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ABSTRACT 

This report will ~emonstrate how a companding flash analog-to­

digi tal converter can be used to satisfy both the dynamic rang~ and 

resolution requirements of an infrared imaging system. Iri the past, 

infrared imaging systems had to rely on analog electronics to 

process a thermal image. This was costly and, in many ways, in­

efficient but the only way to perform the function.. Digital process~ 

ing was impractical because ADC conversion speeds were slow with 

respect to video frequencies. Furthermore, it is impossible to 

gain the necessary dynamic range using linear conversion techniques 

without targe digital wordlengths. Therefore, the principles of 

companding flash analog-to-digital converters will be shown and 

analyzed.... The advantages of compandi:ng ··with respect to linear 

conversion will be demonstrated and the problem of sufficient 

comparator resolution within the compression region outlined. 
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CHAPTER I 

INTRODUCTION 

Radiant Energy 

Radiant energy has a dual nature and obeys laws that may be 

explained in terms of a stream of packets of energy called photons, 

or in terms of transverse electro-magnetic waves. The concept of 

photons is used to explain the interactions of radiation and matter 

that result in a change in the form of energy present. The concept 

of transverse electro-magnetic waves is used to explain the propa­

gation of radiant energy through various substances and, in some of 

the phenomena, of image formation. 

One concept of radiant energy is that of a simple transverse 

electro-magnetic wave. A transverse wave can be described by points 

that oscillate in the same plane back and forth across an axis 

perpendicular to the direction of propagation. All radiant energy, 

regardless of the frequency of oscillation, obey the laws of wave 

motion including reflection, refraction, interference, and dif­

fraction. In a vacuum, the velocity of propagation is the same for 

all frequen6ies. It is givin by - 3.00 x 108 meters/sec. In matter, 

this velocity is less and a function of frequency of oscillation. 

Physicists have known since the early 19th century that light 

is propagated as a transverse wave, but originally they thought that 

the wave was mechanical in -nature, requiring some medium for its 
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propagation. Experiments demonstrated that light could travel through 

the best laboratory vacuum; the medium for its propagation was pos­

tulated as an extremely diffuse substance, called ether, present even 

in a vacuum. Maxwell proved that light was an electro-magnetic oscil­

lation with the publication of his four laws of electro-magnetism [l]. 

Electro-Magnetic Spectrum 

The electro-magnetic spectrum is continuous from long waves with 

frequencies approaching zero to cosmic rays with frequencies 

approaching infinity. The properties of electro-magnetic waves depend 

on their frequency, which is important in determining heating effect, 

visibility, penetration, etc. Frequency bands have been chosen which 

group these properties, and each has its usefulness. Figure 1 shows 

the electro-magnetic spectrum and frequency bands. Visible light is 

used to see one's surroundings and is the most intrinsically obvious 

of frequency bands. Radio and microwaves are used in communicating 

information, x-rays are used in medical diagnosis, etc. 

At the beginning of the 20th century, it was found that the 

wave theory would not account for all the properties of radiation. 

In 1900 the German physicist, Max Plank, demonstrated that the 

emission and absorption of radiation occurs in finite packages of 

energy, which he called quan~a. Phenomena involving the interaction 

between radiation and matter can only be explained by the Quantum 

Theory. Quantum characteristics are particularly apparent in the 
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high frequency bands of the electro-magnetic spectrum. Physicists 

recognize that electro-magnetic radiation has both wave and 

quantum properties [1,2]. 

Thermal Imaging 

Thermal imagery makes use of the fact that every body emits 

electro-magnetic radiation with a wavelength distribution character­

istic of its absolute temperature and surface emissivity. Emissivity 

is defined as the relative ability of a surface to radiate energy as 

compared with that of an ideally black surface under the same 

conditions. Variations in the temperature over the surface of a body 

will, provided the emissivity is constant, form what is called a 

thermal image, by analog with the optical image formed by reflected 

visible radiation [3]. 

The temperature of terrestrial bodies can ~ange from approx­

imately OK to over 6000K. Ambient is the average temperature of 

the surroundings and is approximately 300K. A typical military 

infrared detection system must be able to see both the horizon and a 

flaming jet exhaust. See Figure 2 for a plot of a typical infrared 

scan. 

A thermal image is made visible by scanning the body and measur­

ing the intensity of radiatibn from each point. This information is 

then used to produce an optical image which reproduces the thermal 

intensity pattern. Such a thermal imaging system exploits most 

aspects of infrared technology involving sophisticated imagery, 

detection, signal processing, and display techniques [3]. 

4 



5 

Temperature (K) 

300 
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Time (Sec.) 

Figure 2. Typical Terrestial Infrared Scan. 
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A typical infrared imaging system would contain: 

(1) Optics 

(2) Infrared detectors 

(3) Interface 

(4) Signal Processing Electronics 

(5) CRT display 

The optics of an infrared imaging system contain a complex con-

figuration of lenses and reflectors which concentrate and focus 

infrared radiation onto a detector array. Simple glass refractory 

components will serve for only a limited range in the infrared, as 

radiation over 3 u-meters is heavily absorbed. There are three 

phenomena which will prevent a given material from being used 

successfully to make a lens or window for an infrar~d system. 

(1) Reflectivity may be so great that only a small fraction 

of the radiant power enters the lens. The reflection at 

an abrupt interface between two media depends on the 

refractive indices J
1 

and J
2

• The reflective index of 

air is approximately one while that of semiconductors is, 

in general, four. The expression for reflectivity is 

given by: 

Reflectivity 

(1.1) 

For the air/semiconductor interface the reflectivity is 

about one-third. Without remedy, this would make any 

semiconductor lens very lossy since, even without subsequent 
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loss by absorption, only two-thirds of the incident 

radiation would pass through. The solution to this problem 

is to apply thin coatings of materials with intermediate 

indices to the lens. 

(2) A loss mechanism involving the cyclic movement of charged 

particles in the materials caused by the alternating 

electric field of the radiation. 

(3) A loss mechanism involving the liberation of charged part­

icles by the absorption of photons. 

The problems encountered in making suitable lenses for use in 

the infrared can be avoided if it is possible to use reflecting 

elements for imaging and focusing. The permissible surface irreg­

ularity in a reflector is proportional to the wavelength of the 

radiation in use; therefore, the tolerances on an infrared mirror will 

be more lax than that on an optical mirror. Infrared reflectors are 

usually made by the deposition of a thin metalic film on a suitably 

shaped substrate, and provided that its geometry is stable, the sub­

strate material is not important [2,3]. 

A semiconductor infrared detector senses radiation by the fact 

that a photon striking its surface mobilizes an electron in the 

crystal lattice. Electrons in a semiconductor are allowed to assume 

energies which lie in certain well-defined bands. The two highest, 

the conduction band and valence band, are the operating regions in 

photo-detection. Between these bands is an energy gap which must ~e 

surmounted in order to bring an electron from the stable valence band 
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to the mobile conduction band at a given temperature. The electrons in 

the conduction band are there from either photon excitation or thermal 

excit~tion. For a photodetector to be useful, the thermally excited 

electrons must be minimized to optimize the signal-to-noise ratio. 

This is done by refrigerating the detector in a device called a Dewar. 

The significant characteristics of a photodetector are the wavelength 

region to which it responds, the speed of response, and the magnitude 

of the signal it provides . [3]. 

The band gap of a semiconductor material determines the frequency 

of radiation to which it will respond. Elemental Silicon and 

Germanium have band gaps of 1.1 and .7 electron volts respectively, . 

which puts their long wave responses at 1.24 and 1.8 micrometers. 

This however is only brushing the extreme end of the infrared 

spectrum, and to reach further it is necessary to use semiconductor 

compounds of two or even three elements. Refer to Table 1 for a list 

of common semiconductor alloys , [3]. 

TABLE 1. SEMICONDUCTOR ALLOYS AND RESPONSE CHARACTERISTICS 

MATERIAL 

Ge 
Si 
Ge + Cu 
Ge + Au 
InAs 
InSb 
Cd-HgTe 
Pb-Sn Te 

TEMPERATURE 

300 
300 

impurity 18 
impurity 35 

77 
77 
77 
12 

(OK) 
APPROXIMATE CUT-OFF 
WAVELENGTH (MICROMETERS) 

1.8 
1.2 

30.0 
15.0 
3.0 
5.5 

13.0 · 
14.0 



An infrared interface must transfer signals between detector/ 

Dewar and signal processing electronics while minimizing additive 

noise. There are any number of techniques which can be used but the 

trend is towards parallel. digital data or fiber-optic links. The 

problem with parallel digital data is that no linear ADC carries 

enough bits to provide for the required resolution/dynamic range 

while having adequate conversion speeds for _ infrared/video signal 

formats. 

Signal processing electronics control the painting of an image 

9 

on to a CRT. Commercial television uses a 525 line by 420 colwnn 

format refreshed 30 times per second. Military systems usually 

require greater definition necessitating a larger number of rows and 

columns. To enhance the capabilities of an infrared system, all . 

signal processing functions can be performed digitally. This increases 

reliability, dependability, and uniformity. Once a digital system is 

designed, it is very easy to produce copies which perform exactly the 

same function. Digital systems are not subject to component aging, 

therefore reducing the problem of calibration. Digital systems are 

also immune . to much of the electronic noise inherent in any operational 

environment. 

Digital processing adds computational power to a system and, 

therefore, image enhancement capabilities. Image enhancement is the 

processing of images to increase their usefulness. When images are 

enhanced for human viewers, the objective may be to improve perceptual 

aspects such as image quality, intelligibility, or visual appearance. 



Some methods of image enhancement are: modification of contrast or 

dynamic range; edge enhancement; reduction of additive, multiplica­

tive, and salt-and-pepper noise; reduction of blurring; and display 

of non-image data [4,S]. 

To implement digital signal ·processing, a signal must be 

converted from an analog to a digital quantity. This function is 

performed by a device called an Analog-to-Digital Converter (ADC). 

10 



CHAPTER 2 

ANALOG-TO-DIGITAL CONVERTER (ADC) 

Analog-to-Digital Conversion 

An ADC is a device with a continuous analog input signal and 

digital output. The digital output is the nearest approximation to 

the analog value at some instant in time. This is due to the fact 

that digital signals are both discrete and quantized. If a digital 

N 
number contains N bits, then it can assume 2 values. The equations 

describing the operation of an ADC are: 

t b b bN bN+l 
+ •• J A = -1. + ..1. + -1. + +- +--

4 8 2N 2
N+l (2.1) 

G b b bN~ A = R-1.+2+-1.+ +-
4 8 2N (2.2) 

QE = RCN+l + bN+2 + 
N+l 

2
N+2 .. J (2.3) 

A = A + QE (2.4) 

where 

A = ari analog value of some instant of time, 

A = the digital approximation of A, 

QE = quantanization error, 

R = reference voltage equal to maximum value of A, 

b = the nth digit of a binary word, 
n 

N = the total number of digits in a digital word. 

11 



The larger the value N, the better the approximation of A to A. 

The problem with carrying more digital bits is that it yields 

a more complex hardware design and greater costs. There is a cost 

function which must be . optimized to determine the proper mix of 

cost and design complexity [6]. 

Output Codes 

The numbering system mentioned above is called unipolar; that 

is, the analog value A is allowed to range from zero to a positive 

reference R. Other numbering systems allowing the analog value A 

to range over positive and negative values exist, and are called 

bi-polar output codes. ADCs which implement bi-polar codes are 

12 

much more complex with respect to hardware than those which implement 

unipolar codes [6]. 

ADC Errors 

There are a number of errors introduced into an analog-to-

digi tal conversion. The most obvious error is due to the quantan­

ization of an analog signal. This is sometimes described as 

resolution or precision of conversion and is a function of the 

number of bits carried by the digital word. The number of bits 

determines how many values, from zero to ful·l scale·, · are -a:v.ailable for 

representing an analog quantity in the digital domain. The maximum 

quantanization error is ~ 1/2 LSB. 

Electronic equipment error is the sum of the errors contributed 

by the circuitry through which the analog signal has to pass 



before and during conversion. This class of errors can be further 

divided into random and systematic errors. 

Random errors are due to the statistical distribution of 

component values. Random errors follow a Gaussian distribution; 

thus their total contributed expected error, 

e = 
r 

where e. are the individual error components. 
1. 

e , is 
r 

(2.5) 

Systematic errors can sometimes be eliminated through careful 

adjustments. Others, such as temperature dependent errors, and 

the finite value of power supply regulation, have to be added 

linearly for the worst-case condition, that is, over the total 

temperature range that the ADC is specified to operate, and 

over the maximum power supply variations [6]. 

Flash ADC 

Flash ADCs use one analog comparator, with a fixed voltage 

Vref at one of its inputs, for every quantanization level in the 

digital word from zero to full scale. A common reference voltage 

and a precision resistor chain apply the Vref bias to each 

comparator that differs by one LSB. The input analog voltage is 

connected to the other input of each comparator so that an analog 

comparison can be made with all the reference voltage levels 

representing all the quantanization levels. The outputs of these 

comparators drive encoding logic to generate the equivalent digital 

13 



word. The value of the output digital word is dependent upon the 

comparators, which have detected the input analog voltage which is 

greater than their reference voltage. The conversion process is 

extremely fast becaus~ . the conversion is completed in one operation 

and is asynchronous; its ·speed is determined by the sum of the 

propagation delays of a comparator and of the encoding logic. The 

major disadvantage to the flash ADC is that for each additional 

binary bit in the digital word, the number of comparators and 

encoding circuitry is doubled [6]. 

14 



CHAPTER 3 

COMP ANDING 

Companding is a means of increasing the dynamic range of a 

system. Compandors have been used to increase the dynamic range of 

electronic communications systems in radio and, for over fifteen 

years, in the telephone system. In addition, companding has been 

used in. audio frequency ADCs. Until recently, it appears to have 

found little use in video but with the advent of digital television 

and the increased importance of thermal imaging systems, the use of 

video frequency compandors is expected to increase. 

Companding is a compound word for compression and expansion 

which describes the signal processing nonlinear functions that are 

performed. This processing is a trade-off between resolution and 

dynamic range. There are many possible compandi~g techniques, but 

they all must satisfy the requirement that, as a system, the 

compression/expansion function be a linear operation. Its purpose 

is to enhance the quality of quantanization for sma11 _signal values 

compared to that obtainable by uniform quantanization. Two com­

panding schemes which are in widespread use today in the telephone 

switching system are the Mu-law and the A-law. The Mu-law has been 

implemented with the American telephone switching system while the 

A-law has been used by the European telephone system. 

15 



are: 

where 
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The Mu-laws defining equation for compression and expansion 

Compression 

V =a log(l + uV./a) 
c 1. 

log(l + u) 

for 0 < V. < a 
1. 

Expansion 

V = (a/u)[exp((V /a) log(l + u)) - l] 
0 c 

for 0 < V < a 
- c -

v. = input voltage signal 
1. 

v = compressed voltage signal 
0 

a = reference voltage 

u = compression parameter 

v = output voltage signal 
0 

Similar equations can be written for negative values of V .• 
1. 

The A-law defining compression equations are: 

AV·;. v = 1. 
c -----1 + log. A 

V = 1 -+ log(AV.) 
' c 1. 

1 + log.. A 

for 0 < V. < I 
i A 

f'or 1 < V. < 1 
A - i 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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while f or expansion 

v 
0 

= (1 + logA)V 
c for 0 < V < 

c 
1 (3.5) 

A 
1 + logA 

V = (l/A)[exp((l + logA)V - l)] 
0 . c 

for 1 
1 + logA 

~Ve S.. 1 

(3.6) 

Companding curves such as the Mu and A laws are continuous 

functions which are almost impossible to implement in reality. A 

smooth curve would require an infinite number of quantanization steps 

of infinitesimal smallness. The cost of implementing a non-uniform 

quantanization system may be reduced considerably by limiting the 

number of quantanization steps specified. The quantanization levels 

are grouped into regions of constant step size. Each of these regions 

is referred to as a segment. The purpose of segmentation is to com-

bine the advantages of compression with reasonable cost by approx-

imating the smooth companding curves as a series of chords 

representing regions of uniform quantanization [7]. 



CHAPTER 4 

COMPANDING FLASH ADC DESIGN 

Segmented Companding Curve Design 

The design chosen was picked for its simplicity since the 

principle of companding using a flash ADC is to be demonstrated with 

the specific application to infrared systems in mind~ A three chord 

compresBion scheme such as that in Figure 3 is to be designed. The 

midrange chord is set so that its midpoint would correspond to the 

voltage produced by the ambient temperature. Ambient was chosen for 

synunetry and simplicity as half of full-scale voltage. The width 

of this chord can be chosen using two criteria. 

(1) Signal swing about ambient to be compressed. 

(2) Linear bit resolution required. 

The outside chords are not critical as long as they retain 

enough quantanization levels to satisfy the given application. 

Half full-scale voltage was chosen as ambient because it makes the 

voltage per quantum the same for both outside chords. Each chord 

contains 32 quantanization levels; therefore, each of the outside 

chords has·the same input voltage width. In reality, ambient would 

not correspond to half the full-scale voltage but would be skewed 

towards the lower end of the voltage scale. Each chord would then 

have an input voltage width which is different from the other two. 

18 
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To find the resolution remaining in the non-compressed regions: 

3.98437 volts 
32 quantum = .124512 volts/quantum 

8.5 volts 

2
N· quantum 

= .124512 volts/quantum 

(4.3) 

(4.4) 

N = log
2
68.2665 = 6.093 (4.5) 

This design obtains 10-bit resolution within the compression 

chord while still retaining better than 6-bit resolution in the 

other chords. 

The potentiometers are configured as an adjustable resistor 

ladder. They provide voltage taps to set the voltages of Table 2. 

The defining equation for their_ adjustment is developed using volt-

age division and is simplified by the synunetry of the segmented 

companding curve of Figure ; 3. 

R4 
R3 + R4 

= 3.98437 
4.25 

If R4 is arbitrarily chosen as 1 Kohms, then R3 is found to 

(4.6) 

be 66.7 ohms. Symmetry would have Rl = R4 and R2 = R3, therefore 

Rl = R4 = 1 Kohms 

R2 = R3 = 66.7 ohms 
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This design was chosen to obtain 10-bit resolution within the 

compression chord. 

Given: Vref+ = 8.5 volts 

Vref- = o.o volts 

N = 10 bits 

Vref + - Vref- = .0083 volts/quantum (4.1) 
ZN 

The RCA CA3300 chip design necessitates using the 64 comparators 

between pin 10 of both chips as the compression region, therefore 

.0083 volts/quantum x 32 quantum = .26563 volts (4.2) 

chip 1, pin 16 4.25 volts + .26563 volts = 4.51563 volts 

chip 2, pin 16 4.25 volts .26563 volts = 3.98437 volts [8]. 

TABLE 2. PINS AND APPLIED VOLTAGES 

CHIP # PIN NAME PIN # DESIGN VOLTAGE (VOLTS) 

1 R+ 9 8.5 

1 RC 16 4.51563 

1 R- 10 4.25 

2 R+ 9 4.25 

2 RC 16 3.98437 

2 R- 10 o.o 
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TABLE 3. MINIMUM INPUT VOLTAGE AND OUTPUT CODES 

NUMBER DIGITAL CODE MINIMUM VOLTAGE (VOLTS) 

0 0000000 9.00000 
1 0000001 0.06130 
2 0000010 0.18785 
3 0000011 0.31440 
4 0000100 0.44095 
5 0000101 0.56750 
6 0000110 0.69405 
7 0000111 0.82060 
8 0001000 0.94715 
9 0001001 1. 07371 

10 0001010 1.20026 
11 0001011 1. 32681 
12 0001100 1.45336 
13 0001101 1. 57991 
14 0001110 1.70646 
15 0001111 1.83301 
16 0010000 1.95956 
17 0010001 2.08611 
18 0010010 2.21266 
19 0010011 2.33921 
20 0010100 2.46576 
21 0010101 2.59231 
22 0010110 2.71886 
23 0010111 2.84541 
24 0011000 2.97196 
25 0011001 3.09852 
26 0011010 3.22507 
27 0011011 3.35162 
28 0011100 3.47817 
29 0011101 3.60472 
30 0011110 3.73127 
31 0011111 3.85782 
32 0100000 3.98437 
33 0100001 3.99267 
34 0100010 4.00097 
35 0100011 4.00927 
36 0100100 4.01757 
37 0100'!01 4.02587 
38 0100110 4.03418 
39 0100111 4.04248 
40 0101000 4.05078 
41 0101001 4.05078 
42 0101010 4.06738 
43 0101011 4.07568 
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TABLE 3 (Continued) 

NUMBER DIGITAL CODE MINIMUM VOLTAGE (VOLTS) 

44 0101100 4.08398 
45 0101101 4.09228 
46 0101110 4.10058 
47 0101111 4.10888 
48 0110000 4.11718 
49 0110001 4.12549 
50 0110010 4.13379 
51 0110011 4.14209 
52 0110100 4.15039 
53 0110101 4.15869 
54 0110110 4.16699 
55 0110111 4.17529 
56 0111000 4.18359 
57 0111001 4.19189 
58 0111010 4.20019 
59 0111011 4.20850 
60 0111100 4.21680 
61 0111101 4.22510 
62 0111110 4.23340 
63 0111111 4.24170 
64 1000000 4.25000 
65 1000001 4.25830 
66 1000010 4.26660 
67 1000011 4.27490 
68 1000100 4.28320 
69 1000101 4.29150 
70 1000110 4.29981 
71 1000111 4.30811 
72 1001000 4.31641 
73 1001001 4.32471 
74 1001010 4.33301 
75 1001011 4.34131 
76 1001100 4.34961 
77 1001101 4.35791 
78 1001110 4~36621 
79 1001111 4.37451 
80 1010000 4.38281 
81 1010001 4.39112 
82 1010010 4.39942 
83 1010011 4.40772 
84 1010100 4.41602 
85 1010101 4.42432 
86 1010110 4.43262 
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TABLE 3 (Continued) 

NUMBER DIGITAL CODE MINIMUM VOLTAGE (VOLTS) 

87 1010111 4.44092 
88 1011000 4.44921 
89 1011001 4.45752 
90 1011010 4.46582 
91 1011011 4.47413 
92 1011100 4.48243 
93 1011101 4.49073 
94 1011110 4.49903 
95 1011111 4.50733 
96 1100000 4.51563 
97 1100001 4.64218 
98 1100010 4.76873 
99 1100011 4.89528 
100 1100100 5.02183 
101 1100101 5.14838 
102 1100110 5.27493 
103 1100111 5.40148 
104 1101000 5.52803 
105 1101001 5.65459 
106 1101010 5.78114 
107 1101011 5.90769 
108 1101100 6.03424 
109 1101101 6.16079 
110 1101110 6.28734 
111 . 1101111 6.41389 
112 1110000 6.54044 
113 1110001 6.66699 
114 1110010 6.79354 
115 1110011 6.92009 
116 1110100 7.04664 
117 1110101 7.17319 
118 1110110 7.29974 
119 1110111 7.42629 
120 1111000 7.55285 
121 1111001 7.67940 
la2 1111010 7.80595 
123 1111011 7.93250 
124 1111100 8.05905 
125 1111101 8.18560 
126 1111110 8.31215 
127 1111111 8.43870 
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Circuit Description 

A design for a 7-bit companding flash ADC using two RCA CA3300 

chips is shown in Figures 4a and 4b. The internal layout of an RCA 

CA3300 is illustrated in Figure 5. The resi?tor ladder on these chips 

is biased by the circuit shown in Figure 4a to set the compression 

voltages. Digital output codes are displayed using eight LEDs. 

Seven of these LEDs are connected between chip outputs and ground. 

They are directly driven by the ADC outputs. The MSB is the over­

flow output of the chip containing the lower 64 comparators. When 

overflow goes high, it disables the output of that chip and enables 

the output of the other chip. When the LED is connected to this 

output it does not allow the voltage to go to its proper logic high 

state. This requires the insertion of a voltage follower to enable/ 

disable the chip while properly driving the output LED [8]. 

The resistor ladder bias circuit is shown in Figure 4a and 

consists of 4 potentiometers, 3 operational amplifiers configured 

as voltage followers, and two 1 Kohln resistors. Potentiometers 

were chosen instead of precision resistors because their resistance 

can be changed and the design adjusted until an optium is found. 

Precision resistors would be used with a finalized design in produc­

tion. The yoltage followers se~ve to fix the ADC taps at whatever 

voltages are present on the bias resistor network and eliminate any 

paralleling of resistances. The 1 Kohln resistors between op amp 

outputs serve as a path for current removed from the flash ADC's 
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Figure 4a. Voltage Bias Circuit for 7-bit Companding ADC. 
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resistor ladder. If they were absent, the op amps would have to 

either sink or source an undesirably large amount of current in order 

to maintain their outputs at the proper voltage levels. 



CHAPTER 5 

ROM EXPANDER 

The expansion of compressed data can be performed in digital 

hardware using a Read ~Only Memory (ROM). The ROM would be used as 

a look-up table where each word from the ADC is used to address the 

contents in memory containing the expanded data word. Figure 6 

shows the curve of compressed data vs. expanded data. Each _segment 

will have a step size that inversely corresponds to the compression 

of the flash ADC. ROMs are extremely fast and that is the reason 

for the use of these devices at video frequencies. 

The design chosen uses a 7-bit compression word and desires 

10-bit resolution. Ten-bit resolution requires at least 10-bit data 

words as output of the ROM expander. Seven by ten-bit ROMs are not 

common components; therefore, any ROM with more than 7 address bits 

and more than 10 data bits can be used. Whatever the size of the 

ROM, only 128. addresses will be used with 10-bits of valid data. 

A compander uses non-linear compression and expansion functions 

but, as a system, must be a linear operation. Figure 7 shows the 

voltage input vs. 10-bit digital output for the design analyzed. 
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CHAPTER 6 

TEST SET-UP 

Figure 8 shows the test set-up designed to test and evaluate 

a companding flash ADC. The equipment consists of: 

2 HP 6236B Triple Output Power Supplies 

2 HP 6282A DC Power Supplies 

1 HP 3468A Multimeter 

1 HP 3325A Synthesizer/Function Generator 

A variable input voltage can be provided by an HP 6282A Power 

Supply. The HP 6282A is adjustable from 0 volts to 12 volts using a 

fine adjustment voltage knob. Each click of this knob varies the 

output voltage of a few millivolts which is necessary because the 

minimum quantanization step voltage is 8.3 millivolts. Two HP 6282A 

Power Supplies can be put in series to increase the voltage range past 

12 volts but this is dangerous since the specified input voltage range 

is 2.4 volts to 8.5 volts. Damage to the RCA 3300 chips could occur 

if this voltage range is violated. 

Two methods of adjusting the input voltage while monitoring the 

output are mentioned below. Figures 9a and 9b show a procedure which 

could be used if LEDs are driven by the outputs. The user must judge 

code transitions as the input voltage is adjusted through the voltage 

range. A disadvantage to this technique is that it requires driver 

circuits for the LEDs so that the outputs can asswne proper logic 
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2 

START 

Set voltage knobs com­
pletely to the left, 
fine adjustment right 

n = 0 

Turn fine adjustments 
to the left to 
decrease voltage 

Yes 19--------------------------
Turn fine adjustment 
knob to right 

No 

Figure 9a. ~ossible Frocedure for Adjusting 
Input Voltage While Taking Data. 
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n = n + 1 
Voltage (n) = 

Measured Voltage 

Tune fine adjustment 
knobs completely 
right 

Turn voltage knob to 
the right to increase 
voltage 

Yes 

2 

No 

Figure 9b. Continuation of Figure 9a. 
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voltage levels. This procedure also requires subjective judgements as 

to whether LEDs are fully lit or not. Figures lOa and lOb show a 

procedure which takes into account the fact that the LSB is comple-

mented every time there is a code transition. A disadvantage of this 

technique is that it asswnes that there are no missing codes in the 

output. 

Stable logic and reference voltages can be provided by an 

HP 6236B Triple Output Power Supply. The three outputs are adjustable 

from 0 to 6 volts, 0 to 20 volts, and -20 to 0 volts. If a logic 

level of higher than 6 volts is necessary, then an additional 6236B 

would have to be used in place of the 0 to 6 volt output. 

A 50% duty cycle, square wave, clock signal of up to 10 MHZ 

can be provided by an HP 3325A Synthesizer/Function Generator. This 
I 

device allows precise programming of both amplitude and frequency 

for sinusoids, triangular waves, ramps, and square waves. 

An HP 3468 Multimeter can be used to monitor the voltage levels 

of all signals in the test setup. The resistance of each potentio-

. meter can be adjusted accurately to precisely set each chord of the 

segmented companding curve. The voltage levels of the bias circuits 

can be verified. When static testing is performed, the voltage at 

every input and output of the CA3300, except the clock, can be 

verified. 



START 

Set input voltage to 
0.00000 V and enter 
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Figure lOa. Second Possible Procedure for Adjusting 
Input Voltage While Taking Data. 
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End 

Increase voltage 
until negative volt­
age transition on LSB 

Digital 1 - 0 

n = n + 1 

Voltage (n) 
= 

Voltage Measured 

2 

Figure lOb. Continuation of Figure lOa. 
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CHAPTER 7 

CONCLUSION 

The design of a 7-bit companding ADC has been completed with 

10-bit resolution in the compression chord while still retaining 

better than 6-bit resolution in the remaining chords. This was 

built and tested. It was found that the output codes were in error 

within the compression section. The data sheets for the RCA CA3300 

put the minimum resistor ladder voltage at 2.4 volts with negative 

reference as ground. This translates into a maximum voltage res­

olution of 37.5 millivolts. Eight-, 9-, and 10-bit resolutions with 

the maximum reference voltage of 8.5 volts are 33.2, 16.6, and 8.3 

millivolts respectively. Each of these is less than the minimum 

voltage resolvable by the CA3300; therefore, the CA 3300 can not be 

expected to perform properly. 

Error sources in a design like this must be minimized to allow 

for optimum performance. Wiring must be laid out to minimize noise 

coupling. Electrical noise sources should be placed at a distance 

from the test circuit. Reference voltages must be as stable as 

possible. If these and further precautions are not taken, data 

taken can be t~tally out of allowable limits. 

The companding flash ADC is still practical even though it is 

not implementable using the RCA CA3300. The resolution of each com­

parator within the compression range needs to be improved. Perhaps 
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it could be better implemented on ECL or TTL instead of CMOS. Also, 

companding flash ADs should be custom or semi-custom devices. A 

designer should be able to submit data in the form of a segmented 

companding curve and manufacturer produce the corresponding device. 

A user friendly software package could be easily created which 

would automate both design and testing of these devices. Critical 

data such as resolution desired and ambient temperature for a given 

number of output bits would be entered. The output would consist 

41 

of graphic plots of voltage input vs. digital output and digital input 

vs. digital output, tables of resistor values in the resistor 

ladder, and binary output on tape or disk which could be loaded on 

automated production equipment for manufacturing. 

The software package could interface with special purpose test 

equipment to test the design. The microcomputer then could auto­

matically program both static and dynamic tests while monitoring 

the output codes. The software could run automatic diagnostics 

and calibration on the test set so that, if there was a problem, 

it would be diagnosed before testing. 
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