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Spectral and temperature dependence of two-photon and free-carrier absorption in InSb

Peter D. Olszak,1 Claudiu M. Cirloganu,1 Scott Webster,1 Lazaro A. Padilha,1 Shekhar Guha,2 Leonel P. Gonzalez,2

Srini Krishnamurthy,3 David J. Hagan,1 and Eric W. Van Stryland1,*
1CREOL & FPCE, The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard,

Orlando, Florida 32826, USA
2Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Ohio 45433, USA

3SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, USA
�Received 10 June 2010; revised manuscript received 6 October 2010; published 13 December 2010�

The nonlinear absorption spectrum of InSb was measured using a combination of tunable �160 fs, �10 ps,
and �150 ns IR sources along with a cryostat for controlling the sample temperature to vary the band gap
energy from 0.17 to 0.23 eV. The measured nonlinear optical properties in InSb are consistent with those
predicted by the models which include two- and three-photon absorption �2PA and 3PA�, multiphoton gener-
ated free-carrier absorption �FCA� and various recombination mechanisms. Temperature-dependent Z-scan and
nonlinear transmission measurements yield information on the temperature and spectral dependence of 2PA,
FCA, and carrier recombination processes of Shockley-Read-Hall, and Auger mechanisms. We find good
agreement between the measured and the modeled nonlinear properties is possible only when the recently
predicted temperature dependence of the FCA is considered. The wavelength- and temperature-dependent 2PA
and 3PA coefficients in InSb were experimentally obtained. The inferred values of the 2PA and 3PA are
consistent with the scaling rules of a simple two-parabolic band model. We further determine recombination
rates from nonlinear transmittance of nanosecond pulses of CO2 laser.

DOI: 10.1103/PhysRevB.82.235207 PACS number�s�: 42.70.Nq, 42.70.Mp, 78.40.Fy, 71.28.�d

I. INTRODUCTION

Multiphoton absorption has been a topic of research for
80 years, starting with the theory for two-photon absorption
�2PA� developed by Maria Goeppert-Mayer1 in the early
1930s but experiments did not begin until 1961 �Ref. 2� just
after the invention of lasers. Generalized theories for multi-
photon absorption in semiconductors were developed over
the following decades.3–6 Keldysh used tunneling theory to
determine the multiphoton transition rate.3 Then, Jones and
Reiss used both the tunneling approach �with Volkov-type
“dressed” wave functions� and perturbation theory assuming
circular polarization, showing that the results are identical
for the calculated transition rates.4 The theory for multipho-
ton interband absorption in semiconductors, assuming linear
polarized radiation and two parabolic bands, produced
simple scaling rules for N-photon absorption, as done by
Brandi and de Araujo5 using Keldysh’s approach in 1983 and
by Wherrett6 in 1984 using perturbation theory. Both theories
predict the absorption coefficient to be proportional to the
band gap energy as Eg

−�4N−5�, leading to Eg
−3 for 2PA and Eg

−7

for three-photon absorption �3PA�. These theories give iden-
tical results for 2PA, however, they are not expected to give
exact quantitative agreement with experiment and are typi-
cally scaled by an empirical constant when being compared
to data.7,8

2PA in semiconductors was experimentally shown in Ref.
11 to scale with Eg

−3 as predicted, thus demonstrating the
utility of the simple two-parabolic band approach as used by
Wherrett and de Araujo.5,6 The 2PA coefficient in semicon-
ductors, �2, can be estimated by,

�2 = K2

�Ep

n2Eg
3� �2��/Eg − 1�3/2

�2��/Eg�5 � = K2

�Ep

n2Eg
3F2, �1�

where n is the refractive index, Ep is the Kane momentum
parameter,9 �� is the photon energy, and F2 defines the spec-
tral dependence.10 The predicted 2PA value is then calculated
using a value for K2=1.94 eV5/2 cm /MW calculated from
first principles and universal constants or with
K2=3.10 eV5/2 cm /MW obtained empirically by fitting the
2PA measured using many semiconductors with different
band gap energies.11,12 This empirical constant used in the
scaling theory allowed prediction of �2 in other materials.
For example, Ref. 11 employs the scaling function for
InSb using Eg=0.18 eV at 10.6 �m and predicts
�2=6.8 cm /MW. Experimentally reported values for the
2PA coefficient of InSb at room temperature have ranged
from 0.2 to 20 cm/MW.13 This inconsistency is due to sig-
nificant effects from free-carrier absorption �FCA� and free-
carrier refraction �FCR� in InSb.14 Other difficulties associ-
ated with these measurements in the midinfrared wavelength
regime include the lack of detectors with high sensitivities
and low noise, alignment issues, as well as beam quality and
pulse shape.

In this paper, we present an investigation of both the tem-
perature and spectral behavior of 2PA and FCA in InSb along
with the relevant carrier dynamics in the 8–12 �m wave-
length band. Three antireflection coated undoped samples are
used with similar thicknesses: 0.54 mm for femtosecond
Z-scans �see Refs. 15 and 16� and picosecond pump probe,
0.65 mm for Fourier-transform infrared �FTIR� spectroscopy
and picosecond Z-scan, and 0.55 mm for nanosecond experi-
ments up to the damage threshold. Semiconductor band gap
energies are known to vary with temperature,17 therefore �2
in InSb is expected to vary accordingly, i.e., with Eg

−3. While
the FCA cross section has been generally accepted in the past
to be a constant for the temperatures and wavelengths used
in this study,18 it has been recently predicted that it varies
significantly with temperature as well as wavelength.19 We
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employ a wide range of pulsewidths to measure the nonlinear
absorption and account for the increasing importance of free-
carrier effects for longer pulses in the determination of non-
linear absorption coefficients; justification for this will be
given in Sec. II. The methodology is to study the ultrafast
multiphoton absorption spectrum using short pulses and then
free-carrier effects using progressively longer pulses. The
complex effects of free carriers on the dynamics when using
the longest pulses are accounted for by adding more param-
eters to the model as needed.

Linear and nonlinear transmission measurements are used
to characterize the temperature and spectral behavior of
FCA. We make use of the known temperature dependence of
the band gap and to verify 2PA scaling rules we use a tunable
picosecond laser system and a nitrogen cryostat to control
the sample temperature. Values of 2PA coefficients obtained
at room temperature using a tunable femtosecond laser sys-
tem are also presented along with an investigation of nonlin-
ear absorption and free-carrier recombination using a nano-
second CO2 gas laser system and a helium cryostat to control
the sample temperature. Great care was taken to ensure that
all of the transmitted light was collected, as this may be a
significant source of error due to the large FCR and other
nonlinear index of refractions.14 Data obtained over this large
temporal pulse range and in the spectral range measured are
self-consistent and agree with the models presented below.

II. MODELING PARAMETERS

The modeling of our data utilizes a propagation equation
for the irradiance I, coupled to a rate equation for the free-
carrier population N, as shown below

dI

dz
= − �1I − �2I2 − �3I3 − �FCANpgI , �2�

dNpg

dt
=

�2I2

2��
+

�3I3

3��
− A�N − N0�

− B�N2 − N0
2� − CN�N2 − N0

2�

=
�2I2

2��
+

�3I3

3��
− ANpg − BNpg�Npg + 2N0�

− CNpg�Npg + N0��Npg + 2N0� . �3�

Here �1 is the one–photon absorption �1PA�, �2 the 2PA, and
�3 the 3PA coefficient. The total free-carrier population N is
the sum of initial or thermal carriers, N0, and photogenerated
carriers, Npg. The FCA cross section, �FCA, is the sum of the
cross section for electrons and holes. The cross section for
holes is about 40 times larger than that for electrons due to
the direct �nonphonon-assisted� heavy-hole to light-hole
transition, so FCA is dominated by free-hole absorption. For
the wavelengths used, 1PA across the band gap is not ener-
getically possible. Linear absorption from defects and impu-
rities can be included in �1; however, our FTIR results fit
well without including such linear losses in our undoped
samples with a defect concentration of �9�1013 cm−3. The
Shockley-Read-Hall �SRH� recombination rate A, spontane-

ous radiative recombination rate B, and Auger recombination
�AR� rate C are neglected for subnanosecond measurements
while FCA and recombination are neglected for subpicosec-
ond measurements as will be discussed later in this manu-
script. We note that the physical processes that dominate in
the spectral region of these experiments become quite differ-
ent when photon energies either above or much further be-
low the band gap are employed.20–22

The advantage of using a range of pulsewidths to study
the nonlinear optical properties of InSb is that we can test the
model through various simplifying assumptions for the vari-
ous pulsewidths from simply 2PA for femtosecond pulses to
increasing complexity as the pulsewidth increases. For ex-
ample, instantaneous absorption processes such as multipho-
ton absorption are more easily investigated using ultrashort
pulsewidths so that large irradiances can be obtained with
negligible effects from photogenerated carriers which build
up during the pulse. The picosecond range is ideal for study-
ing nonlinear absorption including multiphoton absorption
and population dependent FCA since recombination effects
are negligible. For nanosecond pulsewidths, nonlinear ab-
sorption and carrier recombination processes yield effective
lifetimes in the nanosecond range and must be considered,
further complicating the analysis. Thus, the methodology is
to study the material parameters with progressively longer
pulses adding more parameters to the model as they become
significant.

III. EXPERIMENTAL AND DISCUSSION

A. Linear spectroscopy experiments

Measurements of the linear transmittance from 8 to
12 �m at room temperature exhibit FCA due to the thermal
population in InSb. The FCA cross section can therefore be
isolated through linear transmittance measurements. To de-
termine the temperature dependence of the FCA spectrum,
the linear transmittance is measured at different temperatures
via FTIR using a Thermo model 100 FTIR spectrometer and
a microminiature refrigerator �MMR model K-77� nitrogen
cryostat to control the sample temperature. Our FCA values
compared to theory are shown in Fig. 1, demonstrating that
the FCA cross section is not constant, but has a spectral and
temperature dependence.19

The carrier population is taken to be equal for holes and
electrons. This is a valid assumption since our anti-reflection
coated sample �Galaxy Compound Semiconductors Inc.
�111� cut single crystal� is undoped with a defect concentra-
tion of approximately 9�1013 cm−3, and this is approxi-
mately equal to the thermal population at 160 K. The thermal
population at room temperature is approximately 2
�1016 cm−3. The Boltzmann approximation for carrier con-
centration leads to an error of almost 10% due to the degen-
erate population and a more accurate calculation based on
the Fermi-Dirac distribution is used. At 80 K, the thermal
density of carriers is much smaller �5�109 cm−3� while the
population is nondegenerate for temperatures below 200 K.
The carrier population becomes too small at low tempera-
tures making it difficult to measure the loss with this experi-
ment, as the total linear absorption is less than 5% below 200
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K. This leads to large experimental uncertainties below 200
K so that the total experimental error �plus or minus one
standard deviation giving 68% confidence for a normal dis-
tribution� for FCA is estimated to be �10% at 300 K and
�100% at 180 K. For the low-temperature range, we use the
FCA cross sections determined from fitting the picosecond
Z-scans �to be discussed in the following sections�, which
agrees with the theoretical values reported in Ref. 19.

Although the FCA cross section in InSb was previously
accepted to be a constant,18,23 for the range of temperatures
and wavelengths used in our experiments, we have found
from FTIR measurements of the linear absorption and pico-
second Z-scan measurements �see the following sections�
that it is actually temperature dependent. Moreover, it is in
agreement with the recent predictions of Ref. 19 as shown in
Fig. 1. The FCA is temperature dependent due to the change
in the Fermi-Dirac distribution of carriers. This distribution
is narrower for lower temperatures and a larger fraction of
holes are available for absorbing longer wavelength photons
due to the constraints for energy and momentum conserva-
tion. This results in a larger FCA cross section and a red-
shifted absorption edge for low temperature.19 The upswing
of the data near 8 �m in Fig. 1�a� might be due to some
unaccounted reflection loss since the broadband AR coating
was optimized for 10 �m; however, the band edge is near
7 �m and the linear loss starts before the band edge due to
states near the edge.

B. Femtosecond nonlinear experiments

The absorptive bound electronic effects can be isolated
from FCA by measuring the nonlinear transmittance �in the

2PA or 3PA wavelength range respectively� using focused
femtosecond pulses to achieve large irradiance with small
energies. The 2PA spectrum of a 0.54 mm thick intrinsic
antireflective coated InSb sample at room temperature is
measured by the Z-scan technique15,16 using a regeneratively
amplified femtosecond �Clark-MXR, model 2010� Ti:Sap-
phire laser operating at 1 kHz ��2 mJ per pulse� at 775 nm,
which pumps a �Light Conversion Ltd., model TOPAS� op-
tical parametric generator/amplifier and difference frequency
generator �OPG/OPA/DFG�. Examples of data and fitting are
shown in Fig. 2. A beam waist w0, defined as half width at
1 /e2 of the maximum �HW /e2M�, of 40 to 60 �m �depend-
ing on wavelength� is determined from fitting the InSb
Z-scan results across the measured spectral range from 8 to
12 �m.

For Z-scan data that results from pure 2PA, the full width
at half maximum �FWHM� of the open-aperture Z-scan
curve is equal to twice the Rayleigh range and the beam
waist is determined with an error �68% confidence� of
��5%. In the cases where only 2PA is present this is as
accurate as using a knife edge scan or pinhole scan. Although
these experiments have the advantage of independently mea-
suring multiphoton absorption, the small energies used make
it difficult to align the setup and accurately calibrate the en-
ergy incident on the sample �68% confidence errors were
estimated to be around �30% with a calibration performed
with a Laser Precision RK-5100 pyroelectric radiometer with
a lock-in amplifier�. The spectrum of the pulse was measured
using a monochrometer �Oriel, Cornerstone 130 M-74000,
150 lines/mm Au coated grating� with a mercury cadmium
telluride detector. Difficulties were encountered while per-

FIG. 1. �Color online� FCA spectral theory
�solid lines� from Ref. 19 and data �open circles�
from linear absorption measurements in a
0.65-mm-thick InSb sample at �a� 300 K vs
wavelength and �b� 10.6 �m vs temperature.

FIG. 2. �Color online� Open-aperture Z-scan
data at several input pulse energies using 300 K a
0.54-mm-thick InSb sample at �a� 9 �m fit with
	FWHM=370 fs, w0=45 �m, �2=2.9 cm /MW
and �b� 11.5 �m fit with 	FWHM=500 fs,
w0=63 �m, �2=2.0 cm /MW.
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forming autocorrelations on these pulses as the small ener-
gies available prevented us from obtaining reliable results.
However, we measured the spectral widths for the wave-
length range considered �between 8.5 and 9.5 �m�. At each
wavelength, based on the measured spectra, the correspond-
ing transform limited pulsewidths was calculted to be about
160 fs FWHM. The dispersion of the ZnSe and BaF optics
was then considered at each wavelength to calculate the
pulsewidth at the sample where the pulse was broadened to a
maximum of �500 fs FWHM. This assumption allowed us
to calculate the minimum pulsewidth possible at the sample,
and implicitly, a lower limit for the 2PA coefficient. Total
absolute experimental error �68% confidence� for 2PA is es-
timated to be �50%. Results for the 2PA spectrum at room
temperature from femtosecond data are discussed later along
with picosecond data.

C. Picosecond nonlinear experiments

The linear transmittance as a function of temperature is
also measured at several wavelengths using the experimental
picosecond Z-scan setup with small energies while the
sample is kept stationary and out of focus to ensure negli-
gible nonlinear effects. This allows the characterization of
FCA dependence on temperature before any nonlinear mea-
surements. It is found that our linear absorption measure-
ments agree within �25% with the product of the theoretical
cross section and the population density �note that both cross
section and population are temperature dependent� as sug-
gested in Ref. 19. Data at room temperature for 9.6 and
10.6 �m are shown in Fig. 3. These FCA values also agree
with the results from FTIR measurements. As mentioned in
the previous section, at temperatures below 180 K where the
thermal population is orders of magnitude smaller, the linear
absorption is so small that the cross section cannot be deter-
mined with useful precision. To determine the FCA cross
section at low temperature, we use the nonlinear absorption
of photogenerated carriers and compare our experimentally
obtained values to those predicted theoretically.19

The FCA due to photogenerated population N�t� in Eq. �4�
can be measured in combination with 2PA or 3PA by the
Z-scan technique using picosecond pulses. The more energy
that is absorbed by 2PA, the more important the contribution
from FCA becomes. The irradiance where the absorption

contributions from 2PA and FCA are approximately equal is
called the critical irradiance, Icr,

24 and is estimated to be
6 MW /cm2 for a 10 ps pulse at 10 �m considering only
2PA and FCA without carrier recombination or diffusion.
The total accumulated carrier population for this case is de-
termined by the integral,

N�t� = 	
−


t

dt�
�2I�t��2

2��
. �4�

These measurements are useful for determining the shape of
the 2PA and FCA spectrum at different temperatures for
comparison to theory and scaling rules. Temperature-
dependent picosecond Z-scan measurements of a 0.65-mm-
thick intrinsic antireflection coated InSb sample are per-
formed using a 10 Hz modelocked Nd:YAG laser �EKSPLA,
model PL2143� pumping an OPG/OPA/DFG �model:
PG401/DFG� with tunability from 420 nm to 18 �m. The
temporal pulsewidth was determined �68% confidence� to be
10�1 ps �FWHM� at 10.6 �m from pump probe measure-
ments in InSb discussed later in this section. A beam waist
w0 of 120 to 140 �m was determined from fitting the InSb
Z-scan results across the measured spectral range from 8 to
12 �m at irradiances well below the Icr. Examples of the
Z-scan data and fitting are shown in Fig. 4. It is found that
for the smallest energy picosecond Z-scans �with small
changes in transmittance �5%�; the fitting for 2PA is almost
independent of the FCA cross section used allowing for a
good estimation of the beam waist and 2PA absorption coef-
ficient. It is also found through fitting of data taken at larger
irradiance levels for the FCA cross section that the values
obtained are consistent with the theoretical values of �FCA
over the entire temperature range studied. Therefore, theoret-
ical values for FCA are adopted in modeling so that the only
fitting parameter is 2PA. Part of the justification for doing
this is that the theoretical values for FCA cross section were
independently verified by linear absorption except at the
lower temperatures. The 2PA coefficients are compared to
theory and to values determined by femtosecond Z-scans
showing agreement between the data and model using the
values for the FCA cross sections given by Ref. 19.

Since the photogenerated free-carrier population increases
for longer pulsewidths, the associated refraction is also more

FIG. 3. �Color online� Linear transmission
data in a 0.65-mm-thick InSb sample obtained at
�a� 9.6 �m and �b� 10.6 �m, using �10 ps
FWHM pulsewidths, compared to transmission
using theory from Ref. 19 for FCA and the same
theoretical absorption reduced by 25%.
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significant and potentially problematic. It is important to note
that nonlinear refraction can result in collection losses that
will incorrectly overestimate the value for nonlinear absorp-
tion. For our picosecond measurements we are confident that
we are collecting all of the energy. The main sources of error
are due to absolute energy calibration and pulsewidth mea-
surement. Total experimental error for 2PA is therefore con-
servatively estimated to be �50%. Although the absolute
error in magnitude �due to noise and systematic error� is
quite large, the relative error between spectral data is smaller
�due to noise� allowing for accurate comparison of our data
to the trend of the calculated spectra.

We also performed several frequency degenerate pump-
probe experiments at 10 �m on the 0.54-mm-thick intrinsic
antireflective coated InSb sample. The probe beam was kept
at a much smaller irradiance in order to not induce any non-
linear effects by itself and its transmittance was monitored
for different delays with respect to the pump beam. The spot
size ratio was approximately 4:1 �pump/probe� with the
probe having an irradiance at least ten times smaller than that
of the pump. We used a standard noncollinear geometry with
an angle between the two beams of �7°. The polarization
�linear� of the probe was rotated by 90° with respect to the
pump to minimize coherent artifacts which would have com-
plicated the interpretation of the experimental data. Potential
complications related to 2PA anisotropy are eliminated by
using a �111� crystal. These transient experiments provided a
few advantages over the other single beam techniques. They
allowed for the estimation of the employed pulsewidths di-
rectly while effectively decoupling the bound-electronic ef-
fects from the free-carrier effects. The short delay curves
��100 ps� shown in Fig. 5�a� allow for the monitoring of

the free-carrier population buildup and for the determination
of the 2PA coefficients. It should be noted here that in gen-
eral, the measured 2PA coefficient depends on the relative
polarization state of the two beams as well as the crystal
orientation.25 In our case, since the two beams are perpen-
dicularly polarized, we use different 2PA coefficients for fit-
ting. �2,S corresponds to the “self” 2PA experienced by the
pump beam and determines the density of generated photo-
carriers. The other coefficient, �2,C �cross� describes the ab-
sorption experienced by the probe beam due to the presence
of the pump. The data taken with longer delays shown in Fig.
5�b� ��1 ns� show relaxation on a picosecond time scale
due to the Auger recombination, which is much faster than
the direct nonradiative recombination time which is usually
on the order of microseconds.19,26 We were able to obtain a
consistent fitting for several pump energies using the same
parameters �see Fig. 9� and a fixed value for FCA as
extracted from the linear measurements. These experiments
provide a much better indication for the magnitude
of the Auger coefficient as the fits suggest a value of
C=6.5�10−26 cm6 /s with a relative error �68% confidence�
of about �20%. This is possible since at longer delays the
only absorption present is due to the free-carrier population,
and by monitoring the transmittance one can monitor directly
the evolution of the carrier population. Previous measure-
ments were done mostly employing much larger densities of
photogenerated carriers through one photon pumping and
yielded numbers spanning more than one order of
magnitude.26 Our recent publication discussing nonlinear re-
fraction and Auger recombination in InSb used a similar
value to fit previously published data.14

FIG. 4. �Color online� Open-aperture Z-scan
data using 300 K InSb at �a� 9.6 �m fit with
	FWHM=10 ps, w0=140 �m, �2=3.4 cm /MW,
�FCA=7.3�10−16 cm2, �b� 10.6 �m fit with
	FWHM=10 ps, w0=140 �m, �2=3.5 cm /MW,
�FCA=6.8�10−16 cm2, and 82 K InSb �c�
9.6 �m fit with 	FWHM=10 ps, w0=140 �m,
�2=1.0 cm /MW, �FCA=3.0�10−15 cm2, �d�
12 �m fit with 	FWHM=10 ps, w0=140 �m,
�3=0.025 cm3 /MW2, �FCA=3.4�10−15 cm2.
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D. Two-photon absorption

The 2PA absorption values measured by Z-scan agree well
with the spectral shape predicted by the detailed theory of
Ref. 19 for both spectral and thermal variation as shown in
Figs. 6 and 7. It is important to note that fitting the femto-
second data gives the lowest possible 2PA value as the error
bars in Fig. 6 suggest, since the pulsewidths used in fitting
are calculated assuming the pulsewidths at the output of the
OPG are transform limited. Picosecond Z-scan data indepen-
dently confirm the predicted spectral and temperature depen-
dence of 2PA. Additionally, the results for femtosecond
Z-scans and picosecond Z-scans at 300 K shown in Fig. 6

agree well with each other, �2�3 cm /MW. The absolute
values also agree within a factor of 3 to the values calculated
using the simple parabolic band model of 2PA with an em-
pirical constant �K2=3.1 eV5/2 cm /MW� previously deter-
mined for semiconductors.9 The thermal variation in 2PA due
to the change in band gap energy agrees slightly better with
the predictions of Ref. 19 than with that of Ref. 6 and the
difference in absolute magnitude between the theory of Ref.
19 and the data is within experimental error, except very near
the band edge.

To compare all the data to theory of Ref. 6 simultaneously
it is useful to scale the data in order to isolate the spectral or
band gap dependence. The portion of Eq. �1� in the brackets
is called F2 or the spectral function. The scaled 2PA coeffi-
cient is obtained by dividing the measured 2PA value by F2
and �Ep then multiplying by n2. A comparison of all the 2PA
data with the scaling functions is shown in Fig. 8. As seen in
Fig. 8, if the theory of Ref. 6 is scaled by setting
K2=1.9 eV5/2 cm /MW, the spectral dependencies closely
match the predictions of Ref. 19. Thus the picosecond values
agree with both theories if this value of K2 is used. This level
of agreement with Wherrett’s theory, Ref. 6, using an empiri-
cal scaling constant demonstrates the utility of a simple two-
parabolic band model as well as the accuracy of an extrapo-
lated value based on the scaling rules derived from it.

E. Three-photon absorption

At wavelengths longer than the 2PA band edge, 3PA is the
dominant absorption mechanism. This is the case for InSb at
80 K with wavelengths longer than 10.9 �m. In this
work, 3PA in InSb at 80 K is determined by fitting
picosecond Z-scan data shown in Fig. 4 to give
a3
0.025�0.012 cm3 /MW2 at 12 �m. We recently calcu-
lated the degenerate 3PA spectrum of ZnSe using perturba-
tion theory based on a Kane four-band model consisting of
three valence bands �heavy-hole, light-hole, and split-off�
and one conduction band.27 This model for zincblende struc-
tures accounts for the nonparabolicity of the bands and
nonzone-center wave functions. Our experimental 3PA re-
sults for ZnSe matched the measured spectral shape, al-
though the predicted values were a factor of 3.2 smaller than
the experimental data for ZnSe. Our theoretical value for
InSb at 80 K using Eg=0.228 eV is �3
0.012 cm3 /MW2

FIG. 5. �Color online� Degenerate pump-probe data in InSb at
10 �m with cross-polarized beams; both the �a� short and �b� long
delay curves are fit with the same parameters: 	FWHM=10 ps,
�FCA=6.8�10−16 cm−2, w0=500 �m, L=450 �m, �2,S

=1.4 cm /MW, �2,C=1.9 cm /MW, C=6.5�10−26 cm6 /s. Lin-
early polarized beams are used in these experiments.

FIG. 6. �Color online� Comparison of 2PA
values obtained from fitting femtosecond and pi-
cosecond Z-scan data with Wherrett’s theory,
Ref. 6, scaled by an empirical factor and more
recent theory, Ref. 19 at �a� 80 K and �b� 300 K.
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at 12 �m is approximately a factor of 2 smaller than the
experimental value. It should be noted here the agreement of
this data with the 3PA model is achieved using the theoretical
value for FCA at low temperature and a better fit for the
largest energy used could be obtained by slightly varying the
FCA value.

F. Nanosecond experiments

Nanosecond experiments are used to test our full model
for nonlinear transmission, including the free-carrier recom-
bination terms starting with irradiances showing linear trans-
mittance up to the damage threshold. The sample is held in
focus for two reasons: first, it is easier to determine the dam-
age threshold by slowly increasing the energy; second, it
proved difficult to scan the sample through focus to perform
Z-scan measurements as it was mounted in a large CTI-
Cryogenics Model 22 helium cryostat which was used to
enable measurements at temperatures down to 10 K.

A single mode �both temporal and spatial� transverse ex-
citation atmospheric pressure CO2 laser with a gain-switched
pulsewidth of 150 ns FWHM and a beam waist w0 of
180 �m �measured by knife-edge scans� is used to obtain
data from the linear to nonlinear regime to the laser-induced
damage threshold �LIDT�. The single longitudinal mode is
obtained using a low pressure discharge cell within the laser
cavity �Pulse Systems, model LP-15� low pressure, trans-
verse excitation CO2 gas laser gain cell. The LIDT is
reported28,29 to be 1–2 J /cm2 which is similar to the fluence
levels that result in surface damage in this work. The tempo-
ral pulse profile is asymmetric �shown in the inset of Fig.
9�a�� and so it is important that the profile is recorded for

modeling and monitored during the experiment. It is long
enough to be measured using a digital storage oscilloscope
�Tektronix, TDS680C, 1GHz/5Gs� with a fast gold-doped
germanium detector. A typical profile and normalized nonlin-
ear transmittance data recorded at 80 K and 300 K with the
corresponding fittings are shown in Fig. 9.

The importance of taking the temperature dependence of
the FCA cross section into account when modeling nonlinear
absorption is demonstrated by the improved agreement ob-
tained for 2PA at low temperature by using the FCA values
predicted by theory in Fig. 10. Attempting to fit the nonlinear
transmittance data with a fixed, temperature independent,
FCA cross section of �FCA=8.6�10−16 cm2 gives best fit
values for 2PA which produce a spectrum inconsistent with
the temperature dependence of 2PA as predicted by theory
and verified by picosecond measurements. Using the tem-
perature dependent values for FCA cross sections �with
�FCA=3.5�10−15 cm2 at 80 K and �FCA=6.8�10−16 cm2

at 300 K� allows for the accurate determination of 2PA as
shown in Fig. 10. The nanosecond data is finally fit using
FCA cross sections and 2PA coefficients consistent with
theory19 and obtained from FTIR measurements and
picosecond Z-scan data. The data agrees remarkably
well with the model using absorption values determined with
shorter pulses and recombination rates that are consistent
with the published26 range of values at room temperature
B
1–7��10−11 cm3 /s and C
4–2000��10−26 cm6 /s
and previous30 work at low temperatures �B
1�10−9�.

G. Exciton enhancement

It has been suggested that exciton enhancement should be
considered in the theoretical calculation of 2PA

FIG. 7. �Color online� Picosecond Z-scan re-
sults for 2PA vs. temperature and vs photon en-
ergy normalized to the band gap vs temperature
�a� and energy �b� at 9.6 �m and vs temperature
�c� and energy �d� at 10.6 �m compared to
theory.
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coefficients.31 Exciton enhancement is an increase in the ab-
sorption rate due to transitions that include energy levels of
exciton states near the bottom of the conduction band. The
discrepancy between theoretical and measured values ob-
served in this work is larger near the band edge, which is
consistent with the predicted spectral behavior of exciton
enhancement.32 Therefore, a comparison of the picosecond
data at 9.6 �m and 10.6 �m to both the theory of Ref. 6
without empirical factors and the theory of Ref. 19 while
including exciton enhancement of 2PA is shown in Fig. 11.
Nanosecond data at 10.6 �m modeled with 2PA as a free
parameter is included for the same comparison in Fig. 12.
The picosecond data at 300 K agrees best with Krishnamur-
thy’s theory while the nanosecond data agrees best with
Wherrett’s including exciton enhancement. Below 150 K the
picosecond data agrees best with Krishnamurthy’s theory
with exciton enhancement and the nanosecond data agrees
best with Wherrett’s including exciton enhancement. In be-
tween 150 and 250 K the both sets of data agree best with
Wherrett’s theory without exciton enhancement. Overall, the
two sets of data show good agreement with each other and
consistently show improved agreement with theory at low
temperature when exciton enhancement is included.

H. Carrier recombination rates

The Shockley-Read-Hall recombination involves energy
levels related to crystal defects, and is therefore different
from sample to sample. The SRH lifetime is taken to be a
constant of 2 �s and it is found that this process is negli-
gible for fitting our data and values ranging from 2 to 0.5 �s
make little difference in the fitting. The parameter B is
expected to decrease with increasing temperature.27

Radiative recombination is therefore varied when fitting
the nanosecond nonlinear transmittance data from
B
0.7�10−10 cm3 /s at 300 K to B
3.3�10−10 cm3 /s at
80 K. Using larger values for the radiative recombination
rate results in smaller fitted values for the Auger recombina-
tion rate. Including radiative recombination also results in a
better overall fit at low temperature. The Auger rates were
determined from picosecond pump-probe experiments at
room temperature to be C=6.5�10−26 cm6 /s and from fit-
ting the nanosecond nonlinear transmittance data to be C

7�10−26 cm6 /s at 300 K and C
3�10−25 cm6 /s at 80

FIG. 8. �Color online� �a� 2PA coefficient scaled �by isolating
the Eg

−3 in Eq. �1� from picosecond Z-scan experiments and
nanosecond results at 300 K and 80 K compared to Wherrett’s
scaling theory from Ref. 6 where the solid line is generated
using K2=3.1 eV5/2 cm /MW, the dashed line a value of
K2=1.9 eV5/2 cm /MW, and the dotted line a value of
K2=1.3 eV5/2 cm /MW. �b� Same as for �a� except that here the
data is scaled from Eq. �1� to isolate the F2 spectral dependence.

FIG. 9. �Color online� Nonlinear transmission
data up to the damage threshold at �=10.6 �m of
InSb �a� 300 K fit with w0=180 �m, �FCA=6.75
�10−16 cm2, 	=2 �s, B=0.7�10−10 cm3 /s, �2

=9.5 cm /MW, C=7�10−26 cm6 /s and �b� 80 K
fit with w0=180 �m, �FCA=32.4�10−16 cm2, 	
=2 �s, B=3.3�10−10 cm3 /s, �2=0.5 cm /MW,
C=30�10−26 cm6 /s. The drop in transmission
near 1 mJ indicates the onset of damage. Inset
shows the input pulse from the nanosecond CO2

laser which is included in the modeling.
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K. This trend is slightly contradictory to the expected trend
since the band gap energy is considerably larger at lower
temperature. Auger rates are generally smaller for larger
band gap semiconductors,26 and it is predicted by Ref. 19
that the Auger coefficient should be approximately four
times smaller at 80 K than 300 K. The room-temperature
value for Auger recombination that we measure with nano-
second experiments is at the lower end but within the range
of reported values.26 Auger recombination is the dominant
decay term for modeling the nanosecond data, and although
literature values for SRH and radiative decay were included

in the model for nanosecond data they have negligible effects
for the fitting of picosecond data.

IV. CONCLUSIONS

In this paper we present an investigation of both the tem-
perature and spectral behavior of 2PA and FCA in InSb using
tunable infrared sources with pulsewidths spanning six or-
ders of magnitude from �160 fs to �150 ns which are re-
quired to more accurately determine the photophysical pa-
rameters and their nature. We compare our experimental
results to predictions from a simple two-parabolic band
model6 and to more recent calculations that include a more
accurate band structure.19 A methodology is demonstrated
using different temperatures, pulsewidths and photon ener-
gies to measure nonlinear absorption and allowing separate
as well as combined modeling of multiphoton absorption and
FCA parameters.

The measured 2PA spectrum agrees well with the spectral
shape predicted by both theories for thermal variations �from
80 to 300 K� at fixed wavelengths and for spectral variations
�from 8 to 12 �m� at fixed temperatures.6,19 The measured

FIG. 10. �Color online� Comparison of values
obtained from fitting nanosecond data for 2PA �a�
with a constant FCA cross section and �b� with a
temperature-dependent FCA cross section.

FIG. 11. �Color online� 2PA picosecond data vs temperature
controlled band gap at �a� 9.6 �m and �b� 10.6 �m with and with-
out exciton enhancement.

FIG. 12. �Color online� Picosecond and nanosecond 2PA data at
10.6 �m compared to theory with and without exciton
enhancement.
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values agree with the new theoretical values for 2PA �Ref.
19� and27 3PA within error; however, the discrepancy be-
tween data and theory is larger near the absorption edge con-
sistent with exciton enhancement. A comparison of both
theories with the picosecond data including exciton enhance-
ment shows improved agreement near the absorption edge.
We note that the enhancement of absorption near the edge
indicates that there are states that become resonant near the
band edge which are not included in the model, and these
states are not necessarily only excitonic states.

FCA cross section values are confirmed through modeling
of 1PA, 2PA, and 3PA data. In order to obtain a consistent
analysis of the 2PA spectra for nanosecond pulsewidths, it is
necessary to consider that the FCA cross section is tempera-
ture dependent. FCA cross section values were measured at
and above 200 K through 1PA via temperature controlled
Fourier transform infrared measurements and temperature-
controlled linear transmittance measurements of picosecond
pulses. This along with FCA values used for the entire tem-
perature range from 80 to 300 K to fit picosecond Z-scans
and nanosecond nonlinear transmittance measurements, con-

firm that the FCA cross section is temperature dependent as
recently predicted by theory.19

Recombination rates are included for modeling nanosec-
ond data, and it is found through modeling this data that
these rates change with sample temperature. The agreement
found at room temperature is quite good; however, the trend
found with varying temperature is slightly contradictory with
the expected trend for the Auger process. Since the band gap
energy is considerably larger at lower temperatures the Au-
ger rates are generally smaller for larger band gap semicon-
ductors and it is predicted by Ref. 19 that the Auger coeffi-
cient should be approximately four times smaller at 80 K
than 300 K.
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