
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1993

Design and construction of maintainable knowledge bases Design and construction of maintainable knowledge bases

through effective use of entity-relationship modeling techniques through effective use of entity-relationship modeling techniques

William Yancey Pike
bill_pike@bellsouth.net

 Part of the Electrical and Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Pike, William Yancey, "Design and construction of maintainable knowledge bases through effective use of
entity-relationship modeling techniques" (1993). Retrospective Theses and Dissertations. 3723.
https://stars.library.ucf.edu/rtd/3723

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/266?utm_source=stars.library.ucf.edu%2Frtd%2F3723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/3723?utm_source=stars.library.ucf.edu%2Frtd%2F3723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

DESIGN AND CONSTRUCTION OF
MAINTAINABLE KNOWLEDGE BASES THROUGH

EFFECTIVE USE OF ENTITY-RELATIONSHIP
MODELING TECHNIQUES

WILLIAM YANCEY PIKE
B.S., University of West Florida, 1987

THESIS

Submitted in partial fulfillment of the requirements
for the degree of

Master of Science
College of Engineering

University of Central Florida
Orlando, Florida

Summer Term
1993

ABSTRACT

The use of an accepted logical database design tool, Entity-Relationship-Diagrams

(E-RD), is explored as a method by which conceptual and pseudo-conceptual knowledge

bases may be designed. Extensions to Peter Chen's classic E-RD method which can model

knowledge structures used by knowledge-based applications are explored.

The use of E-RDs to design knowledge bases is proposed as a two-stage process.

In the fust stage, an E-RD, termed the Essential E-RD, is developed of the realm of the

problem or enterprise being modeled. The Essential E-RD is completely independent of

any knowledge representation model (KRM) and is intended for the understanding of the -

underlying conceptual entities and relationships in the domain of interest. The second

stage of the proposed design process consists of expanding the Essential E-RD. The

resulting E-RD, termed the Implementation E-RD, is a network of E-RD-modeled KRM

constructs and will provide a m~thod by whichthe proper KRM may be chosen and the

knowledge base may be maintained. In some cases, the constructs of the Implementation

E-RD may be mapped directly to a physical knowledge base.

Using the proposed design tool wiuaid in both the development of the knowledge

base and its maintenance. The need for building maintainable knowledge bases and

problems often encountered during knowledge base construction will be explored.

A case study is presented in which this tool is used to design a knowledge base.

Problems avoided by the use of this-method are highlighted, as are advantages the method
I

presents to the maintenance of the knowledge base. Finally, a critique of the ramifications

of this research is presented, as well as needs for future research.

ACKNOWLEDGEMENTS

The author would like to thank his wife, Tracey, for inspiring, motivating, and

occassionally forcing him to continue his education. The author offers no small amount of

gratitude to Dr. Soheil Khajenoori for displaying tremendous amounts of patience; to Drs.

Tom Peeples and AUan Lang for their assistance and support; and to his parents, Billy and

Eola Pike, for their love and guidance through the years. but most importantly,

the author would like to thank the Lord, without whose supreme assistance this work

would be impossible.

TABLE OF CONTENTS

List of Tables
List of Figures
INTRODUCTION

I. LITERATURE REVIEW
11. KNOWLEDGE REPRESENTATION
111. E-R DIAGRAMS AS A KBS/KBMS DESIGN TOOL
IV. CASE STUDY
V. CONCLUSIONS

APPENDIX A
APPENDIX B
BIBLIOGRAPHY

Table 1
Table2
Table 3

LIST OF TABLES

EMPLOYEE and OFFICE entities and attributes
Rules from Implementation E-RD
Frames mapped from Implementation E-RD

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 2 1
Figure 22
Figure A- 1

Sample E-R Diagram
If-Then from (Rodriguez et. al. 1989)
Depicting If-Then (Rule) relationship in E-RD
E-RD illustrating subclasses, superclasses
E-RD illustrating generalization/specialization
E-RD illustrating aggregation
Encapsulated package entity
Network of E-RD knowledge structures
Top-level E-RD of Rdb Database
Expanded E-RD of Storage Area
Expanded E-RD of Data Page
E-RD of Environment -
E-RD of 3NF Logical Database
Top-level E-RD of Rdb Database with Knowledge Structures
Detailed E-RD of Root File
Detailed E-RD of Snapshot File
Detailed E-RD of Storage. Area
Detailed E-RD of Data Page
Detailed E-RD of Index
E-RD of Store Clause
E-RD of Relationship Group
Encapsulation Snapshot FileIStorage Area E-RD
Example Enti ty-Relationship Diagram

INTRODUCTION

Although the topic of knowledge base and database integration has recently been

an area of considerable research fiom both fiom academia and industry, for the most part

this research has failed to integrate conceptual database design principles into the design

of knowledge bases.

The need for such a design methodology in the knowledge base system world is

inarguably a real one. The design of knowledge-based systems (KBS) and their underlying

knowledge base management systems (KBMS) suffers from a lack of a de facto standard

methodology (Gonzalez and Dankel 1993). This lack of a methodology can lead to a

paradigm shift, in which, during the development of the KBS, the developer must shift to

a new technology. (Gonzalez and Dankel 1993) This paradigm shift is caused when the

initial selection of knowledge representation model (KRM) can not adequately perform its
\

intended function. This represents perhaps the most serious problem in KBS

development. However, there are other inherent problems, as described in (Gonzalez and

Dankel 1993). One problem lies in the difference between solving traditional information-

system problems and heuristic-oriented problems. The data needed for algorithmic

problems can be determined fairly easily, while in the case of knowled_ :-based systems,

sometimes the "nature and quantity" of the knowledge isn't known even by the experts.

The process of knowledge acquisition can thus proye to be fairly frustrating. One of the

underlying reasons for this, claims Earl Cox, a columnist for AI Expert,' is a common

perception that A1 is commonly defined in "terms of ever more advanced knowledge

representation schemes devoid and divorced from fundamental architectural and design

considerations." (Cox 1993) The lack of any recognized conelation between A1 and

conventional systems has lead to "confusion in aims and directions" of A1 in the

marketplace (Cox 1993). Clearly, there is a need to apply sound, established traditional

software development principles to A1 system development

The attitudes and mindsets of KBS developers are perhaps part of the problem.

The roots of database research lie primarily in the "commercial sector's need for efficient

and secure data processing systems." (Jelly and Gray 1992) Free from this requirement

which would restrict research to mostly commercial applications, early KBS researchers

developed an almost "renegade" approach to application development. Indeed, as Cox has

pointed out, "there does seem to be a general consensus among knowledge engineers that

A1 is somehow completely removed from computer science, systems design, and

functional decomposition." (Cox 1993)

Another viewpoint of this problem is stated in (Cohen 1990). K-l Cohen blames

much of the problem on the lack of qualitative vice quantitative research in AI. He states,

"Much work is unevaluated and most evaluations are limited to measures of performance.

System design appears arbitrary and, when justifications do appear, they are

informal ... Evaluation tends to be limited to performance evaluation, instead of tests of

hypotheses of how behavior arises from the interaction of agents' architectures and their

environments." Cohen goes on to describe what he terms the "strip mining" view of A1

research. "A1 researchers trash the space of questions about intelligence in much the same

way that slash-and-burn cultures trash the rain forest. Both make very inefficient use of

resources." As an example of "strip mining," Cohen points out the following: "The
I

statement 'X is sufficient to produce Y' alleges but does not model or explain the alleged

causal relationship between X and Y . . . Demonstrating that X is sufficient to produce Y

does not show that X is a particularly good way to produce Y, or that X is necessary to

produce Y." This problem is very similar to the "nature and quantity" dilemma discussed

above.

Quality has become somewhat of a buzzword in industry (e.g., "Total Quality

Management1'.) As knowledge-based systems in specific and A1 systems in general come

out of the research lab and into the mainstream of the marketplace, the quality of these

systems must be taken into consideration. It is pointed out in (Fenn and Veren 1991)

that "aaherence to a software engineering methodology and development lifecycle can

significantly improve the quality of a completed system." Earl Cox has stated that

"successful A1 projects combine quality with concems for economical solutions." (Cox

1993)

As the maintenance portion of any software project lifecycle has historically been

the costliest, a design technique should provide for maintenance in order to supply quality

to the project (Ignizio 1991), (Parsaye and Chignell1988), (Debenham 1992).

To a great extent, these same problems or similar concems can be seen in

. traditional database application development efforts. Semantic data models have been
\

used as a design tool to solve these problems. Of all the semantic data models, Peter

Chen's entity-relationship (E-R) model has become the most popular, due to a great extent

to the popularity of the E-R diagram (E-RD), a graphical companion to the E-R model.

(Date 1990)

Applying Peter Chen's classic E-R-diagramming technique, or some variation

thereof, to the design of a knowledge base (regardless of the knowledge representation

technique used by the KBS) provides the developer with a proven methodology to ensure
\ I

a more intelligent design. By developing E-RDs early in the development life-cycle of the

KBS, designers can avoid the knowledge representation paradigm shift by determining the

proper representation a prion' implementation. Having a well-defined E-RD of the

knowledge base can also aid in maintaining the KBS. The effects of adding new

knowledge or modifying existing knowledge can quickly be determined by consulting an

E-RD.

This thesis proposes the use of entity-relationship diagrams as a design tool for the

development of knowledge base systems. More specifically, a two-stage process is

proposed in which a traditional E-RD, called the Essential E-RD, is developed based on

the conceptual knowledge base as the first stage. This E-RD serves to identify the

conceptual entities and relationships of the knowledge realm; In the second stage, the first

E-RD is expanded to model the knowledge structures via extended E-RD structures. The

resulting E-RD is called the Implementation E-RD. These E-RD structures, for the most

part, have already been proposed in earlier bodies of research as development aids for

DBS applications, although additional structures are proposed herein to better model

knowledge concepts.

The use of a semantic data model is defended as a combination of the latter two

levels of the three-level of integration of databases and knowledge bases. The first level,
7

the physical layer, involves utilization of database management systems (DBMSes) to

physically store the knowledge of a KBS, and the integration of traditionally KBS-oriented

features into DBMSes. The second level, termed the pseudo-conceptual layer, starts to

apply conceptual DBMS design methodologies into the design of a knowledge base. In

this layer, the design is presented for a c e h KRM only. At the conceptual layer,

database design techniques are proposed for the design of the conceptual knowledge base,

independently of a specific KRM.
\ I

As knowledge bases continue to grow, they will undoubtedly require a great deal

of support from databases. Many expert-system shells now offer fiont-ends to popular

database engines. Likewise, 'as database applications become more complex, they will

require intelligent features from knowledge based systems. An example of this is ongoing

research in the database community of implementing business rules into databases and

database applications. These rules, defined as "constraint(s) placed upon the business"

(Moriarty 1993), have a five-stage design process very similar to the design process of

KBSes. A reason expert systems fail is that they aren't integrated into the corporate

computing architecture. "A high percentage of expert system programs result in a

successful prototype from a technical point of view but fail to produce a system which is

integrated into an organization's mainstream operational environment" (Fenn and Veren

1991). The corollary of this statement may also well be true; that is, the knowledge bases

of intelligent systems are not being utilized by the "mainstream" corporate applications.

This work serves as an important step in bringing the two camps together.

LITERATURE REVIEW

Research for' this thesis was necessarily performed from two separate but

complimentary viewpoints. Experts from both the database realm and the knowledge base

realm have written extensively on issues similar to the ideas proposed herein.

Databases and knowledge bases share many similarities. Both serve to store the

data necessary to make their respective systems perform. Both have established physical

structures designed to optimize the retrieval of that data. Both have certain relationships

between their logical design and their physical design. The union of databases and

knowledge bases can be divided into three levels: the physical level, the pseudo-

conceptual level, and the conceptual level. While the conceptual and the pseudo-

conceptual levels are the primary concern of this paper, a review of all three levels will

help establish a better baseline for the main premise to be presented later.

The physical level represents the lowest level of abstraction in the integration of

databases and knowledge bases. At the physical level, research has focused on many

areas. Those areas discussed here will consist of:
.

Storingretrieving knowledge inlfrom a database management system (DBMS),

Adding traditional expert system features to DBMSes, and

Interfacing database systems (DBSes) and KBSes.

Frank Anger, Rita Rodriguez and Douglas Dankel have co-authored a series of

papers on organizing expert systems' knowledge bases using databases and database

design techniques. They liave proposed utilizing a commercial relational DBMS

(RDBMS) to store the rules of an expert system's knowledge base (Rodriguez et. al.

1989). Their proposal calls for three RDBMS relations, or tables, to implement the

knowledge base. The first, named IF, consists of the fields rule#, ass&, and assrtdescr.

The second table, THEN, is also made up of the fields rule#, ass&, and assrtdescr. To

,track confidence, an integral part of rule-based systems, the table RULE-CONF is defined

to consist of the fields rule# and con$ These fields are described as such:

rule# - a unique identifier of the rule
assrt# - a unique identifier of an assertion
assrtdescr - the textual description of the assertion
c o d - a number which represents the confidence in the deduction

In this design, both the IF and THEN tables have a composite primary key consisting of
-

the fields rule# and assrt#, while RULE-CONF uses rule# as its primary key (Rodriguez

et. al. 1989).

The same paper also details the addition of procedural knowledge via a Oigger

relation. This table, called TRIGGERS, includes as a foreign key the field assrt#. When

the inference engine fues a rule which involves assertion N, the system queries

TRIGGERS to determine whether any procedures are to be invoked. An additional table,

PROCEDURES (whose primary key pname is also a foreign key in TRIGGERS),

contains the action to be performed (Rodriguez et. al. 1989) (Anger et. al. 1988).

An additional step in this direction has been proposed in (Ito 1991). Ito proposes

a coupling of KBSes and DBMSes. Since the reconstruction of an existing database to

perform the task of knowledge base manager is "burdensome", Ito suggests the

knowledge 'representation scheme (KRS) provide the mechanisms required for coupling.

Called IKD (Interface for integrating a Knowledge-based system and a Database system),

the system serves as the interface between a KRS called KBUS and a relational database.

KBUS is composed of a frame-based system called FKBUS and a production system

called PKBUS, in addition to IKD. FKBUS consists of several frames and sub-frames

which include, among other items, actual SQL (Structured Query Language) code to

retrieve knowledge from the database. In summary, Ito's paper proposes a knowledge-

based system which uses a frame-based subsystem to retrieve knowledge from an SQL-

compliant relational database.

Levent Orman of Cornell University proposed in (Orman 1992) that a three-layer

abstraction ("external ", "conceptual" and "internal" layers) of knowledge bases be

developed, with each layer targeted to a specific user type. At what Orman calls the

"internal level", targeted to system implementers, rules are to be "viewed as data." An

interesting point of Orman's proposal is the case he makes for hierarchical databases to

store rules, as opposed to the relational database approach championed in (Anger et. al.

lYSS), (Rodriguez et. al. 1989) and (Ito 1991). As a discussion of which database model

is most suited for the storage, retrieval and management of knowledge constructs is

beyond the scope of this paper, the point is simply made that (Orman 1992) provides a

strong case for the physical level of abstraction of databasebowledge base integration.

Industry has also conbibuted to the physical level of DBMS/KBS unions. Many

relational databases now supply triggers, which supply a primitive method of supplying

rule-based processing. A trigger is defined to be invoked on a certain action or condition

(cf., trigger relations, (Rodriguez et. al. 1-989) (Anger et. al. 1988)). Unfortunately,

triggers generally must be written in SQL, which doesn't provide the flexibility required to

add true intelligence to a database. Sybase, Inc., an innovator in client-server RDBMS

engines, has included the capability for "stored procedures" which can add a further level

of intelligence to a database by defining certain processing to occur based on user-defined

events.' These stored procediues, which are compiled and execute on the server side of

database applications, allow more efficient processing than triggers. The influx of client-

server database engines has provided another opportunity for DBMSIKBS unions. A

query can be passed through a KBS on the client side before issuing the SQL code to the

server side. ~ngress; the relational DBMS fiom Ask Computer Systems, has improved this

process by supplying a knowledge management module as an add-on. This module allows

for the incorporation of rules into applications which use the database (Jenkins'and

Grygo 1991).

The layer of abstraction referred to here as "pseudo-conceptual" is somewhat

harder to define. In this work, the pseudo-conceptual layer will refer to a level of

integration of knowledge base design and database design in which one particular

knowledge representation scheme is modeled via traditional logical database design

techniques. At this level, the semantic model becomes of more importance than the

syntactic model.

In addition to the physical layer examined above, both (Anger et. al. 1988) and

(Rodriguez et. al. 1989) contain a certain amount of work in the pseudo-conceptual

layer. KBS developers can use E-R diagrams to model rule bases in much the same way

as databases are modeled. More specifically, their proposal states that "simple assertions

of the rule base are viewed as one entity type and the rules as another, with IF and THEN

being relationships between these types." (Rodriguez et. al. 1989) Using this method will

capture "the information contained within the rules.:' (Rodriguez et. al. 1989)

At Orman's "external level", targeted to end-users of KBSes, rules are depicted

graphically (Orman 1992). Orman proposes the use of labeled arcs to represent

relationships between data' items represented by points. Cardinality concepts (e.g.,

SOME, UNIQUE, EACH) are given graphical constructs as well. As in the previous

references, though, the graphical representations are limited to applications to rules, thus

fitting the definition of the pseudo-conceptual level.

The differences between the physical and the pseudo-conceptual layers cited in the

same works are significant. The. first set of references to (Anger et. al. 1988).

(Rodriguez et. al. 1989) and (Orman 1992) examined the proposal to take actual rules

and stbre them in a database. In the second set of references to these same three papers,

emphasis is placed on taking an existing knowledge base (in all three cases, a rule base)

and modeling its semantics via some graphical methodology. Thus, it is the pseudo-

conceptual level of databasebowledge base integration at which one can first see an

attempt to integrate semantic principles of the two techniques.

At the level of abstraction of KBS-DBS integration referred to as the conceptual

level, the particular inferencing technique becomes of secondary importance to the

conceptual knowledge schema, in much the same way as the physical database model is of

less importance than the logical database schema during the logical design phase of

database design. Although previous work has failed to hone in on this level to the extent

it has the other two levels, recent literature has seen a trend of research on this level. One

example is (Mattos 1989), in which semantic data models and knowledge representation

models are characterized as being composed of several abstraction concepts, including

classification, generalization, inheritance, element, and set association, and element and

component aggregation. Mattos further argues that each of these' main concepts

(classification, generalization, association and aggregation) has inherent reasoning

facilities. Additionally, (oebenham 1992) presents an argument for building a

"maintainable" knowledge base around Horn clause logic (essentially, a rule-based system)

which would, by definition, place his methodology at the pseudo-conceptual level.

However, he does defend his approach as being independent of KRS by pointing out that

"as, long as the kno.wledge hasbeen modeled rigorously and...this model of the knowledge

has been normalized," it "really doesn't matter what language is used to actually implement

the knowledge.'' (Debenham 1992) In (Feldman and Fitzgerald 1985) the poht is

made that, while knowledge based systems represent a newer discipline than more

traditional information systems, both share common problems in the area of "knowledge

representation and acquisition", more than in "technical aspects of programming

methods." This common area of concern clearly points to a high level of abstraction in the

marriage of the two areas.

Again, the difference between the conceptual level and the pseudo-conceptual level

is significant: at this higher level of abstraction, any restriction on inference technique is

removed, and the problem becomes one of actually modeling a conceptual base of

knowledge with a semantic data model. In (Borgida 1991), the point is made that in the

database world, more emphasis is placed on "modeling the human conceptualization" of

the knowledge domain, while the knowledge base world has just now begun to investigate

modeling the conceptual schema vice "modeling the physical storage structures."

In summary, previous examinations of the union of DBSes and KBSes can be

separated into three layers of abstraction: physical, pseudo-conceptual and conceptual.

The physical layer is the layer at which databases are used to physically manage

knowledge, and at which intelligent features we added to DBMSes. The pseudo-

conceptual layer begins to examine the use of database design techniques, but generally

limits their use to one specific KRM. The most abstract layer, the conceptual layer,

suggests the use of database design techniques for any and al l KRMs. A combination of

the pseudo-conceptual and conceptual layers will provide the basis for the proposal of this

thesis.

The KADS methodology has become the most notable KBS design methodology

since its origin in 1983 as an ESPIRIT project. Many of the same concerns expressed in

this i o rk are also expressed in (Hick- et. al. 1989), which is probably the definitive

English-language text on the methodology. One such concern is based on the traditional

KBS development method, that of rapid prototyping . "(Rapid proto typing) provides very

little in the way of support for management issues, which are crucial to successful project

control." The authors go on to point to the "deliberate confusion between process and

data" as a deficiency in conventional software development methodologies for KBS

development. The text claims that entity modeling is not appropriate for KBS

development because the process of assigning entities to the real world problem is cliflicult

and the process of assigning attributes to those entities is "very difficult indeed." One item
\

that truly separates the KADS methodology and the other references cited here is that the

KADS' methodology makes no attempt to integrate knowledge bases and databases, nor

does it attempt to separate the knowledge base from the KBS at the logical level.

Knowledge Base M a t e ~ c e I JSiag D m e T-

Additionally, recent research has centered on the area of knowledge base

maintenance, and how database design principles can assist. The importance of

normalizing knowledge and applying constraints, including the referential integrity

constraint, has been discussed in (Debenham 1992). (The concepts will be discussed in

detail later.) Debenham's ' work presents three models: the Lata model, the information

model, and the knowledge model. Basically, the data model is based on the real world

realization of the problem, and corresponds roughly to a semantic data model. The

information model is analogous to the metadata of a relational database schema, while the

knowledge model consists of details about ,the knowledge representation structure. The

data model drives the information model, which in turn drives the knowledge model.

Debenham suggests normalization be performed at the data model as it is the easiest to

normalize. In addition, non-normalized entities at the data model level can cause a

"proliferation" of non-normalized entities at the higher levels. Knowledge base

maintenance becomes more manageable with a normalized model, Debenharn argues, since

all inter-relationships between the component items can be determined more quickly. In a

similar manner, Debenham defends applying constraints to the knowledge base (on al l

three models) as a means to ensure efficiency in the maintenance process.

KNOWLEDGE REPRESENTATION

Just as there are several database models (e.g., relational, network, hierarchical),

likewise 'are there several different knowledge representation models. The most common

knowledge representation models are

Rules

Frames

Semantic, or Associative, Networks

Object Orientation

The inclusion of object orientation as a knowledge representation model could be

somewhat debatable; however, when examined at the very basic level, one can see

similarities between a frame-representation scheme and an object oriented approach. In

addition, object orientation is seen as a means by which intelligence c k be added to

databases; thus it is included herein as a separate model. Each of these models will be

examined $I detail to determine what features a modeling tool must provide in order to
\

model their structures.

Rule-based systems are the most commonly known of all KRMs. A rule consists

of two parts, a premise and a conclusion. Rules are generally expressed either as an "IF-

THEN" relationship (e.g., IF it is August, THEN we will have a thunderstorm) or vice

versa (We will have a thunderstorm IF it is August.) Any number of ANDs, ORS or

NOTs can be appended to the premise (IF it is August AND we are in Central Florida OR

NOT (I have mowed my yard), THEN we will have a thunderstorm)

A frame-based system collects related knowledge into sets of attribute-value (or
_ _ - -*

slot-filler) pairs called frames. The fillers are often subdivided into facets, each of which

has its own value (Conzalez and Dankel 1993). Facets may include range, default value,

and daemons, procedures which execute upon a pre-defined condition. Frames are ordered

in the knowledge base into a hierarchy with IS-A links between the nodes (Hodgson

1991). inheritance plays a major role in frame-based systems as children frames tend to

inherit values from parent frames. Using the structure set forth in (Gonzalez and Dankel

1993), a frame detailing storm types could be depicted as:

Generic STORM Frame
Specialization-of: WEATHER
Generalization-of: (THUNDERSTORM, HAILSTORM, SNOWSTORM)
Precipitation:

Range: (NONE, RAIN, ICE, SLEET, SNOW, HAIL)
Default: (RAIN)

Wind-Speed:
Range: (0- 150)

Warning-Type:
Range: (NONE, WATCH, WARNING)
If-Needed: (WATCH-WEATHER-CHANNEL)
If-Modified: (ALERT-MEDIA)

Lightning-Presence:
Range: (NONE, LIGHT, MEDIUM, HEAVY)
If-Modified: (CHECK-FOR-THUNDERSTORM)

This example illustrates classification (Specialization-of and Generalization-on,

from which inheritance generally arises, ranges and defaults, and daemons ($Modified, @

Needed). The STORM frame will inherit properties of the WEATHER kame, while

THUNDERSTORM, HAILSTORM and SNOWSTORM will inherit properties of the

STORM frame.

Associative networks, originally termed semantic networks, were developed to

represent knowledge in natural language I sentences. Their use has gown beyond

semantics to encompass physical and causal associations (Gonzalez and Dankel 1993).

Associative networks are basically directed graphs whose nodes represent concepts and
_ - -

whose linksSrepresent associations between the concepts. These associations can take on

many different meanings; classification (instance-of), generalization (is-a) and aggregation

(part-of) are three of the more common and important association types (Mattos 1991).

Object-orientation (00) can arguably be presented as a knowledge representation

scheme: Its inclusion here is an acknowledgment of the capability of 00 to add
. ,

intelligence to databases. The world of objects has grown to include object-oriented

programming (OOP), object-oriented analysis and design (OOA and OOD), and object-

oriented databases management systems (OODBMS). While each of the three has its

own features which are not crucial to this thesis (e.g., the concept of dynamic binding in

OOP), all object-oriented approaches share common features, including inheritance,

polymorphism and encapsulation. Inheritance in 00 is identical to inheritance in frame-

based systems. Polymorphism is similar to the concept of generalization. Encapsulation,

perhaps the cornerstone of the object world is the process by which data structures and

the processes performed upon them (methods) are encapsulated, or combined, into one

entity, called a package, class or object type.

In summary, a design methodology for KBSes must meet the requirements of

several different knowledge representation schemes. These schemes utilih the following

features:

If-Then relationships between premises and conclusions

Inheritance

Generalizatio~Specialization

Classification

Aggregation

Encapsulation

_. -

E-R DIAGRAMS AS A KBSIKBMS DESIGN TOOL

So far, this paper has established the need for a structured design methodology for

knowledge-based systems, presented arguments for the integration of knowledge-base and

database systems, and examined various knowledge representation models. Building on

previous work on the integration of KBSes and DBSes, this chapter will present a design

methodology for KBSes which will satisfy the needs of the various KRMs and overcome

common problems inherent with KBS design and development. It is the primary intent of

this thesis to introduce the use of E-R diagramming as a knowledge base system design

tool, and to defend its use by presenting its advantages to various stages of the knowledge

base lifecycle.

Semantic modeling has been defined as "the overall activity of ammpting to

represent meaning." (Date 1990) This definition compliments the view of a KRM as a

scheme to represent knowledge. It has been argued in (Borgida 1991) that semantic data

models and KRMs share many similarities, while their differences tend to revolve around

the :'differing goals to which they subscribe." These similarities include:
3

Object Identity - both KRMs and semantic models subscribe to the notion that an

instance of knowledge or data has its own identity independent of its attribute

values or participating relationships.

Binary Relationships among Objects - both support binary (vs. n-ary)

relationships among objects (e.g., attributes, slots, properties).

Grouping of Individuals into Classes - Chapter I1 discussed generalization; the

concepts of grouping individqls into classes and generalization are practically

identical.

Decomposition of Classes into Subclasses - Chapter IT discussed specialization;
_. . --

the concepts of decomposition of classes into subclasses and specialization are

practically identical.

Constraints - Both KRMs and semantic models provide means of expressing

conditions of validity for attributes.

Derived Classes/Relationships - KRMs and semantic models both have methods

defined to control redundant information and enforce its consistency. (Borgida

1991)

Drawing upon this list, it is safe to say there is a definite parallel between

knowledge representation and semantic modeling. For this reason, this chapter will

promote the concept of semantically modeling the knowledge of a KBS as a design aid for

KBS development.

Peter Chen's classic entity-relationship modeling and diagramming technique

(Chen 1976) is arguably the de facto standard for database design in general, and

relational database design in particular. As databases have become more intelligent in

nature, so too have E-R modeling and diagramming techniques been extended to help

developers better keep track of the inherent intelligence of the database. This research

will demonstrate how the classic E-R diagram, with extensions, can adequately model the

knowledge base of any KBS, regardless of knowledge representation scheme. It will also

bring to light some advantages of performing this modeling.

In the decade and a half since Chen presented his very valuable tool, the E-RD

methodology has undergone many adaptations. Researchers have proposed extensions to

the original model to allow it to model many different types of data and knowledge. The

proceedings of the annual Entity-Relationship Approach conferences provide a wealth of

new E-RD extensions. There are object-oriented E-RDs (Navathe and Pillalamarri

1989), action-mddeling E-RDs (Feldrnan and Fitzgerald 1985), and E-RDs which model

both transactional information and conceptual knowledge (Lazirny 1988), to name but a

few. Elements of many of these "E-RD flavors" will be selected to develop a case for this

paper's proposal: entity-relationship modeling and (in particular) diagramming can be used

to model .the conceptual knowledge base of a knowledge-based system in much the same

way as they presently model the logical database of a traditional information system.

A short review of basic E-R modeling reveals three main concepts: entities,

attributes and relationships. Peter Chen, who originated both the concept of the entity-

relationship model and its graphical partner, the entity-relationship diagram, defines an

entity as "a thing which can be distinctly identified." An attribute is a piece of information

that describes an entity. Finally, a relationship is defined as "an association among

entities." (Chen 1976) An example to illustrate these basics is that of a personnel system

The entities of concern are EMPLOYEE and OFFICE. In this example, employees are

assumed to work for one and only one office. The attributes are as follows:

Table 1

EMPLOYEE and OFFICE entities and attributes

EMPLOYEE
EMPLOYEE - ID

EMPLOYEE - NAME

JOB-CLASS - CODE

DATE - REPORTED

OFFICE
ORGANIZATION-CODE

OFFICE - TITLE

MANAGER-ID

-- - -

Figure 1 shows this example in E-R diagram form.

Employee-ID Organization-Code

Employee-Name
Employee Office Off ice_Title Job-Class-Code

Date-Reported Manag er-ID

Figure 1 - Sample E-R Diagram

The underlined attributes (EMPLOYEE - ID, ORGANIZATION - CODE)

represent the primary keys of their respective entities. The cardinality of the relationship

between the entities is denoted by the "M" and the "1"; in this example, there is a one-to-

many relationship between offices and employees. Although Chen introduced several

other features in his essay, these features constitute the bulk of E-RD basics. Appendix A

presents a more detailed review of E-R concepts.

ions to E-RD8
-

The fiist requirement of a knowledge-modeling tool is to provide a model for if-

then rules between premises and conclusions. In (Rodriguez et. al. 1989), the following

diagram is given as an example of how this can be accomplished with standard E-RDs.

Figure 2 - If-Then E-RD from (Rodriguez et. al. 1989)

This E-RD depicts a many-to-many relationship occurring between the entity % RULE and

the entity ASSERTION. This approach differs from more traditional E-R modeling by

viewing the rule base as the real world. In traditional database applications, the subset of

the real world involved in the problem is modeled as the real world.

A more conceptually-oriented approach to semantically model rules is discussed in

(Feldman and Fitzgerald 1985). In that work, the use of "action modeling" is presented.

They propose this action model to be "constructed in analysis after an entity mdel has

.been built," a two-stage approach to howledge base design similar to the approach

espoused in this work. The fact that some sort of behavior modeling must be provided in

order to successfully model a rule excludes the static structure of the entity-relationship
_ _ _--.- - .

model; however, rules do perform their actions on entities, thus some method of depicting

them must be provided.

A rule can be considered as an action which occurs as the result of some state of a

relationship between one or more entities. As such, a rule should be considered to be an

attribute of that relationship. If the rule applies to only one entity, a weak entity and

relationship may be created, although this adds an unnecessary step. In this case, the rule

may be depicted as an attribute of the given entity. The term "attribute" as used here

should not be readily compared to an attribute in a typical database E-RD. Attributes in

database E-RDs will become domains, fields or columns in the physical database, while an

attribute depicting a rule will see a different mapping in the physical knowledge base. This

attribute should be some sort of implementation-independent description of the rule (a

"pseudo-rule", comparable to pseudo-code.) The pseudo-rule should either be attached to

the relationship as written or identified by a unique identifier and written out elsewhere.

This ensures that the relationship between the rule and the entity(ies) the k l e references

can be determined quickly by visual inspection of the E-RD.

Figure 3 depicts a rule in an E-RD.

Age
_ _ - --

Years-Service

Employee.Years-Senrice #I THL.
Invoke RetkementProcess
CONF = .8

Figure 3 - Depicting If-Then (Rule) relationship in ERD

The point is made in (Debenham 1992) that rules do not always tk

traditional "if-then" format of Figure 2. A semantic model should thus not be

if-then relationships simply because the underlying KRM is a rule. However,

single diagramming construct to capture all possible rule relationships isn't practd!. The

method illustrated above allows the designer flexibility in establishing rules.

Classification, generalization, specialization and inheritance all rely on sub- zlndl

super-classes. These classes represent a hierarchy fiom the general (superclass) to d k

specific (subclass). An entity type which is defined as a superclass will, in an E-RD, he

connected to its subclass with a triangle. Multiple subclass entity types each connect to

the triangle, which then connects to the superclass entity type. Figure 4 presents irm

example in which the EMPLOYEE superclass consists of ENGINEER, SECFEI'ARy

and SUPERVISOR subclasses.

-11 EMPAD
SALARY

Figure 4 - E-RD illustrating subclasses, superclasses

The presence of a subclass symbol (triangle) represents subclasses; a subclass is

assumed to inherit any and all attributes from its parent superclass. Sibling subclasses are

not ,assumed to share additionally defined attributes; if two or more subclass entity types

are to share an attribute, that attribute must be explicitly assigned to each entity type.

Thus, in Figure 4, all three subclass entity types inherit the attributes EMP-ID and

SALARY, while only the SUPERVISOR entity type has SUPV-LEVEL and

MGR-BONUS defined.

Generalization and specialization are complimentary concepts, with specialization

defined as "the process of defining a set of subclasses of an entity type." (Elmasri and

Navathe 1989) The process of specialization produces subclasses; likewise,

generalization produces superclasses. There are several constraints on generalization and

specialization which show up in the extended entity-relationship (EER) diagrams defined ,

in (Elmasri and Navathe 1989). These include:

Predicate definition

Disjointness

Completeness
_. -- - -

Predicate definition refers to the method by which membership in subclasses is

determined. The attribute-value condition is called the defining predicate; a l l entities in

the superclass which meet the defining predicate condition belong to a certain subclass. If

all the subclasses in a particular specialization are defined to have the same predicate (i.e.,

the same attribute is used to determine the membership constraint for-each subclass), the

specialization is called an attribute-defined specialization. When the defining condition

is not the same across all members of the specialization (i.e., different attribute-value pairs

are used to determine the membership constraint for subclasses), the subclass is considered

user-defined. For an attribute-defined specialization, the defining attribute of the

superclass is listed on the line between the superclass entity type and the superclass-

denoting triangle, and the values are listed on the line between the miangle and the

respective subclass entity types.

The second constraint defines to how ma-jl subclasses of the specialization an

entity type can belong. If an entity type can belong to no more than one subclass, the

specialization is called disjoint. If an entity type may belong to more than one subclass,

the specialization is considered to overlap. Disjoint specializations are denoted by a "d" in
\

the triangle; specializations which overlap have an "0" in the triangle.

The final constraint is called the completeness constraint. A specialization may

be either a total or a partial specialization. In a total specialization, every entity type in

the superclass must belong to a subclass. All entity types need not be a member of a

subclass in a partial specialization. A total specialization has a double line connecting the

superclass entity type and the triangle, while a partial specialization has a single line.

Figure 5 illustrates the concepts of generalization and specialization in an E-RD.
I

The diagram tells that the specialization is total (the double line from EMPLOYEE to the

triangle) and overlaps (the "0" inside the triangle). Furthermore, EMP-TYPE-CODE is
-

the defining attribute of the attribute-defined specialization. Defining predicates are

EMP-TYPE-CODE = E for the subclass ENGINEER, EMP-TYPE-CODE = S for the

subclass SECRETARY, and EMP-TYPE-CODE = V for the SUPERVISOR subclass .

Employee

~ - T Y P ~ - C ~ de

Figure 5 - E-RD illustrating genera~izationlspecialization

In a knowledge-based system, the defining attribute may be a rule. In this case, the

rule should be shown as an attribute of the classification triangle.

Aggregation can be represented quite easily in an E-RD. If an object class is

defined as an aggregate of multiple entities and one or more relationships, thit class can be

diagrammed as a single entity in an E-RD. The aggregate entity must be labeled as such,

and the components must be so noted. Figure 6 shows an example of the aggregation of

entities and relationships to produce the Retirement Process entity of Figure 3. The box

surrounding the constituent entities and relationships is in bold to show that it is an

aggregate entity. If an entity which is not part of the aggregate entity must be shown in

the same box, it should be shown to be separate by double vertical lines. In this case,

CorporateHeadquarters is not part of the aggregate entity Retirementprocess, but is
_ _ - -

shown in the box for clarity.

I Paperwork I

Corporate
He adquarters

3

Retirement Process

Figure 6 - E-RD illustrating aggregation

Encapsulation, the process of storing data items and the methods which are

performed upon the data items into one package, requires a bit of care when being

represented by an E-RD construct. By definition, an E-RD is intended to model only data

entities and -relationships between these entities. Modeling an encapsulated package

requires that application code be modeled, to some extent, along with data. In a

conceptual model of a knowledge base, this application could should logically not appear.
I

However, as the definition of an encapsulated package dictates that methods and data are

tightly bundled in a package, some diagramming method must be provided. If
_ _ -- - -

encapsulated packages are considered to behave as a special entity type (with a different

symbol from "normal" entities), they could reside in the same diagram without causing a

conflict with the rest of the conceptual knowledge base. The assumption must be made

that the code resident in the package will affect (i.e., be allowed to modify) the data

resident in the package only, although it should certainly be allowed to-read other data.

The proposed symbol for an encapsulated package entity is the logical OR-gate. Figure 7

presents an alternate view of the Retirement Process of Figures 3 & 6.

Figure 7 - Encapsulated Package Entity

Note that this package has grouped all the data it needs into one object. The

assumption is made that all the data items this package needs are contained within the

package, and that only this package will be making changes to these data items.

One obvious question which may arise concerns how this approach can work for

an entire knowledge base. So far, the examples in this chapter are limited to single

knowledge constructs. However, - they can easily be pulled together into a network.

Figure 8 shows an expanded E-RD which combines several of the examples of this

chapter. , .

Figure 8 - Network of E-RD knowledge structures

The Retirement Process entity is shown in a bold box, signifying the aggregate

entity, although the OR-gate entity of Figure 7, depicting an encapsulated package, could

have just as easily been used.

The process by which a knowledge base is designed using this technique will be a

two-step process. In the first step, an Essential E-RD is developed using only Chen's

original model. This is done to treat the knowledge similarly to data collected for a data-

based E-RD. In this way, the knowledge engineer should be free from any

biases toward a certain KRM. The second step involves taking the E-RD developed fiom

the first step and transforming the basic entities and relationships into structures which

more closely resemble KRM structures. The knowledge base can then be implemented

from this second diagram. In some cases the E-RD can be directly mapped to a K..M

construct.

In order to develop'the first E-RD, the knowledge engineer should approach the
\

I

-knowledge acquisition in much the same way a database developer gleans information

from the targeted users of the system ro oe developed. The primary concern is to idenhfy
_ _ - -

all the "things" (entities) of the real world and how they each relate to one another. From

this information, an E-RD which adheres to Chen's original defmition may be developed.

Again, the primary intent of this E-RD is to provide a baseline semantic model of the

knowledge base, free from implementation- (and thus KRM-) specific structures. The

benefit of developing this f ist model is that it may be more easily tested for referential

integrity and no~malized entities, two concepts born the relational database realm which

help insure the soundness of the database schema.

In the relational database realm, one of the primary advantages of producing E-

RDs lies in their quick mapping into database relations. Mapping to database relations can

produce a sound database design only when the E-RD has been normalized and referential

integrity is maintained. Normalization is the process by which relations are reduced to a

normal form. Although there are many normal forms, only first, second, and third normal

forms (lNF, 2NF and 3NF, respectively) are commonly used. Each of the three normal

forms relies, in succession, upon the relation adhering to the previous normal form (e.g., a

relation in 2NF must, by definition, also be in INF). A relation in 3NF is one in which

every attribute depends fully upon each and every constituent attribute of the primary key
7

of the relation. Appendix B illustrates how a relation is transformed into 3NF.

Referential integrity is a constraint which requires that a tuple (row) in one relation which

refers to another relation must refer to an existing tuple (Elmasri and Navathe 1989).

The basic advantages of having data in third normal form is to insure that attributes are

grouped together in the proper entities. The primary benefit of having data adhere to the

referential integrity constraint is to insure that data items which depend on other data

items will never be left orphaned. The ,concept of a weak entity type was 0ri-y

implemented to aid in ensuring referential integrity. Referential integrity is n o d y not a

concern when the E-RD contains only one-to-one relationships. Having a database
__- -

schema adhere to these constraints helps to insure changes to the data will not result in

spurious, unattached data. It also provides an aid when the schema itself must change.

No alteration to the schema should be allowed to cause any existing entity to break these

constraints. This can be easily checked by consulting the E-RD.

To a'geat extent, the same benefits can be realized by a knowledge base designed

to these standards. Although the schema will not be mapped into relations, normalization

and referential integrity are still concerns.

The second stage of the design methodology involves converting the first E-RD

into one in which the knowledge constructs are modeled using the extensions presented
::-r?.y% c 2.k.f-

earlier in this chapter. The knowledge engineer will use both the st-stage E-RD and

knowledge gathered during knowledge acquisition sessions to convert the first-stage

(traditional) E-RD into one in which knowledge constructs become more apparent. This

E-RD, the Implementation E-RD, can then be used to develop and maintain the

knowledge base. In some cases, the physical knowledge base structures can be mapped

directly from the Implementation E-RD.

Frames can be mapped directly fiom the Implementation E-RD. A seven-step

methodology is presented in (Elrnasri and Navathe 1989) by which an E-RD may be

mapped directly to a relational database. As there is little difference at the conceptual

level between a RDBMS relation (table) and a frame, a similar methodology will apply to

mapping frames. Step 6 of the original methodology, which dealt with multi-valued

attributes, is omitted. Although multi-valued attributes are not permitted in relational
_. -- -

databases, arrays and lists are valid in many fiame management systems.

STEP I: For each regular (non-weak) entity in the Implementation E-RD,

create a frame type. Assign a primary key composed of one or more

attributes whose values ensure each instance of that frame will be unique.

STEP 2: For each weak entity type in the Implementation E-RD, create a

frame type. Assign as a foreign key the attribute(s) composing the primary

key of the owning entitylframe. The primary key of this frame type will be

composed of the foreign key and any attribute(s) whose values ensure each

instance of that frame will be unique.

STEP 3: For each 1:l binary relationship in the Implementation E-RD,

choose one frame type to contain as a foreign key the primary key of the

other frame type. If one entity always participates in the relationship, that

entity should receive the foreign key.

STEP 4: For each regular (non-weak) binary l:M relationship in the

Implementation E-RD, place as a foreign key in the frame type on the many

(M) side the attribute(s) composing the primary key of the frame type on

the one (1) side.

STEP 5: For each binary N:M relationship, create a fiame type. This

frame type's primary key will be composed of all the attributes composing

the primary keys of the frame types on both sides of the relationship.

STEP 6: For each n-ary relationship (n > 2), create a 1rame type. This

frame type's primary key will be composed of all the attributes composing

the primary keys of the frame types on all sides of the relationship.

When mapping to frames, it is important to remember that relationships may not
_ _ - -

need to be mapped to frames. Relationships may be included to show the presence of a

rule (see below.)

Rules are harder to map directly fiom the Implementation E-RD to a knowledge

construct. A rule may be defined as some action which occurs based on the validity of one

or more.conditions. A rule may involve the relationship between two or more entities, but

it just as likely will not. In cases where a rule involves only one entity, a weak entity and a

weak relationship can be created to show such a relationship; however, creating such a

structure adds another step and complicates the Implementation E-RD. If a rule involves

only one entity, it should be shown as an attribute of that entity. If a rule involves two or

more entities, those entities should be related, and the rule should be diagrammed as an

attribute of the relationship. The If-Then relationship should either be written out as a

pseudo-rule on the diagram or identified by a -unique code and written out elsewhere.

Mapping thus becomes an exercise of converting the pseudo-rule to implementation-

specific code.

How aggregation -is mapped depends on the KRM selected. The ''part-of'

relationship inherent to aggregation may be modeled in a frame-based system by an
*

attribute-value slot, or in a semantic network by an appropriately titled link.

Inheritance is a feature of classification. An entity which is the subclass of a

superclass entity will inherit values from that superclass entity unless specified explicitly.

If a particular attribute is to be inherited, it should appear on the superclass entity only. If

the subclass entity overrides the superclass, then the attribute should appear on both

entities.

Encapsulation, the blending of data and methods into an object or package,

depends on the KRM chosen for its mapping. What is important in mapping such an

object is that operations on the data are "hidden", i.e., performed only within the object.

This is not to that data from an entity which participates in such an encapsulated

object can be used only by that object, but that the specific operation is performed only by

that object.

The advantages to using such a methodology in the design of a knowledge base

may be seen during both the implementation of the knowledge base and the maintenance

portion of the KBS lifecycle. During implementation, both the first-stage E-RD and the

Implementation E-RD can be consulted to determine how different portions of the

knowledge base inter-relate. This helps to solve the "nature and quantity" problem

mentioned in (Gunurlec and Dankel 1993). By developing a graphical portrayal of the

knowledge base, knowledge engineers can more quickly develop an understanding of the

realm. The most important advantage during the implementation phase lies in avoiding the

paradigm shift, also mentioned in (Gonzalez and Dankel 1993). The Implementation E-

RD can be consulted to determine the most appropriate choice of the KRM(s) to be used.

Maintenance, historically the costliest phase of any software project lifecycle, can

also be aided by the development of an E-RD and Implementation E-Rb. When new

- knowledge must be added, the Implementation E-RD can be consulted to determine how

it will affect the existing knowledge base. Extensions to the original design (e.g., new

entities) can be added to both E-RDs to determine their impact before physically altering

the knowledge base.

CASE STUDY

This chapter will present a case study to illustrate the concepts discussed in this

thesis. A full knowledge base will be designed using the methodology presented earlier,

and advantages of using this methodology will be presented.

The case study revolves around the design of a knowledge which is to be used in

the physical design of a relational database using Rdb/VMS, a relational database

management system (RDBMS) fiom Digital Electronics Corporation (DEC). Rdb/VMS,

or Rdb, is a powerful RDBMS tightly coupled with VMS, the predominate operating

system on DEC's popular line of VAX minicomputers. The physical design of an Rdb
d

database is at least as important as the logical design; a poorly designed Rdb database can

cause serious performance problems.

One of Rdb's main strengths lies in its ability to spread data across multiple

physical storage devices to allow simultaneous inputJoutput operations (IDS) on the

database. Another strength is the ability to optimize the physical structdre for particular

access patterns. For example, a parent-child (or one-to-many) relationship with a small

number of children records can be physically implemented to retrieve the parent and a l l

children records with a single I/O. A parent-child relationship with a larger number of

children records can be optimized for two VOs.

The knowledge base produced from this case study will allow a howledge-based

system to translate a 3NF logical database design and user-supplied parameters into a

physical Rdb database. For this case study, the 3NF design is necessary; however, how

the knowledge is generally supplied is application-dependent. AU applications will provide

a body of ki6Ledge from which a knowledge base is created; in this case study, the

knowledge comes from the 3NF, user-supplied input, and knowledge acquisition fiom an

expert in the problem area.

There are a number of database-wide parameters which can greatly affect the

performance of the Rdb database. These include:

Number of Users - The number of simultaneous users allowed on the database. If this

parameter is set too low, deadlocks will prevent users from attaching to the database.

Number of VAXcluster Nodes - VAX nodes (CPU or multiple CPU computers) may

be physically linked together in a DECNET (DEC's proprietary transport protocol)

cluster, allowing machines to share resources such as printers, disks, etc.

Number of Buffers - Together with Buffer Size (below), this parameter determines

the amount of virtual memory reserved for database users' buffer pools. By default,

each database user has a buffer into which database pages are read.

Buffer Size - See Number of Buffers (above).

Global Buffers - As mentioned above, buffers are established by default for individual

users. Enabling global buffers will establish one buffer pool per VAXcluster node

using the database. Establishing global buffers can improve performance by reducing

VO and freeing up memory, if many processes frequently use the same database

pages.

Fast Commit Processing - By default, modified pages are flushed to disk when a

COMMIT statement is execute. If Fast Commit Processing is enabled, modified
__-- -

pages an5 only flushed to disk at userdefined checkpoints. This option can greatly

increase throughput for update-intensive , , - .-"-. databases. ?;, .$, . --; , -. . . . , - ' - ' -
- - I

L - '
1 , >.I

-+ , - < - ,- - , , 6. a:+- - '
< " I

I_ ?

- * -* - , , , - , :,,*, i:;)!, - >.
There are several other database-wide parameters which can be specified; however, most

require a detailed knowledge not only of Rdb, but also of how the database is performing

in its environment. For this reason, other parameters will be discussed only as needed.

The primary storage entity in Rdb is the storage area. Each storage area maps to

a file where the data physically resides, and, optionally, a snapshot file, where data resides

temporarily for read-only database users. The use of a snapshot file allows users to read

data while another user has a non-exclusive write lock on the same data. Spreading the

storage file and the snapshot file on different disk drives allows database administrators

@BAS) to balance 110 operations across multiple disks.

There are a number of parameters which a-DBA can set for a storage area.

These include:

Filename - The name of the storage file, including the device and directory.

Allocation - The number of pages initially allocated to the storage area.

Page Size - The size, in 512-byte blocks, of each page in the storage area.

Thresholds - One, two or three values which represent three possible ranges of free

space available on any given page.

Interval - The number of data pages between space area management (SPAM) pages.

Rdb uses SPAM pages to govern the placement of data. They are also used to locate

the page where an index will'be found.

Extent - The number of pages by which the storage area will grow when it must be

extended. .- -I ,: : . . - - .

I , ;.,
-. ..

, _ L 1 . . . ,<,. ., ;.. - - -
a .., @ ...',' : '.'.'I

. . , ; . .. '..+ :.
1 0 .r

. , .

Extension options - Provides for greater extension control by allowing the DBA to
__- -

specify percentage of growth as well as minimum and maximum number of pages to

extend the storage area.

Snapshot Filename - The snapshot file is an optional separate which contains data to

be used by read-only users of the storage area. Snapshot allocation, extent, and

extension options may be specified as well.

Write Once - If the storage area is to reside on a write-once, read-many (WORM)

device (for large amounts of static data), this parameter may be specified.

Once a storage area is created, tables may be stored in it by the use of the CREATE

STORAGE MAP clause. Storage maps, as their name implies, map tables to storage

areas.

Rdb offers a robust set of options for indexing. Parameters include the following:

Unique - A keyword which specifies whether each value of the index must be unique.

Column Parameters:

AsdDesc - Describes whether the index is ascending (default) or descending.

Size is n - Compression clause used to limit the number of characters used to retrieve

data.

Mapping Values I To h - Used to translate numeric columns into a more compact

form.

Type is Sorted - Range retrievals tend to work best with sorted (B-tree) indices. If

the

index is defined as sorted, the following parameters may be used:

Node Size - Size in bytes of each index node.

Percent Fill -The initial fullness percentage for each node.

Usage Update/Uuery - USAGE UPDATE sets PERCENT FIU to 7096 (the
__.- -

default

if 'neither parameter is given); USAGE QUERY sets PERCENT FILL to 100%.

Type is Hashed - Hashed indices are preferable for exact-match queries. They

require

mixed format storage areas to implement.

Index Store Clause - A clause which specifies how the index is to be stored (in one

storage area, spread randomly across multiple areas, or spread by some value across

multiple areas.) In addition, threshold values similar to the threshold values of the

storage area parameters may be specified.

The following data is site-specific and will require user input.

Environment Information

Disks:

Disknarne

Disk size - Blocks (512 bytes) free

Disk speed - Seek time

WORM device - Yes/No

Shadow Sets: (In a shadow set, information written to one drive is copied to another; if

the primary drive fails, the secondary drive becomes the primary drive. Although this

configuration degrades update-intensive applications to some extent, read-only

applications see an improvement since either drive can be used by read-only users.

However, shadowing data intended for read-only usage isn't cost effective. Shadowing is

primarily intended to ensiue uninterrupted data access.)
'. I

Primary disk

Secondary disk
-- -

Node:

Nodename

Node type (e.g., 6510, MicroVAX 3100)

Available RAM

Database .Information

Relations (Tables):

Name

Primary key length - In bytes

Primary key unique - Yes/No

Row size - In bytes

Number of rows

Primary access - (Insert, update, query, delete)

Growth rate - Records per day

Attributes:

Table name

Attribute name

Attribute type - Data type (e.g., character, numeric, BLOB (Binary Large OBject))

Attribute length

Relationships:

Table 1

Table 2

Table 1 cardinality - Number of rows

Table 2 cardinality - Number of rows
I

Table 1 key - Attributes composing "joinn" key

.Table 2 key - Attributes composing "joinn" key
- - - d

Indices:

Table name

Field name(s)

At a top-level view, the Rdb-specific portion of the knowledge base can be

described in narrative form as follows:

An Rdb database is composed of a root file, one or more storage areas, and,

optionally, one or more snapshot files. Parameters can be specified for the database to

control usage of memory, number of users and accessible nodes, and the flushing of

committed data to disk.

Storage areas consist of data pages and SPAM pages. A storage area has an initial

allocation of pages, whose size is also defined when the storage area is created. One set

of parameters control the extension of storage areas. The interval between SPAM pages

and data pages is controllable.

Indices may be sorted or hashed. Sorted, or B-tree indices, are more appropriate

for range retrieval, while hashed indices offer performance benefits for exact-match

retrievals. Node size and fullness percentages may be specified for sorted indices.

The remainder of the body of knowledge comes fiom knowledge acquisition

sessions with an expert in Rdb database design.

To design a physical Rdb database, each table and its relationships to other tables

has to be examined. Any conflicts (e.g., optimizing for the update-intensive

operations on one table vice read-only operations on another) have to be resolved by

assigning some sort of priority. This,might be as simple as starting with the tables

and relationships used by the most important transactions and working down from

there. One factor that must stay in the DBA's mind at all times is the number of
__ - -

disks and amount of storage available. Given an inexhaustible supply of disks, an

almost perfect Rdb database can be designed. Unfortunately, this is not an option

for most organizations. Thus, it becomes important to spread data across the

available drives. This can be done in a couple of different manners. First, a table

can be spread across multiple drives. The other option is to keep each table on one

drive, and spread the various tables across different drives. The first option offers

the benefit of spreading UO on a heavily-hit table across multiple devices. The

second option provides for easier maintenance, and works better if no one table is

hit more heavily than any other. Snapshot files should be put on a device other than

the device on which the main storage file resides. This allows a more even

distribution; read-only users don't have to wait for read-write transactions to finish

before they can access the data. Parent-child relationships may be set up in two

different ways. First, if their is a known upper limit to the number of children

records, the parent record and al l its children can be placed on one page, thus

allowing the parent and all children records to be retrieved by a single ID. This is

known as "optimizing for one 110." The way to do this is to create a mixed-format

storage area (or areas, if the tables are to be spread across multiple devices.) Size

the pages large enough to contain the parent record and a hashed index, along with

enough space to hold all children records and their hashed indices. The Guide to

Database Design and Definition contains the appropriate formulae for this. Keep in

mind there will be duplicate children records; the formula for hashed index size must

make use of this fact. When the relationship is optimized for two UOs, the parent

record, its hashed index, and the hashed index for the children record are stored in
I

one storage area, while the children record are stored in another. One YO retrieves

the parent record and the index to the children records; the second I/O retrieves the
_. -- -

children records. This setup is more appropriate when the parent record is quite

large or there isn't an upper limit on the number of children records.

The proper design of indices is another important point. Hashed indices are

wonderful for exact-match queries, but they can actually degrade performance for

range retrieval queries. By far, their best usage is for the parent-child relationships

discussed above. Sorted indices can be combined with hashed indices to allow both

exact-math and range retrievals, but this can be quite tricky to set up. Knowledge of

how the index and its table will most often be used (query or querytupdate) is

required to set the percent fill parameter. An index used mostly for querying should

be set to close to 100% full, while an index used for update should be set around

70% full. The node size can be calculated by the formula:

3 * (key size + number of columns + 11) + 32

The "3" ensures that three entries will fit into a node, which helps to keep the

structure more of a B-tree than a pure binary tree. Key size is the total size, in

bytes, of all the constituent columns of the index, plus one byte per column for the

null indicator. Number of columns is, obviously, the number of columns comprising
%

the index. The "1 1" is the maximum overhead per index key within a node. The

"32" is the node's overhead.

Care must also be taken in establishing storage areas. One easy rule is to use

(at least) one storage area per table. In this way, changes can be more easily made

"after the fact", after the database has been established and the data loaded. Again,

a storage area and its snapshot file should be on separate devices. The page size

should allow for some comfortable number of data rows and all the indices defined

for the table. Try to store the indices with the data. The- Guide to Database

Performance and Tuning provides guidelines for setting the fullness tl zshold
-- -

values. or a storage area containing only one table, the values should be set to

always allow one more row to fit fully on the page. In other words, the third

parameter should be set so that the difference between the page size and the third

fullness parameter is less than the uncompressed row size. For example, if a page

has been set to 1000 bytes, and the row size is 100 bytes, the third parameter should

be set to at least 91%, thus indicating the page is full at 910 bytes. When this

threshold is reached, no more data rows will attempt to be inserted, thus eliminating

fragmented data rows. The difference between the page size and the third fullness

setting can be considered as free space for future growth to existing rows. The

other two parameters are used mostly for storage areas housing multiple table types.

The parent-child relationship type mentioned previously should make use of the

other two parameters. The first one should be s-et to ensure that a page which has

not yet met that parameter can store the largest row type once more. Likewise, the

second parameter should ensure the same for the smallest row type. The SPAM

interval parameter should be allowed to take the default and modified only after an

extensive investigation of the database's performance, noting disk UO vs. SPAM

page locking. Consult the Guide to Database Performance and ~ u n i n ~ and the

Guide to Database Maintenance for more details. The extent size parameter should

be set to allow minimal disruption to users when the storage area must extend.

Detailed knowledge of how the storage area will grow and over what time period

growth can be expected is required. For example, an application which adds

another 10% to a storage area every month during a heavy insertion cycle should

have its extent set to 10% (or slightly more) to ensure that only one extent wiU be
I

made during the input cycle. The extension options allow for a finer granularity of

control over extensions by allowing percentage growth, with a guaranteed
__- -

and maxir;lum number of pages the area will grow. Finally, large amounts of static

text, bit-mapped images, or other BLOBS (Binary Large OBjects) are ideal

candidates for storage areas residing on WORM devices.

The database-wide parameters can require knowledge about the nodes on which

the database will be accessed. The first parameter which can cause trouble is

number of users. Certain fourth-generation languages (4GLs) have users declare a

read-only transaction to query a record, then a read-write transaction to update it

This results in two users, as far as the database is concerned. Since no harm is done

by setting this parameter too high, it is a good idea to set it to 200 to start.

Buffer parameters, which affect Rdb's usage of virtual memory, are

considerably more tricky to set. The fxst question is whether database users access

the same pages often, in which case global buffering would be useful. Otherwise,

local buffering is the best option. Unfortunately, these parameters apply to every

node on the cluster. Thus, the machine with the smallest amount of RAM on the

cluster becomes the driving factor. For local buffering, the buffer pool per

user can be calculated by multiplying the number of buffers by the buffer size. To

prevent VMS from paging, the sum of the buffer pools for all users should not

exceed the amount of physical memory. However, if the buffer pool is too small,

Rdb will be forced to continually swap pages to and from memory, -:IL would

also result in a paging problem. Setting the buffer size high brings in more data,

thus allowing related rows to be brought into memory together, and also improves

sequential searches. Specifying a high number of buffers makes it more likely that

rows previously used will still be in memory, which improves perfonman= of

transactions which use the same data several times. Generally speaking, however,
_ _ -- d

having many small buffers results in less paging than having fewer large buffers.

In global buffering, Rdb establishes a global buffer pool on each node. Users

then map that global section to their own virtual memory. The advantages global
, ,: .-, ;,, - ,'. . , 8 ,,,- ,,, ;,;; (2,. :, ;.;- - ; ' . - $; .;. . -:<+ . : .'i -. - . --. '.,.?,.,;;,...;L;; :, :{:,' - ,:c 3;;:--:- .-%-,,:;-+d-$v-=.-?::...

L . ' , . , - .. , ;, . . , ,!,.?, , , -:, ,, . + . ~ - ~ . : ~ : ~ 7 ; ; , < * 1 , : ~ : , . " : , ; ~ . ' , : : ~ - . ' : ,*., - , , .'. , ;, ,,;,,.- ,,? ;:. --qp L. I.,. ?i:.*7{;$i;::,3 . . > t ' > ' ,- &.(. ,.

buffering brings are for applications in which users access the same database pages ' -

fairly often. Detailed knowledge of the application's performance and the number of

database pages used by multiple applications is required to effectively institute

global buffering, so global buffering should be done after the database is created and

' '1 . : information has been gathered to determine how large a global buffer pool should

be.

The Essential E-RD is created from knowledge from the database parameters

and user-supplied information. In this case study, the expert knowledge is used only

by the Implementation E-RD. In general, the knowledge required for the Essential

E-RD will come not from an expert's analysis of the problem milieu, but fiom a

general understanding of the problem realm, while the knowledge required for the

Implementation E-RD will come from a typical knowledge acquisition phase.

However, this may vary from application to application. The following E-RDs

comprise the Essential E-RD.

1

Root File

Storage Area

Corrtrol
Parameters

Snap shot File h~r,

M

Figure 9 - Top-level E-RD of Rdb Database

4

Figure 10 - ~ x ~ a n d e d E-RD of Storage Area

kPrl Data Row

Sorted Index I-<::=>
Parmders

Figure 11 -Expanded E-ED of Data Page

The above diagrams are meant to be interconnected; to make them more readable,

they are separated by area of context Similarly, environment information may be depicted

as such:

Figure 12 - E-RD of Environment

The E-RD for the database (i.e., the 3NF logical database to be converted into a physical

Rdb database) might look as follows:

Figure 13 - E-RD of 3NF Logical Database

These diagrams provide for the first step of the two-step process by providing

standard E-RDs of the knowledge domain. These diagrams are intended only to provide

'developers with insight into the relationships between the various entities of the domain.

- - -

The expert-supplied knowledge can be depicted graphically by using the

extensions detailed in chapter 4. Again, attributes are not shown and diagrams are

divided into sub-diagrams to improve readability. Also, rules are depicted by

numbers and described at the end of the diagrams.

Rdb Database

Unifonn
Storage h a Storage A m

Figure 14 - Top-level E-RD of Rdb Database with Knowledge Structures

Figure 14 illustrates several knowledge constructs in E-RD form. The entire

structure represents an aggregate entity (Rdb Database), as noted by the heavy

lines around the entire diagram. The entities Root File, Storage Area and

Snapshot File are also aggregate entities, and each will be expanded in later

diagrams. The Storage Area entity represents a superclass of the entity types

Uniform and -Mixed Storage Area (or, optionally, Uniform and Mixed Storage

Area are sub-classes of the Storage Area entity type.) Although two of the

relationships involving the Disk entity also involve a Resides On relationship, there

must be three separate relationships. The Optionally Refers To and Store On If

Read-only, by their names, imply some sort of If-Then relationship..

Root Fle

Figure 15 - Detailed E-RD of Root File

Like the Optionally Refers To relationship of Figure 14, Figure 15's Optionally

Read From implies an If-Then relationship.

-. .- - Snapshot File

Figure 16 - Detailed E-RD of Snapshot File

Figures 16 and 17 (below) do not contain any knowledge structures (other than

aggregation) as they appear here; however, a later diagram will illustrate a way

around the binary relationship restriction of the classic data-modeling E-RD. (i.e.,

the Determined By and Takes Space On relationships appearing twice and relating

1

the same entities.)

AllocatiDrr . 1

Table Dirk

1
Extension

Space On 1

L

Storage Area

1
Thnrhuolds

M

Row S b
1

Data P w

1
Allocation

Disk

1
E x t k

L

Figure 17 - Detailed E-RD of Storage Area

Data Page

Figure 18 = Detailed E-RD of Data Page

Figure 19 - Detailed E-RD of Index

Figure 19 contains a super-class/sub-class relationship between Index and

Sorted and Hashed, two types of indices.

Figure 20 - E-RD of Store Clause

Figure 20 contains an If-Then relationship and an aggregate entity type.

Relationship Group

Figure 21 - E-RD of Relationship Group

Table 1

The requirement that relationships be binary in nature becomes quite restrictive

on an E-RD intended to diagram knowledge. In many of these diagrams, the same

relationship is used multiple times, often relating the same entities. Encapsulation

provides one way around this restriction. The Determined By and Takes Space

On- relationships of Figures 16 and 17 provide a good example of this. Figure 16

(and the similar portion of Figure 17) may be re-drawn as such:

1 . 1
Hashed Index

T a d

Figure 22 - Encapsulation Snapshot Fileistorage Area E-RD

1 1

1 1

TAh

Hashed Index

Disk
J

Here,-the eicapsulated package takes the form of a relationship while the example in

chapter 4 used a similar construct as an entity. The relationship is perhaps a more

natural fom, as such a package provides for some sort of operation on data related

to it.

The If-Then relationships, identified as attributes in the preceding diagrams, are

listed below.

Table 2

Rules from Implementation E-RD

IF (1:M relationship) AND

((upper limit of children known)

AND

(small amount of child data))

THEN

(optimize for 1 YO)

IF (1:M relationship) AND
\

((upper limit of children unknown)

OR

(large amount of child data))

THEN

(optimize for 2 VOs)

IF (range retrieval) THEN (sorted

index)

IF (exact match) . THEN (hashed

index)

IF , - .- I relationship) THEN

(hashed index)

IF (query) THEN (percent fill) =

100
--

. IF (update) THEN (percent fill) = .

IF (sorted index) THEN (node size

= 3 * (key size + # of columns + 11)

+ 32)

IF (new table) THEN

(new storage area)

IF (new storage area) THEN

(snapshot on separate disk)

IF (new storage area) THEN

(1st fullness parameter <

((page size - largest row size) /

page size) * 100)
\

IF (new storage area) THEN

(2nd fullness parameter <

(@age size - smallest row size) /

page size) * 100)

IF (new storage area) ' T I :N

(3rd fullness parameter =

((page size - row size) / page size) *
100)

IF (new storage area) THEN

(extent = growth rate* row size)

IF (table has BLOBS) THEN

(store on WORM device)

IF (new table) THEN

(allocation = row size * num rows *
1.1)

IF (application not read-only) THEN

(use snapshot)

ern$ - of q P D I v i ~ l e ~ o n E-BD Me-v to C m

The use of this methodology offers several advantages to the design and

maintenance of this system. The "paradigm shift" problem of (Gonzalez and

Dankel 1993) can be avoided by selecting the proper KRM. A perusal of the

Implementation E-RD shows classification and aggregation as well as rules. Several

KRMs can provide for classification and aggregation. However, the selected KRM
Y

must be able to provide knowledge to rules. Frames can provide classification and

aggregation constructs and can store knowledge for rules. Therefore, a hybrid

system combining frames and rules would be the best KRM for this system.

The "nature and quantity" problem also discussed in (Gonzalez and Dankel

1993) can likewise be eliminated by the proper use of this methodology. The

knowledge base has been reduced to a set of diagrams, thus providing a graphical

depiction of the problem area. The nature and quantity of the data in the problem
I

realm may be determined by visual inspection as opposed to reading through

unstructured interview notes. It is important to remember that, as popular as entity-

relationship modeling is, it owes its popularity to the accompanying entity-

relationship diagramming technique.

The methodology provides a powerful benefit to the (usually costly)

maintenance portion of the software lifecycle as well. Debugging problems in the

knowledge base becomes mush easier when the knowledge base has been depicted

graphically. If, for example, the StorageAreaExtent is not being computed properly,

the developer can determine by inspection that the rule R14 and the entities Table

and Extension provide the data for the computation. The impact of adding new

knowledge can be ascertained quickly with an Implementation E-RD as well. As

any new knowledge added to the knowledge base will in some way touch existing

knowledge, adding the new structure to the Implementation E-RD will allow the

developer to determine the impact of the new knowledge by visual inspection.

M a b d n g l e m e n t a t i o n E-RD to Knowledge C o m u c k

Using the mapping procedure discussed earlier on the Implementation E-RD of

Figure 14 will produce frames for RootFile and Disk. One of the two would require

a foreign key which would be the primary key of the other. In this case, the

RootFile frame would be the more logical choice to contain the foreign key, since al l

RootFiles exist on a Disk, while not all Disks contain a RootFile. SnapshotFile and

Disk would be treated the same way, as would StorageArea and WORMDevice.

UniformStorageArea and MixedStorageArea are subclasses of StorageArea, and

would inherit applicable characteristics of that frame. Finally, MixedStorageArea

and HashedIndex, because of their M:N relationship, would require the creation of a

third frame, which would contain as a primary key the combination of the primary

keys of MixedStorageArea and HashedIndex.

- .- e

The following table presents frame types mapped from the Implementation E-

RD, their primary keys, their foreign keys and frames and keys referenced, and

aggregation and classification information. These frames come fiom Figure 14.

'Table 3

Frames Mapped from Implementation E-RD

Disk

WORMDevice

SnapshotFile

Uniforms torage Area

MixedStorageArea

Hashedlndex

Hashedstorage

DiskName

AreaName

AreaName

IndexName

IndexName,

AreaName

None

None

Disk.DiskName

None

None

None

None

Aggregation can be depicted in h e s by the inclusion of a "part-of' attribute.

For example, the frame GlobalBufferPo~l would have the slot:

part-of : Roottc'ile

Similarly, classification can be shown using the format of (Gonzalez and Dankel

1993). The MixedStorageArea frame would have the slot:

specialization-of : StorageArea

while StorageArea would have the slot:

generalization-of : (MixedStorageArea, UniformStorageArea)

: 8 -. ,. +A

.
. 'C' -

CONCLUSIONS

The need for a structured methodology for knowledge base design is inarguably a

real requirement. Unlike their counterparts in information system development who view

database design and development and application software design and development as

separate issues, developers of knowledge-based systems too often view the knowledge

base and the application program as one package. At the physical level, the two may be

combined in one package, but at the conceptual level, the lcnowledge base should be

considered separately. This becomes more of a concern as knowledge based systems

come out of the research laboratory and into the marketplace. As this happens,

knowledge bases and databases will require some sort of integration. Knowledge bases

are requiring larger and larger amounts of data, and databases are requiring intelligent

features traditionally associated with knowledge based systems. For the integration of

knowledge bases and databases to come to a successful hition, an attempt must be made

to apply the same design principles to knowledge bases as have been applied to databases

for many years.

Knowledge bases and databases' share many similarities. As has been pointed out

earlier, semantic models can be used to model both. Peter Chen's entity-relationship

model, the best known of any semantic database model, offers to designers of knowledge

bases a tool by which most knowledge representation structures may be modeled.

The two-stage methodology espoused herein serves a dual purpose. First, it

allows knowledge engineers to become more familiar with the inter-relationships at a

highly conceptual level. Second, it offers a valuable tool to prevent the inherent problems

of knowledge base design and to provide for easier knowledge base maintenance. In some

-
cases, the physical-.knowledge base may be mapped directly from the Implementation E-

RD. Even if the physical knowledge base is not mapped directly from the Implementation

E-RD, the advantages to the design and maintenance of the knowledge base make the

development of these E-RDs a worthwhile task for knowledge engineers. The two stages

of software development unique to knowledge-based systems, knowledge acquisition and

knowledge engineering, are thus aided by this methodology, as is the maintenance portion

of the application's lifecycle. Knowledge acquisition is made easier by providing

developers a graphical representation of not only the problem domain (the Essential E-

RD), but also the conceptual and physical knowledge base (the Implementation E-RD.)

Knowledge engineering becomes easier by avoiding the problem of selecting an improper

knowledge representation model, as well as providing a conceptual knowledge base which

can be mapped directly to some physical knowledge structures.

Applying the methodology to a test case illustrated that it works very well for

frame-based systems. Indeed, frames can be mapped directly from the knowledge E-RD.

Aggregation and other similar relationships used in semantic, or associative, networks are

also easy to depict, as is classification. Unfortunately, the static nature of E-RDs makes

them too inflexible to depict the behavioral structure of rules at a conceptual level.

However, including references to rules and encapsulated packages on the Irnplementation

E-RD makes the maintenance task easier, since the relationship between the entities of the

knowledge base and the rules and packages can be determined visually.

For this methodology to truly work for knowledge bases, the knowledge engineer

has to first view the problem as one would view a typical information system problem

Only by divorcing himself or' herself from the I typical rapid-prototyping mindset of most

knowledge-based system developers can the knowledge engineer produce an E-RD

detailing the inter-relationships of the problem area at the conceptual leveL Furthermore,

.--.- .A.

this f i r s t - s t a g e - - ~ - ~ ~ becomes the backbone of the Implementation E-RD from which the

knowledge base can be developed and maintained.

As new knowledge representation models are developed, so too must structures be

created or adapted to model these new KRMs in an E-RD. For example, the emergence

of blackboard systems may well require a new knowledge representation model.

Likewise, the E-RD is an evolving tool. As new E-RD structures, concepts and

methodologies are developed, they should be incorporated into the design methodology.

One noteworthy example of this is research into action-modeling E-RDs, which may well

provide an answer to the dilemma of modeling rules via E-RD constructs. In either case,

whether newly-developed KRMs require E-RD constructs or newly-developed E-RD

constructs can model existing KRMs, the goal of the researcher expanding this tool should

reflect the goal of this thesis: to efficiently model KRMs for the design and construction of

maintainable knowledge bases.

APPENDIX A
The Entity-Relationship Model

As* mentioned previously, Peter Chen defined entities and relationships as the

major constructs of his entity-relationship model. This section will define these and other

constructs more closely and focus on their diagramming techniques.

~ e c a l l that an entity was defined as "a 'thing' which can be distinctly identified,''

while a relationship is "an association between entities." (Chen 1976) The information

about entities and relationships exists as attribute-value pairs. For example, the entity

Employee may be composed of the attributes Emp-Name, Emp-ID, Birthdate, and Salary.

An instance of this entity might be Emp-Name = John Doe, Emp-ID = 12345, Birthdate =

1 January 1950, and Salary = $50,000. Chen also defi11ed the concepts of regular and

weak entities and relationships. A regular entity is one which does not require a

relationship with another entity to exist; a weak entity requires such a relationship. A

regular relationship is one in which all participating entities are defined by own attributes,

while a weak relationship has at least one entity which is identified by another relationship.

A common example of these concepts is that of employees and dependents. The entity

Employee is a regular entity, since it does not require any relationships in order to exist.

Dependents is a weak entity, since it depends on its relationship with the Employee entity

to exist. Likewise, any relationship between Dependents and another entity will be a weak

relationship, since Dependent is a weak entity.

Chen also defined 'mapping ratios (often called cardinality ratios) between the
\ I

participating entities of a relationship. Relationships may be one-to-one (1:1), one-to-

many (1 :m), or many-to-many (m:n). This ratio refers to how many instances of each of

4

the entities in the binary relationship can exist. For example, the Employee-Dependent

relationship is said to be 1 :m since each employee may have many dependents, but each

dependent will have only one sponsoring employee.

The diagramming constructs Chen proposed are quite simple. Entities are drawn

as rectangles. A weak entity is shown as a rectangle within a rectangle. Relationships are

drawn as diamonds, connected to their participating entities by lines. Weak relationships

are denoted by a diamond within a diamond. The cardinality ratio is shown by a "I", "M",

or "N" on the line between the relationship and the entity. Although Chen did not propose

attributes to be included in the E-RD, they commonly are, either enclosed in ovals or

simply named and attached to their respective entity or relationship. The primary key (the

attribute(s) which uniquely identifies an instance of the entity) is usually underlined.

Figure A-1 illustrates the Employee-Dependent relationship. Reading this E-RD

gives the information that Dependent is a weak entity and relies on Employee for its

existence. Emp-Dep is a weak relationship since it involves the weak Dependent entity.

Emp-ID is the primary key of the Employee entity, and a composite key (two or more

attributes which together form a key) of Emp-ID and Dep-ID is the primary key of the

Dependent entity.

Figure A-1 - Example Entity Relationship Diagram

APPENDIX B
Transforming a Relation into Third Normal Form (3NF)

Normalizing an entity to 3NF guarantees its constituent attributes "belong" to it;

thus, an operation on an attribute will affect only the proper entity and its attributes.

Transforming a denormalized relation into one of 3NF must start by forcing ittinto INF.

'Date (Date 19Yd) defines INF as such:

. "A relation is in first normal form (1NF) if and only if all underlying simple

domains contain atomic values only."

This constraint has been called the "no-repeating" constraint. Basically, it says that the

attributes (domains, in Date's terminology) of a relation cannot have repeating values. For

example, an attribute called "EmpName" can have only one occurrence of an employee

name; it must not be an array of employee names.

Second normal form is defined in (Elmasri and Navathe 1989) as follows:

"A relation..R is in second .normal form (2NF) if every ... attribute A in R is not

partially dependent on any key of R. This definition can be restated as' follows:

A relation ... R is in 2NF if every ... attribute A in R is fully functional on every key

of R."

Date defines 2NF slightly differently:

"A relation is in second normal form (2NF) if and only if it is in 1NF and every

nonkey attribute is fully dependent on the primary key."

The difference between these two definitions is not as great is it might first appear.
I

Assuming one selected the proper choice of primary keys, a relation not in 2NF would fail

Date's criteria by inspection. If the wrong primary key were chosen, the Elmasrifiavathe

test might be in order.

As an example of the first two normal forms, consider employees and dependents.

To make an employees relation adhere to lNF, an attribute called "DepID", the

identificatidn number of a dependent, would reside in every tuple of the Employee

relation. DepID would contain only atomic values, and an Employee relation, consisting

of EmpID (the primary key), EmpNarne, DepID, and DepName, would be in 1NF.

However, DepName is not fully dependent on EmpID. To force the Employee relation

into 2NF, a separate Dependent relation should be created, consisting of DepID (the

primary key) and DepName.

The transition to 3NF is more subtle. Going back to Date:

"A relation is in third nornzal form (3NF) if and only if, for all time, each tuple

consists of a primary key value that identifies some entity, together with a set of

zero or more mutually independent attribute values that describe that entity in

some way."

To extend the Employee relation example to show the difference between 2NF and 3NF,

suppose the Employee example contained the attributes EmpID, EmpNarne, DepID,

JobCode, and Salary. Furthermore, suppose Salary is dependent on JobCode, which has

been assigned the status of a foreign key in the relation Employee, as it is also the primary

key of a relation called Job. Employee could be said to pass the Elrnasri/Navathe test for

2NF. However, it does not pass the 3NF criteria. Removing Salary from the Employee

relation and placing it in the Job relation would transform Employee into a 3NF relation.

BIBLIOGRAPHY

Anger, Frank D. , Rita V. Rodriguez and Douglas D.- Dankel IL "Organizing an
Expert System's Knowledge Base Using Relational Database Techniques",

oc- of fbe F D ~ F l o D c e R w - ----

m,The
Florida A1 Research Symposium, 1988

Borgida, Alexander. " Knowledge Representation, Semantic Modeling: Similarities
and Differences", I;$Uv-Relationshil,roaa The Core of C w
m i North-Holland, 1991

Briand, He, J-F. Hue and Ye Simon. "Expert System for Translating an E-R
Diagram Into Databasesw, - t e r m Conferme o m
& ' 'b ' h, IEEE Computer Society Press, 1985

Chen, Peter. "The Entity-Relationship Model - ~oward a Unified View of Data",
r m D m e S s Number 1, March 1976

Codd, E.F. "A Relational Model of Data for Large Shared Data Banks",
&--------- of the AC;M l& Number 6, June 1970

Cohen, Paul R. "Methodological Problems, a Model-based Design and Analysis
Mettiodology, and an Examplew, 19H,
North-Holland

Cox, Earl. "How a Machine Reasons: Part 7", AI February 1993

Date, C. J. An to D-e S v m s . Vol- Addison-Wesley, 1990

De Antonellis, Valeria. "Databases and Knowledge-bases: Which Approach is '

- - - - - .
Good for What?", E n ~ i r r -urn ' - - i e t o ~ e U ~
North-Holland, 1989

l i m p

Debenham, \ John. "The ~bnstruction of Maintainable Knowledge Bases", The-
-- pe% Springer-Verlag,

1992

Digital Equipment Corporation.

~ e f j , - I 9 9 1 , Digital Equipment Corporation

Digital Equipment Corporation. V ~ W E K W t t t l S 6- T to D m e
1991, Digital Equipment Corporation

Digital Equipment Corporation. V a RdbIVMS Guide to D w e P-
T-, 19 9 1, Digital Equipment Corporation

Digital Equipment Corporation. V-IVMS SOL Referenre 1991,
Digital Equipment Corporation

Elmasri, Ramex and Shamkant Navathe. Fundamentals of D-e Svstems.
Benjamin/Cummings, 1989

t Entsminger, Gary. The Tao of Obbts : A Begher s w d e to Ob jec t -Or im
-, M & T Books, 1990 .

Feldman, Paul and Guy Fitzgerald. "Representing Rules Through Modelling Entity
Behavior", Inter- Conference on Wv-Re-~roaa
IEEE Computer Society Press, 1985

Fenn, J.A. and Veren, L.C. "Expert System Development Methodologies in Theory
and Practice", P r o c e e d i n g s o f t h e I * on

1991, IEEE Computer
Society Press

Conzalez, Avelino and Douglas D. Dankel IL m e e r a of m o w l e - B d
r v pgd P r w Prentice-Hall, 1993

Held, James P. and John V. Carlis. "Conceptual Data Modelling of an Expert
System", IEEE C o m c e o m v - m
IEEE Computer Society Press, 1985

Hickman, Frank R. , Jonathan L. Killin, Lise Land, Tim Mulhall, David Porter,
Robert M. Taylor. Analvsisfor I (D o w l e Q g ~ ~ e d &&W - A m w Guide tQ
Q Ellis Horwood, 1989

Hodgson, J. P. E. b o w l e d g e Ellin Gomood,
1991

Ignixio, James P. Introduction t o m e r t Svstems, 1991, McGraw-Hill

Ito, Hideaki. "Interface for Integrating a Knowledge-based System and a Database

---- /

~ a n a ~ e m e n t System using Frame-based Knowledge Representationw,
orld Cyppre~s on m e r t S v m P r o c e e w 1991. Vol. 2, Pergamon Press,

1991

Jelly, I. E. and J. P. Gray. "Common Architecture for Databases and Knowledge-
Based Systemsw, n e Next G a e r a o n of h f o r m u Svstew: Frolp DptatQ
Jt-in1~1g&g, Springer-Verlag, 1992

Jenkins, Avery L. and Gene Grygo. "Expert Systems Pave Way for Knowledge
Sharing", Digital Review, March 4,1991

Kan, Sangki and Jung Wan Cho. "KPSP: A Knowledge Programming System
based on Prolog'' , -e rm ' -

Conference on Emv-R . * ' P
IEEE Computer Society Press, 1985

Lazimy, Rafael. "Knowledge Representation and Modeling Support in Knowledge-
Based Systems", Em-R- &pro& North-Holland, 1988

Mannino, Michael V. "Data Bases Versus Knowledge Bases: Which Approach is
Good for What?", m t v - R m : A to me lJseg North-
Holland, 1989

Mattos, Nelson M. "Abstraction Concepts: The Basis for Data and Knowledge
Modeling", v r o a : A B r a e to the 1 Jm North-Holland,
1989

Mattos, Nelson M. Ap~roach to J Q ~ o w l e u

Moriarty, Terry. "The Next Paradigm", m e Pmgrammine & Desiea(
February 1993

Navathe, Shamkant B. and Mohan K. Pillalamarri. "OOER: Toward making the
E-R Approach Object-Oriented", Ea&lR?VTftt~ ~n.bip -Brim
to the User. North-Holland, 1989

Orman, Levent V. " Multilevel Design - - Architecture for Knowledge-Base
Management Systems", A April- June 1W2

Parsaye, Kamram and Chignell, Mark. wxL&Svstems~Fb&& 198% John
Wiley & Sons

Rodriguez, Rita V, Frank Dm Anger and Douglas D. Dankel II. "Efficient Expert-

-. .- A

System Rule-Based Management via Relational Database Techniques",
9 JAI Press, 1989

Sandifer, Alice and von Halle, Barbara. "Linking Rules to Models", Database
o- & D e s b March 1991

Vrtacnik, Ma, I). Dolnicar, A. Cizerle, P. Cok, S. A. Glazar, and R e Olbina. "Design
of an Expert System for Water Pollution Determination/Prevention", The World

1991. V&& Pergamon Press, 1991

	Design and construction of maintainable knowledge bases through effective use of entity-relationship modeling techniques
	STARS Citation

	TITLE PAGE

	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENTS
	iii

	TABLE OF CONTENTS
	iv

	LIST OF TABLES
	v

	LIST OF FIGURES
	vi

	INTRODUCTION
	001

	002

	003

	004

	005

	CHAPTER I

	006

	007

	008

	009

	010

	011

	012

	013

	CHAPTER II

	014

	015

	016

	CHAPTER III

	017

	018

	019

	020

	021

	022

	023

	024

	025

	026

	027

	028

	029

	030

	031

	032

	033

	034

	CHAPTER IV

	035

	036

	037

	038

	039

	040

	041

	042

	043

	044

	045

	046

	047

	048

	049

	050

	051

	052

	053

	054

	055

	056

	057

	058

	059

	060

	061

	CHAPTER V

	062

	063

	064

	APPENDIX A
	065

	066

	APPENDIX B
	067

	068

	BIBLIOGRAPHY
	069

	070

	071

	072

