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Abstract
In the Present paper we study Ricci solitons in trans-sasakian manifolds. In particular we consider Ricci
solitons in f -Kenmotsu manifolds and we prove the conditions for the Ricci solitons to be shrinking, steady
and expanding.
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1. INTRODUCTION

In [10], Ramesh Sharma started the study of the Ricci solitons in contact geometry. Later Mukut Mani Tri-
pathi [11], Cornelia Livia Bejan and Mircea Crasmareanu [3] and others extensively studied Ricci solitons
in contact metric manifolds. A Ricci soliton is a generalization of an Einstein metric and is def ned on a
Riemannian manifold (M, g) by

LV g + 2Ric + 2λg = 0, (1.1)

where V is a complete vector f eld on M and λ is a constant. The Ricci soliton is said to be shrinking, steady
and expanding according as λ is negative, zero and positive respectively. If the vector f eld V is the gradient
of a potential function f then g is called a gradient Ricci soliton and (1.1) takes the form,

∇∇ f = Ric + λg.

Perelman [9] proved that a Ricci soliton on a compact n-manifold is a gradient Ricci soliton. In [11],
Ramesh Sharma studied Ricci solitons in K-contact manifolds, where the structure f eld ξ is killing and he
proved that a complete K-contact gradient soliton is compact Einstein and Sasakian. M. M. Tripathi [11]
studied Ricci solitons in N(K)-contact metric and (k, µ) manifolds. Motivated by the above studies on Ricci
solitons, in this paper, we study Ricci solitons in an important class of manifolds introduced by Kenmotsu
in [6].
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2. PRELIMINARIES

A (2n+1) dimensional smooth manifold M is said to be an almost contact metric manifold if it admits an
almost contact metric structure (φ, ξ, η, g) consisting of a tensor f eld φ of type (1,1), a vector f eld ξ, a
1-form η and Riemannian metric g compatible with (φ, ξ, η) satisfying

Φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0 (2.1)

and
g(φX, φY) = g(X, Y) − η(X)η(Y). (2.2)

An almost contact metric manifold is said to be an f -Kenmotsu manifold if

(∇Xφ)Y = f [g(φX, Y)ξ − φ(X)η(Y)], (2.3)

where f ∈ C∞(M) is strictly positive and d f
∧
η = 0 holds.

From (2.3) we have
∇Xξ = f (X − η(X)ξ). (2.4)

An almost contact metric manifold is called a trans-Sasakian manifold [4] [8] if

(∇Xφ)Y = α(g(X, Y)ξ − η(Y)X) + β(g(φX, Y)ξ − η(Y)φX), (2.5)

for some smooth functions α and β on M.

3. RICCI SOLITONS IN F-KENMOTSU MANIFOLDS

Let M be an n dimensional f -Kenmotsu manifold and let (g,V, λ) be a Ricci soliton in M. Let {ei}, 1 ≤ i ≤ n
be an orthonormal basis of TPM at P ∈ M. Then from (1.1), we have

S = −(λg +
1
2

LV g). (3.1)

From (2.4), we have
(Lξg)(X, Y) = f [g(X, Y) − η(X)η(Y)]. (3.2)

From (3.1) and (3.2), we have

S (X, Y) = −λg(X, Y) − f [g(X, Y) − η(X)η(Y)]. (3.3)

It is easy to verify from (3.3) that
S (φX, Y) = −S (X, φY) (3.4)

and
S (ξ, ξ) = −λ. (3.5)

From (2.3) and (2.4), we f nd that

R(X, Y)ξ = f 2[η(X)Y − η(Y)X] + (Y f )φ2X − (X f )φ2Y (3.6)

and
S (X, ξ) = −[(n − 1) f 2 + ξ f ]η(X) − (n − 2)X( f ). (3.7)

From (3.7), we obtain
S (ξ, ξ) = −(n − 1)[ f 2 + ξ f ]. (3.8)
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Comparing (3.5) and (3.8), we obtain
λ = (n − 1)( f 2 + ξ f ) (3.9)

From (3.9), it is clear that λ is positive if f is a constant. Thus we have
Ricci soliton in a f -Kenmotsu manifold is expanding, provided f is a constant.
Suppose f is not a constant. If {ei} is an orthonormal basis of TPM at P ∈ M, then taking X = Y = ei in
(3.3) and summing over 1 ≤ i ≤ n, we get

r = −λn − f (n − 1), (3.10)

where r is the scalar curvature.
Differentiating (3.10) covariantly w.r.to X, we get

Xr = −(n − 1)X f , (3.11)

where

Xr = ∇Xr, X f = ∇X f .

From (3.3), we have
QX = −λX − f (φ2X). (3.12)

In view of (2.5), differentiation of (3.12) yields

(∇Y Q)X = Y f (φ2X) − f 2η(X)φ2Y + fΦ(X, Y)ξ.

Contracting the above equation with respect to Y, we get

(divQ)X = (φ2X) + f 2(n − 1)η(X). (3.13)

Using (3.11) and the identity

(divQ)X =
Xr

2
,

we obtain
(n − 3)(X f ) = −2(ξ f + (n − 1) f 2)η(X). (3.14)

Putting X = ξ in (3.14), we get
ξ f + 2 f 2 = 0. (3.15)

Using (3.15) in (3.9), we get
λ = −((n − 1) f 2,

i.e. λ < 0 or the Ricci soliton g is shrinking. Thus we have
Theorem 3.1. Ricci soliton in an f -Kenmotsu manifold,where f is a non-constant is shrinking.

From (2.3), we have

R(X, Y)φZ = φ(R(X, Y)Z) + X f [g(φY, Z)ξ − φ(Y)η(Z)]

+ f 2g(φY, Z)(X − η(X)ξ) − f 2g(φX, Y)η(Z)ξ
+ f 2φ(X)η(Y)η(Z) − f 2φ(Y)g(φX, φZ)
+ f g(φX,∇YZ)ξ − (Y f )[g(φX, Z)ξ − φ(X)η(Z)] (3.16)
− f 2g(φX, Z)(Y − η(Y)ξ) + f 2g(φY, X)η(Z)ξ
− f 2φ(Y)η(X)η(Z) + f 2φ(X)g(φY, φZ)
− f g(φY,∇XZ)ξ − f g(φ(∇XY), Z)ξ + f g(φ(∇Y X), Z)ξ.
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For f = 1, the equation (3.16) yields

R(X, Y)φZ =φ(R(X, Y)Z) − g(φY, Z)φ2X − 2g(φX, Y)η(Z)ξ − g(X, Z)φY
+ g(φX,∇YZ)ξ + g(φX, Z)φ2Y + g(Y, Z)φX

− g(φY,∇XZ)ξ − g(φ(∇XY, Z)ξ + g(φ(∇Y X), Z)ξ.

Contracting the above with respect to W, we get

′R(X, Y, φZ,W) =g(R(X, Y)φZ,W)
=g(φ(R(X, Y)Z),W)− g(φY, Z)g(φ2X,W) − 2g(φX, Y)η(Z)η(W)
− g(X, Z)g(φY,W)+ g(φX,∇YZ)η(W) + g(φX, Z)g(φ2Y,W) + g(Y, Z)g(φX,W)
− g(φY,∇XZ)η(W) − g(φ(∇XY), Z)η(W) + g(φ(∇YX), Z)η(W).

Taking X = W = ei and summing over 1 ≤ i ≤ n in the above equation, we get

S (Y, φZ) =′ C(R̄(Y, Z)) + ( f + n − 2)g(φY, Z) + g(φZ,∇ξY) − g(φY,∇ξZ), (3.17)

where
′C(R̄(Y, Z)) = g(φ(′R(ei, Y)Z)ei)).

From (3.4) and (3.17), it is easy to see that

′C(R̄(Y, Z)) = −′C(R̄(Z, Y)).

From (3.3) and (3.17), we obtain

′C(R̄(Y, Z)) = (λ − (n − 2))g(φY, Z) − g(φZ,∇ξY) + g(φY,∇ξZ). (3.18)

Thus we have
Theorem 3.2. In a Kenmotsu manifold (Mn, g), where g is a Ricci soliton, ′C(R̄(Y, Z)) is given by (3.18).

Lie derivation of (3.3) yields

(LξS )(Y, Z) = −2 f (λ + f )g(φY, φZ) + f [η(∇ξY)η(Z) + η(∇ξZ)η(Y)]. (3.19)

Taking Y = Z = ei in (3.19), and summing over 1 ≤ i ≤ n, we obtain

−ξr + 2 f r − 2 f (n − 1)( f 2 + ξ f ) = −2 f (λ + f )(n − 1).

Now for f = 1, this yields

λ =

1
2ξr − r

n − 1
.

As it is well known that for a Kenmotsu manif ld the curvature r is negative. Hence λ is positive for constant
r. Thus we have,
Theorem 3.3. A Ricci soliton in a Kenmotsu manifold of constant curvature is expanding.

4. RICCI SOLITONS IN 3-DIMENSIONAL TRANS-SASAKIAN
MANIFOLDS

Suppose (Mn, g) is a 3-dimensional trans-Sasakian manifold and (g,V, λ) is a Ricci soliton in (Mn, g). If V
is a conformal killing vector f eld, then

LVg = ρg, (4.1)
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for some scalar function ρ.
Now from (3.3), we have

S (X, Y) = (−λ +
ρ

2
)g(X, Y), (4.2)

QX = (−λ +
ρ

2
)X (4.3)

and
r = 3(−λ +

ρ

2
). (4.4)

As it is well that in a 3-dimensional trans-Sasakian manifold, the curvature tensor R is given by

R(X, Y)Z =[S (Y, Z)X − S (X, Z)Y + g(Y, Z)QX − g(X, Z)QY]

−
r
2
[g(Y, Z)X − g(X, Z)Y]. (4.5)

Using (4.2), (4.3), (4.4) in (4.5), we get

R(X, Y)Z = ((−2λ + ρ) −
r
2
)[g(Y, Z)X − g(X, Z)Y]. (4.6)

In a trans-Sasakian manifold, R(X, Y)ξ is given by

R(X, Y)ξ =(α2 − β2)(η(Y)X − η(X)Y) + 2αβ(η(Y)φX − η(X)φY)

− (Xα)φY + (Yα)φX − (Xβ)φ2Y + (Yβ)φ2X. (4.7)

Taking X = Z = ξ in (4.6) and comparing it with (4.7) with X = ξ, we get

((α2 − β2) − ξβ +
r
2
)[η(Y)η(W) − g(Y,W)] = 0.

This implies
r = 2ξβ − 2(α2 − β2) (4.8)

From (4.4) and (4.8), we have
6λ = ρ − 4[ξβ − (α2 − β2)]. (4.9)

From (4.9), we have
Theorem 4.1. In a 3-dimensional trans-Sasakian manifold, a Ricci Soliton (g,V, λ), where V is conformal
killing is
i) expanding for ρ > 4(ξβ − (α2 − β2))
ii) shrinking for ρ < 4(ξβ − (α2 − β2))
and iii) is steady for ρ = 4(ξβ − (α2 − β2))

Taking β = 0 in (4.9), we get ρ = −4α2 if and only if λ = 0.
Since ρ is positive, λ cannot be zero. Thus we have
Theorem 4.2. A Ricci soliton (g,V, λ) in an α-Sasakian manifold, where V is conformal killing cannot be
steady.

Let (Mn, g) be a f -Kenmotsu manifold. Then from (4.2), we have

R.S = S (R(X, Y)Z,W) + S (Z,R(X, Y)W)

= (−λ +
ρ

2
)[g(R(X, Y)Z,W)+ g(R(X, Y)W, Z)

= (−λ +
ρ

2
)[′R(X, Y, Z,W)+′ R(X, Y,W, Z)] = 0,

i.e (Mn, g) is Ricci semi-symmetric.
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Conversely suppose R.S = 0, i.e

S (R(X, Y)Z,W) + S (Z,R(X, Y)W) = 0. (4.10)

Taking f = 1 in (3.6) and (3.7), we get

R(X, Y)ξ = η(X)Y − η(Y)X, (4.11)

S (X, ξ) = −(n − 1)η(X). (4.12)

Taking W = ξ in (4.10) and using (4.11) and (4.12), we obtain

S (Y, Z) = −(n − 1)g(Y, Z).

Substituting this in (3.1), we get
(LVg)(Y, Z) = ρg(Y, Z)

where ρ = 2((n − 1) − λ). i.e V is conf rmal killing. Thus we have
Theorem 4.3. Let (g,V, λ) be a Ricci soliton in a Kenmotsu manifold (Mn, g). Then (Mn, g) is Ricci-semi
symmetric if and only if V is conformal killing.
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