running please wait");

fscanf(fp,"%d", &datasize);

fscanf(fp,"%d", &labelsize);
for(j=O;j<labelsize;j++) fscanf(fp," %s",label[j]);

if (n==l)
{

printf("%s\n","the results are to be found in output.dat");

fscanf(fp,"%d", &pipesize);

fscanf(fp,"%d", &bctesize);

for(j=O;j<bctesize;j++) fscanf(fp, "%d", & (bcte[j]));

head=NULL;
tail=NULL;

while(fscanf (fp, "%d", &c) != EOF)
{

94

pdata = (struct data in*) malloc(sizeof(struct data in));
pdata->time = c;
for(j=O;j<datasize;j++)
fscanf (fp," %d", & (pdata->data [j J)) ;

for(j=datasize;j<INPUTSIZE;j++)
(pdata->data[j]=O);

linkdata();
}

fclose(fp);
}

if (n==2)
{
printf("%s\n","simulation running please wait");

printf("%s\n","the results are to be found in output2.dat");
printf("%s\n","and output3.dat for snapshots");

head=NULL;
tail=NULL;
matsize = datasize / 2;
matlength = matsize*matsize;
while(fscanf(fp,"%3d",&c) != EOF)

{
pdata = (struct data in*) malloc(sizeof(struct data_in));

pdata->time = c;-

}

for(j=O;j<INPUTSIZE;j++) (pdata->data[j]=O);
i =l;
for(j=O;j<matsize;j++)

{
fscanf(fp," %d",&(pdata->data[i]));
i = i+4;
}

k = (matsize*matsize) + l;
for(j=O;j<matsize;j++)

{
fscanf(fp," %d",&(pdata->data[k]));
k++;
}

linkdata();
}

fclose(fp);
}

I* AAA */
/* A OUTPUT SECTION A */
/* AAA */

printdata(n)
int n;

{
if (n==1)

{
fpo = fopen("output.dat","w");

fprintf (fpo, "%5s", "elk");

95

for (j =O; j <=pipesize; j ++) fprintf (fpo, "%4 s%d", "x", j) ;
for(j=1;j<=pipesize;j++) fprintf(fpo, "%2s%d%s%d", "b" ,j, "x" ,j)
for(j=O;j<=pipesize;j++) fprintf (fpo, "%4s%d", "s" ,j);
fprintf (fpo, "\n") ;

pdata=head;

while (pdata->next != NULL)
{
fprintf(fpo,"%5d",pdata->time);

for(j=O;j<INPUTSIZE;j++) fprintf(fpo,"%5d", pdata->data[j]);
fprintf(fpo, "\n");
pdata=pdata->next;
}

printf ("bye bye\n");
}

if (n==2)
{

fpo = fopen("output3.dat","w");
pdata=head;

while (pdata->nex!= NULL)
{
fprintf(fpo,"%30s%3d\n", "elk time",pdata->time);
fprintf(fpo,"%20s\n", "propagation of matrix A");
k=1;

for(l=O;l<matsize;l++)
{

for(j=O;j<matsize;j++)
{
fprintf(fpo,"%5d", pdata->data[k]);
k++;
}

fprintf (fpo, "\n") ;
}

fprintf(fpo,"%20s\n", "propagation of matrix B");
k=matlength +1;

}

for(l=O;l<matsize;l++)
{

for(j=O;j<matsize;j++)
{
fprintf(fpo,"%5d", pdata->data[k]);
k++;
}

fprintf (fpo, "\n") ;
}

fprintf (fpo, "%15s\n", "matrix C");
k=(matlength*2)+5;
for(l=O;l<matsize;l++)
{

for(j=O;j<matsize;j++)
{
fprintf(fpo,"%5d", pdata->data[k]);
k++;
}

fprintf (fpo, "\n") ;
}

fprintf (fpo, "\n");
fprintf (fpo, "\n") ;
pdata=pdata->next;
}

if (n==3)
{

fpo = fopen("output2.dat","w");
pdata=head;
fprintf(fpo, "%5s", "elk");

96

for (j =l; j <=mat length; j ++) fprintf (fpo, "%3 s%2d", "a", j) ;
fprintf (fpo, "\n") ;

while (pdata->next != NULL)
{

k=l;
fprintf(fpo,"%5d",pdata->time);
for(j=O;j<matlength;j++)

{
fprintf(fpo,"%5d", pdata->data[k]);
k++;
}

fprintf (fpo, "\n") ;

pdata=pdata->next;
}

fprintf(fpo,"\n");
fprintf(fpo,"\n");

fprintf (fpo, "% 5s", "elk") ;

}

for (j =1; j <=matlength; j ++) fprintf (fpo, "%3s%2d", "b", j) ;
fprintf (fpo, "\n") ;

pdata = head;

while (pdata->next != NULL)
{

}

k=matlength +1;
fprintf(fpo,"%5d",pdata->time);
for(j=O;j<matlength;j++)

{
fprintf(fpo,"%5d", pdata->data[k]);
k++;
}

fprintf (fpo, "\n") ;

pdata=pdata->next;

fprintf (fpo, "\n") ;
fprintf (fpo, "\n") ;

fprintf (fpo, "%5s", "elk");
for (j =1; j <=matlength; j ++) fprintf (fpo, "%3 s%2d", "c", j) ;
fprintf (fpo, "\n") ;

pdata=head;

while (pdata->next != NULL)
{

}

k=(matlength*2)+5;
fprintf(fpo,"%5d",pdata->time);
for(j=O;j<matlength;j++)

{
fprintf(fpo,"%5d", pdata->data[k]);
k++;
}

fprintf (fpo, "\n");

pdata=pdata->next;
}
printf ("bye bye\n");

97

98

/* FILENAME: PARTS.H */

#include "def .h"

/* This is the library of parts used for parallel processing
simulation. Each part is implemented in a function. Each
processor element is assumed to have a latency of l word

FIR IMPLEMENTATION AND MATRIX MULTIPLICATION

These functions implements a Finite Impulse Response
filter (virtualfir, forwfir, backfir) and a
multiplier (matmult).
*I

virtualfir(pt,xin,sin,bin,xout,sout,bxout)
int xin,sin,bin,xout,sout,bxout;
struct data_in *pt;

{
pt->data[bxout] = bcte[bin] * pt->data[xout];
pt->data[sout]=pt->data[sin]+pt->data[bxout];
pt->next->data[xout]=pt->data[xin];
}

forwfir(pt,xin,sin,bin,xout,sout,bxout)
int xin,sin,bin,xout,sout,bxout;
struct data_in *pt;

{
pt->data[bxout] = bcte[bin] * pt->data[xout];
pt->data[sout]=pt->data[sout]+pt->data[bxout];
pt->next->next->data[xout]=pt->data[xin];
pt->next->data[sout]=pt->data[sin];
}

backfir(pt,xin,sin,bin,xout,sout,bxout)
int xin,sin,bin,xout,sout,bxout;
struct data_in *pt;

{

(FIR)
matrix

pt->data[bxout] = bcte[bin] * pt->data[xout];
pt->next->data[sin]=pt->data[sout]+pt->data[bxout];
pt->next->data[xout]=pt->data[xin];
}

matmul(pt,ain,bin,cin,aout,bout,cout)
int ain,bin,cin,aout,bout,cout;
struct data_in *pt;

{
pt->data[cout]=pt->data[cin]+(pt->data[aout])*(pt->data[bout]);

pt->next->data[aout]=pt->data[ain];
pt->next->data[bout]=pt->data[bin];
pt->next->data[cin]=pt->data[cout];
}

#include <ctype.h>
/* FILENAME: DEF.H

99

This file defines the data structures and constants used
for the simulation. It is the declaration part of the main
program.

*/

#define namesize 20
#define OUTSIZE 10

struct data in
{
int time;
int data[INPUTSIZE];
struct data in *next;
struct data=in *prev;
} data array;

struct data_in *pdata,*head,*tail,*pt;

char a[lO],b[lO],label[l0][12];
int c,i,datasize,labelsize,bctesize,pipesize,ni,nl;
int matsize,matlength,nj,l,m,time,j=O,k,l,m,outa;
int bcte[CTESIZEJ;

APPENDIX D

MODULARIZING AN SFG

Digital signal processing involves the sampling of a

continuous process. This example shows that through the

manipulation of a SFG modularity can be achieved. For the

purpose of the presentation an ARMA filter (IIR) is

presented. The filter transfer function is given by :

N -k
Sum b z

H (z) = k=l k
N -k

1 + Sum a z
k=l k

This equation can be rewritten as

N N
y(n)= Sum x(n-k)b + sum y(n-k)a

k=l k k=l k

It becomes apparent by analyzing this equation that we need

to remember the history of the previous samples in terms of

both output and inputs. As a consequence we need to include

provisions for storage or delay of those values. By

inspection of the algorithm we can derive the direct form 1

flow graph shown in Figure 24. It is important to realize

that the value is broadcast along the nodes. Since the

coefficients b correspond to the numerator polynomial and
k

the coefficients a correspond to the denominator.
k

We can

redraw the S.F.G. as a cascade of the denominator and

numerator circuits. (see Figure 25) . To eliminate the

redundancy in the use of delays we combine the delays as

shown in Figure 26 . By inspection we can redraw this last

101

102

figure to come to the representation shown in Figure 27.

At this stage of the design we need to apply the

systolization procedure in order to have a localizable

S.F.G.

First we redraw the circuit as shown in Figure 28. This is

a straight representation of Figure 27. Given the fact

that the array is regular; cut sets can be selected (dashed

lines in Figure 29. Applying the localization rules we need

to rescale the delays associated with the representation

assume D' = 2D. Now by subtracting one delay to the left

bound edges and adding one delay to the right bound edges we

yield to Figure 30. This complete the systolization

procedure as we have locality in both time and space.

X(n)

D
b1

X(n -1)

D
b2

X(n - 2)

. bN-1:
X(n-N+~) [;]. :

bN
X(n- N)

a1

a2

a N - 1:

=

D

Y(n -1)

D

Y(n -2)

Y(n-N+1)

D

Y(N - N)

Figure 24. S.F.G. Arma Filter Direct Form 1

X(n) Y(n)

D
a1 b1

D
a2 b2

Figure 25. First Manipulation of the SFG

103

-
...... " ~

a b
1 1

- , .
L

•r rA"

a2 b2

- ,
~ ... ~ ~ ...

t I bn J

Figure 26. SFG Direct Form 2.

x(~

I

D ~~~'~-D~J-------.--~1
ao I

r-----~G

D

b n bn - 1 bO

y(n)
+

Figure 27. Linear Representation of Figure 26

104

X(n) 0

Y(n)

X(n)

1
Y(n)

~

X(n)
.
~

Y (n)
~ -

0 0

a2 al

b2 b 1

Figure 28. Arma Filter Cut Set

20' 20'
~ I ~

~ ~

a2 a 1

,,_ ,,_
-

b2 b 1

I
I
I ,._ ,[.,

I - -

I
2 O'j

I
I
I

I

ao

bO

.

ao

,,
bO

Figure 29. ARMA Cut Set & Time Rescaling

O' O' O'
. .

~ . I .
I ao a2 I al

O' O' I O'
,"- I •r.. ,,

I I -
!

bO
b2 I b 1

i I
I I

I O' I O' O'
I I ... ,.,_

~ -

Figure 30. Systolic ARMA Filter Array

105

,,

"

REFERENCES

[1] De Man,H.; Rabaey,J; Six,P.; and Claesen,L. "Cathedral-2
A Silicon Compiler for Digital Signal Processing",
EEE ASSP, December 1986.

[2] Denyer,P. and Renshaw,D. VLSI Signal Processing: A
Bit Serial Approach, Addison-Wesley Publishing
Company, 1985.

[3] Fisher,A. and Kung,H.T. "Synchronizing large VLSI
processor arrays", presented at the 10th. Annual
International Symposium on computer architecture, 1983,
Stockolm, Sweden.

[4] Franklin,M. and Wann,D. "Asynchronous and clocked control
structures for VLSI based interconnection networks",
presented at the 9th Annual Symposium on Computer
Architecture, April 1982, Austin, TX.

[5] Glasser,L.A. and Dobberpuhl,D.W. The design and analysis
of VLSI circuits, Addison-Wesley Publishing
Company, 1985.

[6] Hwang,T. and Briggs,F. Computer Architectures and
Parallel Processing, New York: Mc Graw-Hill, 1984.

[7] Kung,S.Y. "VLSI Array Processors", IEEE ASSP,
pp. 4-22, July 1985.

[8] Kung,S.Y. "On Supercomputing with Systolic/Wavefront .
Array Processors", Proceedings IEEE, Volume 72,
Number 7, pp. 531-548, July 1984.

[9] Mead,C. and Conway,L. "Introduction to VLSI systems",
Addison-Wesley Publishing Company, 1980.

[10] Savitzky,T.Real time signal microprocessor systems,
Van Nostrand Reinhold Company, New York, 1985.

106

	Real Time Signal Processing Using Systolic Arrays
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENTS
	iii

	TABLE OF CONTENTS
	iv
	v

	LIST OF TABLES
	vi

	LIST OF FIGURES
	vii
	viii

	INTRODUCTION
	001
	002

	CHAPTER l. REAL TIME SIGNAL PROCESSING USING ARRAYS OF PROCESSORS
	l. APPLICATIONS IN SIGNAL PROCESSING
	2. DIGITAL SYSTEMS ARCHITECTURES FOR SIGNAL PROCESSING
	003
	004

	3. DIGITAL SIGNAL PROCESSING AND VLSI TECHNOLOGY
	005

	4. TYPES OF VLSI ARRAY STRUCTURES
	006
	007
	008
	009
	010
	011

	5. EFFORTS IN THE DESIGN OF ARRAY PROCESSING SYSTEMS
	012

	6. TASK DESCRIPTION
	013
	014

	CHAPTER 2. ALGORITHM TO ARCHITECTURE
	1. ALGORITHM TO ARCHITECTURE METHODOLOGY
	015

	2. REPRESENTATION FORMS OF THE COMPUTATIONAL MODEL
	016
	017

	3. EXAMINATION OF A SFG FOR SYSTOLIC ARRAY IMPLEMENTATION
	018
	019
	020

	4. MODULARITY
	021

	5. MEASURE OF PERFORMANCES
	022

	6. SYSTOLIZATION PROCEDURE
	023
	024

	7. EXAMPLES
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036

	CHAPTER 3. VERIFICATION OF SYSTOLIZATION PROCESS
	1. LANGUAGE SELECTION FOR THE SIMULATION PACKAGE
	037
	038

	2. STRUCTURAL DEFINITION OF THE SIMULATION PACKAGE
	3. PROGRAM LAYOUT
	039

	4. PROGRAM DESCRIPTION
	040
	041
	042
	043
	044
	045
	046

	5. DATA STRUCTURE
	047

	6. RESULTS
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058

	7. CONCLUSION
	059
	060

	CHAPTER 4. CONTROL STRATEGIES
	1. TIMING CONSIDERATIONS
	061
	062

	2. WAVEFRONT ARRAY
	063

	3. TRANSFORMATION OF A SFG TO A WAP
	064

	4. EXAMPLES OF SFG TO WAP TRANSFORMATION
	065

	CONCLUSION
	066
	067
	068

	APPENDIX A. TUTORIAL
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081

	APPENDIX B. FAULT TOLERANCE
	082
	083
	084

	APPENDIX C. PROGRAM LISTINGS
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099

	APPENDIX D. MODULARIZING AN SFG
	100
	101
	102
	103
	104
	105

	REFERENCES
	106

