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ABSTRACT 

Deep convolutional neural network has taken an important role in machine learning 

algorithm. It is widely used in different areas such as computer vision, robotics, and biology.  

However, the models of deep neural networks become larger and more computation complexity 

which is a big obstacle for such huge model to implement on embedded systems. Recent works 

have shown the binarized neural networks (BNN), utilizing binarized (i.e. +1 and -1) convolution 

kernel and binarized activation function, can significantly reduce the parameter size and 

computation cost, which makes it hardware-friendly for Field-Programmable Gate Arrays (FPGAs) 

implementation with efficient energy cost.  

This thesis proposes to implement a new parallel convolutional binarized neural network 

(i.e. PC-BNN) on FPGA with accurate inference. The embedded PC-BNN is designed for image 

classification on CIFAR-10 dataset and explores the hardware architecture and optimization of 

customized CNN topology. 

The parallel-convolution binarized neural network has two parallel binarized convolution 

layers which replaces the original single binarized convolution layer. It achieves around 86% on 

CIFAR-10 dataset and owns 2.3Mb parameter size. We implement our PC-BNN inference into the 

Xilinx PYNQ Z1 FPGA board which only has 4.9Mb on-chip Block RAM. Since the ultra-small 

network parameter, the whole model parameters can be stored on on-chip memory which can 

greatly reduce energy consumption and computation latency. Meanwhile, we design a new 

pipeline streaming architecture for PC-BNN hardware inference which can further increase the 

performance. The experiment results show that our PC-BNN inference on FPGA achieves 930 
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frames per second and 387.5 FPS/Watt, which are among the best throughput and energy 

efficiency compared to most recent works. 
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CHAPTER ONE: INTRODUCTION 

Deep convolutional neural networks (CNNs) has taken an important role in artificial 

intelligence algorithm which has been widely used in computer vision, speech recognition, data 

analysis and etc. [9]. Recently, the state-of-the-art deep CNNs could achieve better-than human 

accuracy in object recognition task for large scale datasets. For instance, the top-5 accuracy of 

Resnet, winner of 2015 ImageNet competition, could achieve 96.4% [6]. Nowadays, deep CNNs 

become more and more complex consisting of more layers, larger model size and denser 

connections. However, from the hardware point of view, deep CNNs still suffer from obstacle of 

hardware deployment due to their massive cost in both computation and storage. For instance, 

VGG-16[15] from ILSVRC 2014 requires 552MB of parameters and 30.8 GFLOP per image. 

Research has shown that deep CNN contains significant redundancy, and the state-of-the-art 

accuracy can also be achieved through model compression [5]. Many recent works have been 

proposed to address such high computational complexity and storage capacity issues of existing 

deep CNN structure. For example, [1, 4, 19] have shown that a reasonably high accuracy could be 

obtained when employing one-bit or two-bit quantization for weights and activations. Such 

quantization technique makes low-bit deep neural network suitable for FPGA implementation due 

to greatly reduced model size and computational complexity. For example, recently, [17] reported 

a FPGA based binary neural network accelerator using a flexible heterogeneous streaming 

architecture. [18] presented another FPGA based binary neural network implementation using 

variable-width line buffer as computing unit. [12] proposed the similar structure with [17], but 

using an average pooling layer instead of internal fully-connected layers. In this work, as far as we 

know, we are the first to propose a new Binary Neural Network (BNN) algorithm, called Parallel-
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Convolution BNN (PC-BNN), which replaces the original binary convolution layer in 

conventional BNN with two parallel binary convolution layers. Note that, both the weights and 

activations are in binary manner (i.e. +1 and -1). PC-BNN achieves ∼86% on CIFAR-10 dataset 

with only 2.3Mb (i.e. 287.5KB) parameter size. We then deploy the proposed PC-BNN into a 

Xilinx PYNQ Z1 FPGA board with only 4.9Mb (i.e. 630KB) on-chip RAM. Since PC-BNN’s 

ultra-small model size, it is feasible to store the whole network parameters into on-chip RAM, 

which could greatly reduce the energy and delay overhead to load network parameter from off-

chip memory. Moreover, different hardware optimization methodologies are proposed to further 

improve the performance, such as streaming data pipeline architecture optimization and PReLU-

BatchNorm-BinActive to threshold conversion. The experiment results show that our PC-BNN 

based FPGA implementation achieves 930 frames per second, 387.5 FPS/Watt and 396×10−4 

FPS/LUT, which are among the best throughput and energy efficiency compared to most recent 

works. 
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CHAPTER TWO: BACKGROUND 

Neural Network 

 

Figure 1 Neural Network 

Artificial Neural Networks are inspired by biology multipolar neuron, which is one type of 

neuron that consists an axon and many dendrites, working for integration of a large number of 

information from other neurons. Figure 1 shows an example of biology neuron. Artificial neural 

networks are based on the same concepts. They are grouped by particular layers. Figure 2 gives a 

simple example. It totally has three layers, input layer, hidden layer and output layer, and each 

layer has different number of neurons. Each neuron connects with all neurons of previous layer. 

Every neuron of first layer receives input information.  In the end, the output neurons extract all 

information and create the output. Just like multipolar neurons, artificial neural network can do 

some intelligence functions, like object recognition, tracking, classification and so on.  The 

artificial neural networks have two steps, training and testing. The processing of training likes a 
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person to get some new information. For example, a people learns to recognize a cat from examples 

of cats. So in the testing step, ANNs can get the output that this is a cat or not.  

 

Figure 2Artificial Neural Network 

Convolutional Neural Network 

 

Figure 3Left: Regular Artificial Neural Network. Right: Convolutional Neural Network[22] 

Convolutional Neural Networks are a type of artificial neural networks with more complex 

structure.  The left of figure 3 shows the regular artificial neural network which has 4 layers and 

the right one is convolution neural network. It is straightforward that you can see that every layer 
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becomes a high dimension array instead of a one column of neurons.  The inputs of convolutional 

neural networks are 2D dimensions such as images. Nowadays convolutional neural networks 

achieve breakthrough on artificial intelligence area, such as computer vision, robotics, natural 

language processing, big data analysis and so on.  

 

Figure 4 Convolution computation illusion[22] 

We already known the structure of convolutional neural network, so one question perhaps 

comes up: how does convolutional neural network works. Figure 4 shows an example of 

convolution operation in one layer. It has two important concepts, feature maps and kernel filters. 

Feature maps are the output data from previous layer, so in the first layer its input data. Kernel 

filters are trainable 2D array that has smaller column and rows comparing with feature map. In this 
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example, the column and rows are both 3. One feature map corresponds to one particular kernel 

filter. Kernel filter does convolution operation with same size of feature map values, then it works 

like a sliding window which slides by rows firstly and then by column to do convolution 

computation with the whole feature map values.  The values in the kernel filters care called weights. 

One feature map shares one particular small size of weights. After finishing the whole processing 

of all layers and creating the output, they still have a loss function such as SVM, Softmax 

connected with the layer, which are used for backpropagation and can update the trainable weights. 

In image classification perspective, the output values of last layer means the class scores.  

  

Figure 5 An example of neuron computation[22] 

The convolution layer is the most important layer in convolutional neural networks which 

occupies the most part of the computation complexity. The output value of one kernel filter 

convolution computation is the input of neuron of next layer. Suppose that the dimension of neuron 

layer is N x N and the dimension of kernel filter is K x K. The size of the convolution layer output 

should be (N – K + 1) x (N – K + 1). The convolution computation equation shows below: 
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                          𝑥𝑖𝑗
𝑙 =  ∑ ∑ 𝑤𝑎𝑏𝑥(𝑖+𝑎)(𝑗+𝑏)

𝑙−1𝑘−1
𝑏=0

𝑘−1
𝑎=0                                            [ 1 ] 

In the equation, 𝑙 means the current layer numbers, and  𝑤 represents the weights of the kernel 

filter.         

There is one important concept that need to be mentioned, hyperparameter. For example, 

the number of input and output channels is a hyperparameter which also corresponds the size of 

kernel filters. The stride of kernel filter to slides feature maps must be specified. Usually the stride 

in convolutional neural network can be 1 or 2 and uncommonly 3 or more. If the stride is 2, the 

kernel filters slides two rows or columns of the feature maps to do convolution operation. In 

addition, sometimes the feature maps cannot slide completely if the stride is 2. In this situation, 

we need to add padding to the feature maps and the values of the padding commonly is 0 which 

has the minimum influence for the feature map information. The size of the zero-padding is also a 

hyperparameter. There is an equation to help choose the suitable hyperparameters: 

               𝑁 = (W − K + 2P)/S + 1(W − K + 2P)/S + 1                                            [ 2 ] 

Where N means the number of neurons, W means the size of input feature maps, K represents the 

size of kernel filter and S is the stride. For example, if the input feature maps size is 9 x 9, the size 

of kernel is 3 x 3 with 1 stride and pad 0, the size of output feature maps should be 7 x 7.  

Pooling layers use to shrink the size of feature maps which can reduce the computation 

complexity and parameter size. Usually there are two types of pooling: max pooling and average 

pooling. Max pooling computes the max value within the size of filter in the feature maps. Average 

pooling is similar with max pooling, but compute the average value as the output.  The most 

common be used filter size is 2 x 2.  Pooling layer just change the dimension of the feature map 

and the depth keeps the same.  The figure 5 gives an example to show how pooling layer works. 
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Figure 6 An example of Pooling Layer [22] 

Fully connected layers usually are connected after convolution layers. As shown in Figure 

2. The “fully connected” means each neuron in current layer connects with every neuron in the 

previous layer. The activations can hence be computed with a matrix multiplication followed by a 

bias offset. The biggest difference between fully connected layer and convolution layer is that 

every feature maps in fc layer have own weights, however, one feature map in conv layer share a 

kernel filter.  

    Convolutional neural network has different kinds of activation function. Activation function 

is a mathematical function that be used to calculate the output of convolution computation in 

current layer. Figure 6 shows 5 activation functions. Nowadays, ReLU perhaps the most popular 

activation function. From the figure you can see that the ReLU is a max function which constraint 

all negative inputs to zero and doesn’t change the positive one. Whatever forward and backward 

propagation, it is easy to do computation. It also can suffer less from vanishing gradient.  
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Figure 7 Activation Functions 

Batch Norm layer works as a normalization that adjusts and scales the output of 

activation function. Figure 7 shows the algorithm of batch norm layer. Firstly, it subtracts the 

mini-batch means and then divides the mini-batch standard deviation.   Batch Norm Layer. To 

increase the stability of a neural network, batch normalization normalizes the output of a previous 

activation layer by subtracting the batch mean and dividing by the batch standard deviation. Then 

it adds two trainable parameters which will denormalize in the processing of backpropagation.    

 

Figure 8 Batch-Norm algorithm [20] 
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Binarized Neural Network 

 

                                  Figure 9 Binarized Neural Network Structure on CIFAR-10[4] 

Binarized Neural Network[4] can be considered as extreme quantized version of 

convolutional neural network. Figure 7 shows binarized neural network structure on CIFAR-10 

datasets which is based on VGG[21]. It has 6 convolutional layers, 3 max pooling layers and 3 

fully connected layers. The most important difference between BNN and conventional CNN is 

that it uses binarized the activation and weights (i.e. +1, -1). The binarized weights function is 

a sign function:  

                                   𝑤𝑏 = 𝑆𝑖𝑔𝑛(𝑤) =  {
+1   𝑖𝑓 𝑤 ≥ 0
−1   𝑜𝑡ℎ𝑒𝑟𝑒𝑖𝑠𝑒

                                                   [ 3 ] 

So the weights value in BNNs just two situation, –1 or +1.  Except binarized the weights, 

it also binarized the activation function: 

                                𝐹𝑜𝑟𝑤𝑎𝑟𝑑:    𝑞 = 𝑆𝑖𝑔𝑛(𝑟) =  {
+1   𝑖𝑓 𝑤 ≥ 0

−1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                          [ 4 ] 

                                𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑: 
𝜕𝑔

𝜕𝑟
=  {

𝜕𝑔

𝜕𝑞
   𝑖𝑓 |𝑟|  ≤ 1

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                       [ 5 ] 

The binarized activation function is also sign function. The output of the activation 

function is -1 or +1. But there is a problem about activation backpropagation. Sign function is 
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not differential. So the BNN[4] propose a straight through estimator(STE) strategy to 

approximate the gradient for making binarization differentiable. From the equation above, if 

the absolute of binarized activation input is smaller than 1, then the gradient doesn’t change, 

otherwise, the gradient is equal to 0. 

 

Figure 10 Sign Function 

Field-Programmable Gate Arrays 

 This section will illustrate the high-level Field-Programmable Gate Arrays (FPGAs). 

Firstly, I will introduce the basic concepts of FPGAs which includes the definition, structure and 

application. Then, the high level synthesis will be mentioned. In the end, I will introduce existing 

hardware platform for convolution neural network implementation and explain why I choose 

FPGA as our CNN inference device. 
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Introduction  

  

Figure 11 Basic FPGA Architecture [24] 

From the name it’s straight forward that FPGAs consists of a huge number of gate arrays 

which are programmable. Figure 11 shows the basic structure of the FPFA. The first FPGA 

introduced by Xilinx in 1985. It has lots of logic block which are connected by interconnect and 

switch matrix unit. Logic block mainly consists of Look-up table (LUT) and flip-flop (FF). LUTs 

are used for performs logic operations and FFs are used for store the results of LUTs. But with the 

progress of times, FPGA is more complex nowadays. Some FPGAs has built-in other hardware 

function such as DSP, faster communication interfaces, PCIe and so on. FPGAs are similar with 

CPLDs, but FPGAs have larger size. There are mainly two FPGAs companies, Xilinx and Intel 

FPGA(Altera). These two companies dominates around 90% of the FPGA market.  One important 

advantage of FPGA is reconfigurable and flexible. You can program it anytime and anywhere. 

FPGAs implementation usually use HDL codes such as Verilog and VHDL. The processing of 
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design FPGA project includes synthesis, netlist generation, routing and placement to create 

bitstream file that FPGA can understand and run on it. Xilinx, Intel FPGA and other companies 

has their own programming tools to do the whole processing such as Vivado and ISE. With the 

high-level synthesis coming up, you also can program FPGA directly use high level language such 

as C++, C, systemC and so on. I will introduce high level synthesis in the next section.  

High-Level Synthesis 

High-Level Synthesis (HLS) is an automated compiler that can synthesis high level 

language like  C/C++/SystemC to hardware description language like Verilog and VHDL, for 

FPGA implementation. The high level codes can be architecturally constrain and synthesis 

into a register-transfer level which can be further transfer to the grate level design for FPGA 

implementation. High-Level Synthesis makes engineers efficiently and quickly design 

hardware architecture and verify the hardware projects which saves the development cycle.  

Vivado HLS is a popular High-Level Synthesis tool which is introduces by Xilinx 

Company. Our work also use this software to design PC-BNN hardware inference architecture.  

One disadvantage of high-level language is that it can not control the timing for the software 

application. Vivado HLS use directive commands to constrain and optimize the design to 

make it hardware-friendly. Using directive, we can define the interface and control the data 

flow. It also can optimize the design. For example, loop unrolling directive can unroll the 

specific loops and execute it in parallel. Loop and function pipelining can build a pipeline 

design with the specific latency. In addition, it also can partition the array to efficiently to use 

https://en.wikipedia.org/wiki/ANSI_C
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/SystemC
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block RAM resources. For example, data can be chosen to store in block Ram or Distributed 

Ram. It can split one array to different dimensions and allocate different I/O ports.  

Embedded Convolutional Neural Network Platform 

GPUs have high throughput and performance, but also have huge energy consumption and 

less energy efficiency. It can be developed quickly based on existing deep learning framework. 

CPUs have less performance and power consumption than GPUs. It also has bad power 

efficiency  

AISCs can maximum energy efficiency, However, ASICs are even less suited for irregular 

computation than FPGAs, are not suitable for model change and they need longer development 

cycle. 

FPGAs are well suited for BNN, as their dominant computations are bitwise logic 

operations and their memory requirements are greatly reduced. FPGAs are reconfigurable to 

customize different deep learning models. It has much less lower consumption. However, 

Development framework like Caffe and Tensorflow for CPU and GPU are absent for FPGA.  
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CHAPTER THREE: PARALLEL-CONVOLUTION BINARY NEURAL 

NETWORK 

 

Figure 12 PC-BNN structure and accuracy 

In this chapter, I will introduce our new Parallel-Convolution Binarized Neural Network 

(PC-BNN) model. The Figure 12 shows the basic structure of the model. The most intuitive 

difference with conventional BNN is that we replace the original binary convolution layer with 

two parallel binary convolution layer. We will show later that such parallel convolution layer 

design plays an important role in improving inference accuracy with limited model size increase 

compared to conventional BNN. The PC-BNN model consists of one convolutional layer, five 

convolutional blocks, two max pooling layer and one fully connected layer. We also uses fixed 3 

x 3 kernel filters for all convolutional layers. As shown in Figure 12, I defined one Conv Block 

which includes Batch Normalization, Binary Activation function (BinActive) and Binary 

Convolution (BinConv) in parallel with additional cascaded Parametric ReLU (PReLU) layer. The 

feature maps and weights are both binarized (i.e. +1, -1) in BNNs. From information theory 

perspective, binarized neural networks have limited "knowledge" capacity which is not enough to 

deal with large-scale challenge. Also, optimization with sign function itself is an open challenging 

problem, though this paper proposed a reasonable approximation method. For small datasets it's 
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possible to find a good local optima. But for large-scale datasets, it's quite easy to fall into a bad 

local optimization using SGD and that might be why the results on ImageNet dataset are not 

promising. So, the accuracy of BNNs is greatly reduced. In order to extract more “information”, 

we use two parallel convolution layers.  Except the inputs to the first convolution layer (i.e. whole 

network inputs) are real-value tensors, all the input tensors to the intermediate convolution layers 

are binarized. The reason why we use two parallel layers instead of original one binarized 

convolution layers but doesn’t choose 2bit or more fixed points bits to instead of binary format of 

feature maps and weights is that binarized values of feature maps and weights can use xnor and 

bitcount operation replaces dot product and accumulation in the convolution operation.  The xnor 

and bitcount operation are well suited for FPGA implementation which I will explain in detail in 

the chapter 4. In addition, I also don’t choose to increase accuracy by expand the channels of 

feature maps. Because if the channels of feature maps increase by twice, the whole layer size will 

increase 4x.  Next I will introduce particular layers one by one. 

Table 1 Architecture of PC-BNN Model 
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Usually, the location of BatchNorm is between convolution layer and activation layer. In the 

Figure 12 you can see that sequence of one Conv Block is BatchNorm-BinActive-BinConv-Max 

pooling. There are mainly two reasons that we do this change:  

1. BatchNorm plays a role in normalization and shift scaling the input of binarized activation 

function, which could minimize the accuracy degradation.  

2. BatchNorm prevents the input tensors of BinActive with patches of contiguous zeros that 

will cause the accumulated information vanished. 

In the table 2, C-B-A-P means Conv-BatchNorm-Activation-Pooling and B-A-C-P means 

BatchNorm-Activation-Conv-Pooling. It shows that accuracy is increased when put BatchNorm 

before the Activation function on XNOR net [1] which is one state-of-the-art BNN model on 

ImageNet dataset.  

Table 2 XNOR-Net two blocks structure comparison [1] 

 

As discussion in chapter 2, I use the same binarized strategies to binarized (i.e. +1 and -1) 

the input of convolution layer which add a binarized activation function before convolution layer. 

In the forward propagation, the input tensors are binarized by Sign function. However, the sign 

function has zero derivatives, which cannot calculate the gradient when do backward propagation. 

In this situation, I use straight-through estimator (STE) to avoid it. In the backward propagation, 
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the input gradient of binarized activation function are same with the gradient at output if the 

absolute value is smaller than 1. Otherwise, the gradient is zero to preserve training processing.  

 

Figure 13 Xnor and bitcount operation example 

As been widely discussed in many recent works, scaling factor is the key factor to prevent 

BNN from great reduction of inference accuracy. In our PC-BNN, for the intermediate BinConv 

layers, the BatchNorm and PReLU layers play roles in element-wise scaling function which can 

scale the input of the convolution layers. So, we don’t need to add weight scaling factor in every 

convolution layers. In this case, the same binarization function with STE is used for all the 

binarized convolution layers. Thus, the typical output scaling used in other BNN are not needed in 

our work, which could totally eliminate the computation complexity. Since both the feature maps 

and weights are binarized to -1 or +1, the original floating point Multiplication and Accumulation 

(MAC) operations in convolution layers can be replaces by xnor and bitcount, the figure 13 shows 

an example how xnor and bitcount operation replace MAC computation. The mathematic 

expression of xnor and bitcount operation is: 

                              𝑋𝑙
𝑇 ∙  𝑤𝑙 = 2 × 𝑏𝑖𝑡𝑐𝑜𝑢𝑛𝑡(𝑥𝑛𝑜𝑟(𝑥𝑙 , 𝑤𝑙)) − 𝑁; ∀𝑋𝐼,𝐿

∈ [−1, +1]                  [ 6 ] 

Where N presents the whole numbers of kernels to compute one output feature map, which is input 

channels x kernel x kernel.  
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In this work, we implement PReLU as the activation function after the convolution layers, 

which can further increase the accuracy. The figure 14 shows the curve of PReLU function. The 

difference between PReLU and ReLU is that PReLU adds additional scaling influence for the input 

tensors.  

 

Figure 14 PReLU 

The mathematic expression of PReLU is: 

                                                       𝑓(𝑥) =  {
𝑥    𝑖𝑓 𝑥 ≥ 0  

𝑎𝑥  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                      [ 7 ] 

Such function plays an important role of asymmetrical factor to scale the convolution output while 

introducing more non-linearity. Moreover, since the dataflow between Conv-Blocks are in binary 

format within such an ultra-compact neural network model, the conventional PeLU function 

convert all negative input tensors to zero, which will cause more information loss in comparison 

with PReLU.  
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Figure 15 CIFAR-10 dataset [10] 

We train our PC-BNN model on PyTorch framework.  PyTorch is a Python-based scientific 

package targeted at two sets of audiences, first, a replacement for NumPy to use the power of GPU, 

second, a deep learning research platform that provides maximum flexibility and speed.  We train 

our model on CIFAR-10 dataset. CIFAR-10 dataset consists of 60000 images in 10 categories with 

32 x 32 image size which has 600 images per class. 50000 images are used for training and the 

rest 10000 images are used for testing.  

In the training processing, we firstly go forward to binarized weights of every layer and get 

the outputs. Then loss function to minimize the loss and change the trainable weights and our 

model do inference at the same time using current weights. Thirdly, the original full precision 

weights are updated based on gradient. The training processing are shown in figure 16.    
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Figure 16 BNN training [23] 
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CHAPTER FOUR: FPGA ACCELERATOR DESIGN AND 

IMPLEMENTATION 

Introduction  

PYNQ Platform Introduction  

                     

Figure 17 PYNQ Z1 Board 

PYNQ stands for Python Productivity for Xilinx Zynq which is an open-source project that 

makes it easy to design embedded systems with Xilinx Zynq® Systems on Chips (SoCs). It 

consists of 650 MHz dual-core Cortex-A9 arm processor, Xilinx Artix-7 family FPGA board 

which contains 13,300 logic slices, each with four 6-input LUTs and 8 flip-flops, 630 KB of fast 

block RAM and 220 DSP slices, and 512MB DDR3 with 16-bit bus. The advantage of PYNQ 

board is that people can directly use Python code to run PYNQ board even without use ASIC-style 

design tools to design hardware architecture. The figure 18 shows the key technologies of PYNQ. 

First people can use PYNQ IPs and PYNQ overlays to create bitstream file which FPGA can 

understand. FPGA part of the PYNQ board are called programmable logic. Overlays are hardware 

libraries that represent the programmable logic circuits.  The overlay can be accessed through an 
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application programming interface (API).  After creating the bitstream, we can write python 

codes to run the bitstream by using API and the results can be shown on Jupyter Notebook.  

 

Figure 18 PYNQ Design Flow 

Data Type Consideration 

In the training part, the inputs images are floating point. But FPGA are not good at 

processing floating point operation. Because on CIFAR-10 dataset, all images are RGB format 

which are 8bit. The range of pixels range from 0 to 255.  So, in the FPGA implementation, the 

input pixels are 8 bit fixed point. Except the input images, all the intermediate feature maps are 

binary format. In this case, we can use xnor and bitcount operation to replace multiplication and 

accumulation operation as mentioned before which can greatly reduce computation complexity 

and memory size. 
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Motivation 

The figure 19 shows the evolution of deep neural network. We can find that the models 

become deeper and larger. They have enormous model size, massive computation cost and huge 

energy consumption. For example, the VGG-19 network has 140 million floating-point parameters 

and  

 

Figure 19 Deep learning evolution 

15 billion floating-point operations per image. The figure 20 shows that convolution layer occupy 

most computation times. In this case, we consider to compression model size by using binarized 

strategy which utilizing binarized convolution kernel can significantly reduce model size and 

computation complexity. Convolution Operation of binary parameters (i.e.+1, -1) can be replaced 

by xnor and bitcount operation, which paves a new road for energy–efficient FPGA 

implementation. The binarized weights reduce 32x in comparison with floating point weights. 
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Figure 20 CNN computation time distribution 

Overall Design Flow 

 

Figure 21 Overall Design Flow 

In this section, I will explain the whole design flow from PC-BNN training to FPGA 

implementation. The hardware platform used is Xilinx Z1 board. This board is widely used in low 

power embedded or mobile devices since its small energy consumption which at around 2.5W. 

However, it only has 4.9Mb on-chip RAM and very limited on-chip LUT and DSP resources, 
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which brings a great challenge for conventional powerful neural network algorithm. Thus, the 

main object of our hardware optimization is to reduce hardware resource usage while improving 

throughput and energy efficiency of the system. First, we use PyTorch framework to train our PC-

BNN model.  It can create a model file called “checkpoint.pth.tar” which contains all parameters. 

PyTorch[14] is a python package that provides tensor computation with strong GPU acceleration 

and builds deep neural network on a tape-based autograd system. Note that, in this work, PC-BNN 

model is trained on CIFAR-10 dataset [10], which is one of the most popular object classification 

dataset. Then we extract the binarized network parameters from the ‘checkpoint.pth.tar’ file and 

convert it to ’Parameter.bin’ which is used for neural network function software validation and 

FPGA mapping by PyTorch parameter extractor manually. Because the weights are full precision 

in the ‘checkpoint.pth.tar’ file, we need to binarized the weights manually. In addition, another 

important function of the extractor is to calculate the thresholds which are converted from PReLU-

BatchNorm-BinActive functions. I will explain it later in detail. Third, we start to design FPGA 

PC-BNN inference architecture using two Xilinx Vivado softwares which are able to synthesis and 

create the executable bitstream file that contains the network topology and can be understand by 

PYNQ board. Finally, by using PYNQ API and overlay, it is easy to load bitstream file and CIFAR-

10 dataset to PYNQ board and run it on jupyter notebook. 
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Overall Hardware Architecture  

 

Figure 22 Overall Hardware Architecture 

The figure 22 shows the overall hardware architecture. It is designed to be a streaming 

pipeline structure. Ae, processor works as a controller to control the data communication between 

off-chip memory and FPGA. AXI-Bus is one open standard for the connection and management 

of functional blocks in a system-on-chip (SoC) which is responsible to communication between 

off-chip and on-chip. In the on-chip (FPGA) part, there is block Ram unit which is on-chip memory 

with 4.9 Mbit. Because our PC-BNN model totally has 2.3Mbit model size, so all the parameters 

can be stored on on-chip memory which greatly reduce power consumption since communication 

between on-chip and off-chip memory is extremely energy cost and time consuming and we don’t 

need to communication between off-chip and on-chip for parameters transferring.  As shown in 

figure 14, there are totally 7 blocks which occupy hardware resources intendedly which 

corresponding to every layer includes BinConv, Convblock and BinFC. It worth note that the 

inputs and outputs of every block except the inputs of first block are all binary values and there is 
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no floating-point MAC operations in every block. In addition, we use Xilinx HLS (high level 

synthesis) data streaming mechanism to communicate between every block. The data streaming 

works like a FIFO that reads and writes read in a sequence order which is well suited for our 

pipeline architecture since it doesn’t need buffer to store intermediate data temporally. So, when 

images data are loaded from off-chip memory to the first BinConv, the BinConv start to do 

computation. Then when every block start to create the output data, the next block start to load 

parameters from on-chip memory and do computation. The pipeline architecture can extremely 

save computation time. In the end, the outputs of last layer are stored to off-chip memory. In the 

whole processing, except load input images and store output to off-chip memory, the on-chip has 

no communication with off-chip.  

Hardware Optimization  

In this section, I will discuss the hardware optimization strategies to design a hardware-

friendly FPGA architecture. Firstly, I will introduce hardware block design which change original 

conv block. Then, I will illustrate how to convert PReLU-BatchNorm-BinActive functions to a 

threshold unit which can greatly reduce computation cost and memory usage.  
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Hardware Block Design 

 

Figure 23 Hardware Block Architecture 

Previously one conv block is BatchNorm-BinActive-BinConv-PReLU.  In order to more 

efficiently map PC-BNN to FPGA, we relocated the conv block architecture to BinConv-PReLU-

BatchNorm-BinActive, which doesn’t change the whole streaming pipeline flow. Figure 23 shows 

the hardware block architecture. The input of the previous convblock comes from previous PReLU 

layer which are not binary value and the outputs of blocks are not binary value. So communication 

between blocks are not efficiency. After changing the convblock sequence, the inputs of block 

comes from precious BinActive are binary value and the output of blocks are also binary value. 

There are mainly two benefits for this modification. Firstly, the inter-layer commutation data size 

are greatly reduced which reduces the communication cost and easier to design the all convblocks 

with the consistent interfaces. Secondly, it reduces the buffer that stores the transfer data which 

save the hardware resources. In addition, this modification are well suited for our threshold unit 

which are converted from PReLU-BarchNorm-BinActivation function because this modification 

make PReLU-BarchNorm-BinActivation in a sequence order. 



30 

 

Converting PReLU-BatchNorm-BinActive to Threshold Function 

BatchNorm actually is a complex equation and is very inefficient for FPGA 

implementation. So, we consider how to optimize so that can avoid the computation. BatchNorm 

can be considered as an affine function: 

                                                                         y = kx + b                                                        [7] 

Where: 

                                                          k =  
𝛾

√𝛿2+ 𝜖
        𝑎𝑛𝑑        𝑏 =  𝛽 −  

𝜇𝛾

√𝛿2+ 𝜖
                        [8] 

Because BinActive is actually a sign function, the PReLU-BatchNorm-BinActive can be describes 

as: 

                                                            y =  {
𝑆𝑖𝑔𝑛(𝑘𝑥 + 𝑏)      𝑖𝑓 𝑥 ≥ 0

𝑆𝑖𝑔𝑛(𝑎𝑘𝑥 + 𝑏) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                 [9] 

We can translate the sign function with threshold value ∆, the equation above can be rewritten as: 

                                                          y =  {
𝑆𝑖𝑔𝑛∆+(𝑥)      𝑖𝑓 𝑥 ≥ 0

𝑆𝑖𝑔𝑛∆−(𝑥)   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                       [10] 

Where 𝑆𝑖𝑔𝑛∆+(𝑥) = +1 and 𝑆𝑖𝑔𝑛∆−(𝑥) = -1. ∆+=  
−𝑏

𝑘
  𝑎𝑛𝑑 ∆−=  

−𝑏

𝑎𝑘
 . 

There are mainly two advantage after this transformation. Firstly, BatchNorm has complex 

computation which is inefficient for FPGA implementation. We don’t need to do BatchNorm and 

PReLU computation which are replaced by a simple comparison operation. It is greatly reduced 

computation complexity. Secondly, we also don’t need to store and load BatchNorm parameters 

on on-chip memory. BatchNorm layer has two different parameters which is replaced by one 

threshold values. The on-chip memory resource are also saved.  
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Processing Element 

 

Figure 24 Processing Element 

Figure 24 shows the detailed processing element architecture, which mainly consists of 

three different units: XNOR units, popcount units and threshold units. As I mentioned before, the 

inputs are outputs are streaming data format. It works as one dimension vector, so the data are 

loaded to XNOR unit one by one. SIMD stands for single input multiple data and ‘s’ is the number 

of data that are loaded. In the processing element, we convert the high dimension convolution 

operation to matrix-vector computation. The parameters stored in BRAM also are loaded to XNOR 

unit as a streaming flow which has the same bandwidth with input data. From the figure 16 you 

can see that we have numbers of parallel XNOR unit. Each unit corresponds to one output channel 

of feature maps, so every XNOR unit share the same input data and use different weights. The 

processing element achieve input channel and output channel computation parallel and the 

parallelism is flexible according to hardware resources.  In every XNOR unit, input data do xnor 

operation with correspond weights. In the popcount unit it popcount the output of xnor unit. After 

iterative operation to create one output data, then it will be load to threshold unit and compare with 



32 

 

the correspond threshold value. The processing element can be easily implemented to LUTs on 

FPGA which are much energy efficient in comparison with conventional multiplication and 

accumulation (MAC) computation and BatchNorm operation.   

Sliding Window 

 

                         

Figure 25 Sliding Window 

The original input data is 2D dimension. In order to get the right input streaming sequence 

in the processing element, we need to reshape the dataflow using sliding window units. Since our 

work is a streaming pipeline architecture and the size of the filter kernel is 3 x 3, we just need to 

define a small size buffer to store input data. The height of the sliding window should be equal to 

be the size of the filter kernel and the width of the sliding window equal to the width the of input 

feature maps.  As the convolution operation mechanism, the sliding window should load the data 

that correspond to the kernel filter values one by one. In our work, it needs to send every 3 x 3 size 

of input data to a buffer which temporally store the data and then send to processing element unit. 
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The size of sliding window is 3 x 3 and it will dynamically shift and load in sequentially. After it 

finish sending the first 3 height input data, it will continue to load next 3 height input data. The 

sliding window can greatly save FPGA resources because we don’t need to use buffer to store all 

feature maps. Figure 25 give a simple example to show how sliding window works.     
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CHAPTER FIVE：EVALUATION AND RESULTS 

Experimental Setup 

As mentioned before, we use Xilinx PYNQ Z1 as the hardware platform. PYNQ Z1 is a 

system on chip (SoC) which mainly consist of an XC7Z020 FPGA chip and dual-core ARM 

Cortex-A9 embedded processor. The XC7Z020 is actually a small FPGA board which includes 

53,200 LUTs, 106,400 FFs, 280 18Kb BRAMs, 220 DSP48Es. Take advantage of high-level 

synthesis, we design our hardware architecture using C++ language by Vivado HLS software 

which can synthesis the C++ codes to hardware language. And using Zynq IP in Vivado software 

to create the bitstream file which is a bitfile that FPGA can understand. The images dataset is 

CIFAR-10 [10] which as the test benchmark to do experiments.   

Experimental Results 

To better show our work, we compare our results with other three existing related works. 

Table 3 lists the experimental results of all four works. These works have the same configuration. 

They all implement binarized neural network to FPGA and use the same XC7Z020 FPGA board 

and do inference on CIFAR-10 dataset.  The original FINN use 200 MHz frequency. To better do 

comparison, I reimplement this work to the XC7Z020 board and measure the results on 143 MHz 

frequency. So all the four works have the same frequency. I will firstly introduce our experimental 

results and then analysis the results in comparison with other works. In the table 3, it shows our 

PC-BNN FPGA implementation consumes 13436 LUTs, 135 18K BRAMs, 53 DSP48E. As 

shown in figure 26, the power consumption is 2.4w. The PYNQ Z1 board uses USB power meter 
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to test the power since this board is charged by USB interface. We did 1000 images inference and 

the power average to 2.4w for the whole board. 

 

Table 3 Comparison with Other Binarized Implementation on the FPGA 

 

Firstly, we compare our work with [18]. Although the [18] have 1.73% smaller test error 

in comparison with our works, their model size is larger 11.1Mbits and the frame per second is 

much higher than our work. Because our weight size is just 2.3 Mbit which can be all stored on 

on-chip memory. The weight size of [18] is 13.4 Mbit. Since the on-chip memory is only 4.9 Mbits, 

they have store partial parameters on off-chip memory and load parameters to FPGA in the whole 

processing. The communication between off-chip and on-chip memory is much energy hungry, so 

the performance of our work is much higher and the power consumption is less than the [18]. In 
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addition, the [18] reuses the intermediate feature map buffer, so they have to finish all computation 

of current layer to start computation of next layer. However, our pipeline architecture can avoid 

this issue.  In the end, our PC-BNN model parameter size reduces by 5.8x, throughput (frame per 

second, i.e. FPS) increases by 5.5x and frame per second/ watt is 14.5x better with only 1.71% test 

error increased in comparison with this work. 

Comparing our work with FINN[17], they also use the pipeline architecture. Our model is 

more compact and efficient than them. The model of  FINN[17] consists of six convolution layers, 

three max pooling layers and  three fully connected layers. But our work uses parallel convolution 

layer structure and only one fully connected layer. The table 2 shows that FINN and our work 

almost use the same number of LUTs. We achieves much higher accuracy and even have much 

higher performance. Although we just use only one fully connected layers, the 4.9% test error 

reduction demonstrates that our parallel convolution layer structure can efficiently extract more 

image information.  

Comparing our work with [12], they have the least parameter size, however, our frame per 

second still higher than them. Because they store the parameters in the off-chip memory which has 

higher communication latency to load parameters from off-chip to on-chip memory.  In addition, 

we still have 4.2% higher accuracy than this work. In summary, our work achieves ~86% accuracy 

on CIFAR-10 dataset, 930 frames per second and 2.4w power measurement. Comparing with other 
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three works, we have the highest hardware efficiency and highest performance. 

 

Figure 26 PYNQ Power Measurement 
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CHAPTER SIX：CONCLUSION 

In this master thesis, we explore the FPGA implementation for binarized neural network 

inference. We mainly have two contributions on software and hardware respectively. First, we 

propose a new binarized neural network model, called Parallel-Convolution BNN (PC-BNN), 

which replaces the original binary convolution layer in original BNN with two parallel binary 

convolutional layer. Also, we only use one fully connected layer. Second, from the FPGA 

implementation perspective, we relocated the block structure which makes dataflow more 

hardware efficiently without changing the whole network model. We design a new processing 

element unit which replaces the Multiplication and Accumulation operations with XNOR logic 

and bitcount operations. It greatly reduces computation complexity and latency. Then, we convert 

the PReLU-BinActive-Batchnorm functions to a threshold unit which uses a simple comparison 

operation to replace the complex BatchNorm and PReLU operations. It further reduces the 

computation requirement and saves memory usage. In the end, we design a streaming pipeline 

architecture which stores all parameters on-chip and doesn’t need to communicate with off-chip 

in the processing of intermediate layer. In summary, our PC-BNN model achieves 86% on CIFAR-

10 dataset with 2.3Mb parameter size. Compared with other three conventional BNN 

implementations on the same Xilinx XC7Z020 board, our work has the best FPS and best accuracy 

at such extremely small neural network parameter size. 
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