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RKKY interaction in disordered graphene
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We investigate the effects of nonmagnetic disorder on the Ruderman-Kittel-Kasuya-Yoshida (RKKY)
interaction in graphene by studying numerically the Anderson model with on-site and hopping disorder on
a honeycomb lattice at half filling. We evaluate the strength of the interaction as a function of the distance R

between two magnetic ions, as well as their lattice positions and orientations. In the clean limit, we find that the
strength of the interaction decays as 1/R3, with its sign and oscillation amplitude showing strong anisotropy.
With increasing on-site disorder, the mean amplitude decreases exponentially at distances exceeding the elastic
mean free path. At smaller distances, however, the oscillation amplitude increases strongly and its sign changes
on the same sublattice for all directions but the armchair direction. For random hopping disorder, no sign change
is observed. No significant changes to the geometrical average values of the RKKY interaction are found at small
distances, while exponential suppression is observed at distances exceeding the localization length.

DOI: 10.1103/PhysRevB.85.075420 PACS number(s): 71.70.Gm

I. INTRODUCTION

For the last decade since its first synthesis, graphene has
attracted great attention of both theorists and experimentalists
due to its 2-dimensional crystal structure, the linear energy
dispersion, where the quasi particles are massless chiral Dirac
fermions and the carrier density being controllable by a
gate voltage.1 An unconventional behavior of the Ruderman-
Kittel-Kasuya-Yoshida (RKKY) interaction between magnetic
impurities in undoped graphene was recently reported.2–4

Rather than the conventional 1/R2 decay expected for two-
dimensional systems, where R is the distance between the two
magnetic moments, the RKKY interaction is found to fall off
as 1/R3 at the Dirac (neutrality) point. Furthermore, it was
found that due to particle-hole symmetry, only ferromagnetic
(antiferromagnetic) interactions are allowed when two impu-
rities are located on the same (different) sublattice.2

In a recent experiment, the authors of Ref. 5 measured
the Kondo effect on graphene samples with a large number
of vacancies, confirming that these defects induce local
magnetic moments.6,7 Thus, upon increasing the control over
the location of such defects, one might be able to also measure
the RKKY interaction as a function of the distance and location
of local moments. Indeed, a direct detection of the RKKY
interaction is feasible with the recent development of a tech-
nique to measure the magnetization curves of individual atoms
using spin-polarized scanning tunneling spectroscopy.8,9 With
this technique, the orientation and distance dependence of the
exchange interactions can be observed precisely.

The influence of disorder on the RKKY interaction in
conventional metals has been thoroughly studied.10–12 These
studies found that the main effect of weak disorder is to ran-
domize the electron phase, resulting in an exponential decrease
of the ensemble-averaged interaction amplitude with distance.
However, the average does not properly characterize the typical
interaction strength, as any particular disorder configuration
has long-range correlations. Indeed, the typical value, identi-

fied as the geometrical average (J geo
RKKY ≡ e〈(1/2) ln[JRKKY]2〉avg ) is

found to have the same power-law behavior with distance as the
amplitude of the interaction in the clean limit. Consequently,
at least for conventional metals, weak disorder is not likely
to cause any critical change in physical properties which
derive from the RKKY interaction. It is only when the system
approaches the localized regime that the geometrical average
is exponentially suppressed.13

In light of these facts, our study focuses on two main
questions. The first is how a pair of magnetic impurities in
disordered graphene will interact in general. We consider
impurities located along any lattice orientation, and not only
along the zigzag and armchair lines. The second is how this
interaction changes with increasing disorder strength.

II. KPM FORMULATION OF RKKY INTERACTION

Let us begin by considering a general expression
for the RKKY exchange-coupling constant in terms of
the unperturbed (disorder-free) electronic Green’s function
G(0)(ri ,rj ,ω),14

JRKKY = J 2 S(S + 1)

4πS2

∫
dωf (ω)Im

× [G(0)(rj ,r i ,ω)G(0)(r i ,rj ,ω)] (1)

= J 2 S(S + 1)

4πS2
Im

∫
dωf (ω)

×
∑
n,m

F
ij
nm

(En − ω + iδ)(Em − ω + iδ)
. (2)

Here, J is the local coupling constant between the localized
magnetic impurities and the itinerant electrons, S is the
magnitude of the impurity spin, i (j ) is the site index of
a magnetic impurity located at position r i (rj ), f (ω) =
[e(ω−μ)/T + 1]−1 is the Fermi-Dirac distribution function, and
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F
ij
nm = ψ∗

n (r i)ψn(rj )ψ∗
m(rj )ψm(r i), with ψn(r i) denoting the

eigenfunction corresponding to the eigenenergy En of the
unperturbed electronic Hamiltonian (i.e., in the absence of
magnetic disorder). The lattice constants a and h̄ are set to
unity in all calculations.

Using a zero-temperature approximation (T = 0) and
changing to an integral form, Eq. (2) can be recast as

JRKKY = −J 2 S(S + 1)

2S2

∫
E<0

dE

∫
E′>0

dE′ F (E,E′)
E − E′ , (3)

where F (E,E′) = Re[ρji(E)ρij (E′)], μ is the Fermi energy,
and ρij (E) = 〈i|δ(E − H )|j〉, which can be calculated nu-
merically using the kernel polynomial method (KPM).15 In
the KPM, the matrix elements ρij (E) are expressed as sums
over order-M Chebyshev polynomials on the energy E with
coefficients obtained through an efficient recursion relation
involving matrix elements of the system Hamiltonian,

ρij = 1

π
√

1 − E2

[
g0 μ

ij

0 + 2
M∑
l=1

gl μ
ij

l Tl(E)

]
, (4)

where Tl(E) is the lth Chebyshev polynomial, μ
ij

l =
〈i|Tl(H )|j〉, and gl are the Jackson kernels coefficients. The
sum is taken up to a cutoff number M . One can obtain the
expansion coefficients μ

ij

l using the recurrence relation of
Chebyshev polynomials, namely, Tl+1 = 2HTl(H ) − Tl−1(H )
with T0(H ) = 1 and T1(H ) = H . Implicit in Eq. (4) is the
normalization of the energy spectrum to a band of unity
width. As our unperturbed electronic Hamiltonian with on-site
disorder, we employ the single-band Anderson tight-binding
model on a honeycomb lattice,

H = −t
∑
〈i,j〉

c+
i cj +

∑
i

wic
+
i ci , (5)

where t (≈2.67 eV for graphene) is the hopping energy,
ci(c

+
i ) annihilates (creates) an electron at site i, wi is the

on-site random disorder energy distributed uniformly be-
tween [−W/2,W/2], and 〈i,j 〉 denote nearest-neighbor sites.
Periodic boundary conditions are used for all calculations.
For clean systems (W = 0), the Chebyshev polynomials are
calculated up to M = 3 × 103 on a lattice with 5 × 105 sites.

III. RKKY INTERACTIONS IN CLEAN SYSTEM

The RKKY interaction coupling constant between two
magnetic impurities is calculated using Eq. (3), of which the
results for the clean limit are shown in Fig. 1. In order to
better visualize the behavior of the amplitude in the contour
plots, we have multiplied JRKKY by R2, resulting in a smoother
(1/R) decay. The interactions along the zigzag and armchair
directions are shown separately by line plots in Fig. 1. These
results are in excellent agreement with previous studies.2–4

The authors of Ref. 4 used a lattice Green’s-function method
to obtain an RKKY interaction of the form

J 0
AA = −J 2 1 + cos[(K+ − K−) · R]

R3
, (6)

J 0
AB = J 2 3 + 3 cos[(K+ − K−) · R + π − 2θR]

R3
, (7)

(a) R2 JRKKY

(b) R2 JRKKY

FIG. 1. (Color online) Plots of the RKKY interaction strengths
between a magnetic impurity at the origin and another at (a) a
site from the same sublattice (AA) and (b) a site from a different
sublattice (AB). In the contour plots, the amplitudes are multiplied
by the square of the distance to facilitate visualization. The lattice
constant is set to unity. The numerical data is for clean graphene
(W = 0). Calculations using the kernel polynomial method and lattice
Green’s-function method are represented as solid blue and dashed red
lines, respectively.

where all of the coefficients are set to unity, K± =
(±2π/3

√
3,2π/3) are the Dirac points in the Bloch mo-

mentum space, R = ri − rj , and θR is defined in the inset
of Fig. 1(a). For a direct comparison, plots of Eqs. (6) and
(7) are shown in Fig. 1 along with the results calculated
from Eq. (3). As expected from the particle-hole symmetry
of the spectrum, the magnetic impurity on the origin has
ferromagnetic correlations with the impurities on the same
sublattice [Fig. 1(a)], while antiferromagnetic correlations
develop for impurities on different sublattices [Fig. 1(b)].

IV. RKKY INTERACTIONS IN DISORDERED SYSTEM

A. Diagonal defects

In order to investigate the effect of on-site nonmagnetic
disorder in graphene, we consider 1.6 × 103 different disorder
configurations for each value of W and then evaluate the matrix
elements ρij through the KPM with M = 5 × 103 on a lattice
with 1.8 × 105 sites.

For weak (strong) disorder strength, the system is in the
diffusive (localized) regime, where the actual value of W for
which this crossover occurs depends on the lattice size and
has been determined by evaluating the localization length (see
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FIG. 2. (Color online) Plots of the RKKY interaction strength
along the (a) zigzag and (b) armchair directions in the diffusive
regime, as averaged over 1.6 × 103 different disorder configurations.
A lattice with 1.8 × 105 sites and a polynomial degree cutoff of
M = 5 × 103 are used in these numerical calculations.

Fig. 4). The average amplitude of the RKKY interaction in the
diffusive regime is shown in Fig. 2. Similar to conventional
metals, the interaction decays exponentially with increasing
disorder strength as

J
avg
RKKY ∼ J clean

RKKYe−R/le , (8)

where le is the mean free path and J clean
RKKY is the interaction

amplitude in the clean limit. It is worth noticing that the sign
of the interaction oscillates when the impurities are located
along the zigzag-AA direction.

To better characterize the amplitude of the interaction, we
have also calculated the geometrical average (J geo

RKKY) for both
diffusive and localized regimes (Fig. 3). In Fig. 3(a), one
can see that the geometrical average for a weakly disordered
system remains long ranged and has a decaying behavior
similar to the clean system. As mentioned earlier, studies
of conventional metals10–12 have shown that the geometrical
average (i.e., the typical value) of the RKKY interaction in
weakly disordered systems has a power-law dependence with
the same exponent of the clean limit, namely, J

geo
RKKY ∼ 1/Rα

(e.g., α = 2 in a two-dimensional electron gas). Due to the
unconventional distance dependence [Eqs. (6) and (7)] caused
by the pseudogap at the Dirac point of clean graphene, one
may expect two possibilities. If the pseudogap is not filled
by disorder, the geometrical average value of the amplitude
is expected to have the same exponent of the clean system,
namely, α = 3. However, if it is filled, then the geometrical
average value should approach the conventional power law of a
two-dimensional electron gas, namely, α = 2. Our calculations
show that the former is the correct answer. This is in
accordance with the fact that short-range disorder preserves
the pseudogap in graphene.16 Therefore, the presence of weak
short-range disorder in undoped graphene is not anticipated
to induce any major change in physical properties related to
the RKKY interaction. The situation is drastically different in
the localized regime, where the geometrical average values are
exponentially suppressed with distance, as shown in Fig. 3(b).
This behavior is captured by the following relation:13

J
geo
RKKY ∼ e−R/ξ , (9)

(a)

(b)

FIG. 3. (Color online) Plots of the geometrical average over 1.6 ×
103 different disorder configurations of the RKKY interactions for (a)
weak and (b) strong disorder. The same lattice size and polynomial
cutoff as Fig. 2 are used.

where ξ is the localization length. Figure 4 presents the mean
free path and the localization length obtained by fitting the
relations given by Eqs. (8) and (9) to the numerical data. For
W = t , the localization length is about 102, which is close
to the longest linear distance possible in our calculations,
namely, Rmax = 60

√
3. Therefore, the system crosses over

from the diffusive to the localized regime around W ∼ t .
For uncorrelated, short-range disorder, which allows for
intervalley scattering, the localization length is given by
ξ = le exp(πσ/G0),17,18 where σ = 4

π
[ (vF�)2

(vF�)2+W 4 ],vF denotes

the Fermi velocity, � is the energy cutoff, and G0 = e2/h is
the conductance quantum. It is well known that the mean free
path is inversely proportional to the square of disorder strength

FIG. 4. (Color online) Plots of the mean free path le and the
localization length ξ as functions of the disorder strength W (in
units of t). The blue dashed line represents a fitting to the relation
le = c1/W 2 with c1 = 60, whereas the red dashed line represents the
resulting localization length [Eq. (10)], with vF� = √

10 treated as
another fitting constant.

075420-3



LEE, KIM, MUCCIOLO, BOUZERAR, AND KETTEMANN PHYSICAL REVIEW B 85, 075420 (2012)
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FIG. 5. (Color online) Plots of the RKKY interactions along the
zigzag-AA directions with strength W = 3t of (a) diagonal disorder,
(b) off-diagonal (random hopping) disorder, and distributions of the
RKKY interactions for (c) R = 3 and (d) R = 5 with 400 realizations.
Here the distance unit is

√
3a. A lattice with 2 × 104 sites and a

polynomial degree cutoff of M = 103 are used in these numerical
calculations. The black dashed line is the averaged interaction.

(le ∼ 1/W 2). Therefore, one expects the localization length to
obey the relation

ξ ≈ (c1/W 2) exp

[
4(vF�)2

(vF�)2 + W 4

]
, (10)

where c1 is a fitting constant. Indeed, these relations fit
reasonably well to the numerical data, as shown in Fig. 4.

B. Off-diagonal defects

To find out the effect of disorder with no sublattice
symmetry breaking, we added randomness to the hopping
integral and eliminated on-site disorder (wi = 0),

H = −
∑
〈i,j〉

tij c
+
i cj , (11)

where tij = t + �tij , with �tij being distributed uniformly
between [−W/2,W/2]. We perform the same calculations of
the on-site disorder case, but now with a lattice of 2 × 104

sites and a Chebyshev polynomial cutoff of M = 103. For
comparison, we plot the results together with those for the

on-site disorder calculations in Fig. 5. A total of 4 × 102

configurations of disorder are used, with the thick dashed
line indicating the average value. While the on-site disorder
generates random fluctuations in the sign and amplitude of
the RKKY interaction [Figs. 5(a)], the hopping disorders
affect only the amplitude, even in the presence of very
strong randomness [Fig. 5(b)]. The distributions of the RKKY
interactions are shown in Figs. 5(c) and 5(d), and those show
that the off-diagonal disorder (red lines) does not change the
sign of the RKKY coupling.

V. CONCLUSION

In conclusion, we have confirmed that the RKKY interac-
tion in clean graphene has a strong anisotropy of its sign and
oscillation amplitude, and it decays as 1/R3 for all directions.
Increasing the amount of nonmagnetic, on-site disorder causes
the averaged amplitude of the RKKY interaction to decrease
exponentially at distances exceeding the elastic mean free
path, similarly to what is obtained for conventional metals. At
smaller distances, however, the fluctuations of the amplitude
are found to increase strongly, with sign oscillations even for a
pair of magnetic impurities located on the same sublattice,
for all directions except the armchair direction. When the
randomness is instead applied to the hopping (off-diagonal
disorder), the sign oscillations disappear. This shows that these
sign changes at weak disorder potential are caused by the
breaking of the sublattice symmetry, since off-diagonal disor-
der preserves this symmetry. Our calculations also confirm that
the geometrical average of the RKKY interaction in disordered
graphene has the same power-law decay at short distances as
in the clean case. However, it is exponentially suppressed at
distances exceeding the localization length. We plan to extend
these studies by considering the effects of long-range disorder
and resonant impurities.
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