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Friedel oscillations responsible for stacking fault of adatoms: The case of Mg(0001) and Be(0001)

Marisol Alcantara Ortigoza,* Maral Aminpour,T and Talat S. Rahman?
Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
(Received 2 December 2014; revised manuscript received 22 January 2015; published 2 March 2015)

We perform a first-principles study of Mg adatom/adislands on the Mg(0001) surface, and Be adatom on
Be(0001), to obtain further insight into the previously reported energetic preference of the fcc faulty stacking of
Mg monomers on Mg(0001). We first provide a viewpoint on how Friedel oscillations influence ionic relaxation
on these surfaces. Our three-dimensional charge-density analysis demonstrates that Friedel oscillations have
maxima which are more spatially localized than what one-dimensional average density or two-dimensional
cross-sectional plots could possibly inform: The well-known charge-density enhancement around the topmost
surface layer of Mg(0001) is strongly localized at its fcc hollow sites. The charge accumulation at this site
explains the energetically preferred stacking fault of the Mg monomer, dimer, and trimer. Yet, larger islands
prefer the normal hcp stacking. Surprisingly, the mechanism by which the fcc site becomes energetically more
favorable is not that of enhancing the surface-adatom bonds but rather those between surface atoms. To confirm
our conclusions, we analyze the stacking of a Be adatom on Be(0001)—a surface also largely influenced by
Friedel oscillations. We find, in fact, a much stronger effect: The charge enhancement at the fcc site is even larger

and, consequently, the stacking-fault energy favoring the fcc site is quite large—44 meV.

DOI: 10.1103/PhysRevB.91.115401

I. INTRODUCTION

In bulk magnesium, as well as in those metals bound
together predominantly by metallic bonds, the delocalized and
loosely bound valence s electrons (352~ 3 p*—electrons in the
case of Mg) find themselves in a nearly constant potential and
thus behave as nearly-free electrons. Naturally, the surface,
the matter-vacuum interface, is a perturbation to that constant
potential and is screened by those nearly-free electrons.
As a result of this screening—chiefly controlled by the
electrons around the Fermi level—charge-density oscillations
are formed within the metal perpendicular to the surface and
are damped away from the surface (i.e., the perturbation)
toward the center of the slab. These are long-range standing
waves of period Ap/2, where Ap is the Fermi wavelength. They
are known as Friedel oscillations.

Friedel oscillations have been applied for decades to
understand how nearly-free electrons screen pointlike defects
or impurities or, simply, how an otherwise homogeneous Fermi
gas or Fermi liquid screens a defect. In alkaline-earth metals,
whose surface is a perturbation, the Friedel oscillations arising
in them have been extensively studied from the theoretical
point of view in order to shed some light on the structural
relaxations arising at their surfaces [1-5].

The charge-density Friedel oscillations occurring inside
a Mg slab have been corroborated in several computational
studies [2-5]. Cho et al. [2] and later Staikov and Rahman
[3] and Wachowicz and Kiejna [4] obtained the x y-integrated
valence charge density as a function of the position perpen-
dicular to the surface, the z axis, and localized the maxima
and minima of the Friedel oscillations in Mg(0001) slabs. In
order to do that, the three groups calculated the difference
between the xy-average valence charge-density profile of
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bulk Mg and that of a bulk-terminated slab, which gives
a one-dimensional picture of the Friedel oscillations. This
result was then normalized over the charge-density profile
of the bulk. Later on, however, Wachowicz and Kiejna [5]
presented a more detailed view of the charge redistribution in
Mg(0001) by using two-dimensional cross-sectional charge-
density difference contours.

Friedel oscillations cause a periodic accumulation and
depletion of electronic charge between the layers. In the
case of Be(0001) [6], Mg(0001) [7], and Al(111) [8], the
period of the Friedel oscillations in them (Ag/2) is such that
a charge accumulation falls around the position of the first
layer. The one-dimensional analysis of the Friedel oscillations
for Mg(0001) [3], in particular, shows that the period of the
charge-density oscillation is such that its first and largest
peak corresponds to a charge accumulation very close to
the position of the first layer and charge depletion around
the topmost interlayer separation. Moreover, although not
discussed or mentioned in their work, the two-dimensional
plots of Wachowicz and Kiejna hint that the first charge-density
Friedel oscillation peak depicted in the one-dimensional view
[2-4] lie in the interstitial space between the atoms at
the surface. Yet, as we shall see, a three-dimensional (3D)
inspection of the Friedel oscillations, which is still lacking, is
needed to locate exactly the region of the interstitial space that
is holding that “extra” charge and thus understand its effect on
the binding of adatoms and their diffusion.

Friedel oscillations have been proposed as the cause of the
expansion of the topmost interlayer distance of Mg(0001) on
grounds of electrostatic repulsion. Feibelman, on the other
hand, has provided a chemical explanation for the relaxation
of hcp(0001) surfaces based on the manner that the surface
modifies the occupation of the 3s>* and 3p* states and thus
promotes the separation of the first layer [9]. In this work, we
will show that the idea that the expansion is caused by Friedel
oscillations is in the same context as the chemical view [9] but
the current understanding on how Friedel oscillations relate
to the outward expansion needs to be revised. In fact, the
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chemical view provides the mechanism by which the Friedel
oscillations are formed.

In an earlier study [10], we have reported the relatively
and surprisingly large energy (15 meV) favoring the stacking
fault of Mg adatoms; i.e., the preferred adsorption at the
“infinite-hollow” fcc site. It is thus intriguing to relate the
rationale for such preference and the large stacking-fault
energy to the (so far) unclear exact localization of the first
and largest peak of the Friedel charge-density oscillations.
In this work, we suggest on the basis of our findings, that
the preferred stacking is linked to the Friedel oscillations. To
pursue this idea, we shall first find the location around the
surface where the charge accumulation/depletion takes place.
We shall then delineate whether the preference for the stacking
fault persists for adislands and trace a rationale underlying that
by analyzing the local geometric structure and charge density.
We shall then corroborate our conclusions by testing them on
Be(0001), which also displays a large expansion of the first
topmost interlayer distance, and on a Be adatom on Be(0001).
The paper is organized as follows: Section II summarizes our
computational methodology. Section III contains our results
and discussion. Finally, Sec. IV outlines our main conclusions.

II. COMPUTATIONAL DETAILS

We perform periodic density-functional-theory calculations
of the total energy and the electronic structure, as implemented
in the computational code QUANTUM ESPRESSO [11]. The
interaction between ions and electrons is described by ultrasoft
Vanderbilt pseudopotentials with 2 p-semicore states [12]. For
the electron exchange-correlation functional, we have used the
parametrization of Perdew and Wang 91 (PW91) based on the
generalized gradient approximation (GGA) [13].

The electronic wave functions were expanded in a plane-
wave basis set with a kinetic energy cutoff of 476eV. The
charge-density Fourier expansion is truncated at 5440 eV. The
Mg(0001) and Be(0001) surfaces were modeled by using slabs
of 18 layers with a 1 x 1 in-plane periodicity in order to
visualize the charge-density Friedel oscillations of Mg(0001).
For modeling Mg adislands on Mg(0001), we have used
seven-layer films with an in-plane periodicity of 3 x 3 atoms.
Integrations inside the Brillouin zone were performed by
sampling the latter according to the Monkhorst-Pack scheme
[14] with a uniform grid of 16 x 16 x 1 and5 x 5 x 1 k points
for the 1 x 1 surface and the 3 x 3 surface, respectively.
Integrations use the Gaussian broadening technique for the
level occupation with a smearing parameter of 0.1eV. For a
convergence test, we refer the reader to Ref. [10].

In all calculations involving a surface, a vacuum space
of 20 A separates the periodic images of the slab to avoid
interaction between them. The positions of all atoms in the slab
were optimized until the Hellmann-Feynman forces on each
atom and each direction was smaller than 2.57 x 1073 eV /A.

Charge-density differences are evaluated as &p =
p[Mg,/Mg(0001)]—p[Mg(0001)]—p[Mg,], where p[Mg,/
Mg(0001)] is the charge density of the entire system (n-mer
plus the surface) with ion cores in their relaxed configuration,
p[Mg(0001)] is the charge density of the clean surface, and
p[Mg,] is the charge of the isolated n-mer, Mg,. Note that
in order to obtain a consistent charge-density difference, the
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positions of the atoms used to compute p[Mg(0001)] and
p[Mg, ] are extracted from those in the fully relaxed composite
systems and not from the actual relaxed coordinates of clean
Mg(0001) and freestanding Mg n-mer.

III. RESULTS AND DISCUSSION

We have verified elsewhere [10] that the applied method-
ology is accurate enough to reproduce properties of bulk
Mg and Mg(0001). The lattice parameters (@ = 3.213 A and
c/a = 1.607 A), cohesive energy (1.45eV), and bulk modulus
(35.48 GPa) of bulk Mg are in very good agreement with
the experimental values (@ = 3.21 Aandc Ja =1.624, E.on =
1.46eV) [15] and with the previous calculations [3-5,16,17].
The surface energy as well as the contraction/expansion of the
interlayer distance among the topmost layers is also found to
be in good agreement with experimental values. Further details
can be found in Ref. [10].

A. New insight into the charge-density Friedel oscillations
1. The outward relaxation of Mg(0001)

Before turning to new insight into Friedel oscillations
available through a three-dimensional analysis of the charge
density, some remarks about the current understanding of
the relationship between Friedel oscillations and interlayer
expansion are in order. Cho et al. [2] proposed that relaxations
of ions at metal surfaces arise as a response to Friedel
oscillations, which cause accumulation and depletion of
charges within the crystal. In this scenario, atoms of an
entire layer may be left effectively charged, giving rise to
an electrostatic interaction among layers. Thus, the relaxation
of the surface may depend on whether the electrostatic force
between layers is attractive or repulsive [3]. This argument
has been applied to explain the relaxation of Mg(1010),

Be(1010) [2], Mg(0001) [3], and Be(0001) [4,5]. Based on

one-dimensional charge-density profiles, it has been argued
that atoms constituting the first, second, and third layers
are effectively negatively charged. Hence, according to this
interpretation of the charge-density difference, these ionic
layers repel, causing the well-known interlayer expansion.
However, some scrutiny of this interpretation is called for: In
systems composed of atoms of the same species ionic charge
transfer is not possible as the atoms have the same electronic
affinity and thus ionicity cannot be a distinguishing feature
describing their bonding. Moreover, were the atoms effectively
negatively charged, we should find positively charged atoms
somewhere else for the system to be neutral, just as in
any ionic bonding. Say, if the first four Mg layers were
effectively negatively charged, one would need other Mg layers
to be positively charged (by the same magnitude). In reality,
one-dimensional profiles of Friedel oscillations in Mg(0001)
[2-4] do not imply that the atoms are effectively charged;
they indicate that, since the first and largest peaks of the
charge-density Friedel oscillations in Mg(0001) coincide with
the position of the first atomic layers, upon surface formation
the bonding charge abandons the interlayer space and becomes
more localized around the atoms forming the first layers.
Thus, from the available one-dimensional average density, one
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could only construe that the layer might be approaching a
freestanding monolayer condition. In summary, the layers are
not effectively charged: The effect of the Friedel oscillations
is to reduce the interlayer bonding charge. Naturally, this
weakens the (metallic) interlayer bonds and causes the first
three layers to separate from each other. The latter is further
evidenced by a Bader analysis of the Mg slab. It shows that
all atoms below the surface layer have the same charge. The
first-layer atoms in fact appear slightly positively (rather than
negatively) charged within the accuracy of the calculation.
Specifically, a small fraction of the charge of the surface
atoms slowly decays and spreads into the vacuum but not
all the charge in the tail can be taken into account. Finally,
this interpretation of how the Friedel oscillations cause the
outward relaxation of Mg(0001) does not rule out the chemical
view [9]. Specifically, Friedel oscillations reduce interlayer
charge and increase intralayer charge [Figs. 1(c) and 1(d)], but
the interlayer bonding charge may correspond to depletion
of p, states, whereas intralayer charge may correspond to
the population of s states, which makes surface atoms more
free-atom-like, i.e., with a charge distribution more spherically
symmetric, as implied by Figs. 1(c) and 1(d).

(a), (b)
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FIG. 1. (Color online) Upper insets: Difference between the
charge density of bulk Mg and that of a nonrelaxed bulk-terminated
Mg(0001) surface. (a) Isosurfaces. The z axis is perpendicular to
the surface. The (blue) balls represent the first four atomic layers
of the slab. The pocket (red) indicates the region of Mg(0001) that
displays more charge density than the corresponding one in bulk
Mg. (b) [0001], cross section of the isosurface in (a); the fcc region
(red) displays charge accumulation and the hcp region (blue) displays
charge depletion. Lower insets: [0001], cross-sectional planes of
the total charge density around (c) the fully relaxed Mg(0001) and
(d) bulk Mg. Darker (brown) regions in (c) and (d) indicate less
charge. In (b)—(d), the plane is located at the height of the surface
or bulk atoms under consideration in order to highlight the charge
accumulation around the fcc hollow site of Mg(0001).

PHYSICAL REVIEW B 91, 115401 (2015)

Let us now turn to the exact location of the charge
accumulated around the first layer. To this end, in Fig. 1(a)
we plot the difference between the charge of bulk Mg and
that of an 18-layer slab—as in the previous calculation—but
this time in three dimensions. First of all, in agreement with
Refs. [3,4], we find that the displaced charge in Mg(0001)
slabs is indeed located mainly around the position of the first
layer. Then, as shown in Ref. [4], the charge is localized around
the interstitial space between the atoms at the surface. Yet the
present 3D difference isosurfaces reveal, in addition, that the
displaced charge lies at the fcc infinite-hollow site of Mg(0001)
[red pocket in Fig. 1(a)].

Figure 1(b) in turn shows the [0001] cross section of the
charge-density-difference isosurfaces in part (a). The latter
two-dimensional view allows us to see that the charge excess
extends up to the bridge, whereas the charge around the hcp
site is slightly reduced. We shall see that the latter features
have implications on the Mg adatom binding energy and its
diffusion.

A word of caution has to be given before moving to
considerations of the binding of adatoms. Note that, in order
to capture Friedel oscillations in metallic slabs, previous and
present calculations [Figs. 1(a) and 1(b)] address differences
between the charge density of bulk Mg and that of a bulk-
terminated slab. However, Friedel oscillations are long ranged
and their wavelength is not perfectly commensurable with
the interlayer distance (a feature reflected in the slower
convergence of relatively deep subsurface interlayer distance
[10]). Therefore, the charge throughout the film can vary once
the forces on the atoms of a bulk-terminated slab are relaxed
and nothing guarantees that the charge-density enhancement
remains as depicted in Figs. 1(a) and 1(b). This uncertainty is
of particular concern if we want to understand the effect of the
Friedel oscillations on adatom binding and diffusion barriers.
Therefore, we contrast the [0001] cross section at the surface
layer of the total charge density of a rotally relaxed Mg slab
[Fig. 1(c)] and that of the bulk layer [Fig. 1(d)]. These two
plots demonstrate that the charge density around the surface
(totally relaxed) is indeed significantly enhanced around the
fcc site with respect to the charge density of bulk layers even
after full force relaxation.

B. Influence of Friedel oscillation on adsorption of Mg adatom
and adislands on Mg(0001)

In this section, we shall see that the charge accumulation
around the fcc site, which is caused by Friedel oscillations,
is of consequence for the binding and stacking of small Mg
adatom islands on Mg(0001). Before doing so, we provide
the energetics of the adsorption of the adislands and an
analysis of their structure. Next, we scrutinize the charge-
density distribution to locate the features responsible for such
preference. In fact, that the enhanced charge density around
the first layer—derived from the Friedel oscillations—Ilies
precisely at the fcc site suggests that the “extra” charge-density
pocket [Fig. 1(a)] contributes to charge-density bonding the
adatom. Still, such explanation begs the question, why would
those factors promoting the stacking fault of the monomer stop
operating as the adisland reaches the size of a tetramer or as
the adislands approach each other? We shall see that although
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TABLE I. Binding energy, Eg, and stacking fault, A Eg, per atom of Mg adislands on Mg(0001)—from a monomer to an octamer—and
of a full overlayer placed at both the fcc and the hcp sites for a structure in which (a) the whole system is totally relaxed and (b) only the Mg
adisland atoms are allowed to relax but the Mg(0001) substrate is kept frozen.

Totally relaxed Frozen substrate

n Eg(fce) (eV) Eg(hcp) (eV) AEg (meV) Eg(fcc) (eV) Eg(hcp) (eV) AEg (meV)
Monomer —0.60 —0.58 —15 —0.58 —0.57 —14
Dimer -0.75 —-0.74 —4 —0.73 —-0.75 —12
Trimer —0.75 —-0.74 —10 —0.74 —-0.73 —10
Tetramer —0.78 —0.78 -1 —-0.77 -0.77 -2
Hexamer —0.92 —0.92 4 - - -
Heptamer -0.93 —0.95 11 - - -
Octamer —1.02 —1.03 12 - - -

Full —1.09 —1.11 15 - - -

the “extra” charge-density pocket does cause the stacking-fault the fcc stacking fault by 15 meV per atom (see Table I). In fact,
preference, its role is not simply that of strengthening the bonds our calculations suggest that as the islands get closer to each
of the adatom. other the preferred site is again hcp. In our particular supercell
setup, the turning point between fcc and hcp preferred binding

1. Energetics corresponds to a coverage between one-third and one-half

The preference for the fcc stacking fault is not exclusive monolayer.

to the monomer. We have calculated the binding energy
per atom (Eg) of several Mg adislands—from monomer to
octamer—and of a full overlayer placed at both the fcc and the We now turn to investigate the origin of the preference of
hcp sites. For the dimer, trimer, tetramer, and hexamer several the fcc stacking fault. In pursuing this aim, we shall examine
configurations and orientations were tested, while for larger ~ the adislands that display this preference (from monomer
islands computational costs refrained us from testing more  to trimer) and the one at the turning point for the hcp
than one configuration. Table I summarizes our calculated preference, the tetramer. As a preliminary step, we analyze the
energetics of adislands at the fcc and hcp sites (the data for bond length of Mg adatom/adislands adsorbed on Mg(0001)
the most stable dimer and trimer). It shows that the preference ~ under two conditions: when the whole system is allowed to
for the fcc stacking fault persists at least up to the trimer. relax and when the substrate is kept frozen. The structural
Furthermore, the behavior of these small adislands is not characterization is presented in Tables II and III, respectively.
qualitatively dependent on whether the position of substrate However, upon analyzing the data, we find that neither the
atoms is relaxed or rigid. distances among the adisland atoms, nor the height of the

We cannot rule out that larger islands also display a  adisland with respect to its substrate nearest neighbors (NN),
preference for stacking fault because in our calculation, as the ~ nor the distances among the adisland NNs provide a hint
adislands grow (tetramer, hexamer, heptamer, and octamer), about the mechanism behind the stacking-fault preference
they necessarily interact with each other and favor again the or establish a consistent bond-order trend. For example, the
hep site (Table I). In fact, a full layer prefers the hcp site over ~ data for the monomer could, in principle, indicate a slight

2. Structural characterization of Mg, adislands on Mg(0001)

TABLEII. Structural characterization of the Mg adislands—dimer, trimer, and tetramer—on the Mg(0001) surface. These values correspond
to the case in which all atoms are allowed to relax. The distances among atoms forming the adislands are denoted by dja; Zas stands for the
height (vertical distance) of the atoms forming the adisland with respect to their nonequivalent substrate neighbors; dyn.s stands for the distance

between the atoms forming the island and their substrate nonequivalent nearest neighbors.

Adisland d[A ZAS dNN-S
Monomer-fcc 2.47 3.12
Monomer-hcp 2.48 3.12
Dimer-fcc 2.97 2.46,2.64,2.34 3.08, 3.09, 3.24
Dimer-hcp 2.96 2.46, 2.65,2.36 3.04, 3.06, 3.42,3.72
Trimer-fcc 3.06 2.43,2.51,2.51 3.10, 3.10, 3.13
Trimer-hcp 3.06 2.50, 2.50, 2.40 3.10, 3.10, 3.10
Tetramer-fcc 3.07, 3.08, 3.09 2.54,2.42,2.62 3.08, 3.14, 3.20
3.10,3.11, 3.11 2.60, 2.38,2.38 3.10,3.11, 3.11
Tetramer-hcp 3.09, 3.09, 3.13 2.44,2.55,2.36 3.09, 3.13, 3.19
3.09, 3.09 2.60, 2.36, 2.36 3.08, 3.10, 3.10
3.07,3.07 2.40,2.47,2.47 3.06, 3.10, 3.10
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TABLE III. Structural characterization of the Mg adislands—
dimer, trimer, and tetramer—on the Mg(0001) surface. These values
correspond to the case in which only the atoms of the adisland are
allowed to relax while the atoms of the substrate are kept frozen. The
distances among atoms forming the adislands are denoted by da;
Z s stands for the height (vertical distance) of the atoms forming
the adisland with respect to their nonequivalent substrate neighbors;
dnn-s stands for the distance between the atoms forming the island
and their nonequivalent substrate nearest neighbors.

Adisland dIA ZAS dNN-S
Monomer-fcc 2.53 3.13
Monomer-hcp 2.53 3.14
Dimer-fcc 3.01 2.53,2.53,2.53 3.08,3.18, 3.16
Dimer-hcp 3.02 2.52,2.52,2.52 3.06,3.16,3.17
Trimer-fcc 3.06 2.50,2.50,2.50 3.09, 3.09, 3.16
Trimer-hcp 3.07 249,249,249 3.08,3.08,3.15
Tetramer-fcc 3.08, 3.08 249,249,249 3.13,3.14,3.20
3.14,3.14 249,249,249 3.05,3.14,3.14
3.08, 3.08 2.50,2.50,2.50 3.10, 3.10, 3.15
Tetramer-hcp  3.09, 3.09, 3.13  2.53,2.53,2.53 3.09,3.11, 3.12
3.13,3.13 2.48,2.48,2.48 3.03,3.13,3.13
3.09, 3.09 248,248,248 3.08,3.08,3.13

tendency of the adatom to stay farther from its substrate
neighbors (weaker bond) when sitting at the hcp site than
when sitting at the fcc site. However, the opposite trend is
displayed by the trimer whether the substrate is relaxed or not.
The structure of the dimer on Mg(0001) does not provide much
insight either because the stacking-fault preference makes the
hcp sites unstable. In the totally relaxed system, the dimer
spontaneously slides toward the bridge, almost reaching fcc
sites. As a result, it displays two relatively short bonds and two
bonds that are significantly longer than the lattice parameter,
a. Allowing both the dimer and the substrate to relax from
the hep sites toward the bridgelike configuration reduces the
fcc stacking-fault preference to 4 meV (Table I). However, the
latter stacking-fault energy is with respect to the bridgelike
configuration, which is a local minimum. Now, if the substrate
is frozen, the hcp configuration of the dimer is stabilized but
the hcp site becomes less favorable than the fcc site by an
even larger energy per atom. In the case of the tetramer, the
related bonds are so spread out that it is not possible to draw
any conclusion. Clearly, no argument for site preference of the
islands can be built upon considerations of bond lengths.

3. Charge-density analyses

Attaining an understanding of the charge-density distri-
bution responsible for the preference of small islands to sit
at fcc rather than hep sites is nontrivial. Actually, it would
not be reasonable to trace the answer via charge-density
differences [as those shown for the clean surface in Figs. 1(a)
and 1(b)], since these difference are of the order of few meV
and probably smaller than those caused by inherent errors in
the charge-density differences analysis that follows from our
discussion in Sec. IT about the ionic configurations under which
the total energies of the systems are calculated. In fact, such
analysis does not provide a rationale for the stacking fault. The
only option is thus to investigate the total charge density of the

PHYSICAL REVIEW B 91, 115401 (2015)
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FIG. 2. (Color online) [0001], cross section of the total charge
density of (a) nonrelaxed bulk-terminated Mg(0001) and (b) fully
relaxed Mg(0001). Darker (brown) regions indicate less charge. The
plane is located at ~1.2 A above the position of the surface atoms.

composite system, p[Mg,/Mg(0001)]. This is a reasonable
approach since the Hohenberg-Kohn theorem tells us that if
small Mg adislands on Mg(0001) prefer the fcc site over the
hep site, this preference must necessarily be reflected in the
charge-density distribution. In order to dispel the idea that
local relaxations largely influence our analysis, we include
the case when the Mg, /Mg(0001) system is fully relaxed
and that when the substrate is kept frozen in our analysis.
Importantly, as shown in Fig. 2, both the totally relaxed and
the bulk-terminated Mg(0001) surface display qualitatively the
same landscape to the adatom, providing us a simpler scenario
for our analysis.

The next feature of the total charge density that calls atten-
tion is that fcc sites render less charge density than the hep sites,
despite the “extra” charge-density pocket located at the fcc
site, as shown by our total charge-density plots (Fig. 2). This
implies that the reason for which the adatoms prefer the fcc
site is not an increased availability of charge to make the bond.

Visualizing the total valence charge involved in the bonds is
also not free of challenges. On the one hand, three-dimensional
plots do not reveal a charge-density profile within a charge
interval but isosurfaces for a fixed charge-density value. On the
other hand, turning to analyze two-dimensional cross-sectional
charge-density profiles (e.g., planes parallel to the surface) is
not straightforward because comparisons ought to be made
between the monomer at fcc and that at hep, then between
the monomer cases and the dimer cases and so on, but in
each of these cases the height of the adisland (A) with respect
to the surface atoms (S), Zas, varies significantly, as shown
in Table II, and a fair comparison could be compromised.
Nevertheless, since both the totally relaxed and the bulk-
terminated Mg(0001) display qualitatively the same landscape
to the adatom and the stacking-fault energy trend is also
qualitatively the same, we can grasp the essentials of the
charge-density distribution responsible for the stacking-fault
preference in small adislands by considering the n-mers first
on the frozen bulk-terminated Mg(0001). We have thus relaxed
only the n-mers (n = 1, ...,4) at the fcc and hcp sites on a
bulk-terminated Mg(0001). In this case, the adisland heights
do not vary as much as for the totally relaxed system (see Zas
in Tables II and III), which allows us to make a meaningful
comparison: We compare two-dimensional charge-density
profiles of all the adislands for planes at exactly the same
height with respect to the substrate. The two-dimensional

115401-5



ALCANTARA ORTIGOZA, AMINPOUR, AND RAHMAN

TABLE IV. (Color online) Two-dimensional plots of the total
charge density of the n-mers (n = 1, ... ,4) at the fcc and hcp sites
of a bulklike Mg(0001) substrate. The plots correspond to a plane
parallel to the substrate at ~1.2 A above it. The scale is such that
dark regions denote less charge. The leftmost column displays the
stacking-fault energy per atom, A Eg.

PHYSICAL REVIEW B 91, 115401 (2015)

TABLE V. (Color online) Two-dimensional plots of the total
charge density of the totally relaxed n-mers (n = 1, ... ,4) at the fcc
and hcp sites of Mg(0001). The plots correspond to a plane parallel
to the substrate at ~1.2 A above it. The scale is such that dark regions
denote less charge. The leftmost column displays the stacking-fault
energy per atom, A Eg.

fec hep

AEg (meV)

Mg monomer -14
Dimer -10
Trimer —-12
Tetramer -2

charge-density profiles of p[Mg,/Mg(0001)] described above
[in which Mg(0001) is bulk terminated] in Table IV reveal
that when the monomer sits on the fcc site, the bonds among
its NN substrate atoms are strengthened, rather than those
between the monomer and its substrate NN atoms. Table IV
also demonstrates that while the same effect is displayed by
the fcc dimer, it is not so for the hcp monomer or the hep dimer.
In the case of the trimer, the charge-density profiles at hcp and
fce are more complex and less distinct. However, by analyzing
each of the bonds to neighboring atoms in the substrate, one
finds that the latter are furnished with more charge density
when the trimer sits at fcc sites than when it sits at hep sites. For
the tetramer, when the adislands start to interact strongly, only
subtle features might indicate a more energetically favorable
configuration at the fcc site. Not surprisingly, the stacking-fault
energy becomes very small (Table IV). The height of the
charge-density plane (at 1.2 A above the surface) was taken to
lie between the adatom/adisland and the surface atoms in the
above analysis. The position of the plane was easily chosen
because the charge profiles for a given n-mer are very similar
at the fcc and hep sites except around the position of the plane
shown in Table IV.

Once we have identified the feature of the charge-density
redistribution that could account for the preference of the fcc

fce hep AEg (meV)
Monomer -15
Dimer —4*
Trimer -10
Tetramer -1

o ©F

AW

“Note that, strictly speaking, the dimer does not sit at hcp sites but
rather at the bridge.

stacking fault, we can proceed to trace the same features in
the two-dimensional profiles of p[Mg, /Mg(0001)] when the
entire system is allowed to relax. To our surprise, similar
features appear for the totally relaxed system and at practically
the same distance from the substrate atoms (~1.2 A; see
Table V). Specifically, the monomer at the fcc site also
induces a charge-density enrichment in the bonds between
its NNs and other neighboring atoms that does not appear
when the monomer sits at the hcp site. In the case of the
dimer, one sees that the dimer at the fcc site also induces
a charge-density enrichment in the bonds between its NNs
and other neighboring atoms, yet, the same happens when
the dimer is at the bridge (rather than hcp) position and to
a larger extent. So, the fact that it is unstable at the hcp site
ruins any possible comparison. Nevertheless, the features in
the charge density when the dimer sits at the hcp, although
not adding to the supporting evidence, are not enough to
rule out our argument. Namely, the strong enrichment of the
bonds between the dimer’s NNs and other neighboring atoms
occurs also at the expense of, or accompanied by, broken
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bonds between the dimer and two of its two surface neighbors
(see Table V). Overall, the energy associated with the fcc
stacking-fault preference is reduced significantly to 4 meV
per atom. The trimer at fcc sites, in contrast, is favored by
as much as 10 meV /atom with respect to the hcp sites. The
trimer at fcc sites also induces a charge-density enrichment
in the bonds between its NNs and other neighboring atoms
that is larger than that occurring when the trimer sits at
the hcp sites. Finally, the tetramer at fcc sites is favored
by only 1 meV/atom with respect to the hcp sites. As we
turn to the tetramer, one sees that the bonds between its
NNs and other neighboring atoms are furnished by extra
charge density at fcc and hcp sites almost evenly. In fact, at
the hcp site, the charge enrichment on the substrate bonds
is slightly larger, which coincides with the fact that the
tetramer is the turning point for the preference of the stacking
fault.

Based on the above analysis, we propose that the role of
the charge-density pocket is that of strengthening the bonds
among substrate atoms. That is the reason for which the fcc
site is preferred over the hcp. In other words, the extra charge-
density pocket at the fcc site tends to be distributed among
the surface atoms enhancing their mutual binding. A similar
behavior happens for the hcp adislands but only when they
approach each other. The images in Tables IV and V also
provide a rationale for the decline in the preference for the fcc
stacking fault as the adislands grow larger and/or coalesce. For
example, by comparing the charge-density profile between the
clean surface [Fig. 2(b)] and that of the monomer at fcc (in
Table V), one sees that upon adsorption of the monomer, the
charge density at neighboring fcc sites is reduced, indicating
that the enhanced bonding among substrate atoms does not
withdraw charge exclusively from the site where the monomer
sits but also from neighboring fcc sites. We find the same
trend by comparing neighboring fcc sites of the monomer
environment with those of the dimer: Again, the neighboring
fce sites of the dimer become more depleted. Similarly, for the
trimer and tetramer at fcc, one clearly sees that neighboring
fcc sites get even more charge depleted. Finally, notice that the
redistribution and spreading of the charge upon the adsorption
of adatoms (the charge brought at the fcc sites by the Friedel
oscillation) should in fact contribute to reduce the electronic
kinetic energy.

At this point it is important to note that the above results are
not strongly dependent on the thickness of the slabs used in the
calculation. In a previous investigation of the surface properties
of Mg(0001) thin films for slab thicknesses ranging from 2
to 30 layers (Ref. [10]), we have confirmed that properties
exclusive to the surface layer—such as surface energy and the
interlayer contraction/expansion of topmost layers—are very
well converged for 18-layer-thick films. This is in agreement
with previous calculations (Refs. [3-5]) that have reported that
even 11 layers are enough to describe those surface properties.
Furthermore, our results in Ref. [10] regarding slab thickness
effect on the adatom binding energy and self-diffusion indicate
that the binding energy of the Mg adatom does not vary by more
than 1 meV for films thicker than seven layers. Moreover, the
charge density around the surface layer (the main indicator in
the present work) does not vary perceptibly for films whose
thickness ranges from 5 to 18 layers.
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FIG. 3. (Color online) Three-dimensional charge-density differ-
ence isosurfaces showing the Friedel oscillations in (a) Mg(0001)
and (b) Be(0001). The charge-density isovalue is the same for both
surfaces. The difference is taken between the charge density of bulk
Mg and that of a nonrelaxed bulk-terminated Mg(0001) surface. The
z axis is perpendicular to the surface. The balls (light-blue and green)
represent the first three layers of the slab. The pockets (red surfaces)
indicate the regions in the surface displaying more charge density
than the corresponding one in bulk.

C. Friedel oscillations in Be(0001) and their effect
on adatom adsorption

Up to now we have shown the features of the charge-density
distribution responsible for the preference of small islands
to sit at fcc sites rather than at hcp sites. However, this is
only indirect evidence that the stacking fault is caused by the
Friedel oscillations. We thus find it necessary and opportune
to strengthen our argument by testing another material. We
shall thus consider Be(0001), another hcp sp- and nearly-
free-electron metal that also displays Friedel oscillations and
whose relaxation of the topmost interlayer distance yields an
expansion (see Ref. [4]). In this section we are concerned about
three issues of Be(0001): (1) whether the topmost maximum
of the Friedel oscillations in Be(0001) is also localized around
the first layer, (2) whether Friedel oscillations also induce a
charge accumulation precisely at the fcc site, and (3) whether
the Be monomer also prefers to bind at the faulty fcc site
of Be(0001). The answer to the first question is provided in
Ref. [4]: Be(0001) also displays the maxima of the Friedel
oscillations at the first layer. Notice that the maxima of the
Friedel oscillations are apparently less conspicuous than those
of Mg(0001) (see Fig. 1 of Ref. [4]). The reason is that they
divide the charge-density differences by the charge density
of the bulk in order to present a normalized value. As a
result, Fig. 1(b) of Ref. [4] does not anticipate that the Friedel
oscillation maxima are, in absolute value, larger than those of
Mg, since Be holds bonds ~30% smaller than those of Mg
and, therefore, the valence charge density binding Be atoms
is, in general, much larger than that in Mg. In Fig. 3, we
compare the Friedel oscillations in Mg(0001) and Be(0001)
via a three-dimensional charge-density difference. Clearly,
the charge-density enhancement for Be(0001) is dramatically
larger than that found for Mg(0001). More importantly,
the charge enhancement is localized at the fcc site, as in
Mg(0001), which answers our second question. Even more
importantly, the Be monomer on Be(0001) indeed prefers
the fcc stacking-fault site than the hcp site by a strikingly
large stacking-fault energy of 44 meV. The magnitude of this
value may further support the argument that the stacking-fault
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preference is driven by the charge-density pocket because it
correlates with the magnitude of the charge enhancements.
Here, the stacking fault of Be adatoms on Be(0001) is reported,
as well as the mechanism responsible for it. The fact that the
preference of adatoms for the stacking fault is driven by charge
redistribution/enrichment among substrate atoms is in accord
with previous studies pointing out that surface states mediate
interadatom interactions [18].

D. Influence of Friedel oscillations in Mg(0001)
on adatom diffusion

First-principles calculations [10], in contrast to results from
effective-medium theory [19], indicate that the adatom diffu-
sion barrier is quite asymmetric. That the barriers are equal
according to effective-medium theory calculations implies
that neither of the two sites (fcc or hcp) is energetically
preferred. This is understandable because such calculations
cannot model Friedel oscillations. Thus, Friedel oscillations
are also responsible for the asymmetry of the diffusion barrier
[10]. Namely, they cause a charge accumulation at the fcc site
and a charge depletion at the hcp site, which stabilizes the
fcc adsorption site and destabilizes the hcp site [Fig. 1(b)].
The fact that the barriers are so low is of course related to
the fact that Mg bonds are rather weak compared to most
metals. We shall see, however, that the Friedel oscillations
are also related to the height of the barrier. Not only do they
modulate the binding energy of the two local minima (hcp and
fcc), as described above, but also tune the energetics along
the diffusion path. Namely, although the extra charge-density
pocket caused by the Friedel oscillations is strongly localized
at the fcc site, the charge enhancement at the surface extends
well up to the bridge site; Fig. 1(b) and a comparison of
Figs. 1(c) and 1(d) clearly show that. Since furnishing charge
at the bridge site smoothens the potential energy surface for the
adatom by increasing the binding energy around the transition
state, Friedel oscillations also influence the energy barrier. In
summary, Friedel oscillations promote Mg adatom diffusion
with very short transit time at hcp sites.

IV. CONCLUSIONS

We report a first-principles study of Friedel oscillations
in Mg(0001) and Be(0001) and their effect on the binding
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and diffusion of adatoms. We provide a viewpoint on how
Friedel oscillations influence the relaxation of these surfaces
that is compatible with the changes found in the occupation
of its s and p states. Our three-dimensional charge-density
analysis reveals key details of the maxima/minima of the
Friedel oscillations depicted previously by one-dimensional
charge-density difference plots: We find that the long-known
charge-density enhancement at the surface of Mg(0001)
and Be(0001) resulting from Friedel oscillations is strongly
localized at the fcc hollow site. In turn, our analysis of the total
charge density shows that the charge accumulation site favors
the adsorption of the Mg monomer, dimer, and trimer at the fcc
“infinite” hollow, which constitutes a faulty stacking of these
small islands. Yet, larger Mg islands and/or higher coverage
on Mg(0001) prefer the normal hcp stacking. We show that
the preference for the fcc stacking fault of small adislands is
explained by the following mechanism: The enhanced charge
density at the fcc site does not strengthen the adatom-surface
bonds but rather the intersubstrate bonds. In other words, this
charge gets distributed among the surface atoms enhancing
their mutual binding. Our findings for Mg/Mg(0001) are
confirmed by Be/Be(0001): We find that the charge-density
enhancement at the surface of Be(0001) is also localized at
the fcc site and that is even larger in magnitude than that on
Mg(0001). We report a strikingly large stacking-fault energy
for Be monomer on Be(0001) of 44 meV, a value that is
consistent with a larger charge accumulation at the fcc site
of Be(0001). Finally, our calculations also suggest that the
Friedel-oscillations-driven charge accumulation on Mg may
also be responsible for the relatively small diffusion barriers
for the monomer.
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