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______________________________________________________________________ 

Abstract: Multivariate control charts are essential tools in multivariate statistical process control. In real 
applications, when a multivariate process shifts, it occurs in either location or scale. Several methods have 

been proposed recently to monitor the covariance matrix. Most of these methods use rational subgroups 

and are used to detect large shifts. In this paper, we propose a new accumulative method, based on 

penalized likelihood estimators, that uses individual observations and is useful to detect small and 

persistent shifts in a process when sparsity is present. 

Keywords: Average run length (ARL), covariance matrix, multi standardization, penalized likelihood 

function. 
______________________________________________________________________ 

1. Introduction 

ultivariate process control is becoming an important tool in process control instead of 

using a collection of univariate charting techniques applied to individual components. 
“Shewhart-type” charts use rational subgroups as opposed to “accumulative” methods that 

pool information across successive observations. The best known work in multivariate 

control charts to monitor the mean vector is that of Hotelling [14] which is a direct 

multivariate extension of the univariate Shewhart 

M 

X  chart. 

Several methods have been proposed to monitor the covariance matrix . Two current 

standard Shewhart-type methodologies are available. One, due to Montgomery and 

Wadsworth [23], uses the generalized variance; the other, due to Alt [1] uses the generalized 

likelihood ratio. Sakata [31], Calvin [6], Levinson et al. [18], and Vargas and Lagos [35] also 

proposed Shewhart-type charts based on the likelihood ratio test (LRT). Yen and Shiau [39] 

proposed effective control charts for monitoring the covariance matrix based on a one-sided 

and two-sided likelihood ratio test based control charts.  

�

These Shewhart-type control charts do not take into account the history of the process. 
Some authors suggested to use ‘accumulative’ methods that pool information across 

successive observations-methods such as cumulative sum or exponentially weighted moving 

average charts. Shewhart-type charts are effective for detecting large shifts, while the 

accumulative methods are needed for smaller but persistent shifts. For that purpose, some 

authors, like Chan and Zhang [7] and Runger and Testik [30], proposed multivariate 

cumulative sum (MCUSUM) control charts.  

Recent proposals suggested to accumulate historical observations by taking some 

exponentially weighted moving average (EWMA)-type of some statistics based on individual 
observations. For that purpose, Yeh et al. [37] proposed the maximum multivariate 

exponential weighted moving variability (MaxMEWMV), Huwang et al. [15] suggested the 
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multivariate exponential weighted mean squared deviation (MEWMS) and the multivariate 

exponential weighted variance. Hawkins and Maboudou-Tchao [13] defined an analogous 

chart, the Multivariate Exponentially Weighted Moving Covariance Matrix (MEWMC). 
Memar and Niaki [22] suggested to monitor the covariance matrix using EWMA control 
charts based on squared deviation of observations from target. Instead of using the trace, the 

authors employed the norm and 1 �� 2 �� norm-based distances between diagonal elements 

of the estimators and their expected values to design new control charts for monitoring the 

covariance matrix of a multivariate process. Memar and Niaki [22] evaluated their proposed 

statistic using simulations. Zang and Chang [42] proposed the Multivariate Exponentially 

Weighted Moving deviation (MEWMD) which is an extension of the Multivariate 

Exponentially Weighted Moving average (MEWMA). The MEWMD chart is designed for 

detecting changes only on the variance components. Zhang et al. [43] proposed a chart to 

monitor simultaneously the mean vector and the covariance matrix of a process. Reynolds 

and Cho [27] proposed a chart for monitoring the mean and covariance matrix of a 

multivariate process when the joint distribution of the process variables follows a multivariate 

normal distribution. The emphasis of Reynolds and Cho’s [27] study was on the use of 

combinations of multivariate exponentially weighted moving average (MEWMA) control 
charts based on sample means and the sum of the squared deviations from the target. 
Reynolds and Cho [27] concluded that the best overall performance was achieved using a 

combination of MEWMA charts based on the sample means and the sum of squared 

regression adjusted deviations from the target. Reynolds and Cho [28] extended their 

previous work by using variable sampling intervals.  

For a bivariate process, Machado and Costa [20] suggested a double sampling and 

EWMA charts based on the sample variances. The monitoring statistic was based on the 

standardized sample variance of p quality characteristics called the maximum of the variances 

(VMAX) statistics. The points plotted on the chart corresponded to the maximum value of 

these p  variances. The VMAX statistic was faster than the generalized variance at detecting 

shifts. Other charts have also been proposed based on this method using a synthetic statistic 

(Machado et al. [21]), a double-sampling scheme, and an EWMA-type control chart 

(Machado and Costa [20]). Aparisi et al. [2] present work shows the design of generalized 

variance chart  with adaptive sample size to control processes defined by two quality 

characteristics, comparing the power of this new chart versus the 

� �S
� �S  chart with the sample 

size. Their approach is also intended for monitoring changes only on the variance 

components of a bivariate process. Still with the bivariate process, Quinino et al. [25] proposed 

a new chart for controlling the covariance matrix of bivariate processes using the mixed 

variance (VMIX) statistic.  

Some authors proposed other schemes different from the above. Tang and Barnett [32-33] 

proposed to use Shewhart procedures based on the decomposition of the covariance matrix 

while Hao et al. [12] suggested the multivariate projection chart. Zamba and Hawkins [41] 

used a multivariate change-point model for detecting change in the mean and/or covariance 

matrix. For more details on monitoring the covariance matrix, the readers are referred to the 

papers by Bersimis et al. [5] and Yeh et al. [38].  

Recently, Wang and Jiang [36] and Zou and Qiu [44] constructed control charts for 

monitoring multivariate mean vector using the Least Absolute Shrinkage and Selection 

Operator (LASSO) type penalty in the context of statistical process control. Zou and Qiu [44] 

used the adaptive LASSO to construct a control chart to monitor the mean vector. Zou et al. 
[45] proposed a LASSO chart to monitor a multivariate linear profile. Li et al. [17] suggested 

to monitor the covariance matrix with a penalized likelihood estimation based on the 
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LASSO.  

This paper is motivated by the fact that in multivariate or high dimensional applications, 
when a change is detected, it is often rare that all quality characteristics changed. This means 

that the probability that all variables change simultaneously is very small. Also, not all quality 

characteristics are correlated with one another; so, it can happen that one subset of variables is 

uncorrelated with another subset of variables. This brings to bear the idea of ‘sparsity’ 
property. Our goal is to design a good process monitoring tool that uses this property. Note 

that the accumulative methods using the EWMA-type estimates of the covariance matrix do 

not take into consideration this sparsity property of the process. By not including that sparsity 

property in the design of the chart, the chart will contain information not relevant to the true 

process variability and this may harm the performance of the chart. Therefore, for these 

applications or high dimensional processes, the sparsity property should be considered in the 

design of the control chart and is the main objective of this present paper. So, we propose a 
new control chart to monitor the process variability using information pertinent to the process 

such as sparsity.  

1.1. Monitoring Shift in the Covariance Matrix 

There are two current standard Shewhart-type methodologies for monitoring the 

covariance matrix ��  One uses the generalized variance, Montgomery [24], and the other 

uses the generalized likelihood ratio, Alt [1]. Suppose that process readings are p  

component vectors  and that while the process is in control, these process 

readings are independent multivariate normal random vectors with mean vector  and 

covariance matrix 

1 2i� � � � ��ix

0

�
� . We assume that the interest focuses on control of the covariance 

matrix to see whether this has departed from an in-control (IC) value 0� . Also, we assume 

that the in-control mean vector  and the covariance matrix � 0�  are known exactly. The 

standard methods of monitoring the covariance matrix are Shewhart-Type charts based on 

rational subgroups of size  greater than m p . If  is the sample covariance matrix of the 

 rational subgroup, Montgomery and Wadsworth [23] proposed to chart the determinant 

of . Reynolds and Cho [27] suggested the charting of the trace of . A different approach 

was suggested by Alt [1]. His approach is based on the generalized likelihood ratio (GLR) 

statistic for testing  vs. 

iS
thi

iS iS

0 0� �� � 1 � 	�H 0� . So, Alt’s charting statistic is  H

 1
0

0

( 1) ( )i
i iW m p ln tr � ,

� 
� �
� � � � �� �� �� 


S
S�

�
                    (1) 

where  is the  sample covariance matrix for sample ,  is the trace operator, the 

subscript  represents the rational subgroup number,  is the rational subgroup size, and 

p p� i triS
mi

p  is the dimension.  

As usual for Shewhart charts, these are effective for large transient changes in the 

covariance matrix, but are less suitable for smaller persistent shifts. Recent proposals by 

Huwang et al. [15] and Hawkins and Maboudou-Tchao [13] defined an analogous chart for 

monitoring the covariance matrix. We will focus on the proposal of Hawkins and 

Maboudou-Tchao, the Multivariate Exponentially Weighted Moving Covariance Matrices 

(MEWMC), as it is relevant for the remainder of the paper. Assume the p -component 

process reading vectors  � �� ( )n Nx � � � � ��1 2n
1 2 (n

� �
. In the MEWMC, the process readings  

are first multi-standardized to 
nx

)n�u � �x ��  While in control, the  are ( )pN �0 Inu . 
The standardized MEWMC is defined by the recursion  

 � �� � � � �1(1 ) ,n n nW W u nu                            (2) 
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where 0 p�W I , and  is the smoothing constant. In most EWMA methods,  can take 

the value 1, but it should be clear that for this definition of , it is prohibited for  to take 

the value 1, as when 

� �
�nW

� �  1, n n n��W u u  and is not positive definite.  

The MEWMC chart statistic is obtained by  

 ( )nC tr log p ,� � � � �n nW W                            (3) 

where  is the trace operator and � � �  represents the determinant.  tr

The control chart used then consists of plotting  against , and signaling a loss of 

control if  where  is chosen to achieve a specified in-control ARL.  
nC n

nC � hh

2. Penalized Likelihood Estimation of Inverse Covariance Matrix 

In the general case, assume that we observe a set of  vectors �ix � � � ��1 2in n , where 

each vector,  is pix  dimensional. Without loss of generality, assume that  has zero 

mean. If the vectors  are identically distributed, then the sample covariance matrix is given 

by  

ix

ix

 
1

1 n

i i
in �

�� �S x x   

and  is an unbiased estimator of the true covariance matrix ( )E� S�S . While  is an 

unbiased estimate of the true covariance matrix, it is also singular whe p�  In practic , 
n  may be much smaller an 

S
n n � e

th p  and so most of the eigenv es of �  are incorrectly 

estimated as zero. Several methods have been proposed to regularize the stimate of �  so 

that it is not singular. Shrinkage estimators are a class of estimators which regularize the 

covariance matrix by shrinking it toward some target structure. The concept of robust 

estimation of an inverse covariance matrix was first introduced by Dempster [9] who 

suggested that the number of parameters to be estimated be reduced by setting some elements 

of the precision matrix or inverse cov iance matri

a

ar x 

lu
e

�  to zero.  

)

Recently, a number of methods have been proposed for regularizing the estimate by 

making either the covariance or its inverse sparse. In the absence of model assumptions when 

, an active line of statistical research is based on imposing various restrictions on the 

model – for instance, sparsity.  

p n�

Given a random sample  following a multivariate normal distribution 
, the log likelihood for  and 

1 2 n� � �x x x�
� 1��� ��(N � �  can be expressed as  

 
1

1n
( ) ( )

2 2 i i
i

log
�

�
n

� � � � �� x x� � � �                      (4) 

up to a constant not depending on the parameters. The matrix �  is sometimes referred to as 

the concentration matrix, precision matrix, or dispersion matrix. The maximum likelihood 

estimator of  is ˆ( )�x ��(� �) , where  

 
1

1ˆ ( )(
n

i i
in �

)�� � �� x x x x�         

is the maximum likelihood estimate of �  with x  the sample mean. Assuming that the 

observations are properly centered, it follows that the sample mean is zero. To obtain the 

maximum likelihood estimator of the covariance matrix is equivalent to minimize  

 
2 ˆ( ) ( ) .l log tr
n

� � � � � �� � ��                               (5) 
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When , the maximum likelihood estimate is no longer useful; in particular, it is not 

positive definite and has rank no greater than . Finding the most sparse inverse covariance 

matrix to fit a data set is a NP-hard problem (Banerjee et al. [3]). To overcome this problem, 
several -regularization methods have been proposed for sparse estimation of the inverse 

covariance matrix.  

p n�
n

1�

To achieve sparse structure, penalized likelihood methods using the  penalty have 

been considered by Yuan and Lin [40], Banerjee et al. [4], D’Aspremont et al. [8], Friedman et 

al. [11], and Rothman et al. [29], who have all proposed different algorithms for computing 

this estimator. The resulting estimator 

1�

�̂  should minimize the following objective function  

 1
ˆ( ) ( ) ,Q log tr �� � � � � � �� ��� � �� �  

where 1 11
p p
j i ij�� ��� �� � � �� ��  is the  norm of �1�  and �  is a data dependent tuning 

parameter which can be tuned to achieve different levels of sparsity of the  estimate. The 

term  encourages sparseness of the precision matrix or conditional independence 

among variables. This approach produces a sparse estimate of the inverse covariance matrix 

and an estimate of the covariance matrix that is positive definite. Yuan and Lin [40] solved the 

corresponding optimization problem using the MAXDET algorithm, while Vandenberghe et 

al. [34] focused on statistical properties of the estimates. D’Aspremont et al. [8] proposed two 

efficient first-order numerical algorithms with a low memory requirement using semidefinite 

programming algorithms, which obey the positive-definiteness constraint of the precision 

matrix. Rothman et al. [29] and Lam and Fan [16] showed that the Frobenius norm between 

the inverse correlation matrix and its  penalized likelihood estimator is 

�
1�����

( log1� )O S p n�p , 
where  is the number of the nonzero elements of the inverse correlation matrix. 
Consequently, the sparse inverse correlation matrix is highly estimable and the 

dimensionality only costs an order of 

S

log p , a remarkable improvement on the general result 

of Fan and Peng [10]. The  penalty is convex and leads to a desirable convex optimization 

problem when the log-likelihood function is convex. Using a coordinate descent procedure, 
Friedman et al. [11] proposed the graphical Least Absolute Shrinkage and Selection Operator 

(GLASSO) algorithm to estimate the sparse inverse covariance matrix using the LASSO 

penalty.  

1�

This procedure has been referred to as graphical lasso, GLASSO, (Friedman et al. [11]) or 

Sparse Permutation Invariant Covariance Estimator, SPICE, (Rothman et al. [29]). The 

resulting estimation procedure has excellent theoretical properties, as shown by Rothman et al. 
[29] and Ravikumar et al. [26].  

In this paper, LASSO type penalty function is applied to multivariate control charts. 
Recently, Wang and Jiang [36] and Zou and Qiu [44] constructed control charts for 

monitoring multivariate mean vector using LASSO type penalty in the context of statistical 
process control (SPC). This work extends the research on recent penalized-likelihood-based 

SPC method (Wang and Jiang [36], Zou and Qiu [44]) to the monitoring of covariance 

matrix.  

3. A LASSO Chart for Monitoring a Shift in the Covariance Matrix 

Suppose that the process readings are p  component vectors 1 2i i� � � � �x �  and that 

while the process is in control, these process readings are independent multivariate normal 
random vectors with mean vector �  and covariance matrix � . Moreover, we assume that 

the in-control mean vector and the covariance matrix �  are known exactly.  

Our proposal is an accumulative method in line with the accepted wisdom that 
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accumulative methods work better with individual observations than with rational groups. 
Also, it is convenient to work with multistandardized data vectors instead of the original 
process readings . To achieve this, we use a matrix  with the property p� �A A I�x A , 
where pI  is a  identity matrix, and transform  to p� � �(u A x )�p x . While the process 

is in control, the ’s are ( )pN �0 Iu . Our proposal is a two-step mechanism. In the first step, 
for each observation , we compute n nn n ��U u u  which is a p p�  symmetric matrix but 

rank deficient and not positive definite. Using , we find an estimate of the inverse 

covariance matrix by  
nU

 � �
0

ˆ ( ) logn n n nn arg max tr �
�

� � � � �U
�

� � �� .�� ��                   (6) 

Now 0� �  performs regularization and the estimated covariance is invertible and 

positive definite. We obtain an estimate of the covariance matrix  by inverting . We 

then define the LASSO multivariate exponentially weighted moving covariance matrix 

(LEWMC) by the recursion 

ˆ n�nV

0 p�S I , and for 1 2n � � �

n

�

)

  

 1(1 ,n n�� � � � �S S                                     (7) V

where  is the smoothing constant. Also,  is positive definite for all values of , the 

proof of this statement is available in the Appendix. Unlike the MEWMC, 
� nS n

�  can take the 

value 1 for the LEWMC. When  1, � � n �S

nS
nV  and is positive definite.  

In the last step, we compare the matrix  with the identity matrix using the chart statistic  

 ( ) log .n n nc tr p� � � � �S S                                  (8) 

The control chart involves plotting  against  and signaling a loss of control if 

, where the control limit  is chosen to achieve a specified in-control average run 

length (IC ARL). Since  is positive definite for all values of , the chart statistic  is 

defined for all values of .  

nc n
nc h� h

ncnS
n

n

When � �  0, no regularization is done and the LEWMC is the same as the MEWMC.  

3.1. Algorithm Summary 

Our method for monitoring the covariance matrix of a process using a penalized 

likelihood estimation consists of the following steps.  

1.� Multistandardize the data by transforming the original variables x  into u . 

2.� For each observation n , compute n n n�� . U u u

3.� For each observation n , transform nU , a non-positive definite matrix into a 

positive definite matrix, i.e. find ˆ n�  and then nV . Use the graphical LASSO 

algorithm of Friedman et al. [11] for this step to directly obtain nV .  

4.� Using 0 p�S I , compute 1 n�(1n n� )� �S S � �V  for 1 2n � � ��   

5.� Compute the chart statistic ( ) logn n nc tr p� � � � �S S  for 1 2n � � ��  and detect an 

out of control behavior when nc h� .  

This will be referred to as “LEWMC chart” in the remainder of the paper.  

3.2. Selection of the Control Limit  h

The chart involves three constants, � , � , and . The first constant, also called the 

smoothing constant 

h
� , is used for tuning the chart to different sizes of change. A small value 

of  is used to detect a small shift and a large value of � �  is used if our goal is to detect a large 
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shift. The second element of interest is the sparsity tuning parameter � . A small value of �  

will make the estimated covariance matrix less sparse whereas a large value will make the 

estimate sparse. We will focus more on this parameter in the next section. The control limit  

defines the run lengths. Different combinations of 

h
� , � , and p  lead to different values of 

. Getting the appropriate value of  to achieve a specific IC ARL is not an easy task 

because the statistic used by the LEWMC chart does not have a known standard distribution. 
So, the values of  are obtained by simulation.  

h h

h

3.3. Out-of-Control Settings 

The element studied here is the out-of-control settings. Three shifts were investigated. In 

the first scenario (“variance shift”), we changed the covariance matrix from its in-control 
value of �pI  to a matrix having 1 �  in the (1, 1) position with the other elements unchanged.  

In the second scenario (“correlation shift”), the covariance matrix was left as pI , except 

for putting a correlation �  in the (1, 2) and (2, 1) positions with the other elements 

unchanged.  

The third scenario (“simultaneous variance and correlation shifts”) changed the identity 

covariance matrix by putting �  in the (1, 2) and (2, 1), and also 1 ��  in the (1, 1) and (2, 2) 

positions while the other elements remained unchanged.  

4. Performance Study 

The performance of quality control charts is commonly measured by their average run 

length (ARL) following an out of control shift. As a benchmark, we will compare the 

out-of-control ARL of our proposed method with that of the Multivariate Exponentially 

Weighted Moving Covariance matrix (MEWMC) of Hawkins and Maboudou-Tchao [13]. 
Also, as pointed out by a referee, we will compare, in the bivariate case, the LEWMC with the 

VMAX chart proposed by Machado and Costa [20].  

The performance comparison requires adjusting the approaches to have comparable 

in-control behavior, and then selecting informative out-of-control settings to evaluate. We 

compare the two methods for p  = 5, 10, 20, and � �  0.1. The in-control ARL is set to 200.  

4.1. Performance under Variance Shifts 

A full study of the chart performance is infeasible, as it would involve arbitrary changes 

in the  elements of the covariance matrix. Hence, we sketch just a scenario which 

changes the covariance matrix from the identity matrix to a matrix with 1 + 

( 1)p p � 2�
�  in the (1, 1) 

position while the other elements remain unchanged, and that leaves the mean vector at . 
We investigate the performance of 

0
�  varying from 0 to 1, simulating a minimum of 20,000 

independent series at each �  value. The resulting out-of-control ARL values are shown in 

Table 1. The table displays the comparison between the MEWMC and LEWMC with � �  

0.1, 0.2, 0.5, 1, 1.5, 1.8, and 2. In terms of performance, the LEWMC bettered the MEWMC 

for variance increases for all dimensions considered. This result should not be surprising as in 

this case, only the variances of the process variables change (variation of the diagonal 
elements). Then, the estimated covariance matrix has most of the off-diagonal elements equal 
to zero, and the “changed” diagonal elements will be correctly estimated. So, the shift in 

variance will be detected very quickly by the LEWMC.  

4.2. Performance under Correlation Shifts 

We again investigate p  = 5, 10, and 20, and �  = 0.1, 0.2, 0.5, 1, 1.5, 1.8, and 2. The 

correlation inserted in the (1, 2) element of the covariance matrix is varied from 0 to 0.9. 
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From the table (Table 2), the LEWMC is outperformed by the MEWMC. However, the 

performance of the LEWMC is getting closer to the MEWMC as �  gets small. In fact, the 

result seen here should be expected as in this case, only the off-diagonal elements change after 

a shift. Here, the LEWMC chart will hardly detect changes (unless they are quite large, 
especially with respect to the penalty weight), given that by itself it will force the off-diagonal 
estimated elements towards zero.  

 
Table 1. Performance comparison of the charts for variance shift. 

LEWMC( � ) 
p �  MEWMC 

0.1 0.2 0.5 1 1.5 1.8 2 
5 0.00 199.7 199.9 199.4 201.4 199.8 200.4 199.0 199.7 
5 0.10 173.7 163.2 153.5 157.2 151.4 157.9 148.3 151.0 
5 0.20 145.2 129.7 120.7 119.3 115.5 122.2 115.5 116.8 
5 0.30 117.8 101.0 93.10 92.95 90.82 94.46 90.89 93.33 
5 0.40 96.06 79.33 73.62 74.47 73.62 75.83 72.88 73.02 
5 0.50 77.96 63.68 58.93 59.53 58.73 62.06 58.92 60.85 
5 0.60 64.22 51.57 48.09 48.94 48.52 51.38 49.53 50.27 
5 0.70 53.21 43.23 40.33 40.57 41.49 43.57 41.87 42.94 
5 0.80 44.28 37.05 34.35 35.16 35.17 37.07 36.39 37.28 
5 0.90 38.54 31.91 30.07 30.43 31.19 32.15 31.57 32.28 
5 1.00 33.45 27.59 26.11 26.88 27.31 28.59 28.12 28.19 
10 0.00 201.3 199.5 198.2 199.7 200.4 199.5 199.4 199.3 
10 0.10 190.1 175.9 171.5 165.3 166.0 164.0 162.8 161.0 
10 0.20 174.4 149.1 141.0 139.3 137.6 136.5 135.7 133.8 
10 0.30 151.7 125.7 119.2 114.2 114.1 112.7 112.6 112.3 
10 0.40 133.9 104.5 96.72 95.27 95.85 94.49 95.89 94.10 
10 0.50 114.2 88.11 81.55 79.74 80.28 79.93 79.32 81.12 
10 0.60 99.02 74.12 69.59 67.41 66.44 68.42 69.19 68.84 
10 0.70 83.67 63.60 58.90 57.86 58.56 58.85 59.24 59.03 
10 0.80 72.70 53.48 50.29 49.42 51.02 50.45 50.91 51.78 
10 0.90 62.94 46.97 43.27 42.99 44.44 44.76 45.57 45.54 
10 1.00 55.32 40.78 38.16 37.62 39.67 39.90 40.76 41.13 
20 0.00 200.3 199.7 200.6 201.1 199.2 199.5 201.9 200.5 
20 0.10 196.3 180.9 179.2 174.7 172.9 173.6 178.5 179.5 
20 0.20 186.6 163.4 161.8 155.2 151.8 121.6 157.8 156.4 
20 0.30 172.4 145.1 141.1 136.2 132.5 132.2 137.7 134.6 
20 0.40 161.1 127.6 123.0 117.9 115.4 115.3 119.5 118.6 
20 0.50 146.1 113.2 106.7 102.7 100.5 102.8 105.7 105.5 
20 0.60 134.3 99.59 95.05 90.47 89.11 89.51 91.56 92.66 
20 0.70 121.0 86.72 82.08 78.96 78.78 79.10 82.14 82.44 
20 0.80 109.0 78.58 72.04 70.57 68.82 72.31 73.59 73.43 
20 0.90 97.31 68.45 64.29 62.66 61.45 63.37 65.18 65.64 
20 1.00 88.24 60.90 57.27 56.01 55.90 57.77 59.22 58.72 

 
4.3. Performance under Variance and Correlation Shifts 

Next, we considered a shift in the variance and correlation. The constant �  was varied 

from 0 to 0.9. We used p  = 5, 10, and 20, and set the penalty term � �  0.1, 0.2, 0.5, 1, 1.5, 
1.8, and 2. The results are shown in Table 3. It can also be seen from the table that the 

LEWMC control chart had a much faster reaction to shifts than the MEWMC.  
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Table 2. Performance comparison of the charts for correlation shift. 

LEWMC( � ) 
p �  MEWMC 

0.1 0.2 0.5 1 1.5 1.8 2 
5 0.00 196.2 199.9 199.4 201.4 198.1 201.3 200.2 199.8 
5 0.10 180.8 189.3 186.6 198.4 195.5 197.3 194.6 196.4 
5 0.20 143.6 159.3 165.3 182.9 188.8 194.4 189.9 190.7 
5 0.30 104.4 122.1 137.4 161.4 177.6 181.9 181.5 184.0 
5 0.40 72.78 93.74 107.9 144.4 164.2 171.8 171.5 172.6 
5 0.50 50.40 68.32 85.02 123.4 147.4 160.2 158.4 161.0 
5 0.60 35.94 50.85 66.48 102.4 132.3 144.9 145.4 146.8 
5 0.70 26.09 37.90 52.28 88.17 120.6 134.2 133.0 136.6 
5 0.80 19.63 29.28 41.41 76.35 108.6 121.7 123.1 123.3 
5 0.90 15.60 22.60 32.95 64.86 97.22 110.7 112.4 114.8 
10 0.00 199.0 199.9 198.5 201.7 201.4 200.1 199.6 199.6 
10 0.10 189.1 192.9 195.1 198.7 198.1 196.9 193.9 193.6 
10 0.20 170.2 175.8 181.4 190.7 193.9 197.8 192.2 193.4 
10 0.30 139.1 150.6 161.0 178.0 189.5 189.8 187.8 189.7 
10 0.40 108.7 124.5 138.3 165.5 180.1 181.5 183.3 180.5 
10 0.50 81.30 101.5 117.4 149.4 173.4 174.7 175.5 178.2 
10 0.60 60.03 78.83 97.12 134.1 158.9 166.3 166.0 167.0 
10 0.70 43.61 62.45 80.28 119.8 148.5 154.5 158.6 159.1 
10 0.80 32.02 48.34 65.81 105.0 137.4 144.3 148.7 152.4 
10 0.90 24.10 37.33 53.28 93.21 127.4 137.4 140.4 140.7 
20 0.00 200.8 199.5 200.8 201.5 199.5 201.3 200.9 201.1 
20 0.10 198.4 195.0 197.1 201.2 196.7 200.6 200.3 200.1 
20 0.20 186.5 186.9 190.1 196.0 195.9 200.0 199.1 200.4 
20 0.30 166.8 174.1 181.7 189.0 192.8 197.9 196.9 198.6 
20 0.40 145.1 158.5 167.9 184.6 186.6 190.6 193.5 195.0 
20 0.50 119.8 136.8 153.9 174.8 181.1 188.6 190.8 192.6 
20 0.60 96.87 120.1 139.5 163.3 174.2 183.7 184.7 186.5 
20 0.70 74.77 104.2 122.7 153.1 166.5 177.0 179.2 179.9 
20 0.80 54.88 85.58 106.1 140.3 156.8 169.3 172.9 173.8 
20 0.90 40.74 70.97 92.67 130.0 152.4 163.3 164.6 169.6 

 

4.4. Selection of the Tuning Parameter �  

The chart involves two constants, �  and . The penalty weight �h  is an input 

parameter and works as a threshold below which correlation are thought of as zero. When 

, 0� �n p�  corresponds to a sparse solution that fits the data less well. There is no clear 

connection between sparsity in  and 
1��� � �  in general. However, our simulations 

suggest that large values of �  yield sparse estimate of . So, a challenging question is how 

to choose 

S
� . For that purpose, we run a simulation with p �  5, 10, and 20 and an in-control 

ARL of 200. Also, we set the value of the tuning parameter �  to 0.1, 0.2, 0.5, 1, 1.5, 1.8, and 

2. We look at changes in the variance, correlation, and both variance and correlation. From 

Table 1, for a “variance shift”, and Table 3 for “simultaneous variance and correlation shifts”, 
it is hard to recommend a certain value of �  which will perform well for all shifts. However, 
for the “correlation shift”, Table 2, the LEWMC reacts faster to a shift when the tuning 



104                                                                      Maboudou-Tchao and Diawara 

parameter �  is small. This result observed is not surprising as in this case, only the 

off-diagonal elements change after a shift. The LEWMC chart will hardly detect changes 

(unless the changes are quite large, especially with respect to the penalty weight), given that by 

itself it will force the off-diagonal estimated elements towards zero. So, when the tuning 

parameter is small, the estimate is less sparse and the chart will react faster to a change in the 

off-diagonal elements. Then the choice of �  depends on the change patterns. Therefore, it is 

difficult to recommend one �  value that will be adequate for all out-of-control scenarios. 

 
Table 3. Performance comparison of the charts for variance and correlation shift. 

LEWMC( � ) 
p �  MEWMC 

0.1 0.2 0.5 1 1.5 1.8 2 
5 0.00 199.2 199.8 199.2 199.9 199.1 199.3 199.8 199.9
5 0.10 149.2 128.1 121.6 118.9 116.3 118.3 116.6 117.0
5 0.20 96.61 81.36 75.47 73.76 74.25 74.39 74.16 74.62
5 0.30 64.15 53.69 50.17 49.94 50.51 51.53 50.90 51.20
5 0.40 44.29 37.96 35.43 35.77 36.48 37.37 37.02 38.10
5 0.50 33.57 28.32 27.01 27.80 28.50 29.27 29.02 29.42
5 0.60 26.20 22.49 21.43 21.83 22.67 23.21 23.25 23.81
5 0.70 21.19 18.37 17.56 18.09 18.81 19.28 19.50 19.41
5 0.80 17.87 15.41 15.15 15.32 15.95 16.73 16.29 16.51
5 0.90 15.66 13.47 13.21 13.38 13.92 14.34 14.11 14.41

10 0.00 200.7 199.5 199.8 200.3 199.6 199.4 199.1 199.6
10 0.10 170.7 148.1 142.7 140.1 140.5 136.1 136.2 134.2
10 0.20 132.2 106.7 100.1 98.41 97.56 95.62 96.25 94.88
10 0.30 96.99 76.08 71.04 70.08 69.84 68.83 69.00 69.59
10 0.40 71.43 54.74 52.07 51.01 52.22 52.88 52.50 52.83
10 0.50 54.84 42.21 39.01 39.75 40.74 41.52 41.10 41.46
10 0.60 42.73 33.23 31.62 31.50 33.05 33.48 33.64 33.48
10 0.70 35.02 27.18 25.11 25.91 27.29 27.67 27.96 28.25
10 0.80 29.03 22.50 21.38 21.56 22.54 23.35 23.35 23.91
10 0.90 24.21 19.48 18.67 18.82 19.80 20.14 20.20 20.64
20 0.00 200.6 199.5 199.3 201.3 199.8 200.8 200.0 201.1
20 0.10 186.7 163.1 158.9 158.1 150.7 153.5 152.1 156.4
20 0.20 160.4 128.2 122.4 120.9 116.1 120.2 117.1 119.5
20 0.30 134.6 101.3 95.96 91.47 91.80 91.69 93.29 94.22
20 0.40 109.8 79.45 74.48 72.58 72.61 73.96 74.75 74.19
20 0.50 88.69 62.80 59.98 56.96 57.46 59.37 60.42 59.25
20 0.60 72.18 50.25 47.16 47.01 47.32 48.67 49.34 49.57
20 0.70 59.75 41.38 38.59 38.62 40.11 40.69 41.47 41.37
20 0.80 49.97 34.41 32.97 32.48 33.12 34.22 35.35 35.12
20 0.90 41.85 29.67 28.04 28.20 28.69 29.85 30.30 30.57

 

4.5. Bivariate Case 

As pointed out by one referee, we will investigate the performance in the bivariate case (2 

variables X and Y) by comparing the proposed chart to the EWMA scheme based on the 

VMAX statistic. The VMAX statistic is based on the sample variances of the two quality 

characteristics. This means that in order to compute the VMAX statistic, we need to have a 
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sample size . Now, to detect a change in the covariance matrix, use the statistic  m

 1(1 ) 1 2 ,i i iZ Y Z i�� � � � � � � � ��                            (9) 

where 
i�

, 2 2max
ii xY S S 

!� � y
"
#
$

2
ixS  and 

i

2
yS

0

 are the sample variances of  and  and  is a 

smoothing parameter .  is often set to the expected in-control value of . An 

out-of-control signal is obtained when  CL, where CL is the control limit for the 

EWMA chart.  

�
Z

X Y
0 � � %1 Z

iZ �

Note that the LEWMC, defined in this paper, is based on individual observations. So, for 

the two charts to be fairly compared, we propose a slight modification to the LEWMC chart 
by using samples of size  instead of individual observations. This modified chart will be 

called “Sample based LEWMC” and denoted by “S-LEWMC” chart.  
m

To define the S-LEWMC chart, it is convenient to work with multistandardized data 

vectors instead of the original process readings . To achieve this, we use a matrix  with 

the property 

x A

0 p� �A A I� , where pI  is a p p�  identity matrix, and transform  to 

. While the process is in control, the ’s are 

x
u )0(� �u A x � ) ( pN �0 I . We denote the  

sample of size  by 

thi
m 1 2i i m[ i ]i

�� � �U u u�u �  (an m p�  matrix) where  represents the 

 vector  of the  sample.  
kiu

thk u thi

The S-LEWMC chart can be outlined as follows:  

1.� Multistandardize the data by transforming the original variables x  into u   

2.� For each sample i , compute i i i
��   V U U

3.� For each sample i , find ˆ i�  and then iW . Use the graphical LASSO algorithm of 

Friedman et al. [11] for this step to directly obtain iW .  

4.� Using 0 p�S I , compute 1 i�(1 )i i� � �S S � �W  for 1 2i � � ��   

5.� Compute the chart statistic ( ) logi i ic tr p� � � � �S S  and detect an out of control 
behavior when ic h� .  

Next, we compare the EWMA scheme based on the VMAX statistic with the LEWMC 

and the S-LEWMC. We set  0.1 and the in-control ARL to 200. For the EWMA and the 

S-LEWMC, we use samples of size 

� �
m �  4. The LEWMC, as mentioned earlier, is based on 

the individual observations. We investigate the following out-of-control scheme. Case I will 
be a change in the variance of X, i.e., we changed the covariance matrix from its in-control 
value of  to a matrix having 1 + �2I  in the (1, 1) position with the other elements 

unchanged. Next, case II will be a change in both the variance of X and Y, i.e., we changed the 

covariance matrix from its in-control value of  to a matrix having 1 + �2I  in the (1, 1) and 

(2, 2) positions with the other elements unchanged. For both cases I and II, we vary �  from 0 

to 1.  

Table 4 and Table 5 show the performance comparison between the three charts. For 

both schemes, the EWMA based on the VMAX outperforms the LEWMC. This is 

reasonable as the EWMA chart is based on samples of size  while the LEWMC used 

individual observations. Next, the LEWMC based on samples of size  (S-LEWMC) reacts 

faster than the EWMA chart based on the VMAX statistic. 

m
m

5. Diagnostics After Detecting an Out-of-Control Signal 

Looking more closely at the issue of diagnosis, matters are complicated by the fact that a 

signal in the LASSO chart does not necessarily mean that the covariance matrix has shifted. 
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The signal can be triggered by several factors.  

1.� A change in the mean vector 

2.� A change in the relationship between the variables 

3.� A change in the variability 

An efficient way to monitor a multivariate process is to run simultaneously two charts. 
One to monitor the mean vector (Hotelling  chart, MEWMA, MCUSUM for example) 

and the other for monitor the process variability (Alt’s chart, MEWMC, CE chart for 

example). So, a change in the covariance matrix of the data impacts the run length behavior of 

the location chart, so a signal from the location chart could be an indirect indicator of an 

increase in the variability of the data. On the other side, as the scale chart is implicitly centered 

at the in-control mean vector, a shift in the mean vector accelerates signaling in the scale chart. 
This means that a location chart signal could be caused by a variance increase, and a scale 

chart signal could be caused by a shift in mean. Thus careful interpretation is necessary after a 

signal.  

2T

After a shift is detected, we recommend using the method proposed in Hawkins and 

Maboudou-Tchao [13] as a diagnostic tool to help identify the cause of the shift.  

 
Table 4. Performance comparison of the LEWMC with the VMAX for case I shift. 

p �  VMAX LEWMC S-LEWMC
2 0.00 200.6 201.2 200.1 
2 0.10 105.7 132.2 92.47 
2 0.20 62.06 91.91 51.60 
2 0.30 40.03 66.10 32.71 
2 0.40 28.21 51.01 22.57 
2 0.50 21.09 40.30 17.16 
2 0.60 16.66 32.51 13.50 
2 0.70 13.39 27.69 10.99 
2 0.80 11.37 23.46 9.39 
2 0.90 9.64 20.29 8.03 
2 1.00 8.43 18.27 7.10 

 
Table 5. Performance comparison of the LEWMC with the VMAX for case II shift. 

p �  VMAX LEWMC S-LEWMC
2 0.00 200.3 201.2 200.4 
2 0.10 66.24 132.2 51.94 
2 0.20 31.50 91.91 23.00 
2 0.30 18.98 66.10 13.66 
2 0.40 13.19 51.01 9.47 
2 0.50 9.84 40.30 7.10 
2 0.60 7.78 32.51 5.76 
2 0.70 6.52 27.69 4.69 
2 0.80 5.49 23.46 4.01 
2 0.90 4.75 20.29 3.46 
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6. Example 

We apply the new method to the real data set used in Hawkins and Maboudou-Tchao 

[13]. The data set used is from a long-standing research project in ambulatory monitoring (see 

www.msi.umn.edu/halberg for deeper background). In this work subjects were equipped 

with instruments that measure and record physiological variables. The wearer blood pressure 

and heart rate were measured and recorded every 15 minutes for 6 years. Before analysis 

using statistical process control (SPC) methods, each week raw data are condensed into 

weekly summary numbers, which include mean systolic blood pressure (SBP), mean diastolic 

blood pressure (DBP), mean of heart rate (HR), and overall mean arterial pressure (MAP). 
We set the smoothing constant �  to .1, the sparsity parameter �  to 0.5, and the IC ARL to 

200; thus the control limit is h = 1.28. The IC distribution of the readings for this particular 

person is assumed to be known exactly from his (long) historical sequence. It is multivariate 

normal with mean vector  
(126 61 77 48 80 95 97 97)�� � � � � � � ��  

and covariance matrix  

0

15 04 8 66 10 51 12 04

8 66 5 83 5 56 7 5
.

10 51 5 56 15 17 8 79

12 04 7 5 8 79 10 57

� � � �& '
( )� � � �( )�
( )� � � �
( )

� � � �* +

�   

The matrix  used to multistandardize the data to ( )N �0 I  is  A

0 26 0 0 0

0 63 1 09 0 0
.

0 38 0 21 0 36 0

0 45 1 03 0 13 1 42

�& '
( )� � �( )�
( )� � � �
( )
� � � � � � �* +

A   

As pointed out by a referee, we give some details about the computation of the statistic 

 for the first observation. The computations are done in the following steps  nc

1.� After the multistandardization, the first observation is  

1 (0 496 0 259 1 249 0 398) .�� � �� � �� � � �u   

2.� The next task is to compute 1 1 1�� . We get   U u u

1

0 246 0 129 0 620 0 198

0 129 0 067 0 324 0 103
.

0 620 0 324 1 559 0 497

0 198 0 103 0 497 0 158

� � � � � �& '
( )� � � � � �( )�
( )� � � � � �
( )

� � � � � �* +

U   

3.� By using the graphical LASSO package from R, we compute directly 1V ,  

1

0 747 0 000 0 121 0 000

0 000 0 567 0 000 0 000
.

0 121 0 000 2 059 0 000

0 000 0 000 0 000 0 658

� � � � �& '
( )� � � �( )�
( )� � � � �
( )

� � � �* +

V   



108                                                                      Maboudou-Tchao and Diawara 

4.� Now, with 0 4�S I , we compute 11 0(1 )� � � � �S S V  to obtain  

1

0 907 0 012 0 068 0 018

0 012 0 873 0 029 0 009
.

0 068 0 029 1 156 0 045

0 018 0 009 0 045 0 890

� � � � � �& '
( )� � � � � �( )�
( )� � � � � �
( )

� � � � � �* +

S   

5.� Finally, we can use 1S  to compute 1 1 1( ) logc tr p� � � � �S S �  0.03876546  

In the same way, we compute 2 3c c� ��  for 2 3n � � �� . An R code to compute the  

statistic is available in the appendix. So, calculating the LEWMC chart statistic  for the 

next 20 observations gives the results shown in Figure 1. The chart goes outside its control 
limit at the  observation. Note that the MEWMC also detects a signal at the  

observation. The diagnosis analysis is discussed in Hawkins and Maboudou-Tchao [13] and 

is not repeated in this paper. 

nc

19th

nc

19th
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Figure 1. LEWMC chart for the Ambulatory Monitoring data. 

 

7. Conclusion 

In this paper, we have proposed a new method using the graphical LASSO to monitor 

small and persistent changes in a covariance matrix of a multivariate Gaussian process. The 

graphical LASSO is used here because of certain desirable properties of the graphical LASSO 

estimators such as being positive definite and full rank even when the empirical covariance is 

singular. We have derived some properties for the LEWMC such as being positive definite 

among others.  

The performance of this chart was discussed and compared to some existing charts, the 

MEWMC chart of Hawkins and Maboudou-Tchao [13] and, in the bivariate case, the 

EWMA based on the VMAX statistic of Machado and Costa [20]. The simulations show that 
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the LEWMC outperforms the MEWMC for all but one of the scenarios considered in this 

current paper. The current version of this chart is designed to detect changes in the covariance 

matrix only. Also, it is based on the assumptions that the observations are independent of 

each other, follow a multivariate normal distribution, and their in-control distribution is 

known. In the case when the IC distribution is unknown, a self starting methodology, such as 

Maboudou-Tchao and Hawkins [19], may be applied to the proposed chart.  
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Appendix 

Properties of the LEWMC 

In this section, we assume that 0 1� � � 0 and � �
1n�S 2n

. While the process is in-control, by 

decomposing  in terms of , 2n�S �S 3n in terms of �S

(1 (1 )� � � �

, and so on, it follows  

Lemma 1.   
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The above formula shows that  is a linear combination of the identity matrix 

weighted by a coefficient  and the random matrices � �V V�
1(1 )n�� � � � ��� 1 n

 weighted by the 

coefficients . For this reason, the sequence � �S S� �

�, �S S�
1 n� �V V�

 is called a LASSO 

Multivariate Exponentially Weighted Moving Covariance Matrix (LEWMC) sequence. 
When  0, the sequence  tends to be a smoother version of the initial sequence 

 and when 
1 n

� = 0, then 1 0n n�� � �� p�S I
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Next, we compute the mean and variance of the matrix . The quantity  defined 

earlier is a random matrix and we assume that it has mean 
n

E �V .  and covariance matrix 

. The mean of  is given in the theorem below  ( )nCov �V - nS
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Theorem 2.   
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Proof.  
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When � �  0, there is no regularization and � pI. . It follows that  which is 

the MEWMC case.   
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This means that the asymptotic mean and asymptotic covariance matrix of the process 
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For , we use the inductive hypothesis  and show that  2 3n � � �� 1 0n
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values of .  

Computer Code 

An R code for the computation of the LEWMC chart is presented here. This function 

uses for argument a multistandardized data , a tuning parameter � , the control limit , 
and the smoothing constant � . The function LEWMC.Chart can be modified slightly if one 

wants to not penalize the diagonal elements of the covariance matrix. To achieve that, we just 

need to use ��������	
��
�	���������������	������������ � instead. Note that by doing so, 
we also need to change the control limit h . Remember that you need first to install the 
package "glasso" and load it before using the code below. 

h

$

LEWMC.Chart <- function(x,rho,cl,lam){ 
## 
## x: data  
## rho: LASSO penalty term  
## cl: Control limit  
## lam: Smoothing constant term 
## 

#———————————————————–  

if  (rho<=0)  
 stop("The tuning parameter must be a positive number.")  

if  (lam<=0 || lam>=1)  
 stop("The smoothing constant must be a number between 0 and 1.")  

if  (cl <= 0)  
 stop("The control limit must be a positive number.")  

#———————————————————–  
n<-dim(x)[1]; p< - dim(x) [2]  
sn<-diag(p);cn<-rep( 0 ,n); sample<-rep(0 ,n);k<-0  
cn<-rep(0,n) 
for(i in 1:n){  
k<-k+1  
u<-x[i,];sample[i]<-k  
U<-u%*%t(u) 
V<-glasso(U,rho)$w 
sn<-(1-lam)*sn +lam*V 
trsn<-sum(diag(sn)) 
cn[i]<-trsn-log(det(sn))-p 
} 
plot(sample,cn,type="b") 
abline(h=cl) 
list(cn=cn,sample=sample) 
} 
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