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Calculation of amplitudes in quantum electrodynamics

K. S. Karplyuk1,* and O.O. Zhmudskyy2,†

1Department of Radiophysics, Taras Shevchenko University, Academic Glushkov prospect 2, building 5, Kyiv 03122, Ukraine
2Department of Physics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida, 32816, USA

(Received 6 June 2012; published 12 July 2012)

A new method of calculation of amplitudes of different processes in quantum electrodynamics is

proposed. The method does not use the Feynman technique of trace of product of matrices calculation.

The method strongly simplifies calculation of cross sections for different processes. The effectiveness of

the method is shown on the cross-section calculation of Coulomb scattering, Compton scattering, and

electron-positron annihilation.

DOI: 10.1103/PhysRevD.86.015015 PACS numbers: 11.25.Db, 11.15.Bt

I. INTRODUCTION

The most labor-intensive part of calculation of cross
sections for different processes in quantum electrodynam-
ics is the amplitude calculation for these processes. Such
calculations for nonpolarized electrons, that is, electrons
with no definite incoming or outgoing spin states, can be
simplified by the Feynman trace technology of the traces of
products of �-matrices calculation [1]. In this paper we
propose a method which strongly simplifies the amplitude
calculation for polarized and unpolarized cross sections for
any elementary processes.

Let us start from the identity which is satisfied for
matrices with arbitrary complex elements:

�Mc ¼ Spĉ �̂M: (1)

HereM is an arbitrary square matrix, c is a matrix column,

and � is a matrix row. The square matrix ĉ has only one
nonzero column (let it be the nth) which is equal to c . The
square matrix �̂ has only one nth nonzero row which is

equal to �. In this paper we will use the ĉ matrix with the
first nonzero column and the �̂ matrix with the first non-
zero row. According to (1)

�u fMui ¼ Spûi �̂ufM ¼ Spûiûyf�0M: (2)

Bispinors ui and uf represent the initial and final state of
the fermions with momenta pi;f and spins aligned along the
unit vectors si;f. They can be written as follows:

ui;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi;f
0 þmc

2pi;f
0 V

vuut �
1þ pi;f&1

pi;f
0 þmc

�
1þ isi;f&2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ si;fz Þ

q
1

0

0

0

2
666664

3
777775:

(3)

These bispinors are normalized for one particle in a volume
V, that is �ui;f�0ui;f ¼ ui;fyui;f ¼ 1

V .

Here and below for brevity the following designations
are used:

c� ¼ cx�
1 þ cy�

2 þ cz�
3;

c&1 ¼ cx�
0�1 þ cy�

0�2 þ cz�
0�3;

c&2 ¼ cx�
2�3 þ cy�

3�1 þ cz�
1�2;

c� ¼ cx�
0�2�3 þ cy�

0�3�1 þ cz�
0�1�2;

�0 ¼ �1�2�3; �̂ ¼ �0�1�2�3;

where matrices � are used in standard Dirac-Pauli repre-
sentation. Let us use (3) and calculate the product ûi �̂uf:

ûi �̂uf ¼ 1

4V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi

0 þmcÞðpf
0 þmcÞ

pi
0p

f
0ð1þ sizÞð1þ sfz Þ

vuut �
1þ pi&1

pi
0 þmc

�
½a0ð1þ �0Þ þ að� þ &2Þ�

�
1þ pf&1

pf
0 þmc

�
�0

¼ 1

4V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi

0 þmcÞðpf
0 þmcÞ

p0
i p

f
0ð1þ sizÞð1þ sfz Þ

vuut �
a0ð1þ �0Þ þ að� þ &2Þ þ ða � piÞð�̂� �0Þ þ ða0pi � a� piÞð&1 � �Þ

pi
0 þmc

� ða � pfÞð�̂þ �0Þ þ ða0pf þ a� pfÞð&1 þ �Þ
pf
0 þmc

� a0ðpi � pfÞ � a � ðpi � pfÞ
ðpi

0 þmcÞðpf
0 þmcÞ ð1� �0Þ

� a0ðpi � pfÞ þ ðpi � pfÞa� ða � pfÞpi � ða � piÞpf

ðpi
0 þmcÞðpf

0 þmcÞ ð� � &2Þ
�
: (4)
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Here

a0 ¼ i

4
ez � ðsf � siÞ þ 1

4
ð1þ si � sf þ ez � si þ ez � sfÞ;

(5)

a ¼ i

4
½ez þ si þ sf þ ðez � sfÞsi þ ðez � siÞsf � ezðsi � sfÞ�

þ 1

4
ðsf � si � ez � sf þ ez � siÞ; (6)

where ez is the unit vector along the z axis. Note that a0 and
a depend on the direction of the spins si and sf only, and do
not depend on energies and momenta of initial and final
fermions.

As far as ûi �̂uf is known, the trace of the matrix ûi �̂ufM
can be calculated. In the general case matrix M has the
following form:

M¼ IþV0�
0 þV�þW0�

0 þW�þE&1 þB&2 þ J�̂:

(7)

The unit matrix is the only one of the 16 Dirac matrices
which has nonzero trace. That is why in the matrix product
of ûi �̂uf and M it is enough to take into account only those
terms which are proportional to the unit matrix. Such terms
appear only for a multiplication of the same matrices. This
remark simplifies the multiplication and trace calculation:

�ufMui ¼ Spûi �̂ufM

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi

0 þmcÞðpf
0 þmcÞ

pi
0p

f
0ð1þ sizÞð1þ sfz Þ

vuut 1

V
ða0K0 � a �KÞ: (8)

In three dimensions, the scalar K0 and the pseudovector K
can be written as

K0 ¼ ðI þ V0Þ þ pi � ðEþ VÞ
pi
0 þmc

� pf � ðE� VÞ
pf
0 þmc

þ ðpi � pfÞ � ðW � BÞ � ðpi � pfÞðI � V0Þ
ðpi

0 þmcÞðpf
0 þmcÞ ; (9)

K ¼ ðW þ BÞ þ piðW0 þ JÞ þ pi � ðEþ VÞ
pi
0 þmc

þ pfðW0 � JÞ þ pf � ðE� VÞ
pf
0 þmc

þ pi½pf � ðW � BÞ� þ pf½pi � ðW �BÞ� � ðpi � pfÞðW � BÞ
ðpi

0 þmcÞðpf
0 þmcÞ � ðpi � pfÞðI � V0Þ

ðpi
0 þmcÞðpf

0 þmcÞ : (10)

Note that K0 and K depend on energies and momenta of
initial and final fermion states only and do not depend on
their polarization states si and sf.

In order to evaluate the probability and cross section of
the process, the square of the amplitude of transaction must
be calculated. Let us calculate jða0K0 � aKÞj2 supposing
that all coefficients in (7) are real. This is usually the case
in quantum electrodynamics. Thus the modulus square
j �ufMuij2 is

�ufMuij2 ¼ ðpi
0 þmcÞðpf

0 þmcÞ
pi
0p

f
0ð1þ sizÞð1þ sfz ÞV2

ða0K0 � a � KÞ

� ða�0K0 � a� �KÞ

¼ ðpi
0 þmcÞðpf

0 þmcÞ
8V2pi

0p
f
0

½ð1þ sisfÞK2
0

þ ð1� sisfÞK � Kþ 2ðsiKÞðsfKÞ
þ 2ðsi � sfÞKK0�: (11)

Expressions (8)–(11) are universal. They determine �ufMui

and j �ufMuij2 for any processes in quantum electrodynam-
ics. Different processes differ by matrix M only. The only
thing we need to do in order to calculate �ufMui and
j �ufMuij2 is to represent the interaction matrixM in a form
(7). Then substitute coefficients from matrix (7) into
expressions (9) and (10). These expressions entirely determine

K0 and K. Equations (8) and (11) give the algebraic expres-
sions for �ufMui and j �ufMuij2. All that remains is the sim-
plification of �ufMui and j �ufMuij2 as much as possible.
Expression (11) determines the square of the amplitude

of the process which corresponds to any desirable spin
states of the incoming and outgoing fermions. This expres-
sion explicitly represents dependence on the fermion
polarization, which is why this dependence can be easily
analyzed. If a detector is blind to polarization, i.e., for the
final state both polarizations of fermions in sf direction and
in �sf direction are registered, expression (11) must in-
clude the sum for both directions sf and �sf:

j �ufMuij2 ¼ ðpi
0 þmcÞðpf

0 þmcÞ
4V2pi

0p
f
0

½K2
0 þ K �K�: (12)

Let us demonstrate the effectiveness of the above method
on three examples: Coulomb scattering, Compton scatter-
ing and electron-positron annihilation.

II. COULOMB SCATTERING

We will define the cross section of an electron of charge
e scattering on the Coulomb center of charge Ze versus the
square of the amplitude j �uf�0uij2 in a usual way:

K. S. KARPLYUK AND O.O. ZHMUDSKYY PHYSICAL REVIEW D 86, 015015 (2012)

015015-2



d�

d�
¼ ð2Zr0mc2Þ2

ð2p sin�2Þ4
�
Vpo

c

�
2j �uf�0uij2

¼
�
Zr0
2

�
2
�
c

v

1

sin�2

�
4
�
1� v2

c2

�
V2j �uf�0uij2: (13)

Here r0 is the classical electron radius and � is the scatter-
ing angle. The amplitude square j �uf�0uij2 is defined by
the universal expression (11), in which K0 and K must
be calculated for the matrixM ¼ �0. Hence, in expressions
(9) and (10) we must set V0 ¼ 1. All other coefficients
must be set to 0. We must also take into account that

pi
0 ¼ pf

0 ¼ p0 because, for the Coulomb scattering, energy

is conserved:

K0 ¼ 1þ pi � pf

ðp0 þmcÞ2 ; K ¼ pi � pf

ðp0 þmcÞ2 : (14)

So, the cross section becomes

d�

d�
¼ 1

2

�
Zr0
2

�
2
�
c

v

1

sin�2

�
4
�
1� v2

c2

��
p0 þmc

2p0

�
2

� ½ð1þ si � sfÞK2
0 þ ð1� si � sfÞK2

þ 2ðsi � KÞðsf �KÞ þ 2ðsi � sfÞ �KK0�: (15)

In expression (15) K0 and K are determined according to
Eq. (14).

Expression (15) determines the differential cross section
d�=d� in the case with definite incoming and outgoing
electron spin states. If the polarization of the final electron
is not registered, expression (12) must be used:

d�

d�
¼

�
Zr0
2

�
2
�
c

v

1

sin�2

�
4
�
1� v2

c2

��
p0 þmc

2p0

�
2ðK2

0 þ K2Þ:
(16)

Expression ðp0þmc
2p0

Þ2ðK2
0 þK � KÞ can be simplified thus:�

p0 þmc

2p0

�
2ðK2

0 þK � KÞ

¼
�
p0 þmc

2p0

�
2
��
1þ p2 cos�

ðp0 þmcÞ2
�
2 þ p4sin2�

ðp0 þmcÞ4
�

¼ p2
0 þ p2

0 � p2ð1� cos�Þ
2p4

0

¼
�
1� v2

c2
sin2

�

2

�
: (17)

Recall that � is an angle between pi and pf. After sub-
stituting (17) into (16) we come up with an unpolarized
cross section for Coulomb scattering:

d�

d�
¼

�
Zr0
2

�
2
�
c

v

1

sin�2

�
4
�
1� v2

c2

��
1� v2

c2
sin2

�

2

�
: (18)

This is the well-known Mott scattering cross section [2].
Note that for the polarized cross-section calculation (15)
and the unpolarized cross-section calculation (18) instead
of the Feynman technique (of trace of product of matrices
calculation) we use expressions (9)–(12) which strongly
simplify calculations.

III. COMPTON SCATTERING

It is well known that Compton scattering in the first
order of probability theory is represented by two
Feynman diagrams. Call them a and b. According to the
a diagram, an electron absorbs a photon of frequency !1

first, and then emits a photon of frequency !2. According
to the b diagram, an electron emits a photon of frequency
!2 first, and then absorbs a photon of frequency !1. The
amplitudes for the two diagrams must be added and their
sum squared.
Assume that the incoming electron is at rest; hence,

pi ¼ 0, pi
0 ¼ mc. Let us express the scattering cross sec-

tion versus the square of the sum of the amplitudes
j �ufMuij2 in a usual way:

d�

d�
¼ r20mcpf

0V
2

�
!2

!1

�
2j �ufMuij2: (19)

Here r0 is the classical electron radius. Matrix M for the
two diagrams is

M ¼ e2�
p0a�

0 � pa�þmc

2mcℏk1
e1�

þ e1�
p0b�

0 � pb�þmc

ð�2mcℏk2Þ e2�:

Here p0a ¼ mcþ ℏk1, pa ¼ ℏk1, p0b ¼ mc� ℏk2,
pb ¼ �ℏk2, k1 and k2 are the wave vectors of photons
1 and 2, k1 ¼ !1=c, k2 ¼ !2=c, e1 and e2 are the unit
vectors of polarization of photons 1 and 2, e1 � k1 ¼ 0, and
e2 � k2 ¼ 0. The polar angle in d� is measured from the k1
direction. Matrix multiplication in the expression for M
leads to the coefficients in Eq. (7):

I ¼ ðe1 � e2Þ
2ℏ

�
1

k2
� 1

k1

�
;

V0 ¼ ðe1 � e2Þ
2mcℏ

�
p0a

k1
� p0b

k2

�
;

V ¼ ðpa � e1Þe2 � e2 � ðpa � e1Þ
2mcℏk1

þ ðpb � e2Þe1 � e1 � ðpb � e2Þ
ð�2mcℏk2Þ ;

W ¼ ðe1 � e2Þ
2mcℏ

�
p0a

k1
þ p0b

k2

�
;

B ¼ �ðe1 � e2Þ
2ℏ

�
1

k1
þ 1

k2

�
;

W0 ¼ �e2 � ðpa � e1Þ
2mcℏk1

þ e1 � ðpb � e2Þ
2mcℏk2

;

E ¼ 0; J ¼ 0:

Substitution of these coefficients into (9) and (10) gives us
expressions for K0 and K:
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K0 ¼ ðI þ V0Þ þ pf � V
pf
0 þmc

¼ 2
e1 � e2
2mc

� 1

2mc

pf � ½e2 � ðk1 � e1Þ�
pf
0 þmc

� 1

2mc

pf � ½e1 � ðk2 � e2Þ�
pf
0 þmc

; (20)

K ¼ ðW þ BÞ þ pfW0 � pf � V

pf
0 þm

¼ 1

2mc

pf � ½e2 � ðk1 � e1Þ� � pf½k1 � e1Þ�
pf
0 þm

þ 1

2mc

pf � ½e1 � ðk2 � e2Þ� � pf½e1 � ðk2 � e2Þ�
pf
0 þm

:

(21)

In expressions (20) and (21), k1 ¼ k1
k1
, k2 ¼ k2

k2
. Expressions

for K0 and K together with (11) and (19) determine the
polarized cross section. In order to get the unpolarized
cross section, expressions (12) and (19) must be used.
The sum K2

0 þ K2 can be simplified and expressed as

K2
0 þ K2 ¼ 1

2mc

1

pf
0 þmc

�
4ðe1 � e2Þ2 þ ð!1 �!2Þ2

!1!2

�
:

(22)

Thus, the unpolarized cross section is

d�

d�
¼ r20

4

�
!2

!1

�
2
�
4ðe1 � e2Þ2 þ ð!1 �!2Þ2

!1!2

�
: (23)

This is the well-known Klein-Nishina scattering cross
section [3]. As in the previous case we don’t use the
Feynman technique of trace of product of matrices calcu-
lation. Using the universal expressions (11) and (12)
instead strongly simplified calculations.

IV. ANNIHILATION

Two Feynman diagrams represent the annihilation pro-
cess in the first order of perturbation theory. The first
diagram (call it a) corresponds to the process in which
an incoming electron emits a photon �1 of frequency !1,
then a photon �2 of frequency!2, and transfers to the state
with negative energy. The second diagram (call it b) cor-
responds to the process in which �1 and �2 interchange. In
order to calculate the annihilation probability we must add
the amplitudes of these processes and then square it.

For simplicity, assume that the electron is at rest, so
pi ¼ 0, pi

0 ¼ mc. Following Feynman, we treat the posi-

tron as an electron with negative energy moving backward
in time. This electron has linear momentum and spin
opposite in direction to the positron’s momentum and spin.
It allows us to describe the positron by the same bispinor (3)

if we set up pf
0 ¼ �pþ, pf ¼ �pþ, sf ¼ �sþ, where the

index ‘‘þ’’ designates positron quantities. The same substi-
tutions have to be done in expressions (9) and (10). Let us
express the annihilation cross section versus the square of the
sum of the amplitudes j �ufMuij2 in a usual way:

d�

d�
¼ r20

mℏ2!2
1p

þ
0 V

2

jpþjðpþ
0 þmcÞc j �u

fMuij2: (24)

MatrixM, which corresponds to the sum of two diagrams, is

M ¼ e2�
p0a�

0 � pa�þmc

ð�2mcℏk1Þ e1�

þ e1�
p0a�

0 � pb�þmc

ð�2mcℏk2Þ e2�:

Here p0a ¼ mc� ℏk1, pa ¼ �ℏk1, p0b ¼ mc� ℏk2,
pb ¼ �ℏk2, k1 and k2 are the wave vectors of the photons
1 and2,k1 ¼ !1=c, k2 ¼ !2=c, e1 and e2 are the unit vectors
of the polarization of the photons 1 and 2, e1 � k1 ¼ 0,
and e2 � k2 ¼ 0. The polar angle in the d� is measured
from the k1 direction. After transformation of the matrix M
to the form (7) we can find coefficients in (7) in the reference
frame in which the incoming electron is at rest pi ¼ 0:

Iþ V0 ¼ 2
e1 � e2
2mc

; W þ B ¼ 0;

E ¼ 0; J ¼ 0;

V ¼ � e1 � ðk2 � e2Þ þ e2 � ðk1 � e1Þ
2mc

¼ �ðk1 þ k2Þðe1 � e2Þ � e1ðe2 � k1Þ � e2ðe1 � k2Þ
2mc

;

W0 ¼ � e1 � ðk2 � e2Þ þ e2 � ðk1 � e1Þ
2mc

:

Here k1:2 ¼ k1;2
k1;2

, and k1;2 ¼ !1;2

c . Using (9) and (10), scalarK0

and pseudovector K can be calculated:

K0 ¼ ½2ðpf
0 þmcÞ þ ℏðk1 þ k2Þð1þ cos�Þ�ðe1 � e2Þ

2mcðpf
0 þmcÞ

� ℏðk1 þ k2Þðk1 � e2Þðk2 � e1Þ
2mcðpf

0 þmcÞ ; (25)

K ¼ pf � ½e1 � ðk2 � e2Þ� þ pf � ½e2 � ðk1 � e1Þ�
2mcðpf

0 þmcÞ

þ pf½e1 � ðe2 � k2Þ� þ pf½e2 � ðe1 � k1Þ�
2mcðpf

0 þmcÞ : (26)

These expressions for K0 and K together with (11) and (24)
determine the polarized cross section (both the electron and
the positron have a given direction of spin). In order to
calculate the unpolarized cross section expressions, (12) and
(24) must be used. The sum K2

0 þ K2 can be reduced to
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K2
0 þ K2 ¼ 1

2mc

1

pf
0 þmc

�
4ðe1 � e2Þ2 � ð!1 þ!2Þ2

!1!2

�
:

(27)

Thus, the unpolarized cross section is

d�

d�
¼ r20

4

ℏ2k21
jpþjðpþ

0 þmcÞ
�ð!1 þ!2Þ2

!1!2

� 4ðe1 � e2 Þ2
�
:

(28)

This result entirely coincides with the one calculated by the
technique of trace of product of matrices calculation [1] and
with the one calculated by Dirac [4].
As shown in the above examples, the method proposed

in this paper allows us to strongly simplify calculation of
the polarized and unpolarized fermion cross sections in
quantum electrodynamics. It is free from the necessity
of calculation of trace of product of a great amount of
matrices.
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