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GLOBAL STABILITY OF INFECTIOUS DISEASE MODELS USING
LYAPUNOV FUNCTIONS∗

ZHISHENG SHUAI† AND P. VAN DEN DRIESSCHE‡

Abstract. Two systematic methods are presented to guide the construction of Lyapunov func-
tions for general infectious disease models and are thus applicable to establish their global dynamics.
Specifically, a matrix-theoretic method using the Perron eigenvector is applied to prove the global
stability of the disease-free equilibrium, while a graph-theoretic method based on Kirchhoff’s matrix
tree theorem and two new combinatorial identities are used to prove the global stability of the en-
demic equilibrium. Several disease models in the literature and two new cholera models are used to
demonstrate the applications of these methods.

Key words. disease model, global stability, Lyapunov function, graph-theoretic method

AMS subject classifications. 34D23, 92D30

DOI. 10.1137/120876642

1. Introduction. In compartmental models for infectious disease transmission,
individuals are categorized into several compartments: some are called disease com-
partments if the individuals therein are infected, while others are called nondisease
compartments. Suppose that there are n > 0 disease compartments andm > 0 nondis-
ease compartments. Then a general compartmental disease transmission model can
be written as

(1.1) x′ = F(x, y)− V(x, y), y′ = g(x, y),

with g = (g1, . . . , gm)T . Here ′ denotes differentiation with respect to time; x =
(x1, . . . , xn)

T ∈ R
n and y = (y1, . . . , ym)T ∈ R

m represent the populations in disease
compartments and nondisease compartments, respectively; F = (F1, . . . ,Fn)

T and
V = (V1, . . . ,Vn)

T , where Fi represents the rate of new infections in the ith disease
compartment; and Vi represents the transition terms, for example, death and recovery
in the ith disease compartment.

The following assumptions follow those in [37] and are made to ensure the well-
posedness of the model and the existence of a disease-free equilibrium (DFE). Assume
that Fi(0, y) = 0, Vi(0, y) = 0, Fi(x, y) ≥ 0, Vi(x, y) ≤ 0 whenever xi = 0, and∑n

i=1 Vi(x, y) ≥ 0 for all x, y ≥ 0, i = 1, . . . , n. Also assume that the disease-free
system y′ = g(0, y) has a unique equilibrium y = y0 > 0 that is locally asymptoti-
cally stable within the disease-free space. See [36, 37] for a detailed discussion and
interpretation of these assumptions.
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1514 ZHISHENG SHUAI AND P. VAN DEN DRIESSCHE

Following [36, 37], define two n× n matrices

(1.2) F =

[
∂Fi

∂xj
(0, y0)

]
and V =

[
∂Vi

∂xj
(0, y0)

]
.

Assume that F ≥ 0 and V −1 ≥ 0, which are biologically reasonable. Then the
next-generation matrix is K = FV −1, and the basic reproduction number R0 can be
defined as the spectral radius of K (see [6, 36]), that is,

(1.3) R0 = ρ(FV −1).

By Theorem 2 in [36], the DFE P0 = (0, y0) is locally asymptotically stable if R0 < 1
and unstable otherwise. Customarily, this approach determining the basic reproduc-
tion number is called the Next Generation Matrix (NGM) approach.

Furthermore, for many disease models, the basic reproduction number R0 gives a
sharp threshold that completely determines their global dynamics; thus the following
property is stated.

Sharp threshold property. Model (1.1) has the sharp threshold property if R0 given
by (1.3) is such that

• the DFE P0 is global asymptotically stable for R0 ≤ 1, and
• there is a unique endemic equilibrium (EE) P ∗ that is globally asymptotically
stable in the interior of the feasible region for R0 > 1.

This property hold for the models in this paper and others in the literature.
Biologically, the sharp threshold property shows that the disease will eventually die
out if the basic reproduction number R0 ≤ 1, while the disease persists at a positive
level if R0 > 1. However, the rigorous proofs of these global stability results are
nontrivial for many disease models. In particular, the global stability of the EE
normally becomes a challenging mathematical problem due to the complexity and high
dimension of disease models. For example, cholera and other waterborne diseases can
be transmitted directly to humans by person-to-person contact or indirectly to humans
via contaminated water. As a consequence, it is important to incorporate pathogens
in the environment (water) into the disease models. Thus the existing compartmental
models for the transmission of waterborne diseases such as cholera normally have
higher dimension than only directly transmitted diseases; see, for example, a basic
cholera model in [5] consisting of four ordinary differential equations (ODEs). The
effect of differential infectivity or spatial heterogeneity on the spread of infectious
diseases also requires complex disease models. For example, a hyperinfectivity model
consisting of five ODEs is proposed in [17] to study the effect of hyperinfectivity of
freshly shed pathogen on the transmission of cholera, while a multistage model is used
in [33] to model waterborne diseases with multiple infection stages. A more general
cholera model proposed in [31] incorporates simultaneously multiple infection stages
of individuals and multiple infectious states of a pathogen. Spatial heterogeneity is
incorporated into a multigroup cholera model in [34] to explain the spatial spread
of cholera in Haiti. These cholera models all consist of many nonlinear differential
equations, and an understanding of their dynamics is mathematically challenging; for
example, only [31] contains results like the sharp threshold property.

The method of Lyapunov functions is commonly used to establish global sta-
bility results for biological models; see, for example, [15, 23] for general theory of
Lyapunov functions and [8, 20, 21] for applications in mathematical biology. (Re-
call that D is called a Lyapunov function for system (1.1) if D is continuous and
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GLOBAL STABILITY OF INFECTIOUS DISEASE MODELS 1515

is nonincreasing along every solution of (1.1).) However, it is often difficult to con-
struct such Lyapunov functions and no general method is available. For example, a
general form of Lyapunov functions used in the literature of mathematical biology is
D =

∑n
i=1 ci(xi − x∗i − x∗i ln

xi

x∗
i
), originally from the first integral of a Lotka–Volterra

system. When applied to disease models, suitable coefficients ci have to be deter-
mined such that the derivative of D along solutions of the model is nonpositive, and
such a determination becomes very challenging for models with high dimension such
as the cholera models cited above. A graph-theoretic method based on Kirchhoff’s
matrix tree theorem was recently developed in [26] to guide the construction of Lya-
punov functions for coupled systems on networks. When the disease model provides
a network structure and can be regarded as a coupled system where each subsystem
has a Lyapunov function, then the graph-theoretic method can be used to construct a
Lyapunov function for the coupled system. This method has been applied successfully
to establish the global stability of the EE for several complex disease models; see, for
example, [11, 12, 26]. Nevertheless, a systematic approach is lacking to guide the
construction of Lyapunov functions for each subsystem when the disease model has a
network structure, and also for disease models that do not have an explicit network
structure.

In this paper, two methods are presented to guide the construction of Lyapunov
functions for disease models and thus establish the global asymptotic stability (GAS)
of the DFE and EE: a matrix-theoretic method based on the Perron eigenvector is
used to prove the GAS of the DFE (see section 2), while the graph-theoretic method
and new combinatorial relations are used to prove the GAS of the EE (see section 3).
Several disease models in the literature (sections 4–6) and new models for cholera
(sections 7–8) are used to demonstrate different applications of these methods.

2. Global stability of the DFE: A matrix-theoretic method. To address
the first statement of the sharp threshold property, a systematic method is presented
to guide the construction of a Lyapunov function.

Following [4, 37], set

(2.1) f(x, y) := (F − V )x−F(x, y) + V(x, y).

Then (1.1) for the disease compartments can be written as

(2.2) x′ = (F − V )x− f(x, y).

Note that from the previous assumptions, f(0, y) = 0. Let ωT ≥ 0 be the left eigen-
vector of the nonnegative matrix V −1F corresponding to the eigenvalue ρ(V −1F ) =
ρ(FV −1) = R0. The following result provides a general method to construct a Lya-
punov function for (1.1). Note that this type of Lyapunov function involving the
Perron eigenvector has previously been used to study the global dynamics for several
specific disease models; see, for example, [11, 13, 31]. Here it is used for a general
disease model.

Theorem 2.1. Let F, V and f(x, y) be defined as in (1.2) and (2.1), respectively.
If f(x, y) ≥ 0 in Γ ⊂ R

n+m
+ , F ≥ 0, V −1 ≥ 0, and R0 ≤ 1, then the function

Q = ωTV −1x is a Lyapunov function for model (1.1) on Γ.
Proof. Differentiating Q along solutions of (1.1) gives

Q′ = Q′|(1.1) = ωTV −1x′ = ωTV −1(F − V )x − ωTV −1f(x, y)

= (R0 − 1)ωTx− ωTV −1f(x, y).(2.3)
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1516 ZHISHENG SHUAI AND P. VAN DEN DRIESSCHE

Since ωT ≥ 0, V −1 ≥ 0, and f(x, y) ≥ 0 in Γ, the last term is nonpositive. If R0 ≤ 1,
then Q′ ≤ 0 in Γ, and thus Q is a Lyapunov function for system (1.1).

In applications to infectious disease models, the set Γ in Theorem 2.1 is normally
chosen as a compact subset of Rn+m

+ such that (0, y0) ∈ Γ and Γ is positively invariant
with respect to (1.1). Hence, the Lyapunov function constructed in Theorem 2.1 can
be used to prove not only the global stability of the DFE but also uniform persistence
and thus establish the existence of an EE. The following result provides a scenario in
which assumptions can be conveniently checked for disease models.

Theorem 2.2. Let F, V and f(x, y) be defined as in (1.2) and (2.1), respectively,
and let Γ ⊂ R

n+m
+ be compact such that (0, y0) ∈ Γ and Γ is positively invariant with

respect to (1.1). Suppose that f(x, y) ≥ 0 with f(x, y0) = 0 in Γ, F ≥ 0, V −1 ≥ 0, and
V −1F is irreducible. Assume that the disease-free system y′ = g(0, y) has a unique
equilibrium y = y0 > 0 that is GAS in R

m
+ . Then the following results hold for (1.1):

(1) If R0 < 1, then the DFE P0 is GAS in Γ.
(2) If R0 > 1, then P0 is unstable and system (1.1) is uniformly persistent and

there exists at least one EE.

Proof. By Theorem 2.1, Q = ωTV −1x is a Lyapunov function for (1.1) provided
R0 < 1. Since V −1F is irreducible and nonnegative, it follows by Perron–Frobenius
theory that ω > 0. Hence, by (2.3), Q′ = 0 implies that ωTx = 0 and thus x = 0.
Using the global stability assumption for the disease-free system and the fact that
f(0, y) = 0, the only invariant set in R

n+m
+ where x = 0 is the singleton {P0}. By

LaSalle’s invariance principle [23], P0 is GAS in Γ.

If R0 > 1, then by (2.3), Q′ = (R0 − 1)ωTx > 0 provided x > 0 and y = y0. By
continuity Q′ > 0 in a neighborhood of P0. Solutions in the positive cone sufficiently
close to P0 move away from P0, implying that P0 is unstable. Using a uniform
persistence result from [9] and an argument as in the proof of Proposition 3.3 of [24],
it can be shown that when R0 > 1, instability of P0 implies uniform persistence of
(1.1). Uniform persistence and the positive invariance of the compact set Γ imply the
existence of an EE of (1.1). (See Theorem D.3 in [32] or Theorem 2.8.6 in [2].)

Other general global stability results for the DFE proved by comparison argu-
ments can be found in [4, section 3] and [37, section 6.6] but cannot be used directly
to establish results for the persistence of the model or existence of the EE.

We remark that for the caseR0 = 1, the global stability of the DFE can be proved
by using LaSalle’s invariant principle and analyzing the largest invariant set where
Q′ = ωTV −1f(x, y) = 0; see, for example, sections 4–8. For some disease models, the
irreducibility assumption in Theorem 2.2 may fail; however, arguments for the case
Q′ = 0 can be applied (see, for example, section 5).

3. Global stability of the EE: A graph-theoretic method.

3.1. Graph-theoretical results. We begin by recalling some definitions and
results from graph theory; as general references see, for example, [16] or [40].

A directed graph (digraph) G consists of a set of vertices and a set of ordered pairs
(i, j) of (not necessarily distinct) vertices; each such pair (i, j) is called an arc from
its initial vertex i to its terminal vertex j. The in-degree of a vertex i, denoted as
d−(i), is the number of arcs in G whose terminal vertex is i, and the out-degree d+(i)
is the number of arcs whose initial vertex is i. A subdigraph H of G is spanning if
H and G have the same vertex sets. A digraph G is weighted if each arc is assigned
a positive weight. The weight w(H) of a subdigraph H is the product of the weights
on all its arcs.

D
ow

nl
oa

de
d 

12
/0

6/
18

 to
 1

32
.1

70
.1

92
.7

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GLOBAL STABILITY OF INFECTIOUS DISEASE MODELS 1517

A (rooted) tree is a subdigraph T of G that is a single connected component and
in which the in-degree of one vertex, the root, is zero, but each of the remaining
vertices has in-degree 1. A (directed) path P is a subdigraph with distinct vertices
labeled i1, i2, . . . , im so that its arcs are of the form (ik, ik+1) for k = 1, 2, . . . ,m− 1;
a (directed) cycle C is the subdigraph obtained from such a path P by adding the arc
(im, i1). If m = 1, the cycle consisting of a single vertex i1 and a single arc (i1, i1) is
called a loop. A unicyclic graph is a subdigraph Q consisting of a collection of disjoint
rooted trees whose roots are the vertices of a directed cycle; notice that the in-degree
of every vertex of such a graph equals 1.

Given a weighted digraph G with n vertices, define the n × n weight matrix
A = [aij ] with entry aij > 0 equal to the weight of arc (j, i) if it exists and 0
otherwise. We denote such a weighted digraph by (G, A). A digraph G is strongly
connected if for any pair of distinct vertices i, j, there exists a directed path from i to
j (and also from j to i). A weighted digraph (G, A) is strongly connected if and only
if the weight matrix A is irreducible [1]. The Laplacian matrix L = [�ij ] of (G, A) is
defined as

(3.1) �ij =

{
−aij for i �= j,∑

k �=i aik for i = j.

The following result gives a graph-theoretic description of the cofactors of the diagonal
entries of L.

Proposition 3.1 (Kirchhoff’s matrix tree theorem). Assume n ≥ 2 and let ci
be the cofactor of �ii in L. Then

(3.2) ci =
∑
T ∈Ti

w(T ), i = 1, 2, . . . , n,

where Ti is the set of all spanning trees T of (G, A) that are rooted at vertex i, and
w(T ) is the weight of T . If (G, A) is strongly connected, then ci > 0 for 1 ≤ i ≤ n.

The next identity is similar to the one in [26, Theorem 2.3], following directly
from the tree cycle identity [26, Theorem 2.2].

Theorem 3.2. Let ci be as given in the Kirchhoff’s matrix tree theorem, and let
{Hi(z)}ni=1 be any family of functions with z = (z1, . . . , zm)T ∈ R

m. Then

(3.3)

n∑
i,j=1

ci aij Hi(z) =

n∑
i,j=1

ci aij Hj(z).

When the weighted digraph (G, A) has a certain structure, two new relations
among the ci can be established via combinatorial identities.

Theorem 3.3. Let ci be as given in Proposition 3.1. If aij > 0 and d+(j) = 1
for some i, j, then

(3.4) ciaij =

n∑
k=1

cjajk.

Proof. For every spanning tree T rooted at vertex i, w(T )aij = w(Q), where Q
is the unicyclic graph obtained from T by adding arc (j, i); see [26, Figure 2]. By
Proposition 3.1, ci =

∑
T ∈Ti

w(T ); hence, the left-hand side of (3.4) is the sum of the
weight of all spanning unicyclic graphs of (G, A) whose cycle includes the arc (j, i).
The right-hand side of (3.4) is the sum of the weights of all spanning unicyclic graphs
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1518 ZHISHENG SHUAI AND P. VAN DEN DRIESSCHE

of (G, A) whose cycle includes the vertex j and thus includes the arc (j, i) that is the
only arc leaving vertex j. Therefore, the identity (3.4) holds.

Theorem 3.4. Let ci be as given in Proposition 3.1. If aij > 0 and d−(i) = 1
for some i, j, then

(3.5) ciaij =

n∑
k=1

ckaki.

Proof. As in the proof of Theorem 3.3, both sides of (3.5) are equal to the sum of
the weights of all spanning unicyclic graphs whose cycle includes the arc (j, i).

3.2. Lyapunov functions. Let U be an open set in R
m. Consider a differential

equation system

(3.6) z′k = fk(z1, z2, . . . , zm), k = 1, 2, . . . ,m,

with z = (z1, z2, . . . , zm) ∈ U . The following new result is similar to Theorem 3.1 in
[26] but is more general and useful in applications.

Theorem 3.5. Suppose that the following assumptions are satisfied:
(1) There exist functions Di : U → R, Gij : U → R and constants aij ≥ 0 such

that for every 1 ≤ i ≤ n, D′
i = D′

i|(3.6) ≤
∑n

j=1 aijGij(z) for z ∈ U .
(2) For A = [aij ], each directed cycle C of (G, A) has

∑
(s,r)∈E(C)Grs(z) ≤ 0 for

z ∈ U , where E(C) denotes the arc set of the directed cycle C.
Then, the function D(z) =

∑n
i=1 ciDi(z), with constants ci ≥ 0 as given in Proposi-

tion 3.1, satisfies D′ = D′|(3.6) ≤ 0; that is, D is a Lyapunov function for (3.6).
Proof. Direct calculation and using assumption (1) give D′ =

∑n
i=1 ciD

′
i ≤∑n

i,j=1 ciaijGij(z). Applying the tree cycle identity [26, Theorem 2.2] to the right-

hand side of this inequality gives
∑n

i,j=1 ciaijGij(z) =
∑

Qw(Q)
∑

(s,r)∈E(CQ)Grs(z),
where the first sum on the right-hand side has terms corresponding to each unicyclic
graph Q of (G, A), and CQ denotes the directed cycle of Q with arc set E(CQ). By
assumption (2),

∑
(s,r)∈E(CQ)Grs(z) ≤ 0. Hence D′ ≤ 0, namely, D is a Lyapunov

function for (3.6).
Theorem 3.5 can be used to guide the construction of Lyapunov functions for

not only models that can be regarded as coupled systems on networks (e.g., see [26])
but also models that do not have an explicit network structure. In the applications
to disease models considered here, the Di are chosen from functions commonly used
in population models. The calculation of D′

i follows from the disease model under
consideration and upper bounds for these derivatives are determined. The functions
Gij and constants aij are chosen so that assumptions (1) and (2) in Theorem 3.5 hold
simultaneously. A weighted digraph is constructed corresponding to the weight matrix
A = [aij ] determined from assumption (1), depending on the choice of Di, i = 1, . . . , n,
and estimates of D′

i. Different numbers and/or types of functions Di can be used
for a particular disease model, giving different weighted digraphs; see, for example,
section 4. The function Gij does not necessarily depend only on zi and zj ; see,
for example, G21 in section 5. With knowledge of a specific graph structure, the
new combinatorial identities (Theorems 3.3 and 3.4) can further be applied to derive
explicitly the coefficients ci in a constructed Lyapunov function; see, for example,
sections 4–5 and 7–8.

4. Application to a classical susceptible-infectious-removed disease
model. In this section and the following sections the systematic methods developed
in sections 2 and 3 are applied to various disease models to illustrate several aspects
of these methods.
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The first model is used to demonstrate that the graph-theoretic method is appli-
cable to different types of Lyapunov functions, such as quadratic and Volterra type
functions as commonly used in ecological models. Consider the following susceptible-
infectious-removed (SIR) model:

(4.1)
S′ = Λ− βSI − dS,
I ′ = βSI − (d+ γ + α)I,
R′ = γI − dR

with nonnegative initial conditions S(0), I(0), R(0). Here S, I, R represent the num-
bers of individuals in susceptible, infectious, and removed compartments, respectively.
These letters are also used to identify the compartment. Among the parameters in
(4.1), Λ > 0 represents the constant input, d > 0 represents the natural mortality
rate, α ≥ 0 represents the mortality rate due to disease, γ > 0 represents the recovery
rate, and β > 0 represents the disease transmission rate per individual. Model (4.1)
can be regarded as a basic framework for the dynamics of many viral diseases, e.g.,
measles, influenza.

The feasible region Γ = {(S, I, R) ∈ R
3
+ | S + I + R ≤ Λ

d } is positively invariant
with respect to (4.1). Model (4.1) always admits a DFE P0 = (S0, 0, 0) ∈ Γ with
S0 = Λ

d . An EE P ∗ = (S∗, I∗, R∗) ∈ int(Γ) exists if and only if the basic repro-

duction number R0 = βΛ
d(d+γ+α) > 1 with S∗ = Λ

dR0
, I∗ = d(R0−1)

β and R∗ = γI∗

d .

The following result is one of the classical global stability results of mathematical
epidemiology.

Theorem 4.1. Let R0 = βΛ
d(d+γ+α) . Then the sharp threshold property holds for

model (4.1).
Proof. Since the disease compartment has dimension 1, Q = I is a Lyapunov

function that can be used to prove the global stability of the DFE. In fact, Q′ =
I ′ = βS0I − (d+ γ + α)I − f(S, I) = (R0 − 1)(d+ γ + α)I − f(S, I) with f(S, I) :=
β(S0 − S)I ≥ 0 in Γ. By Theorem 2.2, P0 is GAS in Γ provided R0 < 1.

When R0 = 1, Q′ = 0 implies f(S, I) = 0. Notice that f(S, I) = 0 if and only if
S = S0 or I = 0. For either case, it can be verified that the largest invariant set for
(4.1) is the singleton {P0}. Hence, by LaSalle’s invariance principle [23], P0 is also
GAS in Γ when R0 = 1.

Using the graph-theoretic method developed in section 3, several Lyapunov func-
tions D̃ are constructed below to prove the GAS of P ∗ if R0 > 1. For each of these
Lyapunov functions, the largest invariant set for (4.1) where D̃′ = 0 is the singleton
{P ∗}. Therefore, by LaSalle’s invariance principle [23], P ∗ is GAS in int(Γ).

Construction 1. Let D1 = S − S∗ − S∗ ln S
S∗ and D2 = I − I∗ − I∗ ln I

I∗ . Using
the inequality 1 − x + lnx ≤ 0 for x > 0 with equality holding if and only if x = 1,
differentiation and use of the EE values give

D′
1 =

S − S∗

S
S′ =

S − S∗

S
(βS∗I∗ + dS∗ − βSI − dS)

= − d
(S − S∗)2

S
+ βS∗I∗

(
1− S∗

S
− SI

S∗I∗
+

I

I∗

)

≤ βS∗I∗
(
I

I∗
− ln

I

I∗
− SI

S∗I∗
+ ln

SI

S∗I∗

)
=: a12G12

and similarly

D′
2 = βS∗I∗

(
SI

S∗I∗
− S

S∗ −
I

I∗
+1

)
≤ βS∗I∗

(
SI

S∗I∗
−ln

SI

S∗I∗
− I

I∗
+ln

I

I∗

)
=: a21G21
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1520 ZHISHENG SHUAI AND P. VAN DEN DRIESSCHE

Fig. 4.1. Two weighted digraphs (G, A) constructed for the SIR model (5.1): (a) for Construc-
tions 1 and 2; (b) for Construction 3.

with a12 = a21 = βS∗I∗ and G12 = −G21 = I
I∗ − ln I

I∗ − SI
S∗I∗ + ln SI

S∗I∗ . Construct
a weighted digraph with two vertices and two arcs; see Figure 4.1(a). Along the only
cycle, G12+G21 = 0. By Theorem 3.5, there exist c1 and c2 such thatD = c1D1+c2D2

is a Lyapunov function for (4.1). Since d+(1) = 1, c1a12 = c2a21 by Theorem 3.3,
and thus c1 = c2. Therefore, a Lyapunov function D̃ = D1+D2 can be used to prove
the GAS of P ∗. Notice that Lyapunov function D̃ agrees with the one constructed in
[21], where coefficients c1, c2 are just stated.

Construction 2. Let D1 = 1
2 (S−S∗)2 and D2 = I − I∗ − I∗ ln I

I∗ . Differentiation
gives

D′
1 = (S − S∗)(βS∗I∗ + dS∗ − βSI − dS) ≤ βS∗(S − S∗)(I∗ − I) =: a12G12

and

D′
2 =

I − I∗

I
(βSI − βS∗I) = β(S − S∗)(I − I∗) =: a21G21

with a12 = βS∗, a21 = β, and G12 = −G21 = (S − S∗)(I∗ − I). Construct a weighted
digraph as in Construction 1. Similarly, the assumptions of Theorem 3.5 hold, and
by Theorem 3.3, c2 = S∗c1. Thus a Lyapunov function D̃ = D1 + S∗D2 can be
used to prove the GAS of P ∗. The same kind of Lyapunov function consisting of
quadratic and Volterra type function has previously been used in [28] to study the
global stability of the EE of the SIRS model.

Construction 3. Let D1 = 1
2 (S − S∗ + I − I∗ +R−R∗)2, D2 = I − I∗ − I∗ ln I

I∗
and D3 = 1

2 (R −R∗)2. Differentiation gives

D′
1 = ((S − S∗ +R−R∗) + (I − I∗))(d(S∗ − S +R∗ −R) + (d+ α)(I∗ − I))

≤ (2d+ α)(S − S∗)(I∗ − I) + (2d+ α)(I∗ − I)(R −R∗)

=: a12G12 + a13G13,

D′
2 = β(S − S∗)(I − I∗) =: a21G21,

and

D′
3 = (R−R∗)(γI − γI∗ + dR∗ − dR) ≤ γ(I − I∗)(R −R∗) =: a31G31

with a12 = a13 = 2d+ α, a21 = β, a31 = γ, and other aij = 0. Functions Gij can be
defined accordingly. Notice that G13 is a function of variables I and R, rather than
the variable S. Construct a weighted digraph with three vertices and four arcs; see
Figure 4.1(b). Along each cycle, G12+G21 = 0 and G13+G31 = 0, so by Theorem 3.5
there exist ci, i = 1, 2, 3, such that D = c1D1 + c2D2 + c3D3 is a Lyapunov function
for (4.1). Since d+(2) = 1 and d+(3) = 1, Theorem 3.3 implies that c2 = 2d+α

β c1 and

c3 = 2d+α
γ c1. Therefore, a Lyapunov function D̃ = D1 +

2d+α
β D2 +

2d+α
γ D3 can be

used to prove the global stability of P ∗. Note that the Lyapunov function D̃ is the
same as the one used in [38, section 3.2].
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Three different Lyapunov functions for (4.1) are constructed above that consist of
Volterra type functions and/or quadratics. For each construction, the graph-theoretic
method provides a systematic approach to determine their coefficients. We comment
that such a general method can also be applied to guide the construction of other
Lyapunov functions for different choices of Di, probably giving different weighted
digraphs. The Lyapunov function in Construction 1 can be used as a building block
to construct a Lyapunov function for a multigroup/multipatch SIR model (see [11,
25]), while the same process as in Construction 2 or 3 can be applied to construct a
Lyapunov function for a SIRS/SIS model, which is basically the same as in [38].

5. Application to a susceptible-exposed-infectious-recovered disease
model with relapse. In this section we consider a susceptible-exposed-infectious-
recovered (SEIR) model with relapse, as the ODE version of the model proposed
in [35]:

(5.1)

S′ = Λ− βSI − dS,
E′ = βSI − (d+ ε)E,
I ′ = εE − (d+ γ + α)I + ηR,
R′ = γI − (d+ η)R

with nonnegative initial conditions. Here E represents the number of latent (exposed)
individuals, ε > 0 represents the rate that exposed individuals become infectious (i.e.,
1/ε represents the average latent period), and η ≥ 0 represents the rate that recovered
individuals relapse and regain infectiousness. Other parameters and variables are in-
terpreted in the same way as those in model (4.1). This relapse model is motivated
by the spread of herpes; individuals recovered from infection can experience relapse
of the disease [3].

The feasible region Γ = {(S,E, I, R) ∈ R
4
+ | S + E + I + R ≤ Λ

d } is positively

invariant with respect to (5.1). The DFE has the form P0 = (S0, 0, 0, 0) with S0 = Λ
d .

There are three disease compartments: E, I,R. Following the NGM approach, let

F =

⎡
⎣ 0 βS0 0

0 0 0
0 0 0

⎤
⎦ and V =

⎡
⎣ d+ ε 0 0

−ε d+ γ + α −η
0 −γ d+ η

⎤
⎦ .

Thus the basic reproduction number can be calculated as

(5.2) R0 = ρ(FV −1) = βS0
ε(d+ η)

(d+ ε)((d + α)(d+ η) + dγ)
.

Theorem 5.1. Let R0 be as defined in (5.2). Then the sharp threshold property
holds for (5.1).

Proof. Since matrix V −1F is reducible (the second column is the only nonzero
column), the condition of Theorem 2.2 fails. Instead, the Lyapunov function con-
structed in Theorem 2.1 can be used to establish the GAS of P0. Let x = (E, I,R)T ,
then x′ = (F − V )x− f(x, S) with f(x, S) := βI(S0 − S) ≥ 0 in Γ. By Theorem 2.1,
Q = ωTV −1x is a Lyapunov function, where ωT = (0, 1, 0) is the left eigenvector

of matrix V −1F . Straightforward calculation gives Q = R0

βS0
(E + d+ε

ε I + (d+ε)η
(d+η)εR)

and Q′ = (R0 − 1)I − R0

S0
I(S0 − S) ≤ 0 provided R0 ≤ 1. Furthermore, Q′ = 0

implies that I = 0 or S = S0. It can be verified that the only invariant set where
I = 0 or S = S0 is the singleton {P0}. Therefore, by LaSalle’s invariance principle,
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Fig. 5.1. The weighted digraph (G, A) constructed for the relapse model (5.1).

P0 is GAS in Γ. The same arguments as those in the proof of Theorem 2.2 can be
used to prove the instability of P0 and the persistence and the existence of an EE
P ∗ = (S∗, E∗, I∗, R∗) ∈ int(Γ), where S∗, E∗, I∗, R∗ satisfy (5.1) with each right-hand
side equal to 0.

To establish the uniqueness and global stability of P ∗, set D1 = S−S∗−S∗ ln S
S∗ ,

D2 = E − E∗ − E∗ ln E
E∗ , D3 = I − I∗ − I∗ ln I

I∗ , and D4 = R − R∗ − R∗ ln R
R∗ .

Differentiation gives

D′
1 ≤ βS∗I∗

(
I

I∗
− ln

I

I∗
− SI

S∗I∗
+ ln

SI

S∗I∗

)
=: a13G13,

D′
2 ≤ βS∗I∗

(
SI

S∗I∗
− ln

SI

S∗I∗
− E

E∗ + ln
E

E∗

)
=: a21G21,

D′
3 ≤ εE∗

(
E

E∗ − ln
E

E∗ − I

I∗
+ ln

I

I∗

)

+ ηR∗
(
R

R∗ − ln
R

R∗ − I

I∗
+ ln

I

I∗

)
=: a32G32 + a34G34,

and

D′
4 ≤ γI∗

(
I

I∗
− ln

I

I∗
− R

R∗ + ln
R

R∗

)
=: a43G43

with a13 = a21 = βS∗I∗, a32 = εE∗, a34 = ηR∗, a43 = γI∗, and all other aij = 0. The
associated weighted digraph (G, A) has four vertices and two cycles; see Figure 5.1.
Along each cycle, G13+G32+G21 = 0 andG34+G43 = 0. By Theorem 3.5, there exists
ci, 1 ≤ i ≤ 4, such that V =

∑n
i=1 ciVi is a Lyapunov function for (5.1). The relations

between ci’s can be derived from Theorems 3.3 and 3.4: d+(1) = 1 implies c2a21 =
c1a13, d

+(2) = 1 implies c3a32 = c2a21, and d
−(4) = 1 implies c4a43 = c3a34. Hence,

c2 = c1, c3 = βS∗I∗
εE∗ c1, c4 = ηR∗

γI∗ c3. Therefore, D̃ = D1 +D2 +
βS∗I∗
εE∗ D3 +

ηR∗βS∗
γεE∗ D4

is a Lyapunov function for (5.1), which is basically the same as the one for the ODE
model in [35]. It can be verified that {P ∗} is the only invariant set in int(Γ) where
D̃′ = 0; therefore, P ∗ is GAS in int(Γ) and thus unique.

6. Application to a heterogeneous SIS disease model. Consider a multi-
group SIS model:

(6.1)

S′
i = Λi −

n∑
j=1

βijSiIj − diSi + γiIi,

I ′i =
n∑

j=1

βijSiIj − (di + γi)Ii, i = 1, . . . , n.

LetNi = Si+Ii denote the total population in the ith group. It follows thatN ′
i = Λi−

diNi, and thus limt→∞Ni(t) =
Λi

di
. Model (6.1) was first proposed by Lajmanovich

and Yorke in [22] as a model for the spread of gonorrhea. Model (6.1) also agrees
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with the mean-field reaction rate equations of the SIS disease model proposed by
Pastor-Satorras and Vespignani for epidemic spreading in scale-free networks [29, 30].

The feasible region Γ = {(S1, I1, . . . , Sn, In) ∈ R
2n
+ | Si+ Ii ≤ Λi

di
} is positively in-

variant with respect to (6.1). The DFE P0 = (S0
1 , 0, . . . , S

0
n, 0) with S

0
i = Λi

di
always ex-

ists in Γ. Following the NGM approach with disease compartments x = (I1, . . . , In)
T

and nondisease compartments y = (S1, . . . , Sn)
T , define two n × n matrices F =

[βijS
0
i ] and V = diag{d1 + γ1, . . . , dn + γn}. Then R0 = ρ(FV −1) = ρ([

βijS
0
i

dj+γj
]).

Theorem 6.1. Assume that contact matrix [βij ] is irreducible. Then the sharp
threshold property holds for (6.1).

Proof. It follows from (2.1) and the definition of Γ that

f(x, y) =

(
n∑

j=1

β1jIj(S
0
1 − S1), . . . ,

n∑
j=1

βnjIj(S
0
n − Sn)

)
≥ 0, (x, y) ∈ Γ.

By Theorem 2.1, Q = ωTV −1x is a Lyapunov function for (6.1), where ωT ≥ 0 is the
left eigenvector of V −1F corresponding to R0 = ρ(V −1F ). Since [βij ] is irreducible,
V −1F is also irreducible. Thus the condition of Theorem 2.2 holds and ωT > 0.
Hence, by Theorem 2.2, P0 is GAS in Γ if R0 < 1; if R0 > 1, then P0 is unstable
and there exists an EE P ∗ = (S∗

1 , I
∗
1 , . . . , S

∗
n, I

∗
n) with coordinates satisfying (6.1)

with right-hand sides equal to zero. When R0 = 1, it can be verified that the largest
invariant set in Γ where Q′ = 0 is the singleton {P0}; thus by LaSalle’s invariant
principle, P0 is GAS in Γ.

To study the global dynamics of (6.1) when R0 > 1, it is sufficient to study the
global dynamics of the model as limt→∞Ni(t) =

Λi

di
, namely,

(6.2) I ′i =
n∑

j=1

βij

(
Λi

di
− Ii

)
Ij − (di + γi)Ii, i = 1, . . . , n.

Let Di = Ii − I∗i − I∗i ln
Ii
I∗
i
. Differentiating and using the equilibrium equations give

D′
i =−

n∑
j=1

βijIj
(Ii − I∗i )

2

Ii
+

n∑
j=1

βij

(
Λi

di
− I∗i

)
I∗j

(
1− Ii

I∗i
+
Ij
I∗j

− I∗i Ij
IiI∗j

)

≤
n∑

j=1

βij

(
Λi

di
− I∗i

)
I∗j

(
Ij
I∗j

− ln
Ij
I∗j

− Ii
I∗i

+ ln
Ii
I∗i

)
:=

n∑
j=1

aijGij

with aij = βij(
Λi

di
− I∗i )I

∗
j ≥ 0 and Gij =

Ij
I∗
j
− ln

Ij
I∗
j
− Ii

I∗
i
+ ln Ii

I∗
i
. Let Hi =

Ii
I∗
i
− ln Ii

I∗
i
;

then Gij = Hj −Hi. A weighted digraph G can be constructed to associate with the
weight matrix A = [aij ]. Notice that along any directed cycle C of (G, A),∑

(s,r)∈E(C)
Grs =

∑
(s,r)∈E(C)

(Hs −Hr) = 0.

Since all assumptions of Theorem 3.5 hold, let ci be as given in Proposition 3.1;
then by Theorem 3.5, D =

∑n
i=1 ciDi is a Lyapunov function for (6.2). Using this

Lyapunov function, the irreducibility of [βij ], and LaSalle’s invariance principle, it can
be proved that {(I∗1 , . . . , I∗n)} is the largest invariant set for (6.2), and thus if R0 > 1,
then the positive equilibrium (I∗1 , . . . , I

∗
n) is GAS for (6.2). As a consequence, P ∗ is

GAS in int(Γ) for (6.1).
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The application of the Lyapunov method used here is different from the one
used in [22]. For the proof in [22], two Lyapunov functions are constructed, while the
graph-theoretic method allows us to construct a single Lyapunov function and simplify
verification of the nonincreasing property. Knowledge of which βij are nonzero would
enable explicit calculation of ci in a particular example. Note that Lyapunov functions
have been previously constructed in [11, 12] using the graph-theoretic method for
multigroup SIR/SEIR epidemic models, but (to the best of our knowledge) this is
the first time this method has been used for a multigroup SIS model. Comparison
arguments can also be used to prove the global stability of the EE for (6.1); see [39]
for more details. We refer the readers to the survey paper [18] for general methods in
proving global stability of disease models.

7. Application to a multistage cholera model. In this section we apply our
two methods to investigate the global dynamics of a new multistage cholera model.
Our new model generalizes the multistage model for waterborne diseases in [33, model
(A.1)] by including different pathogen compartments to distinguish the infectivity and
removal rate of the pathogen shed from different infected stages. See section 1 for
background on cholera disease and other cholera models. Let S, Ii, 1 ≤ i ≤ n,R denote
the number of individuals that are in the susceptible compartment, the ith infected
compartment, and the removed compartment, respectively. LetWi denote the number
of pathogen shed by individuals in Ii. Susceptible individuals can be infected either by
contacting infectious individuals (direct transmission) or by ingesting contaminated
water (indirect transmission). All newly infected individuals first enter the stage I1,
then enter I2 and so on; see Figure 7.1 for the flow diagram of this model. As in [33,
(A.1)], mass action incidence is assumed; that is, transmission is given by

n∑
i=1

βiSIi +
n∑

i=1

λiSWi =
n∑

i=1

S(βiIi + λiWi),

where βi, λi > 0 are the direct and indirect transmission contact rate per individual,
respectively. A multistage cholera model can be formulated as the following system
of 2n+ 1 ODEs:

(7.1)

S′ = Λ− dS −
n∑

i=1

S(βiIi + λiWi),

I ′1 =

n∑
i=1

S(βiIi + λiWi)− μ1I1,

I ′j = γj−1Ij−1 − μjIj , j = 2, . . . , n,

W ′
i = ξiIi − δiWi, i = 1, . . . , n,

Fig. 7.1. The flow diagram for the multistage cholera model (7.1).
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with nonnegative initial conditions S(0), Ii(0),Wi(0) for all 1 ≤ i ≤ n. The removed
individuals satisfy R′ = γnIn − dR with R(0) ≥ 0. Here μi = d + γi + αi with d >
0, γi > 0, αi ≥ 0 representing the natural mortality rate, progression rate to the next
infection stage of individuals in the ith infection stage, and mortality rate due to the
disease, respectively; ξi > 0 represents the shedding rate of Ii individuals, and δi > 0
represents the removal rate of Wi. Note that ξi is assumed to be positive; otherwise
Wi will decrease exponentially to zero and thus not contribute to the dynamics of
(7.1). Model (7.1) becomes the model (A.1) in [33] when all pathogens have the same
removal rates δi and the same indirect transmission coefficients λi.

The feasible region Γ = {(S, I1, . . . , In,W1, . . . ,Wn) ∈ R
2n+1
+ |S + I1 + · · ·+ In ≤

Λ
d ,Wi ≤ Λξi

dδi
, i = 1, . . . , n} is positively invariant with respect to (7.1). Model (7.1)

always admits the DFE P0 = (S0, 0, . . . , 0) ∈ Γ with S0 = Λ
d , and may admit an EE

P ∗ = (S∗, I∗1 , . . . , I
∗
n,W

∗
1 , . . . ,W

∗
n) ∈ int(Γ) with S∗, I∗1 , . . . , I

∗
n,W

∗
1 , . . . ,W

∗
n satisfy-

ing the equilibrium equations given by (7.1) with zero right-hand sides.
Assuming that new infections occur only in the I1 compartment, the NGMmethod

implies that F = S0e1[β1, . . . , βnλ1, . . . , λn], where e1 is the 2n-vector with first entry
equal to 1 and all other entries 0, and

V =

[
V1 0
−V2 V3

]
with V1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ1

−γ1 μ2

−γ2
. . .

. . . μn−1

−γn−1 μn

⎤
⎥⎥⎥⎥⎥⎥⎦
,

V2 = diag{ξ1, . . . , ξn}, and V3 = diag{δ1, . . . , δn}. Note that V1 is a nonsingular
M -matrix [1, p. 137], and thus V −1

1 ≥ 0. In fact, the (i, j) entries of V −1
1 are given by

V −1
1,ij =

⎧⎪⎨
⎪⎩

1
μi

1 ≤ i = j ≤ n,

0 1 ≤ i ≤ n, 1 ≤ i < j ≤ n,
∏i−1

k=j γk
∏

i
k=j μk

1 ≤ i ≤ n, 1 ≤ j < i ≤ n.

As a consequence, V −1 =
[ V −1

1 0

V −1
3 V2V

−1
1 V −1

3

]
≥ 0, and thus V is a nonsingular M -

matrix. The basic reproduction number R0 can be calculated as R0 = ρ(FV −1).
Since F has rank 1,

(7.2) R0 =
S0

μ1

(
β1+

λ1ξ1
δ

)
+
S0γ1
μ1μ2

(
β2+

λ2ξ2
δ2

)
+ · · ·+ S0γ1 · · · γn−1

μ1 · · ·μn

(
βn+

λnξn
δn

)
.

The first term inside each bracket represents the contribution from direct transmis-
sion, whereas the second term represents the contribution from indirect transmission.

Theorem 7.1. Let R0 be as defined in (7.2). Then the sharp threshold property
holds for model (7.1).

Proof. Let x = (I1, . . . , In,W1, . . . ,Wn)
T be the vector whose entries correspond

to disease compartments in model (7.1); then it follows that x′ = (F − V )x− f(x, S)
with f(x, S) = (

∑n
i=1(S0 − S)(βiIi + λiWi), 0, . . . , 0) ≥ 0. Since V −1F is irreducible,

then by Theorem 2.2, P0 is GAS in Γ if R0 < 1, whereas if R0 > 1, then P0 is
unstable and there exists at least one EE P ∗ whose coordinates satisfy the equilibrium
equations of (7.1). When R0 = 1, it can be shown as in the proof of Theorem 4.1
that P0 is GAS in Γ.
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To prove the global stability of P ∗, set D1 = S−S∗−S∗ ln S
S∗ +I1−I∗1 −I∗1 ln I1

I∗
1
,

Dj = Ij − I∗j − I∗j ln
Ij
I∗
j

for j = 2, . . . , n, and Dn+i = Wi − W ∗
i − W ∗

i ln Wi

W∗
i

for

i = 1, . . . , n. Differentiating along (7.1) and using the equilibrium equations give

D′
1 =

S − S∗

S

(
dS∗ +

n∑
i=1

S∗(βiI
∗
i + λiW

∗
i )− dS −

n∑
i=1

S(βiIi + λiWi)

)

+
I1 − I∗1
I1

(
n∑

i=1

S(βiIi + λiWi)−
n∑

i=1

S∗I1
I∗1

(βiI
∗
i + λiW

∗
i )

)

= − d
(S − S∗)2

S
+

n∑
i=1

βiS
∗I∗i

(
2− S∗

S
+
Ii
I∗i

− SIiI
∗
1

S∗I∗i I1
− I1
I∗1

)

+
n∑

i=1

λiS
∗W ∗

i

(
2− S∗

S
+
Wi

W ∗
i

− SWiI
∗
1

S∗W ∗
i I1

− I1
I∗1

)

≤
n∑

i=1

βiS
∗I∗i

(
Ii
I∗i

− I1
I∗1

− ln
Ii
I∗i

+ ln
I1
I∗1

)

+

n∑
i=1

λiS
∗W ∗

i

(
Wi

W ∗
i

− I1
I∗1

− ln
Wi

W ∗
i

+ ln
I1
I∗1

)

=:

2n+1∑
k=2

a1kG1k with a1,i = βiS
∗I∗i , a1,n+i = λS∗W ∗

i , i = 1, . . . , n,

D′
j =

Ij − I∗j
Ij

(
γj−1Ij−1 − γj−1I

∗
j−1

Ij
I∗j

)

= γj−1I
∗
j−1

(
Ij−1

I∗j−1

−
I∗j Ij−1

IjI∗j−1

− Ij
I∗j

+ 1

)

≤ γj−1I
∗
j−1

(
Ij−1

I∗j−1

− ln
Ij−1

I∗j−1

− Ij
I∗j

+ ln
Ij
I∗j

)

=: aj,j−1Gj,j−1 with aj,j−1 = γj−1I
∗
j−1, j = 2, . . . , n,

and

D′
n+i = ξiI

∗
i

( Ii
I∗i

− IiW
∗
i

I∗iWi
− Wi

W ∗
i

+ 1
)

≤ ξiI
∗
i

( Ii
I∗i

− ln
Ii
I∗i

− Wi

W ∗
i

+ ln
Wi

W ∗
i

)
=: an+i,iGn+i,i with an+i,i = ξiI

∗
i , i = 1, . . . , n.

Hence assumption (1) of Theorem 3.5 holds. To verify assumption (2) of the theorem,
define the weighted digraph (G, A) associated with the weight matrix A = [aij ] with
aij > 0 as defined above and all other aij = 0; see Figure 7.2. In (G, A), there are
two kinds of cycles: cycles involving direct transmission and cycles involving indirect
transmission. For each cycle, assumption (2) of Theorem 3.5 can be verified. There-
fore, by Theorem 3.5, D =

∑n
i=1 ciDi is a Lyapunov function for (7.1). Specifically,

Theorems 3.3 and 3.4 give cn+ian+i,i = c1a1,n+i and cjaj,j−1 = cn+jan+j,j + c1a1j
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Fig. 7.2. The weighted digraph (G, A) constructed for the multistage model (7.1).

for 1 ≤ i ≤ n and 2 ≤ j ≤ n. Using this Lyapunov function and LaSalle’s invariance
principle, it follows that P ∗ is GAS in int(Γ).

Theorem 7.1 provides a complete global dynamics result for model (7.1) and also
for the model (A.1) in [33], which has only one pathogen compartment. This global
stability result also extends earlier results in [10] from directly transmitted diseases
to waterborne diseases with both direct and indirect transmission.

8. Application to a multigroup cholera model. To incorporate spatial ef-
fects, a population can be divided into subpopulations; see, for example, [27]. Each
subpopulation is further partitioned into three compartments: susceptible (Si), in-
fectious (Ii), and removed (Ri). Let Wi denote the number of pathogen shed by
individuals in Ii. Then the following multigroup model incorporates both within-
group and inter-group direct/indirect transmission and is suitable for investigating
the spatial spread of waterborne diseases such as cholera:

(8.1)

S′
i = Λi −

n∑
j=1

βijφi(Si)ϕj(Ij)−
n∑

j=1

λijφi(Si)ψj(Wj)− diSi,

I ′i =
n∑

j=1

βijφi(Si)ϕj(Ij) +
n∑

j=1

λijφi(Si)ψj(Wj)− μiIi,

W ′
i = hi(Ii)− δiWi, i = 1, . . . , n,

with Λi > 0, di > 0, μi = di + γi + αi > 0, and δi > 0. Model (8.1) includes and
provides a proof of the global dynamics for the cholera model in [34], which incorpo-
rates 10 groups of host populations corresponding to populations in 10 departments in
Haiti and gives numerical simulations for control strategies including vaccination and
provision of clean water. Here nonnegative functions φi, ϕi, ψi, and hi are assumed to
be differentiable, and thus solutions to (8.1) with nonnegative initial conditions exist
and are unique. Throughout we also assume the following properties of functions
φi, ϕi, ψi, hi, which are biologically reasonable:

(H1) (nonnegativity) All nonnegative functions φi, ϕi, ψi, hi only vanish at 0.
(H2) (monotone) φi, ϕi, ψi, and hi are monotone nondecreasing.
(H3) (concavity) ϕi(Ii)/Ii, ψi(Wi)/Wi, and hi(Ii)/Ii are monotone nonincreasing.

Notice that incidence functions and shedding functions that are commonly used in the
literature satisfy assumptions (H1)–(H3), for example, mass action incidence βijSiIj
for the direct transmission, saturating incidence λij

SiWj

κj+Wj
for the indirect transmis-

sion, and linear shedding function hi(Ii) = ξiIi.

D
ow

nl
oa

de
d 

12
/0

6/
18

 to
 1

32
.1

70
.1

92
.7

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1528 ZHISHENG SHUAI AND P. VAN DEN DRIESSCHE

Adding the first two equations of (8.1) gives d
dt (Si + Ii) ≤ Λi − di(Si + Ii), which

implies that lim supt→∞(Si(t) + Ii(t)) ≤ Λi

di
. Let Hi = max

Ii∈[0,
Λi
di

]
hi(Ii). It follows

from the last equation of (8.1) that dWi

dt ≤ Hi − δiWi and thus lim supt→∞Wi(t) ≤
Hi

δi
. Therefore, the feasible region Γ = {(S1, I1,W1 . . . , Sn, In,Wn) ∈ R

3n
+ |Si + Ii ≤

Λi

di
,Wi ≤ Hi

δi
, i = 1, . . . , n} is positively invariant with respect to model (8.1). From

assumption (H1), model (8.1) always admits the DFE P0 = (S0
1 , 0, 0, . . . , S

0
n, 0, 0) in

Γ, where S0
i = Λi

di
, and P0 is the unique equilibrium that lies on the boundary of Γ.

An EE of (8.1), if one exists, is denoted by P ∗ = (S∗
1 , I

∗
1 ,W

∗
1 . . . , S

∗
n, I

∗
n,W

∗
n). Here

S∗, I∗1 , . . . , I
∗
n,W

∗
1 ,W

∗
m > 0 satisfy (8.1) with right-hand sides zero.

Set pij = βijφi(S
0
i )ϕ

′
j(0), qij = λijφi(S

0
i )ψ

′
j(0), and ri = h′i(0). Without loss

of generality, assume ri > 0 for all i (otherwise, Wi will decrease exponentially to
zero and thus not contribute to the dynamics of (8.1)). Following the NGM ap-

proach, define two 2n × 2n matrices F =
[
F1 F2

0 0

]
and V =

[
V1 0
−V2 V3

]
with n × n

matrices F1 = [pij ], F2 = [qij ], V1 = diag{μ1, . . . , μn}, V2 = diag{δ1, . . . , δn}, and
V3 = diag{r1, . . . , rn}. Using the NGM approach, the basic reproduction number is
defined as R0 = ρ(FV −1) = ρ(F1V

−1
1 + F2V

−1
3 V2V

−1
1 ). Here matrix F1V

−1
1 gives

the contribution from direct transmission, whereas matrix F2V
−1
3 V2V

−1
1 gives the

contribution from indirect transmission via water.

Theorem 8.1. Suppose that assumptions (H1)–(H3) hold. Assume that matrices
[βij ] and [λij ] are irreducible. Then the sharp threshold property holds for (8.1).

Proof. Let x = (I1, . . . , In,W1, . . . ,Wn)
T and y = (S1, . . . , Sn)

T be the dis-
ease compartment and nondisease compartment vector, respectively. It follows that
x′ = (F − V )x − f(x, y) with f(x, y) = (

∑n
j=1(p1jI1 + q1jW1 − β1jφ1(S1)ϕj(Ij) −

λ1jφ1(S1)ψj(Wj)),. . .,
∑n

j=1(pnjIn + qnjWn −βnjφn(Sn)ϕj(Ij)−λnjφn(Sn)ψj(Wj)),

0,. . .,0)T ≥ 0 in Γ due to assumptions (H2)–(H3). Since both [βij ] and [λij ] are irre-
ducible, the matrix V −1F is also irreducible. By Theorem 2.2, P0 is GAS in Γ when
R0 < 1, whereas if R0 > 1, then P0 is unstable and there exists at least one EE P ∗.
When R0 = 1, the largest invariant set where Q′ = 0 is the singleton {P0}; therefore,
P0 is GAS in Γ.

To study the global stability of P ∗ when R0 > 1, let Di =
∫ Si

S∗
i

φi(z)−φi(S
∗
i )

φi(z)
dz +

Ii − I∗i − I∗i ln
Ii
I∗
i
and Dn+i =Wi −W ∗

i −W ∗
i ln Wi

W∗
i
. For i = 1, . . . , n, differentiating

and using the equilibrium equations give

D′
i =

(
1− φi(S

∗
i )

φi(Si)

){
di(S

∗
i − Si) +

n∑
j=1

βij

(
φi(S

∗
i )ϕj(I

∗
j )− φi(Si)ϕj(Ij)

)

+

n∑
j=1

λij

(
φi(S

∗
i )ψj(W

∗
j )− φi(Si)ψj(Wj)

)}

+

(
1− I∗i

Ii

){
n∑

j=1

βij

(
φi(Si)ϕj(Ij)− φi(S

∗
i )ϕj(I

∗
j )
Ii
I∗i

)

+

n∑
j=1

λij

(
φi(Si)ψj(Wj)− φi(S

∗
i )ψj(W

∗
j )
Ii
I∗i

)}

≤
n∑

j=1

βijφi(S
∗
i )ϕj(I

∗
j )

(
2− Ii

I∗i
− φi(S

∗
i )

φi(Si)
− φi(Si)ϕj(Ij)I

∗
i

φi(S∗
i )ϕj(I∗j )Ii

+
ϕj(Ij)

ϕj(I∗j )

)
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+
n∑

j=1

λijφi(S
∗
i )ψj(W

∗
j )

(
2− Ii

I∗i
− φi(S

∗
i )

φi(Si)
− φi(Si)ψj(Wj)I

∗
i

φi(S∗
i )ψj(W ∗

j )Ii
+
ψj(Wj)

ψj(W ∗
j )

)

≤
n∑

j=1

βijφi(S
∗
i )ϕj(I

∗
j )

{(
ϕj(Ij)

ϕj(I∗j )
− 1

)(
1−

ϕj(I
∗
j )Ij

ϕj(Ij)I∗j

)

+

(
Ij
I∗j

− ln
Ij
I∗j

− Ii
I∗i

+ ln
Ii
I∗i

)}

+

n∑
j=1

λijφi(S
∗
i )ψj(W

∗
j )

{(
ψj(Wj)

ψj(W ∗
j )

− 1

)(
1−

ψj(W
∗
j )Wj

ψj(Wj)W ∗
j

)

+

(
Wj

W ∗
j

− ln
Wj

W ∗
j

− Ii
I∗i

+ ln
Ii
I∗i

)}

≤
n∑

j=1

βijφi(S
∗
i )ϕj(I

∗
j )

(
Ij
I∗j

− ln
Ij
I∗j

− Ii
I∗i

+ ln
Ii
I∗i

)

+

n∑
j=1

λijφi(S
∗
i )ψj(W

∗
j )

(
Wj

W ∗
j

− ln
Wj

W ∗
j

− Ii
I∗i

+ ln
Ii
I∗i

)

=:
2n∑
j=1

aijGij with aij =

{
βijφi(S

∗
i )ϕj(I

∗
j ) 1 ≤ j ≤ n,

λijφi(S
∗
i )ψj(W

∗
j ) n+ 1 ≤ j ≤ 2n.

The first and third inequalities follow from assumptions (H2)–(H3), respectively, and
the second inequality uses the technique in Construction 1 of section 4. Similarly,

D′
n+i = hi(I

∗
i )

(
1− Wi

W ∗
i

+
hi(Ii)

hi(I∗i )
− hi(Ii)W

∗
i

hi(I∗i )Wi

)

≤ hi(I
∗
i )

{(
hi(Ii)

hi(I∗i )
− 1

)(
1− hi(I

∗
i )Ii

hi(Ii)I∗i

)
+

(
Ii
I∗i

− ln
Ii
I∗i

− Wi

W ∗
i

+ ln
Wi

W ∗
i

)}

≤ hi(I
∗
i )

(
Ii
I∗i

− ln
Ii
I∗i

− Wi

W ∗
i

+ ln
Wi

W ∗
i

)
=: an+i,iGn+i,i

with an+i,i = hi(I
∗
i ). Let A = [aij ] with aij > 0 as defined above and otherwise zero.

A weighted digraph (G, A) can be constructed such that A is the weight matrix; see
Figure 8.1. Let ci be as given in Proposition 3.1 with (G, A). Since d−(n+ i) = 1 for
each i (see Figure 8.1), by Theorem 3.4, cn+i =

∑n
j=1 cjaj,n+i/an+i,i. Thus,

Fig. 8.1. The weighted digraph (G, A) constructed for model (8.1) with two groups.
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D =

n∑
i=1

ciDi +

n∑
i=1

n∑
j=1

cjaj,n+i
Dn+i

an+i,i
.

Since Gi,n+j +Gn+j,j =
Ij
I∗
j
− ln

Ij
I∗
j
− Ii

I∗
i
+ ln Ii

I∗
i
= Gij , it follows that

D′ ≤
n∑

i=1

n∑
j=1

ciaijGij +

n∑
i=1

n∑
j=1

ciai,n+jGi,n+j +

n∑
i=1

n∑
j=1

cjaj,n+iGn+i,i

=

n∑
i=1

n∑
j=1

ciaijGij +

n∑
i=1

n∑
j=1

ciai,n+j(Gi,n+j +Gn+j,j)

=

n∑
i=1

n∑
j=1

ci(aij + ai,n+j)

(
Ij
I∗j

− ln
Ij
I∗j

− Ii
I∗i

+ ln
Ii
I∗i

)
.(8.2)

Let c̃i, i = 1, . . . , n, be as given in Proposition 3.1 with (G̃, Ã), where the entry of the
n×n matrix Ã = [ãij ] is defined as ãij = aij+ai,n+j . Let c̃n+i =

∑n
j=1 c̃j

aj,n+i

an+i,i
. Now

we claim that D̃ =
∑n

i=1 c̃iDi +
∑n

i=1 c̃n+iDn+i is a Lyapunov function for (8.1). In
fact, replacing all ci by c̃i in the calculation of (8.2) yields

D̃′ ≤
n∑

i=1

n∑
j=1

ciãij

(
Ij
I∗j

− ln
Ij
I∗j

− Ii
I∗i

+ ln
Ii
I∗i

)
= 0.

Here the last equality follows from Theorem 3.3. It can be verified that the largest
invariant set where D̃′ = 0 is the singleton {P ∗}. Therefore, by LaSalle’s invariance
principle, P ∗ is GAS in int(Γ) and thus unique.

Theorem 8.1 provides a complete global dynamic analysis for (8.1) and uses the
graph-theoretic method in a different way from that in the proof of Theorem 7.1.
Here the construction of the Lyapunov function D̃ relies on the application of the
new combinatorial identity established in section 3.

9. Discussion. Two systematic methods (the matrix-theoretic method and the
graph-theoretic method) of construction for Lyapunov functions were developed to
investigate the global stability of the disease-free and endemic equilibria for disease
models and were applied to several examples. These include models in which homo-
geneous mixing is assumed, such as the SIR model (section 4) and the SEIR model
with relapse (section 5), and those incorporating different kinds of heterogeneity,
such as multigroup models (sections 6 and 8) and the multistage model (section 7).
For all these examples, the sharp threshold property was completely established us-
ing these two methods, showing that the basic reproduction number R0 is a sharp
threshold.

Although the sharp threshold property holds for many disease models including
those in this paper, there are disease models for which such a result does not hold. For
example, the first part of the result fails when backward bifurcation happens; see, for
example, [7, 14]. Specifically, when R0 < 1, there may exist two EEs: one is stable,
while the other is unstable. In this situation, the DFE is only locally asymptotically
stable but not globally asymptotically stable. On the other hand, when R0 > 1, the
EE may lose its stability due to Hopf bifurcation, and disease oscillations occur; see,
for example, [19].

For models in which the sharp threshold property holds, including those consid-
ered in sections 4–8, sensitivity analysis of R0 can be used with knowledge of disease
data to quantify the effects of control strategies. For example, for the multigroup
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cholera model (section 8), vaccination would reduce the transmission coefficients (i.e.,
βij , λij), and sanitation and/or provision of clean water would reduce indirect trans-
mission (λij) and shedding hi(Ii). We expect that our two methods can also be ap-
plied to models for other infectious diseases that incorporate control and intervention
strategies.
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