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I. INTRODUCTION

In Sec. II of Ref. 1, I discuss the Svistunov2 model of the local induction approximation (LIA)
in some generality, taking into account all possible motions, and discussing features of the model
which permit translations (motion along the x-axis) and rotations (around the x-axis). However, the
topic of the paper was on the structure of rotating filaments, so the translational motion was dropped
in the subsequent sections. That said, the title and abstract of the paper were very clear on this point,
where it was emphasized that rotating filaments were sought. Indeed, such solutions are of a more
narrow class that one could possibly obtain, however it is worth studying all such rotating filaments
in a unified manner.

The authors of Ref. 3 are correct in that the solutions discussed in Sec. III (and beyond) exhibit no
translational motion. Essentially, a vortex filament of the type which may be described in complex
potential form has both translational motion and rotational motion, with the rotational motion
strongly influencing structure of the filament. The resulting structure when translated along the
x-axis with whatever translational velocity one calculates. It is possible to study the rotational
motion of standing filaments which do not translate. This makes sense, as it allows one to study
the geometry or structure of the filaments without dealing with effects due to motion of the overall
filament structure. This is exactly what I do in Ref. 1, which was essentially a study of the various
structures possible in standing vortex filaments. One can certainly include translational effects if
one wishes to see these filaments move along the x-axis, however this greatly complicated the
mathematics (as shall be shown in Sec. II), rendering any qualitative analytical results ineffective.
On the other hand, the numerical results are similar for both the non-translating and translating
filaments (with only adjustments to parameter values, as mentioned below). Therefore, I would
argue that my paper1 adequately studies a variety of filament structures possible in the case of purely
rotating filaments.5

All of that said, the case of filaments exhibiting both translational and rotational motions is
also interesting. Hence, I will devote most of this reply to giving an overview of how one can
mathematically study such solutions.

Before proceeding, we should note that there are circumstances under which translational motion
is essential to the vortex filament structure. In the case where mutual friction effects are considered
(for temperatures above the absolute zero limit), translational and rotational motions are both tied to
normal fluid velocity in a rather fundamental way. See, for instance, Ref. 4. In such cases, growth or
decay of the filament should be considered. In Ref. 6, the authors of the present Comment attempted
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a potential formulation for the mutual friction case, however as I pointed out in Ref. 7 they did not
appropriately apply the complex modulus to the real exponential (so they took |ert + ist| = 1 whereas
they needed |ert + ist| = ert). In my paper,4 a non-potential formulation is used so that the filament is
allowed to grow or decay. It was shown that the decay or growth rate is not generally linear.

In Sec. II, I provide a brief errata to Ref. 1. In Sec. III, I discuss how one can account for rotational
and translational motions of the filaments in question, and how the purely rotating filaments are still
solutions to the Svistunov model. In Sec. IV, I discuss why one might want to study the purely
rotating filaments of Ref. 1 or the rotating and translating filaments, and how one might expect to
find them. Finally, in Sec. V, I discuss the case where the motion cannot be partitioned into pure
rotational and translational motions. In this case, a non-stationary solution must be sought.

II. ERRATA TO REF. 1

(i) In Eq. (14) of Ref. 1, there should be a factor of γ multiplying the second term (so as to keep
the notation consistent with the rest of the paper).

(ii) In Eq. (17) of Ref. 1, the imaginary unit “i” should be omitted from the second line, hence
this term should read r(x, t) = (x, R(x) cos(�(x) − γ t), R(x) sin(�(x) − γ t)).

(iii) There was a typo in the helical reduction (in the curvature-torsion frame) which carried
through, and the representation given in the Comment3 is correct. This was a last minute addition at
the behest of a reviewer, and I did not check this as carefully as I should have.

III. MATHEMATICS OF THE TRANSLATING FILAMENT

Consider the equation

i�t + γ
�xx

(1 + |�x |2)3/2
+ γ

2

�x
(
�∗

x �xx − �x�
∗
xx

)
(1 + |�x |2)3/2

= 0 , (1)

which was shown to be equivalent to the equation of motion for a vortex filament under the Svistunov
model of the LIA. Here, the last factor is due to translational motion of the filament. As discussed in
Ref. 1, translational velocity scales as β ∼ �∗

x �xx − �x�
∗
xx , so when the motion is purely rotational

(i.e., β → 0) the latter terms necessarily vanish. As such, the solutions of Ref. 1 are indeed the
purely rotational solutions.

Keeping the translational motion (so that we no longer have purely rotating filaments), and
defining

�(x, t) = e−γ i tψ(x) , where ψ(x) = R(x) exp(i�(x)) , (2)

we find that (1) gives

R + R′′ − R�′2 + (2R′�′ + R�′′)i
[1 + R′2 + R2�′2]3/2

+ R′2(2R′�′ + R�′′) − R R′�′(R′′ − R�′2)

[1 + R′2 + R2�′2]3/2

− R R′�′(2R′�′ + R�′′) − (R�′)2(R′′ − R�′2)

[1 + R′2 + R2�′2]3/2
i = 0 .

(3)

The final two terms are rather complicated, but these are simply the terms used to account for
translational effects. Separating this equation into real and imaginary parts, we obtain a system of
two real ordinary differential equations (ODEs) for the unknown functions R and �, to wit,

R + R′′ − R�′2 + R′2(2R′�′ + R�′′) − R R′�′(R′′ − R�′2)

[1 + R′2 + R2�′2]3/2
= 0 , (4)

2R′�′ + R�′′ − R R′�′(2R′�′ + R�′′) + (R�′)2(R′′ − R�′2) = 0 . (5)

Clearly, (4) and (5) govern the motion of a vortex filament with both translational and rotational
motions under the Svistunov model. In the absence of translational motion, the system reduces to
that studied in Ref. 1, which was valid for purely rotational motion.
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While a variety of analytical properties of the solutions discussed in Ref. 1 were given, the far
more complicated structure of the system (4) and (5) precludes and such elegant results, even in the
qualitative sense. Still, we can numerically simulate the solutions R, � to the system (4) and (5).
While the formulation which takes into account the translational motion of the filament is far
more complicated, in a structural sense we can obtain the same types of filaments, although some
parameter values will need to be selected differently. In general, the initial condition R(0) can be
taken smaller to get the same type of results seen in Ref. 1. The reason for this is that in the case
where translation is neglected, we have pure rotation alone, while in the case where translation
is included, we have similar structures, with the primary difference being that such structures are
moving along the x-axis instead of remaining stationary with respect to this axis. With translation,
the larger amplitude solutions tend to be even less stable than those in Ref. 1, so very specialized
structures such as helical or planar filaments occur for smaller amplitude deflections from the x-axis.
However, in reference to the variety of structures found, the vortex filament shapes found in Ref. 1
can be found in the translational model (with appropriate modifications to the model parameters. As
such, the results of Ref. 1 are indeed sufficient to give us a qualitative understanding of the structure
of general rotating vortex filaments under the Svistunov model (which was indeed the point of that
paper).

We also find that, for the very large amplitude regime, the translational effects can have a dis-
ruptive effect on the filaments. For such large amplitude deflections occurring in actual experiments,
we in general expect a smoothing over time. This is, in particular, true of the superfluid filaments
that contend with mutual friction effects leading to dissipation. Dissipating helical filaments were
studied in Ref. 4.

IV. USEFULNESS OF THE ROTATING FILAMENTS

The authors of the Comment3 pose a question on the practical utility of studying these general-
ized filaments. While the planar and helical filaments have previously occupied a prominent place in
the literature, there are several reasons why one should consider more generalized rotating filaments.

The helical filament is rather idealized. In practice, there may be perturbations or deformities
along the helical filament, meaning that the filament is not purely helical. As we demonstrated in
Ref. 1, these “almost helical” (or “almost planar,” for that matter) filaments can still be described as
generalized rotating filament solutions, and hence can be studied under this framework.

A planar filament is highly idealized, yet still interesting from the aspect that it is a stationary
solution (it maintains its shape as it moves in space). However, the planar filament is an example of
a completely torsion-less solution. Realistically, in experiments there will be at least some friction
and loss of energy, and the planar solution would be expected to bend and deform. While such
solutions are no longer planar, they can still be described under the framework given here (since
they are still within the class of generalized rotating filaments). Therefore, realistic experimental
“approximations” to the planar filament can be described in the framework.

For the large-amplitude regime, we were able to find that far more exotic dynamics are possible.
This is useful for two reasons. First, it suggests that any initial large-amplitude helical or planar
filament can give way to a more complicated structure, as we suspect that the large amplitude
solutions would realign due to instability. Second, in the case of strong torsion effects (corresponding
to experiments with more viscous fluids), we also find some more of these more exotic solutions.
So, there are two obvious possible routes to obtaining such solutions experimentally. It is likely that
such solutions will be relatively short lived, and will eventually give way to turbulence. The same
could be said of large amplitude solutions even in the presence of translational motion.

In summary, studying more general mathematical vortex filaments than just purely planar or
helical structures can prove useful, since these more general structures can account for greater
variability in experimental vortex filament structure. Meanwhile, the larger amplitude solutions
might give way to more complicated (non-stationary) dynamics, and in that sense might be useful
for investigating the small time dynamics of such problems. We say more on this latter point
in Sec. V.
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V. EXTENSIONS FOR THE NON-STATIONARY VORTEX FILAMENT CASE

The translating and rotating vortex filaments exhibit translational motion along a single axis
(which we refer to as the x-axis) and rotate about this axis in the other two axes (which we refer
to as the y- and z-axes). When the motion is completely rotational, as was the case considered in
Ref. 1, note that the assumption (2) makes complete sense, as it gives completely rotational motion
(due to the U(1) symmetry of (1)). If one then includes translation (as suggested in Ref. 3 and
discussed above), we still obtain a valid system of Eqs. (4) and (5). However, there is a subtle issue.
In deriving this system, one must assume that the motion can perfectly be decomposed into transverse
and rotational parts, that is, one assumes that the vortex filament takes the form

r(x, t) = (x + β(t), R(x) cos(�(x) − γ t), R(x) sin(�(x) − γ t)) . (6)

However, it may be the case that the translational and rotational motions cannot be decomposed so
easily.

In summary, for the purely rotating filaments (as discussed in Ref. 1), the assumption of a
“stationary solution” (stationary in the sense that only U(1) rotations are permitted) as given in (2)
makes complete sense. However, if the translational motion is particularly quick, or if there are
other motions (perhaps there are time-dependent effects in the y- and z-coordinates, as well), this
assumption of a stationary solution for the translational case may break down. This makes sense,
as the purely rotating solutions are but one special case, and as varied as the solutions presented in
Ref. 1 were, there are still many other possible solutions that do not exhibit pure rotation (which
were not considered in Ref. 1, as they did not fit the theme of that paper). Some of these solutions
may not even take the form (2), since this assumption presupposes that rotational and translational
effects can be partitioned in some nice way.

Let us consider what would be required to study non-stationary solutions to (1). Assuming that
there is rotational motion (but that this is not the only motion in the y- or z-axes), we can take

�(x, t) = e−iωT u(x, T ) , where T = γ t , (7)

where ω is a spectral parameter. Then, (1) becomes

ωu + iut + ∂

∂x

(
ux√

1 + |ux |2

)
= 0 . (8)

Instead of solving a system of real ODEs, we must instead solve a system of real partial differential
equations (PDEs). Letting u(x, t) = A(x, t) + iB(x, t) for real-valued functions A(x, t) and B(x, t), we
find

At + ωB + ∂

∂x

(
Bx√

1 + A2
x + B2

x

)
= 0 , (9)

Bt − ωA − ∂

∂x

(
Ax√

1 + A2
x + B2

x

)
= 0 . (10)

Solving this system, one obtains the vortex filament solution

r(x, t) = (x + β(t), cos(ωT )A(x, T ) + sin(ωT )B(x, T ), cos(ωT )B(x, T ) − sin(ωT )A(x, T )) .

(11)
To see the connection with these solutions and those of Ref. 1, let us assume that a solution �(x, t)
= e−γ itR(x)ei�(x) found in Ref. 1 is taken at time t = 0, and then as time increases the filament is
given by the evolution equations (9) and (10). Then, �(x, 0) = R(x)exp (i�(x)). Yet, �(x, 0) = A(x,
0) + iB(x, 0) from the choice of u(x, t). Therefore, we can pick initial conditions

A(x, 0) = R(x) cos(�(x)) and B(x, 0) = R(x) sin(�(x)) . (12)

Then, solving the evolution equations (9) and (10) subject to initial conditions (12) (where the
functions R(x) and �(x) are those found for the purely rotating vortex filaments), we allow for
new solutions which initially match the purely rotating filaments but which exhibit translational
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and other motions as time increases. Doing so, we shall in general obtain unsteady solutions (as
opposed to stationary solutions) which depend on time in some non-uniform way (as opposed to the
uniform rotation or translation discussed above). Such solutions could include cases that cannot be
considered through the previous framework, such as self-similar solutions (quasi-stationary states)
or solutions giving more complicated temporal dynamics.

This technique could also be used to study the time-evolution of unstable large amplitude
solutions previously studied in Ref. 1. Indeed, one can treat the more exotic solutions found in Ref. 1
as initial conditions, and then study the evolution of a solution pair A(x, t) and B(x, t). This would be
useful in determining which (if any) of the solutions in Ref. 1 may lead to chaos or other complicated
dynamics.
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