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Abstract: In this paper, we use the wavelet transform to the Fractional
Brownian motion of 2-index by Haar wavelet, we obtain some statistical
properties about the stochastics processes and its density degree and wavelet
expresses.
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1. INTRODUCTION

The Fractional Brownian motion is a class of important stochastic processes, about
the processes, there are some study works [1,3,6–8]. In this paper, we study
it use wavelet methods. With the rapid development of computerized scientific
instruments comes a wide variety of interesting problems for data analysis and
signal processing. In fields ranging from Extragalactic Astronomy to Molecular
Spectroscopy to Medical Imaging to computer vision, one must recover a signal,
curve, image, spectrum, or density from incomplete, indirect, and noisy data.
Wavelets have contributed to this already intensely developed and rapidly advancing
field.

Wavelet analysis is a remarkable tool for analyzing function of one or several
variables that appear in mathematics or in signal and image processing. With
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hindsight the wavelet transform can be viewed as diverse as mathematics, physics
and electrical engineering. The basic idea is to use a family of building blocks to
represent the object at hand in an efficient and insightful way, the building blocks
come in different sizes, and are suitable for describing features with a resolution
commensurate with their sizes. Some persons have studied wavelet problems of
stochastic process or stochastic system [2–5,9–13]. In this paper, we study a class
of random processes using wavelet analysis methodsand study its energy,the energy
express by density degree.

2. BASIC DEFINITION

Definition 1 Fractional Brownian motion: Gauss processes Xt(t ≥ 0) be called
φ-fractional Brownian motion, if X0 = 0, EXt = 0, and

E(Xs Xt) =
1

2
(sφ + tφ − |s− t|φ) (1)

where, if we let φ = 2, then we call it as Fractional Brownian motion of 2-index.
Definition 2 Let Xt is stochastic processes, then its wavelet alternative is [12]

W (s, x) =
1

s

∫
R

Xtψ(
x− t
s

)dt (2)

Then we have

E[W (s, x)] =
1

s

∫
R

E[x(t)]ψ(
x− t
s

)dt = 0

where ψ is continuous wavelet.
Definition 3 Let ψ(x) is

ψ(x) =

 1, 0 ≤ x < 1
2

−1, 12 ≤ x < 1
0, other

(3)

We call ψ(x) haar wavelet [12].

3. STATISTICS PROPERTY AND ENERGY

We have

W (s, x) =
1

s

[∫ x

x− s
2

x(t)dt−
∫ x− s

2

x−s
x(t)dt

]
and E [W (s, x)] = 0, then relational function of W (s, x) is

R(τ) = E[W (s, x)W (s, x+ τ)]

=
1

s2

∫∫
R2

E[x(u)x(v)]ψ(
x− u
s

)ψ(
x+ τ − v

s
)dudv

=
1

s2
( ∫ x

x− s
2

∫ x+τ

x− s
2+τ

E[x(u)x(v)]dudv −
∫ x

x− s
2

∫ x− s
2+τ

x−s+τ
E[x(u)x(v)]dudv

−
∫ x− s

2

x−s

∫ x+τ

x− s
2+τ

E[x(u)x(v)]dudv +

∫ x− s
2

x−s

∫ x− s
2+τ

x−s+τ
E[x(u)x(v)]dudv

)
= I1 + I2 + I3 + I4

(4)
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4. THE WAVELET PROPERTIES OF SYSTEM

In Equation (1), φ = 2, we do the research in the following.
We have

E[x(s)x(t)] =
1

2
(s2 + t2 − |s− t|2) = st

Relational function of W (s, x)

R1(τ) =E[W (s, x)W (s, x+ τ)]

=
1

s2

∫∫
E[x(u)x(v)]ψ(

x− u
s

)ψ(
x+ τ − v

s
)dudv

=
1

s2
[

∫ x

x−s/2+τ

∫ x+τ

x−s/2+τ
uvdudv −

∫ x

x−s/2

∫ x−s/2+τ

x−s+τ
uvdudv

−
∫ x−s/2

x−s

∫ x+τ

x−s/2+τ
uvdudv +

∫ x−s/2

x−s

∫ x−s/2+τ

x−s+τ
uvdudv]

=I1 + I2 + I3 + I4

I1 =
1

s2

∫ x

x−s/2
udu

∫ x+τ

x−s/2+τ
vdv =

1

4s2
(xs− s2

4
)(s(x+ τ)− s2

4
)

I2 = − 1

s2

∫ x

x−s/2
udu

∫ x−s/2+τ

x−s−τ
vdv = − 1

4s2
(xs− s2

4
)(s(x+ τ)− 3s2

4
)

I3 = − 1

s2

∫ x−s/2

x−s
udu

∫ x+τ

x−s/2+τ
vdv = − 1

4s2
(xs− 3

4
s2)(s(x+ τ)− s2

4
)

I4 =
1

s2

∫ x−s/2

x−s
udu

∫ x−s/2+τ

x−s+τ
vdv =

1

4s2
(xs− 3s2

4
)(s(x+ τ)− 3s2

4
)

Then, we have R1(τ) =
1

8
s(2x− s), R′1(τ) = 0.

Use above, we can obtain R(4)(0), then we can obtain the zero density of

W (s, x)

√√√√∣∣∣∣∣ R′′(0)

π2R(0)

∣∣∣∣∣ and the energy density

√√√√∣∣∣∣∣ R(4)(0)

π2R′′(0)

∣∣∣∣∣. Then, we have: The zero

density of W (s, x):

√√√√∣∣∣∣∣ R
′′
(0)

π2R(0)

∣∣∣∣∣ = 0 and the energy density

√√√√∣∣∣∣∣ R(4)(0)

π2R′′(0)

∣∣∣∣∣ does not

exist.
Also we have

Rb(j, k;m,n) = 2−
j+k
2

∫∫
R2

E[x(t)x(s)]ψ(2jt−m)ψ(2ks− n)dtds

= 2−
j+k
2

∫∫
R2

tsψ(2js− n)ψ(2ks−m)dtds

Ra(j, k;m,n) = 2−
j+k
2

∫∫
R2

E[x(t)x(s)]φ(2jt−m)φ(2ks− n)dtds

= 2−
j+k
2

∫∫
R2

tsφ(2js− n)φ(2ks−m)dtds
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Use Equation (4), we have

ψ(2jt−m) =

{
1,m2−j ≤ t < (1/2 +m)2j

−1, (1/2 +m)2−j ≤ t ≤ (1 +m)2−j

ψ(2ks− n) =

{
1, n2−k ≤ s < (1/2 + n)2−k

−1, (1/2 + n)2−k ≤ s ≤ (1 + n)2−k

Then

Rb(j, k;m,n)

=2
−
j + k

2
[ ∫ ( 1

2+m)2−j

m2−j

tdt

∫ ( 1
2+n)2

−k

n2−k

sds−
∫ ( 1

2+m)2−j

m2−j

tdt

∫ (1+n)2−k

( 1
2+n)2

−k

sds

−
∫ (1+m)2−j

( 1
2+m)2−j

tdt

∫ ( 1
2+n)2

−k

n2−k

sds+

∫ (1+m)2−j

( 1
2+m)2−j

tdt

∫ (1+n)2−k

( 1
2+n)2

−k

sds
]

=2
−
j + k

2
1

4

[
2−2j(

1

4
+m)(

1

4
+ n)2−2k − 2−2j(

1

4
+m)(

3

4
+ n)2−2k

− 2−2j(m+
3

4
)(

1

4
+ n)2−2k + 2−2j(m+

3

4
)(

3

4
+ n)2−2k

]
=− 2

−
5(j + k)

2
−2

(5)

Then, we express relational degree of b(j,m). Let

φ(t) =

{
1, 0 ≤ t ≤ 1
0, other

Then, we have

φ(2jt− n) =

{
1, n2j ≤ t ≤ (n+ 1)2j

0, other

φ(2ks−m) =

{
1,m2k ≤ s ≤ (m+ 1)2k

0, other

then,

Ra(j, k;m,n) = 2−
j+k
2

∫∫
R2

tsφ(2js− n)φ(2ks−m)dtds

= −j + k

2

∫ (n+1)2j

n2j
tdt

∫ (m+1)2k

m2k
sds

= −j + k

4
22(j+k)(1 + 2n)(1 + 2m)

5. WAVELET REPRESENTATION

Let real function φ is standard orthogonal element of multiresolution analysis
{Vj}, j ∈ Z [7], then exist hk ∈ l2, have

φ(t) =
√

2
∑
k

φ(2t− k)
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Let
ψ(t) =

√
2
∑
k

(−1)
k
h1−kφ(2t− k)

Then wavelet express of X(t) in mean square is

X(t) = 2−
J
2

∑
K

CJnφ(2−J t− n) +
∑
j≤J

2−
j
2

∑
n∈Z

djnψ(2−jt− n) (6)

where,

Cjn = 2−
j
2

∫
R

X(t)φ(2−jt− n)dt

djn = 2−
j
2

∫
R

X(t)ψ(2−jt− n)dt

Then we have

E
[
CjnC

k
m

]
= 2
−
j + k

2

∫∫
R2

E[X(t)X(s)]φ(2−jt− n)φ(2−ks−m)dsdt

E
[
djnd

k
m

]
= 2
−
j + k

2

∫∫
R2

E[X(t)X(s)]ψ(2−jt− n)ψ(2−ks−m)dsdt

(7)

If we let

φ(t) =

{
1, 0 ≤ t ≤ 1
0, other

We can obtain the value of E(CjnC
k
m) according to value of (5) on above. Now

we consider function ψ(t) that exist compact support set on [−k1, k2],k1, k2 ≥ 0,
and exist enough large M , have

∫
R
tmψ(t)dt = 0, 0 ≤ m ≤ M − 1, then φ exist

compact support set on [−k3, k4] satisfy k1 + k2 = k3 + k4, k3, k4 ≥ 0.
Let b(j, k) =< X(t), ψjk >, a(j, k) =< X(t), φjk > and J is a constant, then{

2
J
2 φ(2Jx− k), k ∈ Z

}
∪
{

2
j
2ψ(2jt− k), k ∈ Z

}
j≥J

are a standard orthonormal basis of space L2(R), then have

X(t) = 2
J
2

∑
K∈Z

a(J,K)φ(2J t−K) +
∑
j≥J

∑
K∈Z

2
j
2 b(j,K)ψ(2jt−K)

Therefore, the self-correlation function of b(j,m)

Rb(j,K;m,n) = E [b(j,m)b(k, n)]

= 2−
j+K

2

∫∫
R2

E [X(t)X(s)]ψ(2jt−m)ψ(2Ks− n)dtds
(8)

And also we have

Ra(j,K;m,n) = E [a(j,m)a(k, n)]

= 2−
j+K

2

∫∫
R2

E [X(t)X(s)]φ(2jt−m)φ(2Ks− n)dtds
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Let

F (2j−K , t) =

∫
R

ψ(2j−Ks− t)ψ(s)ds

If ψ(t) has (M − 1)-order waning moments, then F (2j−K , t) has (2M − 1)-order
waning moments. Actually,∫∫

R2

tmψ(2j−Ks− t)ψ(s)dsdt

= −
∫∫

R2

(2j−Ks− t)mψ(t)ψ(s)dsdt

= −
∫∫

R2

∑
n

Cnm(2j−Ks)
m−n

(−t)nψ(t)ψ(s)dsdt = 0,m < 2M

Therefore, we have
Theorem LetX(t) is solution process of system (1), ψ(t) has compact supported

set on [−K1,K2], K1,K2 > 0, and ψ(t) has (M − 1)-order waning moments, and
ψ(t) is standard orthonormal wavelet function. Then stochastic process b(J,m) are
stationary process.
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