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ABSTRACT 

In this thesis, a novel load-balancing technique for local or metro-area traffic is proposed 

in mesh-style topologies. The technique uses Software Defined Networking (SDN) architecture 

with virtual local area network (VLAN) setups typically seen in a campus or small-to-medium 

enterprise environment. This was done to provide a possible solution or at least a platform to 

expand on for the load-balancing dilemma that network administrators face today. The transport 

layer protocol Multi-Path TCP (MPTCP) coupled with IP aliasing is also used. The trait of MPTCP 

of forming multiple subflows from sender to receiver depending on the availability of IP addresses 

at either the sender or receiver helps to divert traffic in the subflows across all available paths. The 

combination of MPTCP subflows with IP aliasing enables spreading out of the traffic load across 

greater number of links in the network, and thereby achieving load balancing and better network 

utilization. The traffic formed of each subflow would be forwarded across the network based on 

Hamiltonian ‘paths’ which are created in association with each switch in the topology which are 

directly connected to hosts. The amount of ‘paths’ in the topology would also depend on the 

number of VLANs setup for the hosts in the topology. This segregation would allow for network 

administrators to monitor network utilization across VLANs and give the ability to balance load 

across VLANs. We have devised several experiments in Mininet, and the experimentation showed 

promising results with significantly better throughput and network utilization compared to cases 

where normal TCP was used to send traffic from source to destination. Our study clearly shows 

the advantages of using MPTCP for load balancing purposes in SDN type architectures and 

provides a platform for future research on using VLANs, SDN, and MPTCP for network traffic 

management. 
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CHAPTER 1: INTRODUCTION 

This chapter introduces Software Defined Networking (SDN) and OpenFlow. Moreover, 

the concepts of IP Aliasing and MPTCP (Multi-Path TCP) are also presented followed by the state 

of the art recent literature background.  

1.1 Brief Overview 

Over the years, computer networking has progressed from being just a medium to connect one 

machine to another to being the backbone of the modern Internet. Today, networking involves 

critical components like security, quality of service, high availability, confidentiality through 

concepts such as tunneling, collision detection and avoidance, traffic load balancing, shortest path 

detection, thus making computer networking to the level of sophistication like never. Having said 

that, still there exist areas which require improvements to further enhance the networking 

infrastructure that would benefit the world of technology both productively and economically, load 

balancing in the network is one such area. Load balancing is the ability to balance traffic across 

two or more network links in a Wide Area Network (WAN) which are connecting different 

network entities.  

This thesis sheds light to a problem in networking in the area of load balancing in Virtual LANs 

(VLANs), which are basically broadcast domains that are partitioned and isolated in a network at 

the data link layer. It gives a possible solution to this problem by using an emerging form of 

networking called software defined networking (SDN) and Multi-Path TCP (MPTCP). By 

combining these two concepts, it makes use of additional paths from source to destination other 

than just the shortest or the one which is already being used. 
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1.2 Literature Background and SDN Overview 

In RFC 7149 [1], M. Boucadair and C. Jacquent explains that software defined networking 

(SDN) is a set of techniques used to facilitate the design, delivery and operation of network 

services in a deterministic, dynamic and scalable manner. Further it assumes the introduction of a 

high level of automation in the overall service delivery and operation procedures. Likewise, RFC 

7426 [2] gives an architectural perspective of SDN and offers an understanding of various relevant 

terminologies. It explains that SDNs are basically a physical separation of the control plane and 

the forwarding plane. The control plane is the set of networking functions, which bring intelligence 

to the network device like a switch by telling it where exactly to forward packets. Other than this, 

it may inform the network device which data or what type of data is to be blocked. The forwarding 

plane, a.k.a. data plane, is responsible for sending or forwarding traffic to another network device. 

In other words, the control plane, via software interfaces, defines how to treat the data packets in 

the network while the data plane executes those functions in the actual networking hardware. The 

beauty of SDN is that it allows engineers to switch the network preferences and other properties 

of the routers without physically presence.  

Similarly, the benefits of the SDN technology enable networks to be directly programmable 

due to the decoupling from their forwarding function. It also makes networks more agile as 

abstracting control from the forwarding plane lets administrators dynamically adjust network-wide 

traffic flow to meet the changing needs of the network. More importantly, it allows networks to be 

centrally managed where network intelligence is centralized in SDN controllers, that maintain a 

global view of the network which appears to applications and policy engines as a single logical 

switch. This centralized logical view allows networking devices to be programmatically 

configured where SDNs let network managers configure, manage, secure and optimize network 
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resources very quickly via dynamic, and automated SDN programs. Another advantage with SDNs 

is that network devices do not need proprietary software to run which would mean devices being 

more cost effective. Further, this allows for better economics for service and network providers.  

However, SDN still is quite some strides away from maturing in load-balancing. For 

example, Zhou et al. [3] discuss problems that could exists in the link between the controller and 

the switch in case of overwhelming traffic. The authors point out that even if we deploy switches 

and their controllers very carefully, it’s difficult for controllers to adapt to the changing traffic 

load. This could affect resource utilization. More or less, it is essential to balance a load across 

different controllers in any networking cluster instead of a static network configuration. They 

propose a dynamic adaptive algorithm for SDN controllers, which is running as a module of SDN 

controllers and the controllers in distributed environment can cooperate with each other to keep 

load balancing. The algorithm checks for load on switches in the network and expertly diverts the 

load to under-loaded controllers thereby achieving load balancing.  

The OpenFlow protocol [20] is used as a southbound protocol which is basically from the 

controller to the switches and vice versa, to inform switches on where packets must be forwarded. 

Although not of all the SDN designs use it, OpenFlow is a Layer 2 protocol that enhances the very 

definition of SDN. OpenFlow is responsible for sending and inserting flows inside switches and 

giving forwarding instructions to switches. Load balancing at the controllers’ end is a common 

obstacle which SDN administrators face. Supporting the argument, Yannan Hu et al. [4], while 

making use of the OpenFlow protocol for communicating to switches, report on issues with load 

balancing between SDN controller and switches. They argue that instead of balancing load 

between controllers by static network planning, controller load balancing should be an 

indispensable primitive of the distributed control plane. For this purpose, they proposed an 
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architecture called BalanceFlow for wide-area OpenFlow networks which can partition control 

traffic load among different controller instances in a more flexible way. The BalanceFlow works 

at the granularity of flows while distributing them. They introduce a concept of having one ‘super 

controller’ in the network whose purpose is to balance flows across other controllers. Both earlier 

mentioned papers on balancing load between controllers and switches give approaches and 

solutions to solve the problem with that perspective in mind. However, the problem of balancing 

load from switch to switch, especially when there are multiple links/paths available to move from 

source to destination is still an open issue. Therefore, this thesis explores such notion of SDN-

based traffic load balancing across various switches simultaneously. 

 

1.3 Multi-Path TCP in a Nutshell 

Using commonly known load-balancing protocols to achieve network-efficiency is 

something that has been persistently looked upon by the research community in the recent years. 

For instance, Hong et al. [5] used the Equal Cost Multi-Path (ECMP) protocol by developing a 

system called SWAN which enables inter-datacenter wide area networks to carry significantly 

more traffic to achieve higher efficiency and utility. However, the problem with ECMP is that it 

uses hashing techniques to balance load across different links. Here, all links need to get the same 

percentage of hash values before data can be sent, which means that all paths need to have the 

same capacity for the protocol to come into effect. Such technique still does not utilize the full 

potential of having multiple paths from sender to receiver as there could be instances where 

subflows are not being created as secondary links and the subflows are still being sent on the same 

path. Further, Ronald van der Pol et al.’s work on multi-pathing with MPTCP and OpenFlow [6] 

explains this matter. The authors here proposed another method of utilizing multiple paths from 
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the source to the destination, which involves the use of Multi-Path TCP. It explains that MPTCP 

does load balancing in the end nodes as part of the TCP process. 

On the other hand, RFC-6824 [7] gives details about MPTCP by explaining that it is a 

protocol which allows for traffic to travel from source to destination through multiple paths by 

generating separate TCP traffic sub-streams in each link at the source. The simultaneous use of 

multiple paths for a TCP/IP session could improve resource usage within the network, and thus, 

improve user experience through higher throughput and improve resilience to the failure. The 

MPTCP operates at the transport layer and aims to be transparent at both the higher and lower 

layers. Ronald van der Pol et al.’s paper demonstrated an experiment which consisted of three 

paths being present from a network in CalTech to Caltech Cern and showed the working of MPTCP 

over these three paths. Some of these links on the paths had a bandwidth of 10 Gb/sec and there 

were a few 1 Gb/sec links. At the end of the demonstration, they found that the application could 

map eight MPTCP subflows on three paths, and concluded that MPTCP should be able to fill these 

paths with up to 12 Gb/sec of traffic from end-to-end; thus, significantly improving throughput 

whilst also balancing load across the three paths.  

Meanwhile, the Complex systems have also been created by the research community to 

test how MPTCP could improve efficiency in OpenFlow networks. Sandri et al. [8] created a 

system called as MultiFlow which uses MPTCP in OpenFlow networks. Their proposal is to 

improve throughput in shared bottlenecks by forwarding subflows from the same MPTCP 

connection through multiple paths. They validated the approach in a testbed where shared 

bottlenecks occur on the links at the endpoints. Their experiment had three distinct paths from 

source to destination composed of OpenFlow switches. The machines would transfer files of 1 Mb, 

10 Mb and 100 Mb. The idea was to compare MPTCP subflows using all separate routes versus 
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MPTCP subflows making use of all existing paths. The result showed similar throughput for the 

smaller size at 1Mb but showed significant increase with the files of 10 Mb and 100 Mb. They also 

conducted an experiment where they compared TCP Reno with MPTCP/MultiFlow with the same 

files. Here, they found a higher throughput for the instance with MultiFlow and better resilience 

to failures, where if one link fails, the load is transferred to the other links in the ongoing 

connection. This shows the high availability property of an MPTCP connection. Although both 

papers speak about the use of MPTCP in SDNs, where one talks about load balancing and 

throughput while the other gives more emphasis on throughput, there is no experimentation done 

on the use of MPTCP on a more local level which would involve VLANs. Apart from this, not 

much information on load balancing statistics is given comparing different links which contains 

traffic running on a normal TCP with that running on an MPTCP connection.  

 

1.4 Problem Statement 

As discussed above, the use of MPTCP brings an interesting solution for the network load-

balancing issue. Distinctions could be made by VLAN administrators into how much traffic is 

moving across VLANs and how much load links in a topology could take based on subflows 

forming from sender to receiver through the different paths between the two and accordingly, 

MPTCP would balance out the load in the paths between each of its subflows. Keeping this in 

mind, the objectives of this thesis are as follows: 

 To look at how MPTCP could be beneficial for network administrators who are responsible 

for establishing VLANs which make use of SDNs and OpenFlow. 

 To give statistics that would give a fair distinction on how much improvements MPTCP 

brings to load balancing on mesh style networks. 
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 To develop heuristics which would help direct MPTCP flows across the network in an 

efficient manner that would further help in improving load balancing and network 

utilization across the network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8 

 

CHAPTER 2: MPTCP – LIA, OLIA, BALIA AND IP ALIASING 

In this chapter, we will discuss MPTCP and its workings. We will discuss the congestion 

control algorithms used within MPTCP which are Linked Increase Algorithm (LIA), Opportunistic 

Linked Increase Algorithm (OLIA), and Balanced Adaptation Linked Increase Algorithm 

(BALIA). Then, we will explain IP Aliasing and why it could prove to be useful when used in 

parallel with MPTCP. 

 

2.1 MPTCP – LIA, OLIA, BALIA 

As we have already discussed in Chapter 1, MPTCP gives the ability for multiple paths to 

form between peers or between senders and receivers in the network. Like TCP, MPTCP is also 

as reliable when it comes to sending and receiving data. The simultaneous usage of the multiple 

paths in the network allows for the improvement in resource usage within the network and it also 

provides for better network throughput and overall improved resilience to network failure. 

It is important to note that MPTCP will behave like normal TCP to a non-MPTCP 

application. Any MPTCP connection would begin just like any regular TCP connection. If there 

are more than one paths available between the source to the destination, then MPTCP creates 

additional TCP sessions on these paths. On the sender or destination machines, it would appear as 

though there is still a single connection between the sender and the receiver when in fact there are 

multiple TCP streams active on various paths between the two. These additional streams are 

termed “subflows”.  

One relevant question is how does MPTCP identify multiple paths. These paths are 

identified by the presence of multiple addresses at the hosts and the combinations of these multiple 

addresses equate to additional paths. For example, if a sender host contains IP addresses A1 and 
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A2 and the receiver host contains IP addresses B1 and B2. Then, after the first path between 

addresses A1 and B1 is established as a normal TCP connection, MPTCP comes into effect and 

generates additional subflows through the additional paths and can have a connection between A1 

and B2 in one path or A2 and B1 in the other path. The discovery and formation of additional 

subflows will be achieved through a path management method where a host can initiate new 

subflows by using its own additional addresses or by updating its available addresses to the other 

host. It is important to note that the paths generated by the MPTCP need not be unique and that 

more than one of them can follow the same route from one point to another, with only the IP 

address pair of sender-receiver being different in the paths. As stated earlier, the number of paths 

are dependent on the number of IP address pairs that can be generated from sender’s IP addresses 

and receiver’s IP addresses. In this paper, we control the direction of these paths using SDN 

terminology which is explained in the following chapter. MPTCP also adds connection-level 

sequence numbers to allow for the reassembly of segments arriving from the multiple subflows 

with differing network delays. Finally, subflows are terminated as regular TCP connections with 

a four-way FIN handshake and the MPTCP connection is terminated by a connection level FIN. 

With this, new questions arise: How does MPTCP utilize the additional paths existing 

between sender and receiver? How much data does it send in each of these paths? The solution to 

these questions lies in congestion control algorithms like Linked Increase Algorithms (LIA), 

Opportunistic Linked Increase Algorithm (OLIA), and Balanced Adaptation Linked Increase 

Algorithm (BALIA) which are used during traffic flow across the paths in an MPTCP connection. 

As per RFC 6356 [17], these new congestion control algorithms are necessary for multipath 

transport protocols such as Multipath TCP and traditional single path congestion control 

algorithms (e.g., Additive Increase Multiplicative Decrease) have problems in a multipath context. 
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For example, one of the biggest problems is that running existing algorithms such as standard TCP 

independently on each path could give more than its fair share at links traversed by more than one 

of its subflows. Apart from this, it is important that a source with multiple paths available should 

transfer more traffic using the least congested of the paths which is a property called “resource 

pooling” where a bundle of links would effectively behave like one shared link with bigger 

capacity. It is this feature that would increase the overall efficiency of the network and also its 

robustness to failure.  

LIA couples the additive increase function of the subflows and uses the unmodified TCP 

behavior in case of a drop. It aims to set the multipath flow’s aggregate bandwidth to be the same 

as that of regular TCP flow would get on the best path available to the multipath flow. For 

estimating the bandwidth of regular TCP flows, the multipath flow estimates loss rates and round-

trip times, and then, it computes the target rates. It adjusts the overall aggressiveness to achieve 

the desired rate accordingly. The algorithm ensures bottleneck or link fairness and fairness in the 

overall network sense. This algorithm achieves performance where a multipath flow would 

perform at least as well as a single path flow would on the best of the paths available to it. It also 

manages to achieve to move as much traffic as possible off its congested paths but yet could do 

better compared to the other following congestion control algorithms. The design of LIA forces a 

tradeoff between optimal congestion balancing and responsiveness to network dynamics [15]. 

Hence, to provide good responsiveness, LIA’s implementation must depart from optimal 

congestion load balancing that leads to the traffic not being optimally sent to the least congested 

path among the paths available between sender and receiver.  

Contrary to LIA, Opportunistic Linked Increase Algorithm’s (OLIA) design is not based 

on a tradeoff between responsiveness and optimal congestion balancing as it tries to provide both 
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simultaneously. Just like LIA, OLIA also couples additive increase and uses unmodified TCP 

behavior in case of a loss, however the difference is in the additive increase term where the term 

used in OLIA is an adaptation of the increase term in the Kelly and Voice’s algorithm [18] which 

is essential to provide optimal resource pooling. OLIA guarantees responsiveness and non-

flappiness by measuring the number of transmitted bytes since the last loss, it reacts to events 

within the current window and adapts to changes faster. Also, by adapting the window increases 

as a function of round-trip times, OLIA compensates for different round-trip times. This ensures 

that OLIA provides better TCP fairness and optimal congestion balancing. However, the problem 

with OLIA is that it can be unresponsive to changes in the network conditions in some scenarios 

like when the paths used by a user all have similar round-trip times.  

Balanced Adaptation Linked Increase algorithm (BALIA) is another congestion control 

algorithm which further improves on OLIA by balancing the tradeoff between the properties of 

TCP friendliness and TCP responsiveness [16]. TCP friendliness is basically how much more 

throughput an MPTCP flow would get when it shares the network with other TCP flows while 

TCP responsiveness characterizes how fast the MPTCP algorithm reacts to any network changes. 

TCP window oscillation is another factor which is considered in BALIA. Window oscillation 

property characterizes how severely the window size fluctuates around the equilibrium point. It 

has been proved mathematically that there is always a tradeoff between TCP friendliness and 

responsiveness, and between responsiveness and window oscillations. Hence, it is not possible to 

maximize performance of all three parameters. BALIA’s design is to allow window oscillation up 

to an acceptable level in order to improve both friendliness and responsiveness which is achieved 

by parameterizing these properties and systematically choosing the parameters. On 

experimentation with the three algorithms [16], it was found that BALIA struck a good balance 
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between TCP friendliness and responsiveness. In this thesis, we use MPTCP with the BALIA 

algorithm for congestion control in order to give the fairest possible transmissions across all 

MPTCP channels. 

 

2.2 IP Aliasing 

IP Aliasing is nothing but associating more than one IP address to an interface [10]. 

Therefore, this allows for one node on a network to have multiple connections where each can 

serve a different purpose. IP aliasing can be used to provide multiple network addresses on a single 

interface thereby, this opens the possibility where you can have the computer on two different 

logical network subnets whilst using a single physical interface. 

IP Aliasing allows for MPTCP to create a number of subflows depending on the amount 

of IP addresses that have been associated with the sender and the receiver’s interfaces. These 

subflows can be directed or forwarded across different paths available from the sender to the 

receiver using SDN designs where flows in the switch would decide where or which link a packet 

from a certain IP address would take. This concept is exactly what is used in this thesis to achieve 

the objective of load balancing the traffic across switches. 
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CHAPTER 3: VLAN PATHS WITH IP ALIASING 

In this chapter, we discuss the conceptual and procedural part of the proposed framework. 

For clarity, an example topology is considered with explanations such as the number of hosts, 

VLAN information and the use of IP Aliasing on each of those hosts. Also, ‘path’ creation is 

explained and a pseudo-code is included that shows that how packets coming to a switch select a 

path to be forwarded across the network. 

 

3.1 Conceptual Overview 

The main idea is to maximize the potential of MPTCP and improve network utilization by 

coupling it with IP Aliasing. It is due to IP Aliasing’s feature of allowing more than one IP address 

associated with a machine’s network interface that more MPTCP substreams can form based on 

the addresses available. Then by using the SDN format of forwarding, we can accordingly divert 

where the subflows are to be forwarded in the network. To achieve this, we create Hamiltonian 

paths which are associated to each switch connected directly to the hosts in our topology. The 

paths are created using standard deviation to a find a minimum and maximum range for flows in 

each link. We explain this concept in more details in the coming subsections. 

 

3.2 Topology Setup 

 The topology is created using Mininet which is a popular network simulating tool. Mininet 

can be used for simulating a network with realistic configuration and extracting results from it to 

understand how performance could be. The SDN controller would be running on a separate Ubuntu 

Linux virtual machine and would listen for OpenFlow messages from switches that are trying the 

connect to it. In our case, we used OpenFlow 1.3 and the switches in Mininet, once up, connect to 
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the SDN controller via the OpenFlow protocol and then be visible in the controller’s Graphical 

User Interface. Further, we arranged a Mesh topology, where each switch has multiple links 

connecting to one another thus ensuring that multiple paths could exist between any sender and 

receiver. This is essential in order to understand the potential of MPTCP where different 

substreams can be placed on different paths between the sender and the receiver thus balancing 

connection loads across multiple links. The diagram of the first topology is given in Figure 3.1. 

 

 

Figure 3.1: Sample topology 

 

In the above topology, H1, H3, H5 and H6 are in VLAN 100 while H4, H2, H7 and H8 are 

in another VLAN 105. There are five switches in this topology. For terminological purposes, we 

call the first switch which any host’s packet encounters after leaving the host an ingress (I) switch; 

and, after leaving the Ingress Switch, all other switches, the packet encounters would be called as 

core (C) switches. For example, let us assume that we have a connection from H5 to H1, where a 

packet traverses through switches with datapath IDs s00:00:00:00:00:00:00:05, 
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s00:00:00:00:00:00:00:02, s00:00:00:00:00:00:00:03 and s00:00:00:00:00:00:00:01 to reach its 

destination. Here, s00:00:00:00:00:00:00:05 would be the I switch while 

s00:00:00:00:00:00:00:02, s00:00:00:00:00:00:00:03 and s00:00:00:00:00:00:00:01 would be C 

switches. Each link between the C switches has been set to 10 Mb/s maximum bandwidth while 

each link which connects a host to an I switch has been set to 1000 Mb/s maximum bandwidth. 

For monitoring the traffic flow, we considered a sFlow network monitoring tool [13]. The Static 

Entry Pusher REST application [19] is used to push flows to switches which would forward 

packets from their source to destination. The Static Entry Pusher application as part of the 

Floodlight Controller [11] and is already activated upon setting up the Floodlight Controller. 

 

3.3 Description and Procedure Details 

3.3.1 Hosts and IP Aliases 

MPTCP allows for multiple TCP streams called as MPTCP subflows to form between 

sender to receiver depending on IP availability in both machines. This means that if there is more 

than one IP address associated with a host, MPTCP starts up another TCP session using the 

additional IP with the destination machine’s IP if the destination machine is also MPTCP capable. 

Thereby, to make complete use of the traits of MPTCP, IP aliasing is used on each host to associate 

multiple IP addresses with each host. The amount of IP addresses associated with a host would be 

dependent on the number of links passing out of the host’s I switch to C switches. For example, 

take H1 from the above diagram, where H1 is connected to s00:00:00:00:00:00:00:01 which is 

H1’s I switch. s00:00:00:00:00:00:00:01 has three links passing on to the C switches, 

s00:00:00:00:00:00:00:02, s00:00:00:00:00:00:00:03 and s00:00:00:00:00:00:00:04. Thereby, H1 

would have two IP alias addresses associated to it and one original IP address giving it a total of 
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three IP addresses which would be used during the creation of subflows when MPTCP is active in 

any connection. 

3.3.2 Ingress Fan-Out 

The subflows created would be forwarded out of the I switch based on flows pushed 

through the Static Entry pusher. Also, each subflow associated with an IP of the host would be 

forwarded out through different ports going to the next core switch. For example, as discussed 

above that H1 would have three IPs, subflows associated with each of the three IPs would be 

forwarded out through three different ports. This means that if the IP addresses are 10.0.0.1, 

10.0.0.11 and 10.0.0.21, then subflows associated with 10.0.0.1 as source address would be 

forwarded out of the I switch from the port which leads to the C switch s00:00:00:00:00:00:00:02. 

The subflows associated with 10.0.0.11 as source address would be forwarded out of the I switch 

from the port which leads to the C switch s00:00:00:00:00:00:00:03 and the subflows associated 

with 10.0.0.21 as source address would be forwarded out of the I switch from the port which leads 

to the C switch s00:00:00:00:00:00:00:04. This phase of the procedure is called the ‘Fan-Out’ 

phase which is forcing the MPTCP subflows to utilize different links enroute to the destination. 

Every connection from a host would have a fan-out phase once the packets reach the I switch 

which would be advantageous in balancing traffic during subflow creation in the MPTCP process. 

Below in Figure 3.2 is an example diagram showing the Ingress fan-out phase from Host H8 which 

would be associated with two IP addresses due to two links exiting out of its I switch towards the 

C switches. 
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Figure 3.2: Ingress Fan-Out 

3.3.3 Subflow Identifiers 

Once packets from a host leave the I switch and move towards its destination through C 

switches they would follow Hamiltonian paths which would be preset for the host and its TCP 

streams once they reach the C switches. A Hamiltonian path [22] is a path in an undirected or 

directed graph that visits each vertex exactly once. It is important to note that a graph that contains 

a Hamiltonian path is named as a traceable graph. Another important property to Hamiltonian 

graphs is that all Hamiltonian graphs are biconnected, however every biconnected graph need not 

be Hamiltonian. All topologies that are going to be used in this thesis would satisfy the 

Hamiltonian graph property. Each host in the topology would have a source address and depending 

on the number of links going outwards to the C switches from the I switch, the host would have 

more source addresses associated with it based on IP aliasing. Moreover, due to the fan-out 

mechanism implemented for each connection going out of the ingress switch, each IP address from 

hosts connected to the I switch would have a common egress port that takes traffic to the C 

switches. Using such idea, we can conclude that whenever traffic from an I switch leaves towards 
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the C switch, the traffic can move out from any one of its outgoing ports which is directly 

connected to one of the core switches and thereby the identifier element for all host’s traffic 

moving outwards from its I switch is the pair of Datapath ID of the I switch and the outgoing port 

number associated with one of its source address. Thereby using these flow identifiers, we can 

create a HashMap associated to all hosts in the topology where the HashMap would consist of the 

Datapath ID of the switch and an outgoing port which would be the egress port that takes traffic 

from the host to one of the C switches in the topology. 

3.3.4 Associating Subflows to Hamiltonian Paths 

 

Figure 3.3: Hamiltonian Paths 

 

To systematize the path finding process for each subflow, we associate a Hamiltonian path 

traversing the C switches to each HashMap associated to hosts connected to an I switch. This 

means that once a packet belonging to a HashMap associated with a host leaves its I switch towards 

a C switch, there would be flow identifier entries in that C switch which can be associated to a 

path for this HashMap. Using this flow identifier entry, the C switch takes the flow’s packets 
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towards other C switches and finally to its destination. The above diagram in Figure 3.3 shows 

example Hamiltonian paths of host H8 and host H6 connected to I switch S4 and their subflow 

identifiers: HashMap<Datapath ID: S4, Port 1>, HashMap<Datapath ID: S4, Port 2>. 

An important property of all paths in the topology is that each path should be allowed to 

visit a node, which is a switch in this case, only once. This is done to avoid loops in the topology 

which is also the main property of Hamiltonian paths. Going by this approach, the number of paths 

that all hosts connected to any I switch will be the number of flow identifier entries each switch 

must maintain. This space complexity can be abbreviated into O(n k) where ‘n’ is the number of I 

switches in the topology and ‘k’ is the number of outgoing ports in an I switch to the C switches 

in the topology which corresponds to each HashMap having a path associated to it. The pseudo-

code for how the path is to be followed by a connection of a host within a core switch in the 

topology is given below. 

if 𝑝𝑎𝑐𝑘𝑒𝑡 ∈ (Map< Ingress Switch (I), Outgoing Port (P)>) { 

 𝑝𝑎𝑐𝑘𝑒𝑡 → Path(T); 

} else if!(∃ (𝑇 → 𝑝𝑎𝑐𝑘𝑒𝑡) { 

 𝑝𝑎𝑐𝑘𝑒𝑡 → Controller; 

} 

 

Figure 3.4: Pseudo-code for Path Selection 

 

According to this pseudo-code, in any switch, there could exist multiple paths for each 

HashMap of outgoing port and datapath ID of the I switch. The question here is how does the 

packet reach its destination host once it reaches the switch which contains the connection straight 

to the host. Here the packet must come out of the path to be directed towards its destination. 

Priorities for flows within the switch in its flow table is made use off to overcome this. For all 

switches that contain direct connections to hosts, there are flows set up in switches which match 
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to the destination host’s IP address and these flows have a higher priority compared to the other 

flows in the flows table. Thus, when the packet first reaches any switch, it checks if there is direct 

connection to the host from this switch through the destination flow, and if not, it continues the 

direction that the path flows forward it too. 

3.3.5 VLAN-Specific Hamiltonian Paths 

The above algorithm can be further improved for better load balancing in the network when 

the VLAN setups are considered. This is done by creating separate paths for every host belonging 

to different VLANs which are connected to a I switch. This ensures further segregation of paths 

which means paths can be spread out in more number of ways. This allows for better load 

balancing. Apart from this, it also allows for monitoring subflows through links based on VLANs 

present in the topology which would give network administrators more control in the network. The 

below diagram shows VLAN specific Hamiltonian paths from I switch S4.  

 

Figure 3.5: VLAN Specific Hamiltonian Paths 

Again, we can also compute the number of paths that would be associated to hosts 

connected to any I switch. Here, the average space complexity of the flow tables in the switches 
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would be O(V n k) where V is the number of VLANs present among all the hosts connected to the 

I switches, n is the number of I switches and k is the average number of outgoing ports that takes 

traffic from an I switch to the C switches.  The pseudo-code for how the path is to be followed by 

a connection of a host belonging to a certain VLAN within a C switch in the topology is given 

below. 

if 𝑝𝑎𝑐𝑘𝑒𝑡 ∈ VLAN ID (X) { 

 if 𝑝𝑎𝑐𝑘𝑒𝑡 ∈ (Map< Ingress Switch (I), Outgoing Port (P)>) { 

 𝑝𝑎𝑐𝑘𝑒𝑡 → Path(T); 

} else if!(∃ (𝑇 → 𝑝𝑎𝑐𝑘𝑒𝑡) { 

 𝑝𝑎𝑐𝑘𝑒𝑡 → Controller; 

} 

} 

 

Figure 3.6: Pseudo-code for VLAN-Specific Path selection 

 

If in the condition where there are no paths matching the packets, then the packet must be 

forwarded to the controller as PACKET-INs where then the controller can make its decision on 

where to forward the packets. Packets coming back to the switches as PACKET-OUTs from the 

controller should not follow the paths or HashMap placed on the switches but follow the 

forwarding rules as set by the controller’s forwarding algorithm. 

3.4 Heuristic for Load-Balancing Path Creation 

With the number of paths that would need to be created for the topology based on the above 

discussion known, now the question is how the paths are to be created. The most important factor 

in the creation of paths is to balance out load across each link of the topology that all paths would 

use. This means that on creating paths, there could be a likelihood that high number of paths utilize 

one particular link in the topology which could overload that link and create an imbalance. To 
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avoid this, we create a range (upper bound and lower bound) of flows that a link can have by 

inspecting the standard deviation of the count of flows traversing a link.  

We first create paths randomly for each existing HashMap in the topology using the 

principle that a switch in the topology can be visited only once and each time a packet leaves its 

host towards the destination there must be an Ingress Fan-Out phase from the Ingress switch. The 

below diagram shows the Pseudo-Code for the creation of paths and randomly picking one for 

each hashmap of I switch and the outgoing port. 

int[][] topology; //2-D Matrix representing the complete topology 

ArrayList<List<Integer>> listOfPaths = new ArrayList<>(); //Stores the list of all paths 

List list; 

int[] path; 

int len; //number of nodes on topology 

int row = len; 

int col = len; 

 

// Method to loop through neighbours of the Ingress Switch 

findPathFromIngress(int[][] graph, int startNode) { 

 int tempGraph[][] = topology[row-1][col-1]; 

 list.add(startNode); //Adding Ingress Node to list 

 for(all i in rows) { 

  if(i == startNode) { 

   continue; 

  } 

  for(all j in col) { 

   if(j == startNode) { 

    continue; 

   } 

   tempGraph[i][j] = graph[i][j];  

  } 

 } 

 for(All neighbor in startNode) { 

  hamiltonPath(tempGraph, neighbor); 

 } 

} 
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//Method to setup Hamiltonian Path finding 

void hamiltonPath(int[][] graph, int startNode) { 

int graphLength = graph.length; 

path = new int[graphLength]; 

int colNo = startNode – 1; 

path[0] = startNode; 

findHamiltonPath(graph, colNo, 0); 

} 

 

//Recursive Method that uses backtracking approach to find Hamiltonian path 

void findHamiltonPath(int[][] graph, int colNo, int pathPos) { 

int graphLength = graph.length; 

 for(int i=0; i < graphLength; i++) { 

  if(graph[i][colNo] != 0) { //Checks for connected adjacent nodes 

 

//Check if Node is already present in path 

  if(checkDuplicate(path, i + 1)) {  

   continue; 

   } 

   pathPos++; //Increase path by one by adding the next switch 

path[pathPos++] = i + 1;  

 

//If path length has reached maximum number in topology 

if (pathPos = graphLength – 1) {   

    list = Arrays.asList(path); 

listOfPaths.add(list); //Add path to the Final List     

    pathPos--; 

    continue; 

   } 

 

   //Remove the path obtained and search for other paths 

   graph[i][colNo] = graph[colNo][i] = 0;  

   findHamiltonPath(graph, i, pathLen); 

    

   //Keep backtracking a node from path to find another path 

   pathLen--;  

 

//Transform back to original graph 

  graph[i][colNo] = graph[colNo][i] = 1; 

 

} 

}  

 path[pathLen + 1] = 0; //Backtrack the path Array 

} 
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//Method that detects duplicate Nodes 

boolean checkDuplicate(int[] path, int node) {  

 for(All i in path) { 

  if (i == node) { 

   return true; 

  } 

 } 

 return false; 

} 

 

//Method that randomly picks paths from list of paths 

List<Integer> returnPath(ArrayList<List<Integer>> listOfPaths) { 

 Random ranGen = new Random(); //initialize randomizer 

 int index = ranGen.nextInt(listOfPaths.size()); 

 return listOfPaths.get(index); 

} 

 

Figure 3.7: Pseudo-code for randomly finding paths 

 

In the pseudo-code above we have five methods, the first method findPathFromIngress is 

mainly iterating through the neighbor switches from the Ingress switch in a loop. Here, from the 

whole topology which is denoted by a 2-dimensional matrix, we take out the Ingress switch node 

and find the Hamiltonian path from the neighbors by calling the method hamiltonPath. In the 

hamiltonPath method, we set up the parameters necessary to traverse and find the Hamiltonian 

paths. Then we use the findHamiltonPath method which is the core method that is used to find the 

Hamilton paths. This is a recursive method that uses recursion and backtracking to keep obtaining 

unique paths. Here the idea is to keep adding new Nodes to the path array until the length is that 

of the total number of nodes in the topology minus the I switch. Backtracking is then done to keep 

checking for new paths other than the paths that already has been reported. Paths are checked for 

uniqueness with the function checkDuplicate. This method checks if the path already exists in the 

path array while going through the path array. If it does, it returns false so that duplicate paths are 
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not reported again. The paths obtained are added to a ArrayList and then the returnPath method is 

called which is used to pick one of the paths in the ArrayList randomly. The paths which are 

randomly selected, are used in the topology and per the path, flows are set up in each of the 

switches.  

So, let’s take an example using Hamiltonian paths for host H1 which has three paths 

associated with it which are created based on the ingress fan-out and the point where every node 

or switch can be visited just once. They are given below. 

(10.0.0.1)   H1  S1  S3  S2  S5  S4 

(10.0.0.11) H1  S1  S2  S3  S5  S4 

(10.0.0.21) H1  S1  S4  S5  S2  S3 

As we see in these three paths that the I Switch of host H1 is switch S1 which has Datapath 

ID s00:00:00:00:00:00:00:01, and the IP address 10.0.0.1 is the original IP address of H1 while 

10.0.0.11 and 10.0.0.21 are aliased IP addresses created using IP aliasing for the purpose of 

MPTCP and path creation. Apart from this, we also notice that each node (switch) is visited just 

once. Now, per these three created paths, we see that the link between S4 and S5 is present as a 

route taken for all three Hamiltonian paths, thereby, this link has 3 subflows passing through it just 

based on these paths. The link between S1 and S2 is just being used once which is on the second 

path, thereby this link has 1 subflow passing through it. In this manner, we can calculate the 

number of subflows that could potentially be passing through all the links in this topology in case 

all hosts are active and sending traffic. We create a table showing the number of subflows passing 

through each link in this topology. Before that, we show the same topology this time with their 

link numbers in Figure 3.4 and then show the table in Table 1. 
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Figure 3.8: Sample topology with link numbers 

 

       Table 3.1:  Number of flows per link 

Link Number of Flows 

1                                                                                                                       

2                                   

3                                   

4                                   

5                                   

6                                   

7 

15 

            10 

             9 

            17 

10 

12 

15 

 

Once this table is created, we observe the number of flows going through each link. If we 

observe that in any one of the links there is a clear maximum as shown in the above table where 

the link 4 has a clear maximum number of flows, we try to recreate paths which are going through 

that link so that it could avoid that link thus reducing the load on that link. While recreating paths, 

we avoid paths which would be forced to use that link due to the fan-out phase of the process and 

modify the routes of other paths. We keep selecting the link with the maximum count of flows and 
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recreating those paths traversing that link until we get to a point where we have at least two links 

having the same maximum number of flows as shown in Table 2 below for the same topology. 

 

       Table 3.2:  Number of flows per link after alteration 

Link Number of Flows 

1                                                                                                                       

2                                   

3                                   

4                                   

5                                   

6                                   

7 

15 

            10 

             9 

            16 

10 

12 

16 

 

Here in Table 2 above, we notice that links 4 and 7 have the same amount of maximum 

flows, which is 16, passing through them. It is at this point we calculate the standard deviation to 

get the upper bound and the lower bound for flows that can pass through each link. 

Once the bounds are obtained, we keep recreating paths for each HashMap iteratively until 

we have met the requirements of each link in the topology having the number of flows 

corresponding to the lower bound and the upper bound. The range obtained for the above topology 

after calculation of the standard deviation was 10-15 where 10 is the minimum number of flows 

that can be pass through a link and 15 is the maximum number of flows that can pass through a 

link. After recreating paths within this requirement, finally, we come up with the below table which 

meets the lower and upper bound requirements to balance out the flows across each link in the 

topology. 
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    Table 3.3:  Number of flows per link after Standard Deviation Enforcement 

Link Number of Flows 

1                                                                                                                       

2                                   

3                                   

4                                   

5                                   

6                                   

7 

15 

            12 

            10 

            15 

14 

10 

12 

 

In Table 3 above, all the links have their count of flows per the bounds calculated. Once 

this is calculated and now that the paths are set, we can push flows to the switches in Mininet using 

Floodlight’s Static Flow Pusher. After this is done, the hosts would then communicate with 

MTPCP using the path flows which are set up in each of the switches. 
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CHAPTER 4: PERFORMANCE COMPARISON AND SIMULATION 

RESULTS 
 

       In this chapter, we will discuss the simulation results of the proposed idea and we will 

compare them against regular TCP. We will use the two techniques mentioned above which are 

VLAN specific paths and paths which do not give consideration for the number of VLANs in the 

switch. Apart from this, we will also measure performance using standard MPTCP without the use 

of paths. Thereby, in a nut shell we would be comparing four techniques: 

1. MPTCP with VLAN-Specific Hamiltonian paths in place in the switches [VS] 

2. MPTCP with paths without considering the number of unique VLAN hosts which are 

directly connected to the switch [NVS] 

3. MPTCP without any paths incorporated [MPTCP] 

4. Regular TCP 

Regular TCP will be the benchmark for our experiments and we will accordingly compare 

the other three techniques to see the amount of percentage increase or decrease in performance 

with respect to the standard TCP. 

Tests will be done in three different mesh like topologies involving client-server 

communication between each host in the topology using the iperf tool [21] in Linux which is a 

performance tool that is used for measuring the maximum achievable bandwidth on IP networks. 

Standard MPTCP and TCP cases will use the Floodlight’s forwarding module to be directed from 

source to destination. The forwarding module uses a reactive SDN approach where when a switch 

sees an unknown packet for the first time, it forwards it to the SDN controller as a PACKET-IN 

message. Then, the controller calculates the shortest path to the destination and sends that 
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information back to the switch as a PACKET-OUT message. The switch, finally, receives this 

forwarding information and forwards the packet towards the destination accordingly.   

Further, the test cases will be further divided into three categories (i.e., LOW, MEDIUM, 

and HIGH) based on the amount of traffic load in the topology. A LOW loaded case means that 

there are few client-server communications taking place in the topology which means, for example 

in a topology consisting of eight hosts, there would be between two to four client-server 

communications in a LOW load case and apart from this, there would not be any parallel sessions 

on going where one server can serve multiple clients. So, in a LOW loaded case, each server will 

be allowed to serve just one client, and one client is only allowed to talk to one server. A MEDIUM 

loaded case means that servers can serve multiple clients simultaneously and clients are allowed 

to connect multiple different servers which increases the number of TCP sessions going across the 

topology, thereby increasing the load on the topology. However, depending on the number of hosts 

in the topology, a limited number of machines will be communicating with each other. A HIGH 

loaded case is when all hosts in a topology are communicating with each other, either as a client 

or as a server, thus maximizing the traffic load in the topology. Further information will be given 

about the loads using the topology examples. Each iperf session in any case between client and 

server will be run for two minutes to get a fair estimation of the overall bandwidth. For each case, 

there will be multiple separate simulation runs done and the average of will be taken as the 

performance measure for that case. Confidence Intervals will also be calculated for each case 

where the confidence percentage would be 90%. 
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4.1 Topology 1: Enterprise-Level Local Area Network 

The diagram in Figure 4.1 below is the first topology we are going to use for our 

experiments, which is comparable to an Enterprise-Level Local Area Network. It is similar to the 

one in Fig 3.1.  

 

Figure 4.1: Topology 1 

 

Here, there are a total of eight hosts which are placed under two VLANs, i.e., VLAN 100 and 

VLAN 105. There is a total of five switches and seven links which connects them to each other. 

These links are all 10 Mb/s links. The links that connects the hosts to the switches are 1000 Mb/s 

links. For this topology, a LOW loaded case is when there is a single host, which acts like a client, 

is connected to another host, which acts like a server, and both these hosts will not communicate 

with other machines or take connections from other machines as long as there is traffic flow 

between the two machines.  An example LOW loaded case would be when H3-H6, H4-H8, H1-

H5 and H2-H7 have each established a client-server connection where H3, H4, H1 and H2 are 

VLAN 105 

VLAN 100 

VLAN 100 

VLAN 100 

VLAN 100 

VLAN 105 

VLAN 105 

VLAN 105 
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clients and H6, H8, H5 and H7 are their respective servers and are running simultaneously. In the 

MEDIUM loaded case, we can have a server serving multiple clients simultaneously, thereby, 

taking the topology above if H1 is the server for client H3. It can simultaneously be the server for 

client H5 and H6 as well. H3, H5 or H6 can also act as servers to other machines. Apart from this, 

since there are 8 hosts with 4 in each VLAN for this topology and the possibility of having 16 

different combination here of client-server communications, we consider a medium load case to 

have about 6 to 8 client server communications going on simultaneously for this case. Finally, let’s 

take the high load case where here, again we can have a server serving multiple clients and a client 

connecting to multiple servers. Apart from this, for a high loaded case we can have 12-16 client 

server connections running simultaneously for this topology. After running the tests for all the 

cases, we see the following results. 

 

           (a) LOW load                        (b) MEDIUM load                     (c) HIGH load 

Figure 4.2: Results for Topology 1 
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The above diagram shows the results where we see that MPTCP with VLAN specific 

Hamiltonian paths (VS) has the best performance with over 20% increase on average in throughput 

compared to regular TCP for the LOW load case shown in Figure 4.2(a). MPTCP without VLAN 

paths(NVS) has the second best with just under 20% increase on average compared to regular TCP 

and the standard MPTCP gives about over 1 percent increase on average compared to regular TCP. 

In terms of the confidence interval, which is denoted by the dark bolded line with the caps on the 

ends in the diagram, for a 90% confidence percentage we get a result of 18.5% to 22.8% increase 

for VS and for NVS we get about 16.6% to 22.4% increase, while for standard MPTCP we get 

15% decrease from regular TCP to 17.4% increase from regular TCP. 

For the MEDIUM load case shown in Figure 4.2(b), we observe VS with the best 

throughput with over 50% increase on average in throughput compared to regular TCP with NVS 

having over 47% percent increase on average and the standard MPTCP having about 20% average 

increase. In terms of confidence interval, we get 44.7% to 57.4% increase for VS, NVS gives 

41.6% to 54.2% increase and for standard MPTCP we get 15% to 25.4% increase from regular 

TCP. 

And finally, for the HIGH load case shown in Figure 4.2(c), we see over 27% average 

increase in VS, over 21% average increase in NVS and over 16% increase in average in standard 

MPTCP compared to regular TCP. While in terms of confidence interval, we get 25.7% to 28.5% 

increase for VS, NVS gives 15.7% to 26.35% increase and for standard MPTCP we get 11.4% to 

20.8% increase from regular TCP. Thereby, overall, we clearly see that Multipath TCP with VLAN 

specific paths show a significant improvement from regular TCP. This is also evident with 

Multipath TCP without VLAN specific paths and standard MPTCP although not as much. 

 



 

34 

 

4.2 Topology 2: Mid-Size Metro-Area Network 

Now let’s perform the same tests on a bigger topology which is comparable to a Mid-Size 

Metro-Area Network. The below diagram in Figure 4.3 is the second topology which has eight 

switches and ten hosts. It has twelve links which connect the switches to each other which are all 

at 10 Mb/s. Again, like the earlier topology, the links connecting the hosts to the switches are 

running at speeds of 1000 Mb/s. In this topology, there are hosts which contain three different 

VLAN IDs which are 100, 105 and 110. Here again we test for LOW, MEDIUM and HIGH load 

cases. 

 

 

Figure 4.3: Topology 2 
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 To reiterate, LOW load cases will not have simultaneous connections on servers from 

clients and clients will not connect to multiple servers. MEDIUM load cases on the contrary will 

have such client-server connections. In this topology of 10 hosts, 6 to 10 client-server connections 

are considered a MEDIUM load case while, 12 and above connections is considered a HIGH load 

case.  The below diagram shows the results of the tests performed. 

 

             (a) LOW load                        (b) MEDIUM load                         (c) HIGH load 

Figure 4.4: Results for Topology 2 

 

After running the tests for the LOW loaded case, we see the results in Figure 4.4(a). Here 

we see close to 70% average increase in VS while NVS isn’t far off with about 64% average 

increase compared to regular TCP and standard MPTCP we see close to 3% average increase. In 

terms of the confidence interval, which is again denoted by the dark bolded line with the caps on 

the ends in the diagram, again with 90% confidence, we get 66.9% to 70.1% increase in VS, for 

NVS we get 60% to 68% increase compared to regular TCP and standard MPTCP gives an 8% 

decrease to a 13% increase compared to regular TCP. The results are similar in the MEDIUM load 

case as shown in Figure 4.4(b). However, we see an even greater increase in the VS. VS obtained 
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close to 78% average improvement compared to regular TCP while NVS showed just 55% average 

improvement, and finally standard MPTCP obtained over 16% increase in performance. In terms 

of confidence interval, we get 70.9% increase to 83.98% increase in VS compared to regular TCP, 

we get 49.2% to 59.9% increase in NVS compared to regular TCP and about 5.05% to 28% 

increase in standard MPTCP compared to regular TCP. Finally taking the HIGH load case shown 

in Figure 4.4(c), we again see similar trends. Here, VS obtains over 28% average increase, NVS 

obtains about 20% average increase and finally standard MPTCP obtains about 6.5% average 

increase compared to regular TCP. In terms of confidence interval, we get 26.8% increase to 29.9% 

increase in VS, we get 16.1% to 22.98% increase in NVS compared to regular TCP and about 

4.6% decrease to 17.5% increase in standard MPTCP compared to regular TCP. 

 

4.3 Topology 3: Large Metro-Area or Datacenter Network 

Let’s now take an even bigger topology which is comparable to a Large Metro-Area or a 

Datacenter Network. In this topology given below in Figure 4.5, there are 15 switches and 8 hosts. 

There are 28 links connecting the switches together and each link has a maximum bandwidth of 

10 Mb/s. Apart from this again, all links connecting hosts to switches are 1000 Mb/s links. There 

are two unique VLANs among the hosts in this topology which are VLAN 100 and VLAN 105. 

Here too, tests would be done for LOW load, HIGH load and MEDIUM load where again LOW 

load cases will not have simultaneous connection on servers from clients and clients will not 

connect to multiple servers. 
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Figure 4.5: Topology 3 

 

MEDIUM load cases will have simultaneous client-server connections and in the topology 

of 8 hosts, 6 to 8 client-server connections are considered a MEDIUM load case while, 10 and 

above connections is considered a HIGH load case which it will also have simultaneous client-

server connections. After running the tests, we see the following result shown in Figure 4.6. 
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            (a) LOW load                        (b) MEDIUM load                         (c) HIGH load 

Figure 4.6: Results for Topology 3 

 

In the above results, for the LOW load case shown in Figure 4.6(a), we see a 32.4% average 

increase in VS compared to regular TCP. NVS has over 14% average increase and standard 

MPTCP has just over 3% increase on average. In terms of confidence interval, we get 24.4% 

increase to 39.9% increase in VS compared to regular TCP, we get 2.4% to 26.2% increase in NVS 

compared to regular TCP and about 8% decrease to 15% increase in standard MPTCP compared 

to regular TCP. In the MEDIUM load case shown in Figure 4.6(b), we have an almost 40% average 

increase in VS and we see over 19% average increase in the NVS case and last, we see an over 

18% average increase in standard MPTCP compared to regular TCP. In terms of confidence 

interval, we get 32.3% to 46.6% increase in VS, we get 12.9% to 25.8% increase in NVS compared 

to regular TCP and about 13.7% increase to 22% increase in standard MPTCP compared to regular 

TCP. Finally, in the HIGH load case shown in Figure 4.6(c), we see over 21% average increase 

for VS, over 18% average increase for NVS and standard MPTCP achieves over 9% average 
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improvement over regular TCP. In terms of confidence interval, we get 18.1% increase to 25.6% 

increase in VS, we get 14.7% to 21.3% increase in NVS compared to regular TCP and about 0.4% 

to 17.7% increase in standard MPTCP compared to regular TCP. 

Now let’s aggregate each case to get an average percentage increase for all topologies for 

the LOW load cases only. The results are given below. 

 

Figure 4.7: Aggregate for LOW Load Cases 

 

The results show over 40% increase on aggregate for VS compared to regular TCP for the 

LOW load cases. For NVS we have over 32% increase compared to regular TCP and finally for 

standard MPTCP we have over 2% increase for LOW load cases. Now let’s do the same for 

MEDIUM load cases and we see the results below. Here the results show an aggregate of over 

55% increase in VS compared to regular TCP, over 40% increase in NVS and over 18% increase 

in standard MPTCP compared to regular TCP for MEDIUM load cases. 
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Figure 4.8: Aggregate for MEDIUM Load Cases 

Lastly, we get the aggregate for all HIGH load cases in the three topologies. The results 

are given below. 

 

Figure 4.9: Aggregate for HIGH Load Cases 

 

Again, here we see over 25% increase for VS, over 19% increase in NVS and about 10% 

increase in standard MPTCP compared to regular TCP for HIGH load cases. Now finally, on 

aggregating all the cases to together which is LOW, MEDIUM and HIGH, we see the below 

results. 
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Figure 4.10: Overall Aggregate for all Cases 

The final aggregate shows that there is an overall 40% increase in throughput in VS 

compared to regular TCP. NVS has over 30% increase in throughput and finally standard MPTCP 

has an overall 10% increase compared to regular TCP. 

Thereby to conclude the results obtained, we clearly see the best throughput in VS which 

achieves a 40% increase on the regular TCP which we use on the internet today. Apart from this, 

we also observe that in MEDIUM load cases we get the best improvement in performance for 

MPTCP in general compared to regular TCP which could be because in LOW load cases, there 

can exists scenarios where most shortest path from sender to receiver might not have interference 

from other connections using the same path where the HIGH load case, all links are being used 

but MPTCP shines here over regular TCP due to its congestion control mechanism and its ability 

to spread out traffic across all the links. Finally, the results clearly show the usefulness of this 

technique compared to regular TCP where it not only improves throughput in the network but also 

brings in load balancing and network efficiency. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

In this chapter, we give the conclusion for the thesis and provide grounds for future work 

in this area. 

 

5.1 Conclusion 

As seen in the results from the simulation that the use of MPTCP can greatly improve load 

balancing and network utilization in a network topology. Whereas directing MPTCP traffic with 

the use of VLAN specific paths and even without VLAN specific paths produces even better results 

in the overall throughput of the network. The concept of IP Aliasing could assist with associating 

multiple IP addresses with any host which would help with the generation of additional MPTCP 

subflows. MPTCP congestion control algorithms like LIA, OLIA and BALIA are used to handle 

flow control and the amount of data that would be sent through a subflow. In this thesis, we use 

the BALIA algorithm due to its effects on TCP neutrality and responsiveness. 

We used SDN techniques to direct subflows through the network at switch level as needed 

and we coupled the SDN and MPTCP concepts and created Hamiltonian paths for the MPTCP 

subflows to better utilize the network to improve load balancing. The paths are initially randomly 

created and the flows through each link is calculated. Then using standard deviation, we get a 

range for flows that can be allowed to pass a link at minimum and maximum. Once that is obtained, 

we can accordingly modify the paths to get optimal results and maximum network utilization. The 

number of paths is dependent on the egress ports on the switch connecting to adjacent switches 

from the ingress switch which is basically the switch that is directly connected to the hosts. The 

amount of unique VLANs which the hosts directly connected to the ingress switch belong to, is 

considered for the creation of paths in one technique while in the other technique this parameter is 
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not considered. Upon seeing the results, we notice that MPTCP with VLAN specific paths 

achieved the best throughput ahead of MPTCP without VLAN specific paths, standard MPTCP 

and regular TCP which is currently being used in the Internet. For LOW load cases, we see over 

40% increase compared to regular TCP in MPTCP with VLAN specific paths, whereas, we see 

over 32% increase compared to regular TCP in MPTCP without VLAN specific paths and finally 

we over 2% increase in standard MPTCP compared to regular TCP. The story is similar in 

MEDIUM load cases but even better performance was observed here where we see around 55% 

increase compared to regular TCP in MPTCP with VLAN specific paths, whereas, we see over 

40% increase compared to regular TCP in MPTCP without VLAN specific paths and we see over 

18% increase in standard MPTCP compared to regular TCP.  Finally, for HIGH Load cases, we 

see around 25% increase compared to regular TCP in MPTCP with VLAN specific paths, whereas, 

we see over 19% increase compared to regular TCP in MPTCP without VLAN specific paths and 

we see around 10% increase in standard MPTCP compared to regular TCP. The results obtained 

in the simulations show clear increase in throughput for the MPTCP process with the addition of 

paths compared to the regular TCP. 

 

5.2 Future Work 

Future work would include the automation of the path calculation process which could be 

fed into the switches which would be extremely beneficial and cost effective as it would save 

manual labor for the network administrator for the calculation of paths. Apart from this, path 

creation can also by dynamic rather than static where, path for subflows can keep changing based 

on the state of the network and the load taken by each link in the network. A hybrid of the Ingress 

fan-out phase with shortest path to destination from the first visited core switch is another 
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technique that can be considered, which again would be much more efficient compared to regular 

TCP. Ultimately, we can see with this thesis the benefits of using MPTCP in our networks 

especially coupled with the SDN style architecture where the direction of traffic can be controlled 

at the switch level. 
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