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ABSTRACT 

Glass-ceramics (GC) are promising candidates for gradient refractive index (GRIN) optics. 

These multi-phase, composite materials also exhibit improved physical properties as compared to 

the parent base glass resulting from the formation of a secondary crystalline phase(s). 

Nanocrystal phase formation in a multi-component chalcogenide glass (ChG), (GeSe2-

3As2Se3)(1-x)-(PbSe)x glass where x = 0-40 has been investigated, and the role of the starting 

material morphology has been correlated to the resulting composite’s optical properties including 

refractive index, transmission, dispersion, and thermo-optic coefficient. Optical property 

evolution was related to the type and amount of the crystal phases formed, since through control 

of the local volume fraction of crystalline phase(s), the effective material properties of the 

composite can locally be varied. Through computational and experimental studies, tailored 

nanocomposites exhibiting gradient index properties have been realized. A Raman spectroscopic 

technique was developed as a means to spatially quantify the extent of conversion from glass to 

glass ceramic, and to confirm that the scale length of the local refractive index modification can 

be correlated to the extent of crystallization as validated by X-ray diffraction (XRD). Spatial 

control of the crystallization was examined by using a laser to locally modify the amount of 

nucleation and/or growth of crystallites in the glass. A novel technique converse to laser-induced 

crystallization was also developed and demonstrated that a glass ceramic could be locally re-

vitrified back to a fully glassy state, through a laser-induced vitrification (LIV) method. Proof-

of-concept demonstrator optics were developed using furnace and laser induced crystallization 

methods to validate experimental and computational approaches to modify the local volume 

fraction of nano-crystals. These demonstrators exhibited tailorable optical functionality as 
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focusing optics and diffractive optics. This work paves the way for the design and fabrication of 

nanocomposite GRIN optics and their use in the mid-wave infrared. 
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1 MOTIVATION 

1.1 Infrared optics 

Infrared (IR) optical systems have increased in their usage across many different 

commercial applications, as well as in their more traditional role in military and defense. 

These systems are now commercially used in medicine [1], the automotive industry [2], 

safety [3], security, and quality control [4]. In military applications they are now found 

on vehicles, ships, planes, and soldiers for use in both night vision imaging systems and 

in low visibility conditions such as dust or fog. 

Some problems that have plagued IR systems are that they tend to use expensive, 

bulky optics and costly, large, externally cooled, large pitch detectors. These attributes 

have limited the applications of these systems to use in military and defense where the 

cost and bulk of the system is outweighed by the benefits of its use. With recent advances 

in detectors and their reduction in size and cost, there exists a parallel need to enhance the 

optical components, either in their optical function and/or compactness. This push for 

systems with reduced size and weight, while maintaining or improving optical 

performance (SWaP) in both commercial and non-commercial applications will enable 

greater application of IR imaging systems across diverse platforms. Additionally there is 

a push to make the systems more affordable. Unfortunately, there exists a chicken and the 

egg problem for detector cost and development, which is one of the main costs of IR 

systems. An increased demand is needed to decrease the cost of manufacturing the 

detectors and to have investors willing to invest in their improvement. The cost though 

has been too high for commercial applications, which would much more easily increase 

the demand on the detectors. The other main cost of the system is the optics, which is 
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largely from the production of the material used and shaping these materials into their 

final form. These costs in the optical systems can be reduced through the use of new 

materials and forming techniques, and is less dependent on the product demand to bring 

about improvements.  

Traditional optical imaging systems in the IR utilize bulk crystalline optics which are 

expensive to make and form into optics. Additionally there are a limited number of IR 

transparent crystals that can be manufactured into their desired size, shape and form, 

which means there are limited material properties that designers can use to optimize 

system performance. This necessitates the use of additional optical elements to be able to 

correct for various aberrations in the system. One avenue that has been used to increase 

the available material property values, and to reduce fabrication cost with techniques like 

precision glass molding [5], are IR transparent non-oxide glasses. 

1.2 Non-oxide glasses 

Non-oxide glasses that are transparent out into the LWIR include chalcogenide 

glasses (ChGs) and halide glasses (based on group VII constituents). Halide glasses are 

typically soft and less thermally robust, limiting their use in optical systems that have 

rugged environmental specifications [6]. This work focuses on ChGs, glasses which 

contain at least one chalcogen, and typically include other glass formers or intermediates 

such as As, Ge, Ga, and Sb. Additional elements can be added into these glasses, which 

in turn change both their structure and resulting material properties, with the most 

important properties to the current discussion being the glass’ optical properties.  

The glass forming ability of each compositional family is dependent on the specific 

composition used, as well as the quenching method (thermal history) used to bring the 
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molten material below the glass transition temperature down to room temperature. The 

glass forming region of certain compositions can be extended by using constituents that 

aid in modifying the glass network (modifiers and intermediates), and also by using more 

aggressive quenching techniques such as forced air [7,8], water [7,9,10], or ice water 

[1,11] as compared to a traditional static air cooling environment. Each glass composition 

also has its own resistance to crystallization and it is a general rule that small melts, while 

more easily quenched to a glassy state, do not possess the compositional homogeneity 

(high quality mixing) needed to yield optically homogeneous materials. For commercial 

glasses this resistance to crystallization (often referred to as crystallization stability) 

needs to be high in order to produce melts of commercial size with high optical 

(refractive index) homogeneity, but needs to be lower if one is interested in intentionally 

inducing crystallization in the material after glass formation. The balance of these 

competing factors, represents the regime examined in this dissertation. The challenge of 

working near the barrier of ‘devitrification’, the region where an originally vitreous glass 

is near the thermodynamic threshold of crystallization onset, while preserving the 

attributes which would allow the creation of material with good optical quality (low loss 

and manufacturability), is at the core of the present effort. 

Chalcogenide glasses have high transparency in the IR due to their low phonon-

energies from the relatively large atomic weights of the constituent elements [12-14]. 

With the ability to modify the transmission window and refractive index by tailoring the 

composition of these glasses, there is a large potential for infrared systems to be able to 

capitalize on these materials. Figure 1-1 below shows several example transmission 
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windows for the different types of ChGs. As the included constituents start to have larger 

atomic sizes/weights, the transmission window of the glass shifts further into the IR. 

 

Figure 1-1 The transparency ranges for various glasses in the IR are shown with the 

highlighted regions being the MWIR and LWIR transmission windows. As the mass of 

the constituent atoms increases from oxides, through the different chalcogenides into the 

Tellurides, the LWIR cut-off wavelength increases (multi-phonon edge). [15] 

Of the many glass-forming compositions and glass families of ChG, there are still 

only a handful of commercially available compositions. One reason for this is the poor 

thermal and mechanical properties that normally occur in these glasses, including low 

thermal conductivity [16], low heat capacity [16], low fracture toughness [17], low glass 

transition temperature, and increased photo-sensitivity compared to many other optical 

materials, especially silicate glasses. Additionally some compositions are not as thermally 

stable against crystallization and thus, are unable to be scaled up in commercial 

production. Another class of materials that can be used to increase the available materials 

for use in MWIR optics are glass ceramics. 

1.3 Glass ceramics 

Glass ceramics are materials that have crystalline precipitates inside of a glassy 

matrix. These composites often have improved material physical properties than glasses 



 

5 

 

on their own (often referred to as the parent glass from which conversion/partial 

crystallization results). Additionally, glass ceramics are attractive in that they maintain 

their ease of formation (glass melting versus crystal growth) and fabrication (precision 

glass molding) as much of the forming is largely done while the material is in its ‘glassy’ 

state, prior to crystallization. Glass ceramics have been shown to possess the added 

benefits of improved thermal and mechanical properties, specifically hardness and 

fracture toughness, realized by adding precipitates with a higher fracture toughness and 

lower thermal expansion [18,19]. This is especially attractive for infrared glasses as they 

tend to be plagued by low glass transition temperatures and low fracture strength, dictated 

specifically by the weak bonds of the covalent network that links the large, highly 

polarizable atoms that make up the glass’ network. In order to create the crystallites 

inside of the parent glassy matrix in a controlled manner avoiding spontaneous random 

growth, the material must be nucleated and then grown using a composition specific 

time/temperature heat treatment protocol. 

Glass ceramics typically start with a parent glass material, a fully vitreous solid with 

no long-range order. Through a secondary thermal treatment that is specific to the 

composition, crystallites controllably grow following thermodynamically defined 

nucleation and growth rates, defined again by the chemistry of the melt and the thermal 

history of the glass. These crystallites are then able to improve the thermo-mechanical 

properties of the base glass alone. One way this occurs is through an increased fracture 

toughness. This occurs when a crack propagates through the material and runs into the 

crystalline inclusions, which are harder than the glassy matrix, and arrest further crack 

propagation into the glass. The thermal expansion of the material can also be reduced if 
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the crystalline phase has a lower coefficient of thermal expansion, as the total thermal 

expansion of the material can be approximated with the lever rule of how much of the 

volume fraction is in each phase and their respective values of the coefficient of thermal 

expansion.  

Traditionally, glass ceramics are formed through a two-step heat treatment (HT) 

process [20,21] or through the use of nucleating agents added to form the seeds of 

crystallites which reduce the activation energy barrier required for subsequent growth. 

This growth is enabled through a secondary HT (growth) step [22]. Without a nucleating 

agent, homogeneous nucleation is realized by a first step that nucleates the glass. This 

process results in seeds or nanosized nuclei (typically several atoms in size) that can later 

be grown into crystals. There are two types of nucleation, homogeneous and 

heterogeneous nucleation [22]. Homogeneous nucleation occurs through density 

fluctuations and diffusion within the material that enables species to migrate to form a 

critical radius nuclei that remains stable in the competition of surface and volume free 

energy [22]. Heterogeneous nucleation on the other hand occurs at the sites of included 

nucleating agents or at phase boundaries where the driving force for crystallization is 

lowered due to the existence of the boundary [22]. The number density of nuclei, which 

are later grown to form crystals, is dependent on the temperature and time of the 

nucleation step. Once nuclei are created, they can then be grown into crystals in a 

secondary HT step. If no nuclei are present, crystallization cannot proceed. The final size 

of the crystals depends on the temperature and time of the growth step. While these can 

occur randomly, nuclei formation and subsequent growth in an optical glass ceramic 
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requires control of number density and size of crystallites demanding control of both 

steps in the process. These steps are depicted in Figure 1-2. 

 

Figure 1-2 A glass ceramic starts out as a base glass, with no crystallites inside, with a 

100% volume fraction of glass. After a nucleation step, there is a small number of nuclei 

formed which dictate the sites where subsequent thermal treatment will enable crystal 

growth. Following a secondary growth HT, constituents from the parent glass diffuse to 

the nuclei and grow to larger sizes resulting in a desired volume fraction of crystals. Vg is 

now reduced by a proportional amount; Vx for our studies where maintaining optical 

transparency is required, typically reaches 10-20%. [23] 

A separation in the temperatures where nucleation and growth process of the crystals 

occurs is essential when creating optical glass ceramic in order to controllably form 

nuclei and then grow the crystals to minimize scatter losses from large size distributions 

and/or large crystal sizes. If nucleation and crystallization are both occurring at the same 

time (i.e., at a temperature where the rates of each process is high), then there will be a 

large distribution of crystal sizes as nuclei will continually be forming and crystals will 

be growing at the same rate as ones that formed before it. In a material with separated I-U 

curves, only nucleation or only growth will occur at a given temperature. We depict this 

construction of both the nucleation (I) and growth rate (U) curves, as a function of 

temperature in the schematic illustrated in Figure 1-3. Nucleation and growth curves can 

be quantitatively constructed via thermal analysis to determine if a material has a 

separation between its nucleation and growth temperature regimes, and what 

temperatures should be used for nucleation and growth steps in the material. Most 
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materials will not have a pristine I-U curve such as that shown in Figure 1-3, rather, they 

will have at least a partial overlap in their nucleation and growth curves. This makes the 

curves necessary to determine the appropriate temperatures that need to be used to 

control both nucleation and growth processes in the formation of an optical glass ceramic.  

In order to characterize the nucleation and growth rates of the base glass material of 

interest, I and U curves can be created. The I curve shows the nucleation rate of the 

material as a function of HT temperature, while a U curve shows the growth rate of a 

material as a function of HT temperature and shown in Figure 1-3. The curves show a 

decreased rate at low and high temperatures, which are from the kinetic and 

thermodynamic barriers respectively [24].  

 

Figure 1-3 Representative nucleation and growth rate curves are shown, where I is the 

nucleation rate curve, and U is the growth rate curve. [23] 

To create absolute IU curves, one needs to nucleate different samples at different 

temperatures for a different durations and then grow at a fixed, high temperature for a 

fixed amount of time to grow the crystals to a large enough size to be able to be seen 

through microscopy. The number of individual crystals are then counted and the 

nucleation rate for each temperature can be calculated [25,26]. To create the U curve, 
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samples are grown at different temperatures and different times, with or without a 

previous nucleation step, and then the average size of the resultant crystals are measured 

for the different times at each temperature in order to calculate the growth rate [25,27]. 

With a lack of IR microscopes, particularly in the MWIR and LWIR, this technique is 

non-practical for many ChGs except with the use of SEM/TEM. Small angle X-ray 

scattering along with XRD would be able to extract the growth rates of the material 

assuming that there is isotropic growth, and would potentially be able to give information 

about the nucleation rate assuming that one knows the shape of the crystals that are 

formed as these techniques give information about the size of crystals and the total 

volume fraction of them. Additionally, the methods discussed in the above references rely 

on the assumption that there is a single crystalline phase formed, which often is not a 

suitable assumption in multicomponent glass systems. Despite these limitations, a 

calculation of the relative I or U rate is sufficient to determine what temperatures should 

be used to induce mainly nucleation or growth in the material at a given temperature. 

The method used to create nucleation- and growth-like curves (relative I-U curves) 

has been developed by authors in a variety of glass systems [20,21,28]. As I-U curves are 

composition specific and not known for most glassy materials, the technique is tedious 

and time consuming but necessary for carefully constructing heat treatment protocols for 

optical glass ceramics. The process uses the thermo-gram of a differential scanning 

calorimeter (DSC), as seen in Figure 1-4. The main features in this thermo-gram are the 

glass transition region, and crystallization peaks. The glass transition temperature, Tg, is 

measured as the inflection point (minimum of the 1st derivative of the heat flow signal) 

on the left hand side of the dip on the left side of the plot. The crystallization peaks are 
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the peaks shown on the right hand side of the plot. The peak crystallization temperature, 

Tp, is the peak of a crystallization peak, and the crystallization temperature, Tx, is the 

onset of the first crystallization peak. The presence of multiple crystal peaks is indicative 

of several crystal phases that are able to form in the glass at high temperatures. The 

stability of the glass against crystallization is defined as Tx- Tg, and if this value is greater 

than 100°C it is considered thermally stable against crystallization [16]. A high stability 

against crystallization is not beneficial for glass ceramics, as controlled crystallization is 

wanted. On the other hand, too low of a glass stability could lead to crystallization 

occurring during glass forming or the crystallization process may be uncontrollable. 

 

Figure 1-4 In a DSC thermo-gram there are three main features, including an 

endothermic dip (left upper figure) where the inflection point or the minimum of the first 

derivative of the slope (magnification of this region is on the left lower trace); this 

temperature defines the glass transition temperature (Tg) determined to be 208 C in the 

present example; exothermic peaks from crystallization (shown at right) define the onset 

of the first crystallization peak (Tx1) and peak temperature is TP1. A secondary 

endothermic dip occurs at higher temperatures (not shown here) at a temperature which 

corresponds to the melting endotherm of the first crystalline species (Tm1). The figure 

here depicts two crystallization peaks, due to two phases of crystals present in the glass.  
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To make the relative I-U curves, the size and position of the first crystallization peak 

is tracked for different HTs that are performed on the glass. For the nucleation-like curve 

the sample is heated to a nucleation temperature and then held isothermally for a 

specified amount of time. The temperature is then dropped to below the glass transition 

temperature of the material, and a traditional DSC run is performed. The location of the 

first crystallization peak is then determined. This process is continued for different 

potential nucleation temperatures. The nucleation-like curve is then created by plotting 

Equation 1 for each HT temperature used, where I is the relative nucleation rate, Tpi is the 

peak crystallization temperature for no HT and Tpx is the peak crystallization temperature 

for a given HT temperature. [20,21] 

𝐼 =  
1

𝑇𝑝𝑖
−

1

𝑇𝑝𝑥
     (1) 

For a growth-like curve the sample is heated to a growth temperature and then held 

isothermally for a specified amount of time. The temperature is then dropped to below 

the glass transition temperature of the material, and a traditional DSC run is performed. 

The area under the first crystallization peak is then determined. This process is continued 

for different potential growth temperatures. The growth-like curve is then created by 

plotting Equation 2 for each HT temperature used, where U is the relative growth rate, ai 

is the peak area for no HT and ax is the peak area for a given HT temperature. [21,28] 

𝑈 = 𝑎𝑖 − 𝑎𝑥      (2) 

With knowledge of the relative nucleation and growth rates, glass ceramics can be 

created with controlled number density and crystallite size.  

Glass ceramics can be created from a wide range of glass compositions that cover 

spectral regions from the visible into the IR, for both optical and non-optical applications. 
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For optical applications, the crystallites typically need to be ≤ λ/10 for the wavelength of 

use (λ), and of a similar size in order to minimize scattering from the crystallites. This 

wavelength scaling of crystal size allows for larger crystals to be able to be crated in IR 

glass ceramic, while maintaining optical transparency in the wavelengths of interest.  

Commercially made optical glass ceramics include ZERODUR (Schott) and VISION 

(Corning). ZERODUR is a lithium-aluminosilicate glass that has a very low coefficient 

of thermal expansion. This composite material is generally not optically clear, and is used 

for non-optical applications where a low CTE is needed, such as mirror substrates in 

telescopes. VISION glass ceramics are semi-transparent and often used for cookware. 

These materials are able to withstand high heat and sudden, large temperature changes. 

The thermal properties, coefficient of thermal expansion (CTE) or thermal shock 

coefficients, were able to be tuned in these materials by tuning the type and amount of the 

crystal phase that was precipitated in the formation of the glass ceramic. Here, one of the 

precipitated phases has a negative CTE while the second phase’s CTE is positive.  

Another non-optical application of glass ceramics is its use in bone grafts in 

biomedicine [29,30]. Bio-active calcium phosphate glasses with MgO and TiO2 have had 

their glass ceramic crystallization mechanism studied. With these glasses being non-

optical, there is not a restriction on how large or optically scattering the crystals are. This 

allows for more tailoring of the type and amount of crystals needed for the composite to 

be bioactive [29]. The different crystal phases that are able to be formed in these 

composites can effect properties such as degradation rates in the human body [30]. 

While halide containing non-oxide glasses are largely not used in many systems due 

to their poor thermal-mechanical stability, alkali-halide containing chalcogenide glasses 
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have been widely studied as candidates for use as optical glasses and glass ceramics 

[17,31-35]. Depending on the amount of halide added into the material, the transparency 

can span from the VIS into the LWIR. One glass system that has been extensively studied 

is the Ge-Ga-Se glass forming region with incorporations of alkali halides such as KX 

and CsX, where X = Cl or Br. The addition of these metal- or alkali-halides helps to 

facilitate homogenous, controlled crystallization in these glasses. These types of glass 

ceramic have been able to maintain transparency from the NIR through LWIR (for short 

HT), reduce the expansion coefficient [36], and modify the hardness of the material. 

Additional studies of these glasses with RbI, were able to show molding of the glass-

ceramic, where the molding process did not affect the transparency or distribution of 

crystals in the glass ceramic [18]. This specific glass ceramic has the potential to create 

low dn/dT materials, as the RbI crystals have a negative dn/dT and could cancel out part 

or most of the positive dn/dT of the parent glass. 

Apart from evaluating how the specific glass’ composition impacts material property 

changes, additional studies have investigated the role of the parent glass composition on 

the glass’ respective crystallization mechanism. In a 65GeSe2–25Ga2Se3–10CsI glass 

shown to exhibit liquid-liquid phase separation (LLPS), crystallization was not seen until 

after the glass’ droplet phase had a maximum number of droplets, and it was surmised 

that these droplets were Ge2Se3 rich, and that the crystals form in these regions [17]. 

While limited efforts were made to correlate chemistry to phase formation, this glass 

family was not examined for correlation of specific properties to parent glass 

morphology. The study highlighted that the glass was useful for several applications 
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since it has high rare-earth solubility suitable for active applications, which increases 

with an increase in the gallium content.  

Additionally, these halide-free glasses have also been made through ball-milling and 

sintering of the starting constituents. This technique has shown to result in the production 

of glass compositions that would normally crystallize upon melting for sizes that are of 

use for optical applications. Transmission of these glasses were shown to extend between 

2-11μm [37]. Additionally, these glasses can then be heat-treated the same way as other 

glasses to form glass ceramics. Upon crystallization (also referred to as ‘ceramization’), 

using a 390°C thermal heat treatment protocol for 2-60 min, a decrease in the density, an 

increase in the Young’s modulus, a decrease in the Vickers hardness, and an increase in 

the toughness was observed [37]. On the other hand in a study on a different glass 

system, [8] researchers saw an increase in the Vickers hardness with crystallization of 

Ge-As-Pb-Se glass with precipitation of PbSe and PbSe2 crystals.  

Hence, the choice of parent matrix and extent/type of precipitated phase formation, is 

critical to defining both the desired post-heat treated glass ceramic microstructure and 

resulting physical properties of the glass ceramic. As will be discussed for the present 

work, the primary target properties of interest are optical properties. It is also noted that 

both the optical and other physical properties resulting in the formation of the optical 

nanocomposite (glass ceramics having a nano-scale secondary crystalline phase) will also 

play a role in the resulting glass ceramic’s function. 

1.4 GeSe2-As2Se3-PbSe (GAP-Se) 

Another system that has been recently studied by our team and others, is the multi-

component chalcogenide system GeSe2-As2Se3-PbSe (GAP-Se). This system was 
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originally studied by researchers at the University of Rennes (France) [31,38]; they 

showed that the glass forming region for this composition is to the left of the red line seen 

in Figure 1-5. These early studies focused on forming glass ceramics with a high volume 

fraction of crystallites using a single, long HT at low temperatures, where nucleation 

would occur quickly and growth would occur slowly. These conditions were used in 

order to have a high density of small crystals [38]. Further studies have been conducted 

that expand upon material properties of both the base glass and glass ceramic for multiple 

compositions [39,40]. 

The (GeSe2-3As2Se3)1-xPbSex tie-line, where x=0-40 in increments of 5%, has been 

studied [39,40], and is depicted in Figure 1-5 as the dashed blue line. The amount of Pb 

was varied, as it was postulated that an increase in Pb content would increase the 

potential for precipitation of a high-Pb containing crystal phase. The appearance of such a 

phase, readily formed by the reduction in glass stability imparted by Pb in the glass, 

would also enable easier precipitation of Pb-containing crystallites. A secondary 

motivation was that Pb-containing crystals would be high index, and a small volume 

fraction would result in a measurable increase in the glass ceramic’s refractive index. 

These details will be discussed in subsequent sections. 

The physical properties of the base glass used in this study can be found from these 

studies [39,40]. The most pertinent information in those studies with respect this work is 

base glass morphology, glass transition temperature, peak crystallization temperature, and 

relative nucleation and growth rates. 
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Figure 1-5 The glass forming region of GeSe2-As2Se3-PbSe is to the left of the red 

line. The blue dashed line is the tie-line of a 1:3 GeSe2 to As2Se3 ratio used in this study. 

[41] 

In both these studies and others on similar non-stoichiometric (composition cannot be 

written as a sum of constituent materials ie. GeSe2, As2Se3, and PbSe) variations with the 

same constituents a large region of LLPS was observed [42,43]. This phenomenon may 

be common in other glasses with these constituents as it was seen for such a wide range 

of compositions in both studies. This region of phase-separation in the glass is commonly 

referred to as the immiscibility dome. In [40] homogeneous glass was able to be achieved 

below 10 mol% PbSe, and above 40 mol% PbSe. Between 10 and 25 mol% PbSe 

droplets that were Pb-rich, and As and Ge-poor. Between 35 and 40 mol% PbSe, the 

opposite was observed. In between these two regions, spinodal decomposition is 

observed. An overview of the base glass morphology in terms of droplet size and 

composition is in Table 1-1, and additional information for above 40 mol% PbSe can be 

found in [40].  
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Table 1-1 The phase morphology of the GAP-Se base glass samples exhibiting LLPS 

is shown, including the size and Pb-content within the two glass phases for select 

compositions. [40] 

Mol% PbSe in 

Glass 
Total at% Pb 

Phase separation 

diameter (nm) 

At% Pb In 

Matrix 

At% Pb In 

Droplet 

0 0 0 0 0 

5 1.14 0   
10 2.35 150 1 13.5 

15 3.64 150   
20 5 100 1.7 12.3 

25 6.45    
30 8 50 9.5 6.5 

35 9.66 50   
40 11.43 50 13 7.3 

 

With such compositional changes present in the base glass’ morphology, transitions 

were seen in many of the physical properties that were measured on the base glass in 

these studies. Differences were also seen in the changes of material properties with the 

amount of Pb in the glass. According to [39] the amount of change seen is partially 

determined by the starting phase morphology. The composition in the two separated 

phases effects the crystallization behavior of the material, and the Pb-rich droplets change 

composition much more rapidly with small additions of Pb into the glass, while in the Pb-

rich matrix small additions of Pb change the composition of this Pb-rich matrix material 

much less. Additionally, the base glass morphology is also affected by the batch size and 

cooling rate of the glass. As was seen in [39] where there were changes in the droplet size 

and in the optical homogeneity of melts of different sizes and/or cooling rates. These 

changes in the phase separation were then seen to affect the nucleation of the material 

(i.e. slower cooled showed evidence of nucleation from the quenching process). The 

density and index of the melts were also affected. 
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Besides the base glass morphology, the glass transition temperature and peak 

crystallization temperature are also pertinent for this study and give information on the 

stability of the glass. These values are listed below for the different compositions in 

Table 1-2, and additional information can be found in [40]. As the PbSe content was 

increased, a decrease is seen in the temperature of the first crystallization peak and the 

glass transition temperature remains fairly constant [40]. This causes the glass stability to 

decrease. After 55 mol% PbSe, the material is no longer able to form a glass and 

crystallizes upon quenching even for small melt volumes (< 10g). 

Table 1-2 The glass transition temperature (Tg), peak crystallization temperature 

(Tpx1), and glass stability (T) are shown for the different compositions used in this 
study. [40] 

Mol% PbSe in 

Glass 
Tg (°C) Tpx1 (°C) T = Tx-Tg (°C) 

0 210 N/A N/A 

5 203 353 149.8 

10 210 355 144.9 

15 200 317 116.24 

20 201 304 102.4 

25 202 294 92.7 

30 201 285 84.1 

35 201 271 70.6 

40 200 258 58 

  

Relative nucleation (I) and growth (U) rates within the GAP-Se system were 

constructed as part of the study by Buff and co-workers [39] for the 20 and 40 mol% 

PbSe samples. In this work, it was shown that the absolute position in temperature space 

(onset of nucleation and growth rates within the I-U curves) was impacted by the size of 
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the glass melt, which was expected from the variation in ‘thermal history,’ if a larger melt 

size is cooled. As will be discussed in [44], this result impacts the resulting LLPS in both 

the size (of secondary droplets) and composition (in this case, Pb content in either the 

droplets or matrix). As one might expect, the size and composition scales with the melt 

size and melt/quench conditions. As ChGs are typically poor thermal conductors, larger 

melts will likely have higher concentrations of ‘frozen in nuclei’ intrinsically formed. A 

shift of the U curve to higher temperatures is seen for the lower Pb-content glass. This is 

reflected in Figure 1-6. From these two figures, one can see that the choice of heat 

treatment temperature in a typical two step nucleation and growth protocol, will distinctly 

define the number of nuclei formed in the first step that subsequently grow in the second 

heat treatment step. Additionally, if a nucleation step was performed before the growth 

step, a shift to lower temperatures was seen for the growth curve as compared to a 

protocol employing a single ‘growth only’ thermal processing step. This additional 

nucleation step allows for more crystal sites to grow during the growth step for lower 

temperatures where spontaneous crystallization may not normally occur, but 

crystallization can occur if a nucleation site is present.  
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Figure 1-6 Nucleation and growth-like curves are shown for the 20 (left) and 40 

(right) mol% PbSe compositions [39,41]. 

Spatial control of this crystallization process opens new doors into the optical 

functionality of components by enabling the control of nuclei formation and/or by crystal 

growth within the material. If one can spatially control the formation of nuclei and/or 

their limited growth (crystallization) while avoiding any spontaneous crystal phase 

formation, an optical component with spatially defined optical functionality, or refractive 

index can be developed. 

1.5 Gradient refractive index optics 

Besides creating new optical materials, another way to expand the optical design 

space for IR optical systems is to decrease the number of optical components by adding 

optical functionality into the individual components. An approach investigated over the 

past decades to enable this largely in visible materials, is through the use of gradient 

refractive index (GRIN) profiles. GRIN profiles in materials have been shown to correct 

for dispersion in [45,46] as well as other aberrations [47,48] in IR transparent glasses. 

The use of GRIN functionality has also been shown to reduce the time and cost of 
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manufacturing elements by eliminating the need to make aspheres over spherical optics 

[47,49]. Ideally if one could have full three dimensional (3D) control of a material’s 

refractive index, then all aberrations could be accounted for and little to no shaping of the 

optic past a planar surface would be needed [50]. This could drastically reduce the 

number of elements needed while improving the optical performance of a system, which 

in turn would greatly decrease the SWaP and increase the potential for the system to be 

used in commercial applications [46,51]. These issues form the underlying motivation for 

our work, specifically applied to materials suitable for use in the infrared. 

There are multiple techniques that have been developed in order to create GRIN 

elements for various wavelength ranges, with each fabrication technique utilizing 

different materials and different potential GRIN profiles that can be created with them. 

Some current techniques used to form GRIN materials are ion exchange [52-55], thermal 

poling [56-58], chemical vapor deposition (CVD) [47,59,60], stacking and pressing of 

different material layers [61-67], metamaterials [68,69], photo-induced changes [70-72], 

and induced ceramization [73-75].  

1.5.1 GRIN by the ion-exchange method 

The traditional method developed initially by researchers at the University of 

Rochester to create GRIN optics for visible applications is through ion exchange, with the 

most typical materials being Na2O-based glasses immersed in AgNO3 solutions to 

promote an exchange of Na for Ag ions. The diffusion of the Ag particles into the glass, 

while being exchanged for the similar ionic radius Na ions, forms a compositional 

gradient of these ions, which causes a gradient in the glass’ polarizability and refractive 

index. Through different processing parameters, various profiles can be created, though 
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the shape of the exchange profiles are limited to typical monotonic depletion to the 

diffusion process. The process also is often vary time consuming. Typical index changes 

seen with this technique are 0.04-0.09. [52-55] 

1.5.2 GRIN by the thermal poling method 

Similar to ion exchange, thermal poling has been shown to enable the re-distribution 

of atoms within a glass through the application of an electric field (between electrodes) at 

elevated temperature. Such migration of ionic species within the glass can modify the 

resulting macroscopic structure, imparting asymmetry to the typical centrosymmetric 

nature of amorphous glasses’ resulting in a change of the material’s 2) and 3). Using 

structured (patterned) electrodes to control where mobility occurs (or not), spatial control 

of charge migration can result in compositional gradients which result in modification to 

the chemical reactivity and also the optical properties within a single glass material. 

Poling is a technique that was first applied to glass in the 1990’s and employs an applied 

electric field and its resulting current to induce migration of a charged species within the 

glass. Such field-induced mobility creates anisotropy in a glass leading to an induced 2 

that results in measurable second-harmonic generation. It has recently been shown that 

through patterning of the electrodes used on the glass (rather than using a blanket, 

homogeneous ITO coating for example) the induced field profile results in a non-

homogeneous diffusion of the mobile ion species. This field gradient then gives rise to a 

mobility gradient which translates to a gradient in the glass matrix chemical composition, 

and thereby, its refractive index. Demonstrated in both oxide [56] and non-oxide glasses 

[57], the induced effective refractive index change (neff) can be on the order of ~0.02. 

Also with compositional tuning to restrict post-poled ion mobility, an index change can 
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be made to remain stable over long periods of time (> 6 months shown to date). Using the 

resulting gradient index profile from micro-structured electrodes, micro-lens arrays have 

been demonstrated using this technology based on a patented process [58]. 

1.5.3 GRIN by chemical vapor deposition 

CVD is a GRIN methodology which can be used for materials in both visible and IR 

wavelength regimes, for crystalline or glassy species. Two main applications of CVD 

GRIN have been reported for optical fibers [59,60] and ZnS/Se [47]. Creating optical 

fibers with a radial gradient in the refractive index are commonly made by changing the 

doping levels of an additive, most commonly with Ge, as the deposition of the glass is 

occurring. The typical index variation for this process is ~0.01-0.02. ZnS/Se CVD GRIN 

is made by changing the amount of S versus Se in the CVD process along with a constant 

amount of Zn. Since the crystal structure of ZnS and ZnSe is the same and their lattice 

parameters are similar in size, both compounds form a solid-solution and a gradient of 

species can be produced. This change in amount of S for Se can create an index change of 

0.2. CVD GRIN are limited to either axial or radial distributions, since the deposition 

process proceeds by layers. [47,59,60] 

1.5.4 GRIN by stacking and pressing of different material layers 

Stacking and pressing material layers of differing index has been accomplished for 

both polymers in the visible, and for glasses in the IR. For polymer GRIN structures, the 

individual material layer thickness is typically 50 μm with the index step between layers 

being minimal, and a total change in index of 0.04-0.09 has been performed. For glass 

GRIN elements the typical material thickness is on the order of mm, with a maximum 

total index variation of ~0.8. These structures can be formed by vertical stacking of 
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sheets (axial), or by stacking tubes inside of each other (radial). Due to the glassy nature 

of the material, a diffusion HT can be performed in order to smooth out the index profile 

eliminating sharp interfaces (distinct steps) between dissimilar materials. For both the 

polymer and glassy GRIN materials, the resultant GRIN stack can be deformed through 

hot pressing, and then be polished into a final lens structure. This coupling with pressing 

allows for more GRIN profiles inside of an element other than either the strictly axial or 

radial geometries which are limited by diffusion alone. The GRIN structures from this 

technique have flexibility with the potential profiles created, but they are not able to 

create fully arbitrary profiles as they are limited to the spatial variation in directions 

perpendicular to the stacking. [61-67] 

Recently, advances have been made to dissolve various compositions of ChGs into 

solution [76-78] which enables the creation of ChG films of high optical quality that are 

suitable for use as conformal coatings. This solution-derived glass approach results in 

homogeneous glass solutions which upon thermal treatment to remove solvent, yields 

ChG layers with properties similar to the parent bulk glass. This processing advancement 

has led to the possibility of directly ‘printing’ unique optical features such as microlens 

arrays [79] and the incorporation of optical nanoparticles and quantum dots [80]. Using a 

3D electrospray process, GRIN structures [81,82] have been formed by spatially varying 

composition and thickness of layers to result in multiple layers with gradients in effective 

refractive index, neff. 

1.5.5 GRIN by metamaterials 

Metamaterial GRIN materials have been created in systems such as Si, Ge, or in 

metallic nanostructures. These materials are planar, and therefore have limited 
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applications where they can be used. They do though have full spatial control of the index 

in the two dimensions they possess, and can have large index changes on the order of 2. 

Here the resulting GRIN results from dissimilar index materials (usually the parent 

material and air) where the patterning process removes materials to yield uniformly 

shaped air holes of defined dimensions, or an array of features of high and low index, 

with varying packing density (volume fraction). This approach relies on the parent 

material being ‘etch-able’ either via wet or dry processing routes and is complex in 

crystalline materials which exhibit preferential etch selectivity related to their 

crystallographic orientation. [68,69] 

1.5.6 GRIN by photo-induced changes 

Photo-induced changes have been used to create index changes over spatial 

dimensions of μm to mm scale. This technique typically uses glasses that are sensitive to 

light, including ChG, to change the index 0.02-0.1 refractive index units (RIU). These 

index variations though tend to be erasable at high temperatures and over time, but do 

have the advantage of being able to spatially determine where and how much of the index 

change will occur. [71,72] These modifications tend to be written as single line structures 

for use in applications such as waveguides if the index change is positive, or if the index 

change is negative such as with a waveguide cladding [70]. Blending the spatial ability of 

direct laser writing photo-exposure to induce a material change that lends itself to 

selective removal (etch or otherwise) has been shown in As2S3 and other GeAsSe glasses 

in bulk and film form [83,84]. Here, the exposing laser light serves to cross-link the 

exposed glass’ structure, rendering it more resistant to etching. Thus patterning of GRIN 
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function of arbitrary optical behavior is realized. The process is time consuming and 

relies on the material’s photo-structural modification ability and its etch selectivity. 

1.5.7 GRIN by induced ceramization 

Controlled crystallization or spatially controlled ‘ceramization’ of glasses has been 

used in multiple ways to create GRIN structures in glasses by inducing crystallites inside 

of a glassy matrix. The local refractive index is a function of the volume fraction of both 

phases present in the material (parent glass matrix and precipitated crystal phase(s)) at a 

given location. This allows for tailoring the final size and volume fraction of crystals 

enabling spatially specific modification of the local ‘effective’ refractive index. Using 

this approach, the formation of a secondary phase of crystallization in the material is 

stable over time and at high temperatures, unlike some laser-induced index changes 

which rely on localized structural reorganization (bond bending or severing) that may 

undergo reversal or relaxation with time or temperature (annealing).  

One mature technology that utilizes such formation of a permanent, long-lived 

spatially defined refractive index change that is largely used in the formation of volume 

Bragg gratings and other optical components is photo-thermal refractive (PTR) glasses 

[73-75]. These glasses use UV-irradiation to form nucleation pre-cursors, and then use a 

two-step HT to nucleate and then grow crystals where the nucleation pre-cursors were 

created. The irradiation causes the cerium atoms to locally ionize, which then allows the 

local silver atoms to change into a neutral state. A low HT then causes these neutral silver 

atoms to cluster. These clusters then act as nucleation sites for NaF crystals that are 

grown in a second higher HT. By tuning the final size and distribution of the crystals, 

gradients in index can be formed. Elements from this technique are typically holographic 
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Bragg gratings, and utilize the two-tone index change created from areas with no crystals 

and areas with a high, consistent distribution of crystals. These PTR glasses come in 

several flavors that cover the spectral range of VIS to NIR, and can have index variations 

up to ~0.0005. [73-75] 

For midwave (MWIR) and longwave (LWIR) IR optics, chalcogenide glass ceramics 

have been proposed and have been shown to be able to produce refractive index changes 

(n) on the order of 0.2 upon ceramization. Here, the n of the resulting optical 

composite, the glass ceramic (nGC) can be defined as the total change of index as 

compared to that of the parent glass (nglass). The n can be homogeneous throughout the 

resulting post-HTd material (such as through a furnace-based two-step nucleation and 

growth heat treatment process) where the entire material has been partially or fully 

converted from glass to ceramic (ceramized). Alternatively, the modification can be 

spatially varying if either the nucleation or growth protocol can define local regions of 

more or less glass ceramic or unmodified, parent glass. When the precipitated crystalline 

phase possesses a higher refractive index such as in the case of the materials explored in 

the present study, n = nGC – nglass resulting in a positive refractive index change. The 

converse is also possible, depending on the parent glass and precipitated phase(s) 

refractive index. Since the glass ceramic is comprised of both the precipitated crystalline 

phase and the residual, ‘depleted’ parent glass, this relationship can more precisely be 

approximated by an effective medium approach that takes into account the relative 

properties and volume fractions of each of the optical composites’ constituents. Equations 

3-5 below, shows different approximations that can be used for an effective medium of 

mixtures. The refractive index was solved for using all three of these equations, in order 
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to see which best described the system used. For Equation 3, which is the Newton 

equation, n is the refractive index of each constituent phase, and V is the volume fraction 

before mixing.  

𝑛𝑒𝑓𝑓
2 ≈ 𝑛𝑔𝑙𝑎𝑠𝑠

2 𝑉𝑔𝑙𝑎𝑠𝑠 + 𝑛𝑐𝑟𝑦𝑠𝑡𝑎𝑙 1
2 𝑉𝑐𝑟𝑦𝑠𝑡𝑎𝑙 1 + 𝑛𝑐𝑟𝑦𝑠𝑡𝑎𝑙 2

2 𝑉𝑐𝑟𝑦𝑠𝑡𝑎𝑙 2 …   (3) 

Equation 4, which is the Gladstone-Dale equation, n is the refractive index of each 

constituent phase, and V is the volume fraction after mixing. 

𝑛𝑒𝑓𝑓 − 1 ≈ (𝑛𝑔𝑙𝑎𝑠𝑠 − 1)𝑉𝑔𝑙𝑎𝑠𝑠 + (𝑛𝑐𝑟𝑦𝑠𝑡𝑎𝑙 1 − 1)𝑉𝑐𝑟𝑦𝑠𝑡𝑎𝑙 1 + 

(𝑛𝑐𝑟𝑦𝑠𝑡𝑎𝑙 2 − 1)𝑉𝑐𝑟𝑦𝑠𝑡𝑎𝑙 2 …   (4) 

Equation 5, which is the Gladstone-Dale equation, n is the refractive index of each 

constituent phase, and V is the volume fraction after mixing. 

𝑛𝑒𝑓𝑓
2 −1

𝑛𝑒𝑓𝑓
2 +2

≈ (
𝑛𝑔𝑙𝑎𝑠𝑠

2 −1

𝑛𝑔𝑙𝑎𝑠𝑠
2 +2

) 𝑉𝑔𝑙𝑎𝑠𝑠 + (
𝑛𝑐𝑟𝑦𝑠𝑡𝑎𝑙 1

2 −1

𝑛𝑐𝑟𝑦𝑠𝑡𝑎𝑙 1
2 +2

) 𝑉𝑐𝑟𝑦𝑠𝑡𝑎𝑙 1 + (
𝑛𝑐𝑟𝑦𝑠𝑡𝑎𝑙 2

2 −1

𝑛𝑐𝑟𝑦𝑠𝑡𝑎𝑙 2
2 +2

) 𝑉𝑐𝑟𝑦𝑠𝑡𝑎𝑙 2 …    (5) 

While the discussion to this point has exclusively been related to the use of a two-step 

thermal treatment to nucleate and/or grow the secondary phase(s) in the parent material, 

alternative methods can be used to do either of these two steps. The use of laser-

irradiation to either selectively nucleate or grow the material would allow for full 3D 

spatial control of the refractive index in these materials. As will be discussed in 

subsequent section, the method as depicted in Figure 1-7 provides an example of a 2-D 

GRIN structure which can be fabricated using this technique.  
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Figure 1-7 A schematic of a glass ceramic GRIN element formed from (A) a base 

glass that is then (B) nucleated spatially with a graded concentration of nuclei that then 

undergoes (C) subsequent HT so that the nuclei grow into crystals at the sites of prior 

nucleation (only). Here, the variation in number density of high index nanocrystals within 

the parent glass results in (D) an effective refractive index variation (Δneff) directly 

proportional to the local variation in both the volume fraction and the refractive 

index/indices of the crystal(s) formed. [41] 

1.6 Laser-induced material modification 

Laser modification of a material occurs through the interaction of the laser with the 

constituent electrons in the material [85]. In order for the light to interact with the 

electrons, the light needs to be absorbed by the material and cross over the optical 

bandgap of the material. For this to happen, the incoming light must have an energy that 

is equal to or above that of the optical bandgap of the material, and within the conduction 

band of the material. This excited electron can then transfer the absorbed energy from the 

photon to the bulk of the material through carrier-phonon coupling if the laser pulse 

length is long enough (ns-ps) [86]. For short laser pulses (ps-fs), there is not enough time 

for the energy to be transferred into the bulk through phonons, and an electron plasma is 

generated [86]. 

The light could also have an energy that is an integer fraction of energies in the 

conduction band of the material, and has a high enough intensity that multiple 

absorptions can occur nearly simultaneously. An example of non-linear absorption is two 

photon absorption (2PA) [87]. This can also occur with more than two photons, and is 

then called multi-photon absorption (MPA). For these non-linear absorptions, there needs 
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to be a high intensity of photons, since the absorption probability for multiple photons to 

be absorbed nearly simultaneously is much lower than that for single photon absorption. 

This dependence on the intensity of the incoming irradiation is the cause for the 

absorption to be considered non-linear. After an absorption occurs, the atom needs to 

relax back down into a lower energy state. This requires that the energy dissipates which 

can occur through a transfer as heat through phonons into the surrounding matrix of 

atoms bound together in the material. Additionally this energy could modify the bonds of 

the atom with its surrounding neighbors and can create color centers or other defects [88]. 

For light above the bandgap energy (shorter wavelength than the optical bandgap) the 

material is strongly, linearly absorbing with respect to the laser intensity as the electrons 

can be absorbed into the conduction band of the material on their own. In this case, the 

light is absorbed very close to the surface of the material, and can be considered a surface 

heat source for bulk material [89]. Additional non-linear absorption could also be present 

depending on the energy intensity of the light source as long as a multi-photon process 

does not ionize the material. For light below the bandgap energy (wavelengths longer 

than the optical bandgap) there could be both linear and non-linear absorption occurring 

[90]. In order to measure the contribution of each process, 2PA (typically most dominant 

of MPA) can be measured independently with an open aperture z-scan [90,91] or by 

measuring the optical absorbance for different laser pulse intensities or fluences [92], as 

typical absorption measurements will measure absorption processes occurring at the same 

time. 

If the wavelength used is such that 2PA is the dominant absorption process, focusing 

a laser beam with a low enough intensity to not cause modification away from the focus 
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can then be used to modify the material only in the region around the focus. This can 

allow for high spatial resolution of material modification, and even be used to generate 

structures below the Rayleigh limit at the used wavelength [87,93].  

Besides the wavelength of the light, other laser parameters such as repetition rate 

(RR) and pulse duration can also affect the material modifications occurring in the 

material. These two parameters work together to determine the irradiation peak power, as 

well as the amount of material relaxation between pulses. Shorter pulse durations on the 

fs to ps time scale equate to higher peak intensities and energy per pulse for a given 

repetition rate as seen from the Equation 6 for peak pulse intensity where Ip is the peak 

pulse intensity, Pavg is the average power, RR is the repetition rate, τ is the pulse duration, 

and w0 is the beam waist. These higher peak intensities allow for more non-linear effects 

to occur, such as 2PA [85]. Additionally, since the pulse duration is shorter than the 

amount of time it takes for the energy to transfer from the electrons to the lattice in the 

form of heat (several hundred ps), the irradiation and modification is considered “non-

thermal” [85]. 

𝐼𝑝 =
1.76∗𝑃𝑎𝑣𝑔

𝑤0
2 𝑅𝑅𝜋𝜏

     (6) 

The RR of the laser affects how quickly the material will heat up, and how much 

relaxation is able to occur before the next incoming pulse. Equation 7 below shows the 

characteristic length for heat to diffuse where l is the diffusion length, D is the diffusivity 

of the material, and τ is a characteristic time. This allows one to characterize how far the 

heat is able to travel during the laser pulse length, or in between pulses, depending on the 

characteristic time used. Heat accumulation can occur if the time between pulses is less 

than the time for the system to return to the starting temperature, and can cause rapid 
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heating in the material for MHz RR as depicted in Figure 1-8 [94,95]. This rapid heating 

allows for a smaller heat affected zone (HAZ) than irradiations with lower RR would when 

raising the material temperature to the same value [96,97]. The HAZ in a heat accumulation 

regime is dominated by heat diffusion [85]. Also with the faster heating, high RR material 

processing can be performed on a faster timescale, since less dwell time is needed to reach 

the same temperature [96]. The RR also affects the peak pulse intensity like the pulse 

duration does, as the higher the RR the lower the peak pulse intensity as shown in Equation 

6. 

𝑙 ≈ √𝐷𝜏      (7) 

 

Figure 1-8 Heat accumulation occurs when the temperature increase from a single pulse 

does not have enough time to completely return to room temperature before the next pulse 

arrives. This can cause a rapid build-up of heat in a sample, and can impart more permanent 

modification as compared to transient changes that can relax upon cooling. [23] 

The pulse duration, in combination with the RR determines the peak pulse energies and 

amount of heating in the material, which can affect other experimental parameters as well. 

For instance, waveguides that are written with lower RR (higher pulse energy) need lower 

NA objectives for writing, while higher RR (lower pulse energies) need higher NA 
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objectives [96]. The NA of the objective then affects the asymmetry of the waveguide, as 

a higher NA leads to a more symmetric waveguide.  

One modification that is typically considered detrimental to forming optically 

transparent regions of modification, is laser ablation. Ablation though can be used in 

applications such as precision cutting, drilling, or polishing to remove material in a very 

controlled fashion and can be implemented on the micron scale [98]. The initiators of 

ablation include free electrons, defects or impurities, freed bound electrons, avalanche 

ionization, and/or electron tunneling [86]. The cause of ablation can vary depending on 

both the material and the laser parameters chosen. 

One step just below the materials intrinsic ablation threshold is the energy threshold 

for melting the glass. With a laser-based process, localized melting of the material can be 

used in applications such as additive manufacturing, surface polishing, and welding. 

Lasers can be used in additive manufacturing through various methods, such as photo-

curing for plastics [99], but with respect to melting it is typically used to melt layers of 

metal powder to solidify into the part being made [100]. In laser polishing, the laser is 

used to re-melt the top surface of the part so that the peaks melt into the valleys [98]. 

Laser welding can also be performed on various materials including metals, glasses, 

semi-conductors, and even combinations of these materials [101].  

Below the melting point of the material, other property changes can occur that affect 

the chemical structure through the initiation of chemical reactions, through bond re-

arrangement, or in some cases modification of existing bonds, through bond severing and 

reformation. One example of an induced chemical reaction is photo-polymerization, 

where light is used to trigger the chemical reaction that links monomers together as 
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polymers [87]. This technique is widely used in photo-lithography and 3D printing of 

plastics. An example of bond modification and re-arrangement is the photo-patterning of 

a region with a different etch rate, which depending on if it is faster or slower than the 

surrounding media will create a positive or negative relief structure [102]. This has been 

used to create micro-fluidic channels and cavities with materials such as Fotoran. 

Another example of processes resulting in bond changes is photo-expansion or photo-

contraction of glasses, where structural modifications occur in the glass [15,103]. This 

expansion can cause a change in density, which can then causes changes in the refractive 

index of the material.  

Controlled laser-induced refractive index changes were first performed by Davis et al 

in ZBLAN [104] with an ultrafast laser, and has since been performed in crystals, 

polymers, and multiple glass types [70,88,94]. Many of these index changes are 

considered metastable however, as they can often be relaxed out of the material at high 

enough temperatures that the bonds are able to relax back to their original state [95]. The 

ability and speed of this relaxation is material dependent.  

One two-tone index structure with optical functionality that can be created with laser 

patterning is a diffraction grating. This type of structure is a diffractive optic, and is 

formed by linearly alternating refractive index values of n1 and n2
 with a repeating pitch, 

where the phase shift of light between light traveling through the two regions is π. These 

can be created through either surface relief features, or index changes in the volume of 

the material [95]. The spacing of the alternating lines determines the angle at which the 

diffracted light will exit, and follows Equation 7 for incident light normal to the grating 

structure, where d is the distance between lines, θm is the angle of the light post grating, n 
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is the refractive index of the medium after the grating, m is the diffraction order, and λ is 

the wavelength used.  

𝑚𝜆 = 𝑛𝑑 sin 𝜃𝑚      (7) 

Permanent refractive index changes can also be formed by locally inducing 

ceramization, as explained in section 1.5 above for laser-induced nucleation with 

subsequent thermal growth of crystals. The laser could also be used in the opposite 

technique where the entire starting glass is nucleated and then the laser locally grows the 

glass.  

1.7 Laser-induced modification of GAP-Se materials 

Efforts to use laser-induced processes to impart either nucleation or post-nucleation 

crystal growth has been carried out on GAP-Se materials in both bulk and thin film form. 

Work on GAP-Se films preceded work on GAP-Se bulk materials early in our team’s 

DARPA program (Tech Area 2 program # FA8650-12-C-7225), as liquid-liquid phase 

LLPS issues in the bulk glasses (discussed below) made laser coupling into the bulk glass 

to realize volume refractive index modification, impossible. This previous work on 40 

mol% PbSe films has shown that the deposited film is homogeneous, without phase 

separation [105]. Upon irradiation with a ns, 1064 nm continuous wave (CW) laser, the 

glass becomes phase separated and remains amorphous. This is shown in the TEM 

micrographs Figure 1-9 for the as-deposited, laser exposed (center) GAP-Se films [105]. 

Shown is evidence of laser-induced phase separation of the initially homogeneous glass 

film into a (still) amorphous film exhibiting liquid-liquid phase separation. If a 

subsequent heat treatment protocol is performed on the laser-exposed film, growth of the 
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Pb-rich amorphous regions of the laser exposed is then seen resulting in visible 

nanocrystallites as confirmed by selective area electron diffraction (SAED).  

 

Figure 1-9 TEM images of 40mol% PbSe films, for as-deposited, laser nucleated, and 

furnace growth. In the upper right hand corner is a selected area electron diffraction 

pattern, which confirms either the amorphous nature (halo) or crystalline nature (spotty 

pattern) in the post-treated film. [105] 

Post-irradiated GAP-Se film samples were subjected to varying HT protocols to 

understand the effect of thermal growth of the post-irradiation phase separation on the 

formation of the desired crystalline phases. Additionally, it allowed us to confirm if the 

irradiation indeed acted as a nucleation step to induce the less stable, Pb-rich glassy phase 

(shown clearly as the bright region in the dark field microscopic image in Figure 1-9, 

center). Following HT, the refractive index for each of these exposures was measured in 

the infrared using spectroscopic ellipsometry, as illustrated in Figure 1-10. Plotting the 

resultant index measured at a wavelength of 4 μm versus HT protocol used (for a constant 

laser exposure condition, discussed in detail in the paper) allowed construction of the 

material’s ‘S-curve’ which defines the process window for inducing a post-exposure 

refractive index range. As shown in Figure 1-12, red data points highlight the changes in 
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films receiving both laser exposure and heat treatment, whereas the gold data points show 

the glass film’s tendency to spontaneously crystallize in an uncontrolled manner after a 

single HT. The shift to lower temperatures for the start of observed growth shows that the 

irradiation was effectively able to phase separate the glass thereby ‘nucleating’ in this 

case, a Pb-rich, high index glassy phase more likely to crystallize at a lower temperature 

than the initially homogeneous amorphous film. Additionally, the S-curve provided 

insight on a process window intrinsic to the material whereby the locally exposed regions 

could be heat treated to impart an index change without spontaneously crystallizing the 

adjacent, unexposed regions. This would enable spatially defined index modification in 

the same optical element, with good (sub-100 nm) spatial resolution. These important 

findings obtained on films allowed us to realize that phase separation would provide an 

important role in controlling the spatially-induced compositional variation that served as 

a pre-cursor for localized crystallization for amorphous films. While not identical in 

morphology to what we observe in as-melted bulk glasses (as-deposited GAP-Se films 

are homogeneous and not phase separated), it guided the present effort carried out in this 

dissertation. 

 As the bulk glass for this composition was already phase separated when melted, it 

was unknown whether nucleation of this material was possible with laser irradiation 

[105]. Following a discussion of how the induced refractive index is characterized, we 

show how this understanding obtained on GAP-Se films was used to induce spatially 

varying refractive index modification in the bulk glasses of interest to this study. 
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Figure 1-10 The refractive index for 40 mol% PbSe GAP-Se films for a growth only 

furnace HT (yellow) and laser nucleated plus furnace growth (red) plotted for the 

different thermal growth tempeatures used. Defined are the regions whereby only the 

laser-induced region grow with heat treatment (30 mins) at the shown temperatures (red 

samples below the transition regime) as compared to the regime where both the laser 

exposed glass and the unexposed glass both crystallizes. Above the transition regime, 

spatially varying crystallization is no longer controllable, as it is accompanied by 

spontaneous crystallization. 

1.8 Quantification of refractive index modification and GRIN characterization 

Traditional absolute refractive index measurements are most commonly performed 

using spectroscopic ellipsometry [106,107], minimum deviation [108], and prism 

coupling refractometry [109-114]. Most of these approaches involve near-surface 

interaction of a probe beam with a sample and the corresponding modification of some 

aspect of that beam following the interaction. Hence as a starting point, these methods are 

useful in probing the surface refractive index and its changes, but do not all lend 

themselves to good quantification of volume index changes. Spectroscopic ellipsometry 

uses measured reflection and/or transmission data of a sample, and then fits the data to a 

model to extract the refractive index. This measurement technique typically has a spot 

size of approximately one cm, and is able to generate the entire dispersion curve for a 
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sample with one measurement. One issue with this technique is that the material model 

used for the samples must be correct, which can cause error in the absolute refractive 

index if the model does not sufficiently describe the system used. [106,107] 

The minimum deviation technique uses a precisely manufactured prism of the 

material of interest to measure the refracted angle of a laser with a particular 

measurement wavelength going through the prism. The prism can then be rotated in order 

to determine the input angle with the minimum deviation of the refracted beam which can 

be used to directly solve for the refractive index. This technique can make highly precise 

measurements with error in the 5th decimal place, and measures the index over several 

mm throughout the bulk. The downside of this technique is that one must create a highly 

precise prism of the material that one wants measured. [108]  

The prism coupling technique has the sample with an unknown refractive index in 

contact with a prism of known refractive index. The combination of prism and sample is 

then rotated to find the angle where total internal reflection occurs at the interface of the 

two materials. This technique measures the index over a spatial region of 1-2 mm along 

the surface, and only a few microns deep through the evanescent coupling of the light at 

the interface. As long as the refractive index of the prism used is well known and the 

alignment of the incoming beam is precise, the error of the measurement can be 0.0005 

RIU in the IR. [109-114] 

These traditional techniques to measure refractive indices take the measurement over 

regions of mm-cm widths, and as noted earlier, typically only measure the surface’s 

index. In order to be able to characterize GRIN materials, more spatially selective 

measurement techniques need to be used. Some main categories of spatial refractive 
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index measurements are interferometers [53,115], optical coherence tomography [116-

118], image and system analysis [64,66,69,71], and effective media calculations [62]. 

Interferometric measurements measure an average phase change throughout the entire 

thickness of a sample measured. This can be useful to determine the wavefront shaping 

that would/can occur if a laser beam passes through the optic or an index modification 

along a single axis, but cannot give information about the spatial variation in 3D. If an 

optic were sliced into thin sheets (or if there is only a 1D or 2D GRIN), this technique 

could be combined with an absolute refractive index measurement at the surface of the 

sample with a technique such as prism coupling to know the absolute refractive index 

profile of the sample.  

Optical coherence tomography (OCT), a common imaging modality in biology, has 

recently gained application with characterization of polymer stacked GRIN materials. 

This characterization technique uses back reflections off of the boundary interfaces from 

the different refractive index layers. Using OCT with confocal scanning, both the 

thickness and refractive index of the layers can be measured and mapped spatially. 

Additionally by scanning over an arc, these measurements have been able to be used on 

post pressed and formed samples. This near final or final shape diagnostic is very useful 

to determine if there are any defects in an optic, where the defect is within the part’s 

thickness, and what the defect is due to. This technique is very useful to be able to obtain 

the absolute, spatial refractive index profile, but needs the interfaces between layers of 

different indices for back reflections and therefore cannot be used on all GRIN profiles. 

This also is not used for IR transparent materials as of yet. [116-118] 
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System and image analysis measurements involve determining the effect the optic has 

on the light traveling through it, and is useful to determine if the designed optic can be 

used in a specific system. Specific techniques include imaging analysis [64], system 

performance characterization [66], and wavefront sensing [71]. Imaging analysis uses the 

analysis of an image going through an optic to see what the resolution is and if any 

distortions are occurring. This technique generally uses an image standard such as a 

USAF test chart or an image of a known diffraction grating [64]. System performance 

analysis generally places the optic in a pre-existing system and verifies whether the 

deigned optic is able to replace elements that were previously there in order to show that 

the functionality of the GRIN performs the way it was designed [66]. Wavefront sensing 

measures how the optical wavefront changes after passing through an optic [71]. This 

allows one to quantitatively say that the expected wavefront exited the optic as was 

expected. These techniques are good at determining if an optic works, but does not 

fundamentally give spatial information about the index profile in the material, only the 

total effects the optic has on the light. 

Effective media calculations utilize characterization techniques that give information 

about the ratio of different material types that are present and solves for the effective 

refractive index by utilizing an effective media equation and know refractive indices of 

the materials present. One indirect technique illustrating this approach as applied to 

polymeric GRIN materials utilizes µ-FTIR measurements in a polymer system. µ-FTIR 

was measured at various locations across the surface of the sample. By knowing the 

spectra for each polymer type used in the material, the relative amount of each type 

present at the measurement location was able to be determined. Since the refractive 



 

42 

 

indices of these polymers are well known, the effective refractive index at that location 

could be calculated. With a combination of cutting and polishing, the refractive index of 

the entire GRIN profile could be mapped out. The effective media technique can be 

highly precise, but is dependent on how accurately the volume fraction of each phase 

present is measured and the validity of the equation used for that particular multi-phase 

system. [62] 

1.9 Goals of this work 

The above sections highlight the key background, concepts and prior work related to 

the goals of this dissertation. In order to develop infrared transparent glass ceramic GRIN 

optics, new materials need to be developed and characterized as to their potential 

refractive index variation realized upon ceramization. The magnitude of the potential 

refractive index change possible must be studied and evaluated to determine how 

controllable the process is, and how repeatable it is based on the use of exploratory, small 

volume glass melts. Once it is determined that the material can produce changes in index 

upon ceramization, our motivation has been to fabricate actual GRIN structures which 

validate the material chemistry and physics assumptions we believe responsible for the 

index modification and assist us in understanding limitations. Such limitations not only 

include limitations to optical function, but more specifically the compositional space 

possible for exploitation of glass stability and subsequent partial conversion to glass 

ceramic, starting material quality, thermal processing protocol optimization, and 

availability of reliable metrology tools which can be used to quantify the outcome of the 

processing protocol. In order to spatially be able to measure the GRIN structure, new 

techniques need to be developed for this material to measure the refractive index 
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spatially. These steps form the basis of the present effort. A short summary of target 

material attributes that frame our study are shown in Table 1-3. While not exhaustive, it 

defines the key understanding we need to have of candidate infrared GRIN material and 

the processes we will use to convert it to a glass ceramic suitable for potential use. 

Table 1-3 Target material attributes of a MWIR transparent GRIN glass ceramic 

envisioned in this effort 

Property Attribute Metric 

Infrared transmission Transmission within spectral 

window of use (defined for 

this study to be 3-12μm) 

Low intrinsic absorption and 

scatter of base glass 

 

 

 Low absorption of 

precipitated crystalline 

phase(s) (maintain 90% 

maximum transmission) 

  Knowledge and control of 

crystal growth rate 

 Transmission within the 

spectral range of laser 

writing sources 

Definition of wavelength 

paired to mechanism desired: 

use of heat accumulation (fs), 

bandgap irradiation (CW) or 

use in the transmission 

regime (ns) 

Glass homogeneity Refractive index uniformity Better than 10-3 to enable a 

change (n) to be measurable 

and to maintain high image 

quality 

Glass crystallization behavior Nucleation and growth rate 

behavior 

I-U curve 

Glass/glass ceramic optical 

quality 

Index and dispersion 

behavior over wavelength 

regime of use of pre- and 

post-processed part; thermo-

optic coefficient 

Refractive index, n, dn/d, 

dn/dT 

Metrology Refractive Index Quantifiable by Raman 

spectroscopy 

Manufacturability Post-processed glass ceramic 

can be fabricated into optical 

component shape using 

existing methods and tools 

Mechanical hardness, 

toughness and chemical 

durability 

 Resulting glass ceramic 

amenable to AR coating 

Thermal stability under 

coating conditions 
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In this work, materials in the GeSe2-As2Se-PbSe system have been investigated for 

their ability to have index changes upon ceramization. Material selection has been carried 

out based on as-melted, bulk material attributes. Base material and post-processed 

(nucleated and grown) glass ceramics have been evaluated for changes associated with 

the glass chemistry, structure and physical properties accompanying the conversion of 

glass network constituents to a crystalline form. The resulting changes in optical 

properties, most notably transmission and refractive index, are measure and correlated 

with the mechanism(s) believed responsible for the change. Once formed, the optical 

composite’s transmission has been measured to ensure that the resultant material is still 

applicable for use in optical systems.  

Reported in the subsequent chapters are steps used to address the wanted material 

metrics listed in Table 1-3. Further investigation has been performed on a specific 

composition to be able to determine the controllability of the crystallization and to 

develop an indirect method to be able to determine the refractive index in a spatially 

selective way. Chapter 2 summarizes the sample fabrication and characterization 

techniques used in subsequent chapters. Following this, Chapter 3 highlights the choice 

of base glass compositions within the GAP-Se system and the protocols used to identify 

suitable furnace-based thermal processes for the creation of a glass ceramic. Chapter 4 

extends these findings and reports on efforts to utilize laser irradiation to assist in the 

nucleation and/or growth of the secondary nanocrystalline phase with the goal of 

demonstrating spatial variation within a monolithic bulk part. Multiple laser exposure 

regime are discussed and a summary of the tradeoff of each is presented. Chapter 5 

presents a novel and not previously demonstrated approach to create an index gradient 
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based on the destruction rather than the creation of the secondary crystallization phase(s) 

through the use of laser-induced vitrification. The potentials and limitations of this 

approach are presented for the first time, based upon infrared transparent glass ceramics. 

Lastly, chapter 6 reports demonstration of optical functionality realized based on the key 

findings of the prior material science and laser-material interaction studies. Here, a GRIN 

structure was created to verify that this material is able to produce GRIN structures. 

These structures were accomplished through laser-induced heating of a sub-bandgap or a 

bandgap laser. These structures were characterized for their optical functionalities, and 

confirmation of one of the structures was accomplished by creating a structural 

correlation with crystallization, and therefore index of the material.   
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2 EXPERIMENTAL 

A brief overview of the experimental tools, methods, and techniques used in 

subsequent chapters are described for the rest of the work presented in this document. 

The sample preparation and fabrication methodologies, as well as material 

characterization and measurement protocols are included. 

2.1 Glass melting 

Bulk glasses were prepared using a standard melt/quench protocol for 40, 350, and 

400 g melts to evaluate the role of melt size on starting material properties and their 

impact on conversion to a glass ceramic suitable for GRIN applications. Elemental 

starting materials, 99.999% (5N) pure were weighed and batched in a nitrogen 

atmosphere. They were then loaded into fused quartz tubes and sealed under vacuum in 

an ampule. Small (40 g) melts were prepared in 10 mm diameter tubes, whereas larger 

melts were prepared in 30 mm diameter tubes. Once sealed, the ampule was placed in a 

rocking furnace which was ramped at 2°C/min up to a melting temperature of 850°C and 

was left overnight while rocking. The sample was then cooled at 2°C per minute to a 

quench temperature of 650°C. The rocking was then stopped and the sealed ampule was 

removed from the furnace and quenched with forced air. The sample, while still in the 

ampule, was then annealed at 177°C for 2 hrs, and slowly cooled to room temperature.  

2.2 Sample fabrication 

 After annealing, the glass rods were removed from the ampules and sliced into ~2 

mm-thick disks using a Buehler Isomet low-speed saw, and were then ground by hand 
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with a Buehler EcoMet 250 Grinder-Polisher with grits of 320 and 600 to near flatness. 

Plano coupons were then either polished with a PR Hoffman double-sided lapping 

machine (PR-2) with a 5 μm alumina slurry or by hand using polishing pads with grits of 

800 and 1200. The final polish was performed by hand with a 0.05 μm alumina slurry, 

resulting in a typical post-polished root mean square (RMS) surface roughness (measured 

over about a square mm) of 18±6 nm. In some cases, additional quartering of large (30 

mm diameter) samples was performed with the slow speed saw equipped with a 

diamond-impregnated blade. If required, post-HT polishing of parts was performed by 

hand, and the starting grit size used was determined by the amount of material that 

needed to be removed in order to return the glass’ surface to a good level of flatness and a 

good optical surface quality that is void of scratches and digs. 

2.3 X-ray diffraction (XRD) 

X-ray diffraction (XRD) was performed to confirm the amorphous nature of the 

starting material and to assess post-processing conversion of the glass to a glass ceramic. 

XRD analysis was carried out on a PANalytical Empyrean, basic X-ray diffraction 

system with 1.8 KW, λCuKα=0.15418 nm, and 40 mA beam current. The 2Θ scan range 

covered was 9.9933° to 70.15386°, with a step size of 0.050134°. This translates to a 

typical acquisition of 1200 points per spectrum. Measurements were taken on bulk 

polished samples that were suspended above the sample holder with clay at room 

temperature (RT). Signatures from the mounting clay and sample holder were removed 

from patterns. A calibration curve to assess unknown, post-heat treatment volume 

fractions was prepared as a reference. For this purpose a known volume fraction of 

crystal phase of the most prevalent, highest index crystal phase, PbSe, was intimately 
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mixed with amorphous, 0 and 40 mol% PbSe glasses and then evaluated to see if there 

was any X-ray shielding from the Pb in the material on the crystal signal. It was found 

that there was a negligible amount of shielding that occurs in these materials for the 

amounts of Pb already present in the glass and the amounts of crystal that are formed. 

Known (measured from mixing) versus measured volume fractions for these two melts 

are shown below in Figure 2-1 From these data, known peak heights could be compared 

to that found in unknown, post-processed glass ceramics. The XRD system exhibits 

~0.10° - 0.15° instrumental broadening of the peaks. 

 

Figure 2-1 The known added amounts of crystalline PbSe is plotted against calculated 

amounts of PbSe using peak height data from measured XRD to see if there was X-ray 

shielding from the Pb in the surrounding glassy matrix. The dashed line is a 1:1 line, and 

error is contained within the size of the data points, unless shown. 

2.4 Transmission electron microscopy (TEM) 

A FEI Tecnai transmission electron microscope (TEM) was used to measure the size 

of precipitated crystals in the material for samples with crystal sizes less than 100 nm and 

was measured in the range of 80 – 200 kV. The spatial resolution of this system is 0.2 

nm. Samples were ground into a powder, mixed with acetone, applied to a lacey carbon 

grid, and the solvent was evaporated leaving behind the sample power on the grid. 
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Images were analyzed to determine the average size of the crystalline particles visible. 

SAED was used with this system in order to obtain crystallographic information in order 

to identify precipitated crystals and has the same spatial resolution as the TEM. X-ray 

electron diffraction spectroscopy (XEDS) was also able to be performed with this system 

in order to obtain information on the composition of the material spatially in order to see 

changes in the composition of the two glassy phases present. This part of the system has a 

spatial resolution of 0.14 nm (when used at 80 kV) and a spectral resolution of 50 to 80 

eV.  

2.5 Scanning electron microscopy (SEM) 

In order to measure the size of precipitated crystals for samples with crystal sizes 

greater than 100 nm where TEM was not necessary/required, a scanning electron 

microscope (SEM) was used. A Zeiss ULTRA-55 FEG SEM was used to measure treated 

bulk samples, which has 1nm resolution for the measurement voltage of 15kV that was 

used. Samples had carbon tape applied to them in order to reduce charge build-up. 

Images were analyzed to determine the average size of the crystalline particles visible. 

Additionally energy dispersive X-ray spectroscopy (EDS) was also performed with this 

machine to verify the total composition of base material with a spectral resolution of 50 

to 80 eV. 

2.6 Raman spectroscopy 

Raman spectroscopy was measured with a Bruker Senterra microRaman system at 

room temperature, with a 785 nm excitation wavelength. An objective lens of 20x was 

used in conjunction with the setting of 1 mW of power and a total integration time of 2.25 
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min, using three co-additions of 45 sec each. The spot size of the beam with the objective 

used was measured using the knife edge technique. From this, the beam waist was 

determined to be approximately 2 μm. In order to confirm that the Raman measurement 

was not inducing any additional changes in the material, multiple measurements were 

taken at one location and no change in signal was observed. Measurements were taken on 

bulk, polished samples. If the sample surface was deformed after a HT, a light polish as 

discussed in section 2.2, was performed before a measurement was taken. Wavenumber 

error is ~2 cm-1 for the system. 

2.7 UV-VIS/FTIR measurements 

To cover the entire transmission range needed for these samples, both a CARY 500 

UV-VIS spectrophotometer and a ThermoFisher Nicolet iS5 FTIR were used to quantify 

the base glass and post-processed glass ceramic’s transmission, which includes 

contributions from absorption as well as scatter loss. These two instruments combined, 

cover the spectral range of 0.2-25 µm, with 0.9-15 µm being of interest to this study. The 

system was corrected for a baseline measurement, where the system is calibrated for 

100% transmission with no sample in the aperture. Samples were attached to a ~2 mm 

circular aperture with double-sided tape, and the aperture with the sample attached was 

then placed into the spectrophotometer for the measurement. The FTIR used the same 

protocol, except that it used a 4 mm aperture. 

From these data, the optical bandedge or scattering tail, depending on the samples 

morphology and/or microstructure, was measured for both the shortwave and longwave 

edge of the transmission window. As the true optical bandgap is difficult to accurately 

determine as one cannot accurately extract the bandedge from a Tauc plot for bulk 
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samples (thicknesses >10’s of μm) [119] and the material itself does not have a periodic 

lattice structure, the short wave cut-off (SWCO) used for this study is defined as the 

wavelength where 90 % of the maximum transmission is observed. The transmission was 

not corrected for Fresnel loss or sample thickness in this study, as this correction only 

affects the maximum transmission and does not cause a wavelength shift in the relative 

value of the 90% mark. This transmission cut-off takes into account not only optical 

absorption, but transmission loss due to scatter as well from either phase separation or 

crystallization.  

2.8 Refractive index measurements 

Refractive index measurements were performed to assess the refractive index, 

dispersion, and dn/dT of the material in its base glass and glass ceramic forms. These 

measurements were performed using a Metricon 2010M system that was modified for use 

in the IR and is further described in [113,114]. As a brief overview of how the 

measurement works, a prism with a known refractive index is put into optical contact 

with a sample of unknown refractive index by the use of a pneumatic piston as shown in 

Figure 2-2. This mounting ensures intimate contact between the part and the prism and is 

suitable for use on bulk and thin film samples. The mounted sample/prism combination is 

then rotated on a rotation stage from an angle above the critical angle of total internal 

refraction to below it. This gives rise to a curve that is flat (the signal from the 

sample/prism interface is directly coupled into the detector), and then has an exponential 

decay in intensity, starting at the critical angle (part of the light is transmitted through the 

sample instead of reflecting). From knowing the angle at which this drop starts, the angle 
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of the reference prism, and the prism’s known refractive index, the refractive index of the 

unknown sample can be determined.  

 

Figure 2-2 Schematic illustrating how the planar polished bulk glass/glass-ceramic 

sample is held against the prism using a pneumatic actuator with the dashed red line 

representing the laser beam path where one side is the laser source and the other side is 

the detector. Modified from [114]. 

In order to make this measurement, a sample must have two parallel faces, with at 

least one of them being optically flat, ideally having parallelism within 100 arc min and a 

surface roughness less than 50 nm RMS on both sides. If the sample possesses too much 

wedge it can slip out from the piston and damage the prism. These parallel faces need to 

be greater than 10 mm in length in at least one direction, 4 mm in the other, and no larger 

than 30 mm in either direction. These limitations are largely due to the ability to securely 

load and unload the sample, as well as make sure the sample is not too large, and 

therefore heavy, and potentially be able to slip out of the system. The thickness needs to 

be at least 1.5 mm, but below 3 mm. If the sample is too thin it could crack due to the 
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pneumatic actuators load, but if it is too thick it cannot fit into the system. Sample 

handling is easiest if the sample is approximately 10x10x2 mm.  

Several modifications of the system and measurement technique have occurred since 

it was originally constructed and described in [113]. System modifications include the 

addition of three IR lasers to extend the spectral range of the system, the addition of new 

VIS/NIR sources, and additional prisms to broaden the refractive index range available to 

measurement of the (typically) high refractive index materials being examined. In the 

present effort base or post-heat treatment materials typically had refractive indices in the 

IR ranging from 2.9 to 3.5 which necessitates the use of multiple prisms. Additional 

sources in the IR were added including two distributed feedback laser quantum cascade 

laser diodes (QCL) (QD5250CM1 and QD7950CM1), which were purchased from 

Thorlabs, and were placed inside of C-tab laser mounts (LDMC20) and were controlled 

with an ITC4005QCL. These two lasers have wavelength ranges of 5.245-5.258 μm and 

7.958-7.978 μm, respectively. An Access L4G CO2 laser was also added, which has 

wavelength tuning from 9.24-10.717 μm, and is fan cooled. As these three additional 

sources are CW, and as the mercury cadmium tellurite detector needs a pulsed input 

source, a chopper wheel (MC2000 Optical Chopper with a 60 slot wheel) operating at 

5KHz was added into the system. A schematic of the system highlighting all the IR lasers 

is shown in Figure 2-33, and a list of all wavelengths available are in Table 2-1.  
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Figure 2-3 A schematic of the layout of the prism coupling system within the GPCL 

at UCF. The different IR lasers are shown, as well as the optional chopper (CW sources) 

and attenuator (higher power sources). The mirrors on the common beam path (vertical 

path on the right) are flip mirrors so that different laser sources can go into the system. 

Table 2-1 The different laser sources for the prism coupler at UCF are shown, as well 

as their operating capabilities. 

Type 

Wavelength 

Range Manufacturer Model CW/Pulsed 

Typical 

index error 

OPO 3.246-4.617 μm M Squared 

Firefly-IR-LP-B-

BB-I Pulsed 

0.0005 

OPO 

1.485-1.885, 

2.444-3.756 μm M Squared 

Firefly-IR-LP-A-

BB-SI Pulsed 

0.0005 

QCL 5.245-5.258 μm Thorlabs QD5250CM1 CW 0.001 

QCL 7.958-7.978 μm Thorlabs QD7950CM1 CW 0.001 

CO2 9-12 μm Access L4G CW 0.0015 

diode 635 nm Thorlabs CPS635S CW 0.0005 

diode 850 nm Thorlabs CPS850S CW 0.0005 

diode 980 nm Thorlabs CPS980S CW 0.0005 

 

Three visible lasers have been added to the system for use in determining certain 

material’s broadband dispersion. In order to use these sources, the HeNe laser that is 

currently used by the system to angularly align itself must be removed. The laser diode is 

then fitted inside of an adapter and placed into the holder normally used by the HeNe. 

The beam must then be checked for alignment in case of a slight angular deviation from 
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the HeNe. The MCT detector and integrating sphere must also be removed, and are 

replaced by the Si detector that originally came with the Metricon system and the wires 

connected to the lock-in amplifier after the MCT detector must be detached and attached 

to the Si detector. Once this is performed, the system can be operated as normal. 

Along with new lasers, additional prisms have also been acquired and their index 

ranges are shown in Figure 2-44. The GaP prism has an index range that overlaps the 

ZnSe index, and therefore can be calibrated the same way that the Ge prism is as 

described in [114]. The Si prism is not able to overlap this index range, but does partially 

overlap the range that the Ge prism can measure. This allows for cross-calibration with a 

sample that has its index measured by the Ge prism. Generally, this is performed with a 

sample in the index range of 2.95-3.04, and the sample is measured on the Ge prism the 

same day that it is used to calibrate the Si prism. 

 

Figure 2-4 The approximate refractive index ranges for the prisms available in the 

prism coupler at UCF. The exact ranges vary depending on the temperature and 

wavelength used. 
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Calibration of the reference wavelength and reference material refractive index is 

carried out to ensure that no drift in experimental system has occurred. This includes 

measurement of a ZnSe reference to reference the prism index and an IRG24 

(Ge10As40Se50) glass witness sample to ensure that there are not significant measurement 

deviations from day to day. 

One major modification in the measurement technique that was used in [113,114] is 

the definition used for determining the position of the “knee” or the drop in intensity that 

signals the onset of total internal reflection. In [113,114] the knee was determined by eye 

as to where the start in the drop of intensity begins. This technique leads to a shift in 

refractive index measurements between users measuring the same sample. In order to 

have multiple users be able to measure the same index for the same sample, the 4-point 

intersection option in the software of the system was used. For this option, the user 

defines four locations, two before the knee and two after the knee, where the first pair 

makes a straight line in the data before the knee and the second pair makes a straight line 

in the data after the knee as seen in Figure 2-5. The computer then solves for the 

intersection of these two lines and uses that location as the knee. Another added benefit 

besides repeatability across users is that this method allows one to make more accurate 

measurements on samples with low or noisy “knees”. 
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Figure 2-5 A representation of output data from the Metricon system illustrating the 

“knee”, where a decrease in the signal occurs at the onset of total internal reflection. The 

strait part just before the knee and just after are used to define four points that the system 

then uses to calculate the intersection of the two lines formed by them. The intersection 

of these two lines is then used by the system to determine the refractive index. 

The other change that was made in the measurement method is the calibration of the 

prism every day. This was done in order to correct for slight misalignments from day to 

day and to determine if there are long-time fluctuations of the measurements of the prism 

index. This has been performed for measurements taken over the past ~2 years. The 

difference between the average of the index measured over all time and the index 

measured on a given day for 4.515 μm for both the prism and a reference sample (also 

measured each time a measurement is taken) are plotted in Figure 2-6. Some slight long 

term fluctuations can be seen in the data, but overall the standard deviation for the prisms 

is more than that of the reference samples, which means this calibration technique does 

improve the measurement accuracy of the prism. The average standard deviation of 

calibration samples measured using a GaP prism across all the wavelengths and 

temperatures was found to be 0.0005 RIU, and the standard deviation of a reference used 
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with this prism was 0.0004 RIU. For the Ge samples the prism exhibited 0.0008 RIU 

variation (standard deviation) and the reference was 0.0004 RIU. For the Si prism the 

prism was 0.0011 RIU and the reference was 0.0005 RIU. 

 

Figure 2-6 The relative change over time as defined as the difference between the 

measurement on a single day minus the average measurement for all times measured for 

GaP (A), Ge (B), and Si (C) for the prism and a standard reference (IG4 for GaP and Ge, 

and a 40 mol% PbSe sample for Si). 

In order to measure the dispersion of candidate base glass and post-process glass 

ceramics, measurements were taken across the infrared spectral region at wavelengths of 

1.88, 3.3, 4.515, 7.968, 9.294, and 10.717 µm. These measurements were then used to fit 

a 2-term Sellmeier equation. The dispersion measurements of the system were tested with 

reference standards which are overlaid in Figure 2-7 below. There is good agreement 

with literature values, though there tends to be higher deviations at longer wavelengths, 
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as these sources have a larger measurement error which appears to be intrinsic to the 

measurement system and has greater effect further into the IR. This error is not time-

dependent, so it is not a problem with stability, but is still repeatable and can be slightly 

adjusted by adjusting the detector. This adjustment of the detector does not manifest 

changes in the spectrum at the lower wavelengths, and is worse at longer wavelengths. In 

order to calculate the MWIR Abbe# (υMWIR), the fitted Sellmeier was used to calculate 

the refractive index values at 3, 4, and 5 μm which were then used in Equation 8 to solve 

for υMWIR. 

𝜐 =
1−𝜆4𝜇𝑚

𝜆3𝜇𝑚−𝜆5𝜇𝑚
     (8) 

 

Figure 2-7 Index taken at 30°C, 10 scans per sample in one location. The 

measurements for wavelengths of 7.8-10.7 μm were taken at RT for IG6 and 6, and then 

corrected for temp using a dn/dT of 19.9E-6 for IG4 and none for IG6. Error is the 

standard deviation for multiple measurements of the same piece, and if not seen is within 

the data point. Using the known dn/dT of Si, the Sellmeier line was shifted ~0.0040 up 

from the literature RT value to 30°C and this was then used as our standard baseline. 
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 The thermo-optic coefficient, change of refractive index with temperature or dn/dT, 

was measured at 4.515 µm at 30, 50, 70, and 90°C, measuring the sample from 30 to 

90°C, and then back down from 90 to 30°C. This was done in order to ensure there was 

not any relaxation of the glass at 90°C that would alter the index upon cooling from the 

higher temperature [114]. A best-fit line of the data was used to calculate the dn/dT. The 

error for this calculation is generally 10 ppm as calculated in [114]. Additional 

characterization of dn/dT of commercially available ChG was used to cross-check the 

reliability of this protocol and is described in Appendix A. This commercial glass has its 

own published thermo-optic dn/dT values, measured with a commercial analysis method 

that does not employ an identical protocol [120] was used. 

2.9 Density 

Density of the parent glass and resulting glass ceramic was measured with an AE 

Adams PGW Balance using the Archimedes principle with an immersion fluid of 

deionized water at 22°C. By measuring the weight of the sample both in air and in water, 

the density can be calculated using Equation 9, where ρwater is the density of water used, 

msub is the weight of the sample in water, and mdry is the weight of the sample in air. 

Error for the sample sizes used in this study is on the order of 0.002-0.09g/cm3. 

𝜌𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑚𝑑𝑟𝑦𝜌𝑤𝑎𝑡𝑒𝑟

𝑚𝑑𝑟𝑦−𝑚𝑠𝑢𝑏
     (9) 

2.10 Thermal conductivity and heat capacity 

Thermal conductivity and heat capacity were measured on a Thermtest TPS 2200 

with two 30 mm diameter, 2 mm thick samples. It is expected that these thermal 

properties, which are important for both ceramization with a furnace as well as with a 
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laser, will vary as a function of glass composition. The two plano samples are 

sandwiched around a probe and light force is applied to the stack to ensure good physical 

contact between the surfaces. The probe then uses conductive heating to heat the samples. 

It then measures the temperature decay, as it permeates into the volume of the sample. 

The system calculates the thermal conductivity of the sample and the heat capacity per 

unit volume. This can then be converted into specific heat capacity by dividing by the 

density of the material. The system is able to carry out the measurements at different 

temperatures in order to determine the temperature dependence of these properties. Error 

for the sample material and size used in this study was on the order of 0.002-0.004 

W/(m•K) for the thermal conductivity and 0.002-0.03 J/(g•K) for the heat capacity. 

Where the reported error is the standard deviation of 5 measurements on the same 

sample. 

2.11 Coefficient of thermal expansion 

The CTE was measured with a TA Instruments TMA 2940 thermo-mechanical 

analyzer on a 15 x 2 x 2 mm rod. This measurement tracks the change in length of the rod 

while the sample is slowly heated at a rate of 3°C/min, which is the standard operating 

procedure for ChG. The linear coefficient of thermal expansion can then be solved by 

determining the change of length in the rod with respect to its initial length (L/L) over 

the temperature range used prior to Tg, and is shown in Equation 10 below where α is the 

CTE, L is the length, ΔL is the total change in length for a given temperature change and 

ΔT is the temperature change. Measurements are made from room temperature to 

nominally 90% of the value of the glass’ transition temperature (Tg). Temperature error in 

the system is ~2°C. 
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𝛼 =
1

𝐿

∆𝐿

∆𝑇
      (10) 

2.12 White light interferometry 

White light interferometry (WLI) was performed with a Zygo New View model 8300 

to measure surface profiles of different samples for either surface roughness, flatness or 

post processed topography. This system uses interferometry to measure the phase shift 

that occurs from the path length change from different heights of the sample, and is able 

to measure surface height variations on the sub-micron scale, while the resolution of 

features in the X-Y plane is dependent on the objective lens used. Large area 

measurements were performed by stitching multiple measurements together through the 

software on the instrument to determine changes in surface topography across a modified 

region. A minimum overlap of 15% was used in this process. Surface RMS values were 

performed by taking measurements at multiple locations and then averaging the values 

together. By taking the RMS of several individual locations instead of over an entire 

stitched region, the RMS roughness is isolated from any overall tilt or wedge of the larger 

surface profile. The surface topography repeatability of the system is listed as 0.12 nm. 

2.13 Thermal modeling 

Simulations of laser-induced heating were performed with COMSOL Multiphysics 

using the Heat Transfer in Solids module, following methodology described in [121]. The 

geometry of the simulated sample was either a disk or a quarter of a disk in order to 

match the simulations with the experimental conditions used. The disk geometry utilized 

an axially symmetric model to cut down on computational time and was a disk that was 2 
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mm thick with a 15 mm radius. For the quarter disk a 3D geometry was used, and a 

quarter of a 15 mm radius disk that was 2 mm thick was created.  

The material inputs needed for the modeling include values for sample density, 

thermal conductivity, and heat capacity. The input data used were from measurements 

performed on materials prepared in our labs using the sample attributes and measurement 

protocols of samples used in the study. The boundary conditions used for the sample 

were Heat Flux on all the outer boundaries and were set to convective heat flux. The 

inputs for this boundary condition were the external temperature and a heat transfer 

coefficient. The external temperature was set to the experimental temperature conditions 

that would be used while the irradiation was occurring from either a heat cell or a 

furnace. This external temperature was also set as the starting temperature for the sample. 

The heat transfer coefficient is not a well-defined parameter for most materials, and 

values between 0 and 100 W/(m2•K) have been used, so a value of 50 W/(m2•K) was 

used in these simulations.  

The heat source for the sample was set to either a surface or volumetric heat source 

based on the absorption value for the wavelength and intensity of the laser used [122]. 

Equation 11 shows the surface heat equation used, where P is the power of the laser, R is 

the reflection coefficient, w0 is the beam waist, and r is the spatial parameter for the 

axially symmetric model. A reflection coefficient of 0.26 was used for both of the 

wavelengths used and was assumed to not change with temperature. 

𝑄𝑖𝑛 = 𝑃(1 − 𝑅) (
2

𝑤0
2) 𝑒

−(
2𝑟2

𝑤0
2)

    (11) 

This equation was approximated for a volumetric source by adding an exponential 

decay term with the absorption coefficient of the material at that wavelength. This regime 
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was also a pulsed regime, so a Gaussian exponential was also added in the time domain 

for the pulse duration used. Additionally for the quarter slice a linear shift in the heat 

equation was applied in order to center it on the sample, and a circular step function was 

added in order to clip the edges of the beam to account for the aperture used in the 

experiment. 

LiveLink for Matlab was utilized for running batch simulations that varied material 

parameters for the CW study. For each combination of parameters used in the simulations 

a new model was created that still retained the same geometry and physics. This was 

performed instead of a parameter sweep as there were multiple parameters that were 

swept, and it ensured that each parameter change was implemented correctly. The 

temperature for each time step at the center of the irradiation and the edge of the sample 

were saved for each combination of parameters used. This data could then be imported 

back into Matlab to determine how the different parameters affected the maximum 

temperature reached in the sample and the variation in temperature from the center of the 

sample to the edge. 

2.14 Laser facilities used 

A Spectra-Physics Millennia VS laser emitting at 532 nm (CW) was used for some 

irradiations. The collimated output beam diameter of this laser is ~2 mm, with average 

powers up to 5 W. The beam was expanded to larger beam diameters using a telescope 

comprised of two plano-convex lenses with focal lengths of 250 and 750 mm. The lenses 

were placed slightly out of focus from each other to achieve multiple beam waists that 

were still close to collimation at the location of where the irradiations would be 

occurring. Fluencies and intensities used can be found in Table 2-2. 
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A Lee Laser LEP-Y6TQ/30 laser was used for some irradiations. This system 

generates 20 ns pulses at a RR of 10 Hz at a wavelength of 1064 nm and an average 

power of 1.8 W (post aperture). The beam waist was expanded with a telescope lens to ~3 

cm. This beam then went through an aperture of 11.5 mm. The resultant output from this 

system is a nearly flat-top profile. Simulations of this laser used an added aperture to the 

Gaussian beam to account for the beam not having a true flat-top profile. Fluencies and 

intensities used can be found in Table 2-2. 

A 110 fs pulse duration, 1.3 μm source was made up of a Kapteyn Murnane 

Laboratories (KML) TS Ti:sapphire laser pumped by a Spectra-Physics Millennia VS to 

seed a Spectra-Physics Spitfire femtosecond laser system. The Spitfire is a regenerative 

amplifier pumped with a Spectra-Physics Empower laser. The Spitfire output then went 

through a Coherent OPERA optical parametric amplifier (OPA) and the signal output was 

utilized. The output wavelength was checked with an Ocean Optics NIR256-2.5 

spectrometer to ensure the correct wavelength was chosen. The beam was then focused 

with a 25 mm-lens, and was used in conjunction with a Newport Universal controller 

(ESP300) and 3D stage for structured irradiations. Fluencies and intensities used can be 

found in Table 2-2. 

A 1030 nm, 350 fs pulse duration Amplitude Satsuma fiber laser system was also 

used for irradiations. This output of this system was then guided through a 5x lens, and an 

Aerotech A3200 3D air stage was used to translate the sample in all three directions. A Si 

camera was used in order to ensure that the laser was focused on the sample surface and 

to ensure that the sample was perpendicular to the laser direction. Fluencies and 

intensities used can be found in Table 2-2. 
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Table 2-2 Laser parameters used in this study. 

Source λ 

(μm) 

Average 

Power 

(W) 

Beam 

diameter 

(cm) 

Pulse 

duration 

Repetition 

rate 

Intensity 

(W/cm2) 

Fluence 

(J/cm2) 

Millennia 0.532 0.89-

2.448 

1-1.2 N/A N/A 0.57- 

1.08 

N/A 

Lee-Laser 1.064 1.8 1.15 

(quasi-

flat-top) 

20ns 10 Hz 0.43 0.043 

KML/ 

Spitfire/ 

OPERA 

1.3 0.046 0.01-

0.043 

110fs 1 kHz 18-365 0.018-

0.365 

Amplitude 

Satsuma 

1.03 0.0128 0.003-

0.004 

350 ns 1 MHz 1324-

2876 

1.323-

2.876 
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3 DEVELOPMENT OF INFRARED GLASS CERAMICS 

This chapter reviews the physical and optical properties of the starting base glass and 

the evolution of property changes upon thermally induced nucleation and growth. Glasses 

in the (GeSe2-3As2Se3)1-xPbSex tie-line were created and evaluated for their ability to 

ceramize and form glass ceramics. Compositions were evaluated from x=0 to 40 in 

increments of 5. These compositions had their pre- and post-structural and optical 

properties measured including XRD, refractive index, and transmission in order to 

determine the effect of crystal growth on the resulting composite. One composition, 40 

mol% PbSe, was further investigated as it had promising characteristics for use in MWIR 

GRIN optics. The effect of different nucleation and growth conditions on this 

composition were studied in order to determine how they affected the post-HT properties 

including XRD, refractive index, transmission, and Raman Spectroscopy. Raman 

spectroscopy was also evaluated to see if it could give information about the refractive 

index of the material post-ceramization in order to have a more spatially selective method 

of index measurement to be able to evaluate any potential GRIN structures.  

3.1 Pb-series HT experiments – towards glass ceramics  

In order to create IR glass ceramic GRIN elements, new glass compositions were 

developed and their ability to form glass ceramics needed to be investigated. These 

glasses needed to be created, have their base material and optical properties measured, 

and then their post-HT optical and material properties measured in order to detect any 

changes upon HT. This section overviews the experimental methods needed for this 

effort.  
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Bulk glasses with compositions of (GeSe2-3As2Se3)1-xPbSex with x=0 to 40 in 

increments of 5 were created in 40g batches in 10 mm inner diameter quartz tubes using 

melt/quench methods described in section 2.1. After batching and annealing, the rods 

were fabricated into slices. These were then ground and polished with the double-sided 

lapping machine and final hand polish described in section 2.2. Four samples of each 

composition were fabricated and characterized for their base glass properties including 

XRD, refractive index, and transmission. Mie scattering calculations were also performed 

in order to see if the LLPS could be seen to be the dominating factor for the SWCO of the 

transmission. Three of these samples were subsequently HT with a nucleation (N) HT, 

and then had their properties re-measured including the transmission and refractive index. 

These three then had a growth (G) HT performed, and their properties were re-measured 

including XRD, refractive index, and transmission. Simulations of the SWCO were 

performed with Mie scattering theory in order to confirm that the SWCO is from induced 

scattering from crystal growth in the material. The details of these calculations and the 

determination of the quantities used in them can be found in section 2.14. 

Heat treatments were performed in a ThermoScientific 48000 muffle furnace in air 

atmosphere. The temperature of the furnace was verified with a K-type thermocouple that 

was left inside the furnace during the HT and was in contact with the refractory brick 

shelf that samples were placed on. The three samples of each composition were HT at the 

same time, and were placed on the refractory brick around the thermocouple.  

In order to determine what N and G HT temperatures should be used, the I-U curves 

for the 20 and 40 mol% PbSe, compiled in [39], were evaluated and are shown in Figure 

1-6. These two compositions showed that there is likely an increase in the needed 
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nucleation and growth temperatures with a decrease in the amount of PbSe in the sample. 

In order to systematically determine which temperature values should be used, yet still 

likely remain within either the nucleation-only or growth-only regime of each 

composition, the N temperature was set to the glass transition temperature of each 

composition and the G temperature was set to the peak of the first crystallization peak as 

determined by DSC for each composition. The N temperature is seen to be on the lower 

end of the nucleation region, but would remain below any potential growth in the 

material. The G temperature was set to be far into the crystallization regime in order to 

create a maximum potential amount of growth in the material, and therefore the 

maximum amount of change possible in the material properties upon ceramization. The N 

step was performed for one hour, and the G step was performed for 30 min for all 

samples.  

XRD was performed on one base (no HT) and one N+G sample for each composition 

using the protocol described in section 2.3. The measurement on the base sample was to 

ensure that no crystallites had formed upon quenching of the melt. The measurement of 

the N+G sample was to determine if, and what kind of crystal phases formed upon HT. 

Crystal phases that were previously identified in [39] for 20 and 40 mol% PbSe samples 

using SAED were considered in the analysis of the XRD patterns. Volume fractions for 

each crystal phase present were determined based off of the intensity of their respective 

peaks, with no needed correction factor for shielding from the Pb in the remaining glassy 

matrix as described in section 2.3. This was then used to calculate an effective refractive 

index for the glass using the equation in section 1.5 above, where the index of each 
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crystal type is the known refractive index from literature [123-125] and the measured 

volume fraction of each phase was determined by XRD.  

Refractive index measurements were performed using the prism coupler described in 

section 2.8. Refractive index measurements were performed at 30°C on the four base 

samples, the three N samples, and the three N+G samples at a wavelength of 4.515µm for 

all of the compositions. The reported value was the average of all the measurements of 

each composition, and the error is the standard deviation of them. For the base samples 

one measurement was taken per sample, and for the HT samples the index was measured 

on both the top and the bottom of each sample. Dispersion was calculated on 0, 10, 20, 

30, and 40 mol% PbSe for the base and N+G samples using the technique described in 

section 2.8. The mid-wave dispersion, as quantified by the Abbe number of the glass, was 

also calculated using 3, 4, and 5μm as the input wavelengths as described in section 

2.82.8. The thermo-optic (dn/dT) measurements were performed at 4.515µm on 20 and 

40 mol% PbSe samples using the technique described in section 2.8.  

The transmission spectra for the base, N, and N+G samples were measured using the 

techniques and equipment described in section 2.7 to measure the whole spectral range of 

1-25µm. The SWCO was tracked to see the effect of induced scattering from crystal 

growth that could limit applications of the material in NIR applications. The LWIR 

bandedge, long wave cut-off (LWCO), was tracked to see if there was any change from 

induced absorption from any crystallite species that might grow. The SWCO/LWCO used 

here was 90% of the maximum transmission measured, which is described more in detail 

in section 2.7.  
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In order to confirm that any induced scatter was from the crystal growth, the size of 

the induced crystals were measured with either a TEM or SEM depending on the 

resolution needed for the 10, 20, 30, and 40 mol% PbSe HT samples, and is described in 

more detail in sections 2.4 and 2.5. 

From the crystal sizes measured with TEM/SEM and their volume fractions measured 

through XRD, the short-wave band edge of the glass ceramic could be modeled and 

compared to the measured FTIR. These simulations were performed using Mie scattering 

theory with an extinction coefficient calculated for the induced crystals, and is described 

further in section 2.14. With these tools defined, they will be applied to the base and HT 

material in order to determine the changes induced from furnace-induced ceramization. 

3.2 Pb-series base glass properties 

The characterization of the base glasses were first measured in order to confirm that 

the base glass was indeed amorphous, and to determine the baseline for any material 

property changes realized post-HT. The samples had their XRD, refractive index, 

dispersion, dn/dT, and transmission measured. As discussed and shown in the ‘target 

attribute’ table shown at the end of chapter 1, any resulting glass ceramics suitable for use 

as an optical component should, post-HT, maintain its transparency through the MWIR 

and have a change in the refractive index greater than 0.02, but more ideally closer to 0.1. 

Again, the sign of this n in the case of this study employing Pb-crystallites as a 

candidate precipitating phase would likely be positive. 

The starting base glass, as discussed in 2.1, has morphological variation in the form 

of LLPS across the composition space used in this study. The transition from a region of 

homogeneous glass to phase separated glass occurs at approximately 10 mol% PbSe, the 
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transition of a Pb-rich droplet phase to a region exhibiting spinodal decomposition occurs 

around 25 mol% PbSe, the transition from spinodal to a Pb-deficient droplet phase occurs 

around 35 mol% PbSe with the glass returning to a homogeneous, non-phase separated 

morphology beyond approximately 45 mol% PbSe. These transitions of morphology 

clearly impact transitions in physical properties as reported in detail, in [40]. 

Additionally, as will be shown in this study, such morphology changes, specifically the 

Pb-content associated with the respective phases, as will be shown to indeed influence the 

type and size of forming crystalline phases in the post-heat treated, glass ceramics. 

The base glass XRD confirmed that the starting material was X-ray amorphous, and 

therefore any crystal growth observed in our glass ceramic could be attributed to the HT 

itself. The parent glass’ XRD pattern for the 40 mol% PbSe showed two amorphous 

humps that did not change significantly with changes in the composition.  

The measured base glass’ refractive index for this series of glasses is plotted in Figure 

3-1. Measure refractive index at a wavelength of 4.515μm versus mol% PbSe is shown 

and a systematic increase in refractive index as can be seen that tracks with an increase in 

the amount of Pb in the glass. This is likely due to the increase in the highly polarizable 

Pb atoms in the matrix, and does not appear to be affected by the change in the 

morphology (whether the Pb is in the droplets or matrix) of the glass. This finding could 

be due to the probe beam of the index measurement (2-3 mm) averaging over a large 

enough region of the glass that it averages over both glassy phases in the phase separated 

medium. 
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Figure 3-1 The refractive index (A), MWIR Abbe# calculated using refractive index 

values at 3, 4, and 5μm (B), and dn/dT calculated using index measurements at 30, 50, 

70, and 90°C are shown versus composition for the base glass. Modified from [41] 

As shown in Figure 3-1 B, the MWIR Abbe number for both the base and grown 

material appears to have a minimum point around 30 mol% PbSe, which is where 

microscopic analysis of glass morphology shows that spinodal decomposition occurs. 

This region of spinodal decomposition has the smallest change in composition between 

the two glassy phases present in the material. This small change in composition of the 

two phases means that the material lacks a significantly Pb-poor phase. As the dispersion 

is higher in the compositions with a significantly Pb-poor phase, and the composition 

without a Pb-poor phase has the lowest dispersion, a higher concentration of Pb in the 

material could cause a lower dispersion. Reciprocally, as the Pb-rich phase has a decrease 

in the amount of As, it could be that the region of higher As is what causes the increase in 
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the dispersion, as commercially available IRG26 (As40Se60) is more dispersive than 

IRG24 (Ge10As40Se50) or IRG22 (Ge33As12Se55) [114]. 

The change in refractive index with temperature, dn/dT, was measured for the three 

base glasses of interest, and is plotted in Figure 3-1. An increase is seen in the base glass 

as the mol% of PbSe is increased. If one can assume that the two glassy phases are 

similar in structure to Ge-As-Se glasses where the Pb-atoms act similarly to highly 

coordinate Ge atoms, (they can both exhibit 4-fold coordination), then the trend observed 

here is consistent with that observed in [114] for additions of a 4-fold coordinated 

species. In this prior studies, glasses with As-Se ratios near 1:2 with Ge addition 

exhibited an increase in the dn/dT also. 

Infrared spectroscopy (FTIR spectra) of the base glasses are shown in Figure 3-4, and 

shows the transmission of the base glasses through the infrared as well as the scatter tail 

for several of the compositions that had transmission edges far enough into the IR for the 

Nicolet to be able to measure them. Noted on the spectra is the multi-phonon edge (the 

LWCO) that is indicative to the materials used. SWCO as defined in section 2.7 was 

calculated for each glass and is shown in Figure 3-4. From the refractive index data one 

would expect to see a steady increase in this SWCO if there was no scatter in it, which is 

only evident at low and high mol% Pb-values, and with an increase in the middle 

amounts of PbSe. This increase in the SWCO is from induced scatter from the LLPS in 

the glass. The peak of this region is around 25 mol% PbSe, which is where the glass 

transitions into spinodal decomposition and has larger phase separated regions. The 

bandgap decreases again as the Pb-rich phase starts to become the majority phase around 

30 mol% PbSe.  
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The base glass was able to be characterized for its XRD, refractive index, dispersion, 

thermo-optic coefficient, and its transmission spectra. The XRD was able to determine 

that the base glass was indeed amorphous and therefore any subsequent crystallization 

will be from any HTs that were performed. The refractive index showed a nearly linear 

dependence on the Pb-content in the material at λ=4.515μm, the dispersion showed a 

minimum around 30mol% PbSe, and the thermo-optic coefficient showed an increase 

with the amount of Pb in the glass. The SWCO of the transmission was seen to be 

dominated by scatter losses through the middle amounts of PbSe due to the increased 

phase separation size in this composition space. Now that the base glass properties have 

been determined, the post-HT properties can be evaluated in order to determine the effect 

of the composition on the resulting composite material. 

3.3 Pb-series glass-ceramic characterization 

As noted previously, the goal of this effort aims to utilize the base glasses discussed 

above to prepare composite glass ceramic materials where the extent of crystallization 

results in a variable refractive index as well as other physical properties. Hence, XRD 

was used as an important tool to quantify the modification made to the base glass upon 

heat treatment. The HT XRD showed crystalline growth for compositions above 5 mol% 

PbSe, and the calculated volume fractions of each phase present are seen in Figure 3-2 

and in Table 3-1. As the 5 mol% PbSe composition is not phase separated, there likely 

was not a high enough concentration of Pb in the glass to sufficiently decrease the glass 

stability for crystallization to occur.  
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Figure 3-2 XRD of the crystallographic phases that were identified in the glass 

ceramics are shown on the top. XRD of the two-step HT (N+G) samples for the 

compositional series for PbSe content of 5-40 mol% PbSe are shown on the bottom. The 

x = 0 mol% PbSe pattern was added as a reference for the base glass, Pb-free GeAsSe 

network as it was not subjected to HT since it did not exhibit crystallization features (Tx) 

in the DSC. Crystal phase identities for peaks shown are indicated. [41] 

In the XRD patterns for 10 to 30 mol% PbSe many crystal peaks are visible and each 

pattern is unique. The observed crystal phases in these compositions are As2Se3 and 

Ge0.1Pb0.9Se1, and their volume fractions and respective ratios present in the material are 

seen in Table 3-1. Ge0.1Pb0.9Se1 is able to exist as an independent crystal phase, with a 

unique XRD pattern and lattice parameter for SAED identification. These volume 

fractions were extracted from the XRD pattern using the method described in section 2.3. 
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This change in the pattern is likely due to the change in the ratio of Ge0.1Pb0.9Se1 to 

As2Se3 throughout this compositional space. As the amount of Pb in the melt increases 

the amount of Ge0.1Pb0.9Se1 that is formed also increases. This is likely due to the higher 

amount of Pb present in the droplet phase causing more of the Pb-rich phase to 

crystallize. The change in the ratio of the two crystal phases is likely due to the large 

changes in the composition in the Pb-rich droplets with changes in the mol% of PbSe 

added into the glass. At 30 mol% PbSe, where spinodal decomposition starts to occur, 

transitions are seen in the crystal phases that form and the amorphous background starts 

to be visible in the XRD pattern. The observed crystal patterns for these compositions are 

PbSe, Se, and As2Se3, and their relative fractions are also seen in Table 3-1. For the 35 

and 40 mol% PbSe samples a similar pattern is observed with nearly identical ratios of 

precipitated crystal types, with only a change in the total amount of crystallization seen. 

As the compositions below 35 mol% PbSe have the minority phase that is Pb-rich, small 

changes in the amount of PbSe added into the melt has a large effect on the Pb-

concentration in this phase as seen in [39,40], which affected the ratios of the crystal 

types that formed. On the other hand, 35 and 40mol% PbSe have a Pb-rich majority 

(matrix) phase, where small additions of PbSe into the melt has a much smaller effect on 

the Pb concentration in the Pb-rich phase, causing little change in the ratios of the crystal 

phases that formed. This means that the concentration of Pb in the individual glassy 

phases of the LLPS has a large impact on the final crystal phases formed upon HT, even 

for crystal phases that do not directly contain Pb in them.  

The identification of the crystal phases present and their respective volume fractions 

(total crystal compared to the remaining glass, as well as relative fractions of each phase 



 

78 

 

type) were then used to estimate the refractive index for each composition of the N+G 

material, which are plotted in Figure 3-3. The total volume fraction of crystals observed 

by XRD is shown in the last column of Table 3-1, where there is a relatively constant 

volume fraction through 30mol% PbSe, and then there is a jump for both the 35 and 

40mol% PbSe. This could be due to the major phase being Pb-rich and therefore there is 

a greater volume of glass that is able to crystallize. 

Table 3-1 The volume fraction (Vf) of each crystal type as determined by XRD is 

listed for the different compositions (mol% PbSe) glasses. Additionally the total Vf of 

crystals present was calculated. [41] 

Mol

% 

PbSe 

Vf 
Ge0.1Pb0.9Se 

Vf 

As2Se3 

Vf PbSe Vf Se Total Vf % of crystal type 

(Ge0.1Pb0.9Se: 

As2Se3:PbSe:Se) 

0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 

10 0.0326 0.1682 0 0 0.2008 16 84 0 0 

15 0.0422 0.1235 0 0 0.1657 25 75 0 0 

20 0.0544 0.1336 0 0 0.1880 29 71 0 0 

25 0.0576 0.1131 0 0 0.1706 34 66 0 0 

30 0 0.1168 0.0594 0.0292 0.2053 0 57 29 14 

35 0 0.1346 0.0952 0.0337 0.2635 0 51 36 13 

40 0 0.1407 0.1045 0.0352 0.2804 0 50 37 13 

 

After determining the crystal phases and volume fractions that were formed, the 

refractive index was measured in order to see if the changes in the refractive index were 

due to crystallization in the glass. Upon nucleation there was a negative change in the 

refractive index of all the compositions, with a greater change observed with lower 

amounts of PbSe. Along with the base glass, the refractive index of the nucleated glass 

does not appear to be affected by the change in the glass morphology across 

compositions. Since no crystallization is observed after nucleation, this drop in index is 

likely due to relaxation in the glass. It has been noted in other studies that a drop in index 
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can occur in the Ge-As-Se ternary upon a sub-Tg HT, where the lower As-containing 

glasses have a greater drop [114]. If these glasses behave similarly, the lower Pb-

containing glasses have a larger amount of As, and could therefore be slightly less of a 

3D-structure which would allow them to have a greater change in their refractive index.  

Upon crystallization there are again three regimes of property variation, as was 

previously observed with the XRD, in the optical property trends shown as a function of 

PbSe content. These regions are again delineated by color to depict and correspond with 

the regions of transition in morphology discussed previously. Below 10 mol% PbSe there 

again is no observed change from the nucleation state after growth, as no crystallization 

occurred as evident by XRD. From 10-30 mol% PbSe there is relatively little change in 

the final refractive index, and an overall trend is not evident. The dip in the 15 mol% 

PbSe composition could be due to its unusually low volume fraction of crystal as 

compared to the other glasses. The exact cause of this is unknown, but there may have 

been an error in the HTs performed. Except for the 15 mol% PbSe sample, all these 

compositions had similar total volume fractions of crystals, with the As2Se3 staying 

relatively constant and a slight increase in the Ge0.1Pb0.9Se1 as the amount of Pb was 

increased in the glass. At 30 mol% PbSe there is a change in the crystal types present, but 

the amount of PbSe crystal that formed was similar to the 25 mol% PbSe composition, 

and also additionally had Se crystals that formed which have a refractive index similar to 

As2Se3. For 35 and 40 mol% PbSe there is a larger increase in the refractive index that 

continues to increase with increasing Pb content, which is likely due to the increase in the 

volume fraction of crystals that formed in the glass, specifically the increase in the 

amount of the Pb-containing high index phase of PbSe.  
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The measured and calculated (using volume fractions from XRD) refractive indices 

of the N+G samples were compared to evaluate the quality of the different effective index 

approximations that were stated in section 1.5 in Equations 3-5. The different 

approximations were tested in order to determine which more closely matched the 

measured data. These data are plotted together in Figure 3-3, and the Gladstone-Dale 

calculations tracked the best with the measured data. There is a slight over-estimate of the 

refractive index though. This is possibly due to the refractive index of the base glass 

being set to the base glass refractive index, which neglects the change in index after the 

nucleation or any subsequent index change from a change in composition of the 

remaining glassy phase after crystallization. As the Gladstone-Dale approximation fit the 

data the best, it will be used in subsequent sections. 
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Figure 3-3 The measured refractive index of glass as a function of PbSe content 

following nucleation (A), and following nucleation and growth (B) as compared to the 

parent glass; shown for comparison is the refractive index as calculated from the type and 

volume fraction of crystal present as determined by XRD for three different effective 

index approximations. (C). The calculated MWIR Abbe# for base glasses and those 

following nucleation and growth are plotted for select compositions. (D) measured dn/dT 

for base and post-HT’d glass ceramics are shown, as well as for IRG24 (reference). The 

colored regions depict compositional regimes where transitions in morphology are 

observed. Modified from [41] 

The MWIR Abbe# for both the base and grown material appears to have a minimum 

around 30 mol% PbSe, where spinodal decomposition occurs. The similar shape of the 

curve post-HT indicated that the driving factor for the shape is likely from the Pb-poor 

phase in the glass as this phase is less effected post-ceramization. As there are no 

significant absorption features that are seen in the transmission spectra post-HT, the 

change in dispersion is likely not from induced absorption features in the glass.  
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Upon ceramization there is little change in the dn/dT of the 20 mol% PbSe, while the 

40 mol% PbSe sees a decrease in the dn/dT. This decrease is likely due to the crystal 

phases having a lower dn/dT than the base glass (or the crystal phases formed in the 20 

mol% PbSe glasses), causing the composite to have an overall decrease in the dn/dT. It 

could also be due to more of the Pb-containing crystal precipitating out of the glassy 

matrix in the 40% glass, and therefore causing the remaining glassy matrix to have a 

depleted (lower) Pb-content more similar to the 0 mol% PbSe composition. 

After nucleation there is a negligible change in the SWCO, which would be expected 

as no crystallization was seen in the XRD. Additionally, this also indicates that the phase 

separation does not significantly change in size or composition after nucleation as the 

scattering did not change. 
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Figure 3-4 Representative transmission spectra of the base glass are plotted in (A) for 

all compositions. The SWCO (position of spectra in μm) for base and nucleated samples 

(B) and nucleated and grown (N+G) samples (C) are shown. The SWCO was defined as 

90% of the maximum transmission measured. Spectra were not corrected for dispersion 

or thickness. [41] 

After growth, there is a significant shift in the SWCO for all the compositions, and in 

Figure 3-5 a representative sample is shown with their base and N+G transmission 

spectra normalized to 1, and then the spectral range was cut-off at 13μm. As the amount 

of PbSe increased up to 15mol% PbSe there is an increase in the scatter tail of the 

material. A plateau is then seen from 15-25 mol% PbSe, and then there is a decrease after 

25 mol%. The transition between 25 and 30 mol% PbSe is also the transition from 

Ge0.1Pb0.9Se1 to PbSe and Se, which could contribute to this change in the trend. What is 
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interesting is the large change in 5 mol% PbSe despite the lack of crystallization seen in 

the XRD, or change in its refractive index.  

 

Figure 3-5 The transmission curves of the base (red) and the post-heat treated (N+G) 

samples (black) is shown for the 20 and 40 mol% PbSe samples. The maximum 

transmission point in the data was normalized to 1 and then was cut-off at 13μm. 

Modified from [41] 

The LWCO did not shift significantly upon N or N+G as seen below in Figure 3-6, 

which also depicts the entire transparency window of the glasses. 15-20 mol% PbSe can 

be seen to be nearly opaque after the N+G, and then the glass ceramics become more 

transparent at both high and low Pb concentrations. Some shift in the LWCO is seen for 

10, 20, and 25 mol% PbSe, which is due to the large amount of scattering present in these 

materials causing the scatter tail to start to affect the signal in the LWIR. 
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Figure 3-6 The full transmission window is plotted for base (A), nucleated (B), and 

N+G (C) samples as a function of PbSe content (mol%) The bar chart is meant to 

illustrate how the transmission window changes as a function of thermal treatment. 

The size of the crystals precipitated was also investigated in order to determine if this 

was a dominating factor for the changes in transmission, as the total volume fraction of 

crystallite species determined by XRD does not trend with the SWCO. This means the 

number density of crystals is also likely changing, as both the size and number density 

contribute to the volume fraction present. SEM or TEM, depending on the crystal size, 

was used to measure the short and long axis of the crystals observed and is shown in 

Table 3-2. It was also noted that the crystal structures observed are agglomerates of the 

individual crystal types observed with XRD. In the 10 and 20 mol% PbSe, highly 

anisotropic crystals were observed. These large crystals are likely the reason for the large 
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shift in the SWCO. For the 30 and 40mol% PbSe samples, the crystals were still quite 

large, but were much more regularly shaped. 

Through the HT of these GAP-Se glasses, glasses above 5 mol% PbSe were able to 

crystallize, and the ratios of formed crystals changed up to 35 mol% and then remained 

constant for the 40 mol% sample as seen in the XRD. This change in crystal type 

occurred as the microstructure tended towards a Pb-rich matrix, and the transition into the 

Pb-rich matrix also was where the crystal phases changed to different types. This also 

tracked well with the refractive index, which saw small changes in the refractive index 

for up to 30 mol% PbSe, and then a jump is seen for both the 35 and 40 mol% PbSe 

samples. The SWCO showed the largest change from 15-30 mol% PbSe. Below this 

point there was not much crystallization occurring, and above it the crystal type changes 

to one that is less scattering. 

As was stated in 3.2, the ideal candidate for an IR glass ceramic GRIN material 

would have transparency maintained throughout the MWIR and LWIR, and have an 

index change of at least 0.02, but preferably closer to 0.1. From the materials discussed in 

this section, the 40mol% PbSe was able to best maintain the transparency while still 

having a change in the refractive index in the material, and also had the largest change in 

its refractive index post-HT. 

3.4 40 mol% PbSe HT series experiment 

The most promising composition based on the prior post-heat treatment property 

modification analysis, magnitude of the index change, and low scatter, was the 40 mol% 

PbSe composition. As shown, this composition had the most change in refractive index 

upon heat treatment, and still retained its transmission for use in the MWIR. Further 
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characterization was performed on this composition in order to investigate the nucleation 

and growth processes to see if they were controllable and could potentially be extended 

towards structures possessing spatial variation of these properties.  Additionally, in order 

to develop a spatially selective way to be able to measure the refractive index of a GRIN 

structure of this material, Raman spectroscopy was investigated to see if it gave 

information on the crystallization state, and therefore the refractive index, of the material 

upon ceramization.  

To extend our findings beyond small melts which could contain larger compositional 

variation within our 40 g melts, the melt size was scaled up to 400g batches in [39], and 

these larger batches were used for further characterization. This 400g batch was melted 

the same way as those in section 2.1, with the inner diameter of the tubes being 30mm 

instead of 10mm as used in the previous section. These boules were again cut into 2mm 

thick slices, and were ground and polished by hand as described in section 2.2.  

The base glass properties for this glass were first measured and characterized in order 

to set a base line as compared to prior melt (40g) data and to assess any changes that 

would occur after the HT steps were performed. Thermal properties were measured for 

later use with laser-induced heating. Thermal conductivity and heat capacity were 

measured as described in section 2.10. These measurements were performed at 25, 50, 

100, and 190°C in order to determine how the thermal properties evolved at higher 

temperatures. Density was measured using the technique described in section 2.9, with an 

immersion fluid of deionized water at 22°C. The coefficient of thermal expansion was 

measured with the technique described in section 2.11. As the heat capacity measurement 

requires the density of the material, and density cannot be measured at 190°C with the 
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techniques used in our lab, a correction to the density was made using the CTE. This 

correction utilized the thermal expansion curve of the material through 190°C, as this 

temperature was below any weight loss in the material. The correction is shown in 

Equation 12 for below the softening point. For temperatures above the softening point, a 

second term is added into the exponential. This effectively breaks up the temperature 

range in two, with each region having their respective linear CTE, as the CTE changes to 

a secondary value above the softening point of the glass.  

𝜌2 =
𝜌1

𝑒
3∗𝐶𝑇𝐸∗(𝑇𝑓−𝑇𝑖)

     (12) 

XRD was also measured on the base glass in order to ensure that it was amorphous 

using the technique described in section 2.3. Refractive index measurements were only 

performed at 4.515μm and 30°C using the prism coupling technique in section 2.8. The 

homogeneity of the index was measured for one slice of the melt. The sample was 

divided into a 5x5 grid, neglecting the corners due to the sample being round. A 

refractive index measurement was then taken inside each of these squares, which were 

approximately 6mm in size as seen in Figure 3-7. 

 

Figure 3-7 A diagram of the measurement points made for optical (refractive index) 

homogeneity on the base glass sample. The black lines are the grids where measurements 

were taken inside of, and are depicted as the purple dots. The actual measurements lay 

within the squares, but were usually not centered. 
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Transmission was also measured on the base glass in order to determine if there was 

any change from the small melts that were investigated in section 3.2. These 

measurements were made using the same techniques described in section 2.7 Raman 

spectroscopy was measured on the samples with the technique described in section 2.6. 

HTs were performed with various nucleation and growth conditions in order to obtain 

different crystallization states to see the evolution of refractive index increase and to be 

able to determine how the structure, as measured by Raman spectroscopy, was changing. 

These HT were performed in the same furnace as the one described in section 3.1. The 

nucleation and growth temperatures were chosen based off of the IU curves in Figure 1-6. 

Three different nucleation conditions were used including no nucleation step, 190, and 

200°C for 2 hours. These different nucleation HT were performed on separate slices, and 

were on the lower end of the nucleation curve in order to ensure that no growth would be 

occurring, as the growth-like curve shifts to lower temperatures upon nucleation [39,126]. 

These four slices were then quartered, and one quarter of each slice was then HT’d at a 

specific growth temperature. Four different growth HT temperatures were chosen, one for 

each of the quarters of the slices. The temperatures chosen for this HT were 200, 210, 

220, and 230°C for 30 min. These temperatures cover from below the growth region of 

the material up into the start of the growth region of un-nucleated samples. Samples were 

lightly polished after HT if significant deformation was observed using the protocol 

described in section 2.2.  

Post- heat treatment characterization was only performed on N+G samples. XRD was 

measured using the same equipment and parameters as described in section 2.3. The 

measured XRD patterns were used to validate whether crystallization occurred, and to 
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determine if the crystal phases that formed and their amounts varied with HT conditions. 

Additionally the intensities of the crystal peaks (corroborated with the calibration 

experiment) were again used as in section 3.3 to determine the volume fractions of the 

crystals present, which again were used to estimate the effective index of the material.  

Refractive index was measured with the same conditions as were used on the base 

sample. This measured refractive index was then compared to the computed value from 

the XRD data in order to determine whether the index change was from crystallization 

occurring in the glass. The Raman spectra was also measured for the HT samples and 

used the same technique as was used on the base glass. Changes in the Raman spectra 

were then quantized for each HT condition. This change was then compared to the 

refractive index of the samples to be able to validate whether Raman measurements could 

be used as an indirect method to measure the refractive index of this glass ceramic by 

showing the structural changes seen in the Raman spectra were indeed from 

crystallization. 

Apart from these measurements, transmission was also measured in order to 

determine if the transparency of the glass remained after ceramization, and if the different 

nucleation conditions effected the final glass transparency. These measurements were 

performed as described in section 2.7. Additionally the compilation of base glass 

properties are tabulated in a spec sheet in APPENDIX B. These data were then compared 

to the post-HT properties of the glass ceramic composite, as discussed in section 3.5. 

With these tools defined, they will be applied to HT material in order to evaluate the 

effect of the HT conditions on the formed crystalline phase(s). 
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3.5 40 mol% PbSe HT series: material characterization 

The 40 mol% PbSe composition was further characterized for its ability to form a 

glass ceramic with different levels of ceramization. The HT material was characterized 

with XRD, refractive index, Raman spectroscopy, and transmission. Raman spectroscopy 

was also investigated for its ability to be able to predict the refractive index of samples 

with different amounts of ceramization. The base glass for the larger batch size used in 

these experiments was first characterized to make sure that the larger batch size did not 

significantly affect the material properties pre-HT, and therefore the post-HT crystal 

phases formed. 

 The base glass thermal properties needed for simulations are shown in Table 3-3 at 

different temperatures. The density was only measured at RT, but was corrected for by 

the coefficient of thermal expansion for higher temperatures using the TMA trace seen in 

Figure 3-8. The glass transition temperature as measured through this technique was 

186°C. The linear coefficient for thermal expansion was calculated to be 19 ppm/C 

below the glass transition range, and 46 ppm/C above. As a reminder, Tg as determined 

by TMA is typically lower than that obtained by DSC due to the much larger sample size 

and inherent thermal lag (grams of glass as a glass rod in a TMA versus miligrams of 

glass powder in a DSC). 
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Figure 3-8 The output of the TMA showing the dimension change with temperature 

for a 40 mol% PbSe base glass sample and region of linear thermal expansion. 

With an increase in the external temperature, an increase was seen in the thermal 

conductivity. Density on the other hand had a steady decrease, which would be expected 

from the knowledge that the sample expanded upon heating. The specific heat stayed 

relatively constant with an increase in the external temperature. 

Table 3-2 The thermal properties of the base glass from just over room temperature to 

up to 190°C are shown. The density at temperature was calculated with a correction 

factor from the measure CTE. The error for the thermal conductivity and heat capacity 

are the standard deviation of 5 measurements. [39,126] 

Temperature (oC) k (W/(m•K)) CP (J/g•K) ρ (g/cm3) 

25 0.239 ± 0.003 0.229 ± 0.006 5.48 

50 0.249 ± 0.002 0.228 ± 0.002 5.47 

100 0.263 ± 0.002 0.238 ± 0.008 5.46 

190 0.309 ± 0.004 0.232 ± 0.029 5.43 

 

The XRD of the base glass exhibited two amorphous humps as seen in Figure 3-9, as 

was seen for the 40g batch in section 3.2, and again showed no signs of crystallization. 

The base glass refractive index homogeneity is shown in Figure 3-9, and the average 
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index was measured to be 3.0460 ± 0.0005, with the standard deviation of all the 

measurement locations found to be below the error of the measurement. The transmission 

curve is in Figure 3-9, and shows a SWCO slightly red-shifted from the 40g batch in 

section 3.2, but overall has a low scatter tail from the phase separation. This red-shift of 

the scatter tail would be expected based upon the slower cooling rate for the larger batch, 

which would be expected to be able to form larger phase separation. 

The base glass Raman spectrum is seen in Figure 3-9, and exhibits a relatively sharp 

peak around 200 cm-1, and a broad peak around 246 cm-1. The first peak at 200 cm-1 can 

be associated with GeSe4/2 units [40,114,127]. The second, broader peak is made up of 

several smaller ones including 225 and 240 cm-1 for AsSe3/2 and 250 cm-1 for Se-Se 

[40,114,127]. The overall spectrum resembles that of Pb-free Ge-As-Se with As-Se 

values past stoichiometry of As40Se60 with additions of Ge, except that the GeSe4/2 peak 

at 200cm-1 is slightly low [114,127]. Since Ge and Pb are both 4-fold coordinated, these 

two elements could be interchanged for each other. As the Pb-Se bands are not able to be 

seen in Raman, the decrease in the GeSe4/2 band from these other glasses could be from 

Pb replacing Ge bonds in a four-fold coordinated manner, forming PbSe4/2 units. 
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Figure 3-9 The XRD (A), refractive index homogeneity map at 4.515μm 

(measurement error is ±0.0005) (B), visible – short-wave infrared (SWIR) transmission (t 

= 2 mm), not corrected for Fresnel loss) (C), and Raman spectrum (D) excitation 

wavelength λ=532nm for base 40mol% PbSe glass. [39,126] 

As the base glass has been thoroughly characterized, the post-HT material changes 

could also be measured and analyzed. This was first done with XRD in order to measure 

the degree of crystallization of the post-N+G samples and to determine if there was a 

temperature dependence on the crystal phases that would form. The XRD pattern for the 

190°C nucleation temperature plus the various G temperatures is shown in Figure 3-10, 

and is a representative plot of what was seen with the other nucleation temperatures. For 

higher G temperatures there is an increase in the total fv (peak height intensity), but there 

is little change in the relative volume fractions of the crystal types to each other. The lack 

of change in the crystal types and volume fraction ratios indicates that there is not a 

temperature dependence on the crystal phases that are forming, and that they all form 
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concurrently. The crystals that were identified were the same as those seen in section 3.3 

and [39], and were As2Se3, PbSe, and Se. The crystal peaks seen and their respective 

crystal phases are 22° (Se), 31-33° (PbSe, As2Se3, Se), 44° (PbSe), and 53° (As2Se3). The 

volume fractions for the various HT samples is in Table 3-4. 

 

Figure 3-10 XRD for the 190°C nucleation plus different growth temperatures is 

shown as a representative plot for the other HT conditions used. The identified crystals in 

the patterns are labeled with the legend on the right. [39,126] 
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Table 3-3 The volume fractions (Vx) of crystals for each of the nucleation and growth 

conditions shown in Figure 3-10, with their calculated total volume fraction and relative 

ratio between the constituent phases. 

Nucleation Growth As2Se3 PbSe Se Total Ratio 

No-

Nucleation  

G-200°C  0 0.1  0.1  0.2  0:50:50 

G-210°C  3.4 2.3 0.6  6.3  54:37:10 

G-220°C  8.5  6.3  1.8 16.6  51:38:11 

G-230°C  11.1  8.8  2.6 22.5  49:39:12 

N-190°C 

G-200°C  0.6 0.5  0.6  1.7  35:29:35 

G-210°C  7  4.9  1.5 13.4  52:37:11 

G-220°C  10.7  7.7  2.3 20.7  52:37:11 

G-230°C  14.2  10.5  3 27.7  51:38:11 

N-200°C 

G-200°C  0.3 0.1  0.1  0.5  60:20:20 

G-210°C  3.1  2.5  0.7 6.3  49:40:11 

G-220°C  9.3  7.2  .2 16.7  56:43:1 

G-230°C  13.1  9.5  2.6 25.2  52:38:10 

 

The refractive index of the HT samples was measured after N+G and is plotted in 

Figure 3-11 for the various N conditions. For all nucleation temperatures there is an 

increase in the index with an increase in the G temperature, which follows with the 

increase in crystallization seen in the XRD. Additionally there is a shift of the refractive 

index curves for each nucleation condition to lower G temperatures for higher N 

temperatures. This relation is consistent with the IU curves in Figure 1-6, where there is 

an increase in the nucleation rate from 190 to 200°C. There is also the trend that there is a 

slow initial increase in the refractive index at low temperatures, an increase at mid 

temperatures, and then a leveling off again at high temperatures. This would be indicative 

of a slow turn on into the growth regime of the material for low temperatures, and then a 

maximum possible conversion at high temperatures. 
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Figure 3-11 (A) The measured refractive index at 4.515μm is shown for the different 

nucleation temperatures against the growth HT temperature. The dashed line is a guide to 

the eye. (B) The measured refractive index is plotted against the calculated index from 

XRD data with the dashed line being the 1:1 ratio of the two values. [39,126] 

The computed refractive index using the volume fractions of each crystal found in the 

XRD using the Gladstone-Dale approximation, with known refractive index values of 

those crystals, is plotted in Figure 3-11 against the measured refractive index. The dashed 

line is a 1:1 line, and the data lies along this line for the various nucleation and growth 

HT. This shows that the change in refractive index is indeed from the crystallization 

occurring in the glass to form a glass ceramic and is independent of N or G temperatures 

used. 
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Figure 3-12 (A) Representative Raman evolution from base glass (black) for varying 

growth temperatures (all samples experienced 190°C nucleation HT). The quantitative 

Raman ratio is calculated by taking 1/intensity at 246 cm-1. (B) The calculated Raman 

ratio for the different nucleation temperatures are plotted against the growth HT 

temperature. The dashed line is a guide to the eye. [39,126] 

The evolution of the Raman spectrum for the different G temperatures with a 190°C 

N step is plotted as a representative sample in Figure 3-12. After N+G there is a 

systematic decrease in the broad peak at 246 cm-1 as the G temperature is increased. As 

can be seen, no crystalline peaks are able to be observed in the Raman spectra. PbSe is 

known to have peaks at 143 and 243 cm-1, and As2Se3 has multiple peaks between 145 

and 273 cm-1, both of which are not seen. Since crystals were observed in these samples 

with the XRD measurements, it may be that the crystals have too small of a volume 

fraction or too small of a scattering cross-section to be able to be observed above the 

glassy background in the Raman measurement. 

In order to qualitatively see the changes in the Raman spectra, the peak at 200 cm-1 

was normalized to 1. In order to quantify the changes seen in the Raman spectra, a ratio 

was created, where the peak intensity at 200 cm-1 was divided by the intensity at 246 cm-

1. This ratio was then plotted for the different nucleation temperatures in Figure 3-12.  
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As the peak around 246 cm-1 contains numerous bands related to various As-Se 

vibrations, the decrease in this peak is associated with conversion of As-Se bonds in the 

glassy matrix to the crystalline form as As2Se3, which was one of the identified crystal 

phases formed. The other vibration in this band is a Se-Se peak, where Se was also a 

crystal phase identified in the XRD which would also decrease. The remaining crystalline 

phase seen in XRD was PbSe, and the Ge-Se4/2 nor any of the As2Se3 peaks would be 

affected by the formation of this crystal phase. The overall trend in this plot is very 

similar to the one for the refractive index. Once again there appears to be a slow turn on, 

and a maximum Raman ratio value possible for the glasses. There again is a shift of the 

trace to lower G temperatures for higher N temperatures. This again would likely be due 

to an increase in the nucleation as shown in the I-U curves in Figure 1-6. 

This Raman ratio can then be used to solve for the local G temperature seen in a 

sample if the N treatment is one of those used here. This can be performed by measuring 

the Raman ratio locally on the sample, and then using the appropriate Raman ratio versus 

HT plot for the N condition used to solve for the G temperature seen locally. Inversely if 

a spatially varying nucleation temperature was used, and one knows what the G 

temperature was, then the variances in the nucleation temperature could be solved for. As 

a gradient N or G temperature would create a GRIN in these material, this 

characterization technique could be used to verify what the thermal profile was that 

created the GRIN in the sample through measuring the Raman on various cross-sections 

through the sample. 

In order to see if the Raman spectrum could yield valid quantitative information on 

the refractive index of the post-heat treated material, the Raman ratio was plotted against 
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the measured refractive index of the glass ceramic in Figure 3-13. There is a nearly linear 

trend between the two measurements, which gives a high correlation between them and 

shows that the Raman can be used to spatially determine the refractive index of a sample 

of this material. There is a slight deviation at higher temperatures, which could be due to 

the leveling out of the Raman change and a decrease in the Raman signal intensity for 

high G conditions. This decrease in the signal yields more error in the calculated ratio, 

and with the small changes seen in the ratio between high G temperatures the accuracy of 

the ratio calculation could be affected by this additional noise. As the refractive index 

was shown to be from the crystallization in the material, the Raman spectrum therefore is 

able to give information on the amount of crystallization that has occurred in this material 

upon HT with high spatial resolution compared to standard absolute index measurement 

techniques.  

 

Figure 3-13 The measured refractive index at 4.515μm is plotted against the Raman 

ratio for the respective N+G heat treatment that was performed. [39,126] 

Transmission was also measured for the different samples in order to verify that after 

the HT performed, the samples would still be able to be used for MWIR optical systems. 
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The SWCO, as measured as the 90% of the max transmission, is plotted against the G 

temperature with each color representing a different nucleation temperature in Figure 3-

14. As the growth temperature increased, the SWCO also increased. This tracks well with 

the increase in the total volume fraction of crystals present in the material. The sample 

without a nucleation HT at the highest growth temperature had the lowest volume 

fraction of crystals, yet the highest SWCO. One can surmise that there was less 

nucleation in this sample, and that the crystals that grew ended up being much larger in 

size, causing an increase in scatter. This shows that the nucleation was able to create a 

higher volume fraction of smaller crystals which allowed the composite to maintain its 

transmission SWCO. At the lowest HT temperature the un-nucleated sample did not 

contain any As2Se3, while the nucleated samples did. The un-nucleated sample also had 

the lowest SWCO, which would be from the lack of highly scattering As2Se3. For the 

middle two HTs, the transmission and crystal volume fractions were all very similar to 

each other. Even with the increased scatter from the un-nucleated sample, all of these 

samples would still be applicable for use in MWIR optics. With a maximum index 

change of ~0.12 RIU, these materials can produce GRIN profiles with a high index 

change while still maintaining their transparency. 
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Figure 3-14 The transmission SWCO as defined by the 90% of the maximum 

transmission is plotted for the different nucleation conditions against the growth HT 

temperatures, and error is within the measurement point. 

This section highlights the impact of the fixed HT protocol (N and G time and 

temperatures) used for this single, 40 mol% PbSe glass composition. While the attributes 

of the post-processed glass ceramic vary, they are defined by the base glass composition 

and morphology. The degree of crystallization in this material was able to be tied to the 

refractive index, which was then able to be tied to the Raman spectrum. This showed that 

the refractive index changes were from the crystallization, and therefore the Raman 

spectrum, and was also tied to the crystallization processes occurring. These relations 

allow for the use of the Raman spectrum to measure the refractive index in the material, 

as this allows for a spatially selective way to measure the refractive index. 
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3.6 Conclusions 

Glasses with compositions of (GeSe2-3As2Se3)1-xPbSex with x=0 to 40 in increments 

of 5 mol% were evaluated for their ability to form glass ceramic upon HT. The formation 

of various crystallized phases (phase type and quantity) as identified via XRD was related 

to the optical composite’s refractive index, which showed that the refractive index change 

was solely due to the heat treatment-induced crystallization. The change in the 

transmission was also tracked to determine if the crystallization in the material still 

maintained its transparency, and therefore application in the MWIR. In many of the 

property measurements the composition within the Pb-series examined, changes in trends 

tended to occur around the 30 mol% PbSe composition. This composition also sits at the 

morphological change boundary where the matrix/dominant phase in the phase separated 

glass matrix becomes Pb-rich. This is also the point where the change in precipitated 

crystalline phases occurs. 

Of the multiple glass compositions examined, the 40 mol% PbSe material exhibits the 

greatest potential for use in MWIR optics as related to the desirable attributes as 

quantified in Table 1-3. This material showed the highest potential index change of the 

glasses examined following this fixed, two step, nucleation plus growth (N+G) heat 

treatment protocol used, and maintained its transparency in the MWIR. In this study, 

crystal phase formation, as quantified by XRD, was correlated to refractive index, which 

was subsequently correlated to the Raman spectrum with a metric defined by the Raman 

ratio. This correlation in analysis allows us to tie the Raman spectrum and refractive 

index directly to the amount of crystallization that occurred in the samples as a result of 

the heat treatment protocol, and allows for a conversion of the Raman spectrum into a 

‘refractive index space’ in order to have a spatially selective way to measure and 
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quantify, refractive index and its change with conversion from glass to glass ceramic. The 

maximum index change observed as a result of the fixed, two-step N+G protocol was 

+0.12 RIU, and the MWIR transparency was maintained.  

Now that the ceramization of the material via conventional thermal processing is 

understood, and a spatially selective way of measuring the refractive index was able to be 

developed with Raman spectroscopy, index patterning can be performed and the resultant 

material can be characterized for its refractive index profile as well as other material 

properties.   
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4 LASER-ASSISTED CRYSTALLIZATION 

Chapter 3 demonstrated the power of thermal treatment on inducing controlled 

crystallization in a phase separated infrared transparent glass. While the attributes of the 

starting material were complicated by the LLPS present in the base material, the two step 

nucleation and growth protocol used resulted in changes creating an infrared transparent 

glass ceramic. This work showed that the 40 mol% PbSe could be controllably 

crystallized through a two-step thermal treatment using the selected criterion noted earlier 

for defining the temperature and time of heat treatment, and this treatment imparted 

changes in physical and optical properties in the optical nanocomposite.  

The ability of the material to be able to be crystallized in a spatially controllable 

manner would allow us to induce a tailorable GRIN structure. This section highlights the 

use of laser exposure on this base glass material replacing either the N or G of the process 

previously demonstrated with a furnace-based thermal treatment. In order to be able to 

spatially control the refractive index in the material, a laser was used to modify the 

nucleation or crystallization state of the material. It was assumed in this section that the 

Raman ratio that was developed in section 3.3 is still applicable to the laser treated 

samples, as the Raman measurements were shown to be indicative of the crystallization 

state, and not just a specific combination of N+G HT that was performed. 

Three different types of laser sources were used including a CW, 532 nm laser, a ns 

pulsed 1.064 m laser, a fs pulsed 1.3μm laser, and a fs pulsed 1030nm laser. The first 

two lasers were used to induce crystallization in the material, while the third was used to 

induce nucleation in the material. This chapter reviews the effects of these different laser 

irradiation regimes, their unique attributes and drawbacks as applied to the GAP-Se 
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material, and specifically how each can be applied to our candidate 40 mol% PbSe 

composition. We then report how laser exposure can be used towards our goal of 

spatially selective crystallization for an optical glass ceramic and present results from 

these experiments. 

4.1 CW laser growth 

The first set of experiments aimed at using a laser as a spatially varying heat source 

throughout the material in order to have different growth rates spatially in order to 

spatially have different volume fractions of crystallization. This HT was achieved with an 

above bandgap energy, CW laser. The laser conditions needed to create a specific profile 

was determined through simulations, and were then experimentally performed on 40 

mol% PbSe glass. The heating profile was created with a Gaussian laser beam that was 

above the bandgap energy of the material, which created a varying surface heat source, 

and therefore a varying thermal profile throughout the volume of the sample. This sample 

was characterized with Raman spectroscopy post-irradiation. This Raman map across the 

sample could then be used to solve for the thermal profile that the sample saw, as well as 

the estimated refractive index profile of the sample. These were then compared to the 

simulated profile to see how closely the simulation matched the experiment.  

4.1.1 532 nm laser exposure modeling 

Simulations of the laser-induced heating were performed with COMSOL 

Multiphysics in order to determine the irradiation conditions that would be needed to 

create a specific GRIN profile in a sample with a high index region in the top center of 

the sample that then tapered off to the base refractive index at the edges and back of the 

sample. Measured material property values of this composition were used in the 
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calculations. This profile was desired as it resembles the index profile for a flat lens, it 

could be created with a Gaussian laser beam that is above the bandgap energy of the 

sample, and it allows for a slowly varying index profile across the sample to aid in 

characterization. This index profile translates to a needed temperature profile of 230°C at 

the center of the irradiated region for high crystal growth, transitioning to around 190°C 

at the edges in order to have no crystal growth.  

The base model used in the simulations is described in section 2.13, and utilized a 

surface heat source that was time-invariant. In order to determine what power level and 

beam waist were needed, these two parameters were varied in the simulation using 

Livelink for Matlab. This enabled the simulations to be performed in batches as well as 

allowing for easy export to and processing of the simulated data in Matlab as described in 

section 2.13.  

It was determined that the heat profile would not be wide enough to create the wanted 

GRIN profile with the limited maximum power of the laser that was to be used in 

experiments while achieving a maximum temperature of 230°C with the sample at room 

temperature. By analyzing several of the simulated profiles, it was determined that 

performing the irradiation at an elevated background temperature might be able to 

alleviate this issue. Simulations were then performed in order to see if a profile with a 

peak temperature of ~40-50°C and temperature spread of ~30-40°C from the center to 

edge could be created within the power output of the laser used. From this maximum 

temperature and temperature spread, coupled with an external temperature of 190°C, the 

wanted profile could be created. This elevated temperature was deemed acceptable since 

it was the same as the nucleation condition to be used in the experiments.  



 

108 

 

 

Figure 4-1 Output data from COMSOL simulations was used for (A) plotting the 

temperature change from the center of the sample to the edge and (B) estimating the 

maximum temperature seen in the middle of the sample for different input powers and 

beam waists. Pure yellow or dark blue are indicative of values above or below the 

temperature scale seen for each image as the scale was reduced to show additional 

contrast in the regions of interest.  

Figure 4-1 shows the results of these simulations where the maximum temperature 

reached is plotted for different input laser powers and beam waists. The difference 

between the maximum and minimum temperature seen in the model was also plotted for 

the same. The regions of deep yellow or blue are above or below the ranges wanted 

respectively, and the transition region between these two were the conditions of interest. 

In order to create this external temperature of 190°C, the irradiation was planned to occur 

through the outlet vent at the top of a box muffle furnace as depicted in Figure 4-2 below. 

The green profile on top of the “laser beam” is a reference to the Gaussian profile of the 

laser used. With this tool defined, and needed experimental conditions known, they were 

then used on a pre-nucleated sample in order to spatially vary the ceramization in the 

material. The resulting sample was then characterized with Raman spectroscopy. 
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Figure 4-2 The experimental set-up used for the laser irradiation experiments in the 

furnace. The sample was placed on a refractory brick inside the furnace set to 190°C, and 

the Gaussian laser beam was sent through the outlet vent at the top, perpendicular to the 

sample surface. Note furnace is not drawn to scale. 

4.1.2 532 nm laser exposure experiment 

A pre-nucleated sample was then able to be irradiated with the experimental 

conditions that were determined through the simulations. Samples for this experiment 

were from a 350g batch that was prepared as described in section 2.1 with the 30mm 

diameter tubes. The irradiations were performed on full 30mm diameter, 2mm thick 

slices. The slices were pre-nucleated for 2hrs at 190°C, and then were irradiated for 

30min in an external temperature of 190°C for the growth step. These times were the 

same as those used in section 3.1, so that the Raman to index relation that was found 

would be valid for this experiment as well. The base glass of this sized melt and the one 

in section 3.1 were checked with EDS using a Zeiss ULTRA-55 FEG SEM to rule out 

variances between the starting materials between the two batches, and were seen to have 

the same starting compositions. 

The irradiation was performed with the 532nm laser described in section 2.14 that 

was expanded to a larger beam waist, and was directed into the outlet vent at the top of 
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the muffle furnace used in experiments in section 3.1 in order to create the external 

temperature of 190°C. The reported average powers were measured after the last mirror, 

just before the inlet vent of the furnace. The different irradiation conditions that were 

performed are summarized below in Table 4-1 and the laser intensities used were from 

0.57- 1.08 W/cm2. Some of the conditions were repeated in order to assess repeatability 

in the material. Characterization of all samples can be found in section 6.1, with only one 

of the 0.89W and 10 mm beam waist samples characterized here with Raman 

spectroscopy. 

Table 4-1 The different experimental conditions for the CW, 532nm laser used are 

shown. 

Power (W) Beam waist 

(mm) 

Sample 

temperature (°C) 

0.89 10 190 

0.89 10 190 

0.89 12 190 

1.113 10 190 

1.113 12 190 

1.113 12 190 

1.340 12 190 

1.558 10 190 

2.003 10 190 

2.003 10 200 

2.23 10 200 

2.448 10 200 

 

This sample was sliced through the center of the irradiated region in order to evaluate 

the Raman spectra of the cross-section. After cutting and lightly polishing the sample, 

Raman spectra were measured in a grid along this x-z plane with a spacing of 1mm in the 

x-direction, and 0.25mm in the z-direction as depicted in Figure 4-3. This Raman map 
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across the sample could then be used to determine the temperature profile from the 

irradiation as well as the GRIN profile using data from section 3.5. 

 

Figure 4-3 The left depicts the slice that was cut in half, and the face that the Raman 

was measured on is expanded on the right. A representative thermal map was added to 

this surface, where red is high temperatures, and blue is low. The red circles represent the 

locations where the Raman was measured at, and the green Gaussian profile depicts the 

incident laser source. Note the images are not to scale. [39,126] 

The Raman measurements were then converted into the Raman ratio as described in 

in section 3.5. These Raman ratios could then be compared with the ratios measured in 

section 3.5 for the 190°C nucleation condition as a function of temperature to convert the 

change in Raman to the temperature that would have caused that conversion. This 

temperature map could then be compared to the simulated temperature profile from 

section 4.1.1. The refractive index map was created using a similar method, but instead of 

using the Raman ratio versus HT, the Raman ratio to index relation as determined in 

section 3.5 was used. The temperature profile from the simulation was also converted 

into index by using the refractive index versus HT data for the 190°C data from section 

3.5. These two temperature maps were then compared to each other by spatially 

subtracting the temperature at each pixel of the experimental data from that of the 

simulated data to determine how well the two matched. With these tools defined, they 
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will be applied to pre-nucleated samples which will be subsequently characterized with 

Raman spectroscopy to map out the resulting refractive index profile. 

4.1.3 532nm laser exposure characterization 

Raman spectroscopy was used to characterize one of the 0.89W, 10mm beam waist 

samples in order to determine the GRIN profile throughout the sample. This sample was 

cross-sectioned and Raman spectra were measured along this cross-section that were then 

converted into a temperature scale using the Raman ratio versus G temperature profile for 

the 190°C N condition and later to a refractive index profile. The temperature profile as 

determined through the Raman measurements is shown in Figure 4-4 along with the 

simulated temperature profile. Both of the profiles show the highest temperature in the 

center, going out to low temperature at the edges, which was the desired profile. The 

simulated profile has a broader heat distribution both radially and axially, but exhibits a 

lower peak temperature. Overall the two profiles show decent correlation, which means 

that to a first order the simulations and their inputs were reasonably accurate. A possible 

source of error is that the Raman ratio versus G temperature plot was created with 

samples from a different glass melt, and if there were variations in the starting 

morphology of these melts there could have been slightly different amounts of 

crystallization. As the compositions of the batches were measured there were not any 

compositional changes between them. This does not rule out any changes in the base 

micro-structure. Another possible source of error would be that the sample was not cut 

exactly in the middle of the irradiated region, which would cause the measured irradiated 

region to be smaller and have a lower peak temperature than the exact center of the 

irradiation. Lastly there could have been error in the boundary conditions used for the 
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simulations, as the heat transfer coefficient for the convective flux boundary condition 

was not able to be measured directly for this material. 

 

Figure 4-4 The simulated temperature profile is plotted (top), as well as the 

experimental Raman map that was converted into temperature through the Raman ratio 

versus temperature curve (bottom). [39,126] 

The same Raman data was also converted to refractive index by the Raman ratio 

versus index plot, and the simulated temperature was converted to refractive index 

through the refractive index versus G temperature plot for the 190°C N and are shown in 

Figure 4-5. Both profiles are much more similar horizontally than for the temperature 

plots, though the values decrease more rapidly for the experimental sample. In the Z-

direction, the simulation goes much deeper, but again has a more gradual decrease. Also 

plotted is a difference map, where the two profiles were spatially subtracted from each 

other (simulated-experimental), to show the difference in the refractive index spatially. 

This shows in a more quantitative manner that the experimental peak index is larger than 

the simulated, and the simulated profile extends further into the sample. The possible 

sources of error mentioned above for the temperature maps are also possible sources of 

error for these refractive index profile maps. 
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Figure 4-5 The simulated temperature profile was converted to index through the 

temperature versus index correlation on top. The experimental Raman map into 

temperature through the Raman ratio versus index curve in the middle. The simulated 

profile minus the experimental profile were then spatially subtracted (bottom). [39,126] 

The thermal profile used in this section was successful in being able to form a GRIN 

in the material. One issue with this technique is that the laser is not transparent to the 

material, so only certain thermal profiles could be obtained with this laser, and these 

profiles are controlled by heat diffusion in the material. Also long processing times are 

needed, on the order of 30min, to grow the crystals. In order to reduce the time needed, 

and to potentially be able to modify the material in a more controllable manner in the 

bulk, the use of a ns pulsed laser source was investigated. 

4.2 Nanosecond laser-induced growth 

A pulsed laser source was then investigated in order to see if it could have a lower 

processing time to form a GRIN, to have the ability to potentially modify into the bulk of 

the material, and to have modifications that are not dominated by thermal diffusion. This 

greater control of the irradiation would allow for more potential refractive index profiles 

in the material. The effect of a nano-second laser on the 40mol% PbSe composition was 

investigated. The initial mechanism explored was laser-induced crystallization on the 
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base glass. The irradiation was then subsequently probed with Raman spectroscopy to 

confirm any crystallization in the material.  

Pertinent to the discussion of pulsed laser sources is the non-linear index and 

absorption, which has been measured by collaborators at Singapore University of 

Technology and Design (SUDT). The n2 was measured to be 1.24E-05 ± 3.54E-06 

cm2/GW. The a4, the non-linear multi-photon absorption coefficient, was found to be 

1.15E-02 ± 5.31E-3 cm5/GW3. 

4.2.1 Nanosecond laser-induced growth experimental 

An exposure was performed on a 40mol% PbSe sample that was a quarter of a 30mm 

diameter slice. This sample was placed inside an external heat cell that was set to 180°C. 

The slice was then irradiated for 7 min with the 1064 nm laser source described in section 

2.14. The laser beam was expanded to ~3 cm using a telescope lens and then went 

through a 11.5mm diameter aperture to create an approximately flat-top beam. An 

average power of 1.8W post aperture, which has a fluence of 0.006J/cm2 (0.43W/cm2), 

was used. Raman of this sample was then taken across the sample surface with a spacing 

of ~2mm as described in section 2.6, except that an objective lens of 10x was used with a 

dwell time of 6min (six co-additions of 60s) instead of the 20x lens for 2min 15s. The top 

surface of the sample was then polished and the Raman was re-taken. The Raman was 

then also taken of the back surface of the sample. These multiple layers were measured in 

order to develop Raman maps at various depths in order to determine how the irradiation 

affected the material throughout the sample. Thermal modeling of the system was also 

performed with COMSOL Multiphysics in order to see if laser-induced heating occurred, 

and could be compared to the furnace only HT samples described in section 3.5. Due to 
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the low repetition rate compared to the pulse duration, one pulse was modeled for the 

length of the pulse and for the length of time between pulses using the same base model 

described in section 2.13 with a time-dependent, volumetric heat source. The heating 

seen for the single pulse was then multiplied by the number of pulses that hit the sample 

during the exposure time used in the experiment. This was done as any temperature 

increase seen between the first pulse and the start of the second pulse would be similar 

for all the pulses, except for a potential steady-state temperature reached, and could be 

used as a first approximation of the amount of heating in the sample. This model used a 

spatially varying volumetric heat source, which had a term for the absorption present in 

the material, and the value for this was calculated from the transmission curve of Figure 

3-9, and was determined to be 14.9 ± 0.2 cm-1. With these tools defined, they will be 

applied to a base glass sample in order to determine the effects of the post-irradiated 

sample on the ceramization of the material. 

4.2.2 Nano-second laser-induced growth characterization 

The post-irradiated sample was evaluated with Raman spectroscopy to map the 

ceramization state throughout the sample. After the 1064nm sample was irradiated the 

Raman spectra was taken at various locations across the surface of the sample. This 

surface was then polished down and another map was taken. A third Raman map was also 

created on the bottom of the sample. A depiction of the removal process that was 

performed is seen in Figure 4-6. The Raman spectra from these maps was able to be 

classified into four main categories as seen in Figure 4-6 and include, melted (black), 

unmodified (red), normal crystallization (blue), and high crystallization (green). In 

previous experiments the melted and high crystallization signatures had not been 
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observed. Under a visible microscope the material in the middle appeared to have melted, 

which is where this classification came from. The melted region did have a spectra that 

resembles Raman spectra for base compositions with lower Pb-contents [40]. Right 

outside of this melted region the higher crystallization spectra was observed. This region 

appeared to be crystallized, and had a much sharper peak at 200cm-1 and comparatively 

lower signal around 246 cm-1. This decrease could be due to species migration into the 

“melted” region causing higher values around 246 cm-1 for the melted region. It also 

could be that more As2Se3 was able to crystalize, as the remaining peaks appear to be 

related to Ge-Se and Se-Se units [84]. The melted area and the crystallization region 

immediately around it did not have Raman spectra that had been seen before, and 

therefore the refractive index for that specific location is unknown.  

 

 

Figure 4-6 The four different characteristic Raman spectra seen in the experiment on 

shown on the right, with the blue line being the wavenumber that is used for the Raman 

ratio. The right depicts the technique used to determine the index profile through 

polishing the sample. 

These Raman ratio maps for the different depth levels are shown below in Figure 4-7, 

and could not be converted into temperature or refractive index as some of the signals did 
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not match ones seen for furnace HTs. The dots seen on the pictures of the sample 

correlate to the locations where Raman was measured, and are divided up into 4 colors 

for the four observed characteristic spectra, red – re-melted, orange – high crystallization, 

yellow – normal crystallization, and green – base. The Raman ratio of the re-melted 

region is actually lower than that of the base glass, and is the reason for the dip seen in 

the middle of the top Raman map. Other than the melted region, a similar profile pattern 

to the CW irradiated sample in section 4.1.3 was seen where the sample had a bowl 

shaped Raman ratio profile going through the depth of the sample. Thermal modeling of 

the system concluded that there would be a negligible temperature change with the given 

laser conditions, and is likely therefore largely a photonic effect.  

 

Figure 4-7 The circles in the top pictures show the locations where that Raman 

spectra were taken. The coloring refers to the characteristic spectra that was seen at that 

location, with red = melting, orange = high crystallization, yellow = normal 

crystallization, and green = base glass. The bottom graphs show the mapped Raman 

ratios that were measured. Data could not be correlated to temperature or index as some 

of the Raman spectra did not resemble those from furnace HT. 
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This laser source was able to modify the material throughout the bulk of the material, 

but appeared to have a similar effect to the CW laser that was used. This laser source was 

not in a highly transparent region of the material, so a laser source further into the 

transparent region was wanted. Also as the simulations showed that little heating was 

involved in the material it was thought that a fs source may be able to better induce a 

temperature change, and would also keep any induced HAZ to a minimum in the material 

eliminating any potential heat diffusion effects around the irradiation. 

4.3 Femto-second laser-induced nucleation 

In order to have more spatial control of the crystallization in the glass, a fs source that 

is further into the transparency region of the material was used. This source was used to 

modify the nucleation state of the material. This sample could then have a G HT, in order 

to grow crystals only where nucleation sites were grown with the. The effect of a femto-

second laser on the 40mol% PbSe composition was investigated. The initial mechanism 

explored was laser-induced nucleation on the base glass. The irradiation was then 

subsequently HT and probed with Raman spectroscopy to confirm any induced 

nucleation in the material.  

4.3.1 Femto-second laser-induced nucleation experimental 

The fs irradiation was used in order to have more spatial control of the irradiated 

region with less HAZ, and to be able to use a laser source that is further into the 

transparency region of the material in order to have spatial control within the bulk of the 

material. Polished 30mm diameter samples were used to nucleate bulk 40 mol% PbSe 

samples. These samples were batched as described in section 2.1, but were polished 

commercially by Sydor Optics with a similar RMS roughness and a greater degree of 
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surface flatness (less wedge) to those polished at the University of Central Florida. The 

fs, 1.3 μm laser as described in section 2.14 was used in these experiments. This 

wavelength is in the middle of the SWCO of the glass where the absorption coefficient 

was measured to be 0.37 cm -1. The pulse duration of the system was 110fs, and the 

average power used was 52mW. A lens was placed in the beam path to focus the laser 

down to 10.7 μm. This focus was then placed spatially above the sample, and was moved 

closer or further away during irradiations in order to have different irradiances at the 

surface of the material as depicted in Figure 4-8.  

 

Figure 4-8 Minimum beam waist was generally 3-5mm above the surface. Beam 

waist was always above the sample and the beam waist at the sample surface was 0.2-

0.3mm 

Rectangles of a single irradiation condition were made in a snake-like pattern on the 

sample surface. The pitch between lines and the speed of the write could be modified, 

and for the reported experiment a pitch of 0.01mm and a writing speed of 1mm/s were 

used. The distance of the focus above the sample ranged from 1.6-7.2mm, which lead to 

beam waists of 0.1-0.43mm and fluences ranging from 0.018-0.365J/cm2 (18-365 

W/cm2). 
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The Raman spectra of the irradiated regions were measured post-irradiation to ensure 

that no modifications occurred from the laser alone. The sample was then HT for 220°C 

for 30min in order to have growth only in the regions that were nucleated by the laser, but 

no change would occur in the regions without any pre-nucleation. The Raman spectra 

was then measured again post HT to see if modification could be observed from crystal 

growth, which would indicate that nucleation had occurred in the material. With these 

tools defined, they will be applied to base glass that will then be post-HT in order to 

determine the changes in the number density of nucleation sites in the material from the 

irradiation. 

4.3.2 Femto-second nucleation characterization 

The samples were characterized after their HT to determine if any modifications in 

the number density of nucleation sites, and therefore final crystallization state occurred in 

the irradiated regions. These changes were determined through Raman spectroscopy of 

post-irradiation and post-irradiation plus G HT. Irradiations were divided into six 

different sets, where 6-12 individual irradiance conditions (distance from the focus to the 

sample surface) were written into the samples. The differences in the irradiance levels 

within each set were relatively low, and then larger jumps in the irradiance level occurred 

between the sets. The regime that was wanted for laser-induced nucleation would be little 

to no surface modification (with possibly slight expansion of the material), and then upon 

a G HT the Raman spectra would change indicating crystal growth as seen in section 3.5 

for thermal HTs.  

The post-irradiated regions were first investigated with the visible microscope 

available on the Raman spectroscopy system. A stitch of the entire irradiation region is 
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shown in Figure 4-9. Ablation was observed for the highest power set, slight modification 

for sets 2-3, and then set 4 dipped below the irradiation level for no surface 

ablation/modification. The surface profile of the sample was investigated with the white 

light interferometer described in section 2.12. The only change in height seen in these 

samples was from the ablation/surface modification (ripples) and the maximum amount 

of surface modification seen was less than 0.5um, except for set 1, where trenches were 

drilled into the sample. 

 

Figure 4-9 The irradiated regions with the 1.3 μm, fs laser are shown. The irradiations 

were split into 6 sets with jumps in the irradiance between each set, and going from high 

intensity on the left to lower intensity on the right. 

 Higher magnification images of sets 1-5 are shown below in Figure 4-10. Image A 

shows a trench from set1, where there is a clearly defined edge to the trench and a very 

small HAZ. Image B is from set 2, and shows non-uniform modification across the 

modified region, with more structured modifications (lines) in the darker regions. Image 

C shows a uniform change across the modified region, with line-like structures appearing 

perpendicular to the laser writing direction. Image D also shows a uniform change across 
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the modified region, with line-like structures. The direction of these lines though changes 

spatially, with the edges and center of the irradiated areas having perpendicular directions 

(edges parallel, center perpendicular to the writing direction). Image E again does not 

have uniformly modified regions, and the edges of the modified region are not well 

defined. Small protrusions from the main modified region show signs of the beginning of 

these line-like structures, or micro-gratings, and their direction is parallel to the laser 

writing direction. 
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Figure 4-10 White light images for one of the irradiated rectangles for set 1 (A), set 2 

(B), set 3 (C), set 4 (D), and set 5 (E). 

Raman Spectroscopy was performed post-irradiation, and confirmed that there was no 

measureable change in the spectrum from the base glass. After the growth HT the Raman 

was re-measured. The only set that exhibited a change in the Raman was set 2. The 

Raman spectra for these locations post irradiation, and post irradiation plus HT are seen 

in Figure 4-11. The fluence range for laser irradiation for this set was 0.044-0.056 J/cm2 



 

125 

 

(44-56 W/cm2), and was the 2nd highest intensity set. This was unexpected, as it was 

assumed that the sample would only nucleate in regions where no obvious surface 

damage/modification would occur. 

 

Figure 4-11 The Raman spectra is plotted for set 2 for both the laser-only condition 

(left) and laser + furnace growth (right). 

A systematic decrease in the Raman peak intensity around 246 cm-1 was seen with an 

increase in the average intensity of the laser beam. In in section 3.5 this decrease in the 

Raman spectra at 246 cm-1 was determined to come from the crystallization of the 

material, which means that there was an increase in the amount of nucleation with the 

increase in the average intensity. The material also appears to be very photosensitive, as a 

small change in the fluence causes changes in the nucleation state of the material. As the 

modified region was non-uniform, an investigation into the spatial variation of the spectra 

across this area was performed. This is depicted in Figure 4-12, where the green lines are 

the lines where the laser wrote along the sample, and the colored dots are the locations 

where the Raman spectrum was taken. The Raman spectra were then used to calculate the 

Raman ratio as described in section 3.5, and are plotted in the lower portion of the Figure, 

where the different points correspond to the locations where Raman was taken in the 

image above them. The region with the largest change in the Raman ratio was in the 
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darker portion where the center of the irradiation was. The lighter region to the left of this 

saw much less irradiation, which is why less change is seen in the material.  

 

Figure 4-12 The green lines in the top image show where the laser was swept across 

the sample, with the beam waist depicted with the blue arrow. Raman was taken at the 

circular location, and the Raman ratios were calculated and are shown in the graph at the 

bottom. 

The asymmetry of this modification was concerning as one would expect that this 

additional modification zone should extend on both sides of the laser written area. This 

non-uniformity was also seen in other irradiations that were performed. Also a two-lobed 

structure was able to be seen in some additional irradiations with the idler output from the 
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OPO at 2μm that occurs concurrently with the 1.3μm output. Additionally the irradiances 

for the onset of modifications did not track from day to day as can be seen in Figure 4-13 

where the Raman ratios for irradiations from two different days are shown. Within a 

single day though multiple irradiations tracked well with each other, which indicated 

either the material is very sensitive, is non-uniform, or the laser profile is not repeatable 

from day to day. As repeatable material response is needed in order to fully develop 

GRIN optics, a secondary approach was investigated.  

 

Figure 4-13 The Raman ratios were plotted for several different irradiation conditions 

on two different days. 

The post-irradiated regions did not show a change in the crystallization without a 

subsequent G HT, which means that the crystallization seen after the HT was solely due 

to the HT that occurred, and there was no growth in the irradiated regions from the 

irradiation. This showed spatial control of the crystallization state, and therefore 

refractive index within the material. With the inconsistencies seen from day to day and 

the non-Gaussian laser beam profile, a different approach and laser source was 
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investigated. This fs, MHz laser source was more suited to do the inverse process of laser 

assisted crystallization where a pre-cerammed material was re-vitrified into a glassy state, 

as it has the necessary conditions in order to have high heat accumulation in the material, 

which would take the temperature high above the nucleation and growth temperatures 

seen thus far. 

4.4 Conclusions 

The goal of being able to pattern GRIN structures in the material by spatially 

modifying the nucleation or growth in the material was investigated. The effect of 

irradiation on 40 mol% PbSe was investigated so that Raman results could be compared 

with data collected in section 3.5 on samples subjected to two step, furnace based, 

nucleation and growth thermal protocols. The first set of experiments looked into using 

the irradiation as a spatially varying, surface heat source for crystal growth. A gradient in 

index (aka, a GRIN structure) was created using a 532 nm, CW laser source to create a 

gradient temperature profile across the sample. Simulations were able to be performed in 

order to determine which experimental conditions should be used for the irradiations. 

Several samples were irradiated with slightly different irradiation conditions, which are 

later evaluated in section 6.1. One sample was further evaluated here, and was 

characterized with Raman spectroscopy. Varying amounts of crystallization were seen in 

this sample, with a decrease in the extent of crystallization from the center to the edge. 

From this data an expected temperature profile was able to be calculated and compared to 

the simulated temperature profile. Both of these temperature profiles were then converted 

into index profiles, which were then able to be compared as well. Both the temperature 

and index profiles were similar, and show a good first effort towards thermal modeling 
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for this method of heating, and that a spatially varying heat source could create a spatially 

varying degree of crystallization.  

Next a pulsed source was used in order to see if it could be used to create index 

profiles that were less diffusion dependent. Initial work with a ns, 1.064μm laser source 

was performed on this composition in a growth-only regime. This sample was then 

evaluated with Raman spectroscopy to determine the GRIN profile in the sample using 

the relation determined in section 3.5. The sample was then polished along the axis of the 

input laser, to allow for a more full 3D measurement of the refractive index by 

performing Raman measurements at different depths inside of the sample. Simulations 

were also performed in order to determine if any laser-induced heating was likely 

occurring in the sample. 

The ns, 1.064μm laser exposure was able to crystallize the sample and produce a 

GRIN that was able to be partially mapped out with Raman spectroscopy. The sample 

saw melting in the center of the irradiated region, with induced crystallization 

transitioning to only base glass around it. The melted area and the crystallization region 

immediately around it did not have Raman spectra that had been seen before, therefore 

the refractive index for that specific location is unknown. The melted region though 

resembles Raman spectra for base compositions with lower Pb-contents, or even higher 

amounts of As2Se3. This experiment showed the limitations of the Raman to index 

relation for spectra that are not able to be achieved through furnace HT. Further 

characterization of such spectra would need to be accomplished through μ-XRD or TEM. 

This sample showed a similar profile to the surface heat source with the CW laser, so a fs 

laser with a shorter pulse duration and longer wavelength was investigated next. 
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Lastly, a fs, 1.3μm source was then used on the same composition in order to 

determine if a heat accumulation effect would be able to be created, and if this would 

allow for laser-induced nucleation in this glass composition. The laser was focused above 

the sample surface, and then brought closer to the surface in order to vary the irradiance 

level of the beam on the surface without changing the laser output power. The samples 

were then investigated with Raman spectroscopy to ensure that no changes were 

occurring in the sample as a result of the irradiation alone. A subsequent growth HT, 

which was slightly below a temperature where spontaneous growth occurs in the 

material, was performed and the Raman spectra was then re-measured in the irradiated 

regions to see if growth had occurred, and therefore nucleation was induced by the laser.  

The 1.3μm fs laser source was able to cause changes in the nucleation state, but the 

results were not reproducible from day to day and were accompanied by unwanted 

surface modifications. It was determined that nucleation of a sample with this laser would 

not be controllably accomplished, and that the laser did not have a Gaussian profile. An 

alternative laser source was assessed for its use in irradiations, and would likely cause 

high heat accumulation with its fs, MHz pulses. One result from this work demonstrated 

an interesting new idea for creating a GRIN material beyond the crystallization strategy 

investigated to this point. The potential for this source to be able to re-vitrifying a pre-

cerammed sample by locally melting the crystallization already present in the material 

was investigated in order to have a better control of resulting GRIN profiles in the 

material. This strategy is investigated in the next chapter. 
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5 LASER-INDUCED VITRIFICATION 

The experiments and results up to this point have shown how the use of thermal 

treatments with a furnace in combination with, or without exposure from lasers of 

varying pulse durations, can convert a fully amorphous starting material to a glass 

ceramic. Such induced crystallization to form a multi-phase glass ceramic that retains its 

transparency within the MWIR has been shown to be possible either following a 

homogeneous treatment (within a monolithic bulk sample) or across spatially defined 

regions within a single sample where variations in the extent of nucleation, growth and 

the resulting crystallization can be tailored through localized heating. 

As a result of these studies and some of the limitations highlighted in Chapter 4 that 

were related to the choice of laser conditions and the lack of repeatability of material 

modification, an alternative strategy was identified to create a spatially varying 

amorphous/crystallized material that exhibits a transition in properties related to the 

transition between these two states. Specifically, we have investigated an approach 

converse to the laser-assisted crystallization technique that starts with a glass ceramic and 

selectively re-amorphizes it. We employ this approach to realize a gradient in properties 

and hence, refractive index, starting with a higher index composite converting to a lower 

index glass.  

This strategy involves starting with a glass ceramic, and then creates an index 

modification by reversing the crystallization through melting of the precipitated crystals. 

Here the melting can be spatially controlled through the use of a laser beam, which is 

where the term laser-induced vitrification was coined. This re-amorphization results in 

the laser-modified region possessing a lower refractive index than the surrounding 
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material, instead of the previous gradient imparted through growing crystalline phases 

within a glassy material. 

As discussed in section 1.6, heat accumulation which could be used to heat our glass 

ceramic, could be achieved using a laser that has fs length pulses at MHz repetition rates. 

As the temperatures needed for nucleation and growth of the (GeSe2-3As2Se3)60PbSe40 

composition used in section 3.4 have a narrow, well defined temperature range (~ 190-

200°C for nucleation and 200-230°C for growth as determined by I-U curves), and 

timescales (for furnace heat treatment) on the order of 30-120 min for nucleation and 10-

30min for growth, heat accumulation by fs irradiation may not easily thermally nucleate 

or grow crystals. A non-thermal effect, such as that seen using the ns, 1064nm laser 

(discussed in section 4.2.2), may be sufficient to impart the requisite energy dose as 

determined by post irradiation Raman spectra that showed crystal growth.  

While the above paragraph discusses issues of the heat source in terms of time and 

temperature to create crystallization, a means to re-amorphize or remove crystallization 

employs localized changes in the previously partially crystallized material either by 

erasure of the pre-existing nucleation or growth that already exists in a glass ceramic 

sample. With knowledge of the melting temperatures of the crystallites in the glass 

ceramic and the absorption values of the material (glass in its parent form, modified glass 

with crystallization species depleted, and crystalline phases) at the laser wavelength of 

use, then the laser conditions that are needed to be used should be able to be calculated. 

This modeling though will not be utilized in this work as it was past the scope of this 

dissertation. This approach, to use a laser to locally induce a spatially varying index 

change/structured pattern via re-amorphization or controlled melting of a glass ceramic is 
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to the best of our knowledge, a novel and unreported technique. We have coined the 

name laser-induced vitrification (LIV) to describe the process whereby a region is 

returned to its vitrified or glassy state from a prior glass ceramic form. This chapter 

discusses the preliminary efforts to understand and utilize this technique on 40 mol% 

PbSe glass ceramic starting material. 

An initial overview of the LIV process is first presented in this chapter. Two different 

fs lasers were evaluated for their potential to convert the glass ceramic back in to a fully 

glassy state in the material. For these studies, simulations were not performed, so the 

irradiation conditions that were needed to melt the crystals were experimentally 

determined. It was also assumed that all of the crystalline phases were able to be re-

melted (or reduced). While this was confirmed visually through electron microscopy, we 

also utilized Raman spectroscopy to specifically track the evolution of the initially 

present As2Se3 phase.  

In our efforts, LIV was used to produce an array of locations where we modified the 

number density of nucleation sites realized through a thermally induced pre-nucleation 

HT of 40 mol% PbSe material. Here, we used the 1.3μm laser (110 fs and 1 KHz) which 

was focused with a 25 mm lens to obtain fluences up to 0.144 J/cm2 (144 W/cm2) with 

the aim to erase the previously nucleated features. These samples were then had a furnace 

HT after exposure, which resulted in a measurable change to the Raman spectrum. This 

exposure and analysis protocol is similar to that used previously as described in section 

2.14. The Raman spectrum of this sample was measured before and after a growth HT in 

order to determine if the nucleation state of the material was modified, as evident by the 
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change in the 246 cm-1 band and modification was quantified by calculating the Raman 

ratio of the modified region as defined in section 3.5.  

With a change in the nucleation state confirmed through Raman spectroscopy, 

experiments were then performed with a separate 1 MHz, 1.03μm laser with 850fs pulses 

as described in section 2.14 to attempt to fully erase the crystallization in a sample of 40 

mol% PbSe glass ceramic which had undergone a two-step HT (N+G) protocol of 190°C 

for 2hrs plus 220°C for 30min. This experiment irradiated a region of the glass ceramic, 

and the post exposure sample was evaluated once again using Raman spectroscopy to 

compare and quantify pre- and post-exposure Raman signatures, to allow for calculation 

of the change in the Raman ratio in the modified regions. As discussed previously, this 

tool allows for the quantification of changes from the glass ceramic state back towards 

the original Raman spectra as was seen for the parent base glass. Since the material is a 

partially crystallized glass ceramic realized from a known parent glass, the ‘target’ glassy 

state spectra is known. The comparison thus allows an estimate of conversion towards the 

glassy state enabling us to relate exposure conditions to the extent of re-amorphization. 

While Raman is a powerful tool providing excellent discrimination between crystal and 

glassy phases if the crystals are Raman active, a secondary tool can provide further 

validation. While we had hoped to use μ-XRD data for this purpose, it was unavailable 

for our use. Thus electron microscopy was used as a more qualitative indication of 

conversion of all of the crystalline states. The outcome of our experiments to demonstrate 

the possibility of LIV and the general aspects of its application to our 40 mol% PbSe 

glass ceramic are discussed in subsequent sections following a brief background on 

related approaches in literature to LIV. 
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5.1 Background 

Laser-induced vitrification, or more specifically, the use of a laser in the melting, 

processing, or modification of a glass or glass ceramic, can mean different things 

depending on its specific application and goal. Examining the literature on this topic, 

there are several processes that are similar to what is being done in the present study, but 

are still fundamentally different from that attempted in the re-amorphization study on 

optical glass ceramics.  

A review of prior efforts shows that the laser-induced melting of raw materials in 

order to create glasses has been explored. This processes is typically used in composition 

spaces where either the refractory nature of the raw materials or excessive melting 

temperatures and choices of crucibles prevents the complete melting of starting materials, 

thus the glass would not be able to be formed otherwise. This process is sometimes called 

‘container-less melting’ and has sometimes employed levitation to suspend the melt 

during irradiation [128]. Laser melting of glass has also been used with additive 

manufacturing methods, where glass powders are locally melted in order to build up a 

final part [129]. Laser marking by vitrification has also been performed, where marks are 

made on non-optical components by locally melting the material [130]. Laser surface 

vitrification, where a thin surface layer of metal is melted in order to create a surface 

layer with different material properties than the rest of the bulk, has also been studied 

[131,132]. Most similar to what we are proposing are phase change materials (PCMs), 

where under an applied field (either from a voltage source or a laser) the material 

switches from a fully amorphous to a fully crystalline state. While studied extensively 

over the past several years, infrared PCMs generally are formed in thin film geometries 

[133]. Our work on the other hand, does not aim to create a change in phase that is 
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switchable, rather, we aim to tune the degree of the crystalline phase locally in a spatially 

controlled way to impart a variation in the crystalline volume fraction (from the 

maximum post HT’d starting state, to zero). Additionally, we aim to be able to do this in 

our glass ceramic, in either bulk or film form. 

In the context of the present effort and as noted above, we have employed LIV to 

partially amorphize a previously crystallized composite material (40 mol% PbSe glass 

ceramic). Here, we use the laser to locally elevate the temperature within the laser 

exposed region, to return the exposed area to a glassy, crystallite-free state. As the laser 

has a non-zero absorption in the glass ceramic, exposure results in a local increase in the 

temperature of the glass ceramic up to or above the melting temperature of any crystals 

already present in the material. These melting points as measured with a DSC for the 

composite, are shown in Table 5-1 below for the individual crystal phases which could be 

used to estimate the necessary laser irradiation dose to realize necessary specific heating 

levels through simulations. If the temperature range of the DSC scan is increased above 

any exothermic crystallization peaks, an endothermic peak (dip in the data) can be seen, 

which relates to the melting of the specific crystalline species present in the material. The 

actual melting temperature of the crystals within the glass matrix would likely be slightly 

lower as they are surrounded (fluxed) by the already softened glass. Laser heating above 

these melting temperatures followed by rapid cooling (quenching) would locally modify 

the local area’s thermal history resulting in a modified, re-amorphized glass. This 

process, while specific to our multi-component glass ceramic, is not dissimilar to the re-

amorphization process that takes place in commercial Ge-Sb-Te (GST) phase change 

materials found in DVDs. 
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Initial studies on our glass ceramic have shown that by using a fs laser with a MHz 

RR, this can be accomplished on a local scale that would allow for a 2-tone index pattern 

to be realized on the μm scale. This localized melting could be used similarly to LIC, and 

is depicted in Figure 5-1 below in order to create patterned index profiles. For the 

material used here, the irradiated area created a negative refractive index change (as the 

glass has a lower index than the glass ceramic), which is the opposite of the patterning 

used in the earlier chapters of this document.  

Table 5-1 The melting temperatures for the crystalline species found in the 40 mol% 

PbSe glass ceramic are shown in the middle column. 

Crystal Species Melting temperature (°C) 

PbSe 1,078 

As2Se3 680 

Se 221 
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Figure 5-1 Comparison of laser-assisted modification strategies used in this work. 

LIC, as seen on the top takes a base, or pre-nucleated, sample and then selectively grows 

crystals in certain locations. The reverse of this process, LIV, takes a pre-cerammed 

sample and then selectively re-vitrifies exposed regions in the glass ceramic back to a 

glass. 

This process has several benefits and shortfalls as compared to LIC. One benefit of 

the technique is that there are a wider range of temperature conditions that will still allow 

for LIV to occur, which causes the irradiation conditions to not be quite as stringent and 

allows for more misalignments in the system and/or long term power variations or shot to 

shot noise in the laser source used. Additionally, not as much fore-knowledge or 

experimentation is needed when switching to new materials, as finding a melting 

condition can be easier than trying to find a specific temperature range for nucleation or 

growth as each composition has its own unique kinetics for crystallization.  
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5.2 Laser-induced removal of nucleation – experimental  

 The first effort towards LIV used the fs, 1.3μm laser discussed in section 4.3 to try to 

locally reduce the number of crystal nuclei sites in a pre-nucleated sample. In order to 

validate the change in the nucleation the sample could then have a growth HT performed 

to see if there was preferential growth in the regions that were not irradiated. As melting 

conditions were able to be found for the base 40 mol% PbSe glass during irradiation with 

this laser, it was thought that causing the surface to melt and then quickly cool might 

quench the material without nucleation sites in the irradiated region if the temperature 

was high enough. Also since the bulk 30 mm diameter samples were more phase 

separated than the 10 mm diameter samples, and the films are completely amorphous, 

there was a potential in this composition to also reduce the amount of phase separation 

already present in the base glass if the quench rate after melting was sufficiently high.  

The sample used for this effort was a piece of a 400g, 30mm diameter, 40mol% PbSe 

glass as was used in section 4.3, where the samples were commercially polished. The 

sample then went through a nucleation step using the same muffle furnace as in section 

3.1 at 195°C for 2hrs. The sample was then irradiated with the 1.3μm laser used in 

section 4.3 with the same rectangle pattern used before with a pitch between the lines of 

0.01mm, and 6 lines were written for each irradiation condition. The focus of the laser 

started 7.7mm below the surface and was moved up to 2.3mm above the surface in steps 

of 0.2 mm. A total of 36 different irradiance values were tested and the fluences seen by 

the sample were 0.085 to 0.144 J/cm2 (85-144 W/cm2), which were chosen so that they 

would cross from below to above the ablation threshold of the material. This was done to 

subject the material to temperatures sufficient to dissociate the nuclei already present in 

the material (believed to be on the order of several atoms in size), while trying to stay 
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below the ablation threshold of the material. Raman spectroscopy was performed on the 

samples to confirm that the nucleation HT and laser irradiation did not result in 

crystallization in the sample.  

A growth HT was then performed on the specimen at 230°C for 10min. The short HT 

time was used in order to inhibit additional nucleation (230°C is outside of the regime of 

a measurable nucleation rate) or spontaneous random growth in regions with less 

nucleation. Raman spectra of the samples was acquired post-HT, and were used to 

quantify the pre-/post Raman ratios for each modified location as described in section 

3.4. Visible images were also obtained from the Raman spectrometer to be able to 

visually see what kind of microstructural modifications were occurring. White light 

interferometry was used to measure the surface profiles of the modified region. With 

these tools defined, they were used to evaluate both the pre-nucleated glass following 

irradiation to ensure there was no growth from the irradiation alone and in post-HTd 

samples to determine the changes in the number density of nucleation sites in the material 

from the irradiation evidenced by different final crystallization states. 

5.3 Laser-induced removal of nucleation – analysis  

A 1.3μm laser source was used in order to modify the amount of nucleation present in 

the material. With an additional G HT after irradiation an index modification would be 

obtained in the regions with altered nucleation. This change could be measured using 

Raman spectroscopy to determine the resulting amount of crystallization present locally 

in the glass.  

The first characterization of the material post-irradiation was with a visible 

microscope on the Raman system, which was used to image the irradiated regions and is 
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shown in Figure 5-2. This was done to see which irradiation conditions caused unwanted 

surface ablation. The modifications ranged from almost no discernable change up to 

ablation trenches, which occurred when the sample focus was closest to the surface of the 

sample.  

 

Figure 5-2 White light images were taken post HT+laser+HT. Raman spectra were 

taken at each of the circles. 

Raman spectroscopy was performed at each of the circles in Figure 5-2 for both the N 

+ laser and N + laser + G conditions. No changes were observed after the irradiation 

before the post-HT. The spectra for the N + laser + G regions were used to calculate the 

Raman ratio for each location as seen in Figure 5-3. The Raman ratio region from ~1-

1.05 is what is normally seen for base samples of this material, and above ~1.6 is 

normally what is seen for a fully grown sample. These regions are depicted in the figure 

in green. The ratios found for the irradiated locations fell in between these two endpoints, 

and have a gentle transition between a partial growth spectra to a base glass spectra. This 

shows that as the fluence was changed from 0.114 to 0.085 J/cm2 (85-114 W/cm2), the 

amount of nucleation present in the material was reduced, which caused less growth 

during the G step as compared to a non-irradiated region. As there was still thermal 

growth after the irradiation, there is high confidence that the Raman ratios found in this 

experiment can be directly compared to those found in section 3.5. 
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Figure 5-3 The Raman ratio is shown for each location that was HT+L+HT and was 

seen to have visible modifications so that it was identified. The ratio values that are 

normally seen in a base 40 mol% PbSe sample and a high N+G sample are shown in 

green for comparison. 

An alteration in the nucleation state in the material was able to be seen in a pre-

nucleated 40mol% PbSe sample after laser irradiation. A decrease in the number density 

of nucleation sites was able to be observed through lower growth seen after a post-

irradiation + G HT than in areas where the pre-nucleation was still present in the material. 

This showed that LIV of nucleation was likely able to be achieved. The LIV process 

could potentially be used to erase ceramization already present in a glass ceramic. This 

process would have the added benefit of not needing a post-irradiation HT that would 

potentially necessitate post-HT processing through polishing or further forming of the 

optic. 
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5.4 Laser-induced removal of growth – experimental  

This approach was extended to use laser exposure to reduce the crystal growth 

already present in a material. Here, a two-step HTd glass ceramic sample was exposed 

with the objective to locally melt the crystalline phases present by employing a focused 

laser. As with the previous section on LIV the post-irradiated samples were able to have 

their crystallization state measured through Raman spectroscopy. Additional 

characterization with WLI and visible microscopy was also performed in order to 

determine if there were any changes in the surface topography or any surface damage 

from the irradiation. Lastly TEM and SAED were used to confirm changes in the degree 

of crystallization of the material post-irradiation. 

One limitation observed in the prior effort to reduce nucleation present in the samples 

is that the maximum amount of index change between nucleated and un-nucleated 

material post-HT is very small as compared to the refractive index variation between base 

and fully grown material as seen in Figure 5-4. Here, the horizontal light blue line at the 

bottom of the figure represents the base glass’ index as measured at  = 4.5m (3.039), 

and the refractive index change with two different nucleation temperatures for the 

indicated growth temperatures are seen. As discussed in chapter 3, a larger shift is seen in 

the amount of growth at a specific growth temperature for samples with more nucleation. 

If different regions of a sample have different amounts of nucleation, after the whole 

sample is grown the change in refractive index seen is based on how much more growth 

is induced in that region. A method that would ensure a greater possible index change 

would be a change in the amount of growth seen in the material. By achieving this with 
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LIV, it also eliminates any needed polishing after irradiation to remove sample 

deformation from a post-irradiation HT. 

 

Figure 5-4 The maximum allowable change in refractive index with multiple 

nucleation states with the same G HT, and the potential index change between a fully 

grown and fully glassy state (as indicated by the lower blue line) for a 40mol% PbSe 

sample measured at λ=4.515μm. 

Using DSC data which indicates the endotherms for crystalline species in the 40 

mol% PbSe glass are below the 1% weight loss point, the glass should theoretically be 

able to be heated to a high enough temperature, and then be quickly cooled in order to 

return it to the glassy state without changing the glass composition. These temperatures 

are listed in Table 5-1. 

This study used the 1.03 μm laser source described in section 2.14. The location of 

the focus with respect to the sample surface was determined by focusing the back 

reflection of the beam into a camera and the sample was translated axially along the beam 

until the smallest diameter beam was seen on the camera which would correlate to the 
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laser focus being in the plane of the sample surface. This was performed at different 

locations across the part in order to have the sample flat (perpendicular to the laser axis) 

so that all locations in the irradiation would have the same fluence. 

The first set of exposures were rectangles similar to those described in section 4.3, but 

with the focus inside of the surface instead of above it. The sample was a piece of a 

30mm diameter from one of the 400g melts of 40 mol% PbSe that was commercially 

polished as described in section 4.3. The sample was pre-HT at 250°C for 17.5hrs. The 

pitch between the 10 lines written for each condition was 0.01mm with a write speed of 

1mm/s. The total length of the line was 3mm. The step in the z-direction was 0.01 

between the different rectangles. Seventeen of these rectangles were created spanning 

irradiances of 9.65E-4 - 2.876E-3 J/cm2 (965-2876 W/cm2). These rectangles were used 

to determine which fluences would be able to produce LIV in the melt. This could be 

verified by having the Raman spectrum return back to that of the base glass. We believe 

that this change in the Raman signature would indicate that there is a change in the 

crystallization state as seen in section 3.5, and additional confirmation will still need to 

occur with μ-XRD. 

Post irradiation, these locations had their Raman spectra taken, as described in section 

2.6, for multiple points within the irradiated region in order to assess whether the LIV 

evenly changed the starting glass ceramic back into the base glass. The Raman ratio for 

each point was then calculated as described in section 3.5. White light interferometry as 

described in section 2.12 was also performed in order to determine if any expansion or 

contraction was seen in the material from the exposure.  
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A second set of exposures were also performed with the same laser using a different 

write geometry. In previous attempts with both the laser used in this section and the 

1.3μm laser used in the erasure of nucleation, there did not appear to be any modification 

into the bulk of the material as both of these lasers have significant absorption in the 

material. In order to try to alleviate this problem, a different irradiation pattern was used 

with the hopes of having more of the laser intensity, and therefore heat, penetrate down 

into the bulk of the material as there was not access to an ~100fs, ~1MHz RR laser at 

longer wavelengths. As the sample was converted back to the base glass the SWCO 

should shift to lower wavelengths, so as the laser focus moved from in the bulk up the 

surface of the material the surface of the material could vitrify and potentially allow more 

light to penetrate into the bulk of the material as the focus was moved back further into 

the sample.  

This pattern of arrayed columns is depicted in Figure 5-5, where the red line is the 

location of the focus through the sample, and the blue arrows depict the direction the 

focus is moving. This pattern forms a series of pillars that are connected in the bulk of the 

material. The focus is first placed 1 mm further into the sample than would normally 

create surface modification and it is translated in the same plane to the location where a 

pillar will be placed. The beam was then brought 1mm closer to the surface and then was 

brought back down 1mm to the starting height. The focus was then translated to the 

location of the next pillar and the cycle was repeated. The pitch between the different 

pillars was 0.01mm, and a total of 20 by 20 pillars were made. This protocol was 

employed to allow for heat to further penetrate into the material as described in the 

paragraph above. 
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Figure 5-5 The geometry used for 1030nm, MHz irradiations is shown. The red line if 

the focus of the beam, and the blue arrows depict the direction of travel. A series of 

irradiated “pillars” is made in the material though this technique, and are used to try to 

achieve modifications in the bulk. 

Post-irradiation, the Raman spectrum was taken of the irradiated surface. A scratch 

was then induced in the irradiated region, and the Raman was taken in the scratch to 

determine if there was modification into the bulk of the material (sub-surface). The 

sample was then scratched again and the Raman was re-taken in order to see if the further 

depth still had modification. A secondary irradiation region, where the focus was slightly 

closer to the surface, was also scratched, and the same process was used to determine if 

there was modification into the bulk. White light interferometry was also taken in order 

to see what the depth of the scratch was in order to estimate the depth of the modification, 

and to see if there was any expansion of the material. Lastly, TEM/SAED was taken on a 

larger, yet similarly irradiated region in order to determine if the degree of crystallization 

was modified as a function of depth post-irradiation. With these tools defined, they will 

be applied to a pre-N+G glass ceramic that will then be characterized to determine the 

changes in the amount of crystallization present in the material from the irradiation. 

5.5 Laser-induced removal of growth – analysis 

Samples were irradiated with the intention of changing the degree of crystallization 

present in the material though LIV. This change in crystallization was able to be 



 

148 

 

characterized with Raman spectroscopy. We believe that this change in the Raman 

signature would indicate that there is a change in the crystallization state as seen in 

section 3.5, and additional confirmation will still need to occur with μ-XRD. 

Confirmation of a change in the degree of crystallization was able to be achieved with 

TEM/SAED. Additionally visible microscopy and WLI were used to determine if any 

physical modifications were observed on the sample surface including expansion or 

damage due to the irradiation.  

The visible microscope on the Raman system was first used to characterize the initial 

test rectangles to determine which irradiation conditions stayed below the ablation 

threshold. From this it was seen that the conditions spanned from no-modification to what 

looked like possible melting of the glass, where a slight discoloration as can be seen in 

the right of Figure 5-6. The green circles in this image are the locations that Raman was 

later taken on the sample. Using the New View and WLI of the samples to probe the 

post-exposed sample, a slight expansion of the material was seen for most of the 

conditions, except for the highest power ones which saw a slight decrease in height from 

ablation. The slight increase in height would be indicative of slight photo-expansion. As 

this could also create a change in the refractive index, the Raman spectrum of the glass 

was also investigated to ensure that the shape of the Raman spectrum returned back to 

that of the base glass, and therefore an index change from the change in the 

crystallization state would be produced. If the irradiated region also saw a decrease in the 

density to below that of the base glass, the material could then create an even larger 

change in the refractive index. 
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Figure 5-6 WLI and a cut-through of the measured profile for a LIV of nucleation + 

post-HT is seen on the left. Right is a visible image of the same sample, with the green 

circles indicating the strips where Raman was measured. Scale on images are shown  

Raman microscopy was performed on three of the irradiated regions in the pre-

cerammed glass ceramic in order to determine if the Raman signal returned to that of the 

base glass. The micrographs on the left of Figure 5-7 show zoomed images of these 

regions, which consisted of areas modified by different irradiation conditions. Three 

different sets (denoted by 1, 2 or 3 in the legends) were investigated. Set 3 had an 

exposure fluence of 1.323E-3 J/cm2, whereas set 2 had a fluence of 1.031E-3 J/cm2, and 

set 1 had fluence of 9.65E-4 J/cm2. The dots in the images to the left are the locations 

where the Raman spectrum was measured, and their locations are labeled as 1-7 in the 

micrograph, and are correspondingly labeled in the Raman spectra plotted on the right in 

Figure 5-7. It was seen that the Raman spectrum post-irradiation were able to return to 

that of the base glass. A sharp change in the shape of the Raman spectra is seen at the 

edges of the irradiated regions, where only Raman spectra for high growth or Raman 

spectra for base sample spectra are observed with no middle state in between. Set 2 does 

have a small amount of variation in the shape of the Raman spectra on the edges, where 

there is a slight decrease in the peak around 246cm-1, and as discussed in section 3.5, this 
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suggests that there are small amounts of crystallization in the material. Also in set 3 there 

is a slight shift in this peak to lower wavenumbers, which is likely due to the 

discoloration and some amount of melting which was seen in section 4.2.2 to have the 

246cm-1 peak have its peak shifted to slightly shorter wavenumbers, and have a higher 

intensity with respect to the fist peak around 200cm-1.  

 

Figure 5-7 Optical micrographs (left) with scale shown (in m’s) for three different 

irradiated areas of a N+G sample (190-2hrs + 220-30min) sample exposed with varying 

irradiance levels ( = 1.03m) ranging from 9.65E-4 - 1.323E-3 J/cm2 (965-1323 
W/cm2). The numbered circles in the micrographs correspond to the Raman respective 

spectra in the overlaid spectra depicted at right. 

Next the pillar written geometry was investigated. For the LIV of crystallization with 

a pillar-written geometry, visible images from the Raman system are shown in Figure 
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5-8. The pitch between the columns appears to have them just touching one another as 

seen in A. The irradiated region was then scratched in order to determine if the 

modification was able to be seen in the bulk of the sample, or only near surface. The first 

and second scratch can be seen in B and C respectively. The colored dots in each image 

correspond to the locations where the Raman spectra were taken. The fluences for A-C in 

Figure 5-8 were 6.4E-5 - 1.42E-4 J/cm2 (64-142 W/cm2, the range given is the fluence 

value at the sample surface for the laser focus at the top and bottom of each pillar), and 

for D was 9.1E-5 - 1.833E-3 J/cm2 (91-1,833 W/cm2). 

 

Figure 5-8 The irradiated region with “pillars" is seen on the top left. The first scratch 

is seen in on the top right, and two scratches is seen on the bottom left. The bottom right 

is a second region, which had a bigger chip removed than either scratched area. For all 

the images the circles are where Raman spectra was measured, and were imaged at the 

same scale.  
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The Raman spectra for the different locations is shown below in Figure 5-9. There is 

an obvious difference in the un-scratched spectra between the irradiated region, which 

appears the same as a base glass sample in section 3.5, and the un-irradiated region, 

which showed a grown spectra. This shows that indeed LIV of a glass ceramic was able 

to occur. The spectra after one scratch shows little variation from the un-scratched, 

sidewall, and bottom of scratch regions. The spectra after two scratches shows mostly 

vitreous spectra, except for the edge wall of the second scratch (grey circle in Figure 5-8), 

and the location outside of the irradiated region, but still fractured (red circle in Figure 

5-8). The Raman of the secondary irradiation region also showed some amount of LIV. 

These Raman points go from blue to red in the image of Figure 5-8 corresponding to 

spectra A-D respectively in Figure 5-9. As the depth was increased, a decrease is seen in 

the peak around 246cm-1, indicating a greater amount of crystallization in the measured 

region. This would follow the assumption that the modification should trail off further 

into the sample. 
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Figure 5-9 The Raman spectra are shown for the different location on the irradiated 

(A), scratched (B), two scratches (C), and chunk removed (D) samples that were shown 

in Figure 5-8. A-D correspond to the same location in both figures.  

Also graphed is the depth profile of the two scratches where the Raman spectrum was 

taken, as well as the secondary region and is seen in Figure 5-10 below in order to 

determine the depth in the sample that the Raman was taken. The first scratch was 

approximately 2.5 μm deep, and the second scratch was closer to 4μm deep. The chunk 

that was removed slowly dropped about 4μm, and then steeply dropped another 9μm. 

This allowed us to confirm that some modification was able to penetrate into the sample. 
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Figure 5-10 The depth profiles for the scratched areas of a laser-exposed pillar 

structures of pre-cerammed glass ceramic where Raman spectra were taken. The fluences 

for these two regions were 6.4E-5 - 1.42E-4 J/cm2 (64-142 W/cm2) and 9.1E-5 - 1.833E-3 

J/cm2 (91-1,833 W/cm2) that Shown here (top) is the surface profile with the two slices 

that were taken indicated and (bottom) are the depth profiles. Measurements of the 

surface profile were taken along these depths in order to determine how the Raman 

spectra changes throughout the bulk of the material. 

A similar irradiation was performed over a larger region with 32E-5-1.50E-4 J/cm2 

(32-150W/cm2). A focused ion beam was then used to create a lift-out for imaging with 

the TEM as described in section 2.4. This lift-out was performed in order to determine 

the microstructure of the sample at different depths from the surface. The bright field 

TEM image shown below in Figure 5-11 shows three distinct regions in the material, 

where the darker regions in the image have more heavy atomic radii (Pb-rich region) or 

crystals. Insets of the SAED and higher magnification images are shown to the left for 

these three regions. SAED patterns were also taken in order to probe the crystallinity of 
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the material, as crystalline spots and diffuse rings are due to the crystal and amorphous 

phases respectively. The greater the crystallinity the brighter the spots, and the dimmer 

the diffuse rings. The top region shows the most crystallization as seen with the most 

distinct crystalline spots in the top SAED pattern and the asymmetric features (likely due 

to As2Se3 containing crystals) seen in the TEM image. The middle section is a transition 

region, where the SAED pattern has less distinct spots, and the secondary phase in the 

TEM turns from mainly asymmetric crystals to mainly symmetric Pb-poor droplets in a 

Pb-rich matrix which would be expected in the base glass. The bottom region has the 

least distinct spots and most amorphous rings in the SAED pattern, and the TEM image 

resembles that of the expected phase separated glass. This shows us that as we go further 

in the material there is a decrease in the amount of crystallization in the material. The 

reason that the top region has a higher degree of crystallization then inside of the 

material, despite the fact that the material is highly absorbing, may be that the focus of 

the laser was close enough to the sample surface that the peak intensity of the laser was 

slightly below the surface. This could have caused just high enough of an intensity in the 

bulk for the crystallization to decrease, and this intensity decreases closer to the surface 

where the intensity was below where the crystals would melt. As the absorption value of 

the material at this wavelength is at the detection limit of the UV-VIS spectrometer used 

in this study, the actual location of the most intense irradiation is currently unknown.  
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Figure 5-11 Bright field TEM images and corresponding SAED patterns were 

collected from the top, middle, and bottom regions of the FIB-fabricated cross-sectional 

TEM specimen. 

Through all of the irradiation conditions explored in this part of our study it was seen 

that within the spatial limits of the tools employed, laser-irradiation regions of the 40 

mol% glass ceramic investigated were successfully used to convert a glass-ceramic into 

glassy state as characterized with Raman spectroscopy, TEM, and SAED. A slight 

surface expansion was observed for the different conditions of the sample in Figure 5-6, 

which could impact our ability to quantify index changes in the irradiated areas. 

Additionally, the modifications were seen to be only near surface modifications as was 

evidenced through the cracked region. Though the use of a similar laser source with a 

longer wavelength writing further into the bulk of the sample should be possible. 
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5.6 Conclusions 

LIV has preliminarily been shown to demonstrate that laser-exposure could be used to 

re-amorphize glass ceramic and to show that either the nucleation or growth state of 

40mol% PbSe samples could be changed, resulting in an ability to spatially tune either a 

pre-nucleated or pre-grown sample back to the base glass state. Further characterization 

with μ-XRD is needed in order to confirm that all of the crystal types were affected as 

SAED was only able to show that there was a reduction in the total amount of 

crystallization. Post-nucleated samples exhibiting lower growth post HT + laser + HT (as 

defined by Raman spectroscopy) which indicates that the pre-existing nucleation was 

able to be removed with a 1.3μm, fs, KHz laser, which showed preferential growth in 

areas that were not irradiated post-growth HT. As the post-HT material had a potential 

smaller change in index than from the base glass to a fully crystallized sample, LIV of a 

pre-crystallized sample was also investigated. Crystal growth was able to be reduced with 

a 1.03μm, fs, MHz laser source in this pre-cerammed material where SAED patterns were 

able to show a gradient in the degree of crystallization in the material with distance into 

the material. Ideally if the laser was in the transparency range of the material, then 

controlled writing into the bulk would be able to be attained. 
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6 FABRICATION OF GRIN OPTICAL ELEMENTS AND 

DEMONSTRATION OF OPTICAL FUNCTIONALITY 

Using what we have realized on the materials and mechanisms explored so far, we 

have fabricated and shown optical functionality through LIC and laser-induced 

vitrification. Specifically, two types of optical functionality were selected to demonstrate 

the utility of these materials and the processing methodologies developed in this 

dissertation. First a refractive, focusing optic based on 40 mol% GAP-Se base glass using 

a furnace to nucleate the sample, and a CW above bandgap energy laser to grow the 

sample was made in order to have a measurable focal length in the IR while still 

maintaining its transparency. Secondly two diffractive elements (diffraction gratings) 

were made where one was fabricated using laser-induced crystallization, where a laser 

was used to crystallize a pre-nucleated sample and then grown with an above bandgap 

energy pulsed laser, and the other was fabricated using laser-induced vitrification, where 

a sample was pre-cerammed with a furnace N+G HT and then was converted back to a 

base glass with a pulsed bandgap laser. Discussed in this chapter are the specifics of the 

methods used to form each element, and the characterization of the post-processed optical 

function as well as the refractive index profile as quantified with Raman spectroscopy.  

6.1 Laser-induced crystallization focusing optic 

A focusing optic was created using the 532nm laser source as described in section 

4.1.2. This used an above bandgap energy laser in order to create a spatially varying 

surface heat source that would then cause a spatially varying heat source throughout the 

sample. Several laser irradiation conditions were performed in section 4.1.2, with the 

532nm, CW source and were further characterized here with Raman spectroscopy and by 
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measuring the focal length of one of the samples. Only one of the resulting samples was 

further characterized with Raman spectroscopy in that section, but here that sample along 

with the others were further characterized for their ability to focus light. As a reminder, 

the different irradiation conditions that were used are included in Table 6-1. These 

samples, including the one that was later cross-sectioned for the Raman evaluation in 

section 4.1.3, had their approximate focal distances estimated. The minimum beam waist 

and focus location was then further characterized on one of the more promising samples. 

Post irradiation, the samples were evaluated for their approximate focal length, and 

the sample partially characterized in section 4.1.3 had its focal length and minimum beam 

waist characterized with a 2μm laser. A FLIR SC7000 MWIR camera was used for an 

initial visual inspection to assess if any index modifications were created by the 

irradiation. The camera was also used to do a course estimate of any potential focusing 

effect from the GRIN structure. The focal measurement was performed by placing a grid 

behind the sample, and then moving the grid further away until it came into focus looking 

through the sample with the camera, while the sample was in focus in the camera. These 

initial evaluations of the focal length are shown in table 6-1. Repeatability was evaluated 

for two different irradiation conditions on two samples each. The repeatability of the 

estimated focus for these samples was very good. 

Six of the irradiated samples showed focusing behavior and did not crack. An initial 

visual inspection was performed in order to determine if a GRIN was created, and if the 

sample was damaged or cracked. Samples with powers above 1.113W cracked, or had no 

discernable index modification that was able to be seen in the IR camera.  
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Table 6-1 The outcome of each of the different varied experimental parameters is 

shown. Only samples that showed no cracks had their focal distance estimated with an IR 

camera. 

Power (W) Beam Waist 

(mm) 

Text (°C) Initial 

Evaluation 

Sample # Estimated 

Focus (mm) 

0.89 10 190 Good 6 82 

0.89 10 190 Good 1 84 

0.89 12 190 Good 3 750 

1.113 10 190 Good 4 76 

1.113 12 190 Good 2 125 

1.113 12 190 Good 5 125 

1.335 12 190 Cracked   

1.558 10 190 no GRIN   

2.003 10 190 Broke   

2.003 10 200 Cracked   

2.225 10 200 Broke   

2.448 10 200 Broke   

 

For sample 6, the focusing ability of the GRIN was further evaluated by shining a 

collimated 2 μm laser beam through the sample in order to better evaluate the focus and 

to measure the minimum beam waist. The collimation of the laser without the optic was 

confirmed by the beam waist not appreciably varying across the spatial region where the 

beam was to be measured behind the optic. The sample was then put in place and the 

beam was then imaged at various distances behind the optic. The beam waist was 

calculated by measuring the number of pixels crossed by the beam and converting this 

through the pixel size to a length scale. For this process, the waist was measured at 

locations 25mm apart near the focus and 50mm apart further away with a Spiricon Inc. 

Pyrocam III detector. The data of the beam waist at various locations was then fit with 

Equation 13 in order to solve for the minimum beam waist and focal distance. 
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𝑤(𝑧) = 𝑤0√1 + (
𝜆(𝑧−𝑧0)

𝜋𝑤0
2 )

2

     (13) 

These beam waists are plotted as a function of distance from the optic in Figure 6-1. 

The beam waist vs distance was then fitted to determine the location and size of the 

minimum beam waist, and was determined to be 84 ±3mm and 28 ±3μm respectively. An 

image of the beam going through the optic for the closest measured location to the focus 

is shown on the left of this figure, as well as the beam without the optic measured at the 

same location. The quality of the beam focusing is by no mean perfect, but is able to 

demonstrate that the technique is feasible to create a usable GRIN optic 

 

Figure 6-1 The beam waist was measured at different location from the optic (right), 

which was then able to be used to solve for the minimum beam waist and focal distance. 

The images on the left are the beam imaged at the blue line on the right graph with and 

without the optic in place.  

Several LIC focusing optics were able to be demonstrated, and the focal lengths and 

therefore index profiles were able to be modified by changing the refractive index profile 

through changing the incident power and beam waist of the laser used for the G HT. One 

of these samples was further characterized by analyzing how a collimated laser beam was 

affected going through the sample. A minimum beam waist was able to be seen and 
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measured for this optic. A second type of optical elements that can be created through 

this method is explored next. 

6.2 Diffraction grating via laser-induced crystallization 

Similarly to the focusing optic, a LIC grating was made. This was performed in order 

to show the viability of multiple types of patterning that could be achieved with this 

method of GRIN. It also is able to highlight profiles that can be made with either LIC or 

LIV. This section covers the creation of a grating using LIC, where a pulsed 532nm laser 

was used to locally crystallize the material. Characterization of the post-irradiated sample 

was performed with a 633nm laser to characterize the created grating through the 

reflection mode. 

For this experiment a grating was created utilizing a 532 nm pulsed laser, and an 

exposure fluence of 0.085J/cm2 (1.55 W/cm2). This fluence was chosen, as it was just 

below ablation of the sample with the laser. The beam initially went through a beam 

splitter, and was directed back upon itself with a mirror to form an interference pattern at 

the plane where the sample was placed. From the angle of intersection it was determined 

that the pitch of the formed grating would be around 0.92 μm, which would cause the 

diffracted angle to be greater than 90° in the transmission spectrum of the glass. The 

predicted first order reflection diffraction angle is 43° at a wavelength of 633 nm. The 

sample was characterized post-irradiation with a 633 nm laser and Raman spectroscopy.  

Visible inspection of the sample showed three regions where there was likely a 

grating structure, since viewing these regions from different angles showed different 

colored reflections when viewed with white light, as would occur with a grating structure 

that works in the visible as seen in Figure 6-2. A 633 nm laser interrogated the properties 
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of the reflection grating that would be formed, as the sample is highly reflective at this 

wavelength. The exit angle of the first order beam with respect to the zeroth order beam 

was measured in order to confirm the presence of a grating, and to back-calculate out the 

pitch in order to confirm that it was what was predicted based on the pitch calculation 

from the angle the beams that were interfered to create the grating.  

 

Figure 6-2 Four irradiated locations are seen and show the different colorations that 

can be observed form the different observation angles present in the image. One of the 

locations was damaged, and appears silver/white in both images. The disk is 30mm in 

diameter for scale. 

Measurements were taken with an SEM in order to observe the microstructure, as the 

feature size was too small to observe with visible microscopy, and therefore WLI as well 

and are shown in Figure 6-3 below. Very regular spacing is observed, and appears as if 

there may be a slight surface relief. The presence of a change in crystallization state will 

need to be confirmed with TEM or μ-XRD.  
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Figure 6-3 SEM images are shown at different magnifications for the irradiated 

sample. 

The laser written structure was interrogated with a 633nm laser in order to see if a 

reflection grating was able to be formed. Figure 6-4 below depicts the set-up and 

observed diffraction order that was seen. The laser beam path is indicated by the dashed 

red line on the left, and hits the sample which is circled in blue, and then travels on to the 

screen which is seen on the right. The measured angle of the first diffraction order was 

measured to be 50° for this wavelength, which leads to a pitch of 0.81μm, which is close 

to what would have been expected. 

 

Figure 6-4 The reflection diffraction grating diagnostic set-up used to characterize the 

post exposed (532 nm, pulsed) sample with a 633nm laser beam (dashed red line). Shown 

on the left (a) is the sample (circled) being held in place to reflect the grating formed onto 

the screen and (b) the zeroth and first order diffraction spots. 

The pulsed 532 nm laser was able to show a grating structure post-irradiation. The 

predicted spacing based off of the angle of interference of the laser beams for writing was 
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able to be confirmed through measuring the angle of the first diffraction order in the 

reflection. As this type of structure is one with a two-tone index, this same type of 

structure could also be made with LIV. 

6.3 Laser-induced vitrification grating 

LIV gratings were also made to show the multiple methods possible to pattern this 

material with different laser conditions by using the 1030nm, fs, MHz laser used in 

section 5.3. This grating was created using arrays of pillars as described in section 5.3, 

and then was post-characterized with Raman spectroscopy, observation of diffraction 

orders for 633nm and ~2μm light, and WLI. In order to achieve this grating structure, the 

laser conditions used in section 5.3 to LIV a pre-HT sample of 190°C nucleation for 2hrs 

plus a 30min G HT at 220°C were used. Strips with ~25μm widths, which were made 

from two rows of columns, were re-vitrified with the laser at a fluence of 3.1E-5 - 1.42E-

4 J/cm2 (31-142 W/cm2, range is the fluence at the surface when the laser is at the top and 

bottom of each pillar) with ~25μm of space between the vitrified strips. This should 

create a grating with a diffraction angle of 0.6° for λ=633nm, and 1.9° for λ=2μm. 

Similarly to section 5.3, “pillars” were made in the glass ceramic, with 0.01mm spacing 

between pillars in a row, and with a close packed structure between the two rows. The 

total grating structure was approximately 1.5 x 1.5mm in size. 

In order to evaluate the structures several characterization techniques were used 

including WLI, Raman, IR diffraction characterization, and visible diffraction 

characterization. WLI was performed with the system outlined in section 2.12, and is 

seen in Figure 6-5. The average height change of the material was ~0.16μm, and there is 
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good homogeneity in the height change across a single strip and between all the strips. 

The average spacing between the peaks of the strips was also seen to be ~60μm. 

 

Figure 6-5 WLI of the LIV grating: (top) 2D image of the laser written structure with 

two slices (slice 1) orthogonal to the writing direction across all grating lines, and (slice 

6) along a single grating line following laser processing 

Raman was also measured in order to determine the spatial dimensions of the 

refractive index change in the material. Raman spectra were taken as described in section 

2.6, and were taken at a spacing of 2μm in a 2D grid across one of the irradiated strips as 

seen in Figure 6-6. The Raman spectra were then able to be used to determine the 



 

167 

 

refractive index of the strips, which had a similar profile to the Raman map with values 

between 3.0596 and 3.1296 RIU, where the center of the pillars had the lowest index. As 

the WLI showed that there was not a change in the photo-expansion from the center of 

the pillars outward, the refractive index change is likely solely from the change in the 

crystallization of the material. 

 

Figure 6-6 A map of the Raman profiles of one of the grating strips is on the left and 

covers 4 of the pillars that make up the strip. The index profile shows the same type of 

profile with values ranging from 3.0596 and 3.1296 RIU. The right image is the spectrum 

at the center of an individual pillar, at the edge of a pillar, and away from the pillar. 

The sample was first characterized with a visible, 633nm HeNe laser, so see if a 

reflection grating could be observed as there was a height change seen in the WLI 

images. The diffraction pattern that was formed is seen in Figure 6-7. The pattern is very 

regular, and a faint secondary order is seen to the left of the first order indicating that this 

is partially a 2D diffraction grating. This is likely due to the individual columns that were 

created, as the spacing between the first and second orders is much wider for the 

horizontal direction (spacing between pillars) than the vertical (spacing between strips). 

The horizontal order is also much less intense, which is likely due to the very small 

amount of height change seen along the strips in the WLI. The diffraction efficiency was 
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also investigated, but the power of the laser was too low to get a very accurate 

measurement in the first diffraction order and was seen to be less than 5%. 

The Pyrocam described in section 6.1 along with a ~2μm laser was also used to 

determine if a transmission grating could be observed. As the refractive index change in 

the irradiated region would be lower, and this same area also saw photo-expansion it was 

unclear whether the two processes would cancel each other out in the accumulated phase 

for the laser passing through the grating. As the transmission grating showed much less 

energy in the diffracted orders as compared to the zeroth order, it seems that the index 

change and expansion at least partially canceled each other out. 

 

Figure 6-7 The reflection (left) and transmission (right) grating patterns observed for 

the LIV grating. 

6.4 Conclusion 

Demonstrators of optical elements through the index patterning of 40mol% PbSe 

glass ceramics were created. While not optimized for transmission or specific optical 
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designs, the effort confirmed that laser-assisted protocols based on crystallization or 

vitrification could modify materials to realize index changes yielding modification in 

optical function from that of a base glass material. Prototype optics were created using 

the techniques of LIC and LIV in order to show the various methods that are able to 

spatially change the refractive index in this material. These two techniques complement 

each other and allow for more variability of index structures that can be created. They 

also allow for multiple write cycles if used in conjunction with each other. Focusing 

optics were able to be created with LIC on pre-nucleated samples. The focal length was 

able to be varied from 82-750mm by varying the irradiation parameters, and therefore 

refractive index distribution. Two different methods were able to be used to characterize 

one of the samples, though imaging a grid through the sample and by characterizing the 

samples effect on a collimated laser. The two techniques measured focal distances of 82 

and 84mm respectively which are within the error of each other.  

Diffraction gratings were able to be created through LIC and LIV. These two grating 

had different pitches though, so a direct correlation between the two techniques was not 

able to be accomplished. The LIC grating was able to be characterized through 

visualization of a grating structure with a 633nm beam, as the pitch was too small for 

characterization with an IR laser that is in the samples transparency range. The predicted 

pitch as measured by the angle of interference of the beams was 0.92μm, and the pitch 

calculated from the angle of the first diffraction order was found to be 0.81μm. As these 

two are fairly close, the diffracted beam is likely from a grating structure in the material.  

The LIV grating was able to be characterized with WLI, Raman spectroscopy, and 

diffraction characterization with a 633nm and an ~2μm laser. The WLI showed that there 
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was in fact photo-expansion of the material in the irradiated regions, and that this 

expansion was homogeneous across the region that was irradiated. The Raman spectra 

was able to be used to map the Raman ratio and therefore refractive index of part of one 

of these strips. It was seen that the largest modification of the refractive index was seen at 

the center of one of the pillar structures, despite the fact that there isn’t a height 

difference in between the pillar structures seen with the WLI. This indicated that the 

refractive index change is likely not tied to the photo-expansion occurring. A grating 

structure was able to be seen with both the reflective (633nm) and transmissive (2μm) 

modes of the optic. The transmission grating did not have as many diffraction orders as 

was seen with the reflection, which could be due to the competing effects of a decrease in 

the refractive index and photo-expansion occurring in the same region. 

Both of these techniques used to create diffraction gratings by modifying the 

refractive index within the material were able to show grating behavior and therefore 

show that they are complementary techniques to structure the refractive index within a 

sample. An overview of all the components that were made are in Table 6-2 below. 

Table 6-2 An overview of the demonstrator optical elements including how they were 

created and their resulting optical function. 

Measurement LIC Focusing 

Optic 

LIC Grating LIV Grating 

Irradiation 

conditions 

λ=532nm, CW, 

irradiance=0.567

W/cm2  

λ=532nm, pulsed, 

fluence=0.085J/cm2 

λ=1030nm, pulsed, 

fluence=1.42E-4J/cm2 

Pre-irradiation 

heat treatment 

190°C-2hrs 190°C-2hrs 190°C-2hrs + 220°C-

20min 

Resulting 

optical function 

focusing Grating – 1st order in 

reflection mode 

Grating – several 

orders in reflection 

and transmission 

Evidence of 

index change 

Changes in the 

Raman spectra 

 Changes in the Raman 

spectra 
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7 CONCLUSIONS  

This study aimed to develop infrared transparent glass ceramics suitable for use as 

GRIN materials. The effort combined optical material science and evaluation of laser-

material interactions to realize optical nanocomposites (glass ceramics) which possessed 

spatially varying microstructures that resulted in changes in optical properties and 

measurable optical function. Findings that resulted from the effort confirmed that while 

this goal was possible, as demonstrated by the first prototypes of optical components 

created from our materials, both the properties of the parent glass starting material and 

the methodology used to convert the glass to glass ceramic (i.e., to induce controlled 

crystallization) were critical to the properties of the final nanocomposite. 

Glasses with compositions of (GeSe2-3As2Se3)1-xPbSex with x=0 to 40 in increments 

of 5 mol% were evaluated for their ability to form glass ceramics upon HT. The base 

material properties were characterized, and their dependence on the starting glass 

morphology was determined. Primary to this study were changes in refractive index and 

transmission with formation of the secondary phase(s), as well as concurrent 

modifications to other physical properties, such as changes in structure, density, μ-

hardness, glass transition temperature, and thermal conductivity. For the base glass the 

refractive index was seen to be independent of the starting morphology (the glass being 

either homogeneous or phase separated), while the short wave cut-off (SWCO, defined as 

90% of the maximum transmission) was seen to be highly dependent on the starting 

morphology.  

The formation of various crystallized phases (phase type and quantity) as identified 

via XRD were defined by the parent glass morphology and showed that the transition 
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between Pb-rich droplets and a Pb-rich matrix corresponds with the transition in the types 

of crystal phases that were formed. The volume fraction of these phases (created using a 

fixed nucleation and growth heat treatment protocol) were then used to quantify the 

predicted refractive index using effective medium theory. This predicted index was 

compared with the measured index, and confirmed that the post-heat treatment refractive 

index change was due to induced ceramization from the HT. The change in the 

transmission associated with the secondary phase formation by this fixed HT protocol 

was found to degrade due to induced scatter from the ceramization process’ precipitated 

phase(s), thus limiting some compositions from their potential use in components with 

applications in the MWIR. This was not the case for all materials, nor likely the case for 

other HT protocols not investigated in this study.  

These optical property measurements systematically tracked with the type and 

volume fraction of crystal phases seen as a function of PbSe content, where there was 

little change observed in compositions that did not crystallize (5 mol% PbSe), and a 

repeatable discontinuity in trends at the composition where not only morphology changed 

but the resulting crystallized phases changed (30 mol% PbSe). From this it was 

confirmed that while some of the base glass material properties were dependent on the 

glass morphology and Pb content, the post-HT glass ceramic’s properties were largely 

dependent on the type/amount of the crystal phases formed, and the resulting 

microstructure. 

Of the multiple glass compositions examined, the 40 mol% PbSe material exhibits the 

greatest potential for use in MWIR optics as it maintained its optical transmission in the 

MWIR, with a concurrently large, post-HT change in the refractive index on the order of 
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0.1 RIU. Multiple nucleation and growth HT conditions were investigated to determine 

the effect of the HT conditions on the post-cerammed material. The post-HT samples 

were characterized with XRD, refractive index, and Raman spectroscopy. Measurements 

showed a direct correlation between the composite’s crystal phase formation (total 

volume fraction) as measured via XRD to the refractive index. These facts were 

subsequently correlated directly to structural changes accompanying the secondary phase 

formation, specifically showing that refractive index change could be directly correlated 

with observed changes in the material’s Raman spectrum (quantified by a novel method 

of analysis, defined as the Raman ratio). As this technique allows measurement over 

small spatial areas (10’s of microns) where we would like to evaluate spatial variation in 

refractive index (for GRIN applications), the technique was shown to directly lend itself 

to 3D refractive index mapping. This mapping protocol was used to demonstrate 

quantification of induced GRIN profiles in the 40 mol% PbSe material. 

The goal of being able to pattern GRIN structures in the material by spatially 

modifying the nucleation or growth in the material was investigated on the 40mol% PbSe 

composition using laser-assisted modification. Multiple irradiation techniques were 

investigated including laser-induced crystallization of pre-nucleated or base glass 

samples, laser-induced nucleation with a subsequent (furnace) growth HT, laser removal 

of nucleation with a subsequent growth HT, and laser removal of (all) crystallization of a 

pre-nucleated plus grown sample. These samples were characterized with Raman 

spectroscopy, and the post-processed microstructural modification was documented via 

electron microscopy.  
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Laser-induced crystallization of a pre-nucleated sample and a base glass sample were 

accomplished with a 532 nm, CW laser and a 1064 nm, ns laser, respectively. The 

Gaussian beam of a 532 nm source was used to create a thermal profile inside the 

material that translated to a crystallization and therefore index gradient, whereas the 1064 

nm exposure resulted in a combination of thermal and photonic effects to create a spatial 

variation in the growth throughout the sample. Raman spectroscopy was used to evaluate 

the samples, and spectra were taken across the samples in order to map the induced 

changes in the material. The 532 nm laser exposure was also simulated, and the refractive 

index changes predicted from the heating seen in the simulations were compared to those 

measured from Raman and were seen to have good correlation, though improvements to 

the models are still needed to be able to have better agreement. The 1064 nm exposure 

had some Raman features that had not been observed with furnace HT, so the Raman 

map could not be converted to a refractive index map. Further characterization of these 

microstructural changes would need to be accomplished through μ-XRD or TEM to 

confirm relative phase fractions. Both of these irradiation protocols demonstrated 

changes in the crystallization state of the material, but were limited in their spatial 

profiles that they could create as they required long exposure times and used wavelengths 

that were in a high absorption region of the material. 

In order to investigate laser-induced modification with a source that was within the 

transparency region of the material a 110 fs, 1.3μm source was used to induce nucleation 

in a 40 mol% sample. Following a post-exposure furnace growth HT, the samples were 

investigated with Raman spectroscopy to determine if there were any changes in the 

microstructure between irradiated and non-irradiated regions. Irregular results with 
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questionable reproducibility along with unwanted surface modifications made this laser 

induced crystallization strategy undesirable. However, the high repetition rate of other 

systems presented a new strategy that involved an inverse method of patterning the 

refractive index through laser exposure of a pre-heat treated glass ceramic. 

LIV, whereby either a nucleated sample or glass ceramic sample could be selectively 

restored to its original glassy state was shown to result in patterned index structures. 

Through localized melting of pre-existing crystallites, the exposure could effectively 

erase regions where nucleation or growth were already present in the starting material. 

This first used on 40mol% PbSe sample that was pre-nucleated showed lower growth 

post HT+laser+HT (as defined by Raman spectroscopy). This indicates that the pre-

existing nucleation was able to be removed with a 1.3μm, fs, kHz laser, through 

preferential growth in areas that were not irradiated, and therefore had more nuclei. As 

this sample was post-HT, there is high confidence in the reliability of the Raman ratio 

previously defined for furnace HT being applicable to this situation. Laser erasure of 

crystal growth was investigated with a 1.03μm, fs source. Post-irradiation the sample was 

investigated with Raman spectroscopy, and the signal was found to return back to that of 

the base glass. TEM was also used and showed a decrease in the amount of crystallization 

in the material post-irradiation. In order to confirm that the sample saw a decrease in all 

the crystal types, further characterization with μ-XRD is needed.  

With the knowledge of the different laser-assisted crystallization mechanisms that are 

possible in the 40mol% PbSe sample, demonstrator optics were able to be fabricated in 

order to evaluate GRIN structures written into the material. A focusing optic was able to 

be created through laser induced crystallization of a pre-nucleated sample. This sample 
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had the focus and minimum beam waist measured with a collimated laser transmitted 

through the sample. Two diffraction gratings were also created, one with laser induced 

crystallization, and one with laser erasure of growth. The laser induced crystallization 

grating has too narrow of a pitch to be able to characterize in the IR, or with Raman 

spectroscopy, but did exhibit diffraction behavior in the visible for a reflection mode. 

Additional characterization with TEM is needed to be able to determine if there were 

changes in the crystal structure that cause the diffraction. The laser erasure of growth 

sample showed grating behavior in the visible and IR, photo-expansion through WLI, and 

Raman change back towards the base glass state in the middle of the written structures. A 

deconvolution of the effects of the photo-expansion and index change has not yet been 

characterized, but could be carried out with additional microstructural characterization 

through TEM. 

Through this work new materials were able to be developed, and their ability to form 

a glass ceramic was characterized. Their potential refractive index change upon 

ceramization was also studied, and a technique for being able to spatially measure the 

refractive index was developed. Spatial variation of the refractive index of the material 

upon laser irradiation was also explored and determined. Useful optical elements were 

then created as proof-of-concept demonstrators in order to show how the various methods 

of creating GRIN in these materials can be utilized. There are still some aspects of this 

work that need to be further explored in order to move towards integration of GRIN 

optical elements made from these materials/techniques into infrared optical systems.  
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8 FUTURE WORK 

While this work has shown conclusively that a multi-component infrared transparent 

glass can be selectively crystallized with spatial control to yield a tailorable level of 

refractive index change suitable for use as a candidate GRIN material, there remain 

several key issues that require further clarification before the material and processing 

methodologies could be extended towards a prototype optic for a system. These 

additional items can be separated into aspects of the starting material as well as the 

processes used to impart controlled, spatially selective conversion from a starting glass to 

a glass ceramic (or vice versa in the case of laser-induced vitrification, LIV). Sections 

below are separated to highlight these specific aspects of the process. 

Future developments can be continued in the various research thrusts exhibited in this 

document. Further work can be made in the ceramization process in order to better 

maintain the SWCO, while still having a useful Δn. Further development of the thermal 

modeling is also needed. More work can also be performed with LIC and LIV of the 

material in order to have better spatial control of the index profile, and to have more 

modification into the bulk of the material. Further development of index patterns that can 

be created with LIC or LIV that would be useful as functional optical elements also needs 

to occur. Lastly the scalability of the various techniques needs to be evaluated in order to 

determine if fabrication of useful optical elements can be performed on large enough 

scales and at a high enough speeds for production. 
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8.1 Glass ceramic 

Further development can be produced in the compositions that were studied in order 

to have controlled growth that does not affect the band edge as much as the HT 

conditions used in this study. Additionally, tuning the composition further may change 

which crystals are forming, and cause ones that have less scatter to form. In [40], the 

glass forming region of this glass is able to be pushed up to 50mol% PbSe. With the 

added Pb-content these glasses may have a greater potential refractive index change, or 

precipitate out different crystals than those seen in the 35 or 40mol% PbSe that would 

affect the SWCO less. 

Additional work could also include adding halides into the material in order to push 

the SWCO further into the visible range in order to create optics with short-wave infrared 

(SWIR) to LWIR capabilities as used in [2,9,33]. These new materials would need to be 

fabricated and tested for their ability to form a glass ceramic to see if they would be able 

to ceramize controllably and maintain their optical transparency in the SWIR. 

8.2 Thermal modeling 

Further development of the thermal models is needed, specifically with respect to the 

boundary conditions. The modeling that was used was a good first approximation, but 

need to be further refined. The main thermal property that was not able to be measured 

for this sample was the coefficient of heat transfer for the convective boundary condition. 

If this property was able to be measured there would be an increase in the accuracy of the 

models. 
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8.3 Laser assisted crystallization 

Further laser modification efforts could be performed with a laser that is both in the 

transparency range of the material, and has a reproducible, good quality beam profile. 

Additionally by using a slightly different composition such as 45 or 50mol% PbSe, the 

transparency of the base glass might be low enough to use an ~1μm laser. Also if the 

addition of halides into the matrix are able to produce material that can be used to form 

glass ceramic, than these materials might also be able to be used with shorter wavelength 

lasers as the bandedge is typically reduced in these materials. 

Further study with LIV will need a fs, MHz laser that is within the transparency range 

of these glasses once they are HT. This could be accomplished by switching 

compositions to one that is much more transparent to 1.03μm light or switch to a laser 

source further into the IR. This would allow for writing structures inside of the bulk of 

the material. Further characterization of induced structures also need to be confirmed 

with μ-XRD or TEM to ensure that the Raman spectra that are obtained are indeed from 

the crystallization state changing. Additionally this technique could be evaluated for use 

in conjunction with a gradient HT profile. This could allow for more intricate GRIN 

structures to be created. 

8.4 Additional optical elements 

With advances in both LIC and LIV, more GRIN profiles could be realized in order to 

create different or better functioning optical elements. Further precision of writing could 

create more efficient and tunable Bragg gratings using the techniques that were explored 

in this work. Additionally with LIV exploration into Fresnel lenses and polarization 

plates would be possible. Lastly, the optimal goal for future work would be to have the 
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ability to make a GRIN lens that would be of high enough quality to be used in a system 

and would decrease the number of optical elements needed. 

8.5 Scale-up feasibility 

In order for this research to have an increased impact on society, the ability of the 

processes and materials to be able to be scaled up needs to be assessed. The size of 

potentially useful optical elements needs to be analyzed to see if further scale up of the 

melt size needs to occur, which could mean the composition may need to be altered or the 

melting methodology modified. The latter, carried out in partnership with a 

manufacturing partner, has been shown to enhance transmission in similar compositions 

to those created here. 

Apart from being able to create a large enough optical element, one also has to be 

able to manufacture it on a timescale that is reasonable for production. Several techniques 

can be used to minimize the time needed. One way is with the addition of holographic 

writing techniques, where larger regions could be exposed at any given time in order to 

speed up the laser writing process. The use of masks could also be used in a similar 

manner. 

8.6 Conclusions 

There are still many avenues of research to be performed to continue the scope of this 

work. Further optimization of the material and laser writing techniques are most 

important in order to be able to have more control of the laser writing process. Additional 

refinement of thermal models can also help to better refine the irradiation conditions that 

are needed. Along with optimizing the writing process, new GRIN structures can be 
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realized and created. The process can then be optimized in order to make sure that the 

processing is scalable and is able to be created on a reasonable timescale. 
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APPENDIX A: DN/DT 

  



 

183 

 

Below are index dn/dT data that were measured by Megan Melvin for a directed 

research project for OSE 4912 at the University of Central Florida on commercially 

available glass that were manufactured by Schott. Data includes reference data from 

Schott’s website, data from a former student in our research group [114], and by Megan 

Melvin. 

Refractive Index at 4.515 m, 22C 

Sample Measured Index Standard Index [6-9] 

IG2 2.62040.0001 2.5117 

IG4 2.62080.0001 2.6204 

IG5 2.62060.0001 2.6202 

IG6 2.79160.0002 2.7927 
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R²	=	0.69558

y	=	2E-05x	+	2.62

y	=	2E-05x	+	2.6219

2.6200

2.6210

2.6220

2.6230

2.6240

2.6250

20 30 40 50 60 70 80 90 100

R
ef
ra
ct
iv
e	
In
d
ex
	(R
IU
)

Temperature	°C

dn/dT	of	IG4	at	4.515	µm

Measured

Schott

Gleason	et	al.

Linear		(Measured)

Linear		(Schott)

Linear		(Gleason	et	al.)



 

184 

 

y	=	7E-05x	+	2.6197
R²	=	0.98884
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APPENDIX B: PROPERTY DATA FOR 15GESE2-45AS2SE3-40PBSE 
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15GeSe2-45As2Se3-40PbSe 
 
Product Information  

These data are for glass prepared from a 400g melt made using high purity elemental 

starting materials, vacuum sealed in a quartz ampoule from UCF. Final dimensions are 1” 

x thickness 2 mm post processing.  

 

Measurements Information  
Density was determined by Archimedes method at room temperature. Heat capacity 

and thermal conductivity was determined by transient plane source method. Transition 

temperature measured by DSC [error = +/-2°C]. Index at single wavelengths measured by 

prism refractometry [typical error = 5×10-4 in SWIR/MWIR and 1.5×10-3 in LWIR]. 

Transmission window were measured with a UV-VIS and FTIR. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Material Properties (Base Glass) 
As-Batched Composition (at%) Ge4.3As25.7Pb11.4Se58.6 

Density (g/cm3) @ 22°C 5.48 ± 0.001 

Thermal Expansion (10-6 C-1)  
[25-180 C] 

19 ± 0.1 

Specific Heat (J/(g∙K)) (25°C) 0.229 ± 0.006 
Thermal Conductivity (W/(m∙K)) (25°C) 0.239 ± 0.003 

Transition Temperature (°C) 201 

Crystallization Temperature [peak] (°C) 259 

Transmission Window (µm) 1.4-11.8 
dn/dT (K-1) 90 ± 10 

Refractive index at =4.515 µm, 30°C 3.0460 ± 0.0004 
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DSC – Base glass 

 

Transmission – Base glass  

 

Refractive index – HT glass 

 

XRD – HT glass 
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Tabular form – optical and crystal phase information from N, G conditions 
shown 
 

  Index Transmission XRD 

N G Index SWCO As2Se3 PbSe Se Total Ratio 

No-N 

G-

200°C 
3.0389 1.3396  0 0.1  0.1  0.2 

 0:50:

50 

G-

210°C 
3.0555 1.385  3.4 2.3 0.6  6.3 

 54:37

:10 

G-

220°C 
3.1227 1.534  8.5  6.3  1.8 16.6 

 51:38

:11 

G-

230°C 
3.1528 1.5939  11.1  8.8  2.6 22.5 

 49:39

:12 

N-

190°C 

G-

200°C 
3.0391 1.3635  0.6 0.5  0.6  1.7 

 35:29

:35 

G-

210°C 
3.069 1.4241  7  4.9  1.5 13.4 

 52:37

:11 

G-

220°C 
3.1339 1.471  10.7  7.7  2.3 20.7 

 52:37

:11 

G-

230°C 
3.1553 1.5409  14.2  10.5  3 27.7 

 51:38

:11 

N-

200°C 

G-

200°C 
3.0654 1.398  0.3 0.1  0.1  0.5 

 60:20

:20 

G-

210°C 
3.0865 1.4034  3.1  2.5  0.7 6.3 

 49:40

:11 

G-

220°C 
3.1112 1.4748  9.3  7.2  .2 16.7 

 56:43

:1 

G-

230°C 
3.1536 1.5132  13.1  9.5  2.6 25.2 

 52:38

:10 
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