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ABSTRACT 

'!he Florida peninsula is l.U'lderlain by limestone undergoing a 

continuous solution prcx:ess resulting in subsurface cavity formation. 

Increased land developnent has led to costly structural damage and 

water supply contamination due to surface subsidence and collapse in 

areas overlying such cavities. Conventional drilling methods cannot 

guarantee detection of isolated cavities. A geophysical technique 

known as ground penetrating radar (GPR) is a non-destructive methcrl 

in geotechnical investigation capable of surveying large areas quickly 

an:i efficiently. GPR works as an echo sounder with a continuous similar 

graphic display. Cavities are identifi~ by hyperbolic patterns caused 

by reflections frcm variations in electrical properties of anomalies 

as canpared to the surrounding material. Due to irregular .variations 

an:i inconsistencies in the properties of naturally deposited soils 

an:i rocks, interpretation of the result fran a radar survey is diffi

cult to pre-detennine without an actual field investigation. 

The intent of this stl.Xiy is to detenni.ne tlx>se circumstances 

urO!r which GPR can be of use in subsurface cavity detection inves

tigatialS. '!he results irxlicate that subsurface conditions in north 

and central Fiorida are generally favorable and that this method can 

be extremely useful in determini.B;J trends in subsurface erosion. 
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"I , __ • 

An aerial view of Florida shows a landscape dotted with lakes 

formed by sinkholes over thousands of years. '!his karst topography 

is typical of areas underlain by soluble limestone. Chemical erosion 

of the limerock results in subsurface cavities which eventually col

lapse or beccrne filled by ravelling of overlying ma.terial. The result 

of localized areas of subsidence over these cavities are the karst 

features known as sinkholes. 

Problems associated with subsurface cavities and sinkholes such 

as foun:iation failures and losses of buildings and equii;:rrent., damage 

to utilities arrl roadways, failures of dams and containment porrls, 

gramiwater contamination, and general subsidence ( Anny, 1970) 

cause thousards of dollars in damage every year. This damage can be 

avoided by detecticn of subsurface cavities prior to construction. 

Information on the location and extent of the cavity involved is 

necessary so that the cavity can be filled or the structure rcoved 

away fran the site. 

Close interval drilling or total excavation are conventional 

methcxis of cavity location. Closely spaced boreholes often fail to 

·reveal buried cavities encountered during construction, and both methcxis 

are expensive and time consuming. 
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Several geophysical methods have been used in subsurface explora-

tion. Gravity, seismic, electrical resistivity, magnetic, and elec-

tromagnetic techniques have all been tested with S01re degree of 

success. However, none of these rrethods can be applied successfully 

to all subsurface conditions. 

'!he technique of transmitting electranagnetic waves into the 

earth an::i m:>nitoring the reflected signal referred to as ground pene-

trating .radar (GPR) is becoming an increasingly accepted rrethod .of 

geophysical investigation • . A continuous record of subsurface strata 

is obtained by pulling a radar antenna over the ground surface. 

Electromagnetic impulses are continuously transmitted into the grourrl 

from the antenna and their reflections received by the sarre antenna. 

'!he reflected signals are processed by the control unit and graphi-

cally recorded on a strip chart. '!he hyperbolic reflection signal 

characteristics of subsurface cavities make their detection relatively 

simple urxier ideal corx:litions. 

Operating principles of GPR are similar to those of aircraft 

and marine sw:veillance radars, with the major difference being the 

low frequencies required to achieve practical depth penetration 

ranges and wide signal baBiwidths necessary for useful resolution 

of subsurface features. An antenna towed along the ground surface 

radiates low frequency electraTia911etic (EM) ?llses into th~ earth • 
.., 

~es in electrical properties of subsurface materials cause the 

transmitted pulse to reflect back and be received by the same antenr'la 

which is used to transmit the signals. ~es can be due to differ-

ences in soil canp:>sition, density, or noisture content. Cavities 
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filled with air, water, or soil cause a reflection of the radar sig

nal because of the variation of electrical properties. A continuous 

record of interface reflections versus ?Jlse travel time is generated 

by a strip chart recorder, similar to the display of an echo sounder. 

If the velocity of the pulse through the material is known, travel 

time can be converted to distance, and depths to various subsurface 

interfaces can be determined. 

'Ihe success of a radar scan is limited by the :penetration depth 

which can vary fran just a few feet to a hurrlred feet or rcore. Pene

tration capabilities are dependent on the frequency of the antenna 

and the electrical con:iuctivity of the earth materials involved. 

An 80 MHz antenna is used to achieve greatest :penetration, while a 

300 MHz antenna provides better resolution of shallow features. 

Electrical properties of earth materials are dependent on water 

cono:mt, temperature, pressure, and impurities. Since the· natural 

conditions of soils and rocks vary greatly, it is difficult to esti

mate the penetration depth of the radar signal before a survey is 

actually corxlucted. In sane areas substantial :penetration allows 

detection of subsurface strata, but in other areas maximum penetra

tion is limited to a few feet fran the surface. Typicaf 

penetration ranges fran about 50 meters in resistive materials such 

as sards, gravels, bedrock, arxl fresh water, decreasing to about one 

meter in corxluctive materials such as fine-grained clays and seawater 

(~, 1984). 
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Under a STAR grant to Florida Sinkhole Research Institute {FSRI) , 

a study was conducted to determine local corrlitions in which grourrl 

penetrating radar can provide useful information about. subsurface 

features, as well as those corxiitions where penetration is insuffi

cient for cavity detection. Numerous field investigations were con

ducted throughout central and oorth Fiorida urxier a diverse range of 

conditions with varying results using the Surface Interface System 

{SIR) manufactured by Geo};tlysical Survey Systems, Inc., {GSSI), 

Hudson, ~ Hampshire. 

During the period of research study,t.he original System 4 was 

upgraded to the rcore sophisticated System 8 rood.el, rcodified to pro

vide better results. Research progress was delayed for rronths during 

· the transition. Depth calibration for each rocx:iel is different . 

Charts which had been required to calculate depth with the older 

m:xiel are no longer needed; however, some of the included profiles 

are frcrn the old system and so the range calibration charts are 

included in Appendix A for reference. 

On the basis of experience gained fran- this study, areas of dry 

sand overb.u:den or shallow limestone allowed the best signal pene

tration, whereas the presence of a hard thick clayey layer effec

tively limited penetration. High rroisture content was fourrl to have 

an adverse effect on penetration. depth due to the high conductivity 

of water. '!he case of very loose saturated sand is arcong the v.orst 

conditions for the propagation of radar signals. 



CHAPI'ER II 

GEDUXiIC CONSIDERATIONS 

Sinkholes are a characteristic feature of karst processes in 

Florida. Their occurrence is related to fractures and faults as well 

as the lithology of the highly porous limestone underlying the state 

and the thickness and lithology of the overburden sediments (FSRI, 

1984). Groundwater flowing through pores and along fracture lines 

chemically erodes the caroonate rock by solution, leaving large voids 

in the remaining rock framework. Continued erosion enlarges these 

voids until roof collapse or the ravelling of unconsolidated overburden 

into such voids results in sinkholes. 

Sinkholes are usually circular depressions of various depths and 

diameters. M::>st are 5 to 20 feet across although a few over 100 feet 

in diameter have been recorded. Several recent occurrences have re

sulted in extensive damage. The 300 foot diameter Winter Park sink

hole of May 1981 swallowed a house, a public swinming pcx>l and six 

cars: and the Keystone Heights sink near Gainesville on December 23, 

1985, consumed a house within its diameter of 70 feet. 

The Florida peninsula was fanned over tens of millions of years 

time by the deposition of the shells and skeletons of marine organisms 

under shallCM sea conditions. Typical stratigraphy in north and cen-

tral Florida where sinkholes are nost damaging consists of four prin

ciple geologic fonnations. The uppernost layer consists of unconsolidated 

5 
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deposits of sand and clay in varying thickness fran a feM inches to 

40 feet. Below this layer is the Hawthorne Formation, a semi-permeable 

to highly impermeable layer of clay, sandy clay, dolanite, phosphate, 

and limestone. It is generally characterized as a clay. Th.is layer 

is relatively thin or nonexistent in sane areas of Florida. Pure, 

J;Orous limestone of the Ocala Group is below the Hawthorne, with the 

Avon Park limestone formation over basement rcx:k. 

Uplift created fractures in the limestone and created · 

"highs" where the limestone is near the ground surface. Extensive 

erosion due to fluctuating sea levels has resulted in a reduction of 

the 1ani mass and downward rcovement of the ground surface. 

The Solution Prcx:ess 

Limestone is a carbonate rcx:k canposed largely of the mineral 

calcite. r.t:>st carbonate rcx:k is formed in shallow seas by the depo

sition of the shells and skeletons of dead organisms. A small percen

tage is fanned by the precipitation of calcium carbonate in solution 

due to evaporation (Stokes, 1978). 

Freshly deposited carbonate fonnations exhibit high void ratios 

due to pores between grains and fragments. '1hese pore spaces are 

referred to as primary porosity. Faults and joints due to tectonic 

rcovements and flexures are known as secondary porosity. '!be first 

signs of solution in limestone appear along these faults and joints 

which facilitate water flow. 

Natural water contains carbonic acid which reacts with .calcite 

to fonn calcium bicarbonate, a soluble substance that is carried away 
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in solution. Calcium bicarbonate is about 30 times more soluble in 

water than calcium carbonate; therefore, the carbonation reaction 

causes increasingly rrore rapid dissolution of the limestone (Stokes, 

1978). 

Acidic water percolates through joints arrl faults, dissolving 

some of the rock and enlarging the cracks. Dissolved material is 

rercoved by urxlerground water and is .either redeposited or discharged 

into streams. As times passes, the voids grCM larger and larger until 

eventually they may form large passageways. 

When ion saturation of the water is reached, solution of the 

carbonate rock stops. Therefore, increased water flCM contributes 

to solution by allCMing replacement of ion saturated water· (Sowers, 

1975). 

Solution activity is roc>st rapid where dcMnward percolating water 

continuously rinses the rock strata, leading to the formation-of ver-

tical tunnels or ''chimneys.'' BelCM the water table, groundwater rroves 

along bedding planes and joints offering the least resistance. Solu

tion action through fX>res and open spaces results in interconnection 

to form a continuous system of voids. 

cavity networks expan:i with time, with major developnents occur-

ring along fractures, joints, and bedding planes where water roc>vement 

is freer and much faster. Solution and rerooval of limesto~ is roc>re 
-, 

rapid along these features than in interfracture areas. Lines of 

sinkhole ard spring locations ard groundwater f lCM patterns all appear 

to be related to fracture trends. 
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The primary effect of solution is to enlarge the pores and increase 

overall porosity. This enhances water circulation and increases stress 

with.in the rE:maining rock frart'leNOrk, directly reducing the strength of 

the rock and inducing stress corrosion (Sowers, 1975). The abundance 

of springs, caverns, arrl urxierground channels are the result of these 

karst processes attesting to the efficiency of chemical weathering known 

as solution. 

Sinkholes 

Large voids in the lim=stone are the result of concentrated 

gra.irrlwater flow occurring where the rock is rrore p:>rous or has a 

higher solubility. Increased solution can be caused by chemical 

changes in the water, increased filtration after rainfall, increased 

surface loading, or increased effective weight of the soil overburden 

due to lowering of the water table so that the bridge of cavity can 

no longer support the overburden weight. 

E-inkholes are usually fanned in one of tlNo manners: a) rex>f 

collapse of a cavity in limestone, or b) ravelling collapse due to 

cavity developnent in unconsolidated overburden. 

Collapse of the rcx:>f of a bedrock cavern produces a steep-sided, 

rock-walled hole, p:>ssibly widening into interconnected cave passages 

at depth. If the underlying cave system is water filled, a cenote is 

the result (FSRI, 1984). 

The majority of damaging sinkholes occurring in Florida are sub

sidence or ravelling sinks. 'lllese occur in regions where unconsolidated 

overburden covers the dissolved cavities in the limestone. A piping 
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type collapse occurs as water washes overlying sediments into the 

solution cavity below. As the void expands to a point near the 

ground surface, overlying deposits collapse, resulting -in a sinkhole. 

Ravelling failures are the nost widespread and probably the most dan

gerous of all subsidence phenanena that are associated with limestone, 

developing suddenly and without notice (Sowers, 1975). 

Various circumstances trigger sinkhole collapse but the usual 

cause is increased filtration through the clay layer. Sinkhole col-

lapse can be induced by changes in the relationship between ·the water 

table and the potentiornetric surface, such as that caused by heavy 

p.mtping for freeze protection or increased localized surface infil

tration as below sewage pon:i~_:_[!"_~'.3'1: ~~e::i~e-of _s~les in 

Florida occur e·ither during the dry season when well draw-down leads 

to increased groundwater_ inf iltrat.iqn_ through the .. clay _layer, or during 
--------·-.... .- ---- - ~ ~ •• -- -· - --- -!"'r' .. ..,....... •. .. • .. •• -

t.!'1e sqnmer .torrential rainy season when buildup of water in _the sur-
,' _,, ,,.,,.-- ~---~ .. - '::!"'?*"---, .. ~ ,,.... ·_.-.;, • 

ficial aquifer inq~eases pressure on the confining layer, causing 
. .. ' . ~ -

increased leakage (Ruth, 1985). '!his heavy infiltration enhances the 
-·-··- -· -.... ~ .......... ~ ,._ . -

ravelling process. 
. ·- - " ~ 

Electrical Properties of Soils and Rocks 

Propagation velocity of the radar signal depends on the dielec

tric constant of the earth material. The maxinrum penetration depth of 

the radar signal is inversely deperrlent on the conductivity of the 

earth material. Sand and gravel have relatively low conductivities 

and allow excellent radar penetration. Limestone has a low conduc

tivity, allowing penetration depths to over a hundred feet. Areas 
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in which the limestone is at or just below the surface are ideal 

lcx::ations for GPR surveys. Locations where limestone is covered by 

a sandy overburden generally get gocxi results also. A layer of 

highly corxiuctive material such as clay reflects rcost of the inci

dent energy arxi absorbs the rest; therefore, no information is avail

able below such a layer. The thicker the clay, the less distinct 

the ananalies. 

Water .has a strong influence on the electrical properties of 

rocks arxi soil. An increase in rcoisture content greatly increases 

both corxiuctivity arxi the dielectric constant. 'lhe magnitude of the 

effect deperrls on the arrount of dissolved solids in the water and on 

the canposition and porosity of the earth material. It is possible 

to detect the water table in coarse material where the change in 

rcoisture content changes radar reflection quickly; hcJr..Jever, no clear 

reflection can be obtained in fine-grained materials where the capil

lary zone is broad arxi varying (Ulricksen, 1982). 

Within the scope of this research study, the penetration depths 

are the greatest in low conductive materials such as dry rock arxi 

sand, arxi the least in highly conductive materials such as saturated 

clay and saturated loose sand. 



CHAPrER III 

LITERATURE REVIEW 

Initial experiments in the propagation of electranagnetic (EM) 

waves known as radar waves -were corrlucted in the early 1900's. Rapid 

technological advances pertaining to airborne applications 'Were made 

during Vbrld War II. Much of this technology is also applicable to 

transmission of EM signals through solids for purposes of detecting 

any object capable of scattering EM waves. During experiments in the 

early 1950's, it was recognized that the EM wave speed varies drasti

cally fran one solid material to another. 

Over half of all subsurface radar profiling research was conducted 

in the 1970's, peaking in 1974 with theoretical papers and feasibility 

studies. Articles published in the early eighties deal mainly with 

practical applications. Certain details of abjects can be recognized 

by their characteristic scattering and absorption coefficien~ (Ballard, 

1983). sl..nce its developl'eilt in recent years, various systems of GPR 

have been applied to many types of subsurface investigations. Many 

articles concern measurements in coal seams (Ulricksen, 1982) • Exten

sive research has also been conducted rela~ to salt mine explora

tions, soil profiling, and pa•,,'emeilt and bridge evaluations. Continued 

research in investigations of subsurface cavities is currently being 

conducted. Data interpretation skills and equipnent IOC>di.£ications 

are continually improving results. 

11 
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GPR systems differ in a few basic aspects. '!he transmitted signal 

can be pulsed on and off pei;iodically, or an impulse of nanoseconds 

duration can be repeated. An impulse radar transmits energy over a 

wide frequency band in contrast to pulsed radar signals of one-half or 

rcore cycles operating at a single frequency. 

Antennas can be used on the ground surface or placed in boreholes. 

Methods are essentially the same with the exception that the transmit 

' and receive antennas may be in the same borehole or in different bore-

holes. 

The U.S. Army Waterways Experiment Station (WES) conducted several 

tests of different radar systems in the late 1970's (Ballard, 1983): 

a) The Texas A&M radar system was a frequency rocxiulated-continuous 

wave (FM-CW) system. The equitxnefit is essentially a m:dif ied 

airbome range altimeter ordinarily used to measure altitude 

of aircraft. The FM-CW radar 5\#Jeeps through a range of frequen-

cies continuously emitting signals. 'Ihe transmitter is operating 

at another frequency when reflected signals are received. 'Ihe 

system was unable to detect cavities as shallow as ten feet or 

culverts nore than three feet deep in noist loess material of 

high corductivity and dielectric constants of 15 to 20. 

b) '!be TechnoS radar system is a pulsed system manufactur~ by Geo--, . 

physical Survey Systems, Inc. Single or dual antennas can be 

used to transmit arxi receive. A pulse of approximately three nano

secon:is is radiated into the earth by a · broad-band antenna. Although 
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unable to detect much at a test site, cavities were detected at 

depths to 25 feet at the Medford cave site in North Florida using 

an anterma with center frequency of 80 MHz. 

c) Sou~st Research Institute designed and built their own radar 

system which emits nanosecord duration EM ?Uses (100 MHz) frcm 

the transmitter. The system can 'be used frcm the ground surface 

or in a borehole configuration for crosshole testing. Air filled 

cavities as small as tYJO feet by five feet were detected at the 

Medford cave site. 

d) 'Ihe Lawrence Livenrore National Laboratory (Ll.NL) radar equipnent 

uses a frequency scan to determine the highest discrete frequency 

suited for probing the area beb>Jeen boreholes. 'Ihe · transmitter 

is carefully controlled to provide a constant power output. 

Minimas or nulls in the signal . indicate ananalies. The LI.NL 

system can 'be used to determine relative dielectric constants of 

the materials being tested. 

Subler (1981) developed a borehole probe to locate coal mining 

shafts in Wyanir¥1. Using a 100 MHz antenna, a mine shaft was located 

50 feet horizontally fran the borehole. OWen (1981) used a hole-to

hole method to verify shallow limestone solution cavities at Medford 

cave near Ocala, Florida. 

'lbe GSSI Sir System has been used in Alaska to detect cavities 

in pennafrost, and at Med.ford cave, Florida to detect cavities in 

limestone. It has also been used to locate buried pipes an:i tunnels 

in limestone (Anny, 1970). It was foun::l that in general, the lower 
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the conductivity, the deeper the penetration, and that the strength 

of the reflected signal is stronger when the dielectric constant ratio 

is high. Frequency of the EM signal determined penetration depth and 

resolution of data. 

Ulricksen (1982) conducted extensive research on the capabilities 

of the GSSI impulse radar system in his thesis work at Lund University 

of Technology, Sweden. Using bistatic radar profiling - separate 

transmit and receive antennas - echos from greater depths were enhanced 

at the cost of near surface echos. His work included rreasurements in 

soil, bedrock, and freshwater, location of pipes and cables, detection 

of salt dama.ges in concrete roads, and determinations of rcoisture dis

tribution. 

A conference was sponsored by the U.S. Environmental Protection 

h:jency and the National Water Well Association on Surface and Borehole 

Geophysical Methods in Groundwater Investigations in February, 1985. 

'!his conference discussed the use of radar in providing m:xiels of 

rroisture content vs. depth; detecting and de.termining the extent of 

residual buried waste mass; ard mapping subsurface features including 

water table, variations in soil strata, and depth to bedrock over 25 

km of survey lines. 

The penetration range of rrost existing grourrl probing radars is 

fran about 50 meters in resistive materials such as sarrls, gravels, 

bedrock, and fresh water, decreasing to about one meter in conductive 

materials such as fine grained clays and seawater (~, 1984). 'Ihe 

dielectric constant of water in its liquid state are about 20 times 

greater than the dielectric constant of dry geologic materials, 
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arrl so radar signal velocity is primarily sensitive to changes in 

water content. In materials with relatively uniform water content, 

GPR is sensitive to changes in soil and rock type. 'Ihe water table 

could be identified by the triple reflection pattern as shown in 

Figure 1. In addition, GPR can detect either water or air filled 

fractures in geologic materials. 

Kuhns (1982} con:lucted an investigation of GSSI's SIR System 4 

using cavity rocxiels buried at known depths at a test site on the Uni-

versity of Central Florida campus. The experirrental test site was 

set up to determine the type of reflection expected fran an ideal 

cavity of known dimensions. Cavity models were shallowly buried 

. in sarrl with the water table at four feet. Strong reflecting signals 

were received fran the roofs of the air filled rocxiels and the flCX)r 
I 

of the water filled rocxiel. Due to the shallow depths of these rocrlels, 

frequencies of 300 and 900 MHz were used to detect them. Profiles 

from a ruried pipe and box showing near surface cavities under ideal 

coniltions are shO#n in Figure 2. 

Kuhns also conducted surveys in Lake Claire on the UCF campus. 

Excellent profiles of the lake bottan were provided by the GPR equip-

ment. 

Kuo (1984} has used the GPR system to study undergrourrl sewage 

pipe leakage. '!be Iron Bridge pipeline in Fast orange Councy is a 

seven foot diameter pipe located at a depth of 20 to 25 feet. '!he 

radar detected the pipe and leaking joints were identified by signal 

loss due to contamination of the surrourrling soil. Kuo has also used 

the radar system to evaluate concrete pavement by locating rebars, 

voids, and other features. 
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Figure 1. Radar Profile SOOwirYJ Water Table (tfiiA, 1984) • 
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SIR System equipnent has been used worldwide to acquire graphic 

profiles of subsurface features such as soil strata, ·depth to bedrock, 

subsurface voids, mine tunnels and shafts, pavement thicknesses, coal 

seams, pipes, cables, gas an:i water leaks, river and lakel:x>ttans, 

steel reinforcing bars, toxic waste deposits, and the contour of con

taminated groundwater (GS.SI, 1982) • 

. , 
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CHAPI'ER IV 

THEORY AND OPERATICN OF GRCXJND PENEI'RATING RADAR 

Operating principles of grourxi penetrating radar are based on 

fundamentals of electromagnetic wave theory. EM waves travel through 

materials at speeds proportional to the electrical characteristics 

of the material. Changes in the material cause changes in wave speed 

and partial reflection of its energy. Impulses are beamed into the 

earth as the anterma is towed along the grourrl surface, and a continu

ous stream of reflected signals is fed into the graphic recorder, pro

ducing a two-dimensional profile of subsurface interface. 

'!be principles and equations governing the propagation of radar 

waves are well documented. If the velocity of propagation through 

the strata is known, travel times of the reflected pulses can be con

verted to depths to various interfaces. '!be velocity of the radar 

signal and depth of penetration are functions of electrical properties 

of the materials which can vary considerably ·un:ler natural conditions. 

DeteJ:mination of the maximum penetration depth at a site is dif

ficult before the actual radar survey due to the many variables which 

influence radar signal penetration. 'Ihe electrical properties of the 

soil, rock, and water vary greatly fran site to site. Under actual 

field conditions, the earth material being probed is often non

hanogeneous and the signal strength is quickly reduced due to the 

reflections of the signal fran several layered interfaces. 'lbe size 

and shape of the target also affects the detection ability of the 

radar system. 
19 
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E,quiprent Description and Function 

The radar system used in this study is the Subsurface Interface 

Radar (SIR) System manufactured by Geophysical Survey Systems, Inc. 

(GSSI). 'Ihe equipnent is pictured in Figure 3 and consists of a 

control unit, a graphic recorder, a tape recorder, and transmit/ 

receive antennas. 

The antennas can be pulled along the grOUI"rl by handover small 

areas or towed behind a vehicle over long distances. It is connected 

to the control unit by a 200 foot cable. Power for the system is pro-

vided by a 12 volt OC battery. 

During the transmit cycle, a fast acting switch creates a time-

limited signal which is sent directly to the antenna. · '!be transmitted 

pulse travels through the subsurface until it reaches a soil inter-

face. Depen::ling on the electrical characteristic at the interface, 

a portion of the transmitted pulse is reflected back to the surface 

and received by the antenna as shown in Figure 4. 

The stren;;th of the reflected wave is in:iicated by the intensity 

of the reeeived signal. .'!he reflected field strength bet\-Jeen materials 

1 an:l 2 is described by the reflection coefficient r: 

E 
r 

r =-= Eo 
(1) 

where e: 1 , e: 2 = dielectric constants for materials 1 arid 2, respectively 

E = angle of reflection 
r 

E
0 

= angle of incidence 
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(Clockwise f ran top) 12V Battery, Tape Recorder, Control Unit, 
Gra?llc Recorder. 

80 MHz (left) and 300 MHz Antenna. 

Figure 3. Photogrcqil of GPR · F,quipnent. 
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Figure 4. FuncticnBl Diagram of GPR F,quipnent. 
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If the dielectric constant of material 2 varies greatly frcm 

that of material 1, r = 1 an:i rrost of the incident energy will be 

reflected and a strong. signal will be recorded. If material 2 has 

a dielectric constant about the same as that of material 1, r = O 

and IOC>st of the incident energy will be transmitted through the inter

face which will appear only faintly on the profile. 

The received signals are amplified using a time-danain sampling 

technique to construct a waveform of similar shape to that of the 

actual received signal, but with a much longer time base. A trace 

of the processed wavef onn is displayed by an oscilloscope on the 

control unit. Subsurface features appear as dark lines and depth is 

determined by delay time. 

The operator controls the maximum Q.elay time and adjusts the gain 

for optimum display of reflected signals. '!be nest crucial part of a 

radar survey is adjusting the system to obtain optimum data. Prior 

knowledge of targets arxi their depth is necessary as is sane trial and 

error work at tne site before camnencing production work. 

After processing at the control unit, the waveform is sent to the 

graEil:ic recorder ~or a hardcopy display by stylus scanning intensity 

m::xiul.ated lines across electrosensitive paper. 'lbe graEil:ic recorder 

produces an image by printing strong signals as black am signals of 

int:e?:mediate strengths in ~s of gray. As the antenna is pulled 

across the grOUixl surface, the chart paper rooves under the recorder sty

lus arxi sequential pulses are printed t:O fonn a continuous record. 
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A digi~ magnetic tape recorder is available for storing infor

mation for future processing and playback. '!be reusable cartridge is 

prefonnatted with permanent block addresses and pennits easy, accurate, 

random access to data records. '!he tape allows the user to play back 

tapes directly to the graphic recorder or through the control unit if 

further signal processing is desired. 

Interpretation of Data 

An example of a reflected radar signal arrl the resulting graphic 

record is shown in Figure 5 • The vertical scale is elapsed time. 'Ihe 

horizontal distance scale depends on the paper feed rate of the graphic 

recorder and the speed at which the antenna is pulied across the ground; 

therefore it rrust be confirmed by markers at surveyed distances. 'Ihe 

strength of the received signals is shown by the amplitude of the wave

fonn in the signal pattern and by the intensity of the dark bands on 

the graphic record. Varying shades of gray are directly related to 

the amplitude of the returning signal. 

As seen in Figure 5, the received signal consists of three basic 

cauponents. '!be first bard at the top of the profile is a feed through 

of the transmitted pulse, which serves as a time reference. The hori

zontal bard irrlnediately following the transmitted pulse is the reflec

tion fran the ground surface. 'Ihe interface reflection appears at a 

time equal to the pulse travel time f ran the surface to the interface 

an:i back to the antenna. 

The triple band characteristic of the reflection pattern is caused 

by oscillations in the reflection of the pulse. 'Ibe effect of this 
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oscillation is to reduce the ability of the system to discriminate 

between closely spaced interfaces. If a secon:i interface close to 

the first interface generates a pulse reflection, that reflection will 

superimp:>se itself onto the oscillations of the pulse reflections from 

the first interface. If the superimp:>sing waveforms are in phase, 

interference will be constructive and if they are out of phase, the 

oscillations will tend to cancel each other out. 'Ille lower interface 

will not be canpletely obscurred because p::>rtions of its own oscilla

tions will appear, wt the actual depth of the lower interface will 

be difficult to determine. 

For instance, if a thin clay layer is surrourxied on top and bottan 

by sani,_ the depth to the clay layer can easily be determined but super

position of the waveforms from top and bottan interfaces will make the 

thickness of the clay layer difficult to estimate. Conplexity of the 

records becanes apparent in sane areas. 

'llle radar antenna radiates signals into the grourxi in a beam which 

is roughly conical in shape. '!he included angle from front to back is 

approximately 90 degrees and the side beam angle is akx>\.lt 60 degrees. 

Only subsurface features which are nonnal to sane portion of the radi

ated signals are reflected back to the antenna. 

In the case of a horizcntal layer, the antenna sees only the 

p::>rticn directly beneath it. For curved interfaces such as rouni 

pipes, a portion of the curved surface is always noi:mal to the conical 

radiation beam as the antenna approaches and passes at right angles. 

For this reason, reflections fran curved interfaces have a hyperl::olic 

shape. As shown in Figure 6, when the antenna is at a 45 degree angle 
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to the cavity, the first reflections are received. As the antenna 

awrOaches the cavity, the distance normal to the cavity becanes shorter 

until the cavity is directly under the antenna. '!his is the apex of 

the hyperbolic reflection curve arxi the true depth of the cavity. The 

reflection fran the bottan of a circular pipe cavity has the sane hyper

bolic shape. 

Depth calibration 

In order to transfonn the t\tJO way travel times into depth , the 

velocity of propagation must be known. If the earth material is haOC>-

geneous arxi the dielectric constant is known, the J;Ulse velocity can 

be calculated according to the equation 

c v =--
Fr 

where: v = average propagation velocity of the signal (nsec/feet) 

c = velocity of light ( == 1 foot/nsec) 

E = relative dielectric constant Of the material 
r 

(2) 

By estimating the dielectric constant of the material being sur-

veyed, the depth to various interfaces can be approximated by the 

relatiooship 

or 

where: D = depth in feet 

D = ct 
~ 

vt D=-
2 

t = t:wo way travel time in nanosecorxis 

(3) 

(4) 
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Dielectric constants for typical earth materials encountered 

during this study are given in Table 1. 'Ihese values are at extrane 

conditions (dry and saturated), and are based on typical natural 

corxli.tions of temperature an:i pressure and the operating frequency 

range of the radar signal. Dielectric constants at various rroisture 

content are un:ier investigation by Tannous (1985) in a iocxiel study. 

Often, the subsurface is non-tatogeneous and cipproximations must be 

made. Depth verification is necessary by physical methods. 

The rrost accurate methcx:i of determining the velocity of the signal 

through a material is to scan over a target of known depth such as a 

pipe or soil layer. By measuring the two way travel ti.rre f ran the 

reflected profile, one can calculate the velocity fran ~tion 5: 

20 v =-
t 

(5) 

Once the velocity of propagation is known, the dielectric constant 

can be determined by the equation: 

(6) 

'!be pulse velocity ootained by this method is the average velocity for 

the material between the surface an:i the target, assuming un.ifomity 

throughalt. It is valid if the area being surveyed has subsurface 

conditions similar to the target .site. However, this average velocity 

might not be valid at depths greater than the target depth due to 

changes in the consistency or water content. Sample lx>rings are use

ful in order to reasonably estimate the depth scale of the radar data. 
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TABLE 1 

CetIDUCTIVITIES AND DIELECTRIC CONSTJWI'S 
OF VARIOOS EARI'H MATERIAI.S 

MATERIAL CCNXJCTIVITY DIELECTRIC 
(mho/meter) CCNSTANr 

Air 0 1 

Fresh water 10-4 to 3xl0-2 81 

Sea water 4 81 

Sand, dry 10-7 to 10-3 
4 to 6 

Sand, saturated 10-4 to 10-2 30 
(fresh water) 

Silt, saturated 10-3 to 10-2 10 
(fresh water) 

Clay, saturated 10-l to 1 8 to 12 
(fresh water) · 

Dry, sarrly, flat 2xl0-3 10 
coastal land 

Rich agricultural 10-2 15 
land, low hills 

Pastoral land, medium Sxl0-3 13 
hills arxi forestration 

Marshy, forested 8xl0-3 12 
flat land 

Limestone {dry) 10-9 7 

.Average soil 10-4 ~ 10-2 12 

Data fran GSSI, 1982. 
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Penetration Dep~ 

'Ihe effectiveness of a GPR survey is limited in many cases by 

the penetration depth of the radar signal. 'Ihe maximum penetration 

depth of the signal is depenient on the con:iuctivity of the propagat

ing material which is primarily governed by water content an:i the 

arcount of salts in solution. Conductivity is also a function of tern-

perature and density as YJell as the frequency of the EM waves being 

propagated. Conductivity is related to the attenuation by the rela-

tionship: 

2 
A= 12.863 x 10-8 f(e:)~ [(l +_a_)~ - l]~ (db/m) (7) 

w2e:2 

where: f = antenna frequency (Hz) 

W = 2 TI' f (radians/ second) 

-12 
e: = e:0 e:r = 8.85 x 10 e:r 

a = conductivity (mhos/meter) 

Based on the al::xJve equation, the depth of penetration of the 

radar ?ll~ is governed primarily by the cxniuctivity of the propa-

gating material. An in::rease in conductivity will cause a significant 

increase in signal attenuation. r.t>st soils have a low conductivity, 

rut the presence of nDisture has a large effect on this property. 

Earth materials with a high water content and therefore a high conduc

tivity will attenuate the radar signal m:>re rapidly than dry earth 

materials. 

As seen fran F,quation 7, an increase in signal frequency will also 

increase signal attenuation. For this reason, low frequency anteru1aS 
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are used to achieve greatest penetration depths. Higher f re::iuencies 

give greater resolution; however, many ground materials are highly 

absorbant of high frequencies EM energy and so a cornpranise must be 

made between resolution arx1 penetration. Frequencies between 15 and 

500 MHz are generally employed. 

-, 



CHAPI'ER V 

SITF.S SURVEYED AND DATA INrERPRETATICN 

Field investigations throughout Northern and Central Florida were 

conducted urrler varying geologic conditions to determine typical con

ditions urrler which GPR will be useful in locating subsurface ano

malies. I.Dcations of these investigations are shown in Figure 7. 

Methcrls of investigation depended on the site involved. The 

areal extent, to?Jgraphy and vegetation, local sinkhole history, 

degree of certainty of the evaluation, and effects of sinkhole occur

rence were considered. At sane sites the radar antenna was pulled 

randcmly over known cavities. At sites _of recent sinkhole collapses 

the antenna was pulled around the sink to see if the incident was 

isolated or related to a fault system. In areas of tntential ground

water contamination a grid pattern was set up to cover the area uni

formly. 

Available infonnation such as aerial photographs, topographic or 

geologic maps, and local well logs can aid in data interpretation. 

Ten sites were investigated with varying results. Sample profiles 

showin:J significant characteristics have been interpreted in this study. 

SITE 1: Oak Run, FL 

Oak Run is a sooo· unit housing developnent urrler construction 

near cx:ala. Developnent plans call for on-site wastewater treatment 

33 
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Radar Investigations 

1. Oak Run 
2. Belleview 
3. Apopka 
4 • Peacock Springs 
5. Bat Cave & Jerane Sink 
6. Ocala, FL 
7. Plant City 
8. Pierson 

() 
9. Tampa 

10. Cz:ystal River 

Figure 7. Map of Radar SUrvey Locatioos. 
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arrl a large area has been set aside for retention/percolation ponds. 

'Ihese f;X)l1ds are planned un:ier the assumption that the wastewater will 

be limited fran infiltrating the limestone by a semi-impermeable clay 

layer. In areas of thin clay, an increase in }?ercolation due to the 

tx>nds could cause sinkholes, allowinJ wastewater to flow directly 

into the limestone aquifer without filtering. '!his could result in 

contamination of the aquifer, which is the source of tx>table water 

for the developnent. 

Docunentation of discontinuities in the clay confining layer 

over a 500 foot by 1800 foot area was required by Florida Department 

of Environmental Regulation .(EDER). A 50 foot, N-S x E-W grid system 

was surveyed over the area. 

Previous boring rei;:orts showed no suspicious areas. A thick 

clayey layer was present over much of the site with limestone at shal

laN depths. '!he area was relatively flat rut covered by weeds and 

small trees, limiti.rg access to a four wheel drive jeep towing the 

antenna. Sane excavation, clearing, and b.lrn.ing of debris had been 

conducted in the area, and surface runoff had eroded a gully through 

the northwest quadrant. 

Initial profiles shewed significant penetration capabilities. 

Usirq the 80 MHz antenna, penetration in excess of 80 feet was esti

mated in sane areas of limestone. Figure 8 is a profile fran the 

western edge of the site shONing a solid limestone structure about 

30 feet below the surface. Limestone peaks are emphasized by over

lying clay which has filtered into cracks and low areas. 
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Figure 9 is a profile along the southern boundary of the site, 

showing a silt or clay layer overlying limestone. 'Ihis clayey layer 

is too thick to be penetrated. by the radar signals; however, a sub

sidence of the clay layer arrl several irrlications of cavities at 

about 40 feet can be identified. Loss of signal along several hun

dred feet was apparently due to surface runoff contaminated by burn 

piles increasing the corrluctivity of the soil. '!his is typical of 

contaminated soils. 

Strong hyperbolic reflections about 200 feet to the right of this 

contaminated area indicated the presence of a cavity. Figure 10 is 

a radar profile of the cavity which was located by pulling the antenna 

, right over the suspicious area arrl marking every ten feet. A drilling 

truck used to identify the cavity is shown in Figure 11. Loss of 

drilling mud occurred at a depth of 43 feet. Eleven cubic yards of 

concrete mix were used to grout the void. 

Figure 12 shows another cavity located approximately 200 feet SW 

of the firs:t cavity, verified by loss of drilling mud at 38 feet. This 

cavity was smaller than the first, requiring only a few yards of grout. 

Confillnation of these cavities by drilling allows verification 

of the profile depth and provides an average value for the dielectric 

constant. 

SITE 2: Belleview, FL 

A similar percolation pond project just east of <X:ala near Belle-

view on 600 acres of pasture and watermelon fields was also investigated. 
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Wastewater retention/percolation ponds were to receive 6 inches of 

wastewater daily. 'Ihe purpose of the investigation was to detennine 

areas of near-surf ace limestone and locate any areas of subsidence 

of the clay layer. Results of the survey showed substantial pene

tration with actual depth depending on the natural dielectric constant 

of the soil. Boring logs showed a clean loose sand over a thick clay 

layer. Deep borings in some areas reached the limestone layer at 40 

feet. 

A radar survey was done over a localized surf ace depression on 

the far east side of the site. The radar profile of Figure 13 shows 

a distinct depressing of the silty clay layer at the site. Apparently 

clayey soils subsided into a cavity in the urxlerlying limestone at a 

depth of over 40 feet. 

Several other areas of subsidence in ~ silty clay layer were 

also detected at this site as shown in Figure 14. 'lllese occurrences 

could not always be predicted fran surface elevations. 

SITE 3 : Apopka I FL 

Apopka Blue Sink is cne entrance to a cave system in Orange 

County with another entrance at Rock Springs. 'lhis limestone cave 

system has been approximately mapped by local cave divers as shown 

in Figure 15. Radar surveys in this site were initially attempted 

to dete?:mine the locations of caves fran the grourXi surface. 

'1be site is located over the Ocala Uplift, a NNW-SSE trending 

anticlinal ridge. 'lhus the limestone is shallower here than in 

many areas. 
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'!he water table is relatively low, making this area an ideal loca

tion for a radar survey. Maximum penetration reached approximately 

to 65 feet. Resulting profiles near the cave entrance \.Jere poor 

because of overlying thick clay which attenuated rrost of the impulse 

energy. However, Figure 16 shows a profile of shallow side-by-side 

caves tmder an area along the south side of the existing sinkhole. 

'!he location matches the diver's map well. 

Surveys over the entire pasture showed that sane areas exhibit 

a definite subsiding which indicates a ravelling of overburden soils 

into subsurface voids. '!be profile in Figure 17 shows a distinct 

large cavity with depressed subsurface. '!he ground surface shows no 

sign of ·depression. 

A large surface subsided area overgrown with weeds was also 

investigated. '!he resulting profile presented in Figure 18 shows 

a picture similar to that of Figure 17. '!his area collapsed about 

six rconths later, verifying prediction of potential collapse. 

At the south of the existing sinkhole in this pasture, evidence 

of a small collapsed sinkhole had recently occurred. '!be anterma was 

pulled around the perifery of the sinkhole. '!he resulting profile is 

shown in Figure 19. '!be profile is similar to those qf Figures 17 

and 18 except a longer and darker soil col\Jmn is seated on the top 

of a good sized cavity. '!bis is because the ravelling soil was bridged 

and cx:>nsolidated above the cavity'· preventing further collapsing. 

Rock Springs is a state-owned park about two miles south of Apopka 

Blue Sink featuring a fresh water spring, which is surface discharge 
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fran the aquifer. This cave entrance is connected to Apopka Blue 

Sink, although this connection is not mapped. '!he radar was pulled 

over the surface at the roouth of the cave to verify the· cavity sig

nature. Figure 20 shows s~ong signal returns fran the limestone 

interface which is apparent at a depth of 13 feet. 

SITE 4 : Peacock Springs 

Peacock Springs is a sul:merged cave system near Live Oak in 

North Florida. Several caverns were detected by ground penetrating 

radar surveys at locations shown on the cave map of Figure 21, yet 

several sites gave disappointing results. Auger borings at this 

site indicated that in the general area, a thick clay layer was over

lying the limestone formation. '!he water table was about 25 feet. 

A relatively high dielectric constant of 13 for average soil was 

used to calculate radar penetration depth. 

Figure 22 shows a radar profile obtained fran a site where a dry 

dare exists un:ier Peacock Road at a depth of about 14 feet telow the 

asFhaJ.t paved road. In the profile of Figure 23 just north of Peacock 

Springs, the hyperbolic cavity signal corresporrling to the mapped 

cave is very flat due to the slow speed of antenna travel. Figure 24 

shows a profile taken just east of Pothole Sink. '!be highly conduc

tive clayey soil was attributed to limitation of ' the impulse signal. 

SITE 5: Bat cave-J:erane Sink, Newberry, FL 

Bat cave is a partly dcy cave system located in Newberry, Florida, 

just west of Gainesville on the Ocala Uplift. Limestone has surface 
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exposure around the cave entrance and in the .i.rrmecliate area, which 

is otherwise covered by clean quartz sand of varying thickness. A 

map of the cave in Figure 25 shows a maze-like cave system roughly 

paralleling the water table which is located at approximately 30 to 

35 feet. Personal inspection of the cave revealed a highly porous 

limestone with distinct fractures. 

Figure 26 is a canplex profile nm over the large cavern be'bveen 

the entrances. Radar penetration depth at this site was calibrated 

at about 55 feet. Signal losses indicate discontinuities in the 

limestone; however, the caverns -were difficult to distinguish due 

to overlapping reverberations frcxn the very porous lirrestone forma

tion. 

Jerome Sink is a roof collapse sink located a few miles SW of 

Bat-Cave. 'Ihe sink has a diameter of 9-12 meters with vertical lime

stone walls. Depth to the clear p::x:>l of water at the bottom is arout 

eight meters. A joint in the limestone is apparent on both sides of 

the sink, and approximately 200 feet away along the line of this 

crack is a smaller sink also containing water at the bottan. 

Several soil borings were made by hand auger along this joint 

as ~11 as perperdicular to it. Figure 27 gives the locations and 

logs. 'Ihese logs revealed limestone at varying ~pths fran less than 

one foot to over ten feet. In sane areas the rock was covered by 

quartz sard and in .other areas by clay or sarxiy clay. 'Ihe clay 

effectively stopped the radar signal. Figure 28 shows a profile 

perperdicular to the joint in which a cavity in the limestone is 
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seen just west of core sample three. This profile was made using 

the 300 MHz antenna which allows better near-surface resolution. 

SITE 6: CX:ala, FL 

An investigation was conducted at a private residence near CX:ala 

where a sinkhole had opened up in the backyard. '!his hole had been 

filled, but radar scans were run around the whole yard to determine 

if any other cavities existed. Radar surveys indicated a shallow 

clay layer with no signs of disturbance. One traverse showed a typi

cal limestone pirmacle shown in Figure 29. In order to confirm the 

limestone peak, a grid pattern was set up with perpendicular traverses 
, 

run every ten to twenty feet. '!he profile fran Figure 30 was run 

along this grid. In the area of the limestone peak, auger borings 

~e made at four foot intervals (see boring locations and logs in 

Figure 31), locating a four foot by eight foot limestone high at one 

to two feet below the flat ground surface. 'Ihe overburden was sand 

and clayey sarrl. Borings ani profiles in other areas of the yard 

showed the clay layer to be much thicker, causing rapid attenuation 

of the radar signal. 

'!he GPR System detected clay pockets in the limestone at Haile 

Quarry, east of <X:ala. Thin overburden had been scraped clean, 

revealing Crystal River limestone pockmarked with clay-filled solu

tion pipes. r.Dst pipes were two to four feet in diameter and from 

six inches to 75 feet deep. 'Ihe dark plastic clay blocked the radar 

signal, which easily penetrated the limestone. Ebwever, clay layers 

less than a foot thick did not affect the signal, as seen in Figure 3 2. 
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A change in density was detected at five feet. 'Ihis is apparent from 

the profile and was confirmed by a mine foreman. 'Ihe lack of signal 

reflections below about five feet is due to the consistency of the 

limestone extending significantly deep so that there is no interface 

reflection. 

SITE 7: Plant City, FL 

Several areas in Plant City were subjected to sinkhole activity 

related to excessive pumping by strawberry farmers in an effort to 

protect their crops during a freeze in FebruarY 1985 (Ruth, 1985) • 

'Ihirteen sinkholes occurred within a two mile radius. Two sites on 

Tanner Road were investigated by radar survey. 'Ihese were Fletcher 

Orange Grove and the Beach House. 

In the area where sinkholes had collapsed in the orange grove, 

hand augering revealed that the overburden soil was loose sand with 

sane silt an:i organics underlain by a thick layer of sandstone at a 

depth of nine feet. '!he water table was at a depth of 10 feet. Radar 

signal penetration was only achieved to approximately 20 feet; there

fore no significant features such as subsurface cavities were detected, 

as can be seen fran the radar profile over the top of one sink as shown 

in Figure 33. 

One large collapsed sinkhole approximately 25 to 30 feet in dia

rreter at the backyard of the Beach House across the stree~ f ran the 

orange grove had forced the family to IOC>Ve out of their house. Evi

dence of fracture planes in the subsurface due to the erosion of the 

soils is seen fran the profile of the west side of the hole in Figure 

34. No confirming subsurface information was available. 
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SITE 8: Pierson, FL 

Pierson Airport is a grass landing strip located in Volusia 

County. Subsidence in the area due to well drav.down by heavy pump

ing during freezing weather had caused considerable concern as to the 

extent of further sinkhole activity. A radar survey was conducted 

on this site. 'Ihe range of the control unit was set on 999 x 4L. 

An estimated dielectric constant of 6 was used for depth calibration. 

'!he total penetration depth should be calculated circa 50 feet. A 

layer of organic soil was located at arout 30 feet as seen f ran the 

profile shown in Figure 35. 'Ihis was ground-truthed by shallow auger 

borings. 

SITE 9: Tampa, FL 

A survey was corrlucted at Tampa Airport in an area to be developed 

for an extension of the existing airport. Boring records show that 

loss of drilling fluid was reported both al:x:>ve and within the lime

stone near the surface. Fran the report, boring 13A showed an 80% 

loss of drilling fluid at approximately 15 feet. ~ver, no evidence 

of subsurface cavities could be found frcm the radar profile presented. 

in Figure 36. A higher frequency 300 MHz antenna was tried for better 

resolution but the results were still very poor. Even though a low 

value of six for the dielectric constant was estimated, penetration 

was only a few feet. ~ antennas and range adjustments were tried 

but did not of fer better resolution or penetration. 'Ihis is a charac

teristic site where the application of the radar technique is very 

limited. 'Ihe reason for this is either due to high corrluctivity of 
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the overburden soils or shallow groundwater, or a canbination of ooth 

of these factors. 

A profile fran St. Petersburg Wellfield just north of Tampa is 

shown in Figure 37. Borings along this profile show an organic layer 

at 4.5 feet and the water table at 10 ·feet. Total penetration depth 

was calculated at 50 feet, but actual penetration was only about 20 

feet. 

SITE 10: Crystal River, FL 

Radar surveys were. conducted at the National Guard Amory at 

Crystal River. 'Ihe area had been subjected to shallow depressions of 

the ground surface. Boring logs shoNed a very loose fine sand and 

soft sarrly clay overlying hard limestone at depths of 10 to 25 feet. 

'Ille water table was about six feet deep. Penetration depth was much 

greater than in the Tampa area. Figure 38 shows a radar profile with 

the range set on 300 x 40. Using an average dielectric constant of 

10 for saturated silt and limestone, the two cavities shown in the 

profile of . Figure 38 were calculated at a ·depth of 30 feet. 
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CHAPI'ER VI 

Su+1ARY 

This report has deroonstrated that GPR can provide useful inf or

ma tion for cavity detection by delineating the contours of buried 

interfaces under favorable conditions. However, limitations in the 

applicability of this technique under certain geologic conditions 

limit the usefulness of the equipnent. 

A stmnary of the GPR investigations arxi results are given in 

Table 2. 
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TABLE 2 

SlJM-tARY OF SITES SURVEYED 

DATE SITE ~/PENE- RADAR RESULTS -
SITE SURVEYED DESCRIPl'ICN ~IOO DEPl'H CCM-1ENI'S 

1. Oak Run 11/85 Sarxi & clay 800X4L/70' Cavities at 43' and 38' 
layer, over- verified by borings 
shallCM lime-
stone 

2. Ap:>pka 6-7/85 Sand and clay 900X4L/65' cave system at approx. 
Blue Sink over limestone 35-45' detected well 

cave system; in sandy areas. '!hick 
water 40' clay layer blocked 

signal near rtQUth. of 
cave. 

3. Belleview 3-4/85 Sand and clay 900X4L/65' Depressions in clay 
over limestone; layer indicate ravel-
water table 50' ling, cavity penetration 

out of ran;re. 

4. Peacock 3/85 Sandy soil 999X4L Cave system detected 
Springs rich in organics in several areas. 

over limestone 
cave system; 
water table 27' 

Sa. Bat Cave 6/27/85 Clean sand over 700X4L/55' StroD; reflections of 
shallCM limestone limestone shows distinct 
cave system: vertical fissures b.lt 
water table 30' no hyperbolic patterns. 

Sb. Jerane 2/28/85 sand, sandy 500X2R/15' Faults in limestooe 
Sink clay, limestone (300 l-liz) foi:matioo detected. 

6a. Ocala 12/84 Clayey sand, 600X4R/30' Detected limestone 
(Z House) limes tale peak. 

6b. Haille 12/21/84 Clean limestale Clay blocked radar 
Quarry with clay EXJCkets signal. 

7a. Fletcher 1/31/85 Sand (loose) Disturbance in area, 
Grove no cavity reflections. 

7b. Beach House 6/21/85 999X4R/50' Fractures in strata 
apparent. 

8. Pierson 4/18/85 Sand with 999X4R/50' Organic and clay layer 
Airport organics visible. 
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DATE SITE RAN:iE/PENE- RADAR RESULTS -
SITE SURVEYED DE'.5CRIPl'ICN TRATICN DEPTH Ca+1ENI'S 

9a. Tampa Air- 11/11/85 Sand, clay, 400X2L/16' Poor penetration. 
port limestone; Cavities could not be 

water table 7' detected. even at shal-
low depths. 

9b. Hillsoorough 7/11/85 Sand with orga- 600X4R/40' Poor penetration. 
Wellf ield nics; water Organic layer detected 

table 9-10' at 4.5 feet; water 
table visible at 10'. 

10. National 4/4/85 Sand, sandy 300X4U/65' cavities detected at 
Guard A:arory clay, limestone depths Of 30 I • 

at Crystal 

Note: 80 r-tiz antenna used unless otherwise roted. System 4 prior to May 1985; 
System 8 after that. 



CHAPI'ER VII 

CCN:WSIONS 

1. GPR provides a continuous record of subsurface conditions which 

can indicate trends and inconsistencies in the subsurface strata 

which are not always apparent fran isolated oorings. This tech

nique detects changes in material interfaces and presents a two 

dimensional picture of depth vs. horizontal distance. 

2. Grourrl penetrating radar identifies subsurface features by dis

tinguishing materials with different dielectric constants. cavi

tie~ are detected by the variation in electrical properties at 

interfaces. 

3. Depth to an interface is determined by the pulse velocity of the 

signal and the dielectric constant of the soil. Penetration depths 

of 80 to 100 feet in the Central Florida area are possible, as seen 

at oak Run and Apopka Blue Sink. Penetration depth is adversely 

affected by highly conductive water or clay, as seen at Tampa Air

port. 

4. Subsurface cavities of varying size, shape, depth, and content can 

be detected by GPR systems. 'lbe radar signal reflections fran 

cavities with circular or ellipsoidal shapes fonn a h~bolic 

pattern, as seen at Apopka Blue Sink. 

5. Not all subsurface cavities are· potential sinkholes. Structurally 

sourd cave systems can be identified by little or no indications 
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of ravelling of the overburden soil, as seen by the reflections 

fran cave systems at Apopka Blue Sink arrl Peacock Springs. 

6 • 'Ihe hyperbolic signal which indicates a subsurface void is not 

apparent when the cavity is below the penetration depth. Signs 

of ravelling can indicate a loose area, as seen in profiles fran 

.Belleview. 

7. '!he radar survey should be conducted in conjunction with boring 

tests in order to confirm target depths arrl investigate suspicious 

areas as was done at Oak Run. 

8. A record of profile locations is useful for relocating suspicious 

areas. Traverses need to be marked using existing features (natural 

or marunade) or according to a staked grid system. 

9. A great deal remains to be learned cancerning the capabilities of 

GPR. As use of the impulse radar system becanes rrore widespread, 

data can be accumulated which will make GPR performance under given 

subsurface conditions rrore econcmical. 



APPENDIX A 

CALIBRATION CHARI' FOR SYSTEM 4 
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