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PHYSICAL REVIEW A 88, 012336 (2013)

Fidelity of the surface code in the presence of a bosonic bath

P. Jouzdani,1 E. Novais,2 and E. R. Mucciolo1

1Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
2Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil

(Received 9 April 2013; published 31 July 2013)

We study the resilience of the surface code to decoherence caused by the presence of a bosonic bath. This
approach allows us to go beyond the standard stochastic error model commonly used to quantify decoherence
and error threshold probabilities in this system. The full quantum mechanical system-bath dynamics is computed
exactly over one quantum error correction cycle. Since all physical qubits interact with the bath, space-time
correlations between errors are taken into account. We compute the fidelity of the surface code as a function of
the quantum error correction time. The calculation allows us to map the problem onto an Ising-like statistical
spin model with two-body interactions and a fictitious temperature which is related to the inverse bath coupling
constant. The model departs from the usual Ising model in the sense that interactions can be long ranged and
can involve complex exchange couplings; in addition, the number of allowed configurations is restricted by the
syndrome extraction. Using analytical estimates and numerical calculations, we argue that, in the limit of an
infinite number of physical qubits, the spin model sustains a phase transition which can be associated to the
existence of an error threshold in the surface code. An estimate of the transition point is given for the case of
nearest-neighbor interactions.

DOI: 10.1103/PhysRevA.88.012336 PACS number(s): 03.67.Lx, 03.67.Pp

I. INTRODUCTION

Recent progress in implementing controllable multiqubit
systems in the laboratory has sparked renewed interest in
topological quantum computing schemes. Particular attention
has been devoted to the surface code [1–3], which is a
planar version of Kitaev’s toric code [4]. From a physical
implementation viewpoint, the surface code has two important
advantages in comparison to other schemes: (i) all gates
are local, and (ii) simulations indicate that the topological
protection yields very high tolerance for errors. The latter is
based entirely on stochastic models for errors. These models
point to error threshold probabilities per single qubit operation
or cycle ranging from 1% [5,6], when only nearest-neighbor
interactions and no perfect gates are assumed, up to 19% [7],
when the ability to perfectly measure four-qubit operators is
assumed. The large error threshold comes at the expense of
hardware: a vast number of local operations and physical qubits
is required to build a useful computing machine [8]. Yet, this
tradeoff seems attractive nowadays for a number of physical
realizations such as cold atoms [9], ion traps [10], Rydberg
atoms [11], semiconductor systems [12], and superconducting
integrated systems [13].

Most error threshold estimates so far have relied on
the assumption of errors being uncorrelated in time and
space. However, given the large-scale integration that will be
required to implement a surface code, this assumption seems
unwarrantable on physics grounds. The need to have tens of
millions of physical qubits siting on a common substrate and
interacting with each other and with the controlling electronics
is very likely to introduce environmental modes, which will
effectively couple the time evolution of the physical qubits.
Under these circumstances, errors will become correlated and
it is unclear whether the system will retain its high error
threshold. In fact, previous studies of the impact of correlated
errors on standard (nontopological) quantum computing codes
have shown that error thresholds may be reduced or altogether

disappear in some situations [14–19]. Investigating the effect
of correlations between errors in the surface code is the main
goal of this paper.

In a recent paper [20], two of us showed that the time
evolution of the surface code in the presence of a common
bosonic bath can be mapped onto a statistical spin model.
This mapping allows for the computation of the surface code
fidelity much in the same way that one computes the partition
function and expectation values in a spin model. As a result,
the existence of an error threshold was related to the existence
of a phase transition in the statistical model. Even though
the interpretation of the crossing of the error threshold as a
classical phase transition is not new [3,21], our formulation
takes into account the full quantum-mechanical time evolution
of the qubits in the presence of a dynamical environment.
In addition, rather than evaluating error probabilities, we
compute directly the fidelity of the logical qubit. Our choice
of environment, a collection of freely propagating massless
bosonic modes, is realistic for systems where decoherence
can be related to the coupling to phonons, magnons, and
electromagnetic modes.

Below, we provide a detailed derivation of the evolution
operator of the combined surface code–bosonic bath system.
We focus our attention on a single quantum error correction
cycle and assume that, after the syndrome extraction, the bath
is reset to its ground state. Within this approximation, we find
that the fidelity can be written as a function of the expectation
value of single-qubit logical operators. The study of these
expectation values can be related to the physics of an Ising-like
spin model with a complex fictitious temperature. Under
the assumption of noncyclic and perfect stabilizer measure-
ments, we use both exact and mean-field finite numerical
calculations to argue that the spin model sustains a thermo-
dynamic phase transition in the limit of an infinite number
of physical qubits. System with 25 and 41 qubits are studied
numerically. The critical temperature of the spin model yields
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a coupling constant threshold value which is found to depend
mainly on bath parameters.

The paper is organized as follows. In Sec. II we give a give a
brief introduction to the essential elements of the surface code
and set some of the notation used later. Section III presents a
Hamiltonian formulation of the problem in terms of bosonic
modes coupled to physical qubits which allows us to obtain
a compact form for the evolution operator of the combined
logical qubit–bath system. The evolution operator involves a
bath correlation function which is explicitly evaluated for three
representative situations. The effect of syndrome extraction on
the evolution operator is described in Sec. IV and an expression
for the fidelity in terms of expectation values involving qubit
operators is derived in Sec. V. The mapping of the fidelity
calculation onto a statistical model is given in Sec. VI and the
connection between the fictitious critical temperature and the
error threshold probability is shown in Sec. VII. In Sec. VIII
we estimate the fictitious critical temperature via a low-
temperature expansion. Numerical supporting the existence
of an error threshold are shown in Sec. IX, which is a very
encouraging result. Conclusions and a critical discussion of the
approximations involved and future directions of investigation
are drawn in Sec. X. A number of appendixes with technical
details of the calculations are also provided.

II. SURFACE CODE

Following Ref. [1], we define the surface code as a
collection of N spins 1/2 (physical qubit systems) located
on the edges of a two-dimensional lattice with two types of
boundaries, as shown in Fig. 1. The lattice comprises n and
m qubit rows and columns, respectively. Measurements are
done on two types of stabilizer operators: stars A♦, which are
associated to lattice vertices (♦),

A♦ =
∏
i∈♦

σx
i , (1)

Z

X

a

FIG. 1. (Color online) A 3 × 3 two-dimensional square lattice
structure for a surface code. Physical qubits (circles) are located at the
edges of the lattice, which has open (vertical) and closed (horizontal)
boundaries. In the general case, the lattice is n × m in size, with
nm vertical and (n + 1)(m + 1) horizontal edges and N = physical
qubits. The light colored strips show possible paths for the logical
operators Z̄ and X̄. a is the lattice constant.

and plaquettes B�, which are associated to tiles (�), including
the ones at the open boundaries,

B� =
∏
i∈�

σ z
i . (2)

In Eqs. (1) and (2), the Pauli spin operators �σi act on
qubits. Thus, there are N� = (n + 1)m plaquette operators and
N♦ = (m + 1)n star operators. The N physical qubits store one
logical qubit. There are nL = 2 distinct logical operators: X̄

and Z̄. They are formed by a string of physical qubit operators
along paths that cut through the lattice:

Z̄ =
∏
i∈�Z

σ z
i (3)

and

X̄ =
∏
i∈�X

σ x
i , (4)

where �Z runs between qubits at opposite open boundaries
(left to right), passing through vertices along the way, while
�X runs between qubits at opposite closed boundaries (top to
bottom), crossing tiles (see Fig. 1). Notice that vertices and
tiles form dual lattices.

The protected code space contains two states, |↑̄〉 and
|↓̄〉. Both states are eigenstates of all stabilizer operators
with eigenvalue +1. Errors can be inferred by measuring
the stabilizer operators and tracking down which stars or
plaquettes yielded −1 values. A decoding procedure is needed
to decide which recovering operation to perform [22,23].

The code state can be generated by the action of a product
involving all star operators on the z ferromagnet state, namely,

|↑̄〉 = G|Fz〉, (5)

and

|↓̄〉 = GX̄|Fz〉, (6)

where

G = 1√
2N♦

∏
♦

(1 + A♦) (7)

and

|Fz〉 =
N∏

i=1

|↑〉i,z. (8)

Notice that the product in Eq. (7) can be expanded as∏
♦

(1 + A♦) = 1 +
∑
♦

A♦ +
∑

♦1 �=♦2

A♦1A♦2 + · · · . (9)

The number 2N♦ appearing in the prefactor of G is the
number of terms appearing in the expansion: 2N♦ = ( N♦

0 ) +
( N♦

1 ) + · · · + ( N♦
N♦ ).

III. BOSONIC ENVIRONMENT

The most general bath model would allow for both flip and
phase errors to occur. However, only perturbative calculations
would be possible in this general case. Since our goal is to
obtain nonperturbative results, we focus our discussion on flip
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errors only (it is possible to rephrase the model to induce
only the pure dephasing model by a simple change of basis).
We do not explicitly consider correlated errors introduced by
the hardware upon measurement, but rather errors induced
by the interaction between a bath and the qubits during the
time span of a QEC cycle. The Hamiltonian we consider is
written as

H = H0 + V, (10)

where H0 is a free bosonic Hamiltonian,

H0 =
∑
k �=0

ωk a
†
kak, (11)

and

V = λ

2

∑
i

f (ri) σx
i , (12)

where ri denotes the spatial location of a qubit i and f is a
local bosonic operator,

f (r) = (v/ω0)D/2+s

LD/2

∑
k �=0

|k|s (eik·ra†
k + e−ik·rak). (13)

Here, D is the bath spatial dimension, v is the bosonic mode
velocity, ωk = v|k|, and ω0 is a characteristic frequency of
the bath (notice that f is dimensionless since we adopt units
such that h̄ = 1). The creation and annihilation operators of
the bosonic modes follow the standard commutation relations,
namely, [ak,a

†
k′ ] = δk,k′ and [ak,ak′] = [a†

k,a
†
k′ ] = 0.

The choice of s depends on the physical nature of the
environment and on which bosonic degree of freedom couples
to the qubits. When the qubits couple directly to the bosonic
displacement field, we choose s = −1/2, whereas when they
couple to the bosonic current operator, we choose s = 1/2
instead. Notice that these two choices allow us to write the
coupling between the qubits and the bosonic environment as a
simple function of the free bosonic field. Hence, they render an
interaction Hamiltonian with commutators that are subluminal,
namely, which are equal to zero outside the boson light cone
(see below). But this is not the general rule. For instance, a
model that couples the environment to two different qubit
components would render an interaction Hamiltonian with
nonsubluminal commutators (regardless of our choice for s).

This apparent problem comes from the fact that we usually
think of errors in a dynamical sense: they happen in a point
in space-time and create bosons that propagate at the speed of
light. However, this is an incorrect interpretation to the equa-
tions we are about to derive. We will not be considering pulses
propagating thought a medium, but rather looking at allowed
normal modes of the bath and how they relate to different qubit
configurations. If there is no fundamental symmetry reason for
their suppression, long-wavelength modes of the bath will in
general introduce superluminal effective interactions. A very
simple way to highlight this fact is to rewrite the bosonic
model in a coherent-state basis, ak = ãk + α, where ãk and
ã
†
k also obey standard commutation relations and α in a

constant. This procedure introduces an effective instantaneous
interaction between the qubits as much as the Coulomb gauge
introduces the instantaneous Coulomb interaction in quantum
electrodynamics.

For a time interval �, the error model comprised by
Eqs. (10)–(12) leads to the following evolution operator in
the interaction picture [16]:

U (�) = Tt exp

[
−i

λ

2

∫ �

0
dt
∑

i

f (ri ,t) σx
i

]
. (14)

Combining a Magnus expansion with the Zassenhaus formula
(see Appendix A), we arrive at a remarkably simple expression
for the evolution operator,

U (�) = χ exp

⎡
⎣−λ2

2

∑
i �=j


rirj (�) σx
i σ x

j

⎤
⎦

: exp

[
− iλ

2

∑
i

Fri
(�) σx

i

]
: , (15)

where


rs(�) = 1

2

[
G(R)

rs (�) + G(I )
rs (�)

]
, (16)

χ = exp

[
−λ2

4

∑
i


riri
(�)

]
, (17)

and :: stands for normal ordering. In Eqs. (15) and (16), we
have introduced two bath correlation functions,

G(I )
rs (�) = 1

2

∫ �

0
dt1

∫ t1

0
dt2 {[f (r,t1) ,f (s,t2)]

+ [f (s,t1) ,f (r,t2)]} (18)

and

G(R)
rs (�) = 〈0|Fr(�) Fs(�)|0〉, (19)

and the auxiliary bosonic field

Fr(�) =
∫ �

0
dt f (r,t) . (20)

(Notice that χ is a real number since G(I )
rr = 0.)

Below, we present the functional form of the correlations
functions for two-dimensional bosonic baths (D = 2). Details
of the calculations are provided in Appendixes B and C. We
consider three representative values of the power s which
appears in the qubit-bath coupling constant dependence on
the bath mode momentum [see Eq. (13)]. These values are
s = −1/2, 0, and s = 1/2, corresponding to sub-Ohmic,
Ohmic, and super-Ohmic baths, respectively. This classifica-
tion is standard and follows from the bath’s spectral function
frequency dependence at low frequencies: sublinear (sub-
Ohmic), linear (Ohmic), and superlinear (super-Ohmic) [24].

A. Sub-Ohmic bath

For two-dimensional sub-Ohmic baths (D = 2 and
s = −1/2), the bath correlation function takes a simple closed
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form. The real part reads (see Appendix B 1)

G(R)
rs (�) = −|r − s|

πvω0
+ �

2ω0
θ (v� − |r − s|)

+ �

πω0
θ (|r − s| − v�)

⎡
⎣arcsin

(
v�

|r − s|
)

+
√

|r − s|2
(v�)2

− 1

⎤
⎦ , (21)

where θ (x) denotes the Heaviside step function. The imaginary
part reads (see Appendix C 1)

G(I )
rs (�) = −i�

πω0
θ (v� − |r − s|)

×
⎧⎨
⎩ln

⎡
⎣
√

(v�)2

|r − s|2 − 1 + v�

|r − s|

⎤
⎦

−
√

1 − |r − s|2
(v�)2

⎫⎬
⎭ . (22)

B. Ohmic bath

Choosing D = 2 and s = 0, the real and imaginary parts
of the bath correlation function take the forms [25] (see
Appendixes B 2 and C 2)

G(R)
rs (�) = 1

πω2
0

arcosh

(
v�

|r − s|
)

θ (v� − |r − s|), (23)

and

G(I )
rs (�) = i

πω2
0

[
π

2
θ (v� − |r − s|)

+ arcsin

(
v�

|r − s|
)

θ (|r − s| − v�)

]
. (24)

Notice that the real part of the correlation function vanishes
for distances larger than v�. For this bath as well as others,
the number of qubits within the spatial range of the correlation
function is determined by the ratio v�/a, where a is the
surface code lattice constant.

C. Super-Ohmic bath

Choosing D = 2 and s = 1/2, we find for the real part (see
Appendix B 3)

G(R)
rs (�) = v

πω3
0

[
1

|r − s| − θ (|r − s| − v�)√
|r − s|2 − (v�)2

]
. (25)

For the imaginary part we find (see Appendix C 3)

G(I )
rs (�) = iv

πω3
0

θ (v� − |r − s|)√
(v�)2 − |r − s|2

. (26)

A schematic representation of the spatial dependence of
these correlations functions is shown in Fig. 2.

d

G (R)G (R)Gs = 0 s = 1/2
Δv

1
d

s = −1/2

d3
1

2d − (v

1
2Δ)

vΔ vΔ vΔdd

ln 1
d

(R)

000
d

ln

(I) G(I) G(I)

1
d

Δv
G

d

vΔ vΔ vΔ

Δ) 2(v

1
2− d

000
ddd

FIG. 2. Schematic representation of the spatial dependence of the
correlation functions G(R)

rs (�) and G(I )
rs (�) for s = −1/2, 0, and 1/2.

We use d = |r − s|.

IV. SYNDROME EXTRACTION

Let us assume that the system is prepared initially in the
logical state |↑̄〉 and the boson field initial state is the vacuum,

|
0〉 = (G|Fz〉) ⊗ |0〉b. (27)

We then let the system evolve under the interaction Hamil-
tonian until a time �, when an error correction protocol is
performed flawlessly. The syndrome extraction operator is
equivalent to the application of the projector,

P = 1

2N�2N♦

∏
�

(1 + b�B�)
∏
♦

(1 + a♦A♦), (28)

where a� = ±1 and b♦ = ±1 are the syndromes for each star
and plaquette operator, respectively. Since we are assuming
only bit-flip errors, the projection over stars is just the identity
for a♦ = 1, namely,

P = 1

2N�

∏
�

(1 + b�B�) . (29)

Using that A♦G = G and [X̄,G] = 0, we can rewrite the
projector in a slightly different form,

P = R|↑̄〉〈↑̄|R + R|↓̄〉〈↓̄|R, (30)

where R is the recovery operation chosen to be performed.
In principle, we should consider all possible syndrome

outcomes. However, it is useful to look at the most benign
evolution and assume b� = 1. Such an evolution corresponds
to the system remaining in the vacuum of the gauge fields
after a time �. This nonerror syndrome provides an upper
bound to the available computational time. In addition, it
simplifies the calculations by removing from consideration
a recovery operation that tries to steer the system back to the
computational basis [22,23,26]. Thus, for this particular case,

P = |↑̄〉〈↑̄| + |↓̄〉〈↓̄|. (31)

The environment state is unaffected by the error correction
protocol. If no extra step is taken to dissipate excitations that
pile up over time, the environment will keep a memory of
events that happened during the QEC period. Keeping track of
such excitations between QEC cycles in a fidelity calculation

012336-4
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is a difficult task even for simple, nontopological logical
qubit systems [15,16,18]. For topological qubits, the task is
considerably harder due to the exponential number of terms
that enter in the composition of the computational states.

Thus, in order to make the formulation amenable to an
analytical calculation, we consider an extra step to the QEC
protocol. In addition to projecting the quantum computer wave
function back to the logical Hilbert space, we assume that at
the end of the QEC step the environment is reset to its ground
state. This is equivalent to imposing at the end of the QEC
step the projector limTbath→0 e−H0/kBTbath , for some environment
temperature Tbath defined with respect to some even larger
reservoir.

A consequence of this extra QEC hypothesis is that we
exclude from the calculation any spatial correlation between
QEC periods, as well as memory and spatial correlations
between the time evolution of bras and kets. This new projector
operator can be conveniently written as

P ′ = |
0〉〈
0| + X̄|
0〉〈
0|X̄. (32)

After the projection, the wave function must be normalized
again. For this purpose, consider the normalization factor

〈
0|U †(�)P ′U (�)|
0〉 = |A|2 + |B|2, (33)

where

A = 〈
0 |U (�)|
0〉 (34)

and

B = 〈
0|X̄U (�)|
0〉. (35)

Below, we use the expectation values A and B to compute the
surface code fidelity after one QEC cycle.

V. FIDELITY

The fidelity of the surface code after one QEC cycle can be
defined as

F ≡ |〈
QEC|
0〉|, (36)

where |
0〉 is the initial state of the qubit system and the bath
and

|
QEC〉 = P ′U (�) |
0〉 . (37)

The expectation values A and B now come in handy since they
allow one to obtain a simple expression for the fidelity,

F =
[ 〈
0|P ′U (�)|
0〉〈
0|U †(�)P ′|
0〉

〈
0|U †(�)P ′U (�)|
0〉
]1/2

=
[ 〈
0|U (�)|
0〉〈
0|U †(�)|
0〉

|A|2 + |B|2
]1/2

= |A|√
|A|2 + |B|2

= 1√
1 + |B|2

|A|2
, (38)

where we used that P ′ |
0〉 = |
0〉. Thus, our task of deter-
mining the fidelity is reduced to evaluating the ratio |B|2/|A|2.

VI. MAPPING ONTO A STATISTICAL MODEL

Let us first consider the cases where the bath correlation
function 
rs(�) has both real and imaginary parts finite,
namely, 0 < D + 2s < 3. The insertion of the evolution
operator given by Eq. (15) into Eqs. (34) and (35) results in
very compact expressions for A and B since these expectation
values are taken on the bosonic vacuum. After a short
manipulation, we arrive at

A = χ〈Fz|e−βH G2|Fz〉 (39)

and

B = χ〈Fz|X̄e−βH G2|Fz〉, (40)

where we introduced

H = λ2

2β

∑
i �=j


rirj
(�) σx

i σ x
j (41)

and

β = 1

2π

(
λ

ω0

)2 1

(ω0�)D+2s−2
. (42)

Clearly, Eq. (41) can be interpreted as an effective interaction
between qubits intermediated by the environmental bosons.
The connection to a statistical model becomes more apparent
when we consider that the ferromagnetic state along the
z direction can be expanded in the x basis, namely,

|Fz〉 =
N∏

i=1

( |↑〉i,x + |↓〉i,x√
2

)
. (43)

Inserting this expression into Eqs. (39) and (40), we arrive at

A = χ

2N

∑
S

e−βES 〈S|G2|S〉 (44)

and

B = χ

2N

∑
S

e−βES 〈S|X̄ G2|S〉, (45)

where S stands for the eigenstates of the operator
∏N

i=1 σx
i and

βES = 〈S|βH|S〉. (46)

Notice that the expectation values in Eqs. (44) and (45) vanish
for those states |S〉 where at least one start operator has a −1
eigenvalue. Therefore, those equations can be rewritten as

A = χ

2N

∑
S ′

e−βES′ (47)

and

B = χ

2N

∑
S ′

e−βES′ 〈S ′|X̄|S ′〉, (48)

where the sums are over the subset of states S ′ where all star
operators take positive values:

〈S ′|A♦|S ′〉 = +1. (49)

It is clear now thatA is proportional to the partition function of
a classical statistical spin model with a restricted configuration
space. Then, C is equal to the expectation value of the operator
X̄ in this model.
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The statistical model defined by Eqs. (41) and (46)–(48)
is nontrivial in a number of ways. First, the interaction
term (41) is not purely real. Second, the interaction range
is not necessarily restricted to nearest neighbors. Third,
the constraint imposed by Eq. (49) severely reduces the size
of the configuration space.

Since 〈S ′|X̄|S ′〉 can only take the values ±1, one can rewrite
Eqs. (47) and (48) as sums over “energy” eigenvalues, namely,

A = χ

2N

∑
E′

[g+(E′) + g−(E′)] e−βE′
(50)

and

B = χ

2N

∑
E′

[g+(E′) − g−(E′)] e−βE′
, (51)

where g±(E′) are the number of qubit configurations with
energy E′ and 〈X̄〉 = ±1. The prime indicates that only
configurations where all star operators have +1 expectation
value are considered, Eq. (47).

When the sums in Eqs. (50) and (51) are not restricted
by Eq. (47), the time-reversal symmetry of the Hamiltonian
implies g+(E) = g−(E) for logical operators X̄ containing an
odd number of σx

i qubit operators. Therefore, in this case,
B = 0. For X̄ containing an even number of σx

i operators, for
each “energy” eigenvalue E, 〈X̄〉 is either +1 [and g−(E) = 0]
or −1 [and g+(E) = 0], but the value ofB cannot be predicted.

In the case of a restricted sum, it is straightforward to see
that the separation of configurations in time-reversal symmetry
classes is not useful. Consider that at the vertical boundaries
one can form operators A♦ with three qubits. In this case, even
if a certain configuration |S ′〉 satisfies Eq. (47), its time-reversal
partner will not and therefore will not be included in Eqs. (50)
and (51). Thus, the restriction is equivalent to projecting out
time-reversal partner of |S ′〉.

As explained in Ref. [20], one useful way to understand this
point is to break up the states {|S ′〉} into two groups, {|S ′

+〉}
and {|S ′

−〉}, where

|S ′
+〉 =

∏
j

B�|Fx〉 (52)

and

|S ′
−〉 = Z̄�|S ′

+〉. (53)

Here,
∏

j B� is a product of all plaquette operators that do
not touch the logical error Z̄� for a given path �. It is then
possible to show that this separation leads to the appearance
of an effective local magnetic field that acts only on the
qubits along the path �. This local magnetic field leads to
the time-reversal symmetry breaking in the computation of
the expectation values in Eqs. (50) and (51).

A. Effective interaction and fictitious temperature

The parameter β plays the role of inverse temperature
in the statistical model. From Eq. (42), we see that β is
proportional to λ2, thus serving as a measure of the strength
of the coupling between the qubits and the environment.
The effective exchange interaction amplitude Jij depends on

the bath characteristics (e.g., spatial dimension and spectral
density), on the QEC cycle duration �, and on the ratio a/(�v).

For instance, consider the Ohmic bath, where

β = 1

2π

(
λ

ω0

)2

. (54)

Using Eqs. (23) and (24), the effective Hamiltonian of the
statistical model can be written as

H =
∑
i �=j

Jij σ x
i σ x

j , (55)

with

Jij = 1

2
×
{

arcosh
(

v�
|ri−rj |

)+ iπ
2 ,

|ri−rj |
v�

< 1,

i arcsin
(

v�
|ri−rj |

)
,

|ri−rj |
v�

> 1.
(56)

The real part of Jij is nonzero only between qubits
within the light cone of the bosonic modes. The imaginary
part is present for any pairs of qubits, but decays rapidly
(approximately with the cube of the inverse distance) when
qubits are outside the light cone. For a lattice of size L, an
extreme limit occurs when v� ∼ L, in which case all qubits are
correlated. In the opposite limit, when the QEC cycle period �

is sufficiently short (or, equivalently, that the lattice constant is
large enough), so that a/

√
2 < v� < a, only qubits belonging

to the same plaquette are within the light cone defined by the
free spatial propagation of the bosonic modes and the real part
of the coefficient Jij vanishes beyond nearest neighbors.

VII. CONNECTING β TO THE QUBIT
ERROR PROBABILITY

It is useful to relate the fictitious inverse temperature β of
the spin model to the probability p of a qubit flipping its spin
state during the QEC cycle. The latter can be defined as

p = 〈0| ⊗ 〈↑j |U †
j (�)|↓j 〉〈↓j |Uj (�)|↑j 〉 ⊗ |0〉, (57)

where {|↑j 〉,|↓j 〉} are states of the qubit located at rj , |0〉 is
the bath ground state, and

Uj (�) = Tt exp

[
−λ

2

∫ �

0
dt f (rj ,t) σx

j

]
(58)

is the evolution operator of that qubit coupled to the bath when
the dynamics of all other qubits is frozen. The steps in the
evolution of Eq. (57) are similar to those used in the derivation
of the fidelity. The details are provided in Appendix D. The
result is

p = 1

2

{
1 − exp

[
−λ2

4
G(R)

rj rj
(�)

]}
. (59)

Notice that for λ = 0, p = 0. As the coupling between qubits
and bath grows in magnitude, p approaches 1/2, which signals
a complete randomization of the qubit state.

The functional relation between p and the fictitious tem-
perature β can be easily established by evoking Eq. (42) and
employing the explicit form of G(R)

rj rj
(�) as given in Eq. (B1).
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One obtains

ln (1 − 2p) = −πβ(v�)D+2s−2

LD

∑
k �=0

|k|2s−2[1 − cos(|k|v�)].

(60)

The sum over momentum diverges in the ultraviolet when
D + 2s � 2 and the relation between the error probability and
the fictitious inverse temperature becomes cutoff dependent.
For instance, for D = 2 and s = 0 (Ohmic bath), one finds p =
1
2 [1 − (2v��)−β/2], where � is the ultraviolet momentum
cutoff. However, for D = 2 and s = −1/2 (sub-Ohmic case),
one finds p = 1

2 (1 − e−πβ/4), which is cutoff independent.

VIII. ESTIMATE OF βc

We now provide an estimate of the critical inverse fictitious
temperature, taking a slightly different approach from that
used in Ref. [20]. Let us consider the case when the effective
spin coupling in Eq. (41) is real and only nearest-neighbor
interactions occur, 
rirj

(�) = J for |ri − rj | � a/
√

2 and

rirj

(�) = 0 otherwise. We will carry out a low-temperature
(large β) expansion of Eqs. (50) and (51). The key element
we exploit in this expansion is the following property of
the surface code: At the boundaries of the surface code, the
star operators are defined by three qubits instead of four.
This means that if a certain state |S〉 is included in the
restricted sums definingA andB, its time-reversed counterpart
is included. This is because reversing all the qubit of a
configuration with an eigenvalue +1 for all star operators
yields a −1 eigenvalue for the star operators at the boundaries.

This property is particularly useful in the limit of β → ∞
when the term with the minimum energy, e−βE′

min , carries the
leading contribution to the sums. For β → ∞ and for J < 0,
the only state with minimum energy is a ferromagnetic state
where all spins are pointing along the positive x direction, |Fx〉.
Since the the ferromagnet state with spins pointing along the
negative x is not part of the restricted sum, g−(E′

min) = 0. In
this limit, the spin model is in the ordered phase, with A = B,
resulting in F = 1/2 (lost fidelity).

Consider now a large but finite β. Starting from the state
|Fx〉, the states appearing in A and B can be separated into
two groups, as shown in Eqs. (52) and (53). The first group,
{S ′

+}, corresponds to the states counted in g+(E′), whereas the
second group, {S ′

+}, is accounted for by g−(E′). Therefore,
g−(E′) is equal to the number of states of energy E′ with a
logical error Z̄� for a given path �. At large β, the energy cost
of these states is of the order of the length of Z̄� and they are
suppressed in comparison to other states. The leading terms
contributing to the sums are the minimum energy state |Fx〉 and
the states |S ′

+〉 containing only small loops. However, as the
system size increases the multiplicity factor g+(E′) increases
as well. Its value is proportional to the number of ways one
can apply the Z̄ operation, or equivalently, to the number of
self-avoiding walks (SAWs) from one open boundary to its
opposite. The number of SAWs with a length l is related to
connective constant μ of the lattice and scales as μl .

If the multiplicity factor g−(E′) is high enough, it can
compensate the Boltzmann factor suppression. Then, as β

decreases to a certain value βc, for some energy E′
� a term

of the type μlZ̄ (E′
�) e−βcE

′
� will appear in B with the same order

as the leading term related to the |S ′
+〉 states, namely, e−βcE

′
min .

Here, lZ̄ is the length of Z̄. This criterion provides a crude
estimate for βc:

e−βcE
′
min ≈ μlZ̄ (E′

�) e−βcE
′
� , (61)

leading to

βc ≈ lZ̄(E′
�) ln μ

E′
� − E′

min

. (62)

The difference between E′
� and E′

min is proportional to the
length of the logical error Z̄. Then, the denominator is
of the order of 2n lZ̄J , where n is the number of qubits
interacting with the qubits comprising the logical error Z̄

through the Hamiltonian in Eq. (55). A range of possible values
for the connective constant of a square lattice can be found in
the literature. If we adopt μ = 2.64 [27], set n = 4, and insert
these values into Eq. (62), we obtain βcJ ≈ 0.12.

IX. NUMERICAL EVALUATION OF THE FIDELITY

In light of Sec. VI, we can interpret the ratio B/A as
the expectation value of the Mx =∑j∈� σx

j , namely, the
x magnetization of a linear set of spin-1/2 particles embedded
into a spin system governed by the Hamiltonian of Eq. (55)
with the restriction imposed by Eq. (47). (Here, � denotes the
path defining the logical error X̄.) In the absence of such a
restriction, the computation of B/A in the thermodynamic
limit would follow standard procedures used in statistical
mechanics. The restriction, however, makes an analytical
computation rather difficult, if not impossible. Therefore, we
resort to numerical calculations, both exact and approximate,
to find how B and A (and thus the fidelity F) behave as a
function of β and how this behavior scales with increasing
system sizes.

Below, we focus on the case where the effective interaction
strength Jij is real and only involves nearest-neighbor qubits.
As mentioned earlier, this special case is of significance to
experiments where v� is of the order of a. Short-range
correlated errors in this case can be introduced by any
measurement or operation on individual stars and plaquettes.

A. Exact calculations

For two lattice sizes, N = 25 and 41, we computed A
and B for an X̄ operator that ran vertically through the
middle of the lattice. The computation was done by exhaustive
enumeration of all orthogonal qubit configurations |S〉 that
complied with the constraint 〈S|G2|S〉 �= 0, namely, that
produced only positive plaquette eigenvalues. We verified
that the results were insensitive to the choice of operator
X̄. The resulting fidelity is shown in Fig. 3 as a function of
the inverse fictitious temperature β. For small β (equivalent
to small coupling constant λ), the fidelity stays close to 1
after one QEC cycle. As β increases, the fidelity decays and
tends asymptotically to 1/

√
2, which is expected when B = 0.

Another important feature is that the transition from F = 1 to
F = 1/

√
2 becomes sharper as the system size is increased.

This is the expected behavior when, in the thermodynamic,
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FIG. 3. (Color online) Surface code fidelity of code spaces of
25 and 41 physical qubits in contact with a bosonic bath when star
operators are restricted to positive values (A♦ = 1).

infinite-size limit, a phase transition occurs at some critical
value of β.

We have tested that this behavior is not substantially altered
when the coupling constant J gains a constant imaginary part.
The results are shown in Fig. 4. The main effect of adding
an imaginary part is to create oscillations in the decay of

0

0.2

0.4

0.6

0.8

1

F

0 0.5 1 1.5 2

βJ
R

0

0.2

0.4

0.6

0.8

1

F

βJ
I
 = 0

βJ
I
 = π/8

βJ
I
 = π/4

βJ
I
 = π/2

βJ
I
 = 3π/4

βJ
I
 = π

FIG. 4. (Color online) Fidelity of a code space of 25 physical
qubits in contact with a bosonic bath when star operators are restricted
to positive values (A♦ = 1) and an imaginary part is added to
the coupling constant: J = JR + iJI . The data sets correspond to
different values of JI .

the fidelity as a function of β. The larger the magnitude of
the imaginary part in J , the more oscillations are observed.
However, the relative amplitude of these oscillations decreases
with increasing system size. In the limit of a large number of
physical qubits, we expect the oscillations to be relatively small
and concentrated near the critical value βc.

In order to determine the critical value βc, we resort to
the coherent anomaly method, which has been extensively
and successfully used to determine critical temperatures in
interacting spin systems [28,29].

B. Mean-field solution: Coherent anomaly method

In the coherent anomaly method (CAM), a cluster of
interacting spins is embedded inside a mean-field medium.
Self-consistency is obtained by allowing the spins at the
boundary of the cluster to experience the mean field, which is
set equal to the mean value of the central spin in the cluster.
This constraint provides an equation from which the critical
temperature can be determined. As the cluster size is increased,
the expectation is that the critical temperature obtained in
this way rapidly approaches the exact value of an infinite-size
system [28,29].

More precisely, let Sx
0 denote the central spin operator

and let H be a Hamiltonian describing nearest-neighbor
interactions inside the cluster Hcl as well as the action of
an effective field φeff at the boundary spins,

H = Hcal + J φeff

∑
i∈∂�

Sx
i , (63)

where ∂� denotes the cluster boundary. The expectation value
of the central spin is given by

〈
Sx

0

〉 = Tr
[
Sx

0 e−βH]
Tr[e−βH]

, (64)

where the trace is carried over all allowed spin configurations.
Expanding the exponentials in Eq. (63) to the lowest nontrivial
order in the effective field, we find that〈

Sx
0

〉 = 〈Sx
0

〉
cl − β J φeff

∑
i∈∂�

〈
Sx

0 Si
i

〉
cl, (65)

where 〈· · · 〉cl denotes the expectation value taken with just the
Hamiltonian Hcl and neglecting the boundary field. Setting
〈Sx

0 〉 equal to φeff , we arrive at the equation

1 − βc J
∑
i∈∂�

〈
Sx

0 Sx
i

〉
cl = 0, (66)

which can be solved numerically to yield the critical inverse
temperature β = βc as a function of J . The most costly part
of the procedure is the calculation of the correlation function
〈Sx

0 Sx
i 〉cl, which requires an exhaustive enumeration of all spin

configurations within the cluster.
We employed this method to compute the critical value

of β for surface codes with clusters of increasing sizes and
performed a finite-scaling analysis to estimate the critical value
in the thermodynamic limit. The result is shown in Fig. 5. As in
the case of the exact numerical calculations, we employed the
constrained nearest-neighbor Ising model of Sec. VI with J

real and only allowed for spin configurations with positive
plaquette eigenvalues. We find that βcJ = 0.193(2) for an
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FIG. 5. (Color online) Finite-size scaling of the critical fictitious
temperature Tc obtained from cluster mean-field calculations for
lattice of sizes 13, 25, and 41. A real Ising interaction of strength
J involving only nearest neighbors was used. The circles are the
numerical data and the dashed line is a linear fit. L denotes the linear
size of the surface code.

infinitely large system, which is about 60% higher than
the estimate presented in Sec. VIII (given the roughness of
the approximations involved in the estimate, the discrepancy
seems quite acceptable). The extrapolated value also matches
quite closely the point where the downturn of the fidelity
develops (see Figs. 3 and 4), providing additional support for
the existence of a phase transition in the thermodynamic limit
in the case of nearest-neighbor interactions.

X. DISCUSSION AND CONCLUSIONS

We have presented a fully quantum-mechanical calculation
of the fidelity of the surface code in the presence of a bosonic
bath. We considered the fidelity after a complete quantum
error correction cycle and in the most benign case, when a
nonerror syndrome occurs. An important assumption made in
the calculation was the resetting of the bath to its ground state
after the syndrome extraction. We then expressed the fidelity
as a function of the ratio of two complex amplitudes which
were formulated as expectation values of a statistical spin
model with complex two-body interactions and a restricted
configuration space. We presented both analytical estimates
and numerical evidence that the statistical spin model sustains
an ordered to disordered phase transition in the limit of an
infinite number of qubits. The existence of such a phase
transition can be directly related to the existence of a threshold
on resilience of the surface code: provided that the bath
coupling constant remains lower than a critical value, fidelity
can be maintained close to unity with increasing system size.
This is very good news for those interested in large-scale
implementations of the surface code.

This work provides more detailed derivations and deeper
analyses than Ref. [20], in additional to numerical support to
the existence of an error threshold in the surface code in the
presence of correlated noise. We note that our approach differs

substantially from the surface code literature since we do not
rely on a stochastic error model.

In order to understand the difference between a threshold
due to correlations and the usual stochastic model discussion,
let us consider the case of D = 2 and s = 0 (Ohmic bath).
As shown in Sec. VII, the probability of such a bosonic bath
to produce a bit flip error is p = 1

2 [1 − (2v��)−β/2]. If we
take the ultraviolet cutoff to infinity, then we are bound to find
p = 1/2. However, in most physics systems, and condensed-
matter systems in particular, the cutoff is finite. Hence, we can
expand p for small β and � to obtain

β ≈ 4p

ln |2v��| . (67)

For the Ohmic model, we also found that the real part of the
effective interaction is given by [see Eq. (56)]

Jij ≈ 1

2
ln

(
v�

|ri − rj |
)

(68)

for qubits within the causality cone. In both equations, the
logarithms are slow growing functions and should be regarded
as producing numbers of the same order. Therefore, we can
rewrite p as

β ≈ 2p

J
, (69)

where we took J ∼ Jij ∼ (1/2) ln |2v��|. Now, we have also
found that the inverse critical temperature is [see Eq. (62)]

βc ≈ ln μ

2nJ
. (70)

To be resilient to correlated errors, we must require the system
to be above the critical temperature, thus β < βc. Using the
equations above, we find that

p <
ln μ

4n
. (71)

For the least correlated case, where only nearest-neighbors
effective interactions take place, we have

p <
ln μ

16
∼ 6%. (72)

That is, the threshold for the surface code in the presence
of an Ohmic bath is reduced to at most pc ∼ 6% due to the
introduction of nearest-neighbors correlated errors. If we allow
for longer-range correlated errors, the threshold will steadily
decline.

Within our formulation, exact analytical calculations of
the threshold based on the fidelity are daunting. Thus, it is
likely that quantitative results will always require numerical
simulations. We are in the process of simulating statistical
spin models with more general interactions than the nearest-
neighbor case investigated here. In addition, further investiga-
tions are necessary to relax the assumption of bath resetting
and to evaluate the effects of residual qubit correlations on the
fidelity over multiple cycles. Such studies are also under way.
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APPENDIX A: EVOLUTION OPERATOR

Consider Eq. (14), where the bosonic field in the interaction
picture reads

f (r,t) = (v/ω0)D/2+s

LD/2

∑
k �=0

|k|s (eik·r−i|k|vta
†
k

+ e−ik·r+i|k|vtak). (A1)

We can write U (�) = exp[�(�)], where �(�) follows the
Magnun expansion

�(�) = �1(�) + �2(�) + �3(�) + · · · (A2)

with

�1(�) = − iλ

2

∫ �

0
dt
∑

i

f (ri ,t) σx
i , (A3)

�2(�) = − 1

2!

(
λ

2

)2 ∫ �

0
dt1

∫ t1

0
dt2

×
∑
i,j

[f (ri ,t1),f (rj ,t2)] σx
i σ x

j , (A4)

�3(�) = − i

3!

(
λ

2

)3 ∫ �

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

×
∑
i,j,k

([f (ri ,t1),[f (rj ,t2),f (rk,t3)]]

+ [f (rk,t3),[f (rj ,t2),f (ri ,t1)]])

× σx
i σ x

j σ x
k , (A5)

etc. Since [f (ri ,t1),f (rj ,t2)] is a c number, only the first two
terms in the expansion survive and we can write

U (�) = exp

[
−i

λ

2

∑
i

Fri
(�)σx

i

]

× exp

[
−λ2

8

∑
i,j

G(I )
rirj

(�)σx
i σ x

j

]
. (A6)

where G(I )
rirj

(�) and Fri
(�) are defined in Eqs. (18) and (20),

respectively.
It is convenient to rewrite the first exponential in Eq. (A6)

as a normal ordered term. For this purpose, we note that Fri
(�)

has the form

Fri
(�) =

∑
k �=0

(g∗
ri ,k ak + gri ,k a

†
k), (A7)

where

gr,k = −i
(v/ω0)D/2+s

vLD/2
|k|s−1eik·r(ei|k|v� − 1). (A8)

Thus, we can write

exp

[
− iλ

2

∑
i

Fri
(�)σx

i

]
=
∏
k �=0

exp(a†
kvk − akv

†
k), (A9)

where

vk = − iλ

2

∑
i

gri ,k σx
i . (A10)

Now we can use the Zassenhaus formula applied to bosonic
operators,

e(a†
kvk−akv∗

k) = e(1/2)[a†
kvk,akv

†
k] ea

†
kvk e−akv

†
k , (A11)

which results in

exp

[
−iλ
∑

i

Fri
(�) σx

i

]
=
∏
k �=0

e−(1/2)vkv
†
k ea

†
kvk e−akv

†
k

=
∏
k �=0

e−(1/2)vkv
†
k : ea

†
kvk−akv

†
k :

= e−(1/2)
∑

k �=0 vkv
†
k

× : exp

[
−i

λ

2

∑
i

Fri
(�) σx

i

]
: ,

(A12)

where : (. . .) : denotes normal ordering. We can rewrite the
argument of the first exponential in Eq. (A12) since

∑
k �=0

vkv
†
k = −λ2

4

∑
i,j

⎛
⎝∑

k �=0

gri ,kg
∗
rj ,k

⎞
⎠ σx

i σ x
j

= −λ2

4

∑
i,j

G(R)
rirj

(�) σx
i σ x

j , (A13)

where G(R)
rirj

(�) is defined in Eq. (19). Combining Eqs. (A6),
(A12), and (A13), we arrive at Eq. (15).

APPENDIX B: CORRELATOR G(R)
rs (�)

The correlator in Eq. (19) can be evaluated in the following
way. Inserting Eq. (20) into Eq. (19) and using Eq. (A1), we
find

G(R)
rs (�) = (v/ω0)D+2s

v2LD

∑
k �=0

|k|2s−2eik·(r−s)|ei|k|v� − 1|2.

(B1)

This is integral is convergent provided that 0 < D + 2s < 4.
Assuming D = 2, we can write

G(R)
rs (�) = 2(v/ω0)2+2s

v2

∫
d2k

(2π )2
|k|2s−2eik·(r−s)

× [1 − cos (|k|v�)]

= (v/ω0)2+2s

π v2

∫ �

0
dk k2s−1J0 (k|r − s|)

× [1 − cos (kv�)] , (B2)

where Jn(x) is the nth Bessel function of the first kind.
To proceed further, we consider three representative values
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of s where the integration over momentum is convergent
independent of the cutoff and we can set � → ∞.

1. Sub-Ohmic case

For s = −1/2 we can write

G(R)
rs (�) = 1

π v ω0

∫ ∞

0

dk

k2
J0 (k|r − s|) [1 − cos (kv�)] .

(B3)

Then, Eq. (21) can be obtained by using the integral [30]∫ ∞

0

dx

x2
J0(βx) [1 − cos(αx)]

= −β +
{√

β2 − α2 + α arcsin
(

α
β

)
, α < β,

α π
2 , α > β.

(B4)

2. Ohmic case

For s = 0 we can write

G(R)
rs (�) = 1

π ω2
0

∫ ∞

0

dk

k
J0 (k|r − s|) [1 − cos (kv�)] .

(B5)

Then, Eq. (23) can be obtained by using the integral [31]∫ ∞

0

dx

x
J0(βx) [1 − cos(αx)] = arcosh

(
α

β

)
θ (α − β).

(B6)

3. Super-Ohmic case

For s = 1/2 we can write

G(R)
rs (�) = v

π ω3
0

∫ ∞

0
dk J0 (k|r − s|) [1 − cos (kv�)] . (B7)

Then, Eq. (25) can be obtained by using the integral [32]∫ ∞

0
dx J0(βx) [1 − cos(αx)] = 1

β
− θ (β − α)√

β2 − α2
. (B8)

APPENDIX C: CORRELATOR G(I)
rs (�)

The correlator in Eq. (18) can be evaluated in the following
way. Starting with Eq. (13), we have

[f (r,t1),f (s,t2)] = −2i
(v/ω0)D+2s

LD

∑
k �=0

|k|2s sin[k · (r − s)

+ |k|v(t1 − t2)], (C1)

which allows us to write

1

2
{[f (r,t1),f (s,t2)] + [f (s,t1),f (r,t2)]}

= −2i
(v/ω0)D+2s

LD

∑
k �=0

|k|2s cos[k·(r − s)] sin[|k|v(t1 − t2)].

(C2)

Considering D = 2, we have

1

2
{[f (r,t1),f (s,t2)] + [f (s,t1),f (r,t2)]}

= − i

π

(
v

ω0

)2+2s ∫ �

0
dk k2s+1J0(k|r − s|) sin[kv(t1 − t2)].

(C3)

In Eq. (C3), we introduced an ultraviolet momentum cutoff �.
To proceed further, we need to specify s. Below, we consider
three representative values.

1. Sub-Ohmic case

For s = −1/2, the integral in Eq. (C3) converges. Using
the integral [33]∫ ∞

0
dx J0(βx) sin(αx) = sgn(α)

θ (|α| − |β|)√
α2 − β2

, (C4)

we have

1

2
{[f (r,t1),f (s,t2)] + [f (s,t1),f (r,t2)]}

= − i

π

(
v

ω0

)
sgn(t1 − t2)

θ (v|t1 − t2| − |r − s|)√
v2|t1 − t2|2 − |r − s|2

. (C5)

Carrying out the time-ordered integration over t1 and t2, we
obtain Eq. (22).

2. Ohmic case

For s = 0, we notice that

1

2
{[f (r,t1),f (s,t2)] + [f (s,t1),f (r,t2)]}

= − i

π

(
v

ω0

)2
d

dt2

d

dt1

∫ �

0

dk

k
J0(k|r − s|) sin[kv(t1 − t2)].

(C6)

Using the integral [34]∫ ∞

0

dx

x
J0(βx) sin(αx)

= sgn(α)

[
π

2
θ (|α| − |β|) + arcsin

( |α|
|β|
)

θ (|β| − |α|)
]

(C7)

we obtain

1

2
{[f (r,t1),f (s,t2)] + [f (s,t1),f (r,t2)]}

= − i

π

(
v

ω0

)2
d

dt2

d

dt1

[
π

2
θ (|t1 − t2| − |r − s|)

+ arcsin

( |t1 − t2|
|r − s|

)
θ (|r − s| − |t1 − t2|)

]
. (C8)

Carrying out the time-ordered integration in t1 and t2, we obtain
Eq. (24).
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3. Super-Ohmic case

Similarly to the Ohmic case, for s = 1/2 we write

1

2
{[f (r,t1),f (s,t2)] + [f (s,t1),f (r,t2)]}

= − i

π

(
v

ω0

)3
d

dt2

d

dt1

∫ �

0
dk J0(k|r − s|) sin[kv(t1 − t2)].

(C9)

Using the integral in Eq. (C4), we obtain

1

2
{[f (r,t1),f (s,t2)] + [f (s,t1),f (r,t2)]}

= − i

π

(
v

ω0

)3
d

dt2

d

dt1

[
θ (|t1 − t2| − |r − s|)√
v2|t1 − t2|2 − |r − s|2

]
. (C10)

Carrying out the integration the time-ordered integrations on
t1 and t2, we arrive at Eq. (26).

APPENDIX D: SINGLE-QUBIT FLIPPING PROBABILITY

We can obtain a compact expression for the single-qubit-
bath evolution operator in Eq. (58) by following essentially the
same steps shown in Appendix A. The only formal difference
is that summations over all qubits in the lattice have to be
replaced by a term corresponding to a single qubit j . Thus,
considering Eq. (15), the result is

Uj (�) = χj : exp

[
− iλ

2
Frj

(�) σx
j

]
: , (D1)

where

χj = exp

[
−λ2

8
G(R)

rj rj
(�)

]
. (D2)

since G(I )
rj rj

(�) = 0.
Consider now the change of basis

|↑j 〉 = 1√
2

(|↑j 〉x + |↓j 〉x), (D3)

|↓j 〉 = 1√
2

(|↑j 〉x − |↓j 〉x), (D4)

which allows one to write

〈↑j |Uj (�)|↓j 〉= 1

2

{
exp

[
− iλ

2
Frj

(�)

]
− exp

[
iλ

2
Frj

(�)

]}
(D5)

since : e
−(iλ/2)Frj (�) : = χ−1

j e
−(iλ/2)Frj (�) [see Eqs. (A12)

and (A13)]. We can then write

〈↑j |U †
j (�)|↓j 〉〈↓j |Uj (�)|↑j 〉

= 1
4

{
2 − exp

[
iλ Frj

(�)
]− exp

[−iλ Frj
(�)
]}

= 1
4

{
2 − χ2

j : exp
[
iλ Frj

(�)
]

: −χ2
j : exp

[−iλ Frj
(�)
]

:
}
,

(D6)

which yields Eq. (59) when the expectation value over the bath
vacuum is taken. Now we can insert Eq. (D1) into Eq. (57) to
obtain Eq. (59).
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