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FRONT SOLUTIONS FOR BISTABLE
DIFFERENTIAL-DIFFERENCE EQUATIONS WITH

INHOMOGENEOUS DIFFUSION∗

A. R. HUMPHRIES† , BRIAN E. MOORE‡ , AND ERIK S. VAN VLECK§

Abstract. We consider a bistable differential-difference equation with inhomogeneous diffusion.
Employing a piecewise linear nonlinearity, often referred to as McKean’s caricature of the cubic,
we construct front solutions which correspond, in the case of homogeneous diffusion, to monotone
traveling front solutions or, in the case of propagation failure, to stationary front solutions. A general
form for these fronts is given for essentially arbitrary inhomogeneous discrete diffusion, and conditions
are given for the existence of solutions to the original discrete Nagumo equation. The specific case of
one defect is considered in depth, giving a complete understanding of propagation failure and a grasp
on changes in wave speed. Insight into the dynamic behavior of these front solutions as a function
of the magnitude and relative position of the defects is obtained with the assistance of numerical
results.

Key words. traveling fronts, propagation failure, inhomogeneities, bistable equation

AMS subject classifications. 35K57, 73D99

DOI. 10.1137/100807156

1. Introduction. Bistable differential-difference equations (also referred to as
spatially discrete reaction-diffusion equations in the literature) occur naturally in
many fields of study, including biology, physiology, and material science, in which
there is an inherent spatial length scale. Mathematically, it is typically assumed that
the problem is spatially homogeneous so that the resulting spatially discrete equations
are homogeneous in space. It is then natural to consider traveling front solutions in
which the solution at a given time is a translate of itself at any other time.

Our aim is to consider the case of inhomogeneous discrete diffusion which could
occur due to small or large differences in the diffusive properties of the media, partly
motivated by modeling myelinated axons [3]. Throughout the article, we refer to
these localized changes in homogeneous diffusion as defects. To achieve our aim, we
use a specific bistable nonlinearity which, after derivation of possible solutions, allows
for a study of the behavior of these front solutions that correspond to traveling front
solutions in the case of homogeneous diffusion. In particular, we study the behavior of
front solutions near the defect and characterize defects that cause propagation failure
and/or a decrease in propagation speed.

Our approach takes advantage of the fact that, under certain conditions with
the piecewise linear bistable nonlinearity (McKean’s caricature of the cubic), the
nonlinear problem reduces to a linear inhomogeneous problem. This problem can then
be solved using Jacobi operator theory for the steady-state equation, or transform
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FRONTS FOR EQUATIONS WITH INHOMOGENEOUS DIFFUSION 1375

techniques for the time dependent equation. We show that this approach can still
be employed in the case of inhomogeneous discrete diffusion, with some important
modifications. In particular, since we no longer have translational invariance in the
case of inhomogeneous diffusion, we must find the family of solutions that arise as
the front moves through the medium. This is made possible through the choice of
nonlinearity and by the solution profile that we seek.

Besides the diffusion coefficients, there are two natural parameters to consider,
the detuning parameter a, that controls the bistable nonlinearity, and the wave speed
c. Fronts that are far from defects have constant wave speeds, but as fronts approach
defects, the speed and shape of the front change. Hence, we allow solutions with wave
speeds that depend on both space and time. By considering a specific bistable nonlin-
earity where explicit solutions may be obtained, a general framework is laid out that
should prove useful in extending our results to more general cases of inhomogeneous
discrete diffusion.

An alternative to discrete diffusion is to consider a continuous problem with inho-
mogeneous diffusion (see the work of Scheel and Van Vleck [28]) or an inhomogeneous
reaction term (see the work of Keener [20, 21]). In this case, the analogue of ho-
mogeneous discrete diffusion is a spatially periodic continuous inhomogeneous term.
The present paper was motivated in part by the work of Lewis and Keener [22] in
which they studied wave-block due to depressed excitability in a single region using
inhomogeneous reaction and diffusion terms with a geometric technique. Extensions
of these results may be found in the work of Yang et al. [36], where the cases of two
and three regions of depressed excitability are considered, and the work of Aronson,
Mantzaris, and Othmer [1], which considers media with an arbitrary number of de-
pressed regions. Other approaches to inhomogeneous diffusion/reaction in continuous
media include the work of Fife and Peletier [16], Pauwelussen [26], and Sneyd and
Sherratt [31].

There is a large body of literature on existence, uniqueness, and stability of trav-
eling fronts for spatially discrete reaction-diffusion equations. Notable is the work
of Bates, Chen, and Chmaj [2] and Chow, Mallet-Paret, and Shen [8] for bistable
Nagumo-type differential-difference equations. A general theory for existence of solu-
tions to mixed-type differential equations that occur in equations with both backward
and forward delays has been developed by Mallet-Paret [23, 24]. Important original
work on traveling front solutions to discrete bistable equations with homogeneous dif-
fusion includes that of Keener [19] and Zinner [37, 38] and the work of Cahn [4] for
diffuse interfaces. Regarding other work on homogeneous discrete media, Shen [29, 30]
considers time dependent reaction terms, Carpio and Bonilla [6] consider waves near
the boundary for propagation failure, and Chen, Guo, and Wu [7] have developed a
general theory for bistable dynamics in periodic media.

The use of McKean’s caricature of the cubic for continuous space problems dates
back to the work of McKean [25] and Rinzel and Keller [27] and the subsequent work
of Wang [34, 35] and Feroe [15]. More recent work in the case of discrete diffusion
includes that in [5] and [14]. Its use has proved advantageous in a variety of different
contexts including neuronal networks [9] and martensitic phase transitions [33].

The paper is outlined as follows. In section 2, we present background and basics
behind our approach. Section 3 contains the derivation of solutions for the steady-
state problem, which implies necessary and sufficient conditions for fronts to fail to
propagate and describes changes in the interval of propagation failure in the presence
of inhomogeneous diffusion. In section 4 we derive candidate solutions with nonzero
wave speed using transform techniques, providing a description of changes in the wave
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1376 A. R. HUMPHRIES, B. E. MOORE, AND E. S. VAN VLECK

speed as the front moves through the defect region. We summarize our results and
state conclusions in section 5.

2. Preliminaries. Following [12], we consider traveling front solutions for a bi-
stable differential-difference equation with diffusion coefficients that vary on an integer
lattice,

(2.1) u̇j(t) = Luj(t)− f(uj(t)),

where uj(t) maps R
+ ∪ {0} → R, j ∈ Z indicates a particular element of the one-

dimensional lattice, and u̇ denotes differentiation of u with respect to t. We represent
variable diffusion over the spatially discrete domain with the operator L, a difference
Laplacian operator of the form

(2.2) Luj(t) = αj [uj+1(t)− uj(t)] + αj−1[uj−1(t)− uj(t)],

where αj ∈ R
+, j ∈ Z. The nonlinearity f : R → R is typically taken to be the

derivative of a double-well potential, such as the cubic

(2.3) f(u) = u(u− a)(u− 1),

or the McKean caricature of the cubic [25, 27], which is the piecewise linear function

(2.4) f(u) = u− h(u− a),

where h is the Heaviside function

(2.5) h(u) =

⎧⎪⎨⎪⎩
0, u < 0,

[0, 1], u = 0,

1, u > 0,

considered to be set-valued when u = 0, and a ∈ (0, 1) is known as the detuning
parameter.

We define the diffusion coefficients to be

(2.6) αj =

{
αj , −m � j � n,

α, j < −m or j > n,

for m, n ∈ {0} ∪ Z
+. For the case of inhomogeneous diffusion, in which one or more

of the αj �= α, the front may change form as it moves through the medium. Thus, in
contrast with the case of homogeneous discrete diffusion, we do not have translation
invariance and must consider fronts at different points in the medium. If the detuning
parameter a is kept fixed, then with inhomogeneous media one expects that both the
wave form and the wave speed will depend on the position of the front in the medium.
In other words, we expect the wave speed to depend on both time and position in the
lattice.

As a result, we make the traveling wave ansatz

(2.7) uj(t) = ϕ(ξj ; ξ
∗), ξj = j − cj(t).

In the case of homogeneous diffusion, we have cj(t) = ct with a constant wave speed
c, and t ∈ R implies ξj ∈ R. Thus, ϕ : R → [0, 1], and the same is true in the case of
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FRONTS FOR EQUATIONS WITH INHOMOGENEOUS DIFFUSION 1377

inhomogeneous diffusion, provided cj(t) is continuous in t. The parameter ξ∗ denotes
the position of the front in the medium. We choose a particular wave form by setting

(2.8) a := ϕ(ξ∗; ξ∗),

so that ξ∗ is the spatial location at which ϕ takes the value a, and we seek solutions
that satisfy

(2.9) ϕ(x; ξ∗) < a for x < ξ∗ and ϕ(x; ξ∗) > a for x > ξ∗.

Since we use the piecewise linear function (2.4)–(2.5), x = ξ∗ is the point at which
the Heaviside function is activated, and the nonlinearity (2.4) may be written as a
linear inhomogeneous term

(2.10) f(ϕ(x; ξ∗)) = ϕ(x; ξ∗)− h(x− ξ∗),

which is independent of a. With a bistable nonlinearity, it is natural to impose the
boundary conditions

(2.11) lim
x→−∞

ϕ(x; ξ∗) = 0, lim
x→∞

ϕ(x; ξ∗) = 1.

We consider the solutions in two different cases, which are

cj(t) �= 0 ∀j ∈ Z,(2.12)

cj(t) = 0 ∀j ∈ Z.(2.13)

We begin with zero wave speed, (2.13). The case of nonzero wave speed, (2.12), is
treated in section 4.

3. Derivation of solutions for zero wave speed. Consider solutions to (2.1)
with nonlinearity (2.10) in the case of (2.13). In this case, finding solutions is equiva-
lent to finding the steady states of (2.1), which means solving the difference equation

(3.1) αk(φk+1 − φk) + αk−1(φk−1 − φk)− φk = −hk ∀k ∈ Z,

with boundary conditions

(3.2) lim
k→−∞

φk = 0 and lim
k→∞

φk = 1,

where hk = h(k − ξ∗). Equation (3.1) is an infinite-dimensional tridiagonal linear
system, and general solutions may be derived using Jacobi operator theory. We also
mention that solutions to (3.1) are also stationary front solutions for spatially discrete
wave equations üj(t) = Luj(t)−f(uj(t)), and spatially discrete Schrödinger equations
iu̇j(t) = Luj(t)− f(uj(t)), where f(uj(t)) is a McKean nonlinearity.

We have dropped the ξ∗-dependence in (3.1) but remind the reader of the im-
portance of this parameter, as it allows us to consider stationary fronts at different
positions in the media. Let k∗ be the integer satisfying k∗ = �ξ∗�. Solutions to (3.1)
depend on whether the interface lies on a lattice point or between lattice points, which
respectively correspond to the following cases according to (2.8)–(2.9):

ξ∗ ∈ Z ⇐⇒ k∗ = ξ∗ implies a = φk∗ with hk∗ = [0, 1].
(3.3)

ξ∗ /∈ Z ⇐⇒ k∗ < ξ∗ < k∗ + 1 implies a ∈ (φk∗ , φk∗+1) with hk∗ = 0.
(3.4)D
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1378 A. R. HUMPHRIES, B. E. MOORE, AND E. S. VAN VLECK

In the case αk = α for all k, there are only two steady-state solutions of (2.1), one
unstable corresponding to (3.3) and one stable corresponding to (3.4), and our choice
of ξ∗ is important only for determining which of the two we are considering (see [11]).
This is a result of the translational invariance for solutions of the homogeneous dif-
fusion equation. In the case of inhomogeneous diffusion, our choice of ξ∗ determines
not only whether or not the interface falls on a lattice point, but also the position of
the front relative to the defect region. This gives important information as to where
fronts may become pinned due to inhomogeneities in the medium.

3.1. Homogeneous diffusion. Derivation of general solutions for (3.1) is based
on general solutions for the problem with homogeneous diffusion. Hence, we begin
by presenting a general approach for finding solutions for αk = α > 0 for all k ∈ Z.
Solutions for this case have been discussed in [5] as a limiting case of the nonzero
wave speed solutions, and also by Elmer [10], who considered stationary fronts of this
equation with different nonlinearities.

We seek a general solution to

(3.5) −αφk+1 + (1 + 2α)φk − αφk−1 = hk ∀k ∈ Z,

which can be written in terms of the general solution to the problem with zero right-
hand side,

(3.6) −αφk+1 + (1 + 2α)φk − αφk−1 = 0 ∀k ∈ Z,

and a particular solution of (3.5). This is done following the results of Teschl [32].
Start by considering

(3.7) φk+1 + φk−1 = 2μφk,

which is just (3.6) for

(3.8) μ =
1

2α
(1 + 2α).

Since (3.7) is a second order difference equation, the space of solutions is two-dimen-
sional, and any solution can be written in the form

(3.9) φk = φk0ρ(k − k0) + φk0+1σ(k − k0)

for any starting point k0, where the functions ρ(k − k0) and σ(k − k0) are a set of
linearly independent solutions of (3.7), known as the fundamental solutions, which
satisfy the initial conditions

(3.10) ρ(0) = 1, ρ(1) = 0, σ(0) = 0, σ(1) = 1.

In order to find expressions for ρ(k − k0) and σ(k − k0) substitute φk = λk into (3.7)

to get λ2 − 2μλ + 1 = 0, which implies λ± = μ ±
√
μ2 − 1. Noting that λ+λ− = 1,

we set

(3.11) λ = μ+
√
μ2 − 1 = 1 +

1

2α
+

1

2α

√
1 + 4α,

so the roots are λ and λ−1 with λ > 1 > λ−1. Using the initial conditions (3.10), this
implies that the fundamental solutions are given by

(3.12) ρ(k − k0) =
λk0+1−k − λk−k0−1

λ− λ−1
and σ(k − k0) =

λk−k0 − λk0−k

λ− λ−1
,
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FRONTS FOR EQUATIONS WITH INHOMOGENEOUS DIFFUSION 1379

and the general solution of (3.6) is obtained by substituting these quantities into (3.9).
Without loss of generality we set k0 = k∗, and following [32], the general solution of
(3.5) takes the form

(3.13) φk = φk∗ρ(k − k∗) + φk∗+1σ(k − k∗) +

⎧⎪⎨⎪⎩
−1
α

∑k
j=k∗+1 hjσ(k − j), k > k∗,

0, k = k∗,
1
α

∑k∗

j=k+1 hjσ(k − j), k < k∗,

where it is a simple calculation to check that

φk =

⎧⎪⎨⎪⎩
−1
α

∑k
j=k∗+1 hjσ(k − j), k > k∗,

0, k = k∗,
1
α

∑k∗

j=k+1 hjσ(k − j), k < k∗,

is a particular solution of (3.5). This formulation of the solution will become important
in the case of inhomogeneous diffusion.

To simplify (3.13), notice that the discrete Heaviside function takes the form

(3.14) hk =

⎧⎪⎨⎪⎩
1, k > k∗,

hk∗ , k = k∗,

0, k < k∗,

where hk∗ =

{
[0, 1], ξ∗ ∈ Z,

0, ξ∗ /∈ Z.

Due to translational invariance of solutions, we may consider the two cases (3.3) and
(3.4) by taking k∗ = 0, without loss of generality. Hence, the solution (3.13) becomes

(3.15) φk = φ0ρ(k) + φ1σ(k) +

⎧⎪⎨⎪⎩
−1
α

∑k
j=1 σ(k − j), k > 0,

0, k = 0,
1
αh0σ(k), k < 0.

Next we find φ0 and φ1 to obtain an explicit form of (3.15). Using (3.12) for k < 0,
rewrite (3.15) as

φk =
λ−k

λ− λ−1

(
λφ0 − φ1 −

h0
α

)
− λk

λ− λ−1

(
λ−1φ0 − φ1 −

h0
α

)
.

Hence, to satisfy the boundary condition (3.2) as k → −∞, we require

(3.16) λφ0 − φ1 −
h0
α

= 0.

Similarly, for k > 0, write (3.15) as

φk =
λ−k

λ− λ−1

⎛⎝λφ0 − φ1 +
1

α

k∑
j=1

λj

⎞⎠− λk

λ− λ−1

⎛⎝λ−1φ0 − φ1 +
1

α

k∑
j=1

λ−j

⎞⎠ .

Using the equality

(3.17) (λ− 1)
(
1− λ−1

)
=

1

α
,
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1380 A. R. HUMPHRIES, B. E. MOORE, AND E. S. VAN VLECK

the boundary condition (3.2) is satisfied as k → ∞ if and only if

(3.18) 0 = lim
k→∞

⎛⎝λ−1φ0 − φ1 +
1

α

k∑
j=1

λ−j

⎞⎠ = λ−1φ0 − φ1 +
1

α(λ − 1)
.

Solving (3.16), (3.18) for φ0 and φ1 and using (3.17), we obtain

(3.19) φ0 = v0 + h0(1 − λ−1)w0 and φ1 = w0 + h0(1− λ−1)v0,

where we define

(3.20) v0 =
1

λ+ 1
and w0 =

λ

λ+ 1
,

which satisfy the symmetry property v0 + w0 = 1. Substituting φ0 and φ1 into the
general solution (3.15) and simplifying gives

(3.21) φk =

{
1 + (φ1 − 1)λ1−k, k > 0,
φ0λ

k, k � 0.

In the case (3.3) with ξ∗ = 0, we have a = φ0, and (φ1 − 1)λ = φ0 − 1 shows that the
unstable solution is

(3.22) φk =

{
1 + (a− 1)λ−k, k � 0,

aλk, k � 0.

Since a = φ0 ∈ v0 + h0(1− λ−1)w0 with h0 = [0, 1], and v0 + (1− λ−1)w0 = w0, this
implies a ∈ [v0, w0]. In the case (3.4), we have h0 = 0, which implies φ0 = v0 and
φ1 = w0, meaning the stable solution is

(3.23) φk =

{
1− v0λ

1−k, k � 0,
v0λ

k, k � 0,

and since 0 < ξ∗ < 1 implies φ0 < a < φ1, we obtain a ∈ (v0, w0). Therefore,
regardless of where the interface lies, a ∈ [v0, w0] is a necessary and sufficient condition
for existence of fronts with zero wave speed. On the boundary of this interval there
is a saddle-node bifurcation [10, 11]. The interval [v0, w0] is known as the interval of
propagation failure, defined in the following way.

Definition 3.1. The interval of propagation failure is the range of values for the
detuning parameter a, determined by (3.3)–(3.4), which yield solutions (called pinned
or stationary fronts) of (3.1).

Essentially, v0 and w0 provide boundaries. Inside these boundaries there are two
stationary fronts, one stable and one unstable. On the boundaries these two fronts
collide, giving rise to a traveling front [5] whenever a /∈ [v0, w0]. More specifically, we
know that a < v0 gives a left traveling front, corresponding to negative wave speed,
and a > w0 gives a right traveling front, corresponding to positive wave speed. In
sections 3.2 and 3.3 we study this phenomenon for fronts in inhomogeneous media.

3.2. Inhomogeneous diffusion: One defect. Considering the case of a single
defect, we seek solutions of the difference equation (3.1), (2.6) with m = n = 0 so that
αj = α for j �= 0 but α0 �= α. Since solutions of this equation depend on the location
of the front relative to the defect, as well as on whether or not ξ∗ is an integer, we
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consider the general cases ξ∗ = k∗ and k∗ < ξ∗ < k∗ + 1 for k∗ ∈ Z. Changing
the value of ξ∗ (respectively, k∗) allows one to consider stationary fronts at different
positions relative to the defect, according to the construction (2.8)–(2.9).

To get the general solution of (3.1) we first find the fundamental solutions of

(3.24) −αkφk+1 + (1 + αk + αk−1)φk − αk−1φk−1 = 0 ∀k ∈ Z.

We denote these solutions ρ̃(k, k∗) and σ̃(k, k∗), and as fundamental solutions they
satisfy

ρ̃(k∗, k∗) = 1, ρ̃(k∗ + 1, k∗) = 0, σ̃(k∗, k∗) = 0, σ̃(k∗ + 1, k∗) = 1.

A general method for finding ρ̃(k, k∗) and σ̃(k, k∗) is presented in Lemma 3.3 of
section 3.3, and we use those results to state the solutions for the single defect case.
Define τ = α0/α and ν = (1+α+α0)/α. For k

∗ = 0, when the front is at the defect,
the fundamental solutions are

ρ̃(k, 0) =

{
τρ(k), k > 0,

νρ(k + 1)− ρ(k + 2), k < 0,
(3.25)

σ̃(k, 0) =

{
νσ(k − 1)− σ(k − 2), k > 0,

τσ(k), k < 0,

where ρ(k) and σ(k) are defined in (3.12). When the interface lies to the left or right
of the defect

ρ̃(k, k∗) =

⎧⎪⎨⎪⎩
ρ(k − 1)θ(1, k∗) + σ(k − 1)θ(2, k∗), k > 0, k∗ < 0,

ρ(k − k∗), k � 0, k∗ < 0, or k > 0, k∗ > 0,

ρ(k + 1)θ(−1, k∗) + σ(k + 1)θ(0, k∗), k � 0, k∗ > 0,

(3.26)

and

σ̃(k, k∗) =

⎧⎪⎨⎪⎩
ρ(k − 1)ζ(1, k∗) + σ(k − 1)ζ(2, k∗), k > 0, k∗ < 0,

σ(k − k∗), k � 0, k∗ < 0, or k > 0, k∗ > 0,

ρ(k + 1)ζ(−1, k∗) + σ(k + 1)ζ(0, k∗), k � 0, k∗ > 0,

(3.27)

where

θ(1, k∗) =
1

τ
(νρ(−k∗)− ρ(−1− k∗)) ,

θ(2, k∗) =
1

τ

(
(ν2 − τ2)ρ(−k∗)− νρ(−1− k∗)

)
,

ζ(1, k∗) =
1

τ
(νσ(−k∗)− σ(−1− k∗)) ,

ζ(2, k∗) =
1

τ

(
(ν2 − τ2)σ(−k∗)− νσ(−1− k∗)

)
,

θ(0, k∗) =
1

τ
(νρ(1 − k∗)− ρ(2 − k∗)) ,

θ(−1, k∗) =
1

τ

(
(ν2 − τ2)ρ(1 − k∗)− νρ(2 − k∗)

)
,
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ζ(0, k∗) =
1

τ
(νσ(1 − k∗)− σ(2 − k∗)) ,

ζ(−1, k∗) =
1

τ

(
(ν2 − τ2)σ(1 − k∗)− νσ(2 − k∗)

)
.

Given the fundamental solutions, it is straightforward to show that the general solu-
tion of (3.1) is

(3.28) φk = φk∗ ρ̃(k, k∗) + φk∗+1σ̃(k, k
∗) +

⎧⎪⎨⎪⎩
−
∑k

j=k∗+1
1
αj
σ̃(k, j), k > k∗,

0, k = k∗,
hk∗
αk∗ σ̃(k, k

∗), k < k∗,

for all k∗ ∈ Z. To find an explicit form for (3.28), we must solve for the quantities
φk∗ and φk∗+1. We begin with the special case k∗ = 0, and consider k∗ �= 0 in section
3.2.2.

3.2.1. Fronts at the defect. Consider φk given by (3.28) in the case k∗ = 0.
Following the approach of section 3.1, we find expressions for φ0 and φ1 which yield
solutions that satisfy the boundary conditions (3.2). Using the fundamental solutions
(3.25) for k < 0, (3.28) reduces to

φk =
λ−k

λ− λ−1

(
φ0

(
ν − λ−1

)
− τ

(
φ1 +

h0
α0

))
+

λk

λ− λ−1

(
φ0 (λ− ν) + τ

(
φ1 +

h0
α0

))
,(3.29)

where λ, α, and μ are related by (3.8) and (3.11). Hence, to satisfy the boundary
conditions (3.2) as k → −∞, we require

(3.30) φ0
(
ν − λ−1

)
− τ

(
φ1 +

h0
α0

)
= 0 ⇐⇒ φ0 (λ+ τ − 1)− τφ1 =

h0
α
,

where we have used the equality ν = 1
α (1 +α+α0) = 2μ− 1+ α0

α = λ+ λ−1 + τ − 1.

Likewise, for k > 0, we use the identity νσ(k − 1) − σ(k − 2) = λ−k

λ−λ−1

(
λ2 − νλ

)
−

λk

λ−λ−1

(
λ−2 − νλ−1

)
to write the solution (3.28) in the form

φk =
λ−k

λ− λ−1

⎛⎝φ1 (λ2 − νλ
)
+ τφ0λ+

k∑
j=1

λj

α

⎞⎠
− λk

λ− λ−1

⎛⎝φ1 (λ−2 − νλ−1
)
+ τφ0λ

−1 +

k∑
j=1

λ−j

α

⎞⎠ ,

and to satisfy (3.2) as k → +∞ we require

(3.31) φ1
(
ν − λ−1

)
− τφ0 −

λ

α

∞∑
j=1

λ−j = 0 ⇐⇒ φ1 (λ+ τ − 1)− τφ0 = λ− 1,

where we have used the identity (3.17). Then solving (3.30), (3.31) for φ0 and φ1
gives

(3.32) φ0 = v1 + h0(1 − λ−1)w1 and φ1 = w1 + h0(1− λ−1)v1,
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where we have defined

(3.33) v1 =
τ

λ+ 2τ − 1
and w1 =

(λ+ τ − 1)

λ+ 2τ − 1
,

which satisfy the symmetry property v1 + w1 = 1.
Substituting the expressions (3.32) into (3.28) yields the solution

(3.34) φk =

{
1 + (φ1 − 1)λ1−k, k > 0,
φ0λ

k, k � 0,

to (3.1) with k∗ = 0 and φ0 and φ1 defined by (3.32). Notice that (3.34) has the same
form as (3.21), with the difference in the solutions arising only from the different
definitions of φ0 and φ1 in (3.32) and (3.19). If 0 < ξ∗ < 1, then h0 = 0, (3.32)
simplifies, and the solution (3.34) becomes

(3.35) φk =

{
1− v1λ

1−k, k > 0,
v1λ

k, k � 0.

One of our primary concerns is understanding what causes a traveling front to
become a stationary front. In this respect, the solution (3.35) is of substantial impor-
tance, which will be made clear as we more closely consider the parameter values that
yield stationary fronts. Hence, we turn our attention to the interval of propagation
failure.

If 0 < ξ∗ < 1, then φ0 < a < φ1, and since h0 = 0 in this case, we have
a ∈ (v1, w1) for v1 and w1 given in (3.33). So, the interval of propagation failure is
simply (v1, w1) for 0 < ξ∗ < 1. On the other hand, if ξ∗ = 0, then h0 = [0, 1]; hence
a = φ0 ∈ v1 + h0(1− λ−1)w1 or, equivalently, a ∈ [v1, 1−w1λ

−1], and the interval of
propagation failure is [v1, 1−w1λ

−1] for ξ∗ = 0. As one should expect, the interval of
propagation failure changes as ξ∗ changes. By varying ξ∗, we may derive the interval
of propagation failure for fronts that are either to the left or to the right of the defect.

3.2.2. Fronts to the left or right of the defect. Using the general solution
(3.28) along with the appropriate fundamental solutions (3.26)–(3.27), we can find
expressions for φk∗ and φk∗+1 for any k∗. This in turn allows us to determine which
values of a yield stationary fronts. Rather than following a step-by-step derivation
of these results for this special case, we use the general formulae of Theorem 3.6 in
section 3.3.2. The proof of that theorem shows how these results are derived.

Suppose k∗ < 0. Assuming ξ∗ = k∗ implies a ∈ φk∗ for hk∗ = [0, 1]. Thus, the
interval of propagation failure is[

1

λ+ 1

(
1− λ2k

∗
(w1 − λv1)

)
,

λ

λ+ 1

(
1− λ2(k

∗−1) (w1 − λv1)
)]

for ξ∗ = k∗.

If instead k∗ < ξ∗ < k∗ + 1, then hk∗ = 0, and the interval of propagation failure is(
1

λ+ 1

[
1− λ2k

∗
(w1 − λv1)

]
,

λ

λ+ 1

[
1− λ2k

∗
(w1 − λv1)

])
for k∗ < ξ∗ < k∗+1.

Now suppose k∗ > 0. If ξ∗ = k∗, then a ∈ φk∗ for hk∗ = [0, 1], and the interval of
propagation failure is[

1

λ+ 1

(
1 + λ1−2k∗

(w1 − λv1)
)
,

λ

λ+ 1

(
1 + λ1−2k∗

(w1 − λv1)
)]

for ξ∗ = k∗.
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Fig. 1. Solid lines represent the interval of propagation failure against τ = α0/α with α = 1 for
the case of a single defect. The dashed lines show the interval of propagation failure for α0 = α = 1.
Each plot represents a different value of ξ∗. If a falls between the solid lines in any graph, there
exists a stationary front; otherwise we have a traveling front.

But, if k∗ < ξ∗ < k∗ + 1, then hk∗ = 0, and the interval of propagation failure is(
1

λ+ 1

[
1 + λ1−2k∗

(w1 − λv1)
]
,

λ

λ+ 1

[
1 + λ−(1+2k∗) (w1 − λv1)

])
for k∗ < ξ∗ < k∗ + 1.

Thus, we have simultaneously derived explicit formulae for the stationary front
forms and the interval of propagation failure in the case of a single defect. Note
that the lower boundaries of the intervals of propagation failure when ξ∗ = k∗ and
k∗ < ξ∗ < k∗ + 1 agree, while the upper boundary of the interval of propagation
failure when ξ∗ = k∗ is equal to that of k∗ − 1 < ξ∗ < k∗. This is clearly seen in
Figure 1. In the next section we study how the interval of propagation failure changes
with respect to α0 and ξ∗.

3.2.3. Interval of propagation failure. Using the explicit formulae for the in-
terval of propagation failure derived in sections 3.2.1 and 3.2.2, we determine precisely
when and where traveling fronts become stationary fronts.
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Theorem 3.2. Suppose that φk satisfies (3.1) and αk is given by (2.6) with
m = n = 0. If a ∈ (0, 1) yields a traveling front when α0 = α, then there are no
corresponding stationary fronts for α0 < α and ξ∗ /∈ (0, 1), nor for α0 > α and
ξ∗ ∈ (0, 1). In addition, there exist a ∈ (0, 1), which yield traveling fronts for α0 = α
but yield stationary fronts for α0 < α and ξ∗ ∈ (0, 1) or for α0 > α and ξ∗ /∈ (0, 1).

Proof. First, note that since λ > 1, (3.33) implies that

(3.36)
dv1
dτ

=
λ− 1

(λ+ 2τ − 1)2
> 0 and

dw1

dτ
= −dv1

dτ
< 0.

Hence, v1 and w1 are respectively monotone increasing and monotone decreasing
functions of τ = α0/α.

From section 3.2.2, for all ξ∗ � 0 and k∗ < ξ∗ � k∗+1, the upper envelope of the
interval of propagation failure is given by

φk∗+1 =
λ

λ+ 1

[
1− λ2k

∗
(w1 − λv1)

]
=

λ

λ+ 1

[
1− λ2k

∗ (1 − τ)(λ − 1)

(λ+ 2τ − 1)

]
.

Now, using dw1

dτ − λdv1
dτ = 1−λ2

(λ+2τ−1)2 < 0, we get
dφk∗+1

dτ = λ1+2k∗
(λ−1)

(λ+2τ−1)2 > 0, which

shows that φk∗+1 is a monotone increasing function of τ . Since

lim
k∗→−∞

φk∗+1 = w0, lim
τ→1

φk∗+1 = w0, lim
τ→+∞

φk∗+1 = w0

[
1 +

1

2
λ2k

∗
(λ− 1)

]
,

with w0 defined by (3.20), we have φk∗+1 < w0 when α0 < α, and φk∗+1 > w0 when
α0 > α. If a ∈ (0, 1) yields a traveling front for α0 = α, meaning a > w0, then it is im-
possible to have a < φk∗+1 when τ = α0/α < 1, but if a ∈ (w0, w0[1+λ

2k∗
(λ−1)/2]),

then a < φk∗+1 for all τ = α0/α sufficiently large.
On the other hand, for all ξ∗ � 1 and k∗ � ξ∗ < k∗ + 1 the lower envelope of

the interval of propagation failure is given by φk∗ = 1
λ+1

[
1 + λ1−2k∗

(w1 − λv1)
]
and

dφk∗
dτ = λ1−2k∗

(1−λ)
(λ+2τ−1)2 < 0; hence φk∗ is a monotone decreasing function of τ . In this

case,

lim
k∗→∞

φk∗ = v0, lim
τ→1

φk∗ = v0, lim
τ→+∞

φk∗ = v0

[
1− 1

2
λ1−2k∗

(λ− 1)

]
,

with v0 defined by (3.20), and we find that φk∗ > v0 when α0 < α, and φk∗ < v0
when α0 > α. Hence, if a yields a traveling front for α0 = α, meaning a < v0, then it
is impossible to have a > φk∗ when α0 < α, but if a ∈ (v0[1 − λ1−2k∗

(λ − 1)/2], v0),
then a > φk∗ for all τ = α0/α sufficiently large.

Finally, for 0 < ξ∗ < 1 we have φk∗ = v1 and φk∗+1 = w1. Since v0 = v1 and
w0 = w1 when α = α0, by (3.36), for τ = α0/α > 1 we have v1 > v0 and w1 < w0,
and so it is not possible to have a ∈ (v1, w1) whenever a /∈ (v0, w0). However, if
τ = α0/α < 1, then v1 = 2α0

1+4α0+
√
1+4α

< 2α
1+4α+

√
1+4α

= v0 < w0 < w1, where

v0 +w0 = 1 and v1 +w1 = 1. Thus a ∈ (v1, v0) or a ∈ (w0, w1) yields traveling fronts
when α = α0 but stationary fronts for α0 < α. This completes the proof.

Since, according to a ∈ [v0, w0], the interval of propagation failure is [1/(λ + 1),
λ/(λ + 1)] when α0 = α, the theorem leads naturally to the following conclusion.
Traveling fronts which become pinned, due to a low wave speed relative to the size of
α0 < α, are always pinned in the defect region 0 < ξ∗ < 1 or, equivalently, when
a ∈ (v1, w1). This is demonstrated in Figure 1, where the interval of propagation
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failure is plotted as a function of τ with α = 1. Values of a that fall between the
curves in any given plot yield a stationary front. Note that intervals of propagation
failure are closed in plots with ξ∗ ∈ Z, while the intervals are open when ξ∗ /∈ Z.
Hence, if a falls on a curve, then the result is a stationary front, provided that a also
coincides with a lattice point, but if a lies outside the curves, we expect traveling
fronts.

Figure 1 shows plots for several values of k∗, giving a clear picture of how the
interval changes as the position of the front relative to the defect changes. The plot
for 0 < ξ∗ < 1 merits particular attention, because it corresponds to the wave forms
at the defect. This is the only one of the six plots shown which is symmetric about
a = 1/2, because fronts are pinned in this interval regardless of the direction from
which they approach the defect. We also notice that the length of the interval of
propagation failure increases as α0 decreases, and α0 → 0 implies that all values of a
yield a stationary front.

−3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

−→−→−→

←− ←− ←−

ξ∗

a

α0 = 0.2

−3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

−→−→

←− ←−

ξ∗

a

α0 = 5

−3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

−→−→−→

←− ←− ←−

ξ∗

a

Fig. 2. The interval of propagation failure as a function of ξ∗. The dashed lines represent the
interval of propagation failure when αk = α for all k, and the chain lines show the bounds on the
interval of propagation failure when defects are present. Arrows show the directions fronts travel
for particular values of a. Top left: α0 = 0.2, α = 1. Top right: α0 = 5, α = 1. Bottom: The
solid lines give the interval of propagation failure in two cases, (1) α0 = α = 1/2 and (2) α0 = 1/2,
α = 2.

Figure 2 demonstrates the results of Theorem 3.2. Choosing k∗ < 0 yields a
stationary front or a traveling front, depending on the value of a, to the left of the
defect. Due to (2.9)–(2.10) along with (3.14), increasing this value of k∗ places the
wave form farther to the right with each increment. We also know that fronts traveling
with a positive wave speed, corresponding to a > w0, travel to the right. Figure 2
shows that a front traveling to the right will not become a stationary front until it
reaches the interval 0 < ξ∗ < 1 if α0 < α. The same is true of fronts traveling to
the left, in which case a < v0. On the other hand, if α0 > α, then fronts traveling
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in either direction may get pinned prior to reaching the interval 0 < ξ∗ < 1. In this
case, the closer a is to the boundary of the interval of propagation failure defined by
the homogeneous diffusion case, the sooner it will get pinned.

It is completely expected that holding α fixed and reducing α0 towards zero results
in traveling fronts that become pinned. The surprising part of Theorem 3.2 is that
τ = α0/α must decrease in order to pin a front in the interval [0, 1], and this can be
achieved equally well by holding α0 constant and increasing α. This is illustrated in
the bottom panel of Figure 2, showing that there are values of a for which there are
traveling fronts when α0 = α = 1/2, but those same values of a yield a stationary
front for ξ∗ ∈ (0, 1) when α0 = 1/2 and α = 2, and the two cases α0 = α = 1/2 and
α0 = α = 2 both have smaller intervals of propagation failure than α0 = 1/2, α = 2
for ξ∗ ∈ (0, 1).

3.3. Inhomogeneous diffusion: Multiple defects. Consider the difference
equation (3.1) and allow the diffusion coefficients to vary on an interval of arbitrary
length centered about k = 0 such that αk is given by (2.6). To solve (3.1), we begin
by finding the fundamental solutions, denoted ρ̃(k, k∗) and σ̃(k, k∗), which form the
general solution of (3.24). Defining

(3.37) pk := 1 + αk + αk−1 and qk :=
1

αk

allows (3.24) to be written as

(3.38) φk+1 = qk (pkφk − αk−1φk−1) or φk−1 = qk−1 (pkφk − αkφk+1) ,

which are used to find ρ̃(k, k∗) and σ̃(k, k∗).
Lemma 3.3. The fundamental solutions, denoted ρ̃(k, k∗) and σ̃(k, k∗), of (3.24)

with (2.6) are given by ρ̃(k, k∗) = ρ(k− k∗) and σ̃(k, k∗) = σ(k− k∗) if k∗ < −m and
k � −m or if k∗ > n and k � n. Otherwise, the fundamental solutions are given by

ρ̃(k, k∗) =

⎧⎪⎨⎪⎩
ρ(k − n− 1)θ(n+ 1, k∗) + σ(k − n− 1)θ(n+ 2, k∗), k > n,

θ(k, k∗), −m � k � n,

ρ(k +m+ 1)θ(−m− 1, k∗) + σ(k +m+ 1)θ(−m, k∗), k < −m,

and

σ̃(k, k∗) =

⎧⎪⎨⎪⎩
ρ(k − n− 1)ζ(n+ 1, k∗) + σ(k − n− 1)ζ(n+ 2, k∗), k > n,

ζ(k, k∗), −m � k � n,

ρ(k +m+ 1)ζ(−m− 1, k∗) + σ(k +m+ 1)ζ(−m, k∗), k < −m,

such that ρ(k) and σ(k) are given in (3.12) and θ(k, k∗) and ζ(k, k∗) are found itera-
tively by the relations (3.38) with initial conditions

(3.39) θ(k∗, k∗) = 1, θ(k∗ + 1, k∗) = 0, ζ(k∗, k∗) = 0, ζ(k∗ + 1, k∗) = 1.

Proof. Introduce the variable ψk = φk−1 and use (3.37) to write (3.38) as(
ψk+1

φk+1

)
= Mk

(
ψk

φk

)
and

(
ψk−1

φk−1

)
= M−1

k

(
ψk

φk

)
with Mk := qk

(
0 αk

−αk−1 pk

)
.
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Using this formulation and results of Teschl [32], the fundamental solutions can be
found iteratively by

Φ̃(k, k∗) :=

(
ρ̃(k, k∗) σ̃(k, k∗)

ρ̃(k + 1, k∗) σ̃(k + 1, k∗)

)
=

⎧⎪⎨⎪⎩
∏k

j=k∗+1 Mj, k > k∗,

I, k = k∗,∏k+1
j=k∗ M

−1
j , k < k∗,

such that
∏k

j=k∗+1 Mj = Mk · · ·Mk∗+1. However, Mk =
(

0 1
−1 2μ

)
:= M for k < −m

or k > n, and

Φ(k − k∗) :=

(
ρ(k − k∗) σ(k − k∗)

ρ(k + 1− k∗) σ(k + 1− k∗)

)
=

{
Mk−k∗

, k �= k∗,

I, k = k∗,

for ρ(k−k∗) and σ(k−k∗) given in (3.12). This naturally implies ρ̃(k, k∗) = ρ(k−k∗)
and σ̃(k, k∗) = σ(k − k∗) if k∗ < −m and k � −m or if k∗ > n and k � n. Otherwise,
we can write a general formula for Φ̃(k, k∗) in terms of ρk and σk in the following
way:

Φ̃(k, k∗) =

⎧⎪⎨⎪⎩
Mk−n−1

∏n+1
j=k∗+1 Mj, n < k,

Ψ(k, k∗), −m � k � n,

Mk+m+1
∏−m

j=k∗ M
−1
j , k < −m,

where we have defined

Ψ(k, k∗) :=

(
θ(k, k∗) ζ(k, k∗)

θ(k + 1, k∗) ζ(k + 1, k∗)

)
=

⎧⎪⎨⎪⎩
∏k

j=k∗+1 Mj , k∗ < k � n,

I, k = k∗,∏k+1
j=k∗ M

−1
j , −m � k < k∗.

Thus, for −m � k � n we have ρ̃(k, k∗) = θ(k, k∗) and σ̃(k, k∗) = ζ(k, k∗). To get
ρ̃(k, k∗) and σ̃(k, k∗) for k < −m or k > n we simply use

Φ̃(k, k∗) =

{
Φ(k − n− 1)Ψ(n+ 1, k∗), k > n,

Φ(k +m+ 1)Ψ(−m− 1, k∗), k < −m,

and writing these matrices in component form completes the proof.
As in the case of a single defect, the solutions of (3.1) depend on �ξ∗� = k∗,

which defines the position of the front relative to the defect. As a result, we derive
fundamental solutions that depend on k∗, and thereby make the statement of the final
solution simpler and the interval of propagation failure more accessible. Due to this
k∗-dependence, we must consider two cases: (1) the interface lies in the defect region,
(2) the interface lies outside the defect region.

3.3.1. Fronts inside the defect region. Now consider fronts for which k∗ ∈
[−m, n]. We can use the fundamental solutions to find the general solution of (3.1),
(2.6), but first we introduce some notation. Using (3.12), the fundamental solutions
for k > n can be written as

ρ̃(k, k∗) =
1

λ− λ−1

[
λ−kΓ+(n, k∗)− λkΓ−(n, k∗)

]
,

σ̃(k, k∗) =
1

λ− λ−1

[
λ−kΛ+(n, k∗)− λkΛ−(n, k∗)

]
,
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where we have defined

Γ±(n, k∗) := θ(n+ 1, k∗)λ±(n+2) − θ(n+ 2, k∗)λ±(n+1),

Λ±(n, k∗) := ζ(n+ 1, k∗)λ±(n+2) − ζ(n+ 2, k∗)λ±(n+1).

For k < −m we get

ρ̃(k, k∗) =
1

λ− λ−1

[
λ−kΓ−(−m, k∗)− λkΓ+(−m, k∗)

]
,

σ̃(k, k∗) =
1

λ− λ−1

[
λ−kΛ−(−m, k∗)− λkΛ+(−m, k∗)

]
,

with

Γ±(−m, k∗) := θ(−m− 1, k∗)λ±m − θ(−m, k∗)λ±(m+1),

Λ±(−m, k∗) := ζ(−m− 1, k∗)λ±m − ζ(−m, k∗)λ±(m+1).

The reader is cautioned here to notice that Γ±(−m, k∗) �= Γ±(n, k∗) and Λ±(−m, k∗)
�= Λ±(n, k∗) when m = n = 0, but this is the case of a single defect, which is considered
in section 3.2. Defining

Ωm
n (k

∗) :=
1

Γ−(n, k∗)Λ−(−m, k∗)− Γ−(−m, k∗)Λ−(n, k∗)
,

we arrive at the main result of this section.
Theorem 3.4. Suppose that αk is given by (2.6) and that �ξ∗� = k∗ ∈ [−m, n].

Then the general solution of (3.1) is given by (3.28), where
(3.40)

φk∗ = Ωm
n (k

∗)Λ−(−m, k∗)

⎡⎣Λ−(n, k∗)
hk∗

αk∗
− λ−n(1− λ−1) +

n∑
j=k∗+1

1

αj
Λ−(n, j)

⎤⎦
and

φk∗+1 = Ωm
n (k

∗)

[
Γ−(−m, k∗)

(
λ−n(1 − λ−1)−

n∑
j=k∗+1

1

αj
Λ−(n, j)

)
(3.41)

−Γ−(n, k∗)Λ−(−m, k∗)
hk∗

αk∗

]
and the fundamental solutions ρ̃(k, k∗) and σ̃(k, k∗) are given in Lemma 3.3.

Proof. Following Teschl [32], one can readily show that

(3.42) φk =

⎧⎪⎨⎪⎩
−
∑k

j=k∗+1
1
αj
σ̃(k, j), k > k∗,

0, k = k∗,
hk∗
αk∗ σ̃(k, k

∗), k < k∗,

is a particular solution of (3.1), (2.6), and this in turn shows that (3.28) is the general
solution, based on Lemma 3.3. (Note that the sum in (3.42) requires solutions outside
the defect region.) To solve for the coefficients φk∗ and φk∗+1 we require

(3.43) Γ−(n, k∗)φk∗ + Λ−(n, k∗)φk∗+1 =

n∑
j=k∗+1

1

αj
Λ−(n, j)− λ−n(1 − λ−1)
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in order to satisfy the boundary conditions as k → ∞, since |λ| > 1. Similarly, we
require

(3.44) Γ−(m, k∗)φk∗ + Λ−(m, k∗)φk∗+1 = −Λ−(m, k∗)
hk∗

αk∗

to satisfy the boundary conditions as k → −∞. Solving the system of equations
(3.43)–(3.44) for φk∗ and φk∗+1 gives (3.40) and (3.41), and this completes the
proof.

Corollary 3.5. Suppose that αk is given by (2.6) and that k∗ ∈ [−m, n]. Then
the existence of solutions for (3.1) is guaranteed by the necessary and sufficient con-
ditions (3.3) or (3.4), where φk∗ and φk∗+1 are defined respectively in (3.40) and
(3.41).

This result gives us a completely general way of stating the interval of propagation
failure, regardless of the size of the defect region and regardless of the individual
values of αk at each point in the defect region. Yet, the result of Corollary 3.5
is somewhat restricted by the terms θ(·, k∗) and ζ(·, k∗). In order to analyze the
interval of propagation failure in more detail, explicit expressions for these terms are
required. These can be obtained by choosing values for m and n and then performing
the appropriate number of iterations using (3.38).

3.3.2. Fronts outside the defect region. Now the fundamental solutions of
Lemma 3.3 are used to find the general solution of (3.1) in the case k∗ /∈ [−m, n].

Theorem 3.6. Suppose that αk is given by (2.6) and that �ξ∗� = k∗ �∈ [−m, n].
Then the general solution of (3.1) is given by (3.28), where the following hold:

• If k∗ < −m, then

φk∗ =

hk∗
α Λ−(n, k∗)− λ−n(1− λ−1) +

∑n
j=k∗+1

1
αj

Λ−(n, j)

Γ−(n, k∗) + λΛ−(n, k∗)

and

φk∗+1 =

−hk∗
α Γ−(n, k∗)− λ1−n(1− λ−1) + λ

∑n
j=k∗+1

1
αj

Λ−(n, j)

Γ−(n, k∗) + λΛ−(n, k∗)
.

• If k∗ > n, then

φk∗ =
−Λ−(−m, k∗)

(
hk∗
α + 1− λ−1

)
Γ−(−m, k∗) + λ−1Λ−(−m, k∗)

and

φk∗+1 =
−λ−1 hk∗

α Λ−(−m, k∗) + (1− λ−1)Γ−(−m, k∗)

Γ−(−m, k∗) + λ−1Λ−(−m, k∗)
.

Clearly, proof of this result follows in the same manner as the proof of Theorem
3.4, and results analogous to Corollary 3.5 also hold in this case. To find more precise
formulae which define the interval of propagation failure, one must find θ(·, k∗) and
ζ(·, k∗) for given values of m and n. However, stationary fronts that result from “slow”
traveling fronts which reach the defect region with αk < α are entirely represented by
Theorem 3.4. This is demonstrated in the following subsection.
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Fig. 3. The upper envelope of the interval of propagation failure as a function of ξ∗ with α = 1
and αk = 0.2 for one, two, and three defects. The arrows indicate the actual values of the upper
bound in each of the three cases.

3.3.3. Solutions for multiple defects. An important consideration for cases
with multiple defects is the significance of the length of the interval [−m, n]. Theorems
3.4 and 3.6 allow us to evaluate the general solution (3.28) to (3.1) when αk is given
by (2.6). Figure 3 shows that when αk is held fixed for k ∈ [−m, n] for a defect region
of one, two, or three mesh points, the maximum width of the interval of propagation
failure is slightly increased with each additional defect and approaches a constant value
exponentially fast. (See (3.40) and (3.41).) Hence, increasing the number of defects
has little or no effect in determining whether or not a traveling front gets pinned,
especially when the number of defects is large. However, increasing the number of
defects may have a large effect on where a traveling front is pinned. As the plot shows,
for values of a slightly smaller than 0.9, the traveling front may get pinned in any of
the three intervals (−1, 0), (0, 1), or (1, 2), depending on the number of defects.

In Figure 4, the upper envelope of the interval of propagation failure is plotted
for three defects as a function of ξ∗ and αj, for j = −1, 0, 1. In each plot, one defect
is varied between 0 and 1, while the others are fixed at 1/2. For particular values
of α−1, α0, and α1 it is possible that a traveling front is pinned in any one of the
three intervals, ξ∗ ∈ (−1, 0), (0, 1), (1, 2), depending on the wave speed, but the
front will not be pinned anywhere outside these three intervals. Also, the interval of
propagation failure is always affected by the size of the defect at a later point, and
the effects are inversely proportional to the change in that defect. This is noticeable
in each plot, where increasing αj implies an increase in the interval of propagation
failure for ξ∗ ∈ (j, j+ 1), but a decrease for ξ∗ ∈ (j− 1, j).

4. Derivation of solutions for nonzero wave speed. We now derive solu-
tions for the case of nonzero wave speed (2.12), by substituting the traveling wave
ansatz (2.7) into the evolution equation (2.1), which results in a boundary value prob-
lem. Then, taking advantage of the equation’s structure, we apply a Fourier transform
to derive candidate traveling front solutions. We conclude by checking the consistency

D
ow

nl
oa

de
d 

12
/0

6/
18

 to
 1

32
.1

70
.1

92
.7

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1392 A. R. HUMPHRIES, B. E. MOORE, AND E. S. VAN VLECK
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Fig. 4. Upper bound of the interval of propagation failure for three defects and α = 1. Top
left: α0 = α1 = 0.5 and 0 � α−1 � 1; top right: α−1 = α1 = 0.5 and 0 � α0 � 1; bottom:
α−1 = α0 = 0.5 and 0 � α1 � 1.

of these solutions with (2.9).
Based on (2.6)–(2.7), we assume that the wave speeds satisfy cj(t) → ct as j →

±∞. Thus, we define sets

R = {j ∈ Z : cj(t) �= ct}, S = {j ∈ Z : j ∈ R, j + 1 ∈ R, or j − 1 ∈ R},(4.1)

T = {j ∈ Z : αj �= α},

and let cj(t) = ct for j /∈ R. Then

(4.2) ξj =

{
j − cj(t), j ∈ R,
j − ct, j /∈ R,

and we seek solutions with R finite.

4.1. Problem set-up. Substituting (2.7) into (2.1) yields

(4.3) −djϕ′(ξj) = αj(ϕ(ξj+1)− ϕ(ξj)) + αj−1(ϕ(ξj−1)− ϕ(ξj))− ϕ(ξj) + h(ξj − ξ∗)

for j ∈ Z, where we set dj(t) = ċj(t). Equivalently, we may write (4.3) as

−djϕ′(ξj) = α(ϕ(ξj + 1)− ϕ(ξj)) + α(ϕ(ξj − 1)− ϕ(ξj))− ϕ(ξj) + h(ξj − ξ∗)

+ (αj − α)(ϕ(ξj+1)− ϕ(ξj)) + (αj−1 − α)(ϕ(ξj−1)− ϕ(ξj))

+α(ϕ(ξj+1)− ϕ(ξj + 1)) + α(ϕ(ξj−1)− ϕ(ξj − 1)).(4.4)

Remark. We have omitted the ξ∗-dependence of ϕ here in order to avoid messy
notation, but we must emphasize the importance of ξ∗ for the following derivation.
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Each ξ∗ gives a different problem for which the solution is a particular front, which is
part of a family of fronts defined by the size of the defect and the wave speed far away
from the defect region. With every change of ξ∗, the wave form, defined by ϕ(ξ; ξ∗),
changes as well as its position in the medium. Hence, variation of the parameter ξ∗

enables one to study how the family of fronts changes with respect to the medium.
This is made evident through the construction (2.8)–(2.10).

The linear system of differential equations (4.4) can be solved exactly, but this
requires knowing the values dj . In the case of homogeneous diffusion, a wave speed c
is chosen, then the solution is obtained, giving the corresponding value of a. In this
case, we must choose the values dj such that the resulting solution gives the value of
a corresponding to c as j → ±∞.

Using (4.1)–(4.2) with j − ct = ξ ∈ R, we may write (4.4) as

−cϕ′(ξ) +
∑
j∈R

δj(ξ)(−dj + c)ϕ′(ξj)

= α(ϕ(ξ + 1)− 2ϕ(ξ) + ϕ(ξ − 1))− ϕ(ξ) + h(ξ − ξ∗)

+ α
∑
j∈S

δj(ξ)[ϕ(ξj+1)− ϕ(ξj + 1) + ϕ(ξj−1)− ϕ(ξj − 1)]

+
∑
j∈T

(αj − α)(δj(ξ)− δj+1(ξ))(ϕ(ξj+1)− ϕ(ξj)),

where δj(x) = δ(x − ξj) is the Kronecker delta function; then substituting (4.3) into
the left-hand side of this expression and defining βj = (c/dj) − 1 and γj = αj − α
gives

−cϕ′(ξ) = α(ϕ(ξ + 1)− 2ϕ(ξ) + ϕ(ξ − 1))− ϕ(ξ) + h(ξ − ξ∗)

+
∑
j∈R

βjδj(ξ) (αj (ϕ(ξj+1)− ϕ(ξj)) + αj−1 (ϕ(ξj−1)− ϕ(ξj))− ϕ(ξj) + h(ξj − ξ∗))

+ α
∑
j∈S

δj(ξ)[ϕ(ξj+1)− ϕ(ξj + 1) + ϕ(ξj−1)− ϕ(ξj − 1)]

+
∑
j∈T

γj(δj(ξ)− δj+1(ξ))(ϕ(ξj+1)− ϕ(ξj)).

Notice that the first line of this equation is the traveling front problem for the case of
homogeneous diffusion [5], and the three lines that follow represent the perturbation,
which results from allowing T �= ∅ according to (2.6) and subsequently choosing R
and S to be nonempty. Hence, we are able to follow the techniques of [5, 12] to solve
the equation, and before proceeding we need the following preliminary result.

Lemma 4.1. There exists an ε > 0 such that |ϕ(ξ)| � Keεξ for ξ � 0 and some
K > 0.

Proof. For the proof, refer to [5, Lemma 4.1] and [12, Lemma 3.1].

4.2. Candidate solutions via Fourier transform. Since the αj ’s are defined
only at the lattice points, replace the Kronecker delta δ(x) with the approximation
to the Dirac delta δ	(x), where

(4.5) δ	(x) =

{
1/�, |x| � �/2,

0, |x| > �/2.
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We seek a solution in the sense of distributions, and based upon Lemma 4.1, apply
the change of variables ϕε(ξ) = e−εξϕ(ξ) for ε > 0 sufficiently small. Then ϕε(ξ)
satisfies the equation

−cϕ′
ε(ξ) = α

(
eεϕε(ξ + 1)− 2ϕε(ξ) + e−εϕε(ξ − 1)

)
− (1 − cε)ϕε(ξ) + e−εξh(ξ − ξ∗)

+
∑
j∈R

βjδ	(ξ − ξj)
[
αj (e

εϕε(ξj+1)− ϕε(ξj)) + αj−1

(
e−εϕε(ξj−1)− ϕε(ξj)

)
−ϕε(ξj) + e−εξjh(ξj − ξ∗)

]
+
∑
j∈S

αδ	(ξ − ξj)
[
e−ε(ξj−ξj+1)ϕε(ξj+1)− eεϕε(ξj + 1) + e−ε(ξj−ξj−1)ϕε(ξj−1)

−e−εϕε(ξj − 1)
]

+
∑
j∈T

γj

[
δ	(ξ − ξj)

(
e−ε(ξj−ξj+1)ϕε(ξj+1)− ϕε(ξj)

)
+ δ	(ξ − ξj+1)

(
e−ε(ξj+1−ξj)ϕε(ξj)− ϕε(ξj+1)

)]
.

Apply a Fourier transform ϕ̂ε(s) =
∫∞
−∞ e−isξϕε(ξ)dξ, and then notice that∫∞

−∞ e−isξϕ′
ε(ξ)dξ = isϕ̂ε(s), with the use of integration by parts, and

∫∞
−∞ e−(is+ε)ξh ·

(ξ−ξ∗)dξ =
∫∞
ξ∗ e

−(is+ε)ξdξ = e−(is+ε)ξ∗

is+ε , and
∫∞
−∞ e−isξ−εϕε(ξ−1)dξ = e−(is+ε)ϕ̂ε(s).

For all terms containing δ	, the Fourier transform implies
∫∞
−∞ e−isξδ	(ξ − ξk)Kdξ =

K
	

∫ ξk+	/2

ξk−	/2 e
−isξdξ for any K ∈ R and k ∈ Z. Then using the mean value theorem for

integrals and letting �→ 0 gives
∫∞
−∞ e−isξδ	(ξ − ξk)Kdξ = Ke−isξk . Thus,

ϕ̂ε(s) =
e−(is+ε)ξ∗

(is+ ε)R(s− iε)

+
∑
j∈R

βje
−isξj

R(s− iε)

[
αj (e

εϕε(ξj+1)− ϕε(ξj)) + αj−1

(
e−εϕε(ξj−1)− ϕε(ξj)

)
−ϕε(ξj) + e−εξjh(ξj − ξ∗)

]
+
∑
j∈S

αe−isξj

R(s− iε)

[
e−ε(ξj−ξj+1)ϕε(ξj+1)− eεϕε(ξj + 1) + e−ε(ξj−ξj−1)ϕε(ξj−1)

−e−εϕε(ξj − 1)
]

+
∑
j∈T

γj
R(s− iε)

[
e−isξj

(
e−ε(ξj−ξj+1)ϕε(ξj+1)− ϕε(ξj)

)
+ e−isξj+1

(
e−ε(ξj+1−ξj)ϕε(ξj)− ϕε(ξj+1)

)]
,

where we define R(s) := 1− ics+ 2α(1− cos(s)).
Then using the inverse Fourier transform and following [5], we obtain, in the limit

as ε→ 0,

(4.6) ϕ(ξ; ξ∗) = ψ(ξ; ξ∗) + χ(ξ; ξ∗),

where

(4.7) ψ(ξ; ξ∗) =
1

2
+

1

π

∫ ∞

0

A(s) sin(s(ξ − ξ∗))

s (A(s)2 + c2s2)
ds+

c

π

∫ ∞

0

cos(s(ξ − ξ∗))

A(s)2 + c2s2
ds
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for A(s) = 1 + 2α(1 − cos(s)) is the solution to the equation with homogeneous
diffusion αj = α for all j ∈ Z [5]. The term χ(ξ; ξ∗) represents the perturbation from
the homogeneous diffusion problem and takes the form
(4.8)

χ(ξ; ξ∗) =
∑
j∈R

βjFj(ξ)Bj(ξ
∗) + α

∑
j∈S

Fj(ξ)Cj(ξ
∗) +

∑
j∈T

γj (Fj(ξ)− Fj+1(ξ))Dj(ξ
∗),

where Fj(ξ) := 1
2π

∫∞
−∞

e(is+ε)(ξ−ξj)

R(s−iε) ds is the integral that results from the inverse

Fourier transform and

Bj(ξ
∗) = αj (ϕ(ξj+1; ξ

∗)− ϕ(ξj ; ξ
∗)) + αj−1 (ϕ(ξj−1; ξ

∗)− ϕ(ξj ; ξ
∗))(4.9)

−ϕ(ξj ; ξ∗) + h(ξj − ξ∗),

Cj(ξ
∗) = ϕ(ξj+1; ξ

∗)− ϕ(ξj + 1; ξ∗) + ϕ(ξj−1; ξ
∗)− ϕ(ξj − 1; ξ∗),

Dj(ξ
∗) = ϕ(ξj+1; ξ

∗)− ϕ(ξj ; ξ
∗).

To simplify Fj , let ε→ 0 so that

Fj(ξ) =
1

2π

∫ ∞

−∞

eis(ξ−ξj)

R(s)
ds =

1

2π

∫ ∞

0

eis(ξ−ξj)

R(s)
+
e−is(ξ−ξj)

R(−s) ds

and the two identities R(−s)eis(ξ−ξj) + R(s)e−is(ξ−ξj) = 2A(s) cos(s(ξ − ξj))
− 2cs sin(s(ξ − ξj)) and R(s)R(−s) = A(s)2 + c2s2 imply

(4.10) Fj(ξ) =
1

π

∫ ∞

0

A(s) cos(s(ξ − ξj))− cs sin(s(ξ − ξj))

A(s)2 + c2s2
ds.

The terms ϕ(x; ξ∗), which are contained in χ(ξ; ξ∗) according to (4.9), can be found
by solving the linear system that results from evaluating (4.6) at ξ = x.

In order for (4.6)–(4.10) to represent a solution for all ξ∗ ∈ R the conditions (2.9)
must be satisfied with ϕ(ξ∗, ξ∗) = a. Thus, we must choose dj so that χ(ξ∗, ξ∗) = 0,
and
(4.11)
ψ(x; ξ∗) + χ(x; ξ∗) < a for x < ξ∗ and ψ(x; ξ∗) + χ(x; ξ∗) > a for x > ξ∗,

because ψ(ξ∗, ξ∗) = a. Details on verifying (4.11) and finding cj and dj are discussed
in section 4.3. If (4.11) is not satisfied, we may look for waves with multiple crossings
of a using the techniques of [13].

Provided that (4.11) is satisfied, we have a family of solutions ϕ(ξ; ξ∗), which
depends on the wave speed far from the defect region, given by c, and the size and
number of the defects αj relative to α. Each value of ξ∗ ∈ R corresponds to a member
of this family, and variation of the parameter ξ∗ changes the distance between the
front and the defect region, due to the construction (2.8)–(2.10). In other words, each
member of this family of fronts for given c, α, and αj has a different position and
shape in the media depending on its distance from or place within the defect region.
In fact, we are able to change the position of the front in the media by changing ξ∗,
similar to the way ct translates a front defined by ϕ(j−ct; ξ∗). As a result, each value
of ξ∗ directly corresponds to cj , and thereby dj , and we estimate cj(ξ

∗) and dj(ξ
∗)

based on the position of the front relative to the defect.
Consider the special case of one defect with T = {0}, so that αj = α for all j �= 0,

and allow α0 �= α. (Cases with |T | > 1 may be considered using (4.6)–(4.10) and
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similar arguments.) We begin consideration of this case by allowing the wave speed
to vary at only one point (the point of defect) by letting R = {0} and S = {−1, 0, 1}.
To state this solution explicitly, one must solve for B0(ξ

∗), Cj(ξ
∗), and D0(ξ

∗), given
in (4.9), and this is achieved by evaluating
(4.12)

ϕ(ξ; ξ∗) = ψ(ξ; ξ∗) + α

1∑
j=−1

Fj(ξ)Cj(ξ
∗) + γ0 (F0(ξ)− F1(ξ))D0(ξ

∗) + β0F0(ξ)B0(ξ
∗)

at ξ = xj , where xj are elements of x := [ξ0−1, ξ−1, ξ0, ξ1−1, ξ0+1, ξ1]
T , and solving

the resulting linear system for w := [ϕ(ξ0 − 1), ϕ(ξ−1), ϕ(ξ0), ϕ(ξ1 − 1), ϕ(ξ0 + 1),
ϕ(ξ1)]

T . Experimentation reveals that these solutions are comparable to numerical
solutions of the evolution equation, but we may consider solutions with multiple vari-
able wave speeds. Allowing more wave speeds to depend on the lattice and on time
for the case of a single defect, so that T = {0} and |R| = r � 1, we must solve a
linear system in which the dimension of the vector of unknowns is

dim(w) =

{
3r + 4, r even,

3r + 3, r odd.

Once cj(ξ
∗) for j ∈ R is determined with sufficient accuracy, we are able to consider

the wave forms ϕ(ξ; ξ∗). At this point it is necessary to check that the conditions
(4.11) are satisfied, and this can be done numerically. Since ϕ(ξ; ξ∗) → ψ(ξ; ξ∗) as
ξ → ±∞, (4.11) is satisfied if the interface is sufficiently far from the defect. Our
experimental results verify that the condition is also satisfied near the defect.

4.3. Numerical results. Here, we illustrate the behavior of a front through
a single defect. Let a denote the value of the detuning parameter for the traveling
front of the problem with homogeneous diffusion α and wave speed c. For all ex-
periments we use α = 1 and a = 0.8116, which implies c ≈ 1. The behavior of the
solutions (4.6)–(4.10) is demonstrated through numerical integration, using the Filon
quadrature method, which is well suited for the highly oscillatory integrals that result
from the Fourier transform [17, 18]. All experiments have been performed using an
absolute error tolerance of 10−4 with a truncated interval of integration [0, 103]. As
input we use numerical approximations of the wave speeds dj . These are obtained by
solving the evolution equation with the Runge–Kutta–Fehlberg method, and we use
a minimum error tolerance of 10−10. To compute the variable wave speed we measure
the time needed for points on the interface to travel from one lattice point to the next.
For example, if u0(t0) = a and u1(t1) = a, then the wave speed is estimated to be
d = 1/(t1 − t0), and the procedure is repeated at intermediate time steps to increase
the accuracy of the estimate.

In Figure 5 we plot wave speed estimates for three values of α0. Since c = 1 in
this case, integer values of t directly correspond to lattice points only if α0 = α. The
front with no defects (α0 = α) has u0 = a at time t = 13, but the front with one
defect and α0 = 0.7 has u0 = a at time t ≈ 14. This is emphasized in the figure by
a large deceleration between times 13 and 14. Though this deceleration is expected,
we also notice a significant acceleration that takes place prior to deceleration. This
speed-up is less intuitive but is certainly consistent with the results of section 3,
where we saw that the interval of propagation failure always decreased for ξ∗ in the
interval preceding the defect region, but that just inside the defect region the interval
of propagation failure showed a dramatic increase. We also point out that the return
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Fig. 5. Wave speed as a function of time for α = 1 and three values of α0, with a = 0.8116
which gives c ≈ 1.

to wave speeds near c = 1 is almost instantaneous, once the interface has passed the
defect.

Given wave speed estimates, we numerically compute the wave forms (4.12) with
α0 = 0.6. Figure 6 has wave forms at ξ∗ = −0.6029, where the front experiences speed-
up requiring a single variable wave speed d−1 = 1.1392, and wave forms at ξ∗ = 0.4794,
where the speed has significantly decreased, so d0 = 0.5552. Each figure shows the
effects of the defect on the front, the wave forms φ(ξ; ξ∗) and the numerical solution
of the evolution equation, and the difference between these wave forms. Since the
solutions of the evolution equation are approximated with a maximum error estimate
of 10−10, and the quadrature errors are better than 10−3, the errors shown in the
lower plots are mostly due to errors in wave speeds, both computational errors and
errors resulting from using the minimum requirement R = {0} and S = {−1, 0, 1}.
Nevertheless, the results do ensure that both the wave forms and the wave speeds are
faithful to the true values. In addition, the upper plots show that χ(ξ∗; ξ∗) ≈ 0 (up
to the accuracy demonstrated in lower plots), giving numerical verification that the
conditions (4.11) are satisfied.

5. Conclusion. In this paper we have considered front solutions to a bistable
differential-difference equation with inhomogeneous discrete diffusion using a piece-
wise linear (McKean) reaction term. Our interest is in both stationary front and
traveling front solutions. Due to the lack of translation invariance, the solutions we
have obtained at a given time are not necessarily translations of the solutions at dif-
ferent times. However, by employing a traveling front–like formalism, we were able to
determine details of the propagation, or lack of propagation, for solutions that behave
much like traveling front solutions of problems with homogeneous diffusion.

We derived equilibrium solutions and the range of propagation failure for discrete
media with a single defect. For media with multiple defects we provided a general
formula for equilibrium solutions and explicit formulae that determine the range of
propagation failure. We have shown that if a front solution is to cease propagating
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Fig. 6. For α = 1, α0 = 0.6, and c = 1, wave forms at two positions, ξ∗ = −0.6029 and
ξ∗ = 0.4794, near the defect. These respective positions require variable wave speeds d−1 and d0, and
for each position the following three plots are given. Top: χ = ϕ−ψ, showing the difference between
the solution with one defect and the solution with no defects. Middle: Wave forms represented by
the numerical solution u of the evolution equation (crosses) and the computed solution ϕ obtained
by Fourier transform (circles). Bottom: The difference |u− ϕ|.

due to a decrease in the diffusion coefficient at a single point, then this failure to
propagate can occur only when the front is in a specific region near the defect. For
multiple defects of the same size, the width of the interval of propagation failure is
affected little by the number of defects, but the precise location of the pinned front
largely depends on the number of defects. We have also found that it is not the size of
the defect(s) that is most significant for determining the range of propagation failure,
but rather the ratio to the constant diffusion coefficients that matters most.

Traveling front–like solutions are derived using a Fourier transform, and the result
is a perturbation of the solutions that have been derived for the case of homogeneous
diffusion. Essentially, the speed of the front at each lattice point must be allowed to
change with time, and we approximate the solutions by allowing only a few of these
wave speeds to vary with time, those closest to the defect region. To investigate the
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dynamics near the defect, we use high order approximations for the evolution equation
to determine how a single wave speed varies with time as the front passes through the
defect, and the results are verified by substitution into our derived solutions. Most
interestingly, we find that the fronts experience speed-up immediately prior to the
deceleration that results from approaching the defect, and once the front has passed
the defect, it immediately returns to its former state.
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