
University of Central Florida University of Central Florida 

STARS STARS 

Faculty Bibliography 2010s Faculty Bibliography 

1-1-2012 

Fixed-point attractor for chirp in nonlinear waveguide arrays Fixed-point attractor for chirp in nonlinear waveguide arrays 

Darren D. Hudson 

J. Nathan Kutz 

Thomas R. Schibli 

Qing Chao 

Demetrios N. Christodoulides 
University of Central Florida 

See next page for additional authors 

Find similar works at: https://stars.library.ucf.edu/facultybib2010 

University of Central Florida Libraries http://library.ucf.edu 

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for 

inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more information, please 

contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Hudson, Darren D.; Kutz, J. Nathan; Schibli, Thomas R.; Chao, Qing; Christodoulides, Demetrios N.; 
Morandotti, Roberto; and Cundiff, Steven T., "Fixed-point attractor for chirp in nonlinear waveguide arrays" 
(2012). Faculty Bibliography 2010s. 2772. 
https://stars.library.ucf.edu/facultybib2010/2772 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/facultybib2010
https://stars.library.ucf.edu/facultybib
https://stars.library.ucf.edu/facultybib2010
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/facultybib2010/2772?utm_source=stars.library.ucf.edu%2Ffacultybib2010%2F2772&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


Authors Authors 
Darren D. Hudson, J. Nathan Kutz, Thomas R. Schibli, Qing Chao, Demetrios N. Christodoulides, Roberto 
Morandotti, and Steven T. Cundiff 

This article is available at STARS: https://stars.library.ucf.edu/facultybib2010/2772 

https://stars.library.ucf.edu/facultybib2010/2772


RAPID COMMUNICATIONS

PHYSICAL REVIEW A 85, 031806(R) (2012)

Fixed-point attractor for chirp in nonlinear waveguide arrays
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The propagation of ultrashort optical pulses in an AlGaAs waveguide array is studied using frequency-resolved
optical gating measurements. In the nonlinear regime, the measurements show that the pulses at the output of
the array evolve toward a set chirp value that is independent of the input chirp. Simulations reproduce the
experimental results. The observations can be described as a fixed-point attractor on a chirp-intensity map.

DOI: 10.1103/PhysRevA.85.031806 PACS number(s): 42.65.Wi, 42.65.Hw, 42.65.Re

Discrete solitons represent self-trapped states in nonlinear
periodic structures that result from the interplay between
discrete diffraction and nonlinearity [1,2]. This family of
self-localized entities was first observed by Eisenberg et al.
in 1998 [3] and has continued to attract substantial attention
[2,4–9]. In general, optical discrete solitons can be excited
in a variety of physical systems having different types of
nonlinearity. Even though most experiments in waveguide
lattices have been carried out using pulses, temporal effects
in such nonlinear periodic environments have so far remained
largely unexplored. More recently, measurement of the tem-
poral profile at the output of waveguide arrays has led to
the observation of light bullets [10], X waves [11,12], and
nonlinear pulse shortening [13]. These measurements were
based on intensity autocorrelations or cross-correlations and
thus were not sensitive to the phase dynamics of the output
pulse.

In this Rapid Communication, we investigate the impact
of a waveguide array’s nonlinear dynamics on the full electric
field of an ultrashort pulse as a function of both input chirp and
average power. Surprisingly, we find that, at sufficiently high
peak power, the waveguide array sets the output pulse’s chirp
to a fixed value, regardless of the chirp on the input pulse. This
behavior is reproduced in simulations and can be classified
as a fixed-point attractor in a phase space involving intensity
and chirp. Attraction effects have manifested in dissipative
nonlinear optical systems through the formation of similaritons
[14]. However, previous theory and experiments have studied
similaritons in a single dimension, that is, temporal or spatial,
whereas our observations correspond to the formation of a
self-similar structure in both space and time. From an applied
perspective, these results provide an effective method for
shortening and dechirping a pulse without needing detailed
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knowledge of the input pulse. Such a method would be useful in
telecommunications and for pulse cleanup in amplifier chains.
Furthermore, a waveguide array could be used as a robust
mode-locking element in a laser [15].

The dynamic exchange of electromagnetic energy in waveg-
uiding systems has long been theoretically considered in the
context of coupled-mode theory [16]. Coupled-mode theory
provides an ideal and highly simplified analytic framework
describing the coupling and propagation of electromagnetic
energy in waveguides and waveguide arrays, even when
subject to the Kerr nonlinearity [1]. The theory assumes
that the electromagnetic field is localized transversely in
each waveguide and that the exchange of energy between
waveguides can be accurately modeled by an evanescent, linear
coupling determined by an overlap integral between waveg-
uide modes [16]. The nonlinear theory, which includes self-
phase modulation, has been demonstrated to agree remarkably
well with experiments using both cw [17,18] and pulsed
femtosecond [13] light. In the waveguide array configuration
considered here, nearest-neighbor interactions dominate the
waveguide array dynamics and linear loss is insignificant. This
limit leads to a set of discretely coupled nonlinear Schrödinger
equations governing the evolution of electromagnetic energy,

i
∂An

∂z
− β ′′

2

∂2An

∂t2
+ γ |An|2An + c(An+1 + An−1)

+ iσ |An|4An = 0, (1)

where An represents the normalized electric-field amplitude in
the nth waveguide (n = −N, . . . , − 1,0,1, . . . ,N and there
are 2N + 1 waveguides). The linear coupling coefficient is
c and the nonlinear self-phase modulation parameter is γ .
Unlike previous cw experiments [1,17,18], the femtosec-
ond pulse propagation considered here requires that we
explicitly consider chromatic dispersion, which is described
by the parameter β ′′. Furthermore, the effects of three-
photon absorption is modeled by the quintic loss term with
coefficient σ .

To experimentally determine the phase dynamics imposed
on an ultrashort optical pulse due to nonlinear propagation in
a waveguide array, we use frequency-resolved optical gating
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FIG. 1. (Color online) Experimental setup. The output of the fiber
laser is broadened by dispersion compensating fiber (DCF) to avoid
nonlinearities in the amplifier. The diffraction grating compressor
allows tuning of the chirp for the input pulses. The variable power
control consists of a half-wave plate and a polarizer. The flip
mirrors allow for characterization of the pulses before they enter
the waveguide array. Light in the central waveguide is apertured and
sent to a background-free SHG-FROG apparatus.

(FROG) to measure the full electric field of pulses output by
a waveguide array. A mode-locked, erbium-doped fiber laser
with a repetition rate of 25 MHz (operating at 1550 nm) and
a chirped-pulse amplifier and compressor system are used to
generate intense input pulses (see Fig. 1). Using dispersion
compensating fiber (DCF), the normally chirped pulses from
the fiber laser are further stretched to several picoseconds to
avoid nonlinearities in the amplifier. These stretched pulses are
coupled to a bidirectionally pumped erbium amplifier [19],
which increases the pulse energy by a factor of 7, while
maintaining their original pulse shapes. The output of the
amplifier is temporally compressed or stretched in free space
by a diffraction grating compressor. This system produces
pulse energies of 3.5 nJ and allows us to change the pulse chirp
from normal ( + 200 000 fs2) to anomalous (−100 000 fs2).
The pulse spectrum is centered at 1550 nm with a width of
40 nm at the −10 dB points, although there is significant
structure, resulting in a Fourier transform limited duration of
approximately 220 fs.

The pulses are coupled into the waveguide array using
standard microscope objectives (40×) mounted on three-axis
stages. The input field is mode matched to the waveguide with
a coupling efficiency >40%. The 6-mm-long waveguide array
has a 10-μm center-to-center spacing between waveguides,
with 1.5 μm tall ridges and 4 μm wide waveguides. Index
guiding in the vertical direction is provided by a core layer
consisting of Al0.18Ga0.82As and cladding layers consisting of
Al0.24Ga0.76As. All results presented in here are collected in the
nonlinear regime such that discrete spatial solitons form, which
at high-enough intensity clamp in their spatial distribution due
to three-photon absorption [20].

To measure the electric fields, we use FROG based
on second harmonic generation [21]. This method involves
recording a spectrally resolved autocorrelation or spectrogram.
We use a computer-controlled delay stage in conjunction with
a spectrometer to acquire the spectrogram. The information
contained in the spectrogram is sufficient to retrieve the full
pulse shape and phase using an iterative algorithm [21].

FIG. 2. (Color online) Electric-field envelopes before the waveg-
uide as a function of time and compressor setting. The plot shows
the electric fields as the compressor is tuned from the most normal
dispersion setting (top trace) through the zero group delay dispersion
(GDD) point (near the fourth trace from bottom) to the most
anomalous setting (bottom trace).

FROG has several advantages over autocorrelation. A FROG
measurement gives the full electric field and thus reveals
asymmetry in the electric-field envelope. Second, the intensity
autocorrelation is insensitive to the phase dynamics of the
electric field. The inversion algorithm for FROG, however,
calculates the spectral (or temporal) phase based on the
spectrogram.

Using FROG, we mapped out the electric fields before and
after the waveguide array. By tuning the distance between
diffraction gratings in the compressor, the linear frequency
chirp of the input pulse is varied smoothly over a wide range.
Increasing the chirp stretches the pulse in the time domain
as shown in Fig. 2. By fitting the measured phase evolution
to a polynomial function, we can extract the quadratic term,
which corresponds to linear frequency chirp. The variation
in chirp matched well to the value estimated from the
compressor geometry. We coupled each of these fields (at the
highest average power available) into the waveguide array and
measured the field that emerged from the central waveguide.
The resulting electric-field envelopes are shown in Fig. 3. The
effect of the waveguide array is clear: It shortens the pulses in
the time domain such that the duration of the output pulse is
roughly independent of the input pulse duration. This behavior
was first observed via intensity autocorrelations for one input
chirp [13]. As Fig. 3 shows, this electric-field reshaping occurs
over a wide range of input chirps.

In addition to shortening the pulse, the waveguide array
also clamps its chirp to a fixed value, as shown in Fig. 4(a),
independent of the input pulse. Simple material dispersion
will add a constant offset to the input chirp, as shown in the
figure, but does not result in a constant output chirp. Thus,
we attribute this effect to nonlinearity in the waveguide. To
verify that the chirp clamping is a nonlinear phenomenon, we
repeated the measurement at several power levels and observe
that it disappears at the lowest power level. At low power,
the output chirp tracks the input pulse. To further investigate
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FIG. 3. (Color online) Electric-field envelopes after the waveg-
uide as a function of time and compressor setting. Each trace
corresponds, in the same ordering, to an input shown in Fig. 2. The
rapid oscillations near the zero dispersion point are due to self-phase
modulation in the material.

and understand this phenomena, we also performed numerical
simulations for conditions matching the experiments.

Simulations shown in Fig. 4(b) of the mode-coupling
dynamics, as given by the governing equation (1), reproduce
the experimental results. The simulations are performed with
a pseudospectral method that spectrally transforms the time-
domain solution and uses a fourth-order Runge-Kutta for
propagation in the waveguide. For all simulations, a total
of 41 (N = 20) waveguides are considered to match the
waveguide array geometry and design. The linear coupling
coefficient and dispersion are determined experimentally to
be c = 0.82 mm−1 and β ′′ = +1500 fs2/mm, respectively,
and the nonlinear self-phase modulation parameter of γ =
3.6 m−1 W−1 is used [17,18]. The simulations use the same
waveguide length as the experiments.

To study the effects of chirp on femtosecond pulses,
simulations are performed for a chirped hyperbolic secant
pulse launched into the center waveguide (n = 0). Thus, the
initial condition for (1) is

A0(0,t) = ηsech(ωt) exp(iαt2), (2)

where α determines the amount of normal (α > 0) or anoma-
lous (α < 0) linear chirp. The pulse amplitude (η) and width
(ω) parameters are chosen so as to generate pulses with peak
powers matching our experiments. The simulation results of
(1) with the launch condition (2) are critical in confirming our
claims.

The experimental and simulation results show similar
behavior. The lowest average power level (in the central
waveguide) of 11 mW corresponds to the threshold of the
self-focusing regime for this waveguide array. The reshaping
vanishes at this power, and the output chirp of the pulse in
the central waveguide closely follows that of the input chirp.
At the medium power level (18 mW), reshaping is observed
for input chirps less than +130 000 fs2. At these chirp levels,
the pulse is too stretched out in time to achieve the necessary
peak power to undergo full reshaping. Thus, the outlier points

FIG. 4. (Color online) (a) Experimentally measured chirp of the
input pulses and output pulses at three average power levels: low
(11 mW), medium (18 mW), and high (24 mW). The abscissa of
this plot was calibrated by measuring the chirp on the input pulses
from the compressor as a function of distance between gratings.
For comparison, the solid black line indicates the input chirp and
the dashed line shows the expected output chirp due to dispersion
alone. (b) Numerical results of the output chirp of the waveguide
array corresponding to low- and high-power experimental cases. The
simulation agrees well with the experimental results.

rapidly move toward the input chirp from the compressor. At
the highest average power (24 mW), the waveguide array sets
the output GDD for all inputs to around + 17 000 fs2, with a
standard deviation of 3800 fs2. Particularly interesting is that
the waveguide array does this for both normal and anomalous
input chirp. One slight difference between the numerics and the
experiment is that the simulation shows a slightly higher fixed
value of chirp for the output pulses than the experimental value,
which we attribute to approximations made in the model and
uncertainty in experimental parameters. The parameters used
in the simulation were not adjusted to improve the agreement
with experiment.

We can classify the effect of the waveguide array as a
fixed-point attractor in a parameter space of output chirp and
output power. As the average power of the input pulses is
increased, the attraction toward an average fixed point of
an output power of 4.55 mW and a chirp of + 16 600 fs2

becomes stronger. Figure 5 helps to visualize this idea for
the experimental results by plotting vectors in a (chirp,power)
plane. For each input condition a vector is plotted with its tail
at the input locus and pointing toward the output locus. The
length of the vector is proportional to the distance between
the input and the output loci. The location of the fixed-point
attractor is presented as well, with error bars showing the
standard deviation of the output values in both coordinates.
Clearly for high power, all vectors point toward the same fixed
point. For medium power, most of them do, with the exception
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FIG. 5. (Color online) A vector plot showing the fixed-point
attractor in the (chirp,power) plane for the experimental results. The
attractor is denoted by a square. The upper arrows (red) are for 24 mW,
the middle arrows (green) are for 18 mW, and the lowest arrows (blue)
are for 11 mW. The dashed lines are to guide the eye. For the lowest
power, there is no attractor and the output loci fall in the blue region.

of those with the highest chirp. At the lowest power, none
of them do. At low power, the output loci fall in the blue
band. We have done experiments on a second sample that
has several waveguide arrays with varying spacing between
waveguides. While this sample was fabricated to be the same
as the original sample, there are unavoidable differences in
parameters such as the alloy concentrations, length, etch depth,
etc. This sample also exhibits a fixed-point attractor, although
the position is different, and clearly depends on coupling
strength. These results demonstrate that the presence of a
fixed-point attractor is a robust phenomenon and not specific
to the sample parameters.

We have run the simulations without three-photon absorp-
tion (σ = 0) and for a single waveguide rather than an array.
In both cases, the fixed-point attractor is not present. Thus, we

conclude that the presence of both nonlinearity and discrete
diffraction play essential roles in our observations. We also
varied the simulation parameters and found that the presence of
a fixed-point attractor persists over a reasonably large volume
of parameter space; hence, it is a robust effect, although its
position depends on the parameters.

The output pulse clearly has solitonlike features in the
sense that a wide range of input conditions evolve toward
the same output state. However, our results cannot be due
to solitonic effects in the time domain. The array dispersion
is normal, which forbids the formation of temporal solitons.
This conclusion is also supported by the fact that the output
chirp is normal. Rather we attribute these observations to a
balance between dispersion and temporal reshaping due the
formation of a discrete spatial soliton for the central part of the
pulse, while the wings are shed into the other waveguides.
Varying the parameters in the simulations show that both
three-photon absorption and coupling to adjacent waveguides
are essential to our observations. Both of these are dissipative
processes. Further insight into the existence of a fixed-point
attractor might be gained by considering a single waveguide
and treating the coupling to the rest of the array as a dissipative
process. This approximation would correspond to a dissipative
temporal soliton [22].

In summary, we have shown experimentally that, in the
nonlinear regime, the chirp and power of an ultrashort pulse can
become independent of the input chirp and power after prop-
agation through a waveguide array. The observed dynamics
are in good agreement with numerical simulations. We believe
that these results represent a new temporal-spatial paradigm
to nonlinear propagation in discrete systems. While similar
to temporal solitons, it is fundamentally different because it
occurs in the normal dispersion regime. We believe that our
observations are the time-domain analog to self-accelerating,
self-trapped optical beams, which have recently been
described [23].
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