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ABSTRACT 

The use of an accepted logical database design tool, Entity-Relationship-Diagrams 

(E-RD), is explored as a method by which conceptual and pseudo-conceptual knowledge 

bases may be designed. Extensions to Peter Chen's classic E-RD method which can model 

knowledge structures used by knowledge-based applications are explored. 

The use of E-RDs to design knowledge bases is proposed as a two-stage process. 

In the fust stage, an E-RD, termed the Essential E-RD, is developed of the realm of the 

problem or enterprise being modeled. The Essential E-RD is completely independent of 

any knowledge representation model (KRM) and is intended for the understanding of the - 

underlying conceptual entities and relationships in the domain of interest. The second 

stage of the proposed design process consists of expanding the Essential E-RD. The 

resulting E-RD, termed the Implementation E-RD, is a network of E-RD-modeled KRM 

constructs and will provide a m~thod by whichthe proper KRM may be chosen and the 

knowledge base may be maintained. In some cases, the constructs of the Implementation 

E-RD may be mapped directly to a physical knowledge base. 

Using the proposed design tool wiuaid in both the development of the knowledge 

base and its maintenance. The need for building maintainable knowledge bases and 

problems often encountered during knowledge base construction will be explored. 

A case study is presented in which this tool is used to design a knowledge base. 

Problems avoided by the use of this-method are highlighted, as are advantages the method 
I 

presents to the maintenance of the knowledge base. Finally, a critique of the ramifications 

of this research is presented, as well as needs for future research. 
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INTRODUCTION 

Although the topic of knowledge base and database integration has recently been 

an area of considerable research fiom both fiom academia and industry, for the most part 

this research has failed to integrate conceptual database design principles into the design 

of knowledge bases. 

The need for such a design methodology in the knowledge base system world is 

inarguably a real one. The design of knowledge-based systems (KBS) and their underlying 

knowledge base management systems (KBMS) suffers from a lack of a de facto standard 

methodology (Gonzalez and Dankel 1993). This lack of a methodology can lead to a 

paradigm shift, in which, during the development of the KBS, the developer must shift to 

a new technology. (Gonzalez and Dankel 1993) This paradigm shift is caused when the 

initial selection of knowledge representation model (KRM) can not adequately perform its 
\ 

intended function. This represents perhaps the most serious problem in KBS 

development. However, there are other inherent problems, as described in (Gonzalez and 

Dankel 1993). One problem lies in the difference between solving traditional information- 

system problems and heuristic-oriented problems. The data needed for algorithmic 

problems can be determined fairly easily, while in the case of knowled_ :-based systems, 

sometimes the "nature and quantity" of the knowledge isn't known even by the experts. 

The process of knowledge acquisition can thus proye to be fairly frustrating. One of the 

underlying reasons for this, claims Earl Cox, a columnist for AI Expert,' is a common 

perception that A1 is commonly defined in "terms of ever more advanced knowledge 

representation schemes devoid and divorced from fundamental architectural and design 



considerations." (Cox 1993) The lack of any recognized conelation between A1 and 

conventional systems has lead to "confusion in aims and directions" of A1 in the 

marketplace (Cox 1993). Clearly, there is a need to apply sound, established traditional 

software development principles to A1 system development 

The attitudes and mindsets of KBS developers are perhaps part of the problem. 

The roots of database research lie primarily in the "commercial sector's need for efficient 

and secure data processing systems." (Jelly and Gray 1992) Free from this requirement 

which would restrict research to mostly commercial applications, early KBS researchers 

developed an almost "renegade" approach to application development. Indeed, as Cox has 

pointed out, "there does seem to be a general consensus among knowledge engineers that 

A1 is somehow completely removed from computer science, systems design, and 

functional decomposition." (Cox 1993) 

Another viewpoint of this problem is stated in (Cohen 1990). K-l Cohen blames 

much of the problem on the lack of qualitative vice quantitative research in AI. He states, 

"Much work is unevaluated and most evaluations are limited to measures of performance. 

System design appears arbitrary and, when justifications do appear, they are 

informal ... Evaluation tends to be limited to performance evaluation, instead of tests of 

hypotheses of how behavior arises from the interaction of agents' architectures and their 

environments." Cohen goes on to describe what he terms the "strip mining" view of A1 

research. "A1 researchers trash the space of questions about intelligence in much the same 

way that slash-and-burn cultures trash the rain forest. Both make very inefficient use of 

resources." As an example of "strip mining," Cohen points out the following: "The 
I 

statement 'X is sufficient to produce Y' alleges but does not model or explain the alleged 

causal relationship between X and Y . . . Demonstrating that X is sufficient to produce Y 

does not show that X is a particularly good way to produce Y, or that X is necessary to 



produce Y." This problem is very similar to the "nature and quantity" dilemma discussed 

above. 

Quality has become somewhat of a buzzword in industry (e.g., "Total Quality 

Management1'.) As knowledge-based systems in specific and A1 systems in general come 

out of the research lab and into the mainstream of the marketplace, the quality of these 

systems must be taken into consideration. It is pointed out in (Fenn and Veren 1991) 

that "aaherence to a software engineering methodology and development lifecycle can 

significantly improve the quality of a completed system." Earl Cox has stated that 

"successful A1 projects combine quality with concems for economical solutions." (Cox 

1993) 

As the maintenance portion of any software project lifecycle has historically been 

the costliest, a design technique should provide for maintenance in order to supply quality 

to the project (Ignizio 1991), (Parsaye and Chignell1988), (Debenham 1992). 

To a great extent, these same problems or similar concems can be seen in 

. traditional database application development efforts. Semantic data models have been 
\ 

used as a design tool to solve these problems. Of all the semantic data models, Peter 

Chen's entity-relationship (E-R) model has become the most popular, due to a great extent 

to the popularity of the E-R diagram (E-RD), a graphical companion to the E-R model. 

(Date 1990) 

Applying Peter Chen's classic E-R-diagramming technique, or some variation 

thereof, to the design of a knowledge base (regardless of the knowledge representation 

technique used by the KBS) provides the developer with a proven methodology to ensure 
\ I 

a more intelligent design. By developing E-RDs early in the development life-cycle of the 

KBS, designers can avoid the knowledge representation paradigm shift by determining the 

proper representation a prion' implementation. Having a well-defined E-RD of the 



knowledge base can also aid in maintaining the KBS. The effects of adding new 

knowledge or modifying existing knowledge can quickly be determined by consulting an 

E-RD. 

This thesis proposes the use of entity-relationship diagrams as a design tool for the 

development of knowledge base systems. More specifically, a two-stage process is 

proposed in which a traditional E-RD, called the Essential E-RD, is developed based on 

the conceptual knowledge base as the first stage. This E-RD serves to identify the 

conceptual entities and relationships of the knowledge realm; In the second stage, the first 

E-RD is expanded to model the knowledge structures via extended E-RD structures. The 

resulting E-RD is called the Implementation E-RD. These E-RD structures, for the most 

part, have already been proposed in earlier bodies of research as development aids for 

DBS applications, although additional structures are proposed herein to better model 

knowledge concepts. 

The use of a semantic data model is defended as a combination of the latter two 

levels of the three-level of integration of databases and knowledge bases. The first level, 
7 

the physical layer, involves utilization of database management systems (DBMSes) to 

physically store the knowledge of a KBS, and the integration of traditionally KBS-oriented 

features into DBMSes. The second level, termed the pseudo-conceptual layer, starts to 

apply conceptual DBMS design methodologies into the design of a knowledge base. In 

this layer, the design is presented for a c e h  KRM only. At the conceptual layer, 

database design techniques are proposed for the design of the conceptual knowledge base, 

independently of a specific KRM. 
\ I 

As knowledge bases continue to grow, they will undoubtedly require a great deal 

of support from databases. Many expert-system shells now offer fiont-ends to popular 

database engines. Likewise, 'as database applications become more complex, they will 



require intelligent features from knowledge based systems. An example of this is ongoing 

research in the database community of implementing business rules into databases and 

database applications. These rules, defined as "constraint(s) placed upon the business" 

(Moriarty 1993), have a five-stage design process very similar to the design process of 

KBSes. A reason expert systems fail is that they aren't integrated into the corporate 

computing architecture. "A high percentage of expert system programs result in a 

successful prototype from a technical point of view but fail to produce a system which is 

integrated into an organization's mainstream operational environment" (Fenn and Veren 

1991). The corollary of this statement may also well be true; that is, the knowledge bases 

of intelligent systems are not being utilized by the "mainstream" corporate applications. 

This work serves as an important step in bringing the two camps together. 



LITERATURE REVIEW 

Research for' this thesis was necessarily performed from two separate but 

complimentary viewpoints. Experts from both the database realm and the knowledge base 

realm have written extensively on issues similar to the ideas proposed herein. 

Databases and knowledge bases share many similarities. Both serve to store the 

data necessary to make their respective systems perform. Both have established physical 

structures designed to optimize the retrieval of that data. Both have certain relationships 

between their logical design and their physical design. The union of databases and 

knowledge bases can be divided into three levels: the physical level, the pseudo- 

conceptual level, and the conceptual level. While the conceptual and the pseudo- 

conceptual levels are the primary concern of this paper, a review of all three levels will 

help establish a better baseline for the main premise to be presented later. 

The physical level represents the lowest level of abstraction in the integration of 

databases and knowledge bases. At the physical level, research has focused on many 

areas. Those areas discussed here will consist of: 
. 

Storingretrieving knowledge inlfrom a database management system (DBMS), 

Adding traditional expert system features to DBMSes, and 

Interfacing database systems (DBSes) and KBSes. 

Frank Anger, Rita Rodriguez and Douglas Dankel have co-authored a series of 

papers on organizing expert systems' knowledge bases using databases and database 

design techniques. They liave proposed utilizing a commercial relational DBMS 



(RDBMS) to store the rules of an expert system's knowledge base (Rodriguez et. al. 

1989). Their proposal calls for three RDBMS relations, or tables, to implement the 

knowledge base. The first, named IF, consists of the fields rule#, ass&, and assrtdescr. 

The second table, THEN, is also made up of the fields rule#, ass&, and assrtdescr. To 

,track confidence, an integral part of rule-based systems, the table RULE-CONF is defined 

to consist of the fields rule# and con$ These fields are described as such: 

rule# - a unique identifier of the rule 
assrt# - a unique identifier of an assertion 
assrtdescr - the textual description of the assertion 
c o d -  a number which represents the confidence in the deduction 

In this design, both the IF and THEN tables have a composite primary key consisting of 
- 

the fields rule# and assrt#, while RULE-CONF uses rule# as its primary key (Rodriguez 

et. al. 1989). 

The same paper also details the addition of procedural knowledge via a Oigger 

relation. This table, called TRIGGERS, includes as a foreign key the field assrt#. When 

the inference engine fues a rule which involves assertion N, the system queries 

TRIGGERS to determine whether any procedures are to be invoked. An additional table, 

PROCEDURES (whose primary key pname is also a foreign key in TRIGGERS), 

contains the action to be performed (Rodriguez et. al. 1989) (Anger et. al. 1988). 

An additional step in this direction has been proposed in (Ito 1991). Ito proposes 

a coupling of KBSes and DBMSes. Since the reconstruction of an existing database to 

perform the task of knowledge base manager is "burdensome", Ito suggests the 

knowledge 'representation scheme (KRS) provide the mechanisms required for coupling. 

Called IKD (Interface for integrating a Knowledge-based system and a Database system), 

the system serves as the interface between a KRS called KBUS and a relational database. 



KBUS is composed of a frame-based system called FKBUS and a production system 

called PKBUS, in addition to IKD. FKBUS consists of several frames and sub-frames 

which include, among other items, actual SQL (Structured Query Language) code to 

retrieve knowledge from the database. In summary, Ito's paper proposes a knowledge- 

based system which uses a frame-based subsystem to retrieve knowledge from an SQL- 

compliant relational database. 

Levent Orman of Cornell University proposed in (Orman 1992) that a three-layer 

abstraction ("external ", "conceptual" and "internal" layers) of knowledge bases be 

developed, with each layer targeted to a specific user type. At what Orman calls the 

"internal level", targeted to system implementers, rules are to be "viewed as data." An 

interesting point of Orman's proposal is the case he makes for hierarchical databases to 

store rules, as opposed to the relational database approach championed in (Anger et. al. 

lYSS), (Rodriguez et. al. 1989) and (Ito 1991). As a discussion of which database model 

is most suited for the storage, retrieval and management of knowledge constructs is 

beyond the scope of this paper, the point is simply made that (Orman 1992) provides a 

strong case for the physical level of abstraction of databasebowledge base integration. 

Industry has also conbibuted to the physical level of DBMS/KBS unions. Many 

relational databases now supply triggers, which supply a primitive method of supplying 

rule-based processing. A trigger is defined to be invoked on a certain action or condition 

(cf., trigger relations, (Rodriguez et. al. 1-989) (Anger et. al. 1988)). Unfortunately, 

triggers generally must be written in SQL, which doesn't provide the flexibility required to 

add true intelligence to a database. Sybase, Inc., an innovator in client-server RDBMS 

engines, has included the capability for "stored procedures" which can add a further level 

of intelligence to a database by defining certain processing to occur based on user-defined 

events.' These stored procediues, which are compiled and execute on the server side of 



database applications, allow more efficient processing than triggers. The influx of client- 

server database engines has provided another opportunity for DBMSIKBS unions. A 

query can be passed through a KBS on the client side before issuing the SQL code to the 

server side. ~ngress; the relational DBMS fiom Ask Computer Systems, has improved this 

process by supplying a knowledge management module as an add-on. This module allows 

for the incorporation of rules into applications which use the database (Jenkins'and 

Grygo 1991). 

The layer of abstraction referred to here as "pseudo-conceptual" is somewhat 

harder to define. In this work, the pseudo-conceptual layer will refer to a level of 

integration of knowledge base design and database design in which one particular 

knowledge representation scheme is modeled via traditional logical database design 

techniques. At this level, the semantic model becomes of more importance than the 

syntactic model. 

In addition to the physical layer examined above, both (Anger et. al. 1988) and 

(Rodriguez et. al. 1989) contain a certain amount of work in the pseudo-conceptual 

layer. KBS developers can use E-R diagrams to model rule bases in much the same way 

as databases are modeled. More specifically, their proposal states that "simple assertions 

of the rule base are viewed as one entity type and the rules as another, with IF and THEN 

being relationships between these types." (Rodriguez et. al. 1989) Using this method will 

capture "the information contained within the rules.:' (Rodriguez et. al. 1989) 

At Orman's "external level", targeted to end-users of KBSes, rules are depicted 

graphically (Orman 1992). Orman proposes the use of labeled arcs to represent 

relationships between data' items represented by points. Cardinality concepts (e.g., 



SOME, UNIQUE, EACH) are given graphical constructs as well. As in the previous 

references, though, the graphical representations are limited to applications to rules, thus 

fitting the definition of the pseudo-conceptual level. 

The differences between the physical and the pseudo-conceptual layers cited in the 

same works are significant. The. first set of references to (Anger et. al. 1988). 

(Rodriguez et. al. 1989) and (Orman 1992) examined the proposal to take actual rules 

and stbre them in a database. In the second set of references to these same three papers, 

emphasis is placed on taking an existing knowledge base (in all three cases, a rule base) 

and modeling its semantics via some graphical methodology. Thus, it is the pseudo- 

conceptual level of databasebowledge base integration at which one can first see an 

attempt to integrate semantic principles of the two techniques. 

At the level of abstraction of KBS-DBS integration referred to as the conceptual 

level, the particular inferencing technique becomes of secondary importance to the 

conceptual knowledge schema, in much the same way as the physical database model is of 

less importance than the logical database schema during the logical design phase of 

database design. Although previous work has failed to hone in on this level to the extent 

it has the other two levels, recent literature has seen a trend of research on this level. One 

example is (Mattos 1989), in which semantic data models and knowledge representation 

models are characterized as being composed of several abstraction concepts, including 

classification, generalization, inheritance, element, and set association, and element and 

component aggregation. Mattos further argues that each of these' main concepts 

(classification, generalization, association and aggregation) has inherent reasoning 

facilities. Additionally, (oebenham 1992) presents an argument for building a 



"maintainable" knowledge base around Horn clause logic (essentially, a rule-based system) 

which would, by definition, place his methodology at the pseudo-conceptual level. 

However, he does defend his approach as being independent of KRS by pointing out that 

"as, long as  the kno.wledge hasbeen modeled rigorously and...this model of the knowledge 

has been normalized," it "really doesn't matter what language is used to actually implement 

the knowledge.'' (Debenham 1992) In (Feldman and Fitzgerald 1985) the poht is 

made that, while knowledge based systems represent a newer discipline than more 

traditional information systems, both share common problems in the area of "knowledge 

representation and acquisition", more than in "technical aspects of programming 

methods." This common area of concern clearly points to a high level of abstraction in the 

marriage of the two areas. 

Again, the difference between the conceptual level and the pseudo-conceptual level 

is significant: at this higher level of abstraction, any restriction on inference technique is 

removed, and the problem becomes one of actually modeling a conceptual base of 

knowledge with a semantic data model. In (Borgida 1991), the point is made that in the 

database world, more emphasis is placed on "modeling the human conceptualization" of 

the knowledge domain, while the knowledge base world has just now begun to investigate 

modeling the conceptual schema vice "modeling the physical storage structures." 

In summary, previous examinations of the union of DBSes and KBSes can be 

separated into three layers of abstraction: physical, pseudo-conceptual and conceptual. 

The physical layer is the layer at which databases are used to physically manage 

knowledge, and at which intelligent features we added to DBMSes. The pseudo- 

conceptual layer begins to examine the use of database design techniques, but generally 

limits their use to one specific KRM. The most abstract layer, the conceptual layer, 

suggests the use of database design techniques for any and al l  KRMs. A combination of 



the pseudo-conceptual and conceptual layers will provide the basis for the proposal of this 

thesis. 

The KADS methodology has become the most notable KBS design methodology 

since its origin in 1983 as an ESPIRIT project. Many of the same concerns expressed in 

this i o rk  are also expressed in (Hick- et. al. 1989), which is probably the definitive 

English-language text on the methodology. One such concern is based on the traditional 

KBS development method, that of rapid prototyping . "(Rapid proto typing) provides very 

little in the way of support for management issues, which are crucial to successful project 

control." The authors go on to point to the "deliberate confusion between process and 

data" as a deficiency in conventional software development methodologies for KBS 

development. The text claims that entity modeling is not appropriate for KBS 

development because the process of assigning entities to the real world problem is cliflicult 

and the process of assigning attributes to those entities is "very difficult indeed." One item 
\ 

that truly separates the KADS methodology and the other references cited here is that the 

KADS' methodology makes no attempt to integrate knowledge bases and databases, nor 

does it attempt to separate the knowledge base from the KBS at the logical level. 

Knowledge Base M a t e ~ c e  I JSiag D m e  T- 

Additionally, recent research has centered on the area of knowledge base 

maintenance, and how database design principles can assist. The importance of 

normalizing knowledge and applying constraints, including the referential integrity 

constraint, has been discussed in (Debenham 1992). (The concepts will be discussed in 

detail later.) Debenham's ' work presents three models: the Lata model, the information 



model, and the knowledge model. Basically, the data model is based on the real world 

realization of the problem, and corresponds roughly to a semantic data model. The 

information model is analogous to the metadata of a relational database schema, while the 

knowledge model consists of details about ,the knowledge representation structure. The 

data model drives the information model, which in turn drives the knowledge model. 

Debenham suggests normalization be performed at the data model as it is the easiest to 

normalize. In addition, non-normalized entities at the data model level can cause a 

"proliferation" of non-normalized entities at the higher levels. Knowledge base 

maintenance becomes more manageable with a normalized model, Debenharn argues, since 

all inter-relationships between the component items can be determined more quickly. In a 

similar manner, Debenham defends applying constraints to the knowledge base (on al l  

three models) as a means to ensure efficiency in the maintenance process. 



KNOWLEDGE REPRESENTATION 

Just as there are several database models (e.g., relational, network, hierarchical), 

likewise 'are there several different knowledge representation models. The most common 

knowledge representation models are 

Rules 

Frames 

Semantic, or Associative, Networks 

Object Orientation 

The inclusion of object orientation as a knowledge representation model could be 

somewhat debatable; however, when examined at the very basic level, one can see 

similarities between a frame-representation scheme and an object oriented approach. In 

addition, object orientation is seen as a means by which intelligence c k  be added to 

databases; thus it is included herein as a separate model. Each of these models will be 

examined $I detail to determine what features a modeling tool must provide in order to 
\ 

model their structures. 

Rule-based systems are the most commonly known of all KRMs. A rule consists 

of two parts, a premise and a conclusion. Rules are generally expressed either as an "IF- 

THEN" relationship (e.g., IF it is August, THEN we will have a thunderstorm) or vice 

versa (We will have a thunderstorm IF it is August.) Any number of ANDs, ORS or 

NOTs can be appended to the premise (IF it is August AND we are in Central Florida OR 

NOT (I have mowed my yard), THEN we will have a thunderstorm) 



A frame-based system collects related knowledge into sets of attribute-value (or 
_ _  - -* 

slot-filler) pairs called frames. The fillers are often subdivided into facets, each of which 

has its own value (Conzalez and Dankel 1993). Facets may include range, default value, 

and daemons, procedures which execute upon a pre-defined condition. Frames are ordered 

in the knowledge base into a hierarchy with IS-A links between the nodes (Hodgson 

1991). inheritance plays a major role in frame-based systems as children frames tend to 

inherit values from parent frames. Using the structure set forth in (Gonzalez and Dankel 

1993), a frame detailing storm types could be depicted as: 

Generic STORM Frame 
Specialization-of: WEATHER 
Generalization-of: (THUNDERSTORM, HAILSTORM, SNOWSTORM) 
Precipitation: 

Range: (NONE, RAIN, ICE, SLEET, SNOW, HAIL) 
Default: (RAIN) 

Wind-Speed: 
Range: (0- 150) 

Warning-Type: 
Range: (NONE, WATCH, WARNING) 
If-Needed: (WATCH-WEATHER-CHANNEL) 
If-Modified: (ALERT-MEDIA) 

Lightning-Presence: 
Range: (NONE, LIGHT, MEDIUM, HEAVY) 
If-Modified: (CHECK-FOR-THUNDERSTORM) 

This example illustrates classification (Specialization-of and Generalization-on, 

from which inheritance generally arises, ranges and defaults, and daemons ($Modified, @ 

Needed). The STORM frame will inherit properties of the WEATHER kame, while 

THUNDERSTORM, HAILSTORM and SNOWSTORM will inherit properties of the 

STORM frame. 

Associative networks, originally termed semantic networks, were developed to 

represent knowledge in natural language I sentences. Their use has gown beyond 

semantics to encompass physical and causal associations (Gonzalez and Dankel 1993). 



Associative networks are basically directed graphs whose nodes represent concepts and 
_ - -  

whose linksSrepresent associations between the concepts. These associations can take on 

many different meanings; classification (instance-of), generalization (is-a) and aggregation 

(part-of) are three of the more common and important association types (Mattos 1991). 

Object-orientation (00)  can arguably be presented as a knowledge representation 

scheme: Its inclusion here is an acknowledgment of the capability of 00 to add 
. , 

intelligence to databases. The world of objects has grown to include object-oriented 

programming (OOP), object-oriented analysis and design (OOA and OOD), and object- 

oriented databases management systems (OODBMS). While each of the three has its 

own features which are not crucial to this thesis (e.g., the concept of dynamic binding in 

OOP), all object-oriented approaches share common features, including inheritance, 

polymorphism and encapsulation. Inheritance in 00 is identical to inheritance in frame- 

based systems. Polymorphism is similar to the concept of generalization. Encapsulation, 

perhaps the cornerstone of the object world is the process by which data structures and 

the processes performed upon them (methods) are encapsulated, or combined, into one 

entity, called a package, class or object type. 

In summary, a design methodology for KBSes must meet the requirements of 

several different knowledge representation schemes. These schemes utilih the following 

features: 

If-Then relationships between premises and conclusions 

Inheritance 

Generalizatio~Specialization 

Classification 

Aggregation 

Encapsulation 
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E-R DIAGRAMS AS A KBSIKBMS DESIGN TOOL 

So far, this paper has established the need for a structured design methodology for 

knowledge-based systems, presented arguments for the integration of knowledge-base and 

database systems, and examined various knowledge representation models. Building on 

previous work on the integration of KBSes and DBSes, this chapter will present a design 

methodology for KBSes which will satisfy the needs of the various KRMs and overcome 

common problems inherent with KBS design and development. It is the primary intent of 

this thesis to introduce the use of E-R diagramming as a knowledge base system design 

tool, and to defend its use by presenting its advantages to various stages of the knowledge 

base lifecycle. 

Semantic modeling has been defined as "the overall activity of ammpting to 

represent meaning." (Date 1990) This definition compliments the view of a KRM as a 

scheme to represent knowledge. It has been argued in (Borgida 1991) that semantic data 

models and KRMs share many similarities, while their differences tend to revolve around 

the :'differing goals to which they subscribe." These similarities include: 
3 

Object Identity - both KRMs and semantic models subscribe to the notion that an 

instance of knowledge or data has its own identity independent of its attribute 

values or participating relationships. 

Binary Relationships among Objects - both support binary (vs. n-ary) 

relationships among objects (e.g., attributes, slots, properties). 

Grouping of Individuals into Classes - Chapter I1 discussed generalization; the 

concepts of grouping individqls into classes and generalization are practically 

identical. 



Decomposition of Classes into Subclasses - Chapter IT discussed specialization; 
_. . -- 

the concepts of decomposition of classes into subclasses and specialization are 

practically identical. 

Constraints - Both KRMs and semantic models provide means of expressing 

conditions of validity for attributes. 

Derived Classes/Relationships - KRMs and semantic models both have methods 

defined to control redundant information and enforce its consistency. (Borgida 

1991) 

Drawing upon this list, it is safe to say there is a definite parallel between 

knowledge representation and semantic modeling. For this reason, this chapter will 

promote the concept of semantically modeling the knowledge of a KBS as a design aid for 

KBS development. 

Peter Chen's classic entity-relationship modeling and diagramming technique 

(Chen 1976) is arguably the de facto standard for database design in general, and 

relational database design in particular. As databases have become more intelligent in 

nature, so too have E-R modeling and diagramming techniques been extended to help 

developers better keep track of the inherent intelligence of the database. This research 

will demonstrate how the classic E-R diagram, with extensions, can adequately model the 

knowledge base of any KBS, regardless of knowledge representation scheme. It will also 

bring to light some advantages of performing this modeling. 

In the decade and a half since Chen presented his very valuable tool, the E-RD 

methodology has undergone many adaptations. Researchers have proposed extensions to 

the original model to allow it to model many different types of data and knowledge. The 

proceedings of the annual Entity-Relationship Approach conferences provide a wealth of 



new E-RD extensions. There are object-oriented E-RDs (Navathe and Pillalamarri 

1989), action-mddeling E-RDs (Feldrnan and Fitzgerald 1985), and E-RDs which model 

both transactional information and conceptual knowledge (Lazirny 1988), to name but a 

few. Elements of many of these "E-RD flavors" will be selected to develop a case for this 

paper's proposal: entity-relationship modeling and (in particular) diagramming can be used 

to model .the conceptual knowledge base of a knowledge-based system in much the same 

way as they presently model the logical database of a traditional information system. 

A short review of basic E-R modeling reveals three main concepts: entities, 

attributes and relationships. Peter Chen, who originated both the concept of the entity- 

relationship model and its graphical partner, the entity-relationship diagram, defines an 

entity as "a thing which can be distinctly identified." An attribute is a piece of information 

that describes an entity. Finally, a relationship is defined as "an association among 

entities." (Chen 1976) An example to illustrate these basics is that of a personnel system 

The entities of concern are EMPLOYEE and OFFICE. In this example, employees are 

assumed to work for one and only one office. The attributes are as follows: 

Table 1 

EMPLOYEE and OFFICE entities and attributes 

EMPLOYEE 
EMPLOYEE - ID 

EMPLOYEE - NAME 

JOB-CLASS - CODE 

DATE - REPORTED 

OFFICE 
ORGANIZATION-CODE 

OFFICE - TITLE 

MANAGER-ID 



--  - - 

Figure 1 shows this example in E-R diagram form. 

Employee-ID Organization-Code 

Employee-Name 
Employee Office Off ice_Title Job-Class-Code 

Date-Reported Manag er-ID 

Figure 1 - Sample E-R Diagram 

The underlined attributes (EMPLOYEE - ID, ORGANIZATION - CODE) 

represent the primary keys of their respective entities. The cardinality of the relationship 

between the entities is denoted by the "M" and the "1"; in this example, there is a one-to- 

many relationship between offices and employees. Although Chen introduced several 

other features in his essay, these features constitute the bulk of E-RD basics. Appendix A 

presents a more detailed review of E-R concepts. 



ions to E-RD8 
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The fiist requirement of a knowledge-modeling tool is to provide a model for if- 

then rules between premises and conclusions. In (Rodriguez et. al. 1989), the following 

diagram is given as an example of how this can be accomplished with standard E-RDs. 

Figure 2 - If-Then E-RD from (Rodriguez et. al. 1989) 

This E-RD depicts a many-to-many relationship occurring between the entity % RULE and 

the entity ASSERTION. This approach differs from more traditional E-R modeling by 

viewing the rule base as the real world. In traditional database applications, the subset of 

the real world involved in the problem is modeled as the real world. 

A more conceptually-oriented approach to semantically model rules is discussed in 

(Feldman and Fitzgerald 1985). In that work, the use of "action modeling" is presented. 

They propose this action model to be "constructed in analysis after an entity mdel  has 

.been built," a two-stage approach to howledge base design similar to the approach 

espoused in this work. The fact that some sort of behavior modeling must be provided in 



order to successfully model a rule excludes the static structure of the entity-relationship 
_ _  _--.- - . 

model; however, rules do perform their actions on entities, thus some method of depicting 

them must be provided. 

A rule can be considered as an action which occurs as the result of some state of a 

relationship between one or more entities. As such, a rule should be considered to be an 

attribute of that relationship. If the rule applies to only one entity, a weak entity and 

relationship may be created, although this adds an unnecessary step. In this case, the rule 

may be depicted as an attribute of the given entity. The term "attribute" as used here 

should not be readily compared to an attribute in a typical database E-RD. Attributes in 

database E-RDs will become domains, fields or columns in the physical database, while an 

attribute depicting a rule will see a different mapping in the physical knowledge base. This 

attribute should be some sort of implementation-independent description of the rule (a 

"pseudo-rule", comparable to pseudo-code.) The pseudo-rule should either be attached to 

the relationship as written or identified by a unique identifier and written out elsewhere. 

This ensures that the relationship between the rule and the entity(ies) the k l e  references 

can be determined quickly by visual inspection of the E-RD. 

Figure 3 depicts a rule in an E-RD. 



Age 
_ _  - -- 

Years-Service 

Employee.Years-Senrice #I THL. 
Invoke RetkementProcess 
CONF = .8 

Figure 3 - Depicting If-Then (Rule) relationship in ERD 

The point is made in (Debenham 1992) that rules do not always tk 

traditional "if-then" format of Figure 2. A semantic model should thus not be 

if-then relationships simply because the underlying KRM is a rule. However, 

single diagramming construct to capture all possible rule relationships isn't practd!. The 

method illustrated above allows the designer flexibility in establishing rules. 

Classification, generalization, specialization and inheritance all rely on sub- zlndl 

super-classes. These classes represent a hierarchy fiom the general (superclass) to d k  

specific (subclass). An entity type which is defined as a superclass will, in an E-RD, he 

connected to its subclass with a triangle. Multiple subclass entity types each connect to 

the triangle, which then connects to the superclass entity type. Figure 4 presents irm 

example in which the EMPLOYEE superclass consists of ENGINEER, SECFEI'ARy 

and SUPERVISOR subclasses. 



-11 EMPAD 
SALARY 

Figure 4 - E-RD illustrating subclasses, superclasses 

The presence of a subclass symbol (triangle) represents subclasses; a subclass is 

assumed to inherit any and all attributes from its parent superclass. Sibling subclasses are 

not ,assumed to share additionally defined attributes; if two or more subclass entity types 

are to share an attribute, that attribute must be explicitly assigned to each entity type. 

Thus, in Figure 4, all three subclass entity types inherit the attributes EMP-ID and 

SALARY, while only the SUPERVISOR entity type has SUPV-LEVEL and 

MGR-BONUS defined. 

Generalization and specialization are complimentary concepts, with specialization 

defined as "the process of defining a set of subclasses of an entity type." (Elmasri and 

Navathe 1989) The process of specialization produces subclasses; likewise, 

generalization produces superclasses. There are several constraints on generalization and 

specialization which show up in the extended entity-relationship (EER) diagrams defined , 

in (Elmasri and Navathe 1989). These include: 

Predicate definition 

Disjointness 



Completeness 
_. -- - - 

Predicate definition refers to the method by which membership in subclasses is 

determined. The attribute-value condition is called the defining predicate; a l l  entities in 

the superclass which meet the defining predicate condition belong to a certain subclass. If 

all the subclasses in a particular specialization are defined to have the same predicate (i.e., 

the same attribute is used to determine the membership constraint for-each subclass), the 

specialization is called an attribute-defined specialization. When the defining condition 

is not the same across all members of the specialization (i.e., different attribute-value pairs 

are used to determine the membership constraint for subclasses), the subclass is considered 

user-defined. For an attribute-defined specialization, the defining attribute of the 

superclass is listed on the line between the superclass entity type and the superclass- 

denoting triangle, and the values are listed on the line between the miangle and the 

respective subclass entity types. 

The second constraint defines to how ma-jl subclasses of the specialization an 

entity type can belong. If an entity type can belong to no more than one subclass, the 

specialization is called disjoint. If an entity type may belong to more than one subclass, 

the specialization is considered to overlap. Disjoint specializations are denoted by a "d" in 
\ 

the triangle; specializations which overlap have an "0" in the triangle. 

The final constraint is called the completeness constraint. A specialization may 

be either a total or a partial specialization. In a total specialization, every entity type in 

the superclass must belong to a subclass. All entity types need not be a member of a 

subclass in a partial specialization. A total specialization has a double line connecting the 

superclass entity type and the triangle, while a partial specialization has a single line. 

Figure 5 illustrates the concepts of generalization and specialization in an E-RD. 
I 

The diagram tells that the specialization is total (the double line from EMPLOYEE to the 



triangle) and overlaps (the "0" inside the triangle). Furthermore, EMP-TYPE-CODE is 
- 

the defining attribute of the attribute-defined specialization. Defining predicates are 

EMP-TYPE-CODE = E for the subclass ENGINEER, EMP-TYPE-CODE = S for the 

subclass SECRETARY, and EMP-TYPE-CODE = V for the SUPERVISOR subclass . 

Employee 

~ - T Y P ~ - C ~  de 

Figure 5 - E-RD illustrating genera~izationlspecialization 

In a knowledge-based system, the defining attribute may be a rule. In this case, the 

rule should be shown as an attribute of the classification triangle. 

Aggregation can be represented quite easily in an E-RD. If an object class is 

defined as an aggregate of multiple entities and one or more relationships, thit class can be 

diagrammed as a single entity in an E-RD. The aggregate entity must be labeled as such, 

and the components must be so noted. Figure 6 shows an example of the aggregation of 

entities and relationships to produce the Retirement Process entity of Figure 3. The box 

surrounding the constituent entities and relationships is in bold to show that it is an 

aggregate entity. If an entity which is not part of the aggregate entity must be shown in 

the same box, it should be shown to be separate by double vertical lines. In this case, 



CorporateHeadquarters is not part of the aggregate entity Retirementprocess, but is 
_ _  - - 

shown in the box for clarity. 

I Paperwork I 

Corporate 
He adquarters 

3 

Retirement Process 

Figure 6 - E-RD illustrating aggregation 

Encapsulation, the process of storing data items and the methods which are 

performed upon the data items into one package, requires a bit of care when being 

represented by an E-RD construct. By definition, an E-RD is intended to model only data 

entities and -relationships between these entities. Modeling an encapsulated package 

requires that application code be modeled, to some extent, along with data. In a 

conceptual model of a knowledge base, this application could should logically not appear. 
I 

However, as the definition of an encapsulated package dictates that methods and data are 



tightly bundled in a package, some diagramming method must be provided. If 
_ _  -- - - 

encapsulated packages are considered to behave as a special entity type (with a different 

symbol from "normal" entities), they could reside in the same diagram without causing a 

conflict with the rest of the conceptual knowledge base. The assumption must be made 

that the code resident in the package will affect (i.e., be allowed to modify) the data 

resident in the package only, although it should certainly be allowed to-read other data. 

The proposed symbol for an encapsulated package entity is the logical OR-gate. Figure 7 

presents an alternate view of the Retirement Process of Figures 3 & 6. 

Figure 7 - Encapsulated Package Entity 

Note that this package has grouped all the data it needs into one object. The 

assumption is made that all the data items this package needs are contained within the 

package, and that only this package will be making changes to these data items. 

One obvious question which may arise concerns how this approach can work for 

an entire knowledge base. So far, the examples in this chapter are limited to single 

knowledge constructs. However, - they can easily be pulled together into a network. 

Figure 8 shows an expanded E-RD which combines several of the examples of this 

chapter. , .  



Figure 8 - Network of E-RD knowledge structures 

The Retirement Process entity is shown in a bold box, signifying the aggregate 

entity, although the OR-gate entity of Figure 7, depicting an encapsulated package, could 

have just as easily been used. 

The process by which a knowledge base is designed using this technique will be a 

two-step process. In the first step, an Essential E-RD is developed using only Chen's 

original model. This is done to treat the knowledge similarly to data collected for a data- 

based E-RD. In this way, the knowledge engineer should be free from any 

biases toward a certain KRM. The second step involves taking the E-RD developed fiom 

the first step and transforming the basic entities and relationships into structures which 

more closely resemble KRM structures. The knowledge base can then be implemented 

from this second diagram. In some cases the E-RD can be directly mapped to a K..M 

construct. 

In order to develop'the first E-RD, the knowledge engineer should approach the 
\ 

I 

-knowledge acquisition in much the same way a database developer gleans information 



from the targeted users of the system ro oe developed. The primary concern is to idenhfy 
_ _  - - 

all the "things" (entities) of the real world and how they each relate to one another. From 

this information, an E-RD which adheres to Chen's original defmition may be developed. 

Again, the primary intent of this E-RD is to provide a baseline semantic model of the 

knowledge base, free from implementation- (and thus KRM-) specific structures. The 

benefit of developing this f ist  model is that it may be more easily tested for referential 

integrity and no~malized entities, two concepts born the relational database realm which 

help insure the soundness of the database schema. 

In the relational database realm, one of the primary advantages of producing E- 

RDs lies in their quick mapping into database relations. Mapping to database relations can 

produce a sound database design only when the E-RD has been normalized and referential 

integrity is maintained. Normalization is the process by which relations are reduced to a 

normal form. Although there are many normal forms, only first, second, and third normal 

forms (lNF, 2NF and 3NF, respectively) are commonly used. Each of the three normal 

forms relies, in succession, upon the relation adhering to the previous normal form (e.g., a 

relation in 2NF must, by definition, also be in INF). A relation in 3NF is one in which 

every attribute depends fully upon each and every constituent attribute of the primary key 
7 

of the relation. Appendix B illustrates how a relation is transformed into 3NF. 

Referential integrity is a constraint which requires that a tuple (row) in one relation which 

refers to another relation must refer to an existing tuple (Elmasri and Navathe 1989). 

The basic advantages of having data in third normal form is to insure that attributes are 

grouped together in the proper entities. The primary benefit of having data adhere to the 

referential integrity constraint is to insure that data items which depend on other data 

items will never be left orphaned. The ,concept of a weak entity type was 0ri-y 

implemented to aid in ensuring referential integrity. Referential integrity is n o d y  not a 



concern when the E-RD contains only one-to-one relationships. Having a database 
__- - 

schema adhere to these constraints helps to insure changes to the data will not result in 

spurious, unattached data. It also provides an aid when the schema itself must change. 

No alteration to the schema should be allowed to cause any existing entity to break these 

constraints. This can be easily checked by consulting the E-RD. 

To a'geat extent, the same benefits can be realized by a knowledge base designed 

to these standards. Although the schema will not be mapped into relations, normalization 

and referential integrity are still concerns. 

The second stage of the design methodology involves converting the first E-RD 

into one in which the knowledge constructs are modeled using the extensions presented 
::-r?.y% c 2.k.f- 

earlier in this chapter. The knowledge engineer will use both the st-stage E-RD and 

knowledge gathered during knowledge acquisition sessions to convert the first-stage 

(traditional) E-RD into one in which knowledge constructs become more apparent. This 

E-RD, the Implementation E-RD, can then be used to develop and maintain the 

knowledge base. In some cases, the physical knowledge base structures can be mapped 

directly from the Implementation E-RD. 

Frames can be mapped directly fiom the Implementation E-RD. A seven-step 

methodology is presented in (Elrnasri and Navathe 1989) by which an E-RD may be 

mapped directly to a relational database. As there is little difference at the conceptual 

level between a RDBMS relation (table) and a frame, a similar methodology will apply to 

mapping frames. Step 6 of the original methodology, which dealt with multi-valued 



attributes, is omitted. Although multi-valued attributes are not permitted in relational 
_. -- - 

databases, arrays and lists are valid in many fiame management systems. 

STEP I: For each regular (non-weak) entity in the Implementation E-RD, 

create a frame type. Assign a primary key composed of one or more 

attributes whose values ensure each instance of that frame will be unique. 

STEP 2: For each weak entity type in the Implementation E-RD, create a 

frame type. Assign as a foreign key the attribute(s) composing the primary 

key of the owning entitylframe. The primary key of this frame type will be 

composed of the foreign key and any attribute(s) whose values ensure each 

instance of that frame will be unique. 

STEP 3: For each 1:l binary relationship in the Implementation E-RD, 

choose one frame type to contain as a foreign key the primary key of the 

other frame type. If one entity always participates in the relationship, that 

entity should receive the foreign key. 

STEP 4: For each regular (non-weak) binary l:M relationship in the 

Implementation E-RD, place as a foreign key in the frame type on the many 

(M) side the attribute(s) composing the primary key of the frame type on 

the one (1 ) side. 

STEP 5: For each binary N:M relationship, create a fiame type. This 

frame type's primary key will be composed of all the attributes composing 

the primary keys of the frame types on both sides of the relationship. 

STEP 6: For each n-ary relationship (n > 2), create a 1rame type. This 

frame type's primary key will be composed of all the attributes composing 

the primary keys of the frame types on all sides of the relationship. 



When mapping to frames, it is important to remember that relationships may not 
_ _  - - 

need to be mapped to frames. Relationships may be included to show the presence of a 

rule (see below.) 

Rules are harder to map directly fiom the Implementation E-RD to a knowledge 

construct. A rule may be defined as some action which occurs based on the validity of one 

or more.conditions. A rule may involve the relationship between two or more entities, but 

it just as likely will not. In cases where a rule involves only one entity, a weak entity and a 

weak relationship can be created to show such a relationship; however, creating such a 

structure adds another step and complicates the Implementation E-RD. If a rule involves 

only one entity, it should be shown as an attribute of that entity. If a rule involves two or 

more entities, those entities should be related, and the rule should be diagrammed as an 

attribute of the relationship. The If-Then relationship should either be written out as a 

pseudo-rule on the diagram or identified by a -unique code and written out elsewhere. 

Mapping thus becomes an exercise of converting the pseudo-rule to implementation- 

specific code. 

How aggregation -is mapped depends on the KRM selected. The ''part-of' 

relationship inherent to aggregation may be modeled in a frame-based system by an 
* 

attribute-value slot, or in a semantic network by an appropriately titled link. 

Inheritance is a feature of classification. An entity which is the subclass of a 

superclass entity will inherit values from that superclass entity unless specified explicitly. 

If a particular attribute is to be inherited, it should appear on the superclass entity only. If 

the subclass entity overrides the superclass, then the attribute should appear on both 

entities. 

Encapsulation, the blending of data and methods into an object or package, 

depends on the KRM chosen for its mapping. What is important in mapping such an 



object is that operations on the data are "hidden", i.e., performed only within the object. 

This is not to that data from an entity which participates in such an encapsulated 

object can be used only by that object, but that the specific operation is performed only by 

that object. 

The advantages to using such a methodology in the design of a knowledge base 

may be seen during both the implementation of the knowledge base and the maintenance 

portion of the KBS lifecycle. During implementation, both the first-stage E-RD and the 

Implementation E-RD can be consulted to determine how different portions of the 

knowledge base inter-relate. This helps to solve the "nature and quantity" problem 

mentioned in (Gunurlec and Dankel 1993). By developing a graphical portrayal of the 

knowledge base, knowledge engineers can more quickly develop an understanding of the 

realm. The most important advantage during the implementation phase lies in avoiding the 

paradigm shift, also mentioned in (Gonzalez and Dankel 1993). The Implementation E- 

RD can be consulted to determine the most appropriate choice of the KRM(s) to be used. 

Maintenance, historically the costliest phase of any software project lifecycle, can 

also be aided by the development of an E-RD and Implementation E-Rb. When new 

- knowledge must be added, the Implementation E-RD can be consulted to determine how 

it will affect the existing knowledge base. Extensions to the original design (e.g., new 

entities) can be added to both E-RDs to determine their impact before physically altering 

the knowledge base. 



CASE STUDY 

This chapter will present a case study to illustrate the concepts discussed in this 

thesis. A full knowledge base will be designed using the methodology presented earlier, 

and advantages of using this methodology will be presented. 

The case study revolves around the design of a knowledge which is to be used in 

the physical design of a relational database using Rdb/VMS, a relational database 

management system (RDBMS) fiom Digital Electronics Corporation (DEC). Rdb/VMS, 

or Rdb, is a powerful RDBMS tightly coupled with VMS, the predominate operating 

system on DEC's popular line of VAX minicomputers. The physical design of an Rdb 
d 

database is at least as important as the logical design; a poorly designed Rdb database can 

cause serious performance problems. 

One of Rdb's main strengths lies in its ability to spread data across multiple 

physical storage devices to allow simultaneous inputJoutput operations (IDS) on the 

database. Another strength is the ability to optimize the physical structdre for particular 

access patterns. For example, a parent-child (or one-to-many) relationship with a small 

number of children records can be physically implemented to retrieve the parent and a l l  

children records with a single I/O. A parent-child relationship with a larger number of 

children records can be optimized for two VOs. 

The knowledge base produced from this case study will allow a howledge-based 

system to translate a 3NF logical database design and user-supplied parameters into a 

physical Rdb database. For this case study, the 3NF design is necessary; however, how 



the knowledge is generally supplied is application-dependent. AU applications will provide 

a body of ki6Ledge from which a knowledge base is created; in this case study, the 

knowledge comes from the 3NF, user-supplied input, and knowledge acquisition fiom an 

expert in the problem area. 

There are a number of database-wide parameters which can greatly affect the 

performance of the Rdb database. These include: 

Number of Users - The number of simultaneous users allowed on the database. If this 

parameter is set too low, deadlocks will prevent users from attaching to the database. 

Number of VAXcluster Nodes - VAX nodes (CPU or multiple CPU computers) may 

be physically linked together in a DECNET (DEC's proprietary transport protocol) 

cluster, allowing machines to share resources such as printers, disks, etc. 

Number of Buffers - Together with Buffer Size (below), this parameter determines 

the amount of virtual memory reserved for database users' buffer pools. By default, 

each database user has a buffer into which database pages are read. 

Buffer Size - See Number of Buffers (above). 

Global Buffers - As mentioned above, buffers are established by default for individual 

users. Enabling global buffers will establish one buffer pool per VAXcluster node 

using the database. Establishing global buffers can improve performance by reducing 

VO and freeing up memory, if many processes frequently use the same database 

pages. 

Fast Commit Processing - By default, modified pages are flushed to disk when a 



COMMIT statement is execute. If Fast Commit Processing is enabled, modified 
__-- - 

pages an5 only flushed to disk at userdefined checkpoints. This option can greatly 

increase throughput for update-intensive , , - .-"-. databases. ?;, .$, . --; , -. . . . , - ' - ' -  
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There are several other database-wide parameters which can be specified; however, most 

require a detailed knowledge not only of Rdb, but also of how the database is performing 

in its environment. For this reason, other parameters will be discussed only as needed. 

The primary storage entity in Rdb is the storage area. Each storage area maps to 

a file where the data physically resides, and, optionally, a snapshot file, where data resides 

temporarily for read-only database users. The use of a snapshot file allows users to read 

data while another user has a non-exclusive write lock on the same data. Spreading the 

storage file and the snapshot file on different disk drives allows database administrators 

@BAS) to balance 110 operations across multiple disks. 

There are a number of parameters which a-DBA can set for a storage area. 

These include: 

Filename - The name of the storage file, including the device and directory. 

Allocation - The number of pages initially allocated to the storage area. 

Page Size - The size, in 512-byte blocks, of each page in the storage area. 

Thresholds - One, two or three values which represent three possible ranges of free 

space available on any given page. 

Interval - The number of data pages between space area management (SPAM) pages. 

Rdb uses SPAM pages to govern the placement of data. They are also used to locate 

the page where an index will'be found. 

Extent - The number of pages by which the storage area will grow when it must be 

extended. .- -I ,: : . . - - .  
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Extension options - Provides for greater extension control by allowing the DBA to 
__- - 

specify percentage of growth as well as minimum and maximum number of pages to 

extend the storage area. 

Snapshot Filename - The snapshot file is an optional separate which contains data to 

be used by read-only users of the storage area. Snapshot allocation, extent, and 

extension options may be specified as well. 

Write Once - If the storage area is to reside on a write-once, read-many (WORM) 

device (for large amounts of static data), this parameter may be specified. 

Once a storage area is created, tables may be stored in it by the use of the CREATE 

STORAGE MAP clause. Storage maps, as their name implies, map tables to storage 

areas. 

Rdb offers a robust set of options for indexing. Parameters include the following: 

Unique - A keyword which specifies whether each value of the index must be unique. 

Column Parameters: 

AsdDesc - Describes whether the index is ascending (default) or descending. 

Size is n - Compression clause used to limit the number of characters used to retrieve 

data. 

Mapping Values I To h - Used to translate numeric columns into a more compact 

form. 

Type is Sorted - Range retrievals tend to work best with sorted (B-tree) indices. If 

the 

index is defined as sorted, the following parameters may be used: 

Node Size - Size in bytes of each index node. 

Percent Fill -The initial fullness percentage for each node. 



Usage Update/Uuery - USAGE UPDATE sets PERCENT FIU to 7096 (the 
__.- - 

default 

if 'neither parameter is given); USAGE QUERY sets PERCENT FILL to 100%. 

Type is Hashed - Hashed indices are preferable for exact-match queries. They 

require 

mixed format storage areas to implement. 

Index Store Clause - A clause which specifies how the index is to be stored (in one 

storage area, spread randomly across multiple areas, or spread by some value across 

multiple areas.) In addition, threshold values similar to the threshold values of the 

storage area parameters may be specified. 

The following data is site-specific and will require user input. 

Environment Information 

Disks: 

Disknarne 

Disk size - Blocks (512 bytes) free 

Disk speed - Seek time 

WORM device - Yes/No 

Shadow Sets: (In a shadow set, information written to one drive is copied to another; if 

the primary drive fails, the secondary drive becomes the primary drive. Although this 

configuration degrades update-intensive applications to some extent, read-only 

applications see an improvement since either drive can be used by read-only users. 

However, shadowing data intended for read-only usage isn't cost effective. Shadowing is 

primarily intended to ensiue uninterrupted data access.) 
'. I 

Primary disk 



Secondary disk 
-- - 

Node: 

Nodename 

Node type (e.g., 6510, MicroVAX 3100) 

Available RAM 

Database .Information 

Relations (Tables): 

Name 

Primary key length - In bytes 

Primary key unique - Yes/No 

Row size - In bytes 

Number of rows 

Primary access - (Insert, update, query, delete) 

Growth rate - Records per day 

Attributes: 

Table name 

Attribute name 

Attribute type - Data type (e.g., character, numeric, BLOB (Binary Large OBject)) 

Attribute length 

Relationships: 

Table 1 

Table 2 

Table 1 cardinality - Number of rows 

Table 2 cardinality - Number of rows 
I 

Table 1 key - Attributes composing "joinn" key 



.Table 2 key - Attributes composing "joinn" key 
- -  - d 

Indices: 

Table name 

Field name(s) 

At a top-level view, the Rdb-specific portion of the knowledge base can be 

described in narrative form as follows: 

An Rdb database is composed of a root file, one or more storage areas, and, 

optionally, one or more snapshot files. Parameters can be specified for the database to 

control usage of memory, number of users and accessible nodes, and the flushing of 

committed data to disk. 

Storage areas consist of data pages and SPAM pages. A storage area has an initial 

allocation of pages, whose size is also defined when the storage area is created. One set 

of parameters control the extension of storage areas. The interval between SPAM pages 

and data pages is controllable. 

Indices may be sorted or hashed. Sorted, or B-tree indices, are more appropriate 

for range retrieval, while hashed indices offer performance benefits for exact-match 

retrievals. Node size and fullness percentages may be specified for sorted indices. 

The remainder of the body of knowledge comes fiom knowledge acquisition 

sessions with an expert in Rdb database design. 

To design a physical Rdb database, each table and its relationships to other tables 

has to be examined. Any conflicts (e.g., optimizing for the update-intensive 

operations on one table vice read-only operations on another) have to be resolved by 

assigning some sort of priority. This,might be as simple as starting with the tables 

and relationships used by the most important transactions and working down from 



there. One factor that must stay in the DBA's mind at all times is the number of 
__  - - 

disks and amount of storage available. Given an inexhaustible supply of disks, an 

almost perfect Rdb database can be designed. Unfortunately, this is not an option 

for most organizations. Thus, it becomes important to spread data across the 

available drives. This can be done in a couple of different manners. First, a table 

can be spread across multiple drives. The other option is to keep each table on one 

drive, and spread the various tables across different drives. The first option offers 

the benefit of spreading UO on a heavily-hit table across multiple devices. The 

second option provides for easier maintenance, and works better if no one table is 

hit more heavily than any other. Snapshot files should be put on a device other than 

the device on which the main storage file resides. This allows a more even 

distribution; read-only users don't have to wait for read-write transactions to finish 

before they can access the data. Parent-child relationships may be set up in two 

different ways. First, if their is a known upper limit to the number of children 

records, the parent record and al l  its children can be placed on one page, thus 

allowing the parent and all children records to be retrieved by a single ID. This is 

known as "optimizing for one 110." The way to do this is to create a mixed-format 

storage area (or areas, if the tables are to be spread across multiple devices.) Size 

the pages large enough to contain the parent record and a hashed index, along with 

enough space to hold all children records and their hashed indices. The Guide to 

Database Design and Definition contains the appropriate formulae for this. Keep in 

mind there will be duplicate children records; the formula for hashed index size must 

make use of this fact. When the relationship is optimized for two UOs, the parent 

record, its hashed index, and the hashed index for the children record are stored in 
I 

one storage area, while the children record are stored in another. One YO retrieves 



the parent record and the index to the children records; the second I/O retrieves the 
_. -- - 

children records. This setup is more appropriate when the parent record is quite 

large or there isn't an upper limit on the number of children records. 

The proper design of indices is another important point. Hashed indices are 

wonderful for exact-match queries, but they can actually degrade performance for 

range retrieval queries. By far, their best usage is for the parent-child relationships 

discussed above. Sorted indices can be combined with hashed indices to allow both 

exact-math and range retrievals, but this can be quite tricky to set up. Knowledge of 

how the index and its table will most often be used (query or querytupdate) is 

required to set the percent fill parameter. An index used mostly for querying should 

be set to close to 100% full, while an index used for update should be set around 

70% full. The node size can be calculated by the formula: 

3 * (key size + number of columns + 11) + 32 

The "3" ensures that three entries will fit into a node, which helps to keep the 

structure more of a B-tree than a pure binary tree. Key size is the total size, in 

bytes, of all the constituent columns of the index, plus one byte per column for the 

null indicator. Number of columns is, obviously, the number of columns comprising 
% 

the index. The "1 1" is the maximum overhead per index key within a node. The 

"32" is the node's overhead. 

Care must also be taken in establishing storage areas. One easy rule is to use 

(at least) one storage area per table. In this way, changes can be more easily made 

"after the fact", after the database has been established and the data loaded. Again, 

a storage area and its snapshot file should be on separate devices. The page size 

should allow for some comfortable number of data rows and all the indices defined 

for the table. Try to store the indices with the data. The- Guide to Database 



Performance and Tuning provides guidelines for setting the fullness tl zshold 
-- - 

values.  or a storage area containing only one table, the values should be set to 

always allow one more row to fit fully on the page. In other words, the third 

parameter should be set so that the difference between the page size and the third 

fullness parameter is less than the uncompressed row size. For example, if a page 

has been set to 1000 bytes, and the row size is 100 bytes, the third parameter should 

be set to at least 91%, thus indicating the page is full at 910 bytes. When this 

threshold is reached, no more data rows will attempt to be inserted, thus eliminating 

fragmented data rows. The difference between the page size and the third fullness 

setting can be considered as free space for future growth to existing rows. The 

other two parameters are used mostly for storage areas housing multiple table types. 

The parent-child relationship type mentioned previously should make use of the 

other two parameters. The first one should be s-et to ensure that a page which has 

not yet met that parameter can store the largest row type once more. Likewise, the 

second parameter should ensure the same for the smallest row type. The SPAM 

interval parameter should be allowed to take the default and modified only after an 

extensive investigation of the database's performance, noting disk UO vs. SPAM 

page locking. Consult the Guide to Database Performance and ~ u n i n ~  and the 

Guide to Database Maintenance for more details. The extent size parameter should 

be set to allow minimal disruption to users when the storage area must extend. 

Detailed knowledge of how the storage area will grow and over what time period 

growth can be expected is required. For example, an application which adds 

another 10% to a storage area every month during a heavy insertion cycle should 

have its extent set to 10% (or slightly more) to ensure that only one extent wiU be 
I 

made during the input cycle. The extension options allow for a finer granularity of 



control over extensions by allowing percentage growth, with a guaranteed 
__- - 

and maxir;lum number of pages the area will grow. Finally, large amounts of static 

text, bit-mapped images, or other BLOBS (Binary Large OBjects) are ideal 

candidates for storage areas residing on WORM devices. 

The database-wide parameters can require knowledge about the nodes on which 

the database will be accessed. The first parameter which can cause trouble is 

number of users. Certain fourth-generation languages (4GLs) have users declare a 

read-only transaction to query a record, then a read-write transaction to update it 

This results in two users, as far as the database is concerned. Since no harm is done 

by setting this parameter too high, it is a good idea to set it to 200 to start. 

Buffer parameters, which affect Rdb's usage of virtual memory, are 

considerably more tricky to set. The fxst question is whether database users access 

the same pages often, in which case global buffering would be useful. Otherwise, 

local buffering is the best option. Unfortunately, these parameters apply to every 

node on the cluster. Thus, the machine with the smallest amount of RAM on the 

cluster becomes the driving factor. For local buffering, the buffer pool per 

user can be calculated by multiplying the number of buffers by the buffer size. To 

prevent VMS from paging, the sum of the buffer pools for all users should not 

exceed the amount of physical memory. However, if the buffer pool is too small, 

Rdb will be forced to continually swap pages to and from memory, -:IL would 

also result in a paging problem. Setting the buffer size high brings in more data, 

thus allowing related rows to be brought into memory together, and also improves 

sequential searches. Specifying a high number of buffers makes it more likely that 

rows previously used will still be in memory, which improves perfonman= of 



transactions which use the same data several times. Generally speaking, however, 
_ _  -- d 

having many small buffers results in less paging than having fewer large buffers. 

In global buffering, Rdb establishes a global buffer pool on each node. Users 

then map that global section to their own virtual memory. The advantages global 
, ,: .-, ;,, - ,'. . ,  8 ,,,- ,,, ;,;; (2,. :, ;.;- - ; ' . - $ ; .;. . -:<+ . : .'i -. - . --. '.,.?,.,;;,...;L;; :, :{:,' - ,:c 3;;:--:- .-%-,,:;-+d-$v-=.-?::... 

L . ' ,  . , - .. , ;, . . , ,!,.?, , , -:, ,, . + . ~ - ~ . : ~ : ~ 7 ; ; , < * 1 , : ~ : , . " : , ; ~ . ' , : : ~ - . ' :  ,*., - ,  , .'. , ;, ,,;,,.- ,,? ;:. --qp L. I.,. ?i:.*7{;$i;::,3 . . > t ' > ' , . .  . .- &.(. . .. . . ,. 

buffering brings are for applications in which users access the same database pages ' -  

fairly often. Detailed knowledge of the application's performance and the number of 

database pages used by multiple applications is required to effectively institute 

global buffering, so global buffering should be done after the database is created and 

' '1 . : information has been gathered to determine how large a global buffer pool should 

be. 

The Essential E-RD is created from knowledge from the database parameters 

and user-supplied information. In this case study, the expert knowledge is used only 

by the Implementation E-RD. In general, the knowledge required for the Essential 

E-RD will come not from an expert's analysis of the problem milieu, but fiom a 

general understanding of the problem realm, while the knowledge required for the 

Implementation E-RD will come from a typical knowledge acquisition phase. 

However, this may vary from application to application. The following E-RDs 

comprise the Essential E-RD. 
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Root File 

Storage Area 

Corrtrol 
Parameters 

Snap shot File h~r, 

M 

Figure 9 - Top-level E-RD of Rdb Database 
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Figure 10 - ~ x ~ a n d e d  E-RD of Storage Area 



kPrl Data Row 

Sorted Index I-<::=> 
Parmders 

Figure 11 -Expanded E-ED of Data Page 

The above diagrams are meant to be interconnected; to make them more readable, 

they are separated by area of context Similarly, environment information may be depicted 

as such: 



Figure 12 - E-RD of Environment 

The E-RD for the database (i.e., the 3NF logical database to be converted into a physical 

Rdb database) might look as follows: 

Figure 13 - E-RD of 3NF Logical Database 

These diagrams provide for the first step of the two-step process by providing 

standard E-RDs of the knowledge domain. These diagrams are intended only to provide 

'developers with insight into the relationships between the various entities of the domain. 



- -  - 

The expert-supplied knowledge can be depicted graphically by using the 

extensions detailed in chapter 4. Again, attributes are not shown and diagrams are 

divided into sub-diagrams to improve readability. Also, rules are depicted by 

numbers and described at the end of the diagrams. 

Rdb Database 

Unifonn 
Storage h a  Storage A m  

Figure 14 - Top-level E-RD of Rdb Database with Knowledge Structures 

Figure 14 illustrates several knowledge constructs in E-RD form. The entire 

structure represents an aggregate entity (Rdb Database), as noted by the heavy 

lines around the entire diagram. The entities Root File, Storage Area and 

Snapshot File are also aggregate entities, and each will be expanded in later 

diagrams. The Storage Area entity represents a superclass of the entity types 



Uniform and -Mixed Storage Area (or, optionally, Uniform and Mixed Storage 

Area are sub-classes of the Storage Area entity type.) Although two of the 

relationships involving the Disk entity also involve a Resides On relationship, there 

must be three separate relationships. The Optionally Refers To and Store On If 

Read-only, by their names, imply some sort of If-Then relationship.. 

Root Fle 

Figure 15 - Detailed E-RD of Root File 

Like the Optionally Refers To relationship of Figure 14, Figure 15's Optionally 

Read From implies an If-Then relationship. 



-. .- - Snapshot File 

Figure 16 - Detailed E-RD of Snapshot File 

Figures 16 and 17 (below) do not contain any knowledge structures (other than 

aggregation) as they appear here; however, a later diagram will illustrate a way 

around the binary relationship restriction of the classic data-modeling E-RD. (i.e., 

the Determined By and Takes Space On relationships appearing twice and relating 

1 

the same entities.) 

AllocatiDrr . 1 

Table Dirk 

1 
Extension 

Space On 1 
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Disk 

1 
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Figure 17 - Detailed E-RD of Storage Area 

Data Page 

Figure 18 = Detailed E-RD of Data Page 



Figure 19 - Detailed E-RD of Index 

Figure 19 contains a super-class/sub-class relationship between Index and 

Sorted and Hashed, two types of indices. 

Figure 20 - E-RD of Store Clause 

Figure 20 contains an If-Then relationship and an aggregate entity type. 



Relationship Group 

Figure 21 - E-RD of Relationship Group 

Table 1 

The requirement that relationships be binary in nature becomes quite restrictive 

on an E-RD intended to diagram knowledge. In many of these diagrams, the same 

relationship is used multiple times, often relating the same entities. Encapsulation 

provides one way around this restriction. The Determined By and Takes Space 

On- relationships of Figures 16 and 17 provide a good example of this. Figure 16 

(and the similar portion of Figure 17) may be re-drawn as such: 

1 .  1 
Hashed Index 

T a d  

Figure 22 - Encapsulation Snapshot Fileistorage Area E-RD 

1 1 

1 1 

TAh 

Hashed Index 

Disk 
J 



Here,-the eicapsulated package takes the form of a relationship while the example in 

chapter 4 used a similar construct as an entity. The relationship is perhaps a more 

natural fom, as such a package provides for some sort of operation on data related 

to it. 

The If-Then relationships, identified as attributes in the preceding diagrams, are 

listed below. 

Table 2 

Rules from Implementation E-RD 

IF (1:M relationship) AND 

((upper limit of children known) 

AND 

(small amount of child data)) 

THEN 

(optimize for 1 YO) 

IF (1:M relationship) AND 
\ 

((upper limit of children unknown) 

OR 

(large amount of child data)) 

THEN 

(optimize for 2 VOs) 

IF (range retrieval) THEN (sorted 

index) 

IF (exact match) . THEN (hashed 

index) 



IF , - .- I relationship) THEN 

(hashed index) 

IF (query) THEN (percent fill) = 

100 
-- 

. IF (update) THEN (percent fill) = . 

IF (sorted index) THEN (node size 

= 3 * (key size + # of columns + 11) 

+ 32) 

IF (new table) THEN 

(new storage area) 

IF (new storage area) THEN 

(snapshot on separate disk) 

IF (new storage area) THEN 

(1st fullness parameter < 

( (page size - largest row size) / 

page size) * 100) 
\ 

IF (new storage area) THEN 

(2nd fullness parameter < 

( @age size - smallest row size) / 

page size) * 100) 

IF (new storage area) ' T I  :N 

(3rd fullness parameter = 

( (page size - row size) / page size) * 
100) 



IF (new storage area) THEN 

(extent = growth rate* row size) 

IF (table has BLOBS) THEN 

(store on WORM device) 

IF (new table) THEN 

(allocation = row size * num rows * 
1.1) 

IF (application not read-only) THEN 

(use snapshot) 

ern$ - of q P D I v i ~ l e ~ o n  E-BD Me-v to C m  

The use of this methodology offers several advantages to the design and 

maintenance of this system. The "paradigm shift" problem of (Gonzalez and 

Dankel 1993) can be avoided by selecting the proper KRM. A perusal of the 

Implementation E-RD shows classification and aggregation as well as rules. Several 

KRMs can provide for classification and aggregation. However, the selected KRM 
Y 

must be able to provide knowledge to rules. Frames can provide classification and 

aggregation constructs and can store knowledge for rules. Therefore, a hybrid 

system combining frames and rules would be the best KRM for this system. 

The "nature and quantity" problem also discussed in (Gonzalez and Dankel 

1993) can likewise be eliminated by the proper use of this methodology. The 

knowledge base has been reduced to a set of diagrams, thus providing a graphical 

depiction of the problem area. The nature and quantity of the data in the problem 
I 

realm may be determined by visual inspection as opposed to reading through 

unstructured interview notes. It is important to remember that, as popular as entity- 



relationship modeling is, it owes its popularity to the accompanying entity- 

relationship diagramming technique. 

The methodology provides a powerful benefit to the (usually costly) 

maintenance portion of the software lifecycle as well. Debugging problems in the 

knowledge base becomes mush easier when the knowledge base has been depicted 

graphically. If, for example, the StorageAreaExtent is not being computed properly, 

the developer can determine by inspection that the rule R14 and the entities Table 

and Extension provide the data for the computation. The impact of adding new 

knowledge can be ascertained quickly with an Implementation E-RD as well. As 

any new knowledge added to the knowledge base will in some way touch existing 

knowledge, adding the new structure to the Implementation E-RD will allow the 

developer to determine the impact of the new knowledge by visual inspection. 

M a b d n g l e m e n t a t i o n  E-RD to Knowledge C o m u c k  

Using the mapping procedure discussed earlier on the Implementation E-RD of 

Figure 14 will produce frames for RootFile and Disk. One of the two would require 

a foreign key which would be the primary key of the other. In this case, the 

RootFile frame would be the more logical choice to contain the foreign key, since al l  

RootFiles exist on a Disk, while not all Disks contain a RootFile. SnapshotFile and 

Disk would be treated the same way, as would StorageArea and WORMDevice. 

UniformStorageArea and MixedStorageArea are subclasses of StorageArea, and 

would inherit applicable characteristics of that frame. Finally, MixedStorageArea 

and HashedIndex, because of their M:N relationship, would require the creation of a 

third frame, which would contain as a primary key the combination of the primary 

keys of MixedStorageArea and HashedIndex. 



- .- e 

The following table presents frame types mapped from the Implementation E- 

RD, their primary keys, their foreign keys and frames and keys referenced, and 

aggregation and classification information. These frames come fiom Figure 14. 

'Table 3 

Frames Mapped from Implementation E-RD 

Disk 

WORMDevice 

SnapshotFile 

Uniforms torage Area 

MixedStorageArea 

Hashedlndex 

Hashedstorage 

DiskName 

AreaName 

AreaName 

IndexName 

IndexName, 

AreaName 

None 

None 

Disk.DiskName 

None 

None 

None 

None 

Aggregation can be depicted in h e s  by the inclusion of a "part-of' attribute. 

For example, the frame GlobalBufferPo~l would have the slot: 

part-of : Roottc'ile 



Similarly, classification can be shown using the format of (Gonzalez and Dankel 

1993). The MixedStorageArea frame would have the slot: 

specialization-of : StorageArea 

while StorageArea would have the slot: 

generalization-of : (MixedStorageArea, UniformStorageArea) 

: 8  -. ,. +A 

. . . . . . . . .  
. 'C' - 



CONCLUSIONS 

The need for a structured methodology for knowledge base design is inarguably a 

real requirement. Unlike their counterparts in information system development who view 

database design and development and application software design and development as 

separate issues, developers of knowledge-based systems too often view the knowledge 

base and the application program as one package. At the physical level, the two may be 

combined in one package, but at the conceptual level, the lcnowledge base should be 

considered separately. This becomes more of a concern as knowledge based systems 

come out of the research laboratory and into the marketplace. As this happens, 

knowledge bases and databases will require some sort of integration. Knowledge bases 

are requiring larger and larger amounts of data, and databases are requiring intelligent 

features traditionally associated with knowledge based systems. For the integration of 

knowledge bases and databases to come to a successful hition, an attempt must be made 

to apply the same design principles to knowledge bases as have been applied to databases 

for many years. 

Knowledge bases and databases' share many similarities. As has been pointed out 

earlier, semantic models can be used to model both. Peter Chen's entity-relationship 

model, the best known of any semantic database model, offers to designers of knowledge 

bases a tool by which most knowledge representation structures may be modeled. 

The two-stage methodology espoused herein serves a dual purpose. First, it 

allows knowledge engineers to become more familiar with the inter-relationships at a 

highly conceptual level. Second, it offers a valuable tool to prevent the inherent problems 

of knowledge base design and to provide for easier knowledge base maintenance. In some 



- 
cases, the physical-.knowledge base may be mapped directly from the Implementation E- 

RD. Even if the physical knowledge base is not mapped directly from the Implementation 

E-RD, the advantages to the design and maintenance of the knowledge base make the 

development of these E-RDs a worthwhile task for knowledge engineers. The two stages 

of software development unique to knowledge-based systems, knowledge acquisition and 

knowledge engineering, are thus aided by this methodology, as is the maintenance portion 

of the application's lifecycle. Knowledge acquisition is made easier by providing 

developers a graphical representation of not only the problem domain (the Essential E- 

RD), but also the conceptual and physical knowledge base (the Implementation E-RD.) 

Knowledge engineering becomes easier by avoiding the problem of selecting an improper 

knowledge representation model, as well as providing a conceptual knowledge base which 

can be mapped directly to some physical knowledge structures. 

Applying the methodology to a test case illustrated that it works very well for 

frame-based systems. Indeed, frames can be mapped directly from the knowledge E-RD. 

Aggregation and other similar relationships used in semantic, or associative, networks are 

also easy to depict, as is classification. Unfortunately, the static nature of E-RDs makes 

them too inflexible to depict the behavioral structure of rules at a conceptual level. 

However, including references to rules and encapsulated packages on the Irnplementation 

E-RD makes the maintenance task easier, since the relationship between the entities of the 

knowledge base and the rules and packages can be determined visually. 

For this methodology to truly work for knowledge bases, the knowledge engineer 

has to first view the problem as one would view a typical information system problem 

Only by divorcing himself or' herself from the I typical rapid-prototyping mindset of most 

knowledge-based system developers can the knowledge engineer produce an E-RD 

detailing the inter-relationships of the problem area at the conceptual leveL Furthermore, 



.--.- .A. 

this f i r s t - s t a g e - - ~ - ~ ~  becomes the backbone of the Implementation E-RD from which the 

knowledge base can be developed and maintained. 

As new knowledge representation models are developed, so too must structures be 

created or adapted to model these new KRMs in an E-RD. For example, the emergence 

of blackboard systems may well require a new knowledge representation model. 

Likewise, the E-RD is an evolving tool. As new E-RD structures, concepts and 

methodologies are developed, they should be incorporated into the design methodology. 

One noteworthy example of this is research into action-modeling E-RDs, which may well 

provide an answer to the dilemma of modeling rules via E-RD constructs. In either case, 

whether newly-developed KRMs require E-RD constructs or newly-developed E-RD 

constructs can model existing KRMs, the goal of the researcher expanding this tool should 

reflect the goal of this thesis: to efficiently model KRMs for the design and construction of 

maintainable knowledge bases. 



APPENDIX A 
The Entity-Relationship Model 

As* mentioned previously, Peter Chen defined entities and relationships as the 

major constructs of his entity-relationship model. This section will define these and other 

constructs more closely and focus on their diagramming techniques. 

~ e c a l l  that an entity was defined as "a 'thing' which can be distinctly identified,'' 

while a relationship is "an association between entities." (Chen 1976) The information 

about entities and relationships exists as attribute-value pairs. For example, the entity 

Employee may be composed of the attributes Emp-Name, Emp-ID, Birthdate, and Salary. 

An instance of this entity might be Emp-Name = John Doe, Emp-ID = 12345, Birthdate = 

1 January 1950, and Salary = $50,000. Chen also defi11ed the concepts of regular and 

weak entities and relationships. A regular entity is one which does not require a 

relationship with another entity to exist; a weak entity requires such a relationship. A 

regular relationship is one in which all participating entities are defined by own attributes, 

while a weak relationship has at least one entity which is identified by another relationship. 

A common example of these concepts is that of employees and dependents. The entity 

Employee is a regular entity, since it does not require any relationships in order to exist. 

Dependents is a weak entity, since it depends on its relationship with the Employee entity 

to exist. Likewise, any relationship between Dependents and another entity will be a weak 

relationship, since Dependent is a weak entity. 

Chen also defined 'mapping ratios (often called cardinality ratios) between the 
\ I 

participating entities of a relationship. Relationships may be one-to-one (1:1), one-to- 

many (1 :m), or many-to-many (m:n). This ratio refers to how many instances of each of 
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the entities in the binary relationship can exist. For example, the Employee-Dependent 

relationship is said to be 1 :m since each employee may have many dependents, but each 

dependent will have only one sponsoring employee. 

The diagramming constructs Chen proposed are quite simple. Entities are drawn 

as rectangles. A weak entity is shown as a rectangle within a rectangle. Relationships are 

drawn as diamonds, connected to their participating entities by lines. Weak relationships 

are denoted by a diamond within a diamond. The cardinality ratio is shown by a "I", "M", 

or "N" on the line between the relationship and the entity. Although Chen did not propose 

attributes to be included in the E-RD, they commonly are, either enclosed in ovals or 

simply named and attached to their respective entity or relationship. The primary key (the 

attribute(s) which uniquely identifies an instance of the entity) is usually underlined. 

Figure A-1 illustrates the Employee-Dependent relationship. Reading this E-RD 

gives the information that Dependent is a weak entity and relies on Employee for its 

existence. Emp-Dep is a weak relationship since it involves the weak Dependent entity. 

Emp-ID is the primary key of the Employee entity, and a composite key (two or more 

attributes which together form a key) of Emp-ID and Dep-ID is the primary key of the 

Dependent entity. 

Figure A-1 - Example Entity Relationship Diagram 



APPENDIX B 
Transforming a Relation into Third Normal Form (3NF) 

Normalizing an entity to 3NF guarantees its constituent attributes "belong" to it; 

thus, an operation on an attribute will affect only the proper entity and its attributes. 

Transforming a denormalized relation into one of 3NF must start by forcing ittinto INF. 

'Date (Date 19Yd) defines INF as such: 

. "A relation is in first normal form (1NF) if and only if all underlying simple 

domains contain atomic values only." 

This constraint has been called the "no-repeating" constraint. Basically, it says that the 

attributes (domains, in Date's terminology) of a relation cannot have repeating values. For 

example, an attribute called "EmpName" can have only one occurrence of an employee 

name; it must not be an array of employee names. 

Second normal form is defined in (Elmasri and Navathe 1989) as follows: 

"A relation..R is in second .normal form (2NF) if every ... attribute A in R is not 

partially dependent on any key of R. This definition can be restated as' follows: 

A relation ... R is in 2NF if every ... attribute A in R is fully functional on every key 

of R." 

Date defines 2NF slightly differently: 

"A relation is in second normal form (2NF) if and only if it is in 1NF and every 

nonkey attribute is fully dependent on the primary key." 

The difference between these two definitions is not as great is it might first appear. 
I 

Assuming one selected the proper choice of primary keys, a relation not in 2NF would fail 



Date's criteria by inspection. If the wrong primary key were chosen, the Elmasrifiavathe 

test might be in order. 

As an example of the first two normal forms, consider employees and dependents. 

To make an employees relation adhere to lNF, an attribute called "DepID", the 

identificatidn number of a dependent, would reside in every tuple of the Employee 

relation. DepID would contain only atomic values, and an Employee relation, consisting 

of EmpID (the primary key), EmpNarne, DepID, and DepName, would be in 1NF. 

However, DepName is not fully dependent on EmpID. To force the Employee relation 

into 2NF, a separate Dependent relation should be created, consisting of DepID (the 

primary key) and DepName. 

The transition to 3NF is more subtle. Going back to Date: 

"A relation is in third nornzal form (3NF) if and only if, for all time, each tuple 

consists of a primary key value that identifies some entity, together with a set of 

zero or more mutually independent attribute values that describe that entity in 

some way." 

To extend the Employee relation example to show the difference between 2NF and 3NF, 

suppose the Employee example contained the attributes EmpID, EmpNarne, DepID, 

JobCode, and Salary. Furthermore, suppose Salary is dependent on JobCode, which has 

been assigned the status of a foreign key in the relation Employee, as it is also the primary 

key of a relation called Job. Employee could be said to pass the Elrnasri/Navathe test for 

2NF. However, it does not pass the 3NF criteria. Removing Salary from the Employee 

relation and placing it in the Job relation would transform Employee into a 3NF relation. 
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