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Abstract
The linear electrohydrodynamic instability of two superposed viscous dielectric fluids flowing down an
inclined plane in the presence of thermal conductivity variation and applied electric fields is investigated.
Using long-wavelength approximation, a new instability is presented. It is shown that when there is a
variation in thermal conductivity in the fluid even in absence of electric fields or when applied electric fields
are present even in absence of thermal conductivity variation, instability can occur under a longitudinal
gravitational field. The effects of various parameters as Prandtl number, Reynolds number, electric field,
inclination angle, and thermal conductivity variation on the stability of the system are discussed analytically
and numerically in detail. The presence of electric field is important to prevent the drop out of the analysis
when there is no stratification in thermal conductivity.
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INTRODUCTION

The dynamics of thin film waves has received much attentiom from various industries due to its dramatic
effect on transport rate of mass, heat, and momentum in designing distillation and adsorption columns,
evaporators, condensers, nuclear reactor emergency colling system ...etc. (Bankoff [1], Lin [2], Yih and Sea-
grave [3], Sanyal and Sanyal [4]). Knowledge of film waves is necessary in connection with the modern pre-
cision coating of photographic emulsions, magnetic material, protective paints, flow of molten metal/lava,
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...etc. (Yih [5], Joseph and Ranardy [6]). The interfacial instability of single-phase falling films is marked by
a finite bandwidth of modes becoming unstable for any nonzero parallel flow, in contrast to the viscosity-
stratification instability described above. Smith [7, 8] described the different possible mechanisms for a
long-wave falling film instability. One is the ”velocity-induced” instability, driven by the velocity gradi-
ent normal to the flow of the basic state. The second is a ”shear-induced” instability, which is driven by
the gradient of the shear stress normal to the flow of the basic state. Up to date works on this fascinating
problem can be seen by the review works of Yih [9], Lin [10], De Bruin [11], Nakata [12], Loewenherz and
Lawrence [13], Kelly et al. [14], and Hseih [15].

The flow of two immiscible, incompressible fluids in an inclined channel, separated by an interface with
surface tension, is driven by the component of gravity along the channel wall, and by an imposed pressure
gradient (Tougou [16]). Since the fluids may have distinct physical properties, the interface is susceptible to
the viscosity-stratification instability found by Yih [17], the instabilities associated with density stratification,
shear-flow instabilities, as well as the interfacial instability found in single-phase falling films. Goussis and
Kelly [18, 19] performed an energy analysis of two-layer Couette-Poiseuille flow in an inclined channel for
cocurrent flows in the direction of gravity, and found that density stratification manifests its instability
through perturbation shear stresses at the deformed interface, while viscosity stratification acts through
perturbation velocities across the perturbed interface. For an excellent review about this topic see the work
of Prokopiou et al. [20].

Electrohydrodynamics is the study of the relation between the electric field and fluid mechanics. In
recent years, some attention has been paid to the engineering application of electrohydrodynamics, in par-
ticular the behavior of interface between two dielectric fluids in applied electrostatic fields. One important
problem in electrohydrodynamics is the impact of the electric field on the stability of a two-fluid system.
The discontinuity of the electrical properties of the fluids across the interface affects the force balance at
the fluid-fluid interface, which may either stabilize or destabilize the interface in question. The effect of
electric fields on the stability and dynamics of fluid-fluid interface has been an area of extensive research,
beginning from the classical work of Taylor and McEwan [21]. Hoburg and Melcher [22] studied the stability
of two fluids stressed by a tangential electric field with a conductivity gradient in a diffusive layer. Melcher
and his collaborators [23−25] studied the stability of two fluids under the influence of a tangential electric
field as well as a normal electric field, both in an unbounded domain. Abdella and Rasmussen [26] analysed
Couette flpw in an unbounded domain subjected to a normal electric field. These works and subsequent
studies, see for example, the review of Saville [27], have amply demonstrated the role of electrical stresses
on fluid interfaces, and the associated electrohydrodynamic instabilities in such systems. One of the basic
problems here is to understand the stability of the interface between two fluid layers bounded on the top and
bottom by rigid plates, and this has been the subject of many previous studies. These studied have largely
considered systems in which gravitational effects are important, and therefore, a critical applied voltage is
required to cause the instability: very long waves are stabilized by gravity, and short waves are stabilized
by interfacial tension, and waves of intermediate lengths become unstable. For an excellent review about
this topic see the works of Shankar and Sharma [28], Ozen et al. [29] and Tomar et al. [30].

In the majority of cases of electrohydrodynamic instability, there is a stratification of either a fluid
property or some quantity of flow. The most obvious case of instability is that of two superposed fluids,
with the upper fluid heavier than the lower one. A statically stratified fluid can be unstable if the fluid is
accelerated downward with an acceleration greater than the gravitational acceleration g. The stratification in
density of an incompressible fluid has its counterpart in the stratification of entropy of a compressible fluid,
as meteorologists who invented the concept of potential density to account for the effect of compressibility
have long recognized. Stratification in density in the presence of longitudinal gravity can be unstable, as is
now well known. Less well known is the instability resulting from a stratification in electric conductivity,
as shown by Taylor and McEwan [21] for a steady vertical electric field. Instability resulting from viscosity
variation in shear flows (Yih [17]) is a subject that, after many years, is now enjoying a period of revival of
interest. In porous media, a less viscous fluid pushing a more viscous one can induce instability and produce
fingers of penetration. But it does not necessarily need to be a fluid property that, when stratified, can induce
instability. If some quantity of the flow of a fluid is stratified, it can be unstable too. A prominent example
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is the Couette flow, which can be unstable if the square of the circulation decreases outwards, resulting in
the formation of Taylor vortices. The electromagnetic counterpart of Taylor vortices is the result of a radial
stratification of a circular magnetic field. In two-dimensional flows the stratification of vorticity can induce
instability when there is a point of inflection in the velocity profile, a farnous and extreme case of which is
the Helmholtz instability, where the density stratification is stabilizing and the instability results from the
vortex sheet. Even when there is no point of inflection in the velocity profile of a two-dimensional flow of a
viscous fluid, stratification of vorticity is still important for instability, as indicated by the stability of plane
Couette flows, which has uniform vorticity. (For axisymmetric flows it is the stratification of the azimuthal
vorticity divided by the radial distance that is important. When this quantity is constant, as in Poiseuille flow,
the flow is stable against axisymmetric small disturbances).

In this article, We shall show a new instability: the instability resulting from thermal-conductivity strat-
ification. With the other instances of how a fluid or a flow can be unstable when a stratification is present,
one could perhaps make the point that hydrodynamic stability is a subject within the field of stratified flows
(Yih [5], Kao [31]). We have several practical reasons to consider this problem. Film flows of dielectric
fluids serve in elements of nuclear energy equipment, and other technological applications, as in metal-
lurgy. Applications of dielectric and electric films in different cooling systems is also very promising. The
generation and development of surface waves can drastically affect the properties of such systems. In some
applications, it is desirable to promote surface waves, and in others to suppress them. It is worth noting that
the effect of external body forces can accelerate or impede the onset of waves over a flow, as is observed in
convection. It is well known that the effect of the Lorentz force causes a loss of energy in electrohydrody-
namic flow, and anisotropy of propagation of the waves due to the interaction of the flow and the external
electric field. Therefore, we suggest that the Lorentz force may essentially affect the critical conditions for
the onset of long-wave instability in dielectric films.

1. PRIMARY TEMPERATURE, VELOCITY AND ELECTRIC
FIELDS

Consider two superposed fluids, each of thickness d, between two plane boundaries inclined at an angle β
to the horizontal. To show that the instability to be revealed results from conductivity variation alone, we
shall assume the two fluids to have the same viscosity and the same dependence of density on temperature,
but different thermal conductivities: k (for the upper fluid) and k (for the lower fluid). That two such fluids
are not easy to find is not necessarily an objection to this study, since instabilities resulting from density and
viscosity variations are known, and the new cause of instability is in addition to those other known causes
of instability.

Let the origin of Cartesian coordinates be situated on the interface of the fluids, and let x be measured
along the interface down the incline, and y be measured upward in a direction normal to the interface. The
temperatures at the lower and upper boundaries will be denoted by T − ∆T and T + ∆T , respectively. We
shall measure x and y in units of d, so that they are dimensionless. The temperature in the lower and upper
fluids will be denoted by T1(y) and T2(y), respectively. Defining h̄1 and h̄2 by (Yih [32])

h̄1 =
T1(y) − T0

∆T
, h̄2 =

T2(y) − T0

∆T
(1)

one can readily solve the Laplace equation governing heat conduction, with regards to the boundary and
interfacial conditions, and obtain

h̄1 =
(λ − 1)
(λ + 1)

+
2λ

(1 + λ)
y (2)

h̄2 =
(λ − 1)
(λ + 1)

+
2

(1 + λ)
y (3)
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where
λ =

k2

k1
(4)

The interfacial conditions for the temperature field are the continuity of temperature and the continuity of
heat flux across the interface.

The variation of density with temperature is assumed the same for both fluids only for the sake of
simplicity. This assumption is not at all necessary. We make it here only to isolate the variation of thermal
conductivity as the cause of instability. The dependence of the density ρ on temperature is

ρ = ρ0[1 − ᾱ(T − T0)] (5)

where ρ0 is the density at temperature T0, and ᾱ is the coefficient of thermal expansivity. With ū denoting
the velocity (in the x direction) of the primary flow and µ denoting the viscosity (assumed constant), we
have

µ
d2ū
dY2 + gρ sin β − K = 0 (6)

where g is the gravitational acceleration, and

K =
dΠ

dX
, Π = p̄ − ε

2
Ē2 (7)

In equation (7), p̄ is the pressure in the primary flow, and Ē is the electric field, and X = xd, x being
measured in units of d.

The velocity ū for the lower and upper fluids are, respectively, denoted by ū1(Y) and ū2(Y). The bound-
ary conditions are

ū1(−d) = 0, ū2(d) = 0 (8)

and the interfacial conditions are

ū1(0) = ū2(0),
dū1

dY
=

dū2

dY
at Y = 0 (9)

Equation (6) gives two equations, one for ū1, and one for ū2. When these are solved with conditions (8) and
(9), one obtains

ū1 =
K̃
2µ

(d2 − Y2) +
V sin β

6d2(λ + 1)

{
(λ − 1)(3Y2 − 2d2) − (λ + 1)dY +

2λ
d

Y3
}

(10)

ū2 =
K̃
2µ

(d2 − Y2) +
V sin β

6d2(λ + 1)

{
(λ − 1)(3Y2 − 2d2) − (λ + 1)dY +

2
d

Y3
}

(11)

where

V =
ᾱgd2∆T

v
, v =

µ

ρ0
(12)

has the dimension of a velocity, and will be used as the velocity scale, and K̃ = ρ0g sin β − K.
For our purpose of demonstrating instability resulting from conductivity variation, it is sufficient to take

a special K̃. We shall take
K̃d2

µ
=

(λ − 1)
(λ + 1)

V sin β (13)

because it will give us the simplest forms of ū1, and ū2. Using V as the velocity scale, and adopting equation
(13), we have

U1 =
ū1

V
=

1
6(λ + 1)

[(λ − 1) − (λ + 1)y + 2λy3] sin β (14)
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U2 =
ū2

V
=

1
6(λ + 1)

[(λ − 1) − (λ + 1)y + 2y3] sin β (15)

On the other hand, suppose that the lower rigid boundary is raised at a zero electric potential, while the
upper one is raised at an electric potential V in order to produce an electric field acting in the negative y-
direction. As usual, in electrohydrodynamics, we assume that the quasi-static approximation is valid, then
there exists an electric potential Ψ such that Ẽ = −∇Ψ. In this case, The Maxwell’s equations can be written
in the form (Lee[33], Kim and Bankoff[34])

∇ · (εẼ) = 0, ∇ × (Ẽ) = 0 (16)

where Ẽ is the electric field, and ε is the dielectric constant. We shall also assume that there are no surface
charges (in the equilibrium state) at the surface of separation, and therefore, the electric displacement is
continuous at the interface, i.e. if the condition ε1E01 = ε2E02 is satisfied.

2. PERTURBATION EQUATIONS

The stability problem is now formulated following the usual small perturbation technique, and with the usual
procedure of considering two-dimensional disturbances only, since Squire’s result[35], and later extensions
by Yih[9] have shown that the stability or instability of a three-dimensional disturbance can be determined
from that of a two-dimensional disturbance at a higher Reynolds number.

The Navier-Stokes equations are

∂ũ j

∂τ
+ ũ j

∂ũ j

∂X
+ ṽ j

∂ũ j

∂Y
= − 1

ρ0

∂Π̃ j

∂X
+
µ

ρ0
∇∗2ũ j + [1 − ᾱ(T j − T0)]g sin β (17)

∂̃v j

∂τ
+ ũ j

∂̃v j

∂X
+ ṽ j

∂̃v j

∂Y
= − 1

ρ0

∂Π̃ j

∂Y
+
µ

ρ0
∇∗2ṽ j + [1 − ᾱ(T j − T0)]g cos β (18)

where j = 1 denotes quantaties associated with the lower fluid, and j = 2 denotes quantaties associated with
the upper fluid, and ũ j, ṽ j are the velociy componens in the X,Y directions, respectively, Π̃i is the modified
pressure, τ is the time, and ∇∗2 = ∂2/∂X2 + ∂2/∂Y2.

The continuity equation is
∂ũ j

∂X
+
∂̃v j

∂Y
= 0 (19)

The above equations are made dimensionless by setting

h̄ j =
T j − T0

∆T
, (u j, v j) =

(
ũ j

V
,

ṽ j

V

)
, (x, y) =

(X
d
,

Y
d

)
,Π j =

Π̃ j

ρ0V2

t =
τV
d
, E j =

Ẽ j√
ρ0V

(20)

The dimensionless form of equations (16)-(19) are then

∂u j

∂t
+ u j

∂u j

∂x
+ v j

∂u j

∂y
= −∂Π j

∂x
+

1
R
∇2u j +

d
V2 [1 − ᾱh̄ j∆T ]g sin β (21)

∂v j

∂t
+ u j

∂v j

∂x
+ v j

∂v j

∂y
= −∂Π j

∂y
+

1
R
∇2v j − d

V2 [1 − ᾱh̄ j∆T ]g cos β (22)

∂u j

∂x
+
∂v j

∂y
= 0 (23)
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in which ∇2 = ∂2/∂x2 + ∂2/∂2, and

∇ · (εE) = 0, ∇ × (E) = 0 (24)

Assuming small perturbations from the basic flow in the form

u j = U j + u′j, v j = v′j, Π j = Π0 j + Π′j, h j = h̄ j + Θ j, E j = E0 j + E′j (25)

Let the dimensionless temperature perturbations be expressed by

Θ1 =
T ′1
∆T

, Θ2 =
T ′2
∆T

(26)

Neglecting the second-order terms in the primed quantities, and making use of the fact that U j and Π0 j

satisfy the basic flow equations, we have upon substitution of equation (25) into equations (21)-(24), the
linearized equations governing the disturbance motion, to the first order terms, are

∂u′j
∂t

+ U j

∂u′j
∂x

+ v′j
∂U j

∂y
= −

∂Π′j
∂x

+
1
R

∆u′j − Θ1

(
ᾱgd∆t

V2

)
sin β (27)

∂v′j
∂t

+ U j

∂v′j
∂x

= −
∂Π′j
∂y

+
1
R

∆v′j + Θ1

(
ᾱgd∆t

V2

)
cos β (28)

∂u′j
∂x

+
∂v′j
∂y

= 0 (29)

and
∇ · (εE′) = 0, ∇ × (E′) = 0 (30)

From equation (30), the electric field E′ can be expressed in terms of a scalar potential Ψ′ such that E′ =

−∇Ψ′. Hence, Ψ′ should satisfy the equation

∇2Ψ′j = 0, j = 1, 2 (31)

3. FORMULATION OF THE STABILITY PROBLEM

Let ψ1(x, y) and ψ2(x, y) be the stream functions for the lower and upper fluids, respectively. Then the
velocity perturbations for the two fluid layers, satisfying equations (29), are given by

u′j =
∂ψ j

∂y
, v′j = −∂ψ j

∂x
, j = 1, 2 (32)

We shall assume

(Θ1,Θ2, ψ1, ψ2,Π
′
j) = [h1(y), h2(y), φ(y), χ(y), f j(y)]exp[iα(x − ct)] (33)

where the scale for the time t is d/V , the scale for the wave number α is d1, and c is the dimensionless
wave velocity:

c = cr + ici (34)

The flow is stable or unstable according to whether ci is negative or positive, respectively.
The linearized heat equations are then, upon use of equations (26), (32), and (33)

iα(u1 − c)h1 − 2iλα
λ + 1

φ =
1

λRP
(h′′1 − α2h1) (35)
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iα(u2 − c)h2 − 2iα
λ + 1

χ =
1

RP
(h′′2 − α2h2) (36)

where, for simplicity, we have assumed the thermal diffusivities of the fluid to have the ratio λ also (in effect
ignoring the variation of specific heat, which can be accounted for without difficulty), and

R =
Vd
ν
, P =

ν

κ2
(37)

are the Reynolds number and the Prandtl number (for the upper fluid), respectively. The thermal diffusivity
of the upper fluid is denoted by κ2. The boundary conditions are, assuming that the boundaries are thermally
much more conductive than the fluid,

h1(−1) = 0 = h2(1) (38)

and the interfacial conditions are
h′1(0) = λh′2(0) (39)

h2(0) − h1(0) =
2(λ − 1)φ(0)

(λ + 1)
φ(0)
c′

(40)

with
c′ = c − U1(0) (41)

The term on the right-hand side of equation (40) arises from the difference in slope of h̄1 and h̄2 at y = 0,
which contributes the term when the interface is displaced from its mean position. This term is crucial in
the calculation for stability. The ratio φ(0)/c′ multiplied by the exponential factor exp[iα(x − ct)] is indeed
equal to the interfacial displacement ξ, as can be deduced from the kinematic condition at the interface.
Therefore

ξ =
φ(0)
c′

exp[iα(x − ct)] (42)

Using equation (33), the linearized Navier-Stokes equations are, for the lower fluid

iα(u1 − c)φ′ − iαu′1φ = −iα f1 +
1
R

(φ′′′ − α2φ′) − sin β
R

h1 (43)

α2(c − u1)φ = f ′1 +
iα
R

(φ′′ − α2φ) − cos β
R

h1 (44)

The last term in equation (43) arises form the body force term
(

d
ρ0V2

)
(ρ0gᾱ∆Th1 sin β), (45)

the multiplier d/ρ0V2 is to make the entire equation dimensionless [similarly for the last term in (44)]. For
the upper fluid, the linearized Navier-Stokes equations are

iα(u2 − c)χ′ − iαu′2χ = −iα f2 +
1
R

(χ′′′ − α2χ′) − sin β
R

h2 (46)

α2(c − u2)χ = f ′2 +
iα
R

(χ′′ − α2χ) − cos β
R

h2 (47)

Eliminating f1 in equations (43) and (44), and f2 in equations (46) and (47), we obtain the augmented
Orr-Sommerfeld equations

φiv − 2α2φ′′ + α4φ = iαR[(u1 − c)(φ′′ − α2φ) − u′′1 φ] + h′1 sin β + iαh1 cos β (48)

χiv − 2α2χ′′ + α4χ = iαR[(u2 − c)(χ′′ − α2χ) − u′′2 χ] + h′2 sin β + iαh2 cos β (49)

The solution of equation (31) can be written in the form

Ψ′j = [a jexp(αy) + b jexp(−αy)]exp(iα(x − ct)) (50)

where a j and b j are arbitrary constants to be determined using the appropriate boundary conditions.
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4. THE BOUNDARY CONDITIONS

Here, we used the following boundary conditions (Mohamed et al.[36]):
(1) The velocity vanished at the rigid boundaries, i.e.

φ(−1) = 0 = φ′(−1), χ(1) = 0 = χ′(1) (51)

expressing the no-slip condition
(2) The velocity must be continuous at the interface, i.e.

φ(0) = χ(0), φ′(0) = χ′(0) (52)

(3) The tangential component of the electric field should be continuous at the interface, i.e.

n× E1 = n× E2 at y = 0 (53)

where the total electric fields E j( j = 1, 2) for the two layers are given by

E j = −
∂Ψ′j
∂x

i −
E0 j +

∂Ψ′j
∂y

 j, ( j = 1, 2) (54)

and the unit normal vector n to the interface y = ξ between the two layers, to first order terms is

n = −iαξi + j (55)

substitute from equations (50), (54), and (55) into condition (53), we obtain

a1 + b1 = a2 + b2 +
φ(0)
c′

(E02 − E01) (56)

(4) The normal component of the electric displacement is continuous at the interface, i.e.

n · (ε1E1) = n · (ε2E2) at y = 0 (57)

which, using equations (50), (54), and (55), yields

ε1(a1 − b1) = ε2(a2 − b2) (58)

(5) Some other conditions should be satisfied at the rigid planes, since the lower plane is earthed and
the upper plane is raised to a potential V0. Then, we have the following conditions

∂Ψ′1
∂x

= 0 at y = −1 and
∂Ψ′2
∂x

= 0 at y = 1 (59)

Then, using equation (50), we get
a1exp(−α) + b1exp(α) = 0 (60)

a2exp(α) + b2exp(−α) = 0 (61)

We solve the equations (56), (58), (60), and (61) to get the following constants

a1,2 = − (E01, E02)(ε2 − ε1)
(ε1 + ε2)

φ(0)
c′

exp(±α)
2 sinhα

b1,2 =
(E01, E02)(ε2 − ε1)

(ε1 + ε2)
φ(0)
c′

exp(∓α)
2 sinhα

(62)
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Hence, equations (50) can be written in the form

Ψ′1,2 = − (E01, E02)(ε2 − ε1)
(ε1 + ε2)

φ(0)
c′

sinh[α(y ± 1)]
sinhα

exp[iα(x − ct)] (63)

(6) The tangent component of the stress tensor is continuous at the interface, i.e.

φ′′(0) = χ′′(0) (64)

(7) The normal component of the stress tensor is discontinuous at the interface by the effective interfacial
tension Ŝ , i.e.

φ′′′ − 3α2φ′ − χ′′′ + 3α2χ′ =

{
iα3S R − 2(λ − 1)

(λ + 1)
sin β − iαR

E01E02(ε2 − ε1)2

(ε1 + ε2)

}
φ(0)
c′

at y = 0 (65)

where S = Ŝ /(ρ0V2d), and Ŝ being the surface tension. Note that in deriving equation (65) we have used
the approximation α coth(α) ' 1.

The stability problem is thus governed by four simultaneous differential equations, two of which are
of the second order and the other two of the fourth order, and sixteen boundary or interfacial conditions.
Given the parameters R, P, λ, α, β, and S , one seeks to determine c. Note that, in the corresponding case
studied by Yih[32], which is a limiting case of our work in absence of the applied electric field. He missed
(or neglected) the second-term on the right-hand side of equation (65). Therefore, his calculations after this
stage are not correct. Hence, we have obtained here the correct calculations in the general case including
the effect of electric field, and discussed the stability analysis in view of the correct results.

5. SOLUTIONS AND LONG-WAVE INSTABILITY

We consider long waves, and adopt the method of solution given by Yih[32]. First, we expand the unknowns
in power series of α as follows

h1 = H0 + αH1 + α2H2 + · · · ,
h2 = G0 + αG1 + α2G2 + · · · ,
φ = φ0 + αφ1 + α2φ2 + · · · ,
χ = χ0 + αχ1 + α2χ2 + · · · ,
c = c0 + αc1 + α2c2 + · · · ,

(66)

Substituting these into the governing differential system (35), (36), and collecting terms of order α0 only,
we obtain

H′′0 = 0, G′′0 = 0 (67)

with the boundary conditions (38)-(40) as

H0(−1) = 0 = G0(1), H′0(0) = λG′0(0) (68)

and
G0(0) − H0(0) =

2(λ − 1)
(λ + 1)

φ0(0)
c′0

(69)

Leaving equation (69) alone for the moment, one solves equations (67), (68), and obtains

H0 = 1 + y, G0 =
1
λ

(−1 + y) (70)

The equations (48) and (49) yield, upon use of equation (70)

φ′′′′0 = sin β, χ′′′′0 =
sin β
λ

(71)
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for which the boundary conditions are

φ0(−1) = 0 = φ′0(−1), χ0(1) = 0 = χ′0(1) (72)

(φ0, φ
′
0, φ

′′
0 ) = (χ0, χ

′
0, χ

′′
0 ) at y = 0 (73)

φ′′′0 − χ′′′0 = −2(λ − 1)
(λ + 1)

sin β
φ0(0)

c′0
at y = 0 (74)

Solution of equations (71)-(73) gives

φ0 =
sin β
24

y4 + A1y3 + By2 + Cy + D (75)

χ0 =
sin β
24λ

y4 + A2y3 + By2 + Cy + D (76)

where

A1 =
(11λ + 5)

96λ
sin β,

A2 = − (5λ + 11)
96λ

sin β,

B =
(λ + 1)

12λ
sin β,

C = − (λ − 1)
96λ

sin β,

D = − (λ + 1)
48λ

sin β

Substitute from equations (75) and (76) into equations (69) and (74), and then solving the resulting equa-
tions to obtain

c′0 =
(λ − 1)

24(λ + 1)
sin β (77)

or

c0 =
5(λ − 1)
24(λ + 1)

sin β (78)

We now proceed to the next approximation. Collecting terms of order α in equations (35) and (36), we have

H′′1 = iλRP
[
(u1 − c0)H0 − 2λ

(λ + 1)
φ0

]
(79)

G′′1 = iRP
[
(u2 − c0)G0 − 2

(λ + 1)
χ0

]
(80)

The conditions (38) and (39) give

H1(−1) = 0 = G1(1), H′1(0) = λG′1(0) (81)

and condition (40) gives

G1(0) − H1(0) =
2(λ − 1)
(λ + 1)

(
φ1(0)

c′0
− φ0(0)c1

(c′0)2

)
(82)

Setting equation (82) aside for the moment and solving equations (79)-(81), we have

H1 =
iλRP sin β
48(λ + 1)

{
(125 + 19λ)

60
y + 2y2 − (9λ + 7)

6
y3 − 4(λ + 1)

3
y4 +

(λ − 1)
4

y5 +
2λ
5

y6
}

(83)
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The term of zeroth power in y is deliberately dropped to keep h1(0) = 1, since the amplitude of the distur-
bance is immaterial and already H0(0) = 1. The result for G1 is

G1 =
iRP sin β

48λ(λ + 1)

{−(19λ2 + 250λ + 19)
60

+
(125λ + 19λ2)

60
y + 2λy2

+
(7λ + 9)

6
y3 − 4(λ + 1)

3
y4 +

(λ − 1)
4

y5 +
2
5

y6
} (84)

Equations (48) and (49) give

φ′′′′1 = iR[(u1 − c0)φ′′0 − u′′1 φ0] + H′1 sin β + iH0 cos β (85)

χ′′′′1 = iR[(u2 − c0)χ′′0 − u′′2 χ0] + G′1 sin β + iG0 cos β (86)

The boundary conditions are

φ1(−1) = 0 = φ′1(−1), χ1(1) = 0 = χ′1(1) (87)

and the four interfacial conditions are obtained from the continuity of φ1 and χ1, at y = 0. are

(φ1, φ
′
1, φ

′′
1 ) = (χ1, χ

′
1, χ

′′
1 ) at y = 0 (88)

φ′′′1 − χ′′′1 =
iRE01E02(ε2 − ε1)2

2(ε2 + ε1)
(λ + 1)2

λ(λ − 1)

+
iRP sin2 β

48λ(λ + 1)

(
19λ2 + 250λ + 19

60

)
at y = 0 (89)

A straightforward solutions of equations (85) and (86) satisfying the boundary conditions (87)-(89) give

φ1 =
iR sin2 β

(2880)λ(λ + 1)

{[
λ2P
24

(19λ + 125) − 5
6

(λ2 − 1)
]

y4

+

[
2λ2P − 1

48
(17λ2 − 2λ + 17)

]
y5 − 1

12
[λ2P(9λ + 7)

+(11λ2 + 16λ + 5)]y6 − 2λ(λ + 1)
3

(
1 +

4
7
λP

)
y7 +

5λ2P
112

(λ − 1)y8

+
λ2

21

(
λP +

5
3

)
y9

}
+ i

(
y5

120
+

y4

24

)
cos β + Ĉ1y3 + Ĉ2y2 + Ĉ3y + Ĉ4 (90)

and

χ1 =
iR sin2 β

(2880)λ(λ + 1)

{[
λP
24

(19λ + 125) − 5
6

(λ2 − 1)
]

y4

+

[
2λP − 1

48
(17λ2 − 2λ + 17)

]
y5 − 1

12
[P(7λ + 9)

+(5λ2 + 16λ + 11)]y6 − 2(λ + 1)
3

(
1 +

4
7

P
)

y7 +
5P
112

(λ − 1)y8

+
1

21

(
P +

5
3

)
y9

}
+

i
λ

(
y5

120
− y4

24

)
cos β + D̂1y3 + Ĉ2y2 + Ĉ3y + Ĉ4 (91)

where

Ĉ1 =
iR sin2 β

(483840)λ(λ + 1)

{P
8

(283λ3 + 3575λ2 + 19745λ + 1613)
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−1
3

(647λ2 + 714λ − 529)
}

+
11i

480λ
(λ + 1) cos β

+
iRE∗2(ε − 1)2

24(ε + 1)
(λ + 1)2

λ(λ − 1)

D̂1 =
iR sin2 β

(483840)λ(λ + 1)

{P
8

(283λ3 − 681λ2 − 36255λ − 2643)

−1
3

(647λ2 + 714λ − 529)
}

+
11i

480λ
(λ + 1) cos β

+
iRE∗2(ε − 1)2

24(ε + 1)
(λ + 1)2

λ(λ − 1)

Ĉ2 =
iR sin2 β

(5760)λ(λ + 1)

{
109
21

(λ2 − 1) − P
84

(53λ3 + 139λ2 − 3905λ − 319)
}

− i
32λ

(λ − 1) cos β +
iRE∗2(ε − 1)2

16(ε + 1)
(λ + 1)2

λ(λ − 1)

Ĉ3 =
iR sin2 β

(2880)(336)λ(λ + 1)

{P
4

(−λ3 + 11λ2 + 3245λ + 265)

+(425λ2 + 238λ − 359)
}
− i

160λ
(λ + 1) cos β

Ĉ4 =
iR sin2 β

(2880)(12)λ(λ + 1)

{ P
56

(71λ3 + 359λ2 − 4125λ − 337)

−65
3

(λ2 − 1)
}

+
7i

480λ
(λ − 1) cos β − iRE∗2(ε − 1)2

48(ε + 1)
(λ + 1)2

λ(λ − 1)

Substitute from equations (75), (77), (83), (84), and (90) into the condition (82) yields

c1 = iJ (92)

where

J =
(1 − λ)

(240)(λ + 1)3

[
PR sin2 β

12096

{
3P(71λ3 + 625λ2 − 625λ + 71)

−3640(λ2 − 1)
P

}
+ 7(λ2 − 1) cos β

]
+

RE∗2(ε − 1)2

24(ε + 1)
(93)

in which E∗2 = ε1E01E02 and ε = ε2/ε1. One can proceed further with the systematic procedure of
approximation, but equations (92) and (93) are sufficient as a criterion for instability against long waves.

6. STABILITY DISCUSSION AND CONCLUSIONS

In this work, the stability discussion can be obtained in view of equations (92) and (93), and it is clear that
the system will be unstable if J > 0, otherwise, it is stable. Examination of equation (93) shows that the term
containing cos β arises from gravity normal to the boundaries, and its stabilizing effect is well recognized
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for λ ≶ 1, respectively. The term containing P−1 in the bracket of equation (93) arises from the convective
terms in equations (85) and (86), so that these convective are destabilizing for λ ≶ 1, respectively. This
isolates the longitudinal body-force terms in equations (85) and (86) as the cause of instability. But this
instability would not have a chance to manifest itself without the conductivity discontinuity at the interface,
which gives rise to the term on the right-hand side of equation (40). This term in absence of electric fields
is crucial, so without it the calculation could not be started, and the long-wave instability would not exist.
We note also, from equation (93), that the presence of electric fields makes the calculations possible for all
values of λ (inclusing the case λ = 1), since J , 0 in this case, and this shows the destabilizing effect of
electric fields in the absence or presence of thermal conductivity variation.

Now, to see the effects of various parameters (E∗, P,R, β, and ε) included in the analysis, we draw the
quantity J given by equation (93) as a function of the thermal conductivities ratio λ, and the obtained results
are illustrated in Figs. (1)-(10). Fig. (1) shows the variation of J versus λ for various values of the inclination
angle β in the case of absence of the applied electric fields, i.e. when E∗ = 0 with small values of P and
R. It is clear from this figure that when β = 0 (horizontal planes), J increases by increasing λ and reaches
its maximum value at λ = 1, and it decreases afterwords by increasing λ. Thus the system is unstable for
0 < λ < 1, and it is stable for λ > 1. For any other values of 0 < β < π/2, the quantity J behaves as the
case when β = 0, but it has higher values for 0 < λ < 1 and λ > 1, respectively. Therefore, the angle of
inclination β has a destabilizing effect in the two regions of λ. When β = π/2 (vertical planes), we found
that J decreases by increasing λ; hence the system is stable for all values of λ > 0; while J = 0 usually at
λ = 1, and E∗ = 0, and this can be observed from equation (93).

Figs. (2) and (3) are drawn for the same system considered in Fig. (1), for small values of P and R
when E∗ = 5, in the cases when ε = 0.5 and ε = 2, respectively. Comparing the obtained figures with Fig.
(1), we found that the curves behave in the same manner, but with higher values of J . Therefore, from Fig.
(2), it is clear that the electric field parameter E∗ has a destabilizing effect; and Fig. (3) indicates that the
dielectric constant ratio ε has also a destabilizing effect on the system. The obtained result from Fig. (2) can
be confirmed using equation (93), since the electric field term in this equation is positive, then J increases
by increasing E∗ values.

Figs. (4) and (5) show the variation of J versus λ for various values of the inclination angle β in the
presence of electric fields with high values of P,R and E∗, when ε = 0.5 and ε = 2, respectively. It is clear
from Fig. (4) that the system is unstable as well as stable when β = 0 (horizontal planes), as discused above
in Figs. (1)-(3), but for any other value of β (including the case of vertical planes) the system is stable for
small values of λ (0 < λ � 1), and then stable for other values less than 1 at which the system is neutrally
stable after which the system is stable for λ > 1 values. we observe from Fig. (4) also that the angle of
inclination β has a destabilizing effect for 0 < λ < 1, and a stabilizing effect for λ > 1.

Fig. (5) shows that J has higher values than the corresponding values obtained in Fig. (4) by increasing
the value of ε. Therefore, the dielectric constant ratio has a destabilizing effect on the system, which
confirms the result obtained from Fig. (3). Fig. (6) shows the variation of J with λ for various values of
Prandtl number P with small values of R and E∗. It is clear that, for 0 < λ < 0.2, the Prandtl number P has
a destabilizing effect as J increases by increasing P, while in the ranges 0 < λ < 1 and λ > 1, we found that
the Prandtl number P has a stabilizing effect at any value of λ within these intervals, and that the obtained
curves coincide at the neutral stability point at which λ = 1. Fig. (7) is drawn for the system considered in
Fig. (6) but with high values of R and E∗, and it shows similar behavior of P to that obtained in Fig. (6),
and the only difference that for values of 0 < λ < 0.1 the curves decreases by increasing λ, and the resulting
destabilizing effect is more faster than its effect in the previous case; also the stabilizing effect afterwards
for values of λ < 1 is also more faster than that obtained in Fig. (6).

Figs. (8) and (9) show the variation of J with λ for different values of the Reynolds number R in absence
and prence of electric fields. It is clear from Fig. (8), as explained before, that Reynolds number R, when
E∗ = 0 has a destabilizing effect in the region 0 < λ < 1, while it has a stabilizing effect in the other region
λ > 1. Similar behavior of Reynolds number R when small electric values are taken into account, but for
higher values of electric field parameter E∗, we found that Reynolds number R has a destabilizing effect.
Finally, Fig. (10) shows that the electric field parameter E∗ has a destabilizing effect at any value of λ since
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J increases by increasing E∗, in accordance with the previous results obtained in Fig. (2).
In conclusion, we can summerize the main results in view of equations (92), (93), and the obtained

figures in the case of absence of electric fields as follows:
(i) For vertical boundaries, the term containing cos β drops out, and if the Prandtl number P is not

extremely small, the flow is unstable for λ small. In this case, the lower fluid is the colder fluid.
(ii) For λ < 1 and (1 − λ) small, the flow is unstable, if P and sin β are not very small.
(iii) For λ > 1, the flow is stable.
(iv) There is a range of λ within 1 < λ < ∞, for which the flow is stable.
(v) For given values of P and β, and a given λ less than one, if the multiplier of R in equations (92) and

(93) is positive, the critical R is obtained by setting the quantity within the brackets in equation (93) equal
to zero, which gives

Rc = 7(1 − λ2) cos β
[

P sin2 β

12096

{
3(71λ3 + 625λ2 − 625λ + 71)

+
3640(1 − λ2)

P

}
+

10RE∗2(ε − 1)2(λ + 1)2

(ε + 1)(1 − λ)

]−1

(94)

(vi) The inclination angle β has a destabilizing effect on the considered system. The system is unstable
for λ < 1, and stable for λ > 1, whereas when λ = 1, all the curves coincide at J = 0.

(vii) The effects of thermal conductivities on the stability of superposed horizontal layers of immiscible
fluids studied by Renardy[37], indicate that the stratification in thermal conductivities never causes any
instability as it does here. Thus, the present study brings to light an entirely new cause of hydrodynamic
instability, and this instability is more effective in the presence of the applied vertical electric fields.

Observations (ii) and (iii) show that for small |λ − 1|, the flow is unstable if the less conducting fluid is
on top, and stable if it is at the bottom. This rather intriguing point, together with observations (i) and (iv),
indicates the rather complex effect of conductivity variation on the stability of the flow.

While in the case of presence of electric fields, we conclude that
(1) For small values of P and R, both the electric field and dielectric constants ratio have dstabilizing

effects for any value of λ and β. The system behaves in the same manner as the case of absence of electric
fields, except that J > 0 in this case at λ = 1.

(2) For high values of P and R, the inclination angle β has a destabilizing effect for λ < 1, and a
stabilizing effect for λ > 1. For horizontal boundaries (β = 0), the system is unstable for λ < 1, and it is
stable for λ > 1, while for any other value of β > 0, the system is stable and then unstable for λ < 1, and it
is usually stable for λ > 1.

(3) For any electric field and/or dielectric constants ratio values, the Prandtl number P has a destabilizing
and then stabilizing effects for λ < 1, whereas it has a stabilizing effect for λ > 1. In this case, the system is
unstable as well as stable for λ < 1, while it is only stable for λ > 1, and the Prandtl number P has no effect
on the stability of the considered system when λ = 1.

(4) The Reynolds number R, when E∗ = 0, has a destabilizing effect for λ < 1, and a stabilizing effect
for λ > 1. and it has no effect on the stability of the system when λ = 1. In this case, the system is stable as
well as unstable for λ < 1, and it is only stable for λ > 1. In the case when E∗ , 0, The Reynolds number
R has usually a destabilizing effect on the considered system.
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Figure 1
Variation of J with λ for Various Values of β, if, ε = 2, R = 2, P = 6, E∗ = 0, when β = 0, π/4, β = π/3,
and π/2, Respectively

Figure 2
Variation of J with λ for Various Values of β, if, ε = 0.5, R = 2, P = 6, E∗ = 5, when β = 0, π/4,
β = π/3, and π/2, Respectively
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Figure 3
Variation of J with λ for Various Values of β, for the Same System Considered in Fig. 2, but with
ε = 2

Figure 4
Variation of J with λ for Various Values of β, if, ε = 0.5, R = 10, P = 20, E∗ = 20, when β = 0, π/4, π/3
and π/2, Respectively
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Figure 5
Variation of J with λ for Various Values of β, for the Same System Considered in Fig. 4, but with
ε = 2

Figure 6
Variation of J with λ for Various Values of P, if, ε = 2, β = π/3, E∗ = 10, R = 5, when P = 4, 7 and 10,
Respectively

53



M. F. El-Sayed; G. M. Moatimid; N. M. Hafez/Progress in Applied Mathematics Vol.2 No.1 2011

Figure 7
Variation of J with λ for Various Values of P, if, ε = 2, β = π/3, E∗ = 20, R = 10, when P = 5, 10 and
20, Respectively

Figure 8
Variation of J with λ for Various Values of R, if, ε = 2, β = π/3, P = 10, E∗ = 0, when R = 5, 10 and
25, Respectively
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Figure 9
Variation of J with λ for Various Values of R, for the Same System Considered in Fig. 8, but with
E∗ = 0.9

Figure 10
Variation of J with λ for Various Values of E∗, if, ε = 2, β = π/6, P = 20, R = 10, when E∗ = 0, 0.5 and
0.9, Respectively
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