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ABSTRACT 

In electric power distribution systems, the major determinant in electricity supply strategy 

is the quantity of demand. Customers need to be accurately represented using updated nodal load 

information as a requirement for efficient control and operation of the distribution network. In 

Distribution Load Estimation (DLE), two major categories of data are utilized: historical data 

and direct real-time measured data. In this thesis, a comprehensive survey on the state-of-the-art 

methods for estimating loads in distribution networks is presented. Then, a novel method for 

representing historical data in the form of Representative Load Curves (RLCs) for use in real-

time DLE is also described. Adaptive Neuro-Fuzzy Inference Systems (ANFIS) is used in this 

regard to determine RLCs. An RLC is a curve that represents the behavior of the load during a 

specified time span; typically daily, weekly or monthly based on historical data. Although RLCs 

provide insight about the variation of load, it is not accurate enough for estimating real-time 

load. This therefore, should be used along with real-time measurements to estimate the load more 

accurately. It is notable that more accurate RLCs lead to better real-time load estimation in 

distribution networks. 

This thesis addresses the need to obtain accurate RLCs to assist in the decision-making 

process pertaining to Radial Distribution Networks (RDNs).This thesis proposes a method based 

on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) architecture to estimate the RLCs for 

Distribution Networks. The performance of the method is demonstrated and simulated, on a test 

11kV Radial Distribution Network using the MATLAB software. The Mean Absolute Percent 

Error (MAPE) criterion is used to justify the accuracy of the RLCs.  
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CHAPTER ONE: INTRODUCTION 

In any modern household, the primary source of energy consumption is undoubtedly 

electrical energy. In the electricity industry, the major determinant in electricity supply strategy 

is the quantity of demand. Another key element is the quality of obtained load data from 

measurements. As mentioned earlier, for Distribution Load Estimation (DLE), two major 

categories of data are utilized: historical data and direct real-time measured data. Due to its cost 

effectiveness, real-time measured data are usually more difficult to obtain compared to the 

availability of historical data.  Distribution Load Estimation (DLE) differs somewhat from Load 

Forecasting (LF) in the sense that LF is usually done on a time series analysis with the goal of 

predicting loads, days and/or weeks in advance; whereas DLE involves studying the network 

topology and its current parameters (load data and line data) to obtain nodal kW consumption 

and/or overall system kW magnitudes using sometimes limited measurement data. 

An RLC is a curve that represents the behavior of the load during a specified time span; 

typically daily, weekly or monthly, based on historical data. Although RLCs provide insight 

about the variation of load, it is not accurate enough for estimating real-time load. This therefore, 

should be used along with real-time measurements to estimate the load more accurately. It is 

notable that more accurate RLCs lead to better real-time load estimation in distribution networks. 

An RLC basically represents a group of load curves exhibiting similar demand patterns. 

Generating RLCs is what we hope to achieve in this thesis. 

There has been substantial interest in identifying RLCs in applications where daily 

fluctuation of customer demand is an important characteristic. A brief review of literature 

showed how RLCs were determined using both clustering and statistical methods [1], [2]. In 
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essence, RLCs can somewhat be used in conjunction as pseudo-measurements to estimate loads 

and also identify factors influencing variations in demand. Hence, if accurate enough, it’s of 

good advantage for the DLE process. They can be built in the set of similar load curves. These 

RLCs can be used in distribution network calculation; Distribution Load Estimation (DLE) and 

Distribution State Estimation (DSE) for example. 

This thesis addresses the need to estimate Representative Load Curves (RLCs) to assist in 

the decision-making process of Radial Distribution Networks (RDNs). A method is proposed 

based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) architecture to estimate the RLCs 

for Distribution Networks. Proposed by J.-S.R Jang in 1993 [3], ANFIS integrates the best 

features of Fuzzy Systems (FS) and Artificial Neural Networks (ANN) and can be used to learn 

information about a set of data. Further details will be explained going forward. The performance 

of the method is demonstrated and simulated, on a test 11kV Radial Distribution Network using 

the MATLAB software. The Mean Absolute Percent Error (MAPE) criterion is used to justify 

the accuracy of the RLCs. 

1.1 Organization of Thesis 

Objectively, in this thesis we aim to estimate RLCs. Available information possibly 

currently present describing the network include: historical data (load survey/research and billing 

data), customer information, load profiles and direct measurements amongst others. 

Transformers, distribution substations and some important metered loads are prominent sources 

of direct measurements. 
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The thesis would therefore be organized as follows: In this Chapter, we’d describe the 

power distribution networks briefly before shedding some light on its operation and connectivity 

of loads to the network. 

Chapter 2 presents a comprehensive literature review on Distribution Load Estimation 

(DLE) including some proposed methods on estimating the aforementioned Representative Load 

Curves (RLCs) for distribution networks. 

In Chapter 3, we’d present the test system chosen for this thesis. It’s a sample 11kV, 15-

node, radial distribution network. We’d further explain the source of the data used and how it 

was modified to suit the desired purpose of this thesis. We’d present a few computed statistical 

reports on the historical load data used in relation to the system. Its network parameters can be 

found in the appendix to aid in distribution state estimation and power flow approaches for 

anyone interested in performing these calculations. 

Chapters 4 and 5 are where attempts are made to estimate the RLCs using Adaptive 

Neuro-Fuzzy Inference Systems (ANFIS). A brief overview of ANNs, FS and ANFIS is 

presented first, before proceeding to explain the method used. Using the MATLAB software a 

simple approach to estimating RLCs for the sample 15-node distribution network is presented.  

Chapter 6 is where we display all obtained results. Hopefully, these RLCs present a quick 

snapshot or quick snapshots of how loads vary over time over a select period; and are also able to 

provide further information upon embarking a load estimation. The RLCs can also be used as 

pseudo-measurements in state estimation as well. Pseudo-measurements are generally used to 

augment the available real-time measurements. Various tables and graphical representations are 

obtained and shown as well as simulated results.  
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We also then conclude with chapter 7, discussing also any possible future research in 

determining/estimating RLCs. 

1.2 Distribution Networks 

1.2.1 Overview and Operation 

Electric power systems are real-time energy delivery systems, implying that power is 

generated, transmitted and distributed to loads/consumers instantaneously. They are also one of 

the largest and most important life support systems in engineering. Distribution networks 

transport this energy from substations at distribution centers to service-entrance equipment found 

at residential, commercial and industrial consumer facilities. Distribution feeders are normally 

radially connected and are fed from one or more sub-transmission lines. The major components 

found in all substations include: low-side and high-side switching, voltage transformation, 

voltage regulation, equipment protection and metering. The major components of radial feeders 

include: voltage regulators, transformers, loads, voltage laterals, the primary feeder and shunt 

capacitor banks amongst others [4].  

For efficient operation and control of power distribution networks, updated load 

information at each node is required to represent customers accurately. It’s important that electric 

power distribution networks meet customer load demands at all times in a safe and efficient way. 

The quality of load data obtained plays a huge role in DLE.  

It’s true that, power systems in all three phases rarely have balanced loads, impedances, 

voltages and currents. Balanced three-phase power systems have all three-phase voltages and 

currents having the same amplitude and are phase-shifted by 120° with respect to each other. By 
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using the techniques of symmetrical components, the analysis of unbalanced cases is greatly 

simplified. The neutral current in a balanced system is zero; even the removal of the neutral core 

would have no effect on the circuit. The superposition of 3 balanced systems, each with positive, 

negative or zero sequence of balanced voltages is used to analyze an unbalanced system.  

For simplicity and ease of comprehension in the study of power systems, the assumption 

of balanced three-phase systems is what’s mostly used in the analysis of most power networks. 

This assumption of balance simplifies the network so that a single-phase equivalent model of the 

network can be investigated. This assumption is propagated through this study and has also been 

found to be more sufficient in interconnected systems compared to distribution system analysis 

and modeling. This is due to a considerable number of served single-phase loads and non-

equilateral conductor spacing of overhead and underground line segments amongst others [4]. 

An interconnected system can be but not limited to a distribution system with multiple sources of 

available power that loops through the network, so that service is still maintained even though 

one power source goes down. This implies improved reliability, stability and reduction in the 

overall cost of providing reserves.  

Distribution systems designs include: Radial, Loop or Network. Widely used in sparsely 

populated areas and cheapest to build is the radial system. Probably is the least secure network 

too, coupled with the added advantage of fast fault localization. As the name implies, the loop 

system loops through the service area and returns to the original point. It’s usually tied to an 

alternate power source and is more secure and expensive than the radial system. As complicated 

as they are and located in congested areas, network systems are interlocking loop systems. 

Provides added reliability, but it’s the most expensive. 
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Effective operation of distribution networks are required to meet the increasing daily 

demand of various consumers on the network. Usually, one substation could supply many 

customers with power. It is widely accepted that placing meters or load monitoring devices on 

every feeder in the network is somewhat not economically justified why fulfilling its daily 

operation. Substantial research has been done in both state estimation and load estimation of 

distribution networks. Often times referred to as DSE and DLE respectively. Deregulated 

electricity markets where both generating companies and customers are active participants in 

ensuring maximum total social welfare and a fair market is where electric power systems are 

moving towards. Prominent features of distribution systems include [4], [5]: 

 Distributed generation 

 Radial or near radial structure 

 Unbalanced distribution of loads 

 Large number of branches/nodes 

 Multiphase, unbalanced operation 

Nodal load information and steady state analysis are amongst the basic requirements for 

efficient operation. 

Distribution system analysis differs somewhat from transmission systems in many ways 

and that’s why careful attention is given in their study. Distribution networks differ 

characteristically from transmission systems as outlined below [5]: 

 Presence of distributed generators (DGs). 

 Weakly meshed/radial structures. 

 High resistance/reactance (R/X) ratio of the lines. 
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 Low voltage levels compared with those of transmission systems. 

 Unbalanced networks/loads. 

 Shunt capacitor banks and distribution transformers. 

The power distribution system can also be described as a group of buses which are 

interconnected through distribution lines, switches and transformers [4]. Each bus may connect 

with loads, shunt capacitor banks, Distributed-Generators/Cogenerators etc. The 3 phases could 

be connected in delta or wye. 

As we all understand that most distribution networks are typically unbalanced, this study 

assumes a balanced system for simplicity of computations. 

1.2.2 Loads 

Electrical loads vary with time and the generation and distribution of power must quickly 

respond to the customers’ load demand at any time. Demand is load averaged over a specific 

period of time. The sampling time interval chosen for this study is 60-minutes (1-hour). For 

example, a typical 1-hour kW demand could be 250kW. Usually, the demand curve is broken 

into equal time intervals to define the load. The average value of the demand in each interval is 

what constitutes the load profile of a consumer [4]. The shorter the time interval, the more 

accurate the load value will be. How electric energy is used at various times (daily, weekly, 

monthly, and seasonally) and aggregated customers’ share of the utility’s total load is of major 

emphasis to Distribution System Operators (DSOs).  

The demand for electricity constantly varies and somewhat increases with population. 

The modern DSO needs accurate load data for the following purposes: 



8 

 

 Tariff planning and pricing  

 Proper operation and network planning 

 Efficient management of loads and power production planning 

 Customer service  

 Billing  

 Availability of information to the general public  

To estimate some sort of RLCs from load research measurements/historical data to 

pictorially represent how loads vary at both nodes and substations at select periods (daily, 

weekly, monthly, and seasonally); is one objective we hope to achieve at the end of this study. In 

electric power distribution systems, the need to improve the knowledge of loads by developing 

improved load models from aggregated load information is endless. Important specifications of 

load data include its classification (residential, commercial, industrial etc.), time, and magnitude 

and system location. 

A load profile is a graph of the variation in the end user electrical load over time. The 

most important factors influencing electric loads include: customer behavior, weather conditions, 

electrical appliances and installations, time dependencies and previous load values amongst 

others. Billing meters (or transformer capacity) also provide the measurements from customer 

loads. The annual energy data can be used, but more preferably is the annual hourly load data for 

determining RLCs. Sometimes, typical daily load curves in different load classes are also 

available. Monthly energy consumption and hired power contracts are also good data sources. 

All these information can be mined for the abstraction of load information. Data collection can 
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be quite costly taking into account the time and volume of data involved, and the fact that this is 

done continuously. 

Recently, there’s also been an increase in Automated Metered Reading (AMR) and 

Feeder Terminal Units (FTUs) in few electric utilities to obtain enough information about the 

system [5]. This is also sometimes uneconomical as suggested by most utilities. AMRs provide 

utilities with accurate and up-to-date electricity consumption and status data. FTUs are used for 

the supervision, control, measurement and possibly, protection of medium voltage networks. 

Most utility companies also embark on load research and/or measurement campaigns to collect 

and analyze load data from various locations on the distribution network. This helps to implicitly 

characterize consumers’ behavior. Rather expensive it is these days due to costs of human work 

and state-of-the-art metering instruments; but results of improved accuracy and more efficient 

energy production have been proven. The expenses incurred in gathering load data from the 

network are significant. Now that AMR systems are becoming a common feature, RLCs can also 

be estimated using actual consumption data. But that’s another topic for the future. 

We assume loads to be normally distributed where the parameters (mean, standard 

deviation and variance) are used to describe a random variable. For more details on distribution 

networks, see [4]. Composed of thousands of individual components, the system load is a 

random non-stationary process. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Distribution Load Estimation (DLE) 

Accurate load estimates not only brings utilities big economic benefits by lowering the 

cost of operation through a high automation degree, but also improves the satisfaction of 

customers by increased quality of power. Load estimates are needed in advanced functions of 

Distribution Automation (DA). A DA as adopted from the IEEE definition, “is a combination of 

automation systems that enables an electric utility to monitor, coordinate and operate some or all 

the distribution network components in real time”. However, DLE has been found to be 

somewhat challenging because of the limited availability of real time measurements and the 

sheer number of loads [6], [7]. Traditionally, load estimates are obtained through occasional real-

time measurements, monthly billing data and monthly peak load readings.  

Many methods have been proposed for DLE. Some methods used customer kWh 

consumption, transformer kVA ratings, or monthly peak load reading to estimate loads. A few 

others have combined historical data with available real-time measurements to improve load 

estimates. Our objective; which is to estimate RLCs in this light is what we hope to achieve, 

replacing historical data as pseudo-measurements in DLE calculations. A short review of various 

methodologies developed in various literatures is presented here briefly. Methods ranging from 

traditional to intelligent methods are briefly discussed. These methods try to exploit various 

power system properties and/or data to estimate the load. In general, the only information 

available regarding loads, other than data from major distribution substations and equipment 

installations, is the billing cycle customer kWh consumption, all of which can be mined for the 

abstraction of load information [5].  
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The efficiency and effectiveness of the proposed methods depend on how well the 

resulted estimates match these available measurements and satisfy some relations and constraints 

based on power flow calculations. DLE provides static real and reactive load estimates for each 

system node in a power network given synchronized measurements. For accurate representation 

of customers in electric power distribution networks, up-to-date nodal load information is 

required. An overview of Distribution Load Estimation (DLE) in power distribution systems is 

also presented in [5]. Desirable Distribution Automation (DA) functions or Distribution 

Management System (DMS) applications such as service restoration, planning and Demand Side 

Management (DSM), depends highly on the load data. Estimates can be processed to meet the 

different requirements of the DMS applications if real and reactive load estimates of these 

networks can be provided. 

Most times, DLE algorithms have two steps; the first step involving an initial guess and 

its adjustment of accuracy at the second step. DLE, different from Distribution State Estimation 

(DSE) can provide the estimates of both load and states. Often times, State Estimation (SE) tools 

are widely carried-out in high voltage transmission networks where a number of redundant on-

line measurements and dependable communication channels are available. Dispatching the 

separate measures to a centralized controller, they form a fully integrated Supervisory Control 

and Data Acquisition (SCADA) system. Distinctive from the high voltage bulk transmission 

network, reliable on-line measurements and communication mediums may be at present not fully 

available at the distribution level. 

Several approaches have been proposed to estimate loads in various literatures. In [8], 

[9], V.P. Borozan et al, and [10], Broadwater et al., load estimates were obtained by scaling 
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measurements according to transformer’s peak load analysis or existing actual load curves 

respectively. Loads were designated/allocated to individual line sections. Affecting load 

allocation is diversification of load groups and coincidence of peak loads. These methods are 

more suitable for estimating peak load. In [11], [12], the idea using DSE techniques for DLE was 

mentioned by Baran et al. as a by-product of DSE. In [13], Wang et al. proposed a two-step 

procedure combining load allocation with DSE techniques. Firstly, loads are allocated according 

to billing data and typical load curves. In the second step, the coarse load estimates from the first 

step were used as load pseudo-measurements. A Weighted Least-Squares (WLS) SE was 

performed with on-line measurements and load pseudo-measurements to compute real and 

reactive loads based on state estimates on the assumption that the network was balanced and 

single phase analysis was used. 

Ghosh et al. proposed a statistical load modeling technique to express the variation of 

active power demand in radial networks [14]. With power flow measurements taken into 

consideration, their procedure divides the network into sub-trees to handle multiple 

measurements and provides a measure of uncertainty/ambiguity in load estimates for different 

classes of loads. Class-specific daily load curves with their means and deviations were obtained 

using statistical approaches. The mean of the load estimate at specific times were computed 

based on the mean of the corresponding load model factor and the average daily customer 

demand in the billing cycle. Most essentially, it’s used for probabilistic distribution state 

estimation (DSE) in radial networks. 

In [15], Nazarko et al. applied ideas of fuzzy regression to express the correlation 

between substation peak active loads and supplied customer active loads in radial networks. 
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Unreliable and inaccurate input data having been modeled by means of fuzzy numbers, and 

trapezoidal and triangular forms of fuzzy numbers were used for illustrating input data. They 

determined a regression model, expressing the correlation aforementioned existing in the 

substation population. An intelligent approach used for peak load estimation. 

In [16], Kuo and Hsu used expert knowledge and operator experience, where fuzzy 

variables were used to represent linguistic descriptions for the size of loads. Based on the ratio of 

the sum of the rated transformer capacities of the branching point to the sum of rated capacities 

of transformers supplied from the feeder, the load current at the branching point was scaled down 

from the available feeder current. They approximated the load current at a bus as a fuzzy variable 

described by the membership function. This is a time of day dependent DLE technique. 

In [17], Irving et al. proposed a Weighted Least Absolute Value (WLAV) approach to 

reduce the effect of gross errors in measurements. Active power flows in each branch of the 

network were used to define state variables, which were in turn used to express measurement 

functions. Through some constant coefficients, voltage information and reactive power amongst 

others were included in measurement equations. In [18], Falcao et al. applied neural and fuzzy 

set techniques to obtain load curves for customers’ classes based on their monthly energy 

consumption and a large set load curves’ data extracted from measurements. They applied a 

kohonen network and fuzzy techniques to classify customers into clusters judiciously. The range 

of uncertainty of the load curve was also induced and used to obtain a rough estimate of the load. 

They came up with a linear programming estimator to refine the load estimates to match the 

actual real-time measurements at initial feeder points. 
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A zonal load estimation that divides radial distribution networks into several zones by 

profiting from how the special properties of the measurement Jacobian is expressed is proposed 

by J. Wan et al. in [5, 6, 19]. They all treated loads as variables as opposed to pseudo-

measurements, considering the load driven nature of distribution networks. The same authors in 

[7], also proposed a Weighted Least Squares (WLS) method with multiple load parameters for 

DLE by treating loads as variables as well. An exterior penalty method is used to reconstruct the 

formulated nonlinear constrained optimization problem into an unconstrained problem. Also 

noted in these methods was the importance of the percent accuracy of pseudo-measurements to 

be used to ensure system observability.  

Other proposed methods not mentioned above include; a Case-Based-Reasoning (CBR) 

method is presented for distribution network nodal load estimation in [20] by J. Wu et al. and 

also incorporates fuzzy neural networks. A more recent DLE method using clustering techniques 

is presented in [21] by Grigoras et al. in which k-means clustering is used as part of the 

estimation process to obtain coarse estimates and these estimates are further refined to obtain the 

estimated load. Konjic et al. applied Fuzzy Inference Systems (FIS) to estimate substation load 

in [22], by aggregating individual FIS of Takagi-Sugeno type. The model was developed from 

actual measurements forming a base of raw data of customer information allowing one to build 

large tests and training sets of simulated low voltage (LV) substations, leading to the 

development of the fuzzy system. 

The methods listed above are only a subset of many other methods developed in literature 

and can be readily divided into four classes: traditional, intelligent, and statistical and those that 

apply SE related techniques. Most methods employ pseudo-measurements. Some of which 
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include; average daily customer demand and/or classified typical load curves. These are good 

candidates for DLE, but not as good enough as the RLC. This is because the RLCs are 

customer/node dependent and are obtained from historical data. In essence RLCs give a better 

indication of the customer/nodal load and is therefore a better candidate for pseudo-

measurements. The figure below presents a snapshot summary of the literature review, showing 

4 classifications of Distribution Load Estimation (DLE) techniques. Some proposed methods 

may combine two or more of these techniques: 

 

 

Figure 1: Classifying Load Estimation Techniques 

 

2.1.1 Representative Load Curves 

Representative Load Curves (RLCs) show typical daily, weekly or monthly load curve 

which represents a group of load curves exhibiting similar demand patterns. Highly accurate 

 



16 

 

Representative Load Curves (RLCs) can be used to describe electricity demand. A brief review 

of literature showed how RLCs were determined using both clustering and statistical methods. 

The demand can be expressed as a peak demand (MW), annual demand (GWh) or annual load-

duration curves for electricity depending on the type of planning. Essentially, RLCs can 

somewhat be used to estimate loads and also identify factors influencing variations in demand. 

The planning horizon for the estimated RLCs can be at least one year and encompass all 

variations. It is important to note that RLCs in most cases represent a means to an end, and not 

an end in itself. And that’s why we propose this be used in conjunction with real-time 

measurements to achieve more accurate load estimates. The studies on building RLCs are rare, 

and therefore is the objective of this thesis. We proceed by reviewing the literature on this topic. 

In [2], Balachandra et al. propose the use of Multiple Discriminant Analysis (MDA) to 

cluster daily load curves into a set of RLCs. MDA is a method for compressing a multivariate 

signal to yield a lower dimensional signal tractable to classification. They proceed to explain 

why it’s important that RLC’s capture the dynamics of demand variations if it’s in any way to be 

used in the control and operation of distribution networks. 

An order-specific clustering algorithm for the determination of representative load curves 

is proposed by Marton et al. in [1]. They proposed an algorithm that utilizes RLCs to describe 

the cluster it generates. Their objective is to generate clusters that represent a segment or 

segments of a time-ordered data set which in this case would be historical data, while preserving 

and accommodating daily fluctuations. 

In [23], Binh et al. built RLCs in the set of similar demand/load curves by clustering 

analysis as well, on the basis of their electricity behavior. Fuzzy K-Means (FKM) is utilized in 
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their work. Actual measurements from different feeders derived from a distribution network 

were used as load data in their work. They also used Bellman-Zadeh maximization principle and 

global criterion method to compromise the cluster validity indexes and determine the optimal 

cluster number. Details on determining a suitable weighting exponent was further introduced. 

Similarly, in [24], Hossain et al. also apply FKM to determine typical load profiles of 

consumers. Their results demonstrated how to assign typical load profiles to consumers on a test 

feeder efficiently. 

Another clustering algorithm presented by Gerbec et al. for determining RLCs are 

presented in [25]. They apply both the hierarchic clustering algorithms and FKM to derive 

typical load profiles from obtained measurements with Ward distance between the clusters. They 

aimed at comparing the classification techniques applied for classification of measured load 

profiles and showing how they all generate comparable cluster results. 

A review and analysis of residential electric load curve models is presented by Grandjean 

et al. in [26]. They identified two main types of load curve models; Top-Down and Bottom-Up; 

used in residential class-loads and proceed further in comparing the two. Applications of RLCs 

were also found. For example, a method using RLCs of each consumer’s activity to determine 

expected loading in preset part of the distribution network is presented by Jardini et al. in [27]. 

RLCs being obtained from field measurements are aggregated to determine the expected loading 

in equipment supplying power to the network. 

Fidalgo in [28], uses an innovative way, combining Kohonen clustering with the use of 

Artificial Neural Networks (ANN) to estimate load curves for distribution systems. The method 
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includes three main procedures: clustering, inference of load diagrams of MV/LV public stations 

and finally, the estimation of error bars providing its performance measures.  

It has been proven that ANFIS combines the best properties of Artificial Neural 

Networks (ANN) and Fuzzy Logic (FL) in estimation/curve-fitting aspects and it’s therefore our 

desire to prove that fact remains the same in our study of estimating RLCs for distribution 

networks. Secondly, not much work is done with regards to ANFIS applications in estimating 

RLCs; another reason for this study. Finally, none of these methods were applied to data sets 

ranging from year to year, in order to estimate weekly/daily RLC’s for each month for either the 

substation or the node. This is to be achieved here based on section by section, or window by 

window comparisons in terms of minimum absolute percent error between the estimated RLC 

and the historical measured data. RLCs are therefore customer/node dependent and are obtained 

from historical data. In essence RLCs give a better indication of the customer/nodal load and is 

therefore a better candidate for pseudo-measurements. 

So in this thesis, we ask these questions: How do you prioritize which subset of the 

historical dataset one intends to use as pseudo-measurements alongside real-time measurements 

for distribution system load estimation? What criterion makes that subset an ideal set of pseudo-

measurements to be used in DLE? For example; if you want to estimate the real-time load in a 

distribution network at say Jul. 19th, 2011 at 0300 hours and you have say three years (2008 – 

2010) historical measured data for a distribution network. Unfortunately, you have only a few 

synchronized real-time measurements from various meters (like AMRs) placed in certain 

locations on the network. But you don’t have any direct measurement for the particular node 

under study. Now do you use, Jul. 19th, 2008 at 0300 hours OR Jul. 19th, 2009 at 0300 hours OR 
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Jul. 19th, 2010 at 0300 hours as pseudo-measurements for the DLE process. Even if you want to, 

how do you prioritize your choice? Hence the reason for RLCs, to sort of integrate the properties 

of these three different times in the past into a single curve that represents them, 

characteristically taking a snapshot of the way load varies during this select period. With ANFIS, 

we hope to prioritize this selection and achieve this objective. 

Two major categorizations exist upon reviewing various methods proposed in the 

estimation of RLCs; 

Computational Intelligence and Artificial Intelligence Methods 

 Fuzzy K-Means (FKM) Algorithm 

 Hierarchical Clustering (HC) Algorithm 

 Artificial Neural Network (ANN) in collaboration with Kohonen Clustering tool  

 Knowledge-Based Expert Systems 

Statistical Methods 

 Using load survey systems according to some predefined consumers classes 

 Multiple Discriminant Analysis (MDA) 

 Top-Down Models and Bottom-Up Models 

 Regression Models 

Using the MATLAB software, we present an uncomplicated method to estimate RLCs 

using Adaptive-Neuro-Fuzzy Inference Systems (ANFIS). 
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CHAPTER THREE: DATA ANALYSIS/SURVEY 

We present the sample 15-node distribution network used for this study. The source of 

various components of the data used is further explained and how it was modified to suit the 

desired purpose of this thesis. We’d present its network parameters in the appendix as well as 

computed statistical reports on the load data related to the system here.  

3.1 Sample Data 

 

 

Figure 2: 11kV Test Distribution Network [29] 

 

The figure shown above was extracted from [29] and is a single line equivalent diagram 

of an existing three-phase, 11kV radial distribution feeder. We assume this to be one of the 

feeders on a power company’s distribution grid. The power distribution system can also be 

described as a group of buses which are interconnected through distribution lines, switches and 
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transformers [4]. System loads are considered as constant (PQ) power or spot loads. The 

substation at bus 1 is considered as a slack bus with a constant voltage and is the only supply 

source in the system. Power factor of the load is taken as cos ϕ = 0.70. As is found in most cases, 

line shunt capacitance (different from shunt capacitor banks that are considered as loads) is 

considered to be negligible at the distribution voltage levels. Those are some of the assumptions 

made regarding the test network. Power Flow (PF) and Distribution State Estimation (DSE) can 

be used to find the voltage profile along the feeders. The line data for the network is presented in 

the appendix. 

The load data used was mined and extracted data from [30] and was used for 

computational purposes in this thesis. Reason is because; one needs a huge data set for the 

ANFIS computations. Modifications were attainable on two years of historical measured data 

which was used for this study. The data source was primarily from PJM interconnection. PJM is 

a Regional Transmission Organization (RTO) that coordinates the movement of wholesale 

electricity in all or parts of 13 states and the District of Columbia. An RTO is responsible for 

moving electricity over large interstate areas, by coordinating, controlling and monitoring an 

electricity transmission grid that is larger with much higher voltages than a typical power 

company’s distribution grid. Two years’ data (2009, 2010) were mined and extracted from the 

data source to represent same two years (2009, 2010) for a sample network. Changing the 

historical metered readings from the data source from MW to kW and assuming this change to be 

effected to our test network is exactly what was done. The result is an adapted historical metered 

load for our sample network summarizing the kW real time demand.  
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The sum of individual demands of a diverse set of customers is the total demand met by 

the utility. The sample 11kV, 15-node distribution network is named/designed as follows: The 

sample 15-node distribution network is assumed to be one of the feeders on a power company’s 

distribution grid. The substation feeds the remaining 14 nodes to be named as follows (Bus 2 – 

RV, Bus 3 – LAG, Bus 4 – DEL, Bus 5 – CR, Bus 6 – BAY, Bus 7 – ABJ, Bus 8 – KAT, Bus 9 

– SOK, Bus 10 – IM, Bus 11 – AB, Bus 12 – KAD, Bus 13 – TAR, Bus 14 – EK, Bus 15 - OY). 

This is just a naming procedure and represents the loads fed from the substation. As was said 

earlier, all these assumptions were done to enable the ease of computation. 

Some of the graphical statistics on the selected 2009 data was performed and a few of 

them are shown below. Reason we opt to show statistics on 2009 data is because this constitutes 

our training dataset for ANFIS. 2010 data on the other hand constitutes our checking dataset. 

Both sets of data would be used to validate the selected Fuzzy Inference System (FIS), and are 

both similar datasets. More insight would be provided in subsequent chapters. RTD signifies real 

time demand (historical data). 
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Figure 3: 2009 System Historical Real Time Demand (RTD)  

 

 

Figure 4: 2010 System Historical Real Time Demand (RTD) 
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Figure 5: 2009 System Historical Monthly Summary 

 

 

Figure 6: 2009 System Historical Monthly Net RTD 
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Figure 7: 2009 Nodal Net RTD (Excluding Substation Bus) 

 

 

Figure 8: 2009 Nodal Historical Summary 
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Figure 9: July 2009 System Historical RTD  

 

 

Figure 10: November 2010 System Weekly Mean RTD (1st 4 Weeks) 
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Figure 11: 2009 12 Month Weekly Mean RTD (1st 4 Weeks) 

 

 

Figure 12: August 2009 Nodal Weekly Mean RTD (1st 4 Weeks) 
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Figure 13: Bus 11 (AB) 2009 Weekly Mean RTD (1st 4 Weeks) 

 

 

Figure 14: Bus 7 (ABJ) 2009 Load Profile Data 
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CHAPTER FOUR: ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS 

(ANFIS) 

Proposed by J.-S.R Jang in 1993 [3], ANFIS integrates the best features of Fuzzy 

Systems (FS) and Artificial Neural Networks (ANNs) and can be used to learn information about 

a data set. We begin the section by presenting brief descriptions of ANN and FS and then 

proceed to ANFIS and how it can be used to estimate RLCs. This is somewhat of a data-fitting 

process. 

4.1 Brief Overview of ANNs: 

Inspired by biological nervous systems, Artificial Neural Networks (ANNs) consist of 

simple elements operating in parallel, where the connections between elements as in nature, 

largely determine the network function. By fine-tuning the values of the connections (weights) 

between elements, the ANN can be trained to perform a particular function [31]. ANNs are 

typically trained so that a specific input leads to a specific target output. Basically, the 

application of ANN is based on their capacity to mirror human behavior and neural structure to 

formulate a good approximation of functional relationships between input and output datasets. 

This is usually done using historic process data. In essence, many such input/target pairs are 

needed to train the network until its output and target match. ANN is therefore non-parametric 

and data-driven. The network learns the data and rewards the correct response of the system to 

an input by increasing the strength of the current matrix of nodal weights. This can be achieved 

with the aid of the MATLAB software [32], [33]. 
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Figure 15: A Simple Neuron 

 

There are three distinct processes that take place in a sample simple neuron as shown in 

the figure above: 

 The weight function: a product of the weight, w and the input, p. 

 The net input function: the sum of the weighted inputs, wp and the bias, b. 

 The transfer function: produces the scalar output, a after the net input passes through the 

transfer function, f. Examples include; linear, tan-sigmoid and log-sigmoid amongst 

others. 

𝑎 = 𝑓(𝑤𝑝 + 𝑏) ( 1 ) 

The simple neuron can be extended to handle vector inputs, p in conjunction with a 

weight matrix, W. Excluding the inputs, a layer in the network can include, the weights, the 

multiplication and summing operations, the bias and the transfer function. Two or more of the 

neurons can be combined in a layer, and a particular network could contain one or more such 

layers. A network can have several layers, where each layer has a weight matrix, a bias vector 

and an output vector. It is also common for the number of inputs to a layer be different from the 

number of neurons. For multilayer networks, the layer that produces the network output is called 
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an output layer, whereas all other layers are called hidden layers. An example is shown below 

[32], [33].  

 

 

Figure 16: A Typical Feed-Forward Multi-Layer Neural Network 

 

The parentheses help identify the layer elements, with respect to the input neuron, (1), (2) 

etc.; whereas the concatenated number alphabets identify the corresponding layer, (1), (2) etc. for 

example; n1(2) means the 2nd neuron in layer 1. R is the number of elements in the input vector. 

S is the number of neurons in each (layer); for example, W2(S2,S1), implies a weight matrix in 

layer 2 of size S2-by-S1(i.e. number of neurons in layer 2 by number of neurons in layer 1). F is 

the transfer function used in the respective layer. A constant input 1 is normally fed to the bias 

for each neuron. The output of the neurons in the third layer for example is therefore the network 

output of interest and is: 
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𝑎3 = 𝐹3(𝑊3 ∗ 𝐹2(𝑊2 ∗ 𝐹1(𝑊1 ∗ 𝑝 + 𝑏1) + 𝑏2) + 𝑏3) ( 2 ) 

The network can be trained for function approximation (nonlinear regression) or pattern 

recognition. Training involves adjusting the values of weights and biases of the network to 

optimize/improve network performance after network inputs, p and target outputs, t have been 

fed to the network. The back-propagation algorithm, amongst others is commonly used to 

optimize network performance by computing the gradient of the network performance with 

respect to the network weights, and the Jacobian of the network with respect to the weights [31]. 

The mean square error mse is the default performance function for feed-forward networks and is 

the average squared error between the network outputs, a and the target outputs t. 

𝑚𝑠𝑒 =  
1

𝑁
∑ (𝑡𝑖 − 𝑎𝑖)

2𝑁
𝑖=1  ( 3 ) 

The multilayer feed-forward neural network often has one or more sigmoid hidden layer 

neurons followed by a linear output layer neurons. The multiple layered neural network with 

nonlinear transfer functions enable the network to learn nonlinear relationships between input 

and output vectors [32]. The dataset has to be properly representative of what the actual goal is. 

Essentially, ANNs have been applied in some of the literature mentioned earlier with regards to 

estimating the RLCs and it’s been noted that these RLCs were estimated quite well. It’s 

important the expert or user characterizes his network in terms of input/output relationships, as 

ANNs have many applications in the field of Electrical Engineering. 
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4.2 Brief Overview of Fuzzy Logic (FL): 

Firstly, Fuzzy Logic (FL) using linguistic terms in its description is somewhat close to 

human thinking style. Membership degrees are designated to variables and are identical with 

fuzzy sets’ theory which relates to classes of objects without crisp or clearly defined boundaries 

in which membership is a matter of degree. It’s basically a logical system; an extension of 

multivalued logic. IF-THEN rules of the Fuzzy System (FS) are used to calculate different cases 

of each input’s fuzzy sets. The optimum outputs obtained as a result of this operation are much 

closer to the target outputs. FL is all about the relative importance of precision. The building of 

the optimum results for the system depends on the experience of the expert [34], [35]. 

Some basic terminologies involving FL include: rules, fuzzy inference, membership 

functions and defuzzification, amongst others. IF-THEN statements used to map an input space 

to an output space are called rules and it’s a primary mechanism for FL. All rules are evaluated 

in parallel, and the order of the rules is not important. A fuzzy inference translate the elements in 

the input vector and based on some set of rules, assigns values to the output vector. A curve 

defining how each point in the input space is mapped to a membership value (or degree of 

membership between 0 and 1) is a membership function (MF). Examples include triangular, 

trapezoidal, Gaussian, generalized bell membership functions amongst many others. 

Defuzzification implies obtaining a single number from the aggregated output fuzzy set [36]. 

Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic and create IF-

THEN rules that can be used to formulate the conditional statements that comprise FL. Example: 

 if x is A then y is B 
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where A and B are linguistic values defined by the fuzzy sets on the inputs X and Y, respectively. 

The IF-part is the antecedent, while the THEN-part is the consequent. The output of each rule is 

a fuzzy set [37], [38]. The fuzzy inference process as explained above involves five steps:  

 Fuzzification of the input variables 

 Application of the (AND or OR) fuzzy operator in the antecedent 

 Implying the consequent from the antecedent 

 Aggregation of the consequents across rules 

 Deffuzification 

Furthermore, two commonly used types of Fuzzy Inference Systems (FIS) include: 

Mamdani and Sugeno. Mamdani-type FIS [39] implies there’s a fuzzy set for each output 

variable that needs defuzzification. Sugeno-type FIS [34] implies singleton output membership 

functions and can be thought of as a pre-defuzzified fuzzy set. Rather than integrating across the 

two-dimensional function to find the centroid as with Mamdami-type, Sugeno-type FIS uses the 

weighted average of a few data points, effectively simplifying the computation required. 

Moreover, Sugeno-type systems lend itself to the use of adaptive techniques for constructing 

fuzzy models. The membership functions can be customized using these adaptive techniques so 

that the FS best models the data [36]. Mamdani-type systems are more suited to human input. 

In soft computing, a neuro-fuzzy system is one of the highly viewed methods in soft 

computing combining elements of fuzzy logic and neurocomputing. Jang developed ANFIS, 

serving an important role in the induction of rules from observations, can model nonlinear 

function of arbitrary complexity. We therefore present ANFIS in the next section. 
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4.3 Overview of ANFIS: 

Essentially, a Fuzzy Inference System (FIS) in precise description is a model that maps 

input characteristics to input membership functions, input membership functions to rules, rules to 

a set of output characteristics, output characteristics to membership functions, and the output 

membership function to a single-valued output or a decision associated with the output. ANFIS 

comes into play when one can’t ascertain what membership functions look like simply from 

looking at data. With ANFIS, one can construct a FIS whose membership function parameters 

are tailored using either a back-propagation algorithm or a least-squares type algorithm amongst 

others, on a well-represented input/output dataset in order to account for variations in the data 

values. The back-propagation algorithm is also known as the gradient descent algorithm. The 

MATLAB software aids in executing this task by providing an optimization scheme that best fit 

the dataset [36]. 

J.-S.R Jang in 1993 [3] proposed ANFIS which integrates the best features of Fuzzy 

Systems (FS) and Artificial Neural Networks (ANN) and can be used to learn information about 

a data set. This involves utilizing linguistic information from the FL as well as the learning 

capability of an ANN for automatic fuzzy IF-THEN rule generation and parameter optimization. 

To illustrate the system architecture he proposed, we assume the Fuzzy Inference System (FIS) 

which consists of five layers of adaptive network with two inputs x and y and one output f. 

Essentially there are five components: inputs and output database, a Fuzzy System generator, a 

Fuzzy Inference System (FIS), and an Adaptive Neural Network. The multilayer feed-forward 

network in which each node (neuron) performs a particular function on incoming signals is an 

adaptive network.  
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Each layer contains some nodes described by the node function. Each ANFIS layer has 

specific functions that are used in calculating input and output parameter sets. A few layers have 

the same number of nodes, and nodes in the same layer have similar functions. A fixed node is 

indicated with a circle, whereas an adaptive node is indicated with a square. An adaptive node 

has parameters while a circle node has none. This section supposes that the system consists of 

two fuzzy IF-THEN rules based on Takagi and Sugeno’s type [40]. 

Rule 1: if x is A1 and y is B1, then f1 = p1x + q1y + r1. 

Rule 2: if x is A2 and y is B2, then f2 = p2x + q2y + r2. 

 

 

Figure 17: Proposed ANFIS by J.-S. R. Jang 

 

The crisp inputs to the nodes are x and y; whereas A1, B1, A2, B2 are fuzzy sets, and f 

which is sometimes referred to as the weighted average. The node in the i-th position of the k-th 

layer is denoted as Ok,i, and the node functions in the same layer are of the same function family 

as described below: 
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Layer 1: is the input layer and every node i in this layer is a square (adaptive) node with a 

node function (eq.4). Ok,i is the membership function of Ai, and it specifies the degree to which 

the given x satisfies the quantifier Ai. Usually, the bell-shaped membership function is selected 

by this method as the input membership function (eq.5) with maximum equal to 1 and minimum 

equal to 0. This membership function has been found to be commonly preferable and is 

employed from a computational point of view. 

𝑂1,𝑖 =  𝜇𝐴𝑖(𝑥)       𝑓𝑜𝑟 𝑖 = 1,2 ( 4 ) 

𝜇𝐴𝑖(𝑥)  =  
1

1+[(
𝑥−𝑐𝑖

𝑎𝑖
)

2

]

𝑏𝑖
 ( 5 ) 

where ai and bi vary the curve’s width, bi is a positive value and ci denotes the curve’s center. 

Otherwise known as antecedent parameters of the FIS. 

Layer 2: is the layer where every node here is a circle (fixed) node, marked by a circle 

and labeled Π, with the node function (eq.6) to be multiplied by input signals to serve as output 

signal. 

𝑂2,𝑖 =  𝑤𝑖 =  𝜇𝐴𝑖(𝑥) ×  𝜇𝐵𝑖(𝑦)       𝑓𝑜𝑟 𝑖 = 1,2 ( 6 ) 

where the output signal wi represents the firing strength of a rule. 

Layer 3: here also, every node is a fixed node, marked by a circle and labeled N, with the 

node function (eq.7) to normalize the firing strength by calculating the ratio of the i-th node 

firing strength to the sum of all rules’ firing strength. 

𝑂3,𝑖 =  𝑤𝑖̅̅ ̅ =  
𝑤𝑖

𝑤1+ 𝑤2
       𝑓𝑜𝑟 𝑖 = 1,2 ( 7 ) 
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Layer 4: all nodes i are adaptive nodes in this layer, marked by a square, with node 

function (eq.8). The parameters in this layer will be referred to as consequent parameters. This is 

where ANFIS applies least-squares technique to identify them. 

𝑂4,𝑖 =  𝑤𝑖̅̅ ̅ 𝑓𝑖 = 𝑤𝑖̅̅ ̅ (𝑝𝑖𝑥 +  𝑞𝑖𝑦 +  𝑟𝑖) ( 8 ) 

where pi, qi, ri are the parameters of linear function (in THEN part) in a Sugeno fuzzy model. 

Layer 5: The single node in this layer is a fixed node and computes the overall output as 

the summation of all incoming signals (eq.9). 

𝑂5,𝑖 =  ∑ 𝑤𝑖̅̅ ̅ 𝑓𝑖𝑖 =
∑ 𝑤𝑖𝑓𝑖=1

∑ 𝑤𝑖𝑖=1
= 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 ( 9 ) 

With the aid of MATLAB, and a collected input/output dataset of which one cannot 

easily discern membership functions arbitrarily or establish some sort of 

relationship/characterization between the input/output data pair; a Fuzzy Inference System (FIS) 

can be constructed whose membership function parameters are tuned (adjusted) using either a 

back-propagation (gradient-descent) algorithm alone or in combination with a least squares type 

of method (forming a hybrid learning algorithm) through the learning process. The ANFIS 

system is generally trained by the hybrid learning algorithm. This adjustment allows the fuzzy 

systems to learn from the data they are modeling and aimed at matching the ANFIS output with 

the training data. In the forward pass, the algorithm uses least-squares method to optimize the 

consequent parameters, and keeps the premise parameters are fixed. Once the optimal 

consequent parameters are obtained, the backward pass begins to optimize the premise 

parameters. However, in this stage the hybrid algorithm uses a gradient descent (back-

propagation) method for updating and tuning optimally the premise parameters corresponding to 
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the fuzzy sets in the input. This is done for each epoch (iteration). The signals in the forward pass 

are the node outputs, whereas in the backward pass, they are the error rates [3]. 

The FIS is a network type structure similar to that of a neural network, mapping inputs 

through output membership functions and associated parameters, and then through output 

membership functions and associated parameters to outputs, can be used to interpret the 

input/output map [36]. The MATLAB software presents a few restrictions to implement an 

ANFIS on an input/output dataset. They include: 

 Current application of only Sugeno-type decision method 

 Only one output can be defined 

 Deffuzification is weighted mean value 

 The output uses only constant and linear output membership functions 

All these restrictions are still valid for the present test case we are trying to implement: 

estimate RLCs. As mentioned earlier, it’s key to note that the gradient method is applied to the 

calculation of input membership function parameters, and least-squares method is applied to the 

calculation of the output function parameters. Most research conclude that the effectiveness of 

the ANFIS depend on the input selection, the membership function (MF) selection and the rule 

generation. 
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CHAPTER FIVE: METHODOLOGY 

An adaptive neuro-fuzzy inference system model, modified to suit different purposes, 

was used to estimate RLCs from historical load data. Data input selection was done by trial and 

error method, heuristically. Basically, ANFIS takes the initial fuzzy model generated by 

MATLAB functions and tunes it by means of a hybrid learning algorithm. At each epoch 

(iteration), an attempt is made to reduce the error measure, usually defined as the sum of the 

squared difference between actual and desired output. Training stops when either the predefined 

epoch number or error rate is obtained. The two passes in the hybrid learning procedure have 

been previously described. When the values of the premise parameters are learned, the overall 

output can be expressed as a linear combination of the consequent parameters. 

The input variables of the ANFIS are selected based on preprocessing of the original data 

and guidelines for input selection for ANFIS learning is presented by Jang in [41]. Real-world 

modeling problems usually involves tens (or even hundreds) of potential inputs and use them 

accordingly. Therefore, we need to have a heuristic way to quickly determine the priorities of 

these potential inputs and use them accordingly. The rule bases of ANFIS are generated based on 

linear Sugeno fuzzy model. The hybrid algorithm is used. The Mean Absolute Percent Error 

(MAPE) and Root Mean Squared Error (RMSE) were both computed. 

In our dataset described in Chapter 3, we have hourly samples of two years of data from 

Jan 1st, 2009 to Dec 31st, 2010. This implies there are 8760 × 2, (17520) samples of historical 

metered data for our 11kV, 15 node test distribution system under the simplifying assumption the 

network is balanced and can be represented using its single phase equivalent. The sample data 

includes both substation data and demand data for each individual node. The substation data is 
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the overall system Real-Time-Demand (RTD). Before implementations begin in MATLAB, it’s 

important the training data used to estimate membership functions has to be fully representative 

of the features of the data that the trained FIS is intended to model. The model has to be 

validated to ensure this statement is maintained. 

The MATLAB software can be used to first hypothesize a parameterized model (FIS) 

structure (relating inputs to input membership functions to rules to output characteristics to 

output membership functions to a single-valued output or a decision associated with the output). 

This is done using a subset of the dataset, normally referred to as training data. Then the other 

input/output data-subset, normally referred to as checking data is used to train this model to 

mimic the training data presented to it by modifying the membership function parameters 

according to a chosen error criterion [36]. 

To validate the model estimated by ANFIS, the input/output dataset is divided into 

checking and training data. This is to ensure that their corresponding output datasets from the 

FIS model are similar and is fully representative of the network. In this thesis, the dataset was 

divided into two: 

Training dataset = 1st 8760 samples of data (Year 2009). 

Checking dataset = 2nd 8760 samples of data (Year 2010). 

Both datasets are checked to ensure they are fully representative of the dataset by 

selecting a dataset (training) in which the trained model is intended to emulate, and yet 

sufficiently distinct from the dataset (checking) so as not to render the validation process trivial. 

This is useful so as to check for the presence of noisy measurements in the dataset. The training 

dataset checks the generalization capability of the resulting FIS, whereas the checking dataset is 
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used to validate this FIS. This is done to observe any over-fitting concerns. The MATLAB 

software helps in this regard to select the membership function parameters associated with the 

minimum checking error of the FIS just prior to over-fitting. Over-fitting is accounted for by 

comparing the training and checking errors. Ideally, they must both decrease at the same time 

throughout the training period. If they don’t, then this indicates over-fitting. But if the checking 

error begins increasing even at the first epoch (iteration), while the training error decreases, then 

the trained FIS has to be retrained because clearly, this membership function is not the best 

choice for modeling the entire dataset. You may have to use other membership function choices 

or increase the size of the dataset. This is indicated by plots shown in Chapter 6 where the results 

are placed. The errors computed are actually RMSE. 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑡−𝑦̂𝑡)2𝑛

𝑡=1

𝑛
 ( 10 ) 

where 𝑦̂𝑡 are the estimated values for times t of the specific target yt for n samples. 

MATLAB commands such as genfis1, genfis2 and anfis were used to generate an initial 

FIS and train it. Time series estimation was attempted heuristically on the input/output dataset to 

estimate RLCs. We begin with estimating RLCs for the substation and then proceed to 

estimating RLCs for select nodes on the test system.  

In estimating the RLCs, we need to use known values of the load profile (overall system 

OR select node) up to say a point in time t to estimate the value at some future point in time, say 

(t + p) within the same load profile. In this accord, the output to our ANFIS is say (t + 24) and 

must be within the dataset (the load profile for 2009-2010), whereas the inputs are various 

adaptations of the load at that same time, t. Also remember that our dataset represents historical 
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hourly metered load; this implies hourly samples. This model configuration is somewhat of a 

time series estimation. Various adaptations could include: present load (t), previous 24 hour load 

(t – 24), previous week same hour load (t – 168), previous 24 hour averaged load ((∑Y(t – i)) ÷ 

24) for i = 1 to 24, weekly model factor (MF), daily model factor (DMF), RTD(t). RTD(t) 

represents the overall system load (RTD) at the point in time within the same nodal load profile. 

These adaptations are chosen heuristically for different cases with the sole objective of seeking a 

model that generates the least Minimum Absolute Percent Error (MAPE). 

We heuristically selected 4 weeks in each month to be used to determine some sort of 

Weekly and Daily RLCs for each month with regards to the overall system load (RTD) or nodal 

demand. The MATLAB implementation of ANFIS helped estimate that RLC. A daily and/or 

weekly RLC was chosen on one basic criterion: 

The Mean Absolute Percent Error (MAPE) between the corresponding windows (between the 

chosen estimated RLC and the network’s target vector) must be the least. 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝑇𝑡−𝐸𝑡

𝑇𝑡
|𝑛

𝑡=1  ( 11 ) 

Example: In March, there are more than 4 weeks of data. But only four weeks are to be 

used in this analysis. In selecting the weekly RLC, from the estimated RLC (fitted ANFIS 

output), the estimated RLC and the original target vector are divided into four sections to 

represent the selected four weeks (672 hours’ samples of data). Hence we have two sets of data 

broken into 168 samples. That’s four sections/parts with 168 hours’ samples each. So we 

compare each section and select the section of the estimated RLC that has the smallest MAPE 

when compared with the original target data. This selection then represents our weekly RLC. But 
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since we’d be dealing with 2 year’s data, we’d be examining eight weeks of data, rather than 

four. March 2008 and March 2009 is an example. Also a plot of the selected weekly average is 

compared with the averaged RTD for the specified month.  

Same analogy is applied in selecting the daily RLC for each month. Four weeks of data. 

Seven days each. After heuristically selecting our input dataset and generating an output from 

ANFIS, we select the corresponding days in those four weeks and compute their respective 

MAPEs. The section with the smallest MAPE represents the day’s RLC for the select 4 weeks in 

the selected month. This can also be done to multiple data sets (stacked yearly). March 2009, 

2010 means we select eight weeks and proceed in a similar manner. We also used day D1 to D7 

to represent Sunday to Saturday respectively. This hugely favoured how we selected our dataset 

to be used in the ANFIS implementation. 

5.1 Weekly RLC for Overall System Load 

Heuristically, after trying different adaptations of the respective target output, the model 

below achieved the least MAPE when estimating weekly RLCs to represent monthly historical 

data for the overall system load. Preferably used when one wants to have a snapshot of how load 

varies weekly, in a selected month and can also be used as pseudo-measurements along with real 

time synchronized measurements in DLE. Our Inputs (X) and Targets (Y) for implementing 

ANFIS are as follows: 

Inputs (X): Weekly System Model Factor (WSMF), Previous Week Same Hour Load (Y(t – 

168)), Previous 24 Hour Load (Y(t – 24)), Present Load (Y(t)). 

Target (Y): Y(t + 24); (time series estimation available within the load profile dataset). 
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WSMF stands for weekly system model factor and was computed using historical 

substation data by dividing the average load in its specific week by the maximum load in that 

same select week. This factor somewhat aided in improving the results of ANFIS. 

The modeling criterion shown in the table below is used to estimate weekly and daily 

RLCs for the overall system load. 

 

Table 1: Modeling Criterion for Estimating Weekly/Daily RLCs for the System 

S/N Custom ANFIS Variables 

1 Number of Inputs Four 

2 Membership Function Type Generalized Bell 

3 Number of Membership Functions Varied from 2 to 3 

4 Learning Algorithm Hybrid Learning Algorithm 

5 Epoch Size Varied from 100 to 150 

6 Data Size Data per Hour (17520 Samples) 

7 Sugeno-Type System First Order 

8 Output Type Linear 

9 Initial Step Increase/Decrease Size 1.1/0.9 

10 Number of Linear Parameters 80 

11 Number of Nonlinear Parameters 24 

12 Number of Nodes 55 

13 Number of Fuzzy Rules 16 

14 Data/Parameter Ratio ≈ 84 
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The generated FIS structure with the help of the MATLAB software contains 16 fuzzy 

rules with a total of 104 parameters. It’s also recommended that the number of training data 

points be several times larger than the number of parameters being estimated. In our case, that 

ratio is approximately 84. 

Essentially, because we needed previous week’s data as one of our selected inputs, the 

RLCs obtained from the ANFIS fit excluded the first week’s data (168 samples) in the 

estimation/data fitting process. Hence a reason why we have Not-A-Number (NaN) values for 

the 1st week of January. This will be seen in the next Chapter. 

An initial FIS is generated with the training dataset and validated with the checking 

dataset. The ANFIS output which fits this dataset with minimum error is what we designate as 

the RLC. Because of the inconsistencies in various sections of the fitted data with respect to the 

real data, we propose that weekly and daily RLCs be selected based on the section/window with 

the least MAPE. 

5.2 Daily RLC for Overall System Load 

Heuristically, after trying different adaptations of the respective target output, the model 

below achieved the least MAPE when estimating daily RLCs to represent weekly historical data 

for the overall system load. This is preferably used as pseudo-measurements along with real time 

synchronized measurements in DLE. Our Inputs (X) and Targets (Y) for implementing ANFIS 

are as follows: 

Inputs (X): Daily System Model Factor (DSMF), Previous Week Same Hour Load (Y(t – 168)), 

Previous 24 Hour Load (Y(t – 24)), Present Load (Y(t)). 
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Target (Y): Y(t + 24); (time series estimation available within the load profile dataset). 

DSMF stands for daily system model factor and was computed using historical substation 

data by dividing the average load on each day by the maximum load on that same select day. 

This factor somewhat aided in improving the results of ANFIS. Its modeling criterion is also 

same as with estimating weekly RLCs for the overall system load shown in table 1. Only 

difference is in the selection of inputs. Essentially, because we needed previous week’s data as 

one of our selected inputs, the RLCs obtained from the ANFIS fit excluded the first week’s data 

(168 samples) in the estimation/data fitting process. Replacing them with NaN in the ANFIS 

output. 

An initial FIS is generated with the training dataset and validated with the checking 

dataset. The ANFIS output which fits this dataset with minimum error is what we designate as 

the RLC. Because of the inconsistencies in various sections of the fitted data with respect to the 

real data, we propose that weekly and daily RLCs be selected based on the section/window with 

the least MAPE. 

5.3 Weekly RLC for Selected Node 5 (CR) 

Heuristically, after trying different adaptations of the respective target output, the model 

below achieved the least MAPE when estimating weekly RLCs to represent monthly historical 

data for the overall system load. Preferably used when one wants to have a snapshot of how load 

varies weekly, in a selected month and can also be used as pseudo-measurements along with real 

time synchronized measurements in DLE. In estimating nodal weekly RLCs for select nodes, we 

proceed in a similar manner as with weekly RLCs for overall system load but with different 
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input/output data set possessing certain characteristics of the particular node in question. Our 

Inputs (X) and Targets (Y) for implementing ANFIS are as follows: 

Inputs (X): Weekly Nodal Model Factor (WNMF), Previous Week Nodal Same Hour Load (Y(t 

– 168)), Previous 24 Hour Nodal Load (Y(t – 24)), Present Nodal Load (Y(t)). 

Target (Y): Y(t + 24); (time series estimation available within the node’s load profile dataset). 

WNMF stands for weekly nodal model factor and was computed using historical nodal 

data by dividing the average load in its specific week by the maximum load in that same select 

week for the particular node in question. This factor somewhat aided in improving the results of 

ANFIS. 

Each node is computed independently since we are using a single output Sugeno-type 

system. This means that all selected inputs/outputs dataset are with respect to the select node. 

The modeling criterion shown in the table below is used to estimate weekly and daily RLCs for 

the select nodal load. 

 

Table 2: Modeling Criterion for Estimating Weekly/Daily RLCs for a Select Node 

S/N Custom ANFIS Variables 

1 Number of Inputs Four 

2 Membership Function Type Generalized Bell 

3 Number of Membership Functions Varied from 2 to 3 

4 Learning Algorithm Hybrid Learning Algorithm 

5 Epoch Size Varied from 50 to 100 

6 Data Size Data per Hour (17520 Samples) 
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S/N Custom ANFIS Variables 

7 Sugeno-Type System First Order 

8 Output Type Linear 

9 Initial Step Increase/Decrease Size 1.1/0.9 

10 Number of Linear Parameters 80 

11 Number of Nonlinear Parameters 24 

12 Number of Nodes 55 

13 Number of Fuzzy Rules 16 

14 Data/Parameter Ratio ≈ 84 

 

The generated FIS structure with the help of the MATLAB software contains 16 fuzzy 

rules with a total of 104 parameters. It’s also recommended that the number of training data 

points be several times larger than the number of parameters being estimated. In our case, that 

ratio is approximately 84. Also again, because we needed previous week’s data as one of our 

selected inputs, the RLCs obtained from the ANFIS fit excluded the first week’s data (168 

samples) in the estimation/data fitting process. Replacing those entries with NaNs in the ANFIS 

output as seen in the next Chapter. 

An initial FIS is generated with the training dataset and validated with the checking 

dataset. The ANFIS output which fits this dataset with minimum error is what we designate as 

the RLC. Because of the inconsistencies in various sections of the fitted data with respect to the 

real data, we propose that weekly and daily RLCs be selected based on the section/window with 

the least MAPE. 
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5.4 Daily RLC for Selected Node 5 (CR) 

Heuristically, after trying different adaptations of the respective target output, the model 

below achieved the least MAPE when estimating daily RLCs to represent weekly historical data 

for the overall system load. This is preferably used as pseudo-measurements along with real time 

synchronized measurements in DLE. In estimating nodal daily RLCs for select nodes, we 

proceed in a similar manner as with daily RLCs for overall system load but with different 

input/output data set possessing certain characteristics of the particular node in question.  Our 

Inputs (X) and Targets (Y) for implementing ANFIS are as follows: 

Inputs (X): Daily Nodal Model Factor (DNMF), RTD(t), Previous 24 hour Nodal Averaged Load 

((∑Y(t – i)) ÷ 24) for i = 1 to 24, Previous Week Same Hour Load (Y(t – 168)), Previous 24 

Hour Load (Y(t – 24)), Present Load (Y(t)). 

Target (Y): Y(t + 24); (time series estimation available within the load profile dataset). 

DNMF stands for daily nodal model factor and was computed using historical substation 

data by dividing the average load on each day by the maximum load on that same select day for 

the particular node in question. This factor somewhat aided in improving the results of ANFIS. 

Its modeling criterion is also same as with estimating weekly RLCs for a select nodal 

load as shown in table 2. Only difference is in the selection of inputs. Also, because we needed 

previous week’s data as one of our selected inputs, the RLCs obtained from the ANFIS fit 

excluded the first week’s data (168 samples) in the estimation/data fitting process. Each node is 

also computed independently since we are using a single output Sugeno-type system. This means 

that all selected inputs/output are with respect to the select node except RTD(t). 
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An initial FIS is generated with the training dataset and validated with the checking 

dataset. The ANFIS output which fits this dataset with minimum error is what we designate as 

the RLC. Because of the inconsistencies in various sections of the fitted data with respect to the 

real data, we propose that weekly and daily RLCs be selected based on the section/window with 

the least MAPE. Essentially, all methods involve understanding the ANFIS architecture/structure 

and tailoring our input/output dataset to achieve our objective; the estimated RLC. We present 

our results in the next section. The basic flow diagram of computations is described using the 

following flowchart: 

 

 

Figure 18: Basic Flow Diagram Using ANFIS Computation 
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CHAPTER SIX: RESULTS 

We first present results for estimating weekly and daily RLCs for the overall system load 

at the substation. And then proceed to present results for estimating weekly and daily RLCs for 

the select node 5 (CR). These results were consistent even at other select periods in the dataset 

and other buses on the test system. But not all results will be shown here. We begin each 

subsection by displaying our target dataset and also how the fitted ANFIS output (estimated 

RLC) compares with it. 

6.1 Estimated Weekly RLCs for the Overall System Load 

The 2009-2010 Historical System Real Time Demand (RTD) is presented in the figure 

below. 

 

Figure 19: 2009-2010 Historical System Real Time Demand (RTD) 
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Upon training and testing the ANFIS, the following results were obtained. The system 

RTD being out target vector, whereas the estimated RLC is the output of the ANFIS 

implementation. The ANFIS architecture/structure used for this implementation is shown below 

and is also the same architecture that will be used in estimating the daily RLCs for the overall 

system with the exception on the selection of inputs. The estimated RLC and system RTD is then 

plotted. 

 

 

Figure 20: ANFIS Structure for Estimating System RLC 
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Figure 21: Estimate RLC and System RTD (intended for Weekly RLC) 

 

 

Figure 22: Magnified Estimate RLC and System RTD (intended for Weekly RLC) 
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Overall MAPE between the estimated RLC and the system RTD is 2.5071%. The 

corresponding RMSE between estimated RLC and system RTD averaged at 6.2790 × 103 kW. 

The table below summarizes the methodology explained in the previous chapter where the 

weekly/daily estimated RLC is selected based on the weekly window/section with the least 

MAPE. The ones boldly highlighted represents the estimate RLC for that period in the dataset. 

 

Table 3: Tabular MAPE Results Comparing Each Week for Weekly Estimate Substation RLC 

 Year 2009 Year 2010 

January 

Week/Window 1 2 3 4 1 2 3 4 

Estimate RLC 

MAPE 

NaN 3.0439 3.6580 2.0672 3.5247 4.2699 1.9837 3.4545 

 February 

Week/Window 1 2 3 4 1 2 3 4 

Estimate RLC 

MAPE 

2.9859 2.1857 1.2555 1.8272 3.5504 2.4485 3.5648 1.9084 

 March 

Week/Window 1 2 3 4 1 2 3 4 

Estimate RLC 

MAPE 

2.7775 2.9444 1.4536 1.9165 1.2002 2.7785 1.9662 2.5529 
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We proceed to show results for the estimated substation RLC for the month of March. 

Bear in mind that RLC are used only in load variation studies and can be used as pseudo-

measurements alongside real-time measurements for DLE. The initial and adjusted input 

membership functions before and after ANFIS training respectively are shown below:  

 

Figure 23: Initial Input Membership Functions for Estimating System Weekly RLC 
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Figure 24: Adjusted Input Membership Functions for Estimating System Weekly RLC 
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Figure 25: Error Curves (in Estimating System Weekly RLC) 

 

 

Figure 26: Error between System Load and Estimate RLC (intended for Weekly RLC) 
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Figure 27: System March Estimate Weekly RLC 
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Figure 28: Estimate RLC and System RTD (intended for Daily RLC) 

 

 

Figure 29: Magnified Estimate RLC and System RTD (intended for Daily RLC) 
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Overall MAPE between the estimated RLC and the system RTD is 2.9336%. The 

corresponding RMSE between estimated RLC and system RTD averaged at 5.7713 × 103 kW. 

The table below summarizes the methodology explained in the previous chapter where the 

weekly/daily estimated RLC is selected based on the weekly window/section with the least 

MAPE. The entries in the table show the different MAPEs in each week when the estimate RLC 

is compared with the system RTD. The ones boldly highlighted represents the estimate RLC for 

that period in the dataset. 

 

Table 4: Tabular MAPE Results Comparing Each Week for Jan. Daily Estimate Substation RLC 

 Year 2009 Year 2010 

January 

Week/Windows 1 2 3 4 1 2 3 4 

Day D1 NaN 2.100 4.0980 1.5486 1.2470 1.2843 2.1259 0.8995 

Day D2 NaN 1.3803 2.3907 2.2058 2.4057 2.2927 3.1947 1.9121 

Day D3 NaN 1.6378 1.2680 2.2933 2.8051 3.5780 1.0710 0.8014 

Day D4 NaN 1.4141 3.3049 3.7446 2.6992 2.7294 1.4017 2.3400 

Day D5 NaN 2.0072 5.0193 2.5138 2.5405 2.5680 1.1774 1.8731 

Day D6 NaN 4.0507 3.3767 4.6439 1.4748 1.7575 4.4968 4.9008 

Day D7 NaN 5.8436 3.9484 7.8143 6.2799 3.6019 5.9621 3.0751 
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Table 5: Tabular MAPE Results Comparing Each Week for Feb. Daily Estimate Substation RLC 

 Year 2009 Year 2010 

February 

Week/Windows 1 2 3 4 1 2 3 4 

Day D1 4.6056 6.1339 0.7002 2.0433 5.9114 3.2603 5.5478 0.8293 

Day D2 4.0153 1.1517 0.7069 1.5943 2.2975 3.2981 1.9862 2.0904 

Day D3 2.1715 1.1615 1.4084 2.2315 4.6313 5.0774 1.0404 0.5343 

Day D4 1.2082 1.8548 5.5954 2.0999 3.4324 1.3689 3.1634 0.8018 

Day D5 1.5410 5.1379 1.9197 4.0904 2.8915 4.3186 4.4354 0.5442 

Day D6 5.3638 1.9361 1.9096 2.2172 1.5082 5.0358 3.0692 9.7610 

Day D7 5.5343 4.9675 2.8519 2.0770 1.8719 5.6203 3.5927 3.5516 

 

 

Table 6: Tabular MAPE Results Comparing Each Week for Mar. Daily Estimate Substation RLC 

 Year 2009 Year 2010 

March 

Week/Windows 1 2 3 4 1 2 3 4 

Day D1 0.5754 8.3058 1.9381 3.1936 1.0387 2.2705 4.1553 5.8714 

Day D2 2.2323 6.5073 2.3728 0.5882 1.4388 0.5136 1.2570 1.1718 

Day D3 2.6334 1.8336 1.7444 0.8100 1.1385 0.8662 2.7274 2.1249 

Day D4 3.7641 1.9019 0.9628 2.9537 3.3542 1.6558 2.1178 2.2182 

Day D5 2.1410 1.8792 1.2420 5.2401 3.2512 1.6016 0.8776 2.3837 
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 Year 2009 Year 2010 

Day D6 4.3748 2.9377 0.9842 1.8526 1.3084 2.1406 1.1592 3.4495 

Day D7 1.1082 7.0723 2.7085 2.5397 4.1632 3.7401 2.2744 4.3073 

 

We again proceed to show results only for the month of March as we won’t display all 

the graphical representations within this thesis. The initial and adjusted membership functions 

for the inputs during ANFIS training are shown below: 

 

Figure 30: Input Membership Functions for Estimating System Daily RLC 
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Figure 31: Adjusted Input Membership Functions for Estimating System Daily RLC 
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Figure 32: Error Curves (in Estimating System Daily RLC) 

 

 

Figure 33: Error between System Load and Estimate RLC (intended for Daily RLC) 
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Now, we present the estimate daily RLCs for the month of March. Another recommended 

set as possible candidates as pseudo-measurements for DLE. Again the selection criterion in on 

the window/week with the least MAPE between the ANFIS output and original dataset for that 

specific period (March) in the dataset. 

 

Figure 34: System, March Day D1 Estimate RLC 
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Figure 35: System, March Day D2 Estimate RLC 

 

Figure 36: System, March Day D3 Estimate RLC 
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Figure 37: System, March Day D4 Estimate RLC 

 

Figure 38: System, March Day D5 Estimate RLC 
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Figure 39: System, March Day D6 Estimate RLC 

 

Figure 40: System, March Day D7 Estimate RLC 
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6.3 Estimated Weekly RLCs for the Selected Node 5 (CR) 

The 2009-2010 Historical Node 5 (CR) Real Time Demand (RTD) is presented in the 

figure below. 

 

Figure 41: 2009-2010 Historical Node 5 (CR) Real Time Demand (RTD) 
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Figure 42: ANFIS Structure for Estimating RLCs for Node 5 (CR) 

 

 

Figure 43: Estimate Nodal RLC and Nodal RTD (intended for Weekly RLC) 
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Figure 44: Magnified Estimate Nodal RLC and Nodal RTD (intended for Weekly RLC) 
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Table 7: Tabular MAPE Results Comparing Each Week for Weekly Estimate Nodal RLC 

 Year 2009 Year 2010 

January 

Week/Window 1 2 3 4 1 2 3 4 

Estimate RLC 

MAPE 

NaN 3.3852 3.3457 1.6465 3.3411 2.0590 2.7015 1.5196 

 February 

Week/Window 1 2 3 4 1 2 3 4 

Estimate RLC 

MAPE 

4.3430 4.3857 1.6303 2.3567 2.1592 2.1784 1.5875 1.6407 

 March 

Week/Window 1 2 3 4 1 2 3 4 

Estimate RLC 

MAPE 

4.3457 3.0880 1.1465 1.6570 0.8333 1.8832 2.0675 1.9950 

 

We proceed to show results for node 5’s estimated RLC for the month of February. Bear 

in mind that RLC are used only in load variation studies and can be used as pseudo-

measurements alongside real-time measurements for DLE. The initial and adjusted input 

membership functions for the ANFIS training is shown in the figures below: 
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Figure 45: Initial Input Membership Functions for Estimating Node 5 (CR) Weekly RLC 
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Figure 46: Adjusted Input Membership Functions for Estimating Node 5 (CR) Weekly RLC 
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Figure 47: Error Curves (in Estimating Node 5 (CR) Weekly RLC) 
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The estimate weekly RLC for node 5 (CR) for the month of February is shown in the 

figure below. As suggested earlier, another good candidate as pseudo-measurements in the DLE 

process. Based on the same selection criterion; the MAPE between the ANFIS output and 

original dataset must be the least for the select period (February in this case) 

 

Figure 49: Node 5 (CR) February Estimate Weekly RLC 
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Figure 50: Estimate Nodal RLC and Nodal RTD (intended for Daily RLC) 

 

 

Figure 51: Magnified Estimate Nodal RLC and Nodal RTD (intended for Daily RLC) 
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Overall MAPE between the estimated RLC and the nodal RTD is 3.3523%. The 

corresponding RMSE between node 5’s estimated RLC and its historical RTD averaged at 

363.0236 kW. The table below summarizes the methodology explained in the previous chapter 

where the weekly/daily estimated RLC is selected based on the weekly window/section with the 

least MAPE. The entries in the table show the different MAPEs in each week when the estimate 

RLC is compared with the system RTD. The ones boldly highlighted represents the estimate 

RLC for that period in the dataset. 

 

Table 8: Tabular MAPE Results Comparing Each Week for Node 5’s Jan. Daily Estimate RLC 

 Year 2009 Year 2010 

January 

Week/Windows 1 2 3 4 1 2 3 4 

Day D1 NaN 1.9540 1.1120 2.6517 9.5528 1.1234 2.3791 1.4082 

Day D2 NaN 1.9059 1.7919 0.7331 5.1481 1.9840 2.8293 1.2859 

Day D3 NaN 2.0474 3.4258 1.2924 2.0392 1.3343 3.5157 3.1603 

Day D4 NaN 1.3174 2.0333 2.6016 1.3700 1.6750 4.5142 0.6895 

Day D5 NaN 3.4837 3.9690 1.4075 2.2991 1.9586 1.6994 0.6998 

Day D6 NaN 1.5937 5.7308 1.5629 3.2256 3.6198 2.4584 4.5544 

Day D7 NaN 2.0871 8.6491 4.1422 2.9894 1.4300 1.8548 9.1912 
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Table 9: Tabular MAPE Results Comparing Each Week for Node 5’s Feb. Daily Estimate RLC 

 Year 2009 Year 2010 

February 

Week/Windows 1 2 3 4 1 2 3 4 

Day D1 1.7732 4.2669 1.4944 5.0127 6.0279 2.9700 2.3207 0.9795 

Day D2 6.6388 3.9354 1.4577 1.1103 6.2320 2.2350 0.6429 7.0284 

Day D3 3.4514 2.3805 1.2573 1.4168 2.2866 2.8781 1.0093 1.2379 

Day D4 1.1083 5.8363 5.0720 2.1094 1.7781 2.8253 2.1944 1.1841 

Day D5 2.3480 9.2324 4.2115 1.3516 0.5825 2.3396 1.2290 3.5723 

Day D6 3.0805 1.0992 3.4146 1.5397 1.4747 2.0677 1.7191 3.9697 

Day D7 1.5741 3.0554 1.6518 4.7604 2.8461 2.6736 1.2455 1.1198 

 

 

Table 10: Tabular MAPE Results Comparing Each Week for Node 5’s Mar. Daily Estimate RLC 

 Year 2009 Year 2010 

March 

Week/Windows 1 2 3 4 1 2 3 4 

Day D1 1.1667 6.8987 2.4013 1.5234 0.7038 0.6951 3.1086 6.4498 

Day D2 1.8415 7.4273 1.2013 1.3149 0.7513 2.4538 1.8362 3.2604 

Day D3 3.6501 3.8302 0.8186 1.3025 1.0904 2.8879 0.3902 3.8914 

Day D4 3.7633 3.1597 1.0669 1.9249 1.9682 2.0470 2.9145 0.9124 

Day D5 3.3806 4.5007 1.0980 1.9485 0.8805 2.4557 2.9120 0.8768 
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 Year 2009 Year 2010 

Day D6 0.9463 2.9860 0.9342 1.2291 1.0238 2.6320 0.9712 1.0596 

Day D7 2.0936 4.0323 1.3098 1.9184 2.4958 1.2767 0.6556 3.7581 

 

We again proceed to show results only for the month of February as we won’t display all 

the graphical representations within this thesis. We’d begin by showing the input membership 

functions of the initially generated FIS, and its corresponding adjusted input membership 

functions after ANFIS training. 

 

Figure 52: Initial Input Membership Functions for Estimating Node 5 (CR) Daily RLC 
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Figure 53: Adjusted Input Membership Functions for Estimating Node 5 (CR) Daily RLC 
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Figure 54: Error Curves (in Estimating Node 5 (CR) Daily RLC) 

 

 

Figure 55: Error between Nodal Load and Nodal Estimate RLC (intended for Daily RLC) 

0 10 20 30 40 50 60 70 80 90 100
300

350

400

450

500

550

Epochs

R
M

SE
 (

R
oo

t M
ea

n 
Sq

ua
re

d 
E

rr
or

)

Error Curves

 

 

Training Error

Checking Error

Train Points

Check Points

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-3000

-2000

-1000

0

1000

2000

3000

Time Samples (Hrs)

E
rr

or

RLC Errors



84 

 

The figures below show the daily estimated RLCs for node 5 (CR) in the month of 

February. Again, possible candidates for pseudo-measurements in the DLE process. Same 

critrion as before: the MAPE between the ANFIS output (estimate RLC) and original dataset has 

to be the least for the select period. 

 

Figure 56: Node 5 (CR), February Day D1 Estimate RLC 
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Figure 57: Node 5 (CR), February Day D2 Estimate RLC 

 

Figure 58: Node 5 (CR), February Day D3 Estimate RLC 
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Figure 59: Node 5 (CR), February Day D4 Estimate RLC 

 

Figure 60: Node 5 (CR), February Day D5 Estimate RLC 
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Figure 61: Node 5 (CR), February Day D6 Estimate RLC 

 

Figure 62: Node 5 (CR), February Day D7 Estimate RLC 
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CHAPTER SEVEN: CONCLUSION/FUTURE RESEARCH 

RLCs can be done in classified time spans; examples include: winter, summer, weekends, 

workdays etc. amongst various classifications occurring yearly. With the aid of the MATLAB 

software, we’ve been able to answer the question posed in Chapter two. We have shown how a 

group of load curves can be represented using a single RLC to resolve the ambiguity of selecting 

a subset of the historical data that is good enough for the DLE process. Hopefully, integrating 

RLCs alongside synchronized real-time measurements would further aid in estimating real-time 

load with improved accuracy. 

It’s possible we can also estimate monthly RLCs. This implies we’d need a much bigger 

dataset. Say 6 – 10 years of historical load data. This would just be more like an estimated 

generalization RLC. It’s also possible that we nullify our earlier assumptions and proceed with 

three-phase unbalanced systems to test the generalization capability of this simple method. But 

then again, real system properties would have to be integrated in the models. That’s a possible 

future research. 

To conclude; it’s important we remember that these estimated RLCs and not load 

estimates themselves, but rather, possible candidates for pseudo-measurements in distribution 

load estimation and even distribution state estimation. And it comes with an added advantage 

that it sort of imitates the load curves it represents and also makes a possible case in load 

variation studies. 
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APPENDIX: LINE DATA FOR TEST SYSTEM 
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Table 11: Line Data for Test System 

Branch 

Number 

Sending end 

node 

Receiving end 

node 

R 

(ohm) 

X 

(ohm) 

1 1 2 1.35309 1.32349 

2 2 3 1.17024 1.14464 

3 3 4 0.84111 0.82271 

4 4 5 1.52348 1.02760 

5 2 9 2.01317 1.35790 

6 9 10 1.68671 1.13770 

7 2 6 2.55727 1.72490 

8 6 7 1.08820 0.73400 

9 6 8 1.25143 0.84410 

10 3 11 1.79553 1.21110 

11 11 12 2.44845 1.65150 

12 12 13 2.01317 1.35790 

13 4 14 2.23081 1.50470 

14 4 15 1.19702 0.80740 
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