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Local Tomography and the Motion Estimation Problem∗

A. Katsevich†, M. Silver‡, and A. Zamyatin‡

Abstract. In this paper we study local tomography (LT) in the motion contaminated case. It is shown that
microlocally, away from some critical directions, LT is equivalent to a pseudodifferential operator of
order one. LT also produces nonlocal artifacts that are of the same strength as useful singularities.
If motion is not accurately known, singularities inside the object f being scanned spread in different
directions. A single edge can become a double edge. In such a case the image of f looks cluttered.
Based on this observation we propose an algorithm for motion estimation. We propose an empiric
measure of image clutter, which we call edge entropy. By minimizing edge entropy we find the
motion model. The algorithm is quite flexible and is also used for solving the misalignment correction
problem. The results of numerical experiments on motion estimation and misalignment correction
are very encouraging.

Key words. motion estimation, edge entropy, cone beam

AMS subject classifications. 44A12, 65R10, 92C55

DOI. 10.1137/100796728

1. Introduction. Cardiac (and, more generally, dynamic) imaging is one of the top chal-
lenges facing modern computed tomography (CT). When the object being scanned changes
during data acquisition the classic tomographic reconstruction theory does not apply. In
cardiac CT there are two major groups of approaches for dealing with this issue. One is
based on gating, i.e., selecting the CT data which correspond to a fixed cardiac phase, and
then using mostly that data for image reconstruction (see, e.g., [5, 9, 11, 15, 19, 21]). The
second approach, known as motion compensation, is based on incorporating a motion model
into a reconstruction algorithm (see, e.g., [3, 6, 10, 14, 24, 31, 32]). Motion compensation
algorithms are preferable, because they use all data and have the potential to provide good
image quality with reduced x-ray dose. The main difficulty of using such algorithms is that
the motion model needs to be known. There are motion estimation algorithms available (see,
e.g., [2, 3, 14, 27, 29, 30, 33, 35, 36] for the most recent advances), but significant research still
needs to be done to improve efficiency, accuracy, and stability with respect to noise, flexibility,
etc.

In this paper we propose a novel approach to motion estimation, which is based on local
tomography (LT). See [1, 8, 16, 22, 26, 34] on cone-beam LT of static objects. The ultimate
goal is to come up with a robust algorithm which can reconstruct objects that change during
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LOCAL TOMOGRAPHY AND MOTION ESTIMATION 201

the scan. Since there is no formula that recovers the object f and motion function ψ from the
tomographic data, the most realistic approach to finding f and ψ is via iterations. On the
other hand, recovering both of them at the same time would result in an iterative problem of
a prohibitively large size. The best approach is to decouple the two tasks, motion estimation
and motion compensation, as much as possible. Not all methods achieve this goal. For
example, when finding ψ using registration (as is done, e.g., in [14]), one uses the images
of f at different times. In other words, finding ψ depends on the knowledge of f . This
has undesirable consequences. If motion is not known, f is reconstructed with significant
artifacts, thereby making subsequent registration unreliable and inaccurate. In contrast, LT
is an ideal candidate for decoupling. LT does not reconstruct pointwise values of f , but rather
a gradient-like image of f with edges enhanced. Thus the only informative feature of LT is
the location of edges. We show that if any given edge is seen from the data from two or
more source positions, then in the case of incorrectly known motion, the single edge “spreads”
and becomes a double edge. As a result, the image looks more cluttered. Our main idea is
to iteratively improve the motion model so that image clutter is minimized. We propose an
empiric measure of clutter, which we call “edge entropy.” Note that the word “entropy” in the
name is largely symbolic, since we do not establish any properties that conventional entropy
must possess. In the proposed approach, motion estimation is completely independent of our
knowledge of f , and the desired decoupling is achieved. No knowledge of f is required. The
only thing we need is that f possess sufficiently many edges, which is true for practically all
f occurring in medical imaging. The use of LT has other benefits as well: (1) LT is very fast.
First, it does not require global filtering. Second, backprojection is greatly simplified, since
there is no need to compute complicated weights that are mandatory for quasi-exact motion
compensating inversion formulas. The weights compensate for variable length of illumination
for every voxel in an image. Clearly, high reconstruction speed is critically important for
iterative-based motion estimation. (2) LT uses only local data; hence it is not sensitive to
data truncation. (3) LT is very flexible and can be used practically with any source trajectory.

Let us mention some other attractive features of the proposed approach. First, it is local
in time. Motion estimation is done inside a reasonably short time window, e.g., not much
longer than the length of a short scan. This eliminates the need for making the periodicity
assumption [4], which frequently holds only approximately. Second, the approach is fairly
general and can be used for several types of motion, e.g., cardiac, breathing, etc. Finally,
with simple modifications the approach can be applied to solving other practically important
problems. As an example we show how to solve a misalignment correction problem for a
distorted circular scan. A similar iterative algorithm, which is based on the Feldkamp inversion
formula, is proposed in [20]. Since our algorithm is based on LT, it is faster and is not limited
to a source trajectory for which accurate and efficient inversion formulas exist. As before,
estimation of the unknown source trajectory is completely decoupled from finding f , so for
the latter purpose one can use any algorithm. For example, when the data are truncated, one
might want to use an iterative reconstruction algorithm. If the two problems are coupled,
using an iterative algorithm for finding f inside an iterative algorithm for estimating the
source trajectory is prohibitively slow.

The paper is organized as follows. In section 2 we propose cone-beam LT function Bf and
establish its main properties. In section 3 we study the location and strength of the nonlocal
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202 A. KATSEVICH, M. SILVER, AND A. ZAMYATIN

artifacts. As opposed to LT in the static case (see [17]), it is not possible here to find the
direction of differentiation, which reduces the strength of the artifact by one order in the scale
of Sobolev spaces. A similar result for a different geometry was recently reported in [25]. In
section 4 we obtain explicit formulas for the shift between the singularities in Bf and f in
the case when motion is known incorrectly. A similar result in [17] gives only an implicit
relation, and the model used in [17] for describing changes in f is different from the one in
this paper. The new motion estimation algorithm as well as a description of the motion model
and definition of edge entropy are given in section 6. Results of numerical experiments on
motion estimation and misalignment correction are given in section 7. Finally, conclusions
and directions for future research are stated in section 8.

2. Local tomography (LT). Let C be a smooth curve in R
3:

(2.1) I � s→ z(s) ∈ R
3, |z′s(s)| �= 0,

where I ⊂ R is an interval. Usually the source moves along C with constant speed, so we
identify s with time variable.

Fix any s0 ∈ I. We refer to s = s0 as the reference time. To describe the motion inside
the object being scanned, we introduce the function ψ. Suppose y = ψ(s, x) is the position of
the particle at time s, which is located at x at the reference time s = s0. We assume that for
each s ∈ I the function ψ(s, x) : R3 → R

3 is a diffeomorphism. Physically this means that two
distinct points cannot move into the same position. This assumption is quite natural, since
cardiac motion is not infinitely compressible (see, e.g., [3]). The inverse of ψ is the function
x = ν(s, y) : R3 → R

3. It gives the original position x of the particle at the reference time,
which is located at y at time s. We assume that both ψ and ν are identity maps outside of
some open set U , which contains the support of the object, and that ψ, ν ∈ C∞(I × R

3). As
usual, we assume that C is at a positive distance from U . Obviously,

(2.2) ν(s, ψ(s, x)) ≡ x, ψ(s, ν(s, x)) ≡ x.

Differentiating the first equation in (2.2) with respect to s and x gives useful identities

(2.3) ν ′s(s, ψ(s, x)) +∇ν(s, ψ(s, x))ψ′
s(s, x) ≡ 0, ∇ν(s, ψ(s, x))∇ψ(s, x) ≡ Id,

where Id is the 3 × 3 identity matrix. In (2.3) and everywhere below we use the convention
that the operator ∇ acts with respect to space variables. Thus ∇ν(s, y) = ∇yν(s, y) and
∇ψ(s, x) = ∇xψ(s, x).

Since matter is conserved, the density at time s and point y is given by |∇ν(s, y)|f(ν(s, y)).
Hence the data are

(2.4) Df (s, β) :=

∫ ∞

0
|∇ν(s, z(s) + tβ)|f(ν(s, z(s) + tβ))dt, s ∈ I,

where β runs through a subset of the unit sphere determined by the detector. The human
tissue is not compressible, so in most cases we can assume |∇ν(s, y)| ≈ 1 when performing
numerical experiments.
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LOCAL TOMOGRAPHY AND MOTION ESTIMATION 203

We introduce the following LT function:

(2.5) (Bf)(x) =
∫
I
ϕ(s, x)

∂2

∂q2
Df (s, β(s, x+ qΘ(s, x)))|q=0 ds,

where

(2.6) β(s, x) =
ψ(s, x) − z(s)

|ψ(s, x) − z(s)| ,

Θ(s, x) : I × U → R
3 \ 0 is a smooth function, and ϕ ∈ C∞

0 (I × U). Note that (2.5) reduces
to equation (2.2) of [17] if β(s, x + qΘ(s, x)) is replaced with β(q, x). Equation (2.2) of [17]
was developed with the goal of reducing as much as possible the global artifact inherent in
cone-beam data inversion. The additional flexibility provided by Θ is needed for increasing
computational efficiency (cf. section 7). A slight change in the direction of differentiation
away from the optimal one may lead to a significant speed-up at the expense of only a slight
increase in the global artifact. The function ϕ in (2.5) determines the time interval, which is
used for motion estimation. Define

(2.7) Φ(x, s, t) := ν(s, z(s) + t(ψ(s, x)− z(s))), t > 0, s ∈ I, x ∈ U.

For a fixed x ∈ U and s ∈ I, Φ(x, s, t), t > 0, is the preimage of the ray with vertex at z(s)
and passing through ψ(s, x). For a fixed x ∈ U , Φ(x, s, t) defines a surface parametrized by s
and t. For convenience, this surface is denoted Φx. Using (2.3), we get

Φ′
s(x, s, t) : = ν ′s(s, y̌) +∇ν(s, y̌)(z′s(s) + t(ψ′

s(s, x)− z′s(s)))(2.8)

= ∇ν(s, y̌){[z′s(s) + t(ψ′
s(s, x)− z′s(s))]− ψ′

s(s, x̌)
}
,

Φ′
t(x, s, t) : = ∇ν(s, y̌)(ψ(s, x) − z(s)),(2.9)

where

(2.10) y̌(x, s, t) = z(s) + t(ψ(s, x) − z(s)), x̌ = ν(s, y̌).

If t �= 1, then y̌(x, s, t) �= ψ(s, x). The expression in brackets in (2.8) is the velocity of the
point y̌ if we regard it as a fixed point which divides the line segment with endpoints z(s) and
ψ(s, x) in the ratio t : 1 − t. ψ′

s(s, x̌) is the velocity of y̌ if it moves according to the motion
function ψ. From (2.8), (2.9), the surface Φx is smooth at the point Φ(x, s, t) if the difference
of the two velocities is not parallel to the line segment. We say that Φx is smooth if it is
smooth at any point z ∈ Φx, z �= x.

Proposition 2.1. Suppose Φx is smooth for all x ∈ U . The operator B defined by (2.5)
extends to a map E ′(U) → E ′(U), and

WF (Bf) ⊂WFv(f) ∪ E(f,C, ψ),

E(f,C, ψ) := {(x, η) ∈ T ∗U \ 0 : (y, ξ) ∈ N∗Φx ∩WF (f), η = ξ · ∇Φ(x, s0, t0),

y = Φ(x, s0, t0) �= x, (s0, x) ∈ suppϕ}.
(2.11)
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204 A. KATSEVICH, M. SILVER, AND A. ZAMYATIN

Here N∗Φx is the conormal bundle of Φx. In short, g has an additional singularity at x
if Φx is tangent to singsupp f at some point y �= x. The singularities of Bf , which coincide
with those of f , are “useful” (from the point of view of practical applications of tomography),
while the set E(f,C, ψ) represents the artifact.

Proof. Denote

(2.12) m := inf
s∈I,x∈U

|x− z(s)|, M := sup
s∈I,x∈U

|x− z(s)|,

and pick δ, 0 < δ < m. Let w(t) be a function with the properties

(2.13) w(t) ∈ C∞
0 ([m− δ,M + δ]), w(t) = 1, t ∈ [m,M ].

This function is inserted in the integral (2.4) to ensure that the integration with respect to t
is performed over a compact interval, which does not contain t = 0.

Pick any g ∈ C∞(U) and consider the integral

(2.14) 〈Bf, g〉 :=
∫
U
(Bf)(x)g(x)dx,

where f ∈ C∞
0 (U). Substituting (2.4) into (2.5) and changing variables according to

(2.15) t1 = t/|ψ(s, x+ qΘ(s, x))− z(s)|,
we get that the argument of f in (2.14) becomes

(2.16) z = ν(s, z(s) + t1(ψ(s, x+ qΘ(s, x))− z(s))).

Applying (2.2) gives

(2.17) ν

(
s,
ψ(s, z) − z(s)

t1
+ z(s)

)
= x+ qΘ(s, x).

Since Θ(s, x) is a smooth function, q is restricted to a small neighborhood of zero, and t1 is
bounded away from zero, it is clear that (2.17) defines a smooth diffeomorphism z → x =
X(z, s, t, q). Then, (i) taking the derivative with respect to q outside the integral in (2.5),
(ii) interchanging the order of integration so that the integral with respect to x in (2.14)
becomes the innermost one, and (iii) changing variables x→ z according to (2.17), we get

(2.18) 〈Bf, g〉 = 〈f,B∗g〉,
where B∗g ∈ C∞(U). The first assumption of the proposition now follows from continuity.

The proof of (2.11) is given in section 5 below.
Next we compute the principal symbol of B. Besides the smoothness of Φx, the additional

assumptions we make in this calculation are that (1) Φ′′
st(x, s, t = 1) is never a zero vector

and (2) Φ′′
st(x, s, t = 1) and Φ′

t(x, s, t = 1) are not parallel. Let us discuss these assumptions.
Setting t = 1 in (2.9) and (2.10) gives y̌ = ψ(s, x) and

(2.19) Φ′′
st(x, s, t = 1) =

d

ds
[∇ν(s, ψ(s, x))](ψ(s, x) − z(s)) +∇ν(s, ψ(s, x))(ψ′

s(s, x)− z′s(s)).
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LOCAL TOMOGRAPHY AND MOTION ESTIMATION 205

From the second equation in (2.3),

(2.20)
d

ds
[∇ν(s, ψ(s, x))]∇ψ(s, x) +∇ν(s, ψ(s, x))∇ψ′

s(s, x) = 0,

so

Φ′′
st(x, s, t = 1)

= ∇ν(s, ψ(s, x) [(ψ′
s(s, x)− z′s(s))−∇ψ′

s(s, x)∇ν(s, ψ(s, x))(ψ(s, x) − z(s))
]
.

(2.21)

Since ν is a diffeomorphism, Φ′′
st(x, s, t = 1) = 0 is equivalent to

(2.22) z′s(s) = ψ′
s(s, x)−∇ψ′

s(s, x)∇ν(s, ψ(s, x))(ψ(s, x) − z(s)).

If the source rotates sufficiently fast compared to the motion of the medium, (2.22) is never
satisfied. Comparing (2.21) with (2.8), we get that Φ′′

st(x, s, t = 1) and Φ′
t(x, s, t = 1) are not

parallel if

(2.23) ψ(s, x)− z(s) �‖ (ψ′
s(s, x)− z′s(s))−∇ψ′

s(s, x)∇ν(s, ψ(s, x))(ψ(s, x) − z(s)).

Assuming again that the source rotates sufficiently fast, (2.23) is equivalent to the requirement
that the tangent to the source trajectory never points into the region of interest. This is a
common condition, which is satisfied by all practical scanning trajectories.

From (2.4) and (2.5) we get

(Bf)(x) =
∫
R2

ϕ(s, x)w(t)

× ∂2

∂q2
|∇ν(s, z(s) + tβ(s, x+ qΘ))|f(ν(s, z(s) + tβ(s, x+ qΘ)))|q=0 dtds.

(2.24)

Representing f in terms of its Fourier transform and changing variables gives

(Bf)(x) = 1

(2π)3

∫
R3

f̃(ξ)B(x, ξ)e−iξ·xdξ,

B(x, ξ) : =

∫
R2

Q0(x, ξ, s, t)e
−iξ·(Φ(x,s,t)−x)dtds,

(2.25)

where Q0(x, ξ, s, t) ∈ S2(U ×R
3), the seminorms of Q0 as member of the symbol class S2 are

uniformly bounded with respect to (s, t) ∈ R
2, and the asymptotics of Q0 is given by

Q0(x, ξ, s, t) = −ϕ(s, x)w(t|ψ(s, x) − z(s)|)|ψ(s, x) − z(s)|
× [

(tξ · ∇ν(s, y̌(x, s, t))∇ψ(s, x)Θ(s, x))2 +O(|ξ|)] , |ξ| → ∞.
(2.26)

The term O(|ξ|) in (2.26) is stable when differentiated with respect to s and t any number of
times. Using (2.8), (2.9), we get that at the stationary point of the phase

ξ · ∇ν(s, y̌)([z′(s) + t(ψ′
s(s, x)− z′(s))]− ψ′

s(s, x̌)) = 0,

ξ · ∇ν(s, y̌)(ψ(s, x) − z(s)) = 0.
(2.27)
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If t = 1, then x = x̌ and the first equation in (2.27) is trivially satisfied. Hence (s, t = 1)
is a stationary point if ξ is perpendicular to ∇ν(s, y̌)(ψ(s, x) − z(s)), where y̌ = ψ(s, x).
By construction, ξ · Φ′′

ss(x, s, t = 1) ≡ 0. Thus the stationary point is nondegenerate if
ξ · Φ′′

st(x, s, t = 1) �= 0. In view of the second equation in (2.27), the critical direction at any
(s, x) is given by

(2.28) ξcr(s, x) := Φ′
t(x, s, t)

∣∣
t=1

× Φ′′
st(x, s, t)

∣∣
t=1

.

Let sj = sj(x, ξ), j = 1, 2, . . . , be the solutions to (2.27) with t = 1. Assume that ξ is away
from a conic neighborhood of the set

(2.29) Crit(x) := {ξ ∈ R
3 \ 0 : ξ = ξcr(s, x), (s, x) ∈ suppϕ}.

Then the critical points (sj , t = 1) are nondegenerate, and by the stationary phase method

(2.30) B(x, σξ) = −2πσ
∑
j

ϕ(sj , x)|ψ(sj , x)− y(sj)| |ξ ·Θ(sj , x)|2
|ξ · Φ′′

st(x, sj , t = 1)| +O(1), σ → ∞.

Here we have used the second equation in (2.3), the fact that Φ(x, s, t = 1) ≡ x, and that the
signature of the Hessian of the phase at the stationary point equals zero. If we choose, for
example,

(2.31) Θ(s, x) = Φ′′
st(x, s, t = 1),

then (2.30) becomes

(2.32) B(x, σξ) = −2πσ
∑
j

ϕ(sj , x)|ψ(sj , x)− y(sj)||ξ · Φ′′
st(x, sj , t = 1)|+O(1), σ → ∞.

3. Artifact. We are now interested in solutions to (2.27) with t �= 1. Similarly to (2.25),
we have

(3.1) (Bf)(x) = 1

(2π)3

∫
f̃(ξ)

{∫
Q0(x, ξ, s, t)e

−iξ·Φ(x,s,t)dsdt

}
dξ.

Consider the integral with respect to s and t. Pick some x0 ∈ U , s0 ∈ I, and t0 �= 1, and set

(3.2) ξ0 = Φ′
s(x0, s0, t0)× Φ′

t(x0, s0, t0).

Suppose that s = s(x, ξ) and t = t(x, ξ) solve the system

(3.3) ξ · Φ′
s(x, s, t) = 0, ξ · Φ′

t(x, s, t) = 0

for (x, ξ) in a conic neighborhood of (x0, ξ0). In general there can be several solutions, but
we are looking for the one close to (s0, t0). Obviously, s(x, ξ) and t(x, ξ) are homogeneous of
degree zero in ξ.

Systems (3.3) and (2.27) are the same. However, since t �= 1, no additional insight is
gained by representing Φ in terms of ψ and ν.

D
ow

nl
oa

de
d 

12
/0

6/
18

 to
 1

32
.1

70
.1

92
.7

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOCAL TOMOGRAPHY AND MOTION ESTIMATION 207

Let κ(x, ξ) be the Gaussian curvature of Φx at the point y = Φ(x, s(x, ξ), t(x, ξ)). When
there is no motion, Φx is a ruled surface with zero Gaussian curvature. In the presence of
motion we can assume that, generically, κ(x, ξ) �= 0. The Hessian of the phase at the stationary
point is proportional to the curvature:

(3.4) det

(
ξ · Φ′′

ss(x, s, t) ξ · Φ′′
st(x, s, t)

ξ · Φ′′
st(x, s, t) ξ · Φ′′

tt(x, s, t)

)
= κ(x, ξ)|ξ|2|Φ′

s(x, s, t)× Φ′
t(x, s, t)|2,

where x, ξ, s, and t satisfy (3.3). By assumption Φ′
s and Φ′

t are linearly independent; i.e., Φx0

is smooth at y0 = Φ(x0, s(x0, ξ0), t(x0, ξ0)). Hence the right-hand side of (3.4) is not zero
at x0, ξ0, s0, t0, the Hessian is nondegenerate, and the functions s(x, ξ), t(x, ξ) are locally well
defined and smooth. By the stationary phase method,

(3.5)

∫
Q0(x, ξ, s, t)e

−iξ·Φ(x,s,t)dsdt = Q1(x, ξ)e
−iξ·Φ(x,s(x,ξ),t(x,ξ)),

where Q1 is a symbol from the class S1 in a conic neighborhood of (x0, ξ0) (cf. (2.26)), and
the asymptotics of Q1 is given by

(3.6) Q1(x, ξ) = c
Q0(x, ξ, s(x, ξ), t(x, ξ))

|det(ξ · Φ′′)|1/2 +O(1), |ξ| → ∞,

where ξ · Φ′′ is the matrix in (3.4) and constant c incorporates some powers of 2π and i.
Combine (3.1) and (3.6):

(3.7) (Bf)(x) = 1

(2π)3

∫
f̃(ξ)Q1(x, ξ)e

−ia(x,ξ)dξ,

where a(x, ξ) := ξ · Φ(x, s(x, ξ), t(x, ξ)). If det(∂2a(x, ξ)/∂x∂ξ) �= 0 at (x0, ξ0), then locally
(3.7) is a Fourier integral operator (FIO) associated with a canonical transformation, and the
order of the operator equals one (see [13, pp. 25–26]). In view of (2.30) this means that the
artifacts and useful singularities can be of the same strength in the scale of Sobolev spaces.

4. Incorrectly known motion. Suppose that instead of the motion function ψ we know
its approximation ψε(s, x) = ψ(s, x)+εψ1(s, x). In this case the function Φ of (2.7) is replaced
by

(4.1) Φ(ε, x, s, t) := ν(s, z(s) + t(ψε(s, x)− z(s))).

Consequently, the useful singularities of Bf no longer coincide with the singularities of f . To
find the shift between them we assume that the error in ψε is small, i.e., ε → 0, and find the
first order approximation of the shift. If ε = 0, the function s(x, ξ) is determined from (3.3)
with t(x, ξ) ≡ 1. If ε �= 0, we have to solve

(4.2) ξ · Φ′
s(ε, xε, sε, tε) = 0, ξ · Φ′

t(ε, xε, sε, tε) = 0, Φ(ε, xε, sε, tε) = Φ(0, x, s, t = 1).

Equations (4.2) mean that the singularity of f at x is mapped into the singularity of Bf at
xε. Set xε = x +Δx, sε = s +Δs, tε = 1 + Δt. Expanding (4.2) in the Taylor series around
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ε = 0, using (3.3), and keeping the first order terms in ε gives

εξ · Φ′′
εs + ξ · ∇Φ′

sΔx+ ξ · Φ′′
ssΔs+ ξ · Φ′′

stΔt = 0,

εξ · Φ′′
εt + ξ · ∇Φ′

tΔx+ ξ · Φ′′
stΔs+ ξ · Φ′′

ttΔt = 0,

εΦ′
ε +∇ΦΔx+Φ′

sΔs+Φ′
tΔt = 0.

(4.3)

All the derivatives in (4.3) are computed at ε = 0, x, s = s(x, ξ), and t = 1. Since Φ(0, x, s, t =
1) ≡ x, it follows that ∇Φ′

s = 0, Φ′′
ss = 0, Φ′

s = 0. The first and third equations in (4.3) yield

(4.4) Δt = −εξ · Φ
′′
εs

ξ · Φ′′
st

, Δx = ε(∇Φ)−1

[
Φ′
t

ξ · Φ′′
εs

ξ · Φ′′
st

− Φ′
ε

]
.

When t = 1, ∇Φ = Id and

(4.5) Φ′
t = ∇ν(ψ(s, x)− z(s)), Φ′

ε = ∇νψ1(s, x).

Substituting into (4.4) gives

(4.6) Δx = ε∇ν(s, ψ(s, x))[c(ψ(s, x) − z(s))− ψ1(s, x)] +O(ε2), c =
ξ · Φ′′

εs

ξ · Φ′′
st

.

By our assumption ξ · Φ′′
st �= 0, so Δx is indeed of order O(ε), ε→ 0.

5. End of proof of Proposition 2.1. Using a partition of unity we may suppose that
WF (f) is a subset of a sufficiently small conic neighborhood of (x0, ξ0) ∈ T ∗U and that Q0 ≡ 0
(cf. (2.26) and (3.1)) for (s, t) outside a sufficiently small neighborhood of (s0, t0) ∈ I × R+.
Initially we consider the case t0 �= 1. First of all, from (2.4) and (2.5), (Bf)(x) ≡ 0 outside a
neighborhood of y0 = Φ(x0, s0, t0). In view of the partition of unity, (2.4) needs to be modified
by including a cut-off function depending on t. Passing to a finer partition of unity if necessary,
(3.1) implies that (Bf)(x) is smooth near y0 unless ξ0 is parallel to Φ

′
s(x0, s0, t0)×Φ′

t(x0, s0, t0).
If the two vectors are parallel, we multiply (3.1) by ϕ1(x)e

ix·η0 , where ϕ1 ∈ C∞
0 and is

supported in a neighborhood of y0, and η0 �= ξ0 · ∇Φ(x0, s0, t0). Integrating with respect to x
and using the standard argument (see, e.g., [7, p. 114]), we get that (y0, η0) �∈WF (Bf).

Suppose now that t0 = 1. Since Φ(x, s, t = 1) ≡ x and ξ0 = ξ0 · ∇Φ(x0, s0, t0 = 1), we get
as before that (x0, ξ0) �∈WF (f) implies (x0, ξ0) �∈WF (Bf), and (2.11) is proved.

6. A motion estimation algorithm. The proposed algorithm is based on LT. In the case
of static objects, the discontinuities (or edges) of f and Bf generally coincide [8, 12, 17, 22]
(except for the added singularities or artifacts in Bf and the singularities of f that are invisible
from the data). As mentioned in section 4, if there is some uncompensated motion in f , the
edges of f and Bf no longer coincide. Practically this means that if motion is not known (or
is known incorrectly), edges in the reconstructed image spread out. A single edge produces
multiple edges at several locations. Consequently, the reconstructed image looks cluttered
or random. We can use a measure of randomness in the reconstructed image Bf to gauge
whether our motion model is accurate or not. In what follows we call this measure “edge
entropy.” Using this idea, we summarize the proposed motion estimation algorithm as follows:

1. Assume some motion model.
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2. Perform motion-compensated LT image reconstruction using current motion model.
3. Compute edge entropy of the LT image.
4. If edge entropy is low (i.e., the edges have not spread too much), stop. If edge entropy

is high, change the motion model and go to step 2.

A similar idea was used in [20] for misalignment correction in circular cone-beam CT. The
main novelty of our approach is that we use LT instead of global Feldkamp-type reconstruction.
On the one hand, the use of LT allows us to significantly speed up the iterations. On the
other hand, many tools that work with conventional images (most notably, image entropy)
do not work with LT images, so we had to develop alternative tools from scratch. We now
describe the key steps of the algorithm in more detail.

6.1. Motion model. Let [sl, sr] ⊂ I be a parameter/time window, which is used for
motion estimation. The center point s0 = (sl + sr)/2 is taken as reference time. The primary
purpose of the algorithm is to perform local (in time) motion estimation; thus the width of
the window S := sr − sl is usually rather short. In our experiments S is typically less than
one gantry rotation. Let D ⊂ U denote the region where motion takes place. We assume
that D is a rectangle; i.e., D := {(x1, x2, x3) ∈ R

3 : Lk ≤ xk ≤ Rk, k = 1, 2, 3}. To represent
motion, we consider a regular grid over D. The grid planes are

xk = ζik := Lk + iΔxk, 0 ≤ i ≤ Nk + 1, k = 1, 2, 3,(6.1)

where Δxk = (Rk − Lk)/(Nk + 1) is the step-size along the kth axis. Thus, grid (6.1) has
N1N2N3 interior nodes, and for each direction k there are Nk + 2 planes xk = ζ0k, . . . , xk =
ζNk+1,k. Because of motion, the grid planes deform over time:

x1 = ζi1 + ai1(s)φ[(x2 − L2)/(R2 − L2)]φ[(x3 − L3)/(R3 − L3)], 1 ≤ i ≤ N1,

x2 = ζi2 + ai2(s)φ[(x1 − L1)/(R1 − L1)]φ[(x3 − L3)/(R3 − L3)], 1 ≤ i ≤ N2,

x3 = ζi3 + ai3(s)φ[(x1 − L1)/(R1 − L1)]φ[(x2 − L2)/(R2 − L2)], 1 ≤ i ≤ N3.

(6.2)

Each line in (6.2) defines a separate surface, which corresponds to a deformation of one of
the original planes (6.1). We assume that motion equals zero at the boundary of D, so the
boundary grid planes (i.e., those given by xk = ζik, i = 0, or Nk + 1, k = 1, 2, 3) do not
deform. In (6.2), the function φ is smooth, defined on the interval [0, 1], and equals zero at
both endpoints of the interval. Since the time window [sl, sr] is sufficiently short, we assume
that the functions aik(s) are linear:

aik(s) = aik(s − s0)/(0.5S), k = 1, 2, 3,(6.3)

where aik, 1 ≤ i ≤ Nk, k = 1, 2, 3, are constants to be determined. Note that substituting
s = s0 into (6.2) gives the rectangular grid (6.1). Equations (6.2) and (6.3) allow us to describe
motion of every point in D. To determine where a node from the original grid (6.1) is located
at time s, we identify the three planes where the node is located, deform them according to
(6.2), and then find the point of intersection of the three resulting surfaces. Location of all
other pixels is computed using trilinear interpolation.
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6.2. Edge entropy. Suppose Bf is computed on a regular grid (xi1 , xi2 , xi3), 1 ≤ ik ≤Mk,
k = 1, 2, 3, which covers D. Suppose, for simplicity, that the step-size of the grid is the same
along every axis and equals Δx. Nodes of the grid are denoted xI := (xi1 , xi2 , xi3), where
I = (i1, i2, i3). Of course, this grid should be much more dense than the one in (6.1) (Mk �
Nk). We also need a shifted grid with nodes x̄I := (x̄i1 , x̄i2 , x̄i3), where x̄ik = xik + Δx/2,
1 ≤ ik ≤Mk − 1, k = 1, 2, 3. We introduce the distance function:

(6.4) dist(x̄I , x̄J ) = max(|i1 − j1|, |i2 − j2|, |i3 − j3|).

Calculation of edge entropy consists of several steps. Let parameter κ, 0 < κ < 1, be
fixed.

1. Using finite differences, compute the norm of the gradient at the nodes of the shifted
grid |∇(Bf)(x̄I)|.

2. Compute the empirical histogram of the norm of the gradient.
3. Using the histogram, estimate the value M such that |∇(Bf)(x̄I)| > M for 100κ% of

the points (such points are called “bright”).
4. By running a sliding window over the image, compute the total number of points x̄I

whose distance (in the sense of (6.4)) to the closest bright point equals either 2, 3, or 4.
5. Divide this number by the total number of nodes in the grid and multiply by 100 (to

get percents). The result is the edge entropy of the image Bf .
7. Numerical experiments. The original phantom is a superposition of seven balls as

shown in Figures 1–3 . The motion of the medium is described by the function

ψ(s, x) = x+

⎧⎪⎨
⎪⎩
25 cos(0.35(s − s0))Θ, |x| < 10,

25 cos(0.35(s − s0))
75−|x|

65 Θ, 10 ≤ |x| < 75,

0, |x| ≥ 75;

Θ = (cos θ2 cos θ1, cos θ2 sin θ1, sin θ2).

(7.1)

Here s0 is reference time, θ1 = 70◦, θ2 = 30◦. In this section the units of length are always
mm. The detector array is curved and passes through the isocenter. Pixel size on the detector
is 0.5 along columns and 10−3 radians along rows. The source trajectory is circular: x1 =
R cos s, x2 = R sin s, x3 = 0, and the source-to-isocenter distance is R = 600. There are
1000 projections per one rotation, 0 ≤ s < 2π. The time corresponding to projection 501 was
chosen as reference time: s0 = π. For motion estimation we used only the data corresponding
to the range of projections [101, 900]. The data are simulated using ray tracing as described,
e.g., in [18]. Following the common practice in medical imaging, we did not track the changes
in density due to motion (see, e.g., [3, 28]). This is equivalent to setting |∇ν| = 1 in (2.4).

The function Bf is computed on the 112 × 112 × 112 regular grid covering the cube
−75 ≤ xk ≤ 75, k = 1, 2, 3. To make the resulting algorithm as numerically efficient as
possible, we use the simplest version of the motion-compensated LT. To this end the derivative
∂2/∂q2 in (2.5) is replaced by the second derivative of the cone-beam data along detector rows.

Let Dl be a box-like region bounded by six neighboring planes (6.1). As is easily seen, the
values of Bf(x) for all x ∈ Dl depend only on the six parameters describing the deformation
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Figure 1. x1x2-cross-sections of the phantom at different times. Top left: at time corresponding to view
101. Top right: at time corresponding to view 900. Bottom: at reference time (view 501).

Figure 2. x1x3-cross-sections of the phantom at different times. Top left: at time corresponding to view
101. Top right: at time corresponding to view 900. Bottom: at reference time (view 501).
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Figure 3. x2x3-cross-sections of the phantom at different times. Top left: at time corresponding to view
101. Top right: at time corresponding to view 900. Bottom: at reference time (view 501).

of the six planes that form its boundary. Minimization of edge entropy uses this observation
and is done using the following approach.

Step 1. Let aik, i = 1, . . . Nk, k = 1, 2, 3, be the current best estimate of the motion
parameters. Let some Δa �= 0 be given. Pick one of the Dl’s. Let ai1k1 , . . . , ai6k6 be the six
parameters affecting the chosen region. Compute 36 subimages Bf(x), x ∈ Dl, corresponding
to the sets ãi1k1 , . . . , ãi6k6 , where each ãik equals either aik, or aik −Δa, or aik + Δa. Store
all the subimages on the disk, and repeat for all Dl’s.

Step 2. Run the loop over all 3N1+N2+N3 sets aik, i = 1, . . . Nk, k = 1, 2, 3, where each ãik
equals either aik, or aik−Δa, or aik+Δa. This is done by reading the appropriate subimages
from the disk and combining them into a single image of Bf(x), x ∈ D. Then compute edge
entropy for the obtained image. From the 3N1+N2+N3 sets of parameters find the one which
produces the image with the smallest entropy.

Steps 1 and 2 constitute a single iteration. The initial values of aik are chosen to be
zero (which is the no motion assumption). The value of Δa is chosen from some a priori
considerations. After the end of each iteration, the optimal set of parameters identified at
Step 2 is passed on to Step 1. Also, the value of Δa is decreased. In our experiments we used
Δainitial = 10, Δanew = 0.75Δaold, and three iterations were performed.

Results of experiments are shown in Figures 4 and 5. Figure 4 shows the initial image of
Bf computed under the (incorrect) assumption of no motion. Figure 5 shows the final image
of Bf computed for the motion model, which was determined by the algorithm. In these
experiments we used N1 = N2 = N3 = 4 (cf. (6.2)). We used κ = 0.0125 to compute edge
entropy. At the beginning of iterations (Figure 4) the value of entropy is 9.81%, and at the
end it is 8.40% (Figure 5).
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Figure 4. Left panel: density plots of Bf at the beginning of iterations, i.e., when zero motion is assumed.
Right panel: corresponding images of bright points. Top to bottom: cross-sections x1x2, x1x3, and x2x3 through
the center of the grid. Entropy 9.81%.

To illustrate another application of the proposed approach, we use it for solving a mis-
alignment correction problem in the case of a distorted circular scan. Suppose that under
the ideal circumstances the source trajectory is a circle. Suppose that because of mechanical
instabilities the actual trajectory is a distorted circle given by

(7.2) x1 = R cos s, x2 = R sin s, x3 =

N∑
n=1

cn cos(ns).

Here cn, n = 1, 2, . . . , N , are unknown and are to be determined from the tomographic data.
Suppose, for simplicity, that the detector always contains the x3-axis, its center has the same
x3-coordinate as the source, and it is perpendicular to the source-to-center line. Thus, the
detector moves along the x3-axis in the same way as the source. It is clear that, similarly
to the motion contaminated case, if the source trajectory is known with error, the edges
spread and the image looks more random. Consequently, the procedure outlined at the end of
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Figure 5. Left panel: density plots of Bf at the end of iterations. Right panel: corresponding images of
bright points. Top to bottom: cross-sections x1x2, x1x3, and x2x3 through the center of the grid. Entropy
8.40%.

section 6 applies here as well (with the optimization of the “motion model” replaced by the
optimization of the “trajectory model”). In our numerical experiment we used the same seven-
ball phantom as before (only it is not moving now) and took N = 5 with c1 = c3 = c5 = 5,
c2 = c4 = −5. Other parameters, i.e., source-to-isocenter distance R and size of reconstruction
grid, were the same as in the first experiment. As initial approximation all ci’s were taken to
be zero. Optimization was done using the Nelder–Mead simplex algorithm [23]. At the end
of iterations the computed constants were 3.58,−5.87, 4.81,−5.36, 4.52. Initial entropy was
equal to 20.1%, and at the end of iterations it was 8.44%. See Figure 6 for the density plots
of Bf .

In the case of noise-free (or low-noise) data, the algorithm based on LT as outlined above
works well. If data are sufficiently noisy, the proposed scheme is unstable. Indeed, to compute
the LT function we differentiate the data two times. Then, to find bright pixels, we differentiate
the image one more time. To make the algorithm more robust, observe that instead of ∂2/∂q2

in (2.5) we can use almost any even convolution kernel which preserves singular support. It
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Figure 6. Left panel: density plots of Bf at the beginning of iterations, i.e., when a pure circular trajectory
is assumed (entropy 20.1%). Right panel: density plots of Bf at the end of iterations (entropy 8.44%). Top to
bottom: cross-sections x1x2, x1x3, and x2x3 through the center of the grid.

was found empirically that convolving the tomographic data along data rows with the kernel,
whose frequency characteristic is given by |λ|0.2, produces good results. In Figure 7 (left and
middle panels), we see the LT images and the results of bright pixel detection using the filter
∂2/∂q2 in (2.5) in the case of (erroneous assumption of) zero motion in the data. The right
panel of Figure 7 shows the results of bright pixel detection using the new filter. As is seen,
the latter is much less noisy than the former.

In Figure 8 we see the reconstructions at the end of iterative motion estimation. The
left panel shows the intermediate “local” tomography image, and the middle panel shows the
results of bright pixel detection. Note that these images are computed from the noisy data in
the process of iterations and correspond to the motion model with the least edge entropy. Even
though the filter is no longer local, we keep using the name “local tomography” to emphasize
the fact that we still do not reconstruct density values (as opposed to conventional “global
tomography”). To better illustrate our results we computed the traditional LT function from
the noise-free data using the computed motion model; see the right panel. It is clearly seen
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Figure 7. Left panel: density plots of Bf at the beginning of iterations based on ∂2/∂q2. Middle panel:
the results of bright pixel detection using the LT function on the left. Right panel: the results of bright pixel
detection using the LT function based on the new filter, entropy 8.82%.

from these images that the edges are now much less spread out than they were at the beginning
of iterations.

8. Discussion. In this paper we study LT in the motion contaminated case. It is shown
that, microlocally, away from some critical directions, LT is equivalent to a pseudodifferential
operator of order one. LT also produces nonlocal artifacts that are of the same strength as
useful singularities. As opposed to the static case (cf. [17]), here it is not possible to choose the
direction of differentiation to reduce the strength of the artifact by one order in the scale of
Sobolev spaces. On the other hand, if motion is sufficiently small, it is expected that choosing
Θ as in (2.31), which is analogous to what was done in [17] (compare (2.32) with (2.11) in [17]),
may help reduce the artifacts. Finding the optimal direction of differentiation should be the
subject of future work. Then we consider the case when motion is not accurately known.
It is shown that when a singularity is seen from two different source positions, it spreads
in different directions. A single edge becomes a double edge. Based on this observation we
propose an algorithm for motion estimation. The algorithm is quite flexible and is used for
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Figure 8. Left panel: density plots of Bf at the end of iterations based on the new filter. Middle panel:
the results of bright pixel detection using the LT function on the left, entropy 7.56%. Right panel: classical
motion-compensated LT function using the estimated motion model and noise-free data (for illustration purposes
only).

solving the misalignment correction problem. The results of numerical experiments are very
encouraging. More detailed testing of the algorithm with respect to noise in the data, strength
of motion in the object, etc., as well as optimization of the computational efficiency will be
the subject of future work. We also plan to study the role of the function ϕ in (2.5). If the
support of ϕ(s, x) in s is sufficiently short, the simple motion model, which is linear in s (see
section 6.1), approximates the real motion sufficiently well. On the other hand, there could
be too few “double edges” to perform robust motion estimation. Increasing the support of
ϕ may lead to more “double edges,” but the linear motion model may become less accurate.
The optimal ϕ should be determined on a case-by-case basis.
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