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Abstract: The non-viscous, laminar mixed convection boundary-layer flow
over a horizontal moving porous flat plate, with chemical reaction, is consid-
ered. The governing equations are expressed in non-dimensional form and
the series solutions of coupled system of equations are constructed for ve-
locity, temperature and concentration functions using variational iteration
method. The investigated parameters are: buoyancy parameter, chemical
reaction parameter, order of chemical reaction, Prandtl number and Schmidt
number.
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1. INTRODUCTION

A convection situation involving both natural and forced convection is commonly
referred as mixed convection; in porous media has been an important topic because
of its wide range of application in engineering and science. In mixed convection
flows, the forced convection as well as the free convection effects is of comparable
magnitudes. Thus, mixed convection occurs if the effect of buoyancy forces on a
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forced flow or the effect of forced flow on a buoyant flow is significant. The laminar
mixed convection, which is encountered in various applications in thermal engineer-
ing and science, received a special attention from researchers in the past decades.
Examples of these applications include solar energy systems, boilers, compact heat
exchangers and cooling of electronic devices and etc. Incropera [1], Aung [2] and
Gebhart et al. [3] were researches that investigated the mixed convection with either
uniform wall temperature or wall heat flux thermal boundary condition. Srinivas
and Muthiraj [4] studied mixed convection in a vertical porous channel, Datta et
al. [5] presented non-similar solution of mixed convection in the presence of surface
mass transfer over a horizontal flat plate. Laminar mixed in the entrance region of
a vertical circular tube for assisted and opposed air flows with the using of a uni-
form wall heat flux boundary condition [6], turbulent mixed convection flow over
a inclined flat channel [7] are two more examples of mixed convection. Recently a
number of papers [8–11] have appeared on the combined free and forced convection
in a porous medium involving horizontal surface. Kandasamy et al. [12] investigated
the effect of chemical reaction on heat and mass transfer over a wall in presence of
suction or injection. Hayat et al. [13] studied the laminar flow problem of convective
heat transfer on a semi-infinite plate in the presence of concentration and chemi-
cal reaction. Some articles [14,15] investigated the impact of chemical reaction on
moving porous medium flat plate.

Because of the nonlinearities in the reduced differential equation, no analytical
solution is available and the nonlinear equations usually are solved numerically
subject to boundary conditions, one of which is prescribed at infinity. Numerical
methods related to this subject are also given in different types [16]. Numerical
methods have included finite difference method [17–19].

The variational iteration method (VIM) was first proposed by He [20,21] and
systematically illustrated in 1999 [22] and used to give approximate solutions of the
problem of seepage flow in porous media with fractional derivatives. The VIM is
useful to obtain exact and approximate solutions of linear and nonlinear differential
equations. In this method, general Lagrange multipliers are introduced to construct
correction functional for the problems. The multipliers can be identified optimal-
ly via the variational theory. There is no need of linearization or discretization,
and large computational work and round-off errors are avoided. It has been used
to solve effectively, easily and accurately a large class of nonlinear problems with
approximation [23–25]. It was shown by many authors [26,27] that this method is
more powerful than existing techniques such as the Adomian method [28]. He [29]
proposed three standard variational iteration algorithms for solving differential e-
quations, integrodifferential equations, fractional differential equations, differential-
difference equations, and fractional/fractal differential-difference equations. The
algorithm used in this paper belongs to the variational iteration algorithm-I. In our
article the viscous, laminar mixed convection boundary-layer flow from a horizontal
moving porous flat plate, with the effect of chemical reaction, is considered. The
transformed momentum and thermal boundary-layer and concentration equations
are solved by VIM.

2. MATHEMATICAL FORMULATIONS

Consider a continuous moving flat plate with a velocity U(x) along the plate which
is along horizontal direction, i.e., x-axis, y-axis is normal to the plate at origin
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(0, 0). Y w(x), Cw(x) are the temperature and concentration at the wall while
T∞, C∞ are constant temperature and concentration far away the plate (see Figure
1). Neglecting the viscous dissipation and by considering fluid properties as constant
except in buoyancy term, the governing Prandtl boundary-layer equations which are
parabolic in nature and simplified form of NaiverCStokes pertinent to the problem
are
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Figure 1
Scheme of the Moving Flat Plate

Continuity equation:
∂ u

∂ x
+
∂ v

∂ y
= 0, (1)

x-momentum equation:

u
∂ u

∂ x
+ v

∂ u

∂ y
= −1

ρ

∂ p

∂x
+ ν

∂ 2u

∂ y2
, (2)

y-momentum equation:

−1

ρ

∂ p

∂y
+ gx βT

(
T − T∞

)
+ gx βC

(
T − T∞

)
= 0, (3)

Energy equation:

u
∂ T

∂ x
+ v

∂ T

∂ y
= α

∂2 T

∂ y2
, (4)

Concentration equation:

u
∂ C

∂ x
+ v

∂ C

∂ y
= D

∂2 C

∂ y2
−K

(
C − C∞

)n
. (5)

The boundary conditions are

u = U(x), v = vw(x), T = TW , C = CW at y = 0,

u = U∞, uy = 0, T = T∞, C = C∞ at y →∞.
(6)

The existence of stream function ψ is a consequence of the incompressibility of
the fluid in two dimensional flows. Any solenoidal velocity field in two dimensions
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can be expressed as u = ψy, v = −ψx. Introducing stream function, dimensionless
temperature and concentration function θ and ϕ defined by

θ =
T − T∞
Tw − T∞

=
T − T∞

∆T
, ϕ =

C − C∞
Cw − C∞

=
C − C∞

∆C
.

For mentioned problem, similarity variables are as follows:

η = Re
1
2

ξ

L
5−3n
7−5n

= Re
1
2
y

L

( x
L

) 2(n−1)
7−5n

,

ψ = γ Re
1
2

( x
L

) 5−3n
7−5n

f(η),

∆T = A
( x
L

) 4
7−5n

, ∆C = B
( x
L

) 4
7−5n

,

U = U0

( x
L

) 3−n
7−5n

, θ(ξ) = θ(η), ϕ(ξ) = ϕ(η).

(7)

where Re is local Reynolds number. With using above transforms, we can obtain:

fηηηη +

(
5− 3n

7− 5n

)
f fηηη −

(
n+ 1

7− 5n

)
fη fηη −K1

[(
2(n− 1)

7− 5n

)
η θη +

(
4

7− 5n

)
θ

]
−K2

[(
2(n− 1)

7− 5n

)
η ϕη +

(
4

7− 5n

)
ϕ

]
= 0,

(8)

1

Pr
θη η +

(
5− 3n

7− 5n

)
f θη −

(
4

7− 5n

)
fη θ = 0, (9)

1

Sc
ϕη η +

(
5− 3n

7− 5n

)
f ϕη −

(
4

7− 5n

)
fη ϕ− k3 ϕn = 0, (10)

where n is the order of chemical reaction. The boundary conditions become

f(η) = 0, fη(η) = 1, θ(η) = 1, ϕ(η) = 1, η → 0,

fη(η) = 0, fηη(η) = 0, θ(η) = 0, ϕ(η) = 0, η →∞,
(11)

Here K1 =
GrT

Re
1
2

, K2 =
Grc

Re
5
2

buoyancy parameter and K3 =
Gr

1
2
c

Re
chemical

reaction parameter.

3. BASIC CONCEPTS OF VIM

To illustrate the basic concepts of VIM, we consider the following differential equa-
tion:

Lu+Nu = g(x), (12)

where L, N and g(x) are the linear operator, the nonlinear operator and a hetero-
geneous term, respectively.

Assuming u0(x) is the solution of Lu = 0, we can write down an expression to
correct the value of some special point, for example at x = 1

ucor(1) = u0(1) +

∫ 1

0

λ [Lu0 +N u0 − g] dx, (13)
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where λ is a general Lagrange multiplier, which can be identified optimally via
variational theory, the second term on the right is called the correction. He [20,21]
has modified the above method into an iteration method in the following way:

um+1(x0) = um(x0) +

∫ x0

0

λ [Lum +N ũm − g] dx, (14)

with u0(x) as initial approximation with possible unknowns, ũm is considered a
restricted variation and is chosen suitably to satisfy the restricted variation condi-
tions, i.e. δũm = 0. For arbitrary of x0, we can rewrite Equation (14) as follows:

um+1(x) = um(x) +

∫ x

0

λ [Lum(ξ) +N ũm(ξ)− g(ξ)] dξ, m ≥ 0. (15)

It is obvious that the successive approximations uj , j ≥ 0 can be established by
determining λ, a general Lagrange’s multiplier, which can be identified optimally
via the variational theory. As mentioned before, the function ũm is a restricted
variation which means δũm = 0. Therefore, we first determine the Lagrange multi-
plier λ which will be identified optimally via integration by parts. The successive
approximations um+1(x), m ≥ 0 of the solution u(x) will be readily obtained upon
using the obtained optimal Lagrange multiplier and by using admissible function u0.
Once λ is determined, then several approximations uj(x), j ≥ 0 follow immediately.
Consequently, the exact solution may be obtained using

u = lim
m→∞

um. (16)

4. VIM SOLUTIONS

In order to obtain VIM solution of Equations (8)–(10), we construct a correction
functions which reads

fm+1(η) = fm(η) +

∫ η

0

λ1

[
∂4fm(τ)

∂τ4
+

(
5− 3n

7− 5n

)
f̃m(τ)

∂3f̃m(τ)

∂τ3

−
(
n+ 1

7− 5n

)
∂f̃m(τ)

∂τ

∂2f̃m(τ)

∂τ2
−K1

[(
2(n− 1)

7− 5n

)
τ
∂ θ̃m(τ)

∂τ
+

(
4

7− 5n

)
θ̃m(τ)

]

−K2

[(
2(n− 1)

7− 5n

)
τ
∂φ̃m(τ)

∂τ
+

(
4

7− 5n

)
φ̃m(τ)

]]
dτ,

(17)

θm+1(η) =θm(η) +

∫ η

0

λ2

[
1

Pr

∂2θm(τ)

∂τ2

+

(
5− 3n

7− 5n

)
f̃m(τ)

∂θ̃m(τ)

∂τ
−
(

4

7− 5n

)
∂f̃m(τ)

∂τ
θ̃m(τ)

]
dτ,

(18)

φm+1(η) =φm(η) +

∫ η

0

λ3

[
1

Sc

∂2φm(τ)

∂τ2
+

(
5− 3n

7− 5n

)
f̃m(τ)

∂φ̃m(τ)

∂τ

−
(

4

7− 5n

)
∂f̃m(τ)

∂τ
φ̃m(τ)−K3φ̃

n
m(τ)

]
dτ,

(19)
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where λ1, λ2 and λ3 are the general Lagrange multipliers and f̃m(τ), θ̃m(τ) and
φ̃m(τ) are considered as restricted variations, i.e. δf̃m(τ) = 0, δθ̃m(τ) = 0 and
δφ̃m(τ) = 0. To find the optimal values of λ1, λ2 and λ3, we have

δfm+1(η) = δfm(η) + δ

∫ η

0

λ1

[
∂4fm(τ)

∂τ4
+

(
5− 3n

7− 5n

)
f̃m(τ)

∂3f̃m(τ)

∂τ3

−
(
n+ 1

7− 5n

)
∂f̃m(τ)

∂τ

∂2f̃m(τ)

∂τ2
−K1

[(
2(n− 1)

7− 5n

)
τ
∂θ̃m(τ)

∂τ
+

(
4

7− 5n

)
θ̃m(τ)

]

− K2

[(
2(n− 1)

7− 5n

)
τ
∂φ̃m(τ)

∂τ
+

(
4

7− 5n

)
φ̃m(τ)

]]
dτ,

(20)

δθm+1(η) =δθm(η) + δ

∫ η

0

λ2

[
1

Pr

∂2θm(τ)

∂τ2
+

(
5− 3n

7− 5n

)
f̃m(τ)

∂θ̃m(τ)

∂τ

−
(

4

7− 5n

)
∂f̃m(τ)

∂τ
θ̃m(τ)

]
dτ,

(21)

δφm+1(η) =δφm(η) + δ

∫ η

0

λ3

[
1

Sc

∂2φm(τ)

∂τ2
+

(
5− 3n

7− 5n

)
f̃m(τ)

∂φ̃m(τ)

∂τ

−
(

4

7− 5n

)
∂ f̃m(τ)

∂τ
φ̃m(τ)−K3φ̃

n
m(τ)

]
dτ,

(22)

or

δ fm+1(η) = δfm(η) + δ

∫ η

0

λ1

[
∂4fm(τ)

∂τ4

]
dτ, (23)

δθm+1(η) = δθm(η) + δ

∫ η

0

λ2

[
1

Pr

∂2θm(τ)

∂τ2

]
dτ, (24)

δφm+1(η) = δφm(η) + δ

∫ η

0

λ3

[
1

Sc

∂2φm(τ)

∂τ2

]
dτ, (25)

Its stationary conditions can be obtained as follows

1− λ1(3)(τ)
∣∣∣
τ=η

= 0, λ1
′′(τ)

∣∣
τ=η

= 0, λ1
′(τ)

∣∣
τ=η

= 0, λ1(τ)|τ=η = 0, λ1
(4)(τ) = 0,

(26)

1− λ2′(τ)
∣∣
τ=η

= 0, λ2(τ)|τ=η = 0, λ2
′′(τ) = 0, (27)

1− λ3′(τ)
∣∣
τ=η

= 0, λ3(τ)|τ=η = 0, λ3
′′(τ) = 0. (28)

The Lagrange multipliers, can be identified as follows

λ1 =
1

6
(τ − η)3, (29)
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λ2 = λ3 = (τ − η), (30)

and the following variational iteration formula can be obtained

fm+1(η) = fm(η) +
1

6

∫ η

0

(τ − η)
3

[
∂4fm(τ)

∂τ4
+

(
5− 3n
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)
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∂τ3
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(
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7− 5n

)
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∂τ

∂2f̃m(τ)

∂τ2
−K1

[(
2(n− 1)

7− 5n

)
τ
∂ θ̃m(τ)

∂τ
+

(
4

7− 5n

)
θ̃m(τ)

]

−K2

[(
2(n− 1)

7− 5n

)
τ
∂φ̃m(τ)

∂τ
+

(
4

7− 5n

)
φ̃m(τ)

]]
dτ,

(31)

θm+1(η) =θm(η) +

∫ η

0

(τ − η)

[
1

Pr

∂2θm(τ)

∂τ2
+

(
5− 3n

7− 5n

)
f̃m(τ)

∂θ̃m(τ)

∂τ

−
(

4

7− 5n

)
∂ f̃m(τ)

∂τ
θ̃m(τ)

]
dτ,

(32)

φm+1(η) =φm(η) +

∫ η

0

(τ − η)

[
1

Sc

∂2φm(τ)

∂τ2
+

(
5− 3n

7− 5n

)
f̃m(τ)

∂φ̃m(τ)

∂τ

−
(

4

7− 5n

)
∂ f̃m(τ)

∂τ
φ̃m(τ)−K3φ̃

n
m(τ)

]
dτ,

(33)

Now we must start with arbitrary initial approximations such that they satisfy
the boundary condition. Therefore according to Equation (11) it is straight-forward
to choose power initial guesses

f0(η) = 1− e−η, (34)

θ0(η) = e−η, (35)

φ0(η) = e−η, (36)

We use the symbolic software MATHEMATICA to solve the system of integrality
equations, Equations (31)–(33), with the initial functions (34)–(36), and successively
obtain f1(η), θ1(η) and φ1(η). In the same way, we can obtain f2(η), θ2(η), φ2(η)
and etc.

5. RESULT AND DISCUSSION

Figure 1 shows the boundary-layers, in this case, there are three types of boundary-
layer, concentration boundary-layer, thermal boundary-layer and velocity boundary-
layer. The velocity, temperature and concentration profiles are obtained by the
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8th-order approximation of the VIM and the influence of various physical parame-
ters of the problem on these distributions are discussed in detail and are illustrated
graphically through a set of graphs.

From Figure 2 it can be seen that when the first buoyancy parameter (due to
temperature gradient) increases, velocity for small values of spanwise coordinate
increases and for large values of spanwise coordinate decreases. An increase in
first buoyancy parameter leads to a decrease in the thickness of temperature and
concentration boundary-layer. These behaviors are clear from Figures 3 and 4. From
Figure 5, it observed that for all values of η when the second buoyancy parameter
(due to concentration gradient) increase, the velocity increases. Table 1 shows this
clearly. Also an increase in second buoyancy parameter leads to a decrease in the
thickness of temperature and concentration boundary-layer. These behaviors are
obvious from temperature profiles and concentration profiles presented in Figures 6
and 7.

Figures 8–10 shows the effect of chemical reaction parameter on velocity, tem-
perature and concentration profiles, it is clear that with an increasing of K3 value
of f ′(η) is decreased; we put this result in Table 2.

Figures 11–13 display influence of the order of chemical reaction on the velocity,
temperature and concentration profiles, it is clear that with an increasing of n from
1 to 3 all values of f ′(η), θ(η) and φ(η) are increased, but from 3 to 5 all of these
values are decreased; that is shown in Table 3.

Figure 2
Velocity Profile, f ′(η) Versus Spanwise Coordinate (η) for Various
Buoyancy Parameter, (K1 = 0.1, 1, 2) when n = 1, K2 = 1, K3 = 0.5,
Pr = 1, and Sc = 0.5
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Figure 3
Temperature Profile, θ(η) Versus Spanwise Coordinate (η) for Various
Buoyancy Parameter, (K1 = 0.1, 1, 2) when n = 1, K2 = 1, K3 = 0.5,
Pr = 1, and Sc = 0.5

Figure 4
Concentration Profile, φ(η) Versus Spanwise Coordinate (η) for Various
Buoyancy Parameter, (K1 = 0.1, 1, 2) when n = 1, K2 = 1, K3 = 0.5,
Pr = 1, and Sc = 0.5
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Figure 5
Velocity Profile, f ′(η) Versus Spanwise Coordinate (η) for Various
Buoyancy Parameter, (K2 = 0.1, 1, 2) when n = 1, K1 = 1, K3 = 0.5,
Pr = 1, and Sc = 0.5

Figure 6
Temperature Profile, θ(η) Versus Spanwise Coordinate (η) for Various
Buoyancy Parameter, (K2 = 0.1, 1, 2) when n = 1, K1 = 1, K3 = 0.5,
Pr = 1, and Sc = 0.5
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Figure 7
Concentration Profile, φ(η) Versus Spanwise Coordinate (η) for Various
Buoyancy Parameter, (K2 = 0.1, 1, 2) when n = 1, K1 = 1, K3 = 0.5,
Pr = 1, and Sc = 0.5

Figure 8
Velocity Profile, f ′(η) Versus Spanwise Coordinate (η) for Various
Chemical Reaction Parameter, (K3 = 0, 0.5, 1) when n = 1, K1 = K2 = 1,
Pr = 1, and Sc = 0.5
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Figure 9
Temperature Profile, θ(η) Versus Spanwise Coordinate (η) for Various
Chemical Reaction Parameter, (K3 = 0, 0.5, 1) when n = 1, K1 = K2 = 1,
Pr = 1, and Sc = 0.5

Figure 10
Concentration Profile, φ(η) Versus Spanwise Coordinate (η) for Various
Chemical Reaction Parameter, (K3 = 0, 0.5, 1) when n = 1, K1 = K2 = 1,
Pr = 1, and Sc = 0.5
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Figure 11
Velocity Profile, f ′(η) Versus Spanwise Coordinate (η) for Various
Order of Chemical Reaction, (n = 1, 3, 5) when K1 = K2 = 1, K3 = 0.5,
Pr = 1, and Sc = 0.5

Figure 12
Temperature Profile, θ(η) Versus Spanwise Coordinate (η) for Various
Order of Chemical Reaction, (n = 1, 3, 5) when K1 = K2 = 1, K3 = 0.5,
Pr = 1, and Sc = 0.5
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Figure 13
Concentration Profile, φ(η) Versus Spanwise Coordinate (η) for Various
Order of Chemical Reaction, (n = 1, 3, 5) when K1 = K2 = 1, K3 = 0.5,
Pr = 1, and Sc = 0.5

Table 1
Values of f ′(η) Obtained by the Numerical Method for Different Values
of K2 when n = 1, K1 = 1, K3 = 0.5, Pr = 1, and Sc = 0.5

η K2 = 0.1 K2 = 1 K2 = 2

0.5 0.752318 0.888225 1.01459
1.5 0.308266 0.401044 0.48788
2.5 0.082255 0.109012 0.149207
3.0 0.0312748 0.0415249 0.0685669
3.5 0.00669622 0.00889407 0.0249377
4.0 8.86262× 10−8 2.60744× 10−7 0.00513038

6. CONCLUSION

In this letter, the variational iteration method was used for finding the analytic
solutions of the system of nonlinear ordinary differential equations derived from
similarity transform for the non-viscous, laminar mixed convection boundary-layer
flow over a horizontal moving porous flat plate, with chemical reaction. The VIM
was used in a direct way without using linearization, perturbation or restrictive as-
sumptions. The method requires less computational work than existing approaches
while supplying quantitatively reliable results. Consequently, the present success
of the VIM for the highly nonlinear problem of mixed convection boundary-layer
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Table 2
Values of f ′(η) Obtained by the Numerical Method for Different Values
of K3 when n = 1, K1 = K2 = 1, Pr = 1, and Sc = 0.5

η K3 = 0 K3 = 0.5 K3 = 1

0.5 0.932821 0.888225 0.863023
1.5 0.471403 0.401044 0.37456
2.5 0.169881 0.109012 0.0979468
3.0 0.0902226 0.0415249 0.0365731
3.5 0.0421181 0.00889407 0.00767876
4.0 0.0155745 2.60744× 10−7 1.10409× 10−7

Table 3
Values of f ′(η) Obtained by the Numerical Method for Different Values
of n when K1 = K2 = 1, K3 = 0.5, Pr = 1, and Sc = 0.5

η n = 1 n = 3 n = 5

0.5 0.888486 1.21758 1.16146
1.5 0.401471 1.22182 1.01003
2.5 0.109282 0.756287 0.588993
3.0 0.041669 0.52934 0.411802
3.5 0.00893545 0.353544 0.277524
4.0 2.75596× 10−7 0.228307 0.181648

flow verifies that the method is a useful tool for nonlinear problems in science and
engineering.
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APPENDIX

Nomenclature
u velocity components in x-direction
v velocity components in y-direction
C concentration
Pr Prandtl number, Pr ≡ v/α
Sc Schmidt number, Sc ≡ v/D
D mass diffusivity
g gravitational acceleration
f dimensionless stream function
n order of chemical reaction
T temperature
k thermal conductivity
K1,K2 Buoyancy parameters
K3 chemical reaction parameter
x coordinate along a cone ray
y coordinate normal to cone surface

Greek symbols
α thermal diffusivity
βT coefficient of thermal expansion
βC coefficient of concentration expansion
η similarity coordinate
ψ stream function
ξ streamwise coordinate
µ dynamic viscosity
v kinematic viscosity
ρ density of the gas
θ dimensionless temperature
φ dimensionless concentration

Subscript
∞ condition at infinity
w condition at the wall
T denote to temperature
C denote to concentration
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