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Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem∗

E. Katsevich†, A. Katsevich‡, and A. Singer§

Abstract. In cryo-electron microscopy (cryo-EM), a microscope generates a top view of a sample of randomly
oriented copies of a molecule. The problem of single particle reconstruction (SPR) from cryo-EM is
to use the resulting set of noisy two-dimensional projection images taken at unknown directions to
reconstruct the three-dimensional (3D) structure of the molecule. In some situations, the molecule
under examination exhibits structural variability, which poses a fundamental challenge in SPR. The
heterogeneity problem is the task of mapping the space of conformational states of a molecule. It has
been previously suggested that the leading eigenvectors of the covariance matrix of the 3D molecules
can be used to solve the heterogeneity problem. Estimating the covariance matrix is challenging,
since only projections of the molecules are observed, but not the molecules themselves. In this paper,
we formulate a general problem of covariance estimation from noisy projections of samples. This
problem has intimate connections with matrix completion problems and high-dimensional principal
component analysis. We propose an estimator and prove its consistency. When there are finitely
many heterogeneity classes, the spectrum of the estimated covariance matrix reveals the number of
classes. The estimator can be found as the solution to a certain linear system. In the cryo-EM case,
the linear operator to be inverted, which we term the projection covariance transform, is an impor-
tant object in covariance estimation for tomographic problems involving structural variation. Invert-
ing it involves applying a filter akin to the ramp filter in tomography. We design a basis in which this
linear operator is sparse and thus can be tractably inverted despite its large size. We demonstrate via
numerical experiments on synthetic datasets the robustness of our algorithm to high levels of noise.

Key words. cryo-electron microscopy, X-ray transform, inverse problems, structural variability, classification,
heterogeneity, covariance matrix estimation, principal component analysis, high-dimensional statis-
tics, Fourier projection slice theorem, spherical harmonics

AMS subject classifications. 92C55, 44A12, 92E10, 68U10, 33C55, 62H30, 62J10
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1. Introduction.

1.1. Covariance matrix estimation from projected data. Covariance matrix estimation
is a fundamental task in statistics. Statisticians have long grappled with the problem of
estimating this statistic when the samples are only partially observed. In this paper, we
consider this problem in the general setting where “partial observations” are arbitrary linear
projections of the samples onto a lower-dimensional space.
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COVARIANCE MATRIX ESTIMATION IN CRYO-EM 127

Problem 1.1. Let X be a random vector on C
p, with E[X] = μ0 and Var(X) =

Σ0 (Var[X] denotes the covariance matrix of X). Suppose also that P is a random q× p ma-
trix with complex entries, and E is a random vector in C

q with E[E] = 0 and Var[E] = σ2Iq.
Finally, let I denote the random vector in C

q given by

(1.1) I = PX +E.

Assume now that X, P , and E are independent. Estimate μ0 and Σ0 given observations
I1, . . . , In and P1, . . . , Pn of I and P , respectively.

Here, and throughout this paper, we write random quantities in boldface to distinguish
them from deterministic quantities. We use regular font (e.g., X) for vectors and matrices,
calligraphic font (e.g., X ) for functions, and script font for function spaces (e.g., B). We
denote true parameter values with a subscript of zero (e.g., μ0), estimated parameter values
with a subscript of n (e.g., μn), and generic variables with no subscript (e.g., μ).

Problem 1.1 is quite general, and has many practical applications as special cases. The
main application this paper addresses is the heterogeneity problem in single particle recon-
struction (SPR) from cryo-electron microscopy (cryo-EM). SPR from cryo-EM is an inverse
problem where the goal is to reconstruct a three-dimensional (3D) molecular structure from
a set of its two-dimensional (2D) projections from random directions [12]. The heterogene-
ity problem deals with the situation in which the molecule to be reconstructed can exist in
several structural classes. In the language of Problem 1.1, X represents a discretization of
the molecule (random due to heterogeneity), Ps the 3D-to-2D projection matrices, and Is the
noisy projection images. The goal of this paper is to estimate the covariance matrix associated
with the variability of the molecule. If there is a small, finite number (C) of classes, then Σ0

has low rank (C − 1). This ties the heterogeneity problem to principal component analysis
(PCA) [40]. If Σ0 has eigenvectors V1, . . . , Vp (called principal components) corresponding
to eigenvalues λ1 ≥ · · · ≥ λp, then PCA states that Vi accounts for a variance of λi in the
data. In modern applications, the dimensionality p is often large, while X typically has much
fewer intrinsic degrees of freedom [11]. The heterogeneity problem is an example of such a
scenario; for this problem, we demonstrate later that the top principal components can be
used in conjunction with the images to reconstruct each of the C classes.

Another class of applications closely related to Problem 1.1 is missing data problems in
statistics. In these problems, X1, . . . ,Xn are samples of a random vector X. The statistics of
this random vector must be estimated in a situation where certain entries of the samples Xs

are missing [31]. This amounts to choosing Ps to be coordinate-selection operators, operators
which output a certain subset of the entries of a vector. An important problem in this category
is PCA with missing data, which is the task of finding the top principal components when
some data are missing. Closely related to this is the noisy low rank matrix completion problem
[9]. In this problem, only a subset of the entries of a low rank matrix A are known (possibly
with some error), and the task is to fill in the missing entries. If we let Xs be the columns of
A, then the observed variables in each column are PsXs+ εs, where Ps acts on Xs by selecting
a subset of its coordinates, and εs is noise. Note that the matrix completion problem involves
filling in the missing entries of Xs, while Problem 1.1 requires us only to find the covariance
matrix of these columns. However, the two problems are closely related. For example, if the
columns are distributed normally, then the missing entries can be found as their expectations
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128 E. KATSEVICH, A. KATSEVICH, AND A. SINGER

conditioned on the known variables [51]. Alternatively, we can find the missing entries by
choosing the linear combinations of the principal components that best fit the known matrix
entries. A well-known application of matrix completion is in the field of recommender systems
(also known as collaborative filtering). In this application, users rate the products they have
consumed, and the task is to determine what new products they would rate highly. We
obtain this problem by interpreting Ai,j as the jth user’s rating of product i. In recommender
systems, it is assumed that only a few underlying factors determine users’ preferences. Hence,
the data matrix A should have low rank. A high profile example of recommender systems is
the Netflix prize problem [6].

In both of these classes of problems, Σ0 is large but should have low rank. Despite this,
note that Problem 1.1 does not have a low rank assumption. Nevertheless, as our numerical
results demonstrate, the spectrum of our (unregularized) covariance matrix estimator reveals
low rank structure when it is present in the data. Additionally, the framework we develop in
this paper naturally allows for regularization.

Having introduced Problem 1.1 and its applications, let us delve more deeply into one
particular application: SPR from cryo-EM.

1.2. Cryo-electron microscopy. Electron microscopy is an important tool for structural
biologists, as it allows them to determine complex 3D macromolecular structures. A general
technique in electron microscopy is called SPR. In the basic setup of SPR, the data collected
are 2D projection images of ideally assumed identical, but randomly oriented, copies of a
macromolecule. In particular, one specimen preparation technique used in SPR is called
cryo-EM, in which the sample of molecules is rapidly frozen in a thin ice layer [12, 63].
The electron microscope provides a top view of the molecules in the form of a large image
called a micrograph. The projections of the individual particles can be picked out from the
micrograph, resulting in a set of projection images. Mathematically, we can describe the
imaging process as follows. Let X : R3 → R represent the Coulomb potential induced by the
unknown molecule. We scale the problem to be dimension-free in such a way that most of
the “mass” of X lies within the unit ball B ⊂ R

3 (since we later model X to be bandlimited,
we cannot quite assume it is supported in B). To each copy of this molecule corresponds a
rotation R ∈ SO(3), which describes its orientation in the ice layer. The idealized forward
projection operator P = P(R) : L1(R3) → L1(R2) applied by the microscope is the X-ray
transform

(1.2) (PX )(x, y) =

∫
R

X (RT r)dz,

where r = (x, y, z)T . Hence, P first rotates X by R, and then integrates along vertical lines to
obtain the projection image. The microscope yields the image PX , discretized onto an N×N
Cartesian grid, where each pixel is also corrupted by additive noise. Let there be q ≈ π

4N
2

pixels contained in the inscribed disc of an N ×N grid (the remaining pixels contain little or
no signal because X is concentrated in B). If S : L1(R2) → R

q is a discretization operator,
then the microscope produces images I given by

(1.3) I = SPX +E
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COVARIANCE MATRIX ESTIMATION IN CRYO-EM 129

with E ∼ N (0, σ2Iq), where for the purposes of this paper we assume additive white Gaussian
noise. The microscope has an additional blurring effect on the images, a phenomenon we will
discuss shortly, but will leave out of our model. Given a set of images I1, . . . , In, the cryo-EM
problem is to estimate the orientations R1, . . . , Rn of the underlying volumes and reconstruct
X . Note that throughout this paper, we will use “cryo-EM” and “cryo-EM problem” as
shorthand for the SPR problem from cryo-EM images; we also use “volume” as a synonym
for “3D structure.”

The cryo-EM problem is challenging for several reasons. Unlike most other imaging modal-
ities of computerized tomography, the rotations Rs are unknown, so we must estimate them
before reconstructing X . This challenge is one of the major hurdles to reconstruction in cryo-
EM. Since the images are not perfectly centered, they also contain in-plane translations, which
must be estimated as well. The main challenge in rotation estimation is that the projection
images are corrupted by extreme levels of noise. This problem arises because only low electron
doses can scan the molecule without destroying it. To an extent, this problem is mitigated
by the fact that cryo-EM datasets often have tens or even hundreds of thousands of images,
which makes the reconstruction process more robust. Another issue with transmission elec-
tron microscopy in general is that technically, the detector only registers the magnitude of the
electron wave exiting the specimen. Zernike realized in the 1940s that the phase information
could also be recovered if the images were taken out of focus [60]. While enabling measurement
of the full output of the microscope, this out-of-focus imaging technique produces images rep-
resenting the convolution of the true image with a point spread function (PSF). The Fourier
transform of the PSF is called the contrast transfer function (CTF). Thus the true images
are multiplied by the CTF in the Fourier domain to produce the output images. Hence, the
Ps operators in practice also include the blurring effect of a CTF. This results in a loss of
information at the zero crossings of the (Fourier-domain) CTF and at high frequencies [12].
In order to compensate for the former effect, images are taken with several different defocus
values, whose corresponding CTFs have different zero crossings.

The field of cryo-EM has recently seen a drastic improvement in detector technology. New
direct electron detector cameras have been developed, which, according to a recent article in
Science, have “unprecedented speed and sensitivity” [24]. This technology has enabled SPR
from cryo-EM to succeed on smaller molecules (up to size ∼150 kDa) and achieve higher
resolutions (up to 3Å) than before. Such high resolution allows tracing of the polypetide
chain and identification of residues in protein molecules [28, 3, 15, 34, 68]. Recently, single
particle methods have provided high resolution structures of the TRPV1 ion channel [30] and
of the large subunit of the yeast mitochondrial ribosome [1]. While X-ray crystallography
is still the imaging method of choice for small molecules, cryo-EM now holds the promise of
reconstructing larger, biomedically relevant molecules not amenable to crystallization.

The most common method for solving the basic cryo-EM problem is guessing an initial
structure and then performing an iterative refinement procedure, where iterations alternate
between (1) estimating the rotations of the experimental images by matching them with
projections of the current 3D model and (2) tomographic inversion producing a new 3D model
based on the experimental images and their estimated rotations [12, 61, 44]. There are no
convergence guarantees for this iterative scheme, and the initial guess can incur bias in the
reconstruction. An alternative is to estimate the rotations and reconstruct an accurate initial
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130 E. KATSEVICH, A. KATSEVICH, AND A. SINGER

Figure 1. Classical (left) and hybrid (right) states of 70S E. Coli ribosome (image source: [29]).

structure directly from the data. Such an ab initio structure is a much better initialization
for the iterative refinement procedure. This strategy helps avoid bias and reduce the number
of refinement iterations necessary to converge [70]. In the ab initio framework, rotations can
be estimated by one of several techniques (see, e.g., [55, 64] and references therein).

1.3. Heterogeneity problem. As presented above, a key assumption in the cryo-EM prob-
lem is that the sample consists of (rotated versions of) identical molecules. However, in many
datasets this assumption does not hold. Some molecules of interest exist in more than one
conformational state. For example, a subunit of the molecule might be present or absent, have
a few different arrangements, or be able to move continuously from one position to another.
These structural variations are of great interest to biologists, as they provide insight into the
functioning of the molecule. Unfortunately, standard cryo-EM methods do not account for
heterogeneous samples. New techniques must be developed to map the space of molecules in
the sample, rather than just reconstruct a single volume. This task is called the heterogene-
ity problem. A common case of heterogeneity is when the molecule has a finite number of
dominant conformational classes. In this discrete case, the goal is to provide biologists with
3D reconstructions of all these structural states. While cases of continuous heterogeneity are
possible, in this paper we mainly focus on the discrete heterogeneity scenario.

While we do not investigate the 3D rotation estimation problem in the heterogeneous case,
we conjecture that this problem can be solved without developing sophisticated new tools.
Consider, for example, the case when the heterogeneity is small, i.e., the volumes X1, . . . ,Xn

can be rotationally aligned so they are all close to their mean (in some norm). For example,
this property holds when the heterogeneity is localized (e.g., as in Figure 1). In this case,
one might expect that by first assuming homogeneity, existing rotation estimation methods
would yield accurate results. Even if the heterogeneity is large, an iterative scheme can be
devised to alternately estimate the rotations and conformations until convergence (though
this convergence is local, at best). Thus, in this publication, we assume that the 3D rotations
Rs (and in-plane translations) have already been estimated.

With the discrete heterogeneity and known rotations assumptions, we can formulate the
heterogeneity problem as follows.

Problem 1.2 (heterogeneity problem). Suppose a heterogeneous molecule can take on one of
C different states: X 1, . . . ,XC ∈ B, where B is a finite-dimensional space of bandlimited
functions (see section 3.2). Let Ω = {1, 2, . . . , C} be a sample space, and p1, . . . , pC probabili-
ties (summing to one) so that the molecule assumes state c with probability pc. Represent the
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COVARIANCE MATRIX ESTIMATION IN CRYO-EM 131

molecule as a random field X : Ω×R
3 → R, with

(1.4) P[X = X c] = pc, c = 1, . . . , C.

Let R be a random rotation with some distribution over SO(3), and define the corresponding
random projection P = P(R) (see (1.2)). Finally, E ∼ N (0, σ2Iq). Assume that X ,R,E are
independent. A random image of a particle is obtained via

(1.5) I = SPX +E,

where S : L1(R2) → R
q is a discretization operator. Given observations I1, . . . , In and

R1, . . . , Rn of I and R, respectively, estimate the number of classes C, the structures X c,
and the probabilities pc.

Note that SP|B is a (random) linear operator between finite-dimensional spaces, and so
it has a matrix version P : Rp → R

q, where p = dim B. If we let X be the random vector on
R
p obtained by expanding X in the basis for B, then we recover the equation I = PX +E

from Problem 1.1. Thus, the main factors distinguishing Problem 1.2 from Problem 1.1 are
that the former assumes a specific form for P and posits a discrete distribution on X. As we
discuss in section 4, Problem 1.2 can be solved by first estimating the covariance matrix as in
Problem 1.1, finding coordinates for each image with respect to the top eigenvectors of this
matrix, and then applying a standard clustering procedure to these coordinates.

One of the main difficulties of the heterogeneity problem is that, compared to usual SPR,
we must deal with an even lower effective signal-to-noise ratio (SNR). Indeed, the signal we
seek to reconstruct is the variation of the molecules around their mean, as opposed to the
mean volume itself. We propose a precise definition of SNR in the context of the heterogeneity
problem in section 7.1. Another difficulty is the indirect nature of our problem. Although
the heterogeneity problem is an instance of a clustering problem, it differs from usual such
problems in that we do not have access to the objects we are trying to cluster—only projections
of these objects onto a lower-dimensional space are available. This makes it challenging to
apply any standard clustering technique directly.

The heterogeneity problem is considered one of the most important problems in cryo-EM.
In his 2013 Solvay public lecture on cryo-EM, Dr. Joachim Frank emphasized the importance
of “the ability to obtain an entire inventory of coexisting states of a macromolecule from a
single sample” [13]. Speaking of approaches to the heterogeneity problem in a review article,
Frank discussed “the potential these new technologies will have in exploring functionally rele-
vant states of molecular machines” [14]. It is stressed there that much room for improvement
remains; current methods cannot automatically identify the number of conformational states
and have trouble distinguishing between similar conformations.

1.4. Previous work. Much work related to Problems 1.1 and 1.2 has already been done.
There is a rich statistical literature on the covariance estimation problem in the presence
of missing data, a special case of Problem 1.1. In addition, work on the low rank matrix
sensing problem (a generalization of matrix completion) is also closely related to Problem 1.1.
Regarding Problem 1.2, several approaches to the heterogeneity problem have been proposed
in the cryo-EM literature.
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1.4.1. Work related to Problem 1.1. Many approaches to covariance matrix estimation
from missing data have been proposed in the statistics literature [31]. The simplest approach
to dealing with missing data is to ignore the samples with any unobserved variables. Another
simple approach is called available case analysis, in which the statistics are constructed using
all the available values. For example, the (i, j) entry of the covariance matrix is constructed
using all samples for which the ith and jth coordinates are simultaneously observed. These
techniques work best under certain assumptions on the pattern of missing entries, and more
sophisticated techniques are preferred [31]. One of the most established such approaches is
maximum likelihood estimation (MLE). This involves positing a probability distribution on X
(e.g., multivariate normal) and then maximizing the likelihood of the observed partial data
with respect to the parameters of the model. Such an approach to fitting models from partial
observations was known as early as the 1930s, when Wilks used it for the case of a bivariate
normal distribution [66]. Wilks proposed to maximize the likelihood using a gradient-based
optimization approach. In 1977, Dempster, Laird, and Rubin introduced the expectation-
maximization (EM) algorithm [10] to solve maximum likelihood problems. The EM algorithm
is one of the most popular methods for solving missing data problems in statistics. Also, there
is a class of approaches to missing data problems called imputation, in which the missing values
are filled either by averaging the available values or through more sophisticated regression-
based techniques. Finally, see [32, 33] for other approaches to related problems.

Closely related to covariance estimation from missing data is the problem of PCA with
missing data. In this problem, the task is to find the leading principal components, and not
necessarily the entire covariance matrix. Not surprisingly, EM-type algorithms are popular for
this problem as well. These algorithms often search directly for the low rank factors. See [18]
for a survey of approaches to PCA with missing data. Closely related to PCA with missing
data is the low rank matrix completion problem. Many of the statistical methods discussed
above are also applicable to matrix completion. In particular, EM algorithms to solve this
problem are popular, e.g., [51, 27].

Another more general problem setup related to Problem 1.1 is the low rank matrix sensing
problem, which generalizes the low rank matrix completion problem. Let A ∈ R

p×n be an
unknown rank-k matrix, and let M : Rp×n → R

d be a linear map, called the sensing matrix.
We would like to find A, but we only have access to the (possibly noisy) data M(A). Hence,
the low rank matrix sensing problem can be formulated as follows [19]:

(1.6) minimize ‖M(A) − b‖ s.t. rank(A) ≤ k.

Note that when Σ0 is low rank, Problem 1.1 is a special case of the low rank matrix sensing
problem. Indeed, consider putting the unknown vectors X1, . . . ,Xn together as the columns
of a matrix A. The rank of this matrix is the number of degrees of freedom in X (in the
cryo-EM problem, this relates to the number of heterogeneity classes of the molecule). The
linear projections P1, . . . , Pn can be combined into one sensing matrix M acting on A. In this
way, our problem falls into the realm of matrix sensing.

One of the first algorithms for matrix sensing was inspired by the compressed sensing
theory [46]. This approach uses a matrix version of �1 regularization called nuclear norm
regularization. The nuclear norm is the sum of the singular values of a matrix, and is a
convex proxy for its rank. Another approach to this problem is alternating minimization,
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which decomposes A into a product of the form UV T and iteratively alternates between
optimizing with respect to U and V . The first proof of convergence for this approach was
given in [19]. Both the nuclear norm and alternating minimization approaches to the low rank
matrix sensing problem require a restricted isometry property on M for theoretical guarantees.

While the aforementioned algorithms are widely used, we believe they have limitations
as well. EM algorithms require postulating a distribution over the data and are susceptible
to getting trapped in local optima. Regarding the former point, Problem 1.1 avoids any
assumptions on the distribution of X, so our estimator should have the same property. Matrix
sensing algorithms (especially alternating minimization) often assume that the rank is known
in advance. However, there is no satisfactory statistical theory for choosing the rank. By
contrast, the estimator we propose for Problem 1.1 allows automatic rank estimation.

1.4.2. Work related to Problem 1.2. Several approaches to the heterogeneity problem
have been proposed. Here we give a brief overview of some of these approaches.

One approach is based on the notion of common lines. By the Fourier projection slice
theorem (see Theorem 3.1), the Fourier transforms of any two projection images of an object
will coincide on a line through the origin, called a common line. The idea of Shatsky et
al. [52] was to use common lines as a measure of how likely it is that two projection images
correspond to the same conformational class. Specifically, given two projection images and
their corresponding rotations, we can take their Fourier transforms and correlate them on
their common line. From there, a weighted graph of the images is constructed, with edges
weighted based on this common line measure. Then spectral clustering is applied to this
graph to classify the images. An earlier common lines approach to the heterogeneity problem
is described in [16].

Another approach is based on MLE. It involves positing a probability distribution over the
space of underlying volumes, and then maximizing the likelihood of the images with respect
to the parameters of the distribution. For example, Wang et al. [65] model the heterogeneous
molecules as a mixture of Gaussians and employ the EM algorithm to find the parameters. A
challenge with MLE approaches is that the resulting objective functions are nonconvex and
have a complicated structure. For more discussion of the theory and practice of maximum
likelihood methods, see [53] and [50], respectively. Also see [49] for a description of a software
package which uses maximum likelihood to solve the heterogeneity problem.

A third approach to the heterogeneity problem is to use the covariance matrix of the set of
original molecules. Penczek, Kimmel, and Spahn outline a bootstrapping approach in [43] (see
also [41, 42, 67, 29]). In this approach, one repeatedly takes random subsets of the projection
images and reconstructs 3D volumes from these samples. Then, one can perform PCA on this
set of reconstructed volumes, which yields a few dominant “eigenvolumes.” Penczek, Kimmel,
and Spahn propose to then produce mean-subtracted images by subtracting projections of the
mean volume from the images. The next step is to project each of the dominant eigenvolumes
in the directions of the images, and then obtain a set of coordinates for each image based on
its similarity with each of the eigenvolume projections. Finally, using these coordinates, this
resampling approach proceeds by applying a standard clustering algorithm such as K-means
to classify the images into classes.

While existing methods for the heterogeneity problem have their success stories, each suf-
fers from its own shortcomings: the common line approach does not exploit all the availableD
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information in the images, the maximum likelihood approach requires explicit a priori distribu-
tions and is susceptible to local optima, and the bootstrapping approach based on covariance
matrix estimation is a heuristic sampling method that lacks in theoretical guarantees.

Note that the above overview of the literature on the heterogeneity problem is not com-
prehensive. For example, very recently, an approach to the heterogeneity problem based on
normal mode analysis was proposed [20].

1.5. Our contribution. In this paper, we propose and analyze a covariance matrix esti-
mator Σn to solve the general statistical problem (Problem 1.1), and then apply this estimator
to the heterogeneity problem (Problem 1.2).

Our covariance matrix estimator has several desirable properties. First, we prove that the
estimator is consistent as n → ∞ for fixed p, q. Second, our estimator does not require a
prior distribution on the data, unlike MLE methods. Third, when the data have low intrinsic
dimension, our method does not require knowing the rank of Σ0 in advance. The rank can
be estimated from the spectrum of the estimated covariance matrix. This sets our method
apart from alternating minimization algorithms that search for the low rank matrix factors
themselves. Fourth, our estimator is given in closed form and its computation requires only a
single linear inversion.

To implement our covariance matrix estimator in the cryo-EM case, we must invert a
high-dimensional matrix Ln (see definition (2.8)). The size of this matrix is so large that
typically it cannot even be stored on a computer; thus, inverting Ln is the greatest practical
challenge we face. We consider two possibilities of addressing this challenge. In the primary
approach we consider, we replace Ln by its limiting operator L, which does not depend on
the rotations Rs and is a good approximation of Ln as long as these rotations are distributed
uniformly enough. We then carefully construct new bases for images and volumes to make
L a sparse, block diagonal matrix. While L has dimensions on the order of N6

res ×N6
res, this

matrix has only O(N9
res) total nonzero entries in the bases we construct, where Nres is the grid

size corresponding to the target resolution. These innovations lead to a practical algorithm
to estimate the covariance matrix in the heterogeneity problem. The second approach we
consider is an iterative inversion of Ln, which has a low storage requirement and avoids the
requirement of uniformly distributed rotations. We compare the complexities of these two
methods, and find that each has its strengths and weaknesses.

The limiting operator L is a fundamental object in tomographic problems involving vari-
ability, and we call it the projection covariance transform. The projection covariance transform
relates the covariance matrix of the imaged object to data that can be acquired from the pro-
jection images. Standard weighted back-projection tomographic reconstruction algorithms
involve application of the ramp filter to the data [38], and we find that the inversion of L
entails applying a similar filter, which we call the triangular area filter. The triangular area
filter has many of the same properties as the ramp filter, but reflects the slightly more intricate
geometry of the covariance estimation problem. The projection covariance transform is an
interesting mathematical object in its own right, and we begin studying it in this paper.

Finally, we numerically validate the proposed algorithm (the first algorithm discussed
above). We demonstrate this method’s robustness to noise on synthetic datasets by obtaining
a meaningful reconstruction of the covariance matrix and molecular volumes even at low SNR
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COVARIANCE MATRIX ESTIMATION IN CRYO-EM 135

levels. Excluding precomputations (which can be done once and for all), reconstructions for
10000 projection images of size 65 × 65 pixels takes fewer than five minutes on a standard
laptop computer.

The paper is organized as follows. In section 2, we construct an estimator for Problem 1.1,
state theoretical results about this estimator, and connect our problem to high-dimensional
PCA. In section 3, we specialize the covariance estimator to the heterogeneity problem and
investigate its geometry. In section 4, we discuss how to reconstruct the conformations once
we have estimated the mean and covariance matrix. In section 5, we discuss computational
aspects of the problem and construct a basis in which L is block diagonal and sparse. In
section 6, we explore the complexity of the proposed approach. In section 7, we present
numerical results for the heterogeneity problem. We conclude with a discussion of future
research directions in section 8. Appendices A, B, and C contain calculations and proofs.

2. An estimator for Problem 1.1.

2.1. Constructing an estimator. We define estimators μn and Σn through a general
optimization framework based on the model (1.1). As a first step, let us calculate the first-
and second-order statistics of I, conditioned on the observed matrix Ps for each s. Using the
assumptions in Problem 1.1, we find that

(2.1) E[I|P = Ps] = E[PX +E|P = Ps] = E[P |P = Ps]E[X] = Psμ0

and

(2.2) Var[I|P = Ps] = Var[PX|P = Ps] + Var[E] = PsΣ0P
H
s + σ2Iq.

Note that PH
s denotes the conjugate transpose of Ps.

Based on (2.1) and (2.2), we devise least-squares optimization problems for μn and Σn:

μn = argmin
μ

1

n

n∑
s=1

‖Is − Psμ‖2 ,(2.3)

Σn = argmin
Σ

1

n

n∑
s=1

∥∥(Is − Psμn)(Is − Psμn)
H − (PsΣP

H
s + σ2Ip)

∥∥2
F
.(2.4)

Here we use the Frobenius norm, which is defined by ‖A‖2F =
∑

i,j |Aij |2.
Note that these optimization problems do not encode any prior knowledge about μ0 or

Σ0. Since Σ0 is a covariance matrix, it must be positive semidefinite (PSD). As discussed
above, in many applications Σ0 is also low rank. The estimator Σn need not satisfy either
of these properties. Thus, regularization of (2.4) is an option worth exploring. Nevertheless,
here we only consider the unregularized estimator Σn. Note that in most practical problems,
we only are interested in the leading eigenvectors of Σn, and if these are estimated accurately,
then it does not matter if Σn is not PSD or low rank. Our numerical experiments show
that in practice, the top eigenvectors of Σn are indeed good estimates of the true principal
components for high enough SNR.

Note that we first solve (2.3) for μn, and then use this result in (2.4). This makes these
optimization problems quadratic in the elements of μ and Σ, and hence they can be solved by
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136 E. KATSEVICH, A. KATSEVICH, AND A. SINGER

setting the derivatives with respect to μ and Σ to zero. This leads to the following equations
for μn and Σn (see Appendix A for the derivative calculations):

1

n

(
n∑

s=1

PH
s Ps

)
μn =

1

n

n∑
s=1

PH
s Is =: bn,(2.5)

1

n

n∑
s=1

PH
s PsΣnP

H
s Ps =

1

n

n∑
s=1

PH
s (Is − Psμn)(Is − Psμn)

HPs − σ2
1

n

n∑
s=1

PH
s Ps =: Bn.(2.6)

When p = q and P = Ip, μn and Σn reduce to the sample mean and sample covariance matrix.
When P is a coordinate-selection operator (recall the discussion following the statement of
Problem 1.1), (2.5) estimates the mean by averaging all the available observations for each
coordinate, and (2.6) estimates each entry of the covariance matrix by averaging over all sam-
ples for which both coordinates are observed. These are exactly the available-case estimators
discussed in [31, section 3.4].

Observe that (2.5) requires inversion of the matrix

(2.7) An =
1

n

n∑
s=1

PH
s Ps,

and (2.6) requires inversion of the linear operator Ln : Cp×p → C
p×p defined by

(2.8) Ln(Σ) =
1

n

n∑
s=1

PH
s PsΣP

H
s Ps.

Since the Ps are drawn independently from P , the law of large numbers implies that

(2.9) An → A and Ln → L almost surely,

where the convergence is in the operator norm, and

(2.10) A = E[PHP ] and L(Σ) = E[PHPΣPHP ].

The invertibilities of A and L depend on the distribution of P . Intuitively, if P has a nonzero
probability of “selecting” any coordinate of its argument, then A will be invertible. If P has
a nonzero probability of “selecting” any pair of coordinates of its argument, then L will be
invertible. In this paper, we assume that A and L are invertible. In particular, we will find
that in the cryo-EM case, A and L are invertible if, for example, the rotations are sampled
uniformly from SO(3). Under this assumption, we will prove that An and Ln are invertible
with high probability for sufficiently large n. In the case when An or Ln are not invertible,
we cannot define estimators from the above equations, so we simply set them to zero. Since
the RHS quantities bn and Bn are noisy, it is also not desirable to invert An or Ln when these
matrices are nearly singular. Hence, we propose the following estimators:

(2.11) μn =

{
A−1

n bn if
∥∥A−1

n

∥∥ ≤ 2
∥∥A−1

∥∥ ,
0 otherwise;

Σn =

{
L−1
n (Bn) if

∥∥L−1
n

∥∥ ≤ 2
∥∥L−1

∥∥ ,
0 otherwise.

The factors of 2 are somewhat arbitrary; any α > 1 would do.
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Let us make a few observations about An and Ln. By inspection, An is symmetric and
PSD. We claim that Ln satisfies the same properties, with respect to the Hilbert space C

p×p

equipped with the inner product 〈A,B〉 = tr(BHA). Using the property tr(AB) = tr(BA),
we find that for any Σ1,Σ2,

〈Ln(Σ1),Σ2〉 = tr(ΣH
2 Ln(Σ1)) = tr

[
1

n

∑
s

ΣH
2 P

H
s PsΣ1P

H
s Ps

]

= tr

[
1

n

∑
s

PH
s PsΣ

H
2 P

H
s PsΣ1

]
= 〈Σ1, L(Σ2)〉 .

(2.12)

Thus, Ln is self-adjoint. Next, we claim that Ln is PSD. Indeed,

〈Ln(Σ),Σ〉 = tr(ΣHLn(Σ)) = tr

[
1

n

∑
s

ΣHPH
s PsΣP

H
s Ps

]

=
1

n

∑
s

tr[(PsΣP
H
s )H(PsΣP

H
s )] =

∑
s

1

n

∥∥PsΣP
H
s

∥∥2
F
≥ 0.

(2.13)

2.2. Consistency of µn and Σn. In this section, we state that under mild conditions
on P ,X,E, the estimators μn and Σn are consistent. Note that here, and throughout this
paper, ‖·‖ will denote the Euclidean norm for vectors and the operator norm for matrices.
Also, define

(2.14) |||Y |||j = E[‖Y − E[Y ]‖j ]1/j ,
where Y is a random vector.

Proposition 2.1. Suppose A (defined in (2.10)) is invertible, that ‖P ‖ is bounded almost
surely, and that |||X|||2, |||E|||2 <∞. Then, for fixed p, q we have

(2.15) E ‖µn − μ0‖ = O

(
1√
n

)
.

Hence, under these assumptions, μn is consistent.
Proposition 2.2. Suppose A and L (defined in (2.10)) are invertible, that ‖P ‖ is bounded

almost surely, and that there is a polynomial Q for which

(2.16) |||X|||j , |||E|||j ≤ Q(j), j ∈ N.

Then, for fixed p, q, we have

(2.17) E ‖Σn − Σ0‖ = O

(
Q(log n)√

n

)
.

Hence, under these assumptions, Σn is consistent.
Remark 2.3. The moment growth condition (2.16) on X and E is not very restrictive.

For example, bounded, subgaussian, and subexponential random vectors all satisfy (2.16)
with degQ ≤ 1 (see [62, sections 5.2 and 5.3]).

D
ow

nl
oa

de
d 

12
/0

6/
18

 to
 1

32
.1

70
.1

92
.7

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

138 E. KATSEVICH, A. KATSEVICH, AND A. SINGER

See Appendix B for the proofs of Propositions (2.1) and (2.2). We mentioned that μn
and Σn are generalizations of available-case estimators. Such estimators are known to be
consistent when the data are missing completely at random (MCAR). This means that the
pattern of missingness is independent of the (observed and unobserved) data. Accordingly,
in Problem 1.1, we assume that P and X are independent, a generalization of the MCAR
condition. The above propositions state that the consistency of μn and Σn also generalizes to
Problem 1.1.

2.3. Connection to high-dimensional PCA. While the previous section focused on the
“fixed p, large n” regime, in practice both p and n are large. Now, we consider the latter
regime, which is common in modern high-dimensional statistics. In this regime, we consider
the properties of the estimator Σn when Σ0 is low rank, and the task is to find its leading
eigenvectors. What is the relationship between the spectra of Σn and Σ0? Can the rank of Σ0

be deduced from that of Σn? To what extent do the leading eigenvectors of Σn approximate
those of Σ0? In the setting of (1.1) when P = Ip, the theory of high-dimensional PCA
provides insight into such properties of the sample covariance matrix (and thus of Σn). In
particular, an existing result gives the correlation between the top eigenvectors of Σn and Σ0

for given settings of SNR and p/n. It follows from this result that if the SNR is sufficiently
high compared to

√
p/n, then the top eigenvector of Σn is a useful approximation of the top

eigenvector of Σ0. If generalized to the case of nontrivial P , this result would be a useful
guide for using the estimator Σn to solve practical problems, such as Problem 1.2. In this
section, we first discuss the existing high-dimensional PCA literature, and then raise some
open questions about how these results generalize to the case of nontrivial P .

Given independently and identically distributed (i.i.d.) samples I1, . . . , In ∈ R
p from a

centered distribution I with covariance matrix Σ̃0 (called the population covariance matrix),
the sample covariance matrix Σ̃n is defined by

(2.18) Σ̃n =
1

n

n∑
s=1

IsI
H
s .

We use the new tilde notation because in the context of Problem 1.1, Σ̃0 is the signal-plus-
noise covariance matrix, as opposed to the covariance of the signal itself. High-dimensional
PCA is the study of the spectrum of Σ̃n for various distributions of I in the regime where
n, p→ ∞ with p/n→ γ.

The first case to consider is X = 0, i.e., I = E, where E ∼ N (0, σ2Ip). In a landmark
paper, Marc̆enko and Pastur [35] proved that the spectrum of Σ̃n converges to the Marc̆enko–
Pastur (MP) distribution, which is parameterized by γ and σ2:

(2.19) MP (x) =
1

2πσ2

√
(γ+ − x)(x− γ−)

γx
1[γ−,γ+], γ± = σ2(1±√

γ)2.

The above formula assumes γ ≤ 1; a similar formula governs the case γ > 1. Note that there
are much more general statements about classes of I for which this convergence holds; see,
e.g., [54]. See Figure 2(a) for MP distributions with a few different parameter settings.

Johnstone [21] took this analysis a step further and considered the limiting distribution of
the largest eigenvalue of Σ̃n. He showed that the distribution of this eigenvalue converges to
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Figure 2. Illustrations of high-dimensional PCA.

the Tracy–Widom distribution centered on the right edge of the MP spectrum. In the same
paper, Johnstone considered the spiked covariance model, in which

(2.20) I = X +E,

where E is as before and Σ0 = Var[X] = diag(τ21 , . . . , τ
2
r , 0, . . . , 0), so that the population

covariance matrix is Σ̃0 = diag(τ21 + σ2, . . . , τ2r + σ2, σ2, . . . , σ2). Here, X is the signal and
E is the noise. In this view, the goal is to accurately recover the top r eigenvectors, as these
will determine the subspace on which X is supported. The question then is the following:
for what values of τ1, . . . , τr will the top r eigenvectors of the sample covariance matrix be
good approximations to the top eigenvectors of the population covariance? Since we might
not know the value of r a priori, it is important to first determine for what values of τ1, . . . , τr
we can detect the presence of “spiked” population eigenvalues. In [5], the spectrum of the
sample covariance matrix in the spiked model was investigated. It was found that the bulk of
the distribution still obeys the MP law, whereas for each k such that

(2.21)
τ2k
σ2

≥ √
γ,

the sample covariance matrix will have an eigenvalue tending to (τ2k +σ
2)(1+ σ2

τ2k
γ). The signal

eigenvalues below this threshold tend to the right edge of the noise distribution. Thus, (2.21)
defines a criterion for detection of signal. In Figure 2(b), we illustrate these results with a
numerical example. We choose p = 800, n = 4000, and a spectrum corresponding to r = 3,
with τ1, τ2 above, but τ3 below, the threshold corresponding to γ = p/n = 0.2. Figure 2(b)
is a normalized histogram of the eigenvalues of the sample covariance matrix. The predicted
MP distribution for the bulk is superimposed. We see that indeed we have two eigenvalues
separated from this bulk. Moreover, the eigenvalue of Σ̃n corresponding to τ3 does not pop
out of the noise distribution.

It is also important to compare the top eigenvectors of the sample and population covari-
ance matrices. Considering the simpler case of a spiked model with r = 1, [4, 37] showed a
“phase transition” effect: as long as τ1 is above the threshold in (2.21), the correlation of the
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top eigenvector (VPCA) with the true principal component (V ) tends to a limit between 0 and
1:

(2.22) | 〈VPCA, V 〉 |2 →
1
γ
τ41
σ4 − 1

1
γ
τ41
σ4 +

τ21
σ2

.

Otherwise, the limiting correlation is zero. Thus, high-dimensional PCA is inconsistent. How-
ever, if τ21 /σ

2 is sufficiently high compared to
√
γ, then the top eigenvector of the sample

covariance matrix is still a useful approximation.
While all the statements made so far have concerned the limiting case n, p → ∞, similar

(but slightly more complicated) statements hold for finite n, p as well (see, e.g., [37]). Thus,
(2.21) has a practical interpretation. Again considering the case r = 1, note that the quantity
τ21 /σ

2 is the SNR. When faced with a problem of the form (2.20) with a given p and SNR, one
can determine how many samples one needs in order to detect the signal. If V represents a
spatial object as in the cryo-EM case, then p can reflect the resolution to which we reconstruct
V . Hence, if we have a dataset with a certain number of images n and a certain estimated
SNR, then (2.21) determines the resolution to which V can be reconstructed from the data.

This information is important to practitioners (e.g., in cryo-EM), but as of now, the above
theoretical results only apply to the case when P is trivial. Of course, moving to the case of
more general P brings additional theoretical challenges. For example, with nontrivial P , the
empirical covariance matrix of X is harder to disentangle from that of I, because the operator
Ln becomes nontrivial (see (2.6) and (2.8)). How can our knowledge about the spiked model
be generalized to the setting of Problem 1.1? We raise some open questions along these lines.

1. In what high-dimensional parameter regimes (in terms of n, p, q) is there hope to
detect and recover any signal from Σn? With the addition of the parameter q, the
traditional regime p ≈ n might no longer be appropriate. For example, in the random
coordinate-selection case with the (extreme) parameter setting q = 2, it is expected
that n = p2 log p samples are needed just for Ln to be invertible (by the coupon
collector problem).

2. In the case when there is no signal (X = 0), we have I = E. In this case, what is the
limiting eigenvalue distribution of Σn (in an appropriate parameter regime)? Is it still
the MP law? How does the eigenvalue distribution depend on the distribution of P ?
This is perhaps the first step towards studying the signal-plus-noise model.

3. In the no-signal case, what is the limiting distribution of the largest eigenvalue of Σn?
Is it still Tracy–Widom? How does this depend on n, p, q, and P ? Knowing this
distribution can provide p-values for signal detection, as is the case for the usual spiked
model (see [21, p. 303]).

4. In the full model (1.1), if X takes values in a low-dimensional subspace of Rp, is the
limiting eigenvalue distribution of Σn a bulk distribution with a few separated eigenval-
ues? If so, what is the generalization of the SNR condition (2.21) that would guarantee
separation of the top eigenvalues? What would these top eigenvalues be, in terms of
the population eigenvalues? Would there still be a phase-transition phenomenon in
which the top eigenvectors of Σn are correlated with the principal components as long
as the corresponding eigenvalues are above a threshold?
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Answering these questions theoretically would require tools from random matrix theory
such as the ones used by [21, 5, 37]. We do not attempt to address these issues in this paper,
but remark that such results would be very useful theoretical guides for practical applications
of our estimator Σn. Our numerical results show that the spectrum of the cryo-EM estimator
Σn has qualitative behavior similar to that of the sample covariance matrix.

At this point, we have concluded the part of our paper focused on the general properties
of the estimator Σn. Next, we move on to the cryo-EM heterogeneity problem.

3. Covariance estimation in cryo-EM heterogeneity problem. Now that we have exam-
ined the general covariance matrix estimation problem, let us specialize to the cryo-EM case.
In this case, the matrices P have a specific form: they are finite-dimensional versions of P
(defined in (1.2)). We begin by describing the Fourier-domain counterpart of P, which will
be crucial in analyzing the cryo-EM covariance estimation problem. Our Fourier transform
convention is

(3.1) f̂(ξ) =

∫
Rd

f(x)e−ix·ξdx, f(x) =
1

(2π)d

∫
Rd

f̂(ξ)eix·ξdξ.

The following classical theorem in tomography (see, e.g., [38] for a proof) shows that the
operator P takes on a simpler form in the Fourier domain.

Theorem 3.1 (Fourier projection slice theorem). Suppose Y ∈ L2(R3)∩L1(R3) and J : R2 →
R. Then

(3.2) PY = Ĵ ⇐⇒ P̂Ŷ = Ĵ ,

where P̂ : C(R3) → C(R2) is defined by

(3.3) (P̂Ŷ)
(
x̂
ŷ

)
= Ŷ (RT (x̂, ŷ, 0)T

)
= Ŷ (x̂R1 + ŷR2

)
.

Here, Ri is the ith row of R.
Hence, P̂ rotates a function by R and then restricts it to the horizontal plane ẑ = 0. If

we let ξ = (x̂, ŷ, ẑ), then another way of viewing P̂ is that it restricts a function to the plane
ξ ·R3 = 0.

3.1. Infinite-dimensional heterogeneity problem. To build intuition for the Fourier-
domain geometry of the heterogeneity problem, consider the following idealized scenario, tak-
ing place in Fourier space. Suppose detector technology improves to the point that images
can be measured continuously and noiselessly and that we have access to the full joint distri-
bution of R and Î. We would like to estimate the mean m̂0 : R

3 → C and covariance function
Ĉ0 : R3 × R

3 → C of the random field X̂ , defined by

(3.4) m̂0(ξ) = E[X̂ (ξ)], Ĉ0(ξ1, ξ2) = E[(X̂ (ξ1)− m̂0(ξ1))(X̂ (ξ2)− m̂0(ξ2))].

Heuristically, we can proceed as follows. By the Fourier projection slice theorem, every image
Î provides an observation of X̂ (ξ) for ξ ∈ R

3 belonging to a central plane perpendicular to
the viewing direction corresponding to Î. By abuse of notation, let ξ ∈ Î if Î carries the value
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of X̂ (ξ), and let Î(ξ) denote this value. Informally, we expect that we can recover m̂0 and Ĉ0
via
(3.5)

m̂0(ξ) = E[Î(ξ) | ξ ∈ Î ], Ĉ0(ξ1, ξ2) = E[(Î(ξ1)− m̂0(ξ1))(Î(ξ2)− m̂0(ξ2)) | ξ1, ξ2 ∈ Î].

Now, let us formalize this problem setup and intuitive formulas for m̂0 and Ĉ0.
Problem 3.2. Let X̂ : Ω×R

3 → C be a random field, where (Ω,F , ν) is a probability space.
Here X̂ (ω, ·) is a Fourier volume for each ω ∈ Ω. Let R : Ω → SO(3) be a random rotation,
independent of X̂ , having the uniform distribution over SO(3). Let P̂ = P̂(R) be the (random)
projection operator associated with R via (3.3). Define the random field Î : Ω× R

2 → C by

(3.6) Î = P̂X̂ .

Given the joint distribution of Î and R, find the mean m̂0 and covariance function Ĉ0 of X̂ ,
defined in (3.4). Let X̂ be regular enough that

(3.7) m̂0 ∈ C∞
0 (R3), Ĉ0 ∈ C∞

0 (R3 × R
3).

In this problem statement, we do not assume that X̂ has a discrete distribution. The
calculations that follow hold for any X̂ satisfying (3.7).

We claim that m̂0 and Ĉ0 can be found by solving

(3.8) Â(m̂0) := E[P̂∗P̂ ]m̂0 = E[P̂∗Î ]

and

(3.9) L̂(Ĉ0) := E[P̂∗P̂ Ĉ0P̂∗P̂ ] = E[P̂∗(Î − P̂m̂0)(Î − P̂m̂0)
∗P̂],

equations whose interpretations we shall discuss in this section. Note that (3.8) and (3.9) can
be seen as the limiting cases of (2.5) and (2.6) for σ2 = 0, p→ ∞, and n→ ∞.

In the equations above, we define P̂∗ : C∞
0 (R2) → C∞

0 (R3)′ by 〈P̂∗Ĵ , Ŷ〉 := 〈Ĵ , P̂Ŷ〉L2(R2),

where Ĵ ∈ C∞
0 (R2), Ŷ ∈ C∞

0 (R3), and C∞
0 (R3)′ is the space of continuous linear functionals

on C∞
0 (R3). Thus, both sides of (3.8) are elements of C∞

0 (R3)′. To verify this equation, we
apply both sides to a test function Ŷ:

〈
E[P̂∗Î ], Ŷ

〉
= E

[〈
Î , P̂Ŷ

〉
L2(R2)

]
= E

[
E

[〈
Î, P̂Ŷ

〉
L2(R2)

∣∣∣∣ P̂
]]

= E

[〈
P̂m̂0, P̂Ŷ

〉
L2(R2)

]
=
〈
E[P̂∗P̂m̂0], Ŷ

〉
.

(3.10)

Note that 〈
P̂∗P̂m̂, Ŷ

〉
=
〈
P̂m̂, P̂Ŷ

〉
L2(R2)

=

∫
R2

m̂(x̂R1 + ŷR2)Ŷ(x̂R1 + ŷR2)dx̂dŷ

=

∫
R3

m̂(ξ)Ŷ(ξ)δ(ξ · R3)dξ,

(3.11)
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from which it follows that in the sense of distributions,

(3.12) (P̂∗P̂m̂)(ξ) = m̂(ξ)δ(ξ ·R3).

Intuitively, this means that P̂∗P̂ inputs the volume m̂ and outputs a “truncated” volume that
coincides with m̂ on a plane perpendicular to the viewing angle and is zero elsewhere. This
reflects the fact that the image Î = P̂X̂ only gives us information about X̂ on a single central
plane. When we aggregate this information over all possible R, we obtain the operator Â:

Âm̂(ξ) = E[m̂(ξ)δ(ξ ·R3)] = m̂(ξ)
1

4π

∫
S2

δ(ξ · θ)dθ

=
m̂(ξ)

|ξ|
1

4π

∫
S2

δ

(
ξ

|ξ| · θ
)
dθ =

m̂(ξ)

2|ξ| .
(3.13)

We used the fact that R3 is uniformly distributed over S2 if R is uniformly distributed over
SO(3). Here, dθ is the surface measure on S2 (hence the normalization by 4π). The last step
holds because the integral over S2 is equal to the circumference of a great circle on S2, so it
is 2π.

By comparing (3.8) and (2.7), it is clear that Â is the analogue of Ân for infinite n and p.
Also, (3.8) echoes the heuristic formula (3.5). The backprojection operator P̂∗ simply “inserts”
a 2D image into 3D space by situating it in the plane perpendicular to the viewing direction of
the image, and so the RHS of (3.8) at a point ξ is the accumulation of values Î(ξ). Moreover,
the operator Â is diagonal, and for each ξ, Â reflects the measure of the set ξ ∈ Î; i.e., the
density of central planes passing through ξ under the uniform distribution of rotations. Thus,
(3.8) encodes the intuition from the first equation in (3.5). Inverting Â involves multiplying
by the radial factor 2|ξ|. In tomography, this factor is called the ramp filter [38]. Traditional
tomographic algorithms proceed by applying the ramp filter to the projection data and then
backprojecting. Note that solving 1

2|ξ|m̂0(ξ) = E[P̂∗Î ] implies performing these operations in
the reverse order; however, backprojection and application of the ramp filter commute.

Now we move on to (3.9). Both sides of this equation are continuous linear functionals
on C∞

0 (R3) × C∞
0 (R3). Indeed, for Ŷ1, Ŷ2 ∈ C∞

0 (R3), the LHS of (3.9) operates on (Ŷ1, Ŷ2)
through the definition

(3.14) (P̂∗P̂ĈP̂∗P̂)(Ŷ1, Ŷ2) =
〈
Ĉ, (P̂∗P̂Ŷ1, P̂∗P̂Ŷ2)

〉
,

where we view Ĉ ∈ C∞
0 (R3 × R

3) as operating on pairs (η1, η2) of elements in C∞
0 (R3)′ via

(3.15)
〈
Ĉ, (η1, η2)

〉
:=

∫
R3×R3

η1(ξ1)η2(ξ2)Ĉ(ξ1, ξ2)dξ1dξ2.
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Using these definitions, we verify (3.9):

E[P̂∗(Î − P̂m̂0)(Î − P̂m̂0)
∗P̂ ](Ŷ1, Ŷ2)

:= E

[〈
P̂∗(Î − P̂m̂0), Ŷ1

〉〈
P̂∗(Î − P̂m̂0), Ŷ2

〉]

= E

[〈
P̂∗P̂Ŷ1, X̂ − m̂0

〉〈
P̂∗P̂Ŷ2, X̂ − m̂0

〉]

= E

[∫
R3×R3

P̂∗P̂Ŷ1(ξ1)(X̂ (ξ1)− m̂0(ξ1))P̂∗P̂Ŷ2(ξ2)(X̂ (ξ2)− m̂0(ξ2))dξ1dξ2

]

= E

[∫
R3×R3

P̂∗P̂Ŷ1(ξ1)Ĉ0(ξ1, ξ2)P̂∗P̂Ŷ2(ξ2)dξ1dξ2

]

= E

[〈
Ĉ0, (P̂∗P̂Ŷ1, P̂∗P̂Ŷ2)

〉]
= E

[
P̂∗P̂ Ĉ0P̂∗P̂(Ŷ1, Ŷ2)

]
.

(3.16)

Substituting (3.12) into the last two lines of the preceding calculation, we find

(3.17) (P̂∗P̂ĈP∗P̂)(ξ1, ξ2) = Ĉ(ξ1, ξ2)δ(ξ1 ·R3)δ(ξ2 · R3).

This reflects the fact that an image Î gives us information about Ĉ0(ξ1, ξ2) for ξ1, ξ2 ∈ Î.
Taking the expectation over R, we find that

(L̂Ĉ)(ξ1, ξ2) = E[Ĉ(ξ1, ξ2)δ(ξ1 ·R3)δ(ξ2 ·R3)]

= Ĉ(ξ1, ξ2) 1

4π

∫
S2

δ(ξ1 · θ)δ(ξ2 · θ)dθ =: Ĉ(ξ1, ξ2)K(ξ1, ξ2).
(3.18)

Like Â, the operator L̂ is diagonal. L̂ is a fundamental operator in tomographic inverse
problems involving variability; we term it the projection covariance transform. In the same
way that (3.8) reflected the first equation of (3.5), we see that (3.9) resembles the second
equation of (3.5). In particular, the kernel value K(ξ1, ξ2) reflects the density of central planes
passing through ξ1, ξ2.

To understand this kernel, let us compute it explicitly. We have

(3.19) K(ξ1, ξ2) =
1

4π

∫
S2

δ(ξ1 · θ)δ(ξ2 · θ)dθ.

For fixed ξ1, note that δ(ξ1 · θ) is supported on the great circle of S2 perpendicular to ξ1.
Similarly, δ(ξ2 · θ) corresponds to a great circle perpendicular to ξ2. Choose ξ1, ξ2 ∈ R

3

so that |ξ1 × ξ2| �= 0. Then, note that these two great circles intersect in two antipodal
points θ = ±(ξ1 × ξ2)/|ξ1 × ξ2|, and the RHS of (3.19) corresponds to the total measure of
δ(ξ1 · θ)δ(ξ2 · θ) at those two points.

To calculate this measure explicitly, let us define the approximation to the identity δε(t) =
1
2εχ[−ε,ε](t). Fix ε1, ε2 > 0. Note that δε1(ξ1 · θ) is supported on a strip of width 2ε1/|ξ1|
centered at the great circle perpendicular to ξ1. δε2(ξ2 · θ) is supported on a strip of width
2ε2/|ξ2| intersecting the first strip transversely. For small ε1, ε2, the intersection of the two
strips consists of two approximately parallelogram-shaped regions, S1 and S2 (see Figure 3).
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Figure 3. The triangular area filter. ξ1 induces a strip on S2 of width proportional to 1/|ξ1| (blue); ξ2
induces a strip of width proportional to 1/|ξ2| (red). The strips intersect in two parallelogram-shaped regions
(white), each with area proportional to 1/|ξ1 × ξ2|. Hence, K(ξ1, ξ2) is inversely proportional to the area of the
triangle spanned by ξ1, ξ2 (cyan).

The sine of the angle between the diagonals of each of these regions is |ξ1 × ξ2|/|ξ1||ξ2|, and
a simple calculation shows that the area of one of these regions is 2ε12ε2/|ξ1 × ξ2|. It follows
that

K(ξ1, ξ2) =
1

4π

∫
S2

δ(ξ1 · θ)δ(ξ2 · θ)dθ = lim
ε1,ε2→0

1

4π

∫
S2

δε1(ξ1 · θ)δε2(ξ2 · θ)dθ

= lim
ε1,ε2→0

1

4π

∫
S1∪S2

1

2ε1

1

2ε2
dθ = lim

ε1,ε2→0

1

4π
2

4ε1ε2
|ξ1 × ξ2|

1

2ε1

1

2ε2

=
1

4π

2

|ξ1 × ξ2| .

(3.20)

This analytic form of K sheds light on the geometry of L̂. Recall that K(ξ1, ξ2) is a measure
of the density of central planes passing through ξ1 and ξ2. Note that this density is nonzero
everywhere, which reflects the fact that there is a central plane passing through each pair of
points in R

3. The denominator in K is proportional to the magnitudes |ξ1| and |ξ2|, which
indicates that there is a greater density of planes passing through pairs of points nearer the
origin. Finally, note that K varies inversely with the sine of the angle between ξ1 and ξ2;
indeed, a greater density of central planes pass through a pair of points nearly collinear with
the origin. In fact, there is a singularity in K when ξ1, ξ2 are linearly dependent, reflecting the
fact that infinitely many central planes pass through collinear points. As a way to sum up the
geometry encoded in K, note that except for the factor of 1/4π, 1/K is the area of the triangle
spanned by the vectors ξ1 and ξ2. For this reason, we call 1/K the triangular area filter.

Note that the triangular area filter is analogous to the ramp filter: it grows linearly with
the frequencies |ξ1| and |ξ2| to compensate for the loss of high frequency information incurred
by the geometry of the problem. So, this filter is a generalization of the ramp filter appearing
in the estimation of the mean to the covariance estimation problem. The latter has a somewhat
more intricate geometry, which is reflected in K.

The properties of K translate into the robustness of inverting L̂ (supposing we added noise
to our model). In particular, the robustness of recovering Ĉ0(ξ1, ξ2) grows with K(ξ1, ξ2). ForD
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example, recovering higher frequencies in Ĉ0 is more difficult. However, the fact that K is
everywhere positive means that L̂ is at least invertible. This statement is important in proving
theoretical results about our estimators, as we saw in section 2.2. Note that an analogous
problem of estimating the covariance matrix of 2D objects from their one-dimensional line
projections would not satisfy this condition, because for most pairs of points in R

2, there is
not a line passing through both points as well as the origin.

3.2. The discrete covariance estimation problem. The calculation in the preceding sec-
tion shows that if we could sample images continuously and if we had access to projection
images from all viewing angles, then L̂ would become a diagonal operator. In this section,
we explore the modifications necessary for the realistic case where we must work with finite-
dimensional representations of volumes and images.

Our idea is to follow what we did in the fully continuous case treated above and estimate
the covariance matrix in the Fourier domain. One possibility is to choose a Cartesian basis
in the Fourier domain. With this basis, a tempting way to define P̂s would be to restrict the
Fourier 3D grid to the pixels of a 2D central slice by nearest-neighbor interpolation. This would
make P̂s a coordinate-selection operator, making L̂n diagonal. However, this computational
simplicity comes at a great cost in accuracy; numerical experiments show that the errors
induced by such a coarse interpolation scheme are unacceptably large. Such an interpolation
error should not come as a surprise, considering similar interpolation errors in computerized
tomography [38]. Hence, we must choose other bases for the Fourier volumes and images.

The finite sampling rate of the images limits the 3D frequencies we can hope to reconstruct.
Indeed, since the images are sampled on an N × N grid confining a disc of radius 1, the
corresponding Nyquist bandlimit is ωNyq = Nπ/2. Hence, the images carry no information
past this 2D bandlimit. By the Fourier slice theorem, this means that we also have no
information about X past the 3D bandlimit ωNyq. In practice, the exponentially decaying
envelope of the CTF function renders even fewer frequencies possible to reconstruct. Moreover,
we saw in section 3.1 and will see in section 6.2 that reconstruction of Σ0 becomes more ill-
conditioned as the frequency increases. Hence, it often makes sense to take a cutoff ωmax <
ωNyq. We can choose ωmax to correspond to an effective grid size of Nres pixels, where Nres ≤
N . In this case, we would choose ωmax = Nresπ/2. Thus, it is natural to search for X in
a space of functions bandlimited in Bωmax (the ball of radius ωmax) and with most of their
energy contained in the unit ball. The optimal space B with respect to these constraints is
spanned by a finite set of 3D Slepian functions [56]. For a given bandlimit ωmax, we have

(3.21) p = dim(B) =
2

9π
ω3
max.

This dimension is called the Shannon number, and is the trace of the kernel in [56, eq. 6].
For the purposes of this section, let us work abstractly with the finite-dimensional spaces

V̂ ⊂ C0(Bωmax) and Î ⊂ C0(Dωmax), which represent Fourier volumes and Fourier images,
respectively (Dωmax ⊂ R

2 is the disc of radius ωmax). For example, V̂ could be spanned by
the Fourier transforms of the 3D Slepian functions. Let

(3.22) V̂ = span{ĥj}, Î = span{ĝi}D
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with dim(V̂ ) = p̂ and dim(Î ) = q̂. Assume that for all R, P̂(V̂ ) ⊂ Î (i.e., we do not need
to worry about interpolation). Denote by P̂ the matrix expression of P̂|V̂ . Thus, P̂ ∈ C

q̂×p̂.

Let X̂1, . . . , X̂n be the representations of X̂1, . . . , X̂n in the basis for V̂ .
Since we are given the images Is in the pixel basis R

q, let us consider how to map these
images into Î . Let Q1 : Rq → Î be the mapping which fits (in the least-squares sense) an
element of Î to the pixel values defined by a vector in R

q. It is easiest to express Q1 in terms
of the reverse mapping Q2 : Î → R

q. The ith column of Q2 consists of the evaluations of
gi at the real-domain grid points inside the unit disc. It is easy to see that the least-squares
method of defining Q1 is Q1 = Q+

2 = (QH
2 Q2)

−1QH
2 .

Now, note that

(3.23) I = SPX +E ⇒ Q1I = Q1SPX +Q1E ≈ P̂ X̂ +Q1E.

The last approximate equality is due to the Fourier slice theorem. The inaccuracy comes from
the discretization operator S. Note that Var[Q1E] = σ2Q1Q

H
1 = σ2(QH

2 Q2)
−1. We would

like the latter matrix to be a multiple of the identity matrix so that the noise in the images
remains white. Let us calculate the entries of QH

2 Q2 in terms of the basis functions gi. Given
the fact that we are working with volumes hi which have most of their energy concentrated
in the unit ball, it follows that gi have most of their energy concentrated in the unit disc. If
x1, . . . , xq are the real-domain image grid points, it follows that

(QH
2 Q2)ij =

q∑
r=1

gi(xr)gj(xr) ≈ q

π

∫
|x|≤1

gi(x)gj(x)dx

≈ q

π
〈gi, gj〉L2(R2) =

q

π

1

(2π)2
〈ĝi, ĝj〉L2(R2).

(3.24)

It follows that in order for QH
2 Q2 to be (approximately) a multiple of the identity matrix, we

should require {ĝi} to be an orthonormal set in L2(R2). If we let cq = 4π3/q, then we find
that

(3.25) Q1Q
H
1 ≈ cqIq̂.

It follows that, if we make the approximations in (3.23) and (3.25), we can formulate the
heterogeneity problem entirely in the Fourier domain as follows:

(3.26) Î = P̂ X̂ + Ê,

where Var[Ê] = σ2cqIq̂. Thus, we have an instance of Problem (1.1) with σ2 replaced by σ2cq,

q replaced by q̂, and p replaced by p̂. We seek μ̂0 = E[X̂] and Σ̂0 = Var[X̂]. Equations (2.5)
and (2.6) become

(3.27) Ânμ̂n :=

(
1

n

n∑
s=1

P̂H
s P̂s

)
μ̂n =

1

n

n∑
s=1

P̂H
s Îs
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and

L̂nΣ̂n : =
1

n

n∑
s=1

P̂H
s P̂sΣ̂nP̂

H
s P̂s

=
1

n

n∑
s=1

P̂H
s (Îs − P̂sμ̂n)(Îs − P̂sμ̂n)

H P̂s − σ2cqÂn =: B̂n.

(3.28)

3.3. Exploring Â and L̂. In this section, we seek to find expressions for Â and L̂ like
those in (3.13) and (3.18). The reason for finding these limiting operators is twofold. First
of all, recall that the theoretical results in section 2.2 depend on the invertibility of these
limiting operators. Hence, knowing Â and L̂ in the cryo-EM case will allow us to verify the
assumptions of Propositions 2.1 and 2.2. Second, the law of large numbers guarantees that for
large n, we have Ân ≈ Â and L̂n ≈ L̂. We shall see in section 5 that approximating Ân and L̂n

by their limiting counterparts makes possible the tractable implementation of our algorithm.
In section 3.1, we worked with functions m̂ : R3 → C and Ĉ : R3 × R

3 → C. Now, we are
in a finite-dimensional setup, and we have formulated (3.27) and (3.28) in terms of vectors
and matrices. Nevertheless, in the finite-dimensional case we can still work with functions as
we did in section 3.1 via the identifications

(3.29) μ̂ ∈ C
p̂ ↔ m̂ =

p̂∑
i=1

μ̂iĥi ∈ V̂ , Σ̂ ∈ C
p̂×p̂ ↔ Ĉ =

p̂∑
i,j=1

Σ̂i,jĥi ⊗ ĥj ∈ V̂ ⊗ V̂ ,

where we define

(3.30) (ĥi ⊗ ĥj)(ξ1, ξ2) = ĥi(ξ1)ĥj(ξ2),

and V̂ ⊗ V̂ = span{ĥi ⊗ ĥj}. Thus, we identify C
p̂ and C

p̂×p̂ with spaces of bandlimited

functions. For these identifications to be isometries, we must endow V̂ with an inner product
for which the ĥi are orthonormal. We consider a family of inner products, weighted by radial
functions w(|ξ|):

(3.31)
〈
ĥi, ĥj

〉
L2
w(R3)

=

∫
R3

ĥi(ξ)ĥj(ξ)w(|ξ|)dξ = δij .

The inner product on V̂ ⊗ V̂ is inherited from that of V̂ .
Note that Ân and L̂n both involve the projection-backprojection operator P̂H

s P̂s. Let us
see how to express P̂H

s P̂s as an operator on V̂ . The ith column of P̂s is the representation of
P̂sĥi in the orthonormal basis for Î . Hence, using the isomorphism Ĉ

q̂ ↔ Î and reasoning
along the lines of (3.11), we find that

(3.32) (P̂H
s P̂s)i,j =

〈
P̂sĥi, P̂sĥj

〉
L2(R2)

=

∫
R3

ĥi(ξ)ĥj(ξ)δ(ξ ·R3
s)dξ.

Note that here and throughout this section, we perform manipulations (like those in sec-
tion 3.1) that involve treating elements of V̂ as test functions for distributions. We will
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ultimately construct V̂ so that its elements are continuous, but not in C∞
0 (R3), as assumed in

section 3.1. Nevertheless, since we are only dealing with distributions of order zero, continuity
of the elements of V̂ is sufficient.

From (3.32), it follows that if μ̂ ∈ C
p̂ ↔ m̂ ∈ V̂ , then

(P̂H
s P̂s)μ̂↔

p̂∑
i=1

ĥi

p̂∑
j=1

(P̂H
s P̂s)ij μ̂j =

p̂∑
i=1

ĥi

p̂∑
j=1

∫
R3

ĥi(ξ)μ̂jĥj(ξ)δ(ξ · R3
s)dξ

=

p̂∑
i=1

ĥi

∫
R3

(
m̂(ξ)δ(ξ ·R3

s)
)
ĥi(ξ)dξ

=: πV̂

(
m̂(ξ)δ(ξ · R3

s)
)
,

(3.33)

where πV̂ : C∞
0 (R3)′ → V̂ is defined via

(3.34) πV̂ (η) =
∑
i

ĥi

〈
η, ĥi

〉
, η ∈ C∞

0 (R3)′

is a projection onto the finite-dimensional subspace V̂ .
In analogy with (3.8), we have

Âμ̂↔ E
[
πV̂

(
m̂(ξ)δ(ξ ·R3)

)]
= πV̂

(
m̂(ξ)

2|ξ|
)
.(3.35)

Note Â resembles the operator Â obtained in (3.8), with the addition of the “low-pass filter”
πV̂ . As a particular choice of weight, one might consider w(|ξ|) = 1/|ξ| in order to cancel the
ramp filter. For this weight, note that

Âμ̂↔ πV̂

(
m̂(ξ)

2|ξ|
)

= πw
V̂

(
1

2
m̂(ξ)

)
=

1

2
m̂(ξ), w(|ξ|) = 1/|ξ|,(3.36)

where πw
V̂

is the orthogonal projection onto V̂ with respect to the weight w. Thus, for this

weight we find that Â = 1
2 Ip̂.

A calculation analagous to (3.33) shows that for Σ̂ ∈ C
p̂×p̂ ↔ Ĉ ∈ V̂ ⊗ V̂ ,

P̂H
s P̂sΣ̂P̂

H
s P̂s ↔ πV̂ ⊗V̂

(
Ĉ(ξ1, ξ2)δ(ξ1 ·R3

s)δ(ξ2 · R3
s)
)
.(3.37)

Then, taking the expectation over R3, we find that

L̂Σ̂ ↔ πV̂ ⊗V̂

(
Ĉ(ξ1, ξ2)K(ξ1, ξ2)

)
.(3.38)

This shows that between L̂ is linked to L̂ via the low-pass-filter πV̂ ⊗V̂ , which is defined
analogously to (3.34).
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3.4. Properties of Â and L̂. In this section, we will prove several results about Â and
L̂, defined in (3.35) and (3.38). We start by proving a useful lemma.

Lemma 3.3. For η ∈ C∞
0 (R3)′ and Ŷ ∈ V̂ , we have

(3.39)
〈
πV̂ η, Ŷ

〉
L2
w(R3)

=
〈
η, Ŷ

〉
.

Likewise, if η ∈ C∞
0 (R3 × R

3)′ and Ĉ ∈ V̂ ⊗ V̂ , we have

(3.40)
〈
πV̂ ⊗V̂ η, Ĉ

〉
L2
w(R3×R3)

=
〈
η, Ĉ

〉
.

Proof. Indeed, we have

〈
πV̂ η, Ŷ

〉
L2
w(R3)

=

p̂∑
i=1

〈
η, ĥi

〉〈
ĥi, Ŷ

〉
L2
w(R3)

=

〈
η,

p̂∑
i=1

〈
Ŷ, ĥi

〉
L2
w(R3)

ĥi

〉
=
〈
η, Ŷ

〉
.

(3.41)

The proof of the second claim is similar.
Note that Â and L̂ are self-adjoint and PSD because each Ân and L̂n satisfies this property.

In the next proposition, we bound the minimum eigenvalues of these two operators from below.
Proposition 3.4. Let Mw(ωmax) = max|ξ|≤ωmax

|ξ|w(|ξ|). Then,

(3.42) λmin(Â) ≥ 1

2Mw(ωmax)
, λmin(L̂) ≥ 1

2πM2
w(ωmax)

.

Proof. Let μ̂ ∈ C
p̂ ↔ m̂ ∈ V̂ . Using the isometry C

p̂ ↔ V̂ , Lemma 3.3, and (3.35), we
find

〈
Âμ̂, μ̂

〉
Cp̂

=

〈
πV̂

(
m̂

1

2|ξ|
)
, m̂

〉
L2
w(R3)

=

〈
m̂

1

2|ξ| , m̂
〉

=

∫
Bωmax

|m̂(ξ)|2 1

2|ξ|w(|ξ|)w(|ξ|)dξ ≥
1

2Mw(ωmax)
‖m̂‖2L2

w(R3) =
1

2Mw(ωmax)
‖μ̂‖2 .

(3.43)

The bound on the minimum eigenvalue of L̂ follows from a similar argument, using (3.38)
and the following bound:
(3.44)

min
ξ1,ξ2∈Bωmax

K(ξ1, ξ2)

w(|ξ1|)w(|ξ2|) = min
ξ1,ξ2∈Bωmax

1

2π|ξ1 × ξ2|w(|ξ1|)w(|ξ2|) ≥ 1

2πM2
w(ωmax)

.

By inspecting Mw(ωmax), we see that choosing w = 1/|ξ| leads to better conditioning of
both Â and L̂, as compared to w = 1. This is because the former weight compensates for
the loss of information at higher frequencies. We see from (3.36) that for w = 1/|ξ|, Â is
perfectly conditioned. This weight also cancels the linear growth of the triangular area filter

D
ow

nl
oa

de
d 

12
/0

6/
18

 to
 1

32
.1

70
.1

92
.7

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COVARIANCE MATRIX ESTIMATION IN CRYO-EM 151

with radial frequency. However, it does not cancel K altogether, since the dependency on sin γ
in the denominators in (3.44) remains, where γ is the angle between ξ1 and ξ2.

The maximum eigenvalue of L̂ cannot be bounded as easily, since the quotient in (3.44)
is not bounded from above. A bound on λmax(L̂) might be obtained by using the fact
that a bandlimited Ĉ can only be concentrated to a limited extent around the singular set
{ξ1, ξ2 : |ξ1 × ξ2| = 0}.

Finally, we prove another property of Â and L̂: they commute with rotations. Let us define
the group action of SO(3) on functions R3 → C as follows: for R ∈ SO(3) and Ŷ : R3 → C, let
R.Ŷ(ξ) = Ŷ(RT ξ). Likewise, define the group action of SO(3) on functions Ĉ : R3 × R

3 → C

via R.Ĉ(ξ1, ξ2) = Ĉ(RT ξ1, R
T ξ2).

Proposition 3.5. Suppose that the subspace V̂ is closed under rotations. Then, for any
Ŷ ∈ V̂ , Ĉ ∈ V̂ ⊗ V̂ , and R ∈ SO(3), we have

(3.45) R.(ÂŶ) = Â(R.Ŷ), R.(L̂Ĉ) = L̂(R.Ĉ),

where ÂŶ and L̂Ĉ are understood via the identifications (3.29).
Proof. We begin by proving the first half of (3.45). First of all, extend the group action

of SO(3) to the space C∞
0 (R3)′ via

(3.46)
〈
R.η, Ŷ

〉
:=
〈
η,R−1.Ŷ

〉
, Ŷ ∈ C∞

0 (R3).

We claim that for any η ∈ C∞
0 (R3)′, we have R.(πV̂ η) = πV̂ (R.η). Since V̂ is closed under

rotations, both sides of this equation are elements of V̂ . We can verify their equality by taking
an inner product with an arbitrary element Ŷ ∈ V̂ . Using Lemma 3.3 and the fact that V̂ is
closed under rotations, we obtain〈

R.(πV̂ η), Ŷ
〉
L2
w(R3)

=
〈
πV̂ η,R

−1.Ŷ
〉
L2
w(R3)

=
〈
η,R−1.Ŷ

〉
=
〈
R.η, Ŷ

〉
=
〈
πV̂ (R.η), Ŷ

〉
L2
w(R3)

.
(3.47)

Next, we claim that for any Ŷ ∈ V̂ , we have R.(ÂŶ) = Â(R.Ŷ). To check whether these two
elements of C∞

0 (R3)′ are the same, we apply them to a test function Ẑ ∈ C∞
0 (R3):

〈
R.(ÂŶ), Ẑ

〉
=
〈
ÂŶ, R−1.Ẑ

〉
=

∫
R3

Ŷ(ξ)

2|ξ| Ẑ(Rξ)dξ

=

∫
R3

Ŷ(RHξ)

2|ξ| Ẑ(ξ)dξ =
〈
Â(R.Ŷ), Ẑ

〉
.

(3.48)

Putting together what we have, we find that

(3.49) R.(ÂŶ) = R.(πV̂ (ÂŶ)) = πV̂ (R.(ÂŶ)) = πV̂ (Â(R.Ŷ)) = Â(R.Ŷ),

which proves the first half of (3.45). The second half is proved analogously.
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This property of Â and L̂ is to be expected, given the rotationally symmetric nature of
these operators. This suggests that L̂ can be studied further using the representation theory
of SO(3).

Finally, let us check that the assumptions of Propositions 2.1 and 2.2 hold in the cryo-EM
case. It follows from Proposition 3.4 that as long as Mw(ωmax) <∞, the limiting operators Â
and L̂ are invertible. Of course, it is always possible to choose such a weight w. In particular
the weights already considered, w = 1, 1/|ξ| satisfy this property. Moreover, by rotational
symmetry, ‖P̂ (R)‖ is independent of R, and so of course this quantity is uniformly bounded.
Thus, we have checked all the necessary assumptions to arrive at the following conclusion.

Proposition 3.6. If we neglect the errors incurred in moving to the Fourier domain and
assume that the rotations are drawn uniformly from SO(3), then the estimators μ̂n and Σ̂n

obtained from (3.27) and (3.28) are consistent.

4. Using µ̂n, Σ̂n to determine the conformations. To solve Problem 1.2, we must do
more than just estimate μ̂0 and Σ̂0. We must also estimate C, X̂c, and pc, where X̂

c is the
coefficient vector of X̂ c in the basis for V̂ . Once we solve (3.27) and (3.28) for μ̂n and Σ̂n, we
perform the following steps.

From the discussion on high-dimensional PCA in section 2.3, we expect to determine the
number of structural states by inspecting the spectrum of Σ̂n. We expect the spectrum of Σ̂n

to consist of a bulk distribution along with C − 1 separate eigenvalues (assuming the SNR is
sufficiently high), a fact confirmed by our numerical results. Hence, given Σ̂n, we can estimate
C.

Next, we discuss how to reconstruct X̂1, . . . , X̂C and p1, . . . , pC . Our approach is similar
to Penczek, Kimmel, and Spahn’s [43]. By the principle of PCA, the leading eigenvectors of
Σ̂0 span the space of mean subtracted volumes X̂1 − μ̂0, . . . , X̂

C − μ̂0. If V̂ 1
n , . . . , V̂

C−1
n are

the leading eigenvectors of Σ̂n, we can write

(4.1) X̂s ≈ μ̂n +

C−1∑
c′=1

αs,c′V̂
c′
n .

Note that there is only approximate equality because we have replaced the mean μ̂0 by the
estimated mean μ̂n, and the eigenvectors of Σ̂0 by those of Σ̂n. We would like to recover the
coefficients αs = (αs,1, . . . , αs,C−1), but the X̂s are unknown. Nevertheless, if we project the

above equation by P̂s, then we get

(4.2)
C−1∑
c′=1

αs,c′P̂sV̂
c′
n ≈ P̂sX̂s − P̂sμ̂n = (Îs − P̂sμ̂n)− ε̂s.

For each s, we can now solve this equation for the coefficient vector αs in the least-squares
sense. This gives us n vectors in C

C−1. These should be clustered around C points αc =
(αc

1, . . . , α
c
C−1) for c = 1, . . . , C, corresponding to the C underlying volumes. At this point,

Penczek, Kimmel, and Spahn propose to perform K-means clustering on αs in order to deduce
which image corresponds to which class. However, if the images are too noisy, then it would be
impossible to separate the classes via clustering. Note that in order to reconstruct the original
volumes, all we need are the means of the C clusters of coordinates. If the mean volume and
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top eigenvectors are approximately correct, then the main source of noise in the coordinates is
the Gaussian noise in the images. It follows that the distribution of the coordinates in C

C−1

is a mixture of Gaussians. Hence, we can find the means αc of each cluster using either an
EM algorithm (of which the K-means algorithm used by Penczek is a limiting case [8]) or the
method of moments, e.g., [23]. In the current implementation, we use an EM algorithm. Once
we have the C mean vectors, we can reconstruct the original volumes using (4.1). Putting
these steps together, we arrive at a high-level algorithm to solve the heterogeneity problem
(see Algorithm 1).

Algorithm 1. High-level algorithm for heterogeneity problem (Problem 1.2).

1: Input: n images Is and the corresponding rotations Rs.
2: Estimate the noise level σ2 from the corner regions of the images.
3: Choose bases for Î and V̂ .
4: Map the images Is into Îs ∈ C

q̂.
5: Estimate μ̂n, Σ̂n by solving (3.27) and (3.28).
6: Compute the eigendecomposition of Σ̂n and estimate its rank r. Set C = r + 1.
7: Estimate each αs ∈ C

C−1 by solving (4.2) using least squares.
8: Find αc and pc by applying either EM or a method of moments algorithm to αs.
9: Using αc, find X̂ 1, . . . , X̂C from (4.1). Map volumes back to real domain for visualization.

10: Output: C, X 1, . . . ,XC , p1, . . . , pC .

5. Implementing Algorithm 1. In this section, we confront the practical challenges of
implementing Algorithm 1. We consider different approaches to addressing these challenges
and choose one approach to explore further.

5.1. Computational challenges and approaches. The main computational challenge in
Algorithm 1 is solving for Σ̂n in

(5.1) L̂n(Σ̂n) = B̂n,

given the immense size of this problem. Two possibilities for inverting L̂n immediately come
to mind. The first is to treat (5.1) as a large system of linear equations, viewing Σ̂n as a vector
in C

p̂2 and L̂n as a matrix in C
p̂2×p̂2 . In this scheme, the matrix L̂n could be computed once

and stored. However, this approach has an unreasonably large storage requirement. Since
p̂ = O(N3

res), it follows that L̂n has size N6
res × N6

res. Even for a small Nres value such as
17, each dimension of L̂n is 1.8 × 106. Storing such a large L̂n requires over 23 terabytes.
Moreover, inverting this matrix näıvely is completely intractable.

The second possibility is to abandon the idea of forming L̂n as a matrix, and instead to use
an iterative algorithm, such as the conjugate gradient (CG) algorithm, based on repeatedly
applying L̂n to an input matrix. From (3.28), we see that applying L̂n to a matrix is dominated
by n multiplications of a q̂ × p̂ matrix by a p̂× p̂ matrix, which costs nq̂p̂2 = O(nN8

res). If κn
is the condition number of L̂n, then CG will converge in O(

√
κn) iterations (see, e.g., [58]).

Hence, while the storage requirement of this alternative algorithm is only O(p̂2) = O(N6
res),

the computational complexity is O(nN8
res
√
κn). Thus, the price to pay for reducing the storage

requirement is that n matrix multiplications must be performed at each iteration. While this
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computational complexity might render the algorithm impractical for a regular computer, one
can take advantage of the fact that the n matrix multiplications can be performed in parallel.

We propose a third numerical scheme, one which requires substantially less storage than
the first scheme above and does not require O(n) operations at each iteration. We assume
that the Rs are drawn from the uniform distribution over SO(3), and so for large n, the
operator L̂n does not differ much from its limiting counterpart L̂ (defined in (3.38)). Hence,
if we replace L̂n by L̂ in (5.1), we would not be making too large an error. Of course, L̂ is
a matrix of the same size as L̂n, so it is also impossible to store on a computer. However,
we leverage the analytic form of L̂ in order to invert it more efficiently. At this point, we
have not yet chosen the spaces V̂ and Î , and by constructing these carefully we give L̂ a
special structure. This approach also entails a tradeoff: in practice the approximation L̂n ≈ L̂
is accurate to the extent that R3

1, . . . , R
3
n are uniformly distributed on S2. Hence, we must

extract a subset of the given rotations whose viewing angles are approximately uniformly
distributed on the sphere. Thus, the sacrifice we make in this approach is a reduction in
the sample size. Moreover, since the subselected viewing directions are no longer statistically
independent, the theoretical consistency result stated in Proposition 3.6 does not necessarily
extend to this numerical scheme.

Nevertheless, the latter approach is promising because the complexity of inverting L̂ is
independent of the number of images, and this computation might be tractable for reasonable
values of Nres if L̂ has enough structure. It remains to construct V̂ and Î to induce a special
structure in L̂, which we turn to next.

5.2. Choosing V̂ to make L̂ sparse and block diagonal. In this section, we write down
an expression for an individual element of L̂, and discover that for judiciously chosen basis
functions ĥi, the matrix L̂ becomes sparse and block diagonal.

First, let us fix a functional form for the basis elements ĥi: let

(5.2) ĥi(r, α) = fi(r)ai(α), r ∈ R
+, α ∈ S2,

where fi : R
+ → R are radial functions and ai : S

2 → C are spherical harmonics. Note, for
example, that the 3D Slepian functions have this form [56, eq. 110]. If the ĥi are orthogonal
with respect to the weight w, then

(5.3) 〈fi, fj〉L2
r2w(r)

〈ai, aj〉L2(S2) = δij ,

where we use L2
w as a shorthand for L2

w(R
+). The 3D Slepian functions satisfy the above

condition with w = 1, because they are orthogonal in L2(R3).
Next, we write down the formula for an element L̂i1,i2,j1,j2 (here, j1, j2 are the indices of

the input matrix, and i1, i2 are the indices of the output matrix). From (3.38) and Lemma 3.3,
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we find

L̂i1,i2,j1,j2 =
〈
πV̂ ⊗V̂

(
(ĥj1 ⊗ ĥj2)K

)
, ĥi1 ⊗ ĥi2

〉
L2
w(R3×R3)

=

∫
R3×R3

(ĥj1 ⊗ ĥj2)(ξ1, ξ2)K(ξ1, ξ2)(ĥi1 ⊗ ĥi2)(ξ1, ξ2)dξ1dξ2

=

∫
S2×S2

∫
R+×R+

(ĥj1 ⊗ ĥj2)(ξ1, ξ2)(ĥi1 ⊗ ĥi2)(ξ1, ξ2)
1

2πr1r2|α× β|r
2
1r

2
2dr1dr2dαdβ

= 〈fj1, fi1〉L2
r
〈fj2, fi2〉L2

r

∫
S2×S2

(aj1 ⊗ aj2)(α, β)(ai1 ⊗ ai2)(α, β)
1

2π|α× β|dαdβ.

(5.4)

Thus, to make many of the radial inner products in L̂ vanish, we see from (5.3) that the
correct weight is

(5.5) w(r) =
1

r
.

Recall that this is the weight needed to cancel the ramp filter in Â (see (3.36)). We obtain
a cancellation in L̂ as well because the kernel of this operator also grows linearly with radial
frequency. From this point on, w will represent the weight above, and we will work in the
corresponding weighted L2 space.

What are sets of functions of the form (5.2) that are orthonormal in L2
w(R

3)? If we chose
3D Slepian functions, we would get the functional form

(5.6) ĥk,	,m(r, α) = fk,	(r)Y
m
	 (α).

However, these functions are orthonormal with weight w = 1 instead of w = 1/r. Consider
modifying this construction by replacing the fk,	(r) by the radial functions arising in the 2D
Slepian functions. These satisfy the property

(5.7) 〈fk1,	1 , fk2,	2〉L2
r
= 0 if �1 = �2, k1 �= k2.

With this property (5.6) becomes orthonormal in L2
w(R

3). This gives L̂ a certain degree of
sparsity. However, note that the construction (5.6) has different families of L2

r-orthogonal
radial functions corresponding to each angular function. Thus, we only have orthogonality of
the radial functions fk1,	1 and fk2,	2 when �1 = �2. Thus, many of the terms 〈fj, fi〉L2

r
in (5.4)

are still nonzero.
A drastic improvement on (5.6) would be to devise an orthogonal basis in L2

w that used one
set of r-weighted orthogonal functions fk for all the angular functions, rather than a separate
set for each angular function. Namely, suppose we chose

(5.8) ĥk,	,m(r, α) = fk(r)Y
m
	 (α), (k, �,m) ∈ J,

where J is some indexing set. Note that fk and J need to be carefully constructed so that
span{hk,	,m} ≈ B (see section 5.3 for this construction). We have
(5.9)

fk(r)Y	,m(α) = ĥk,	,m(r, α) = ĥk,	,m(−r,−α) = fk(−r)Y	,m(−α) = (−1)	fk(−r)Y	,m(α).D
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Here, we assume that each fk is either even or odd at the origin, and we extend fk(r) to r ∈ R

according to this parity. The above calculation implies that fk should have the same parity
as �. Let us suppose that fk has the same parity as k. Then, it follows that (k, �,m) ∈ J only
if k = � mod 2. Thus, hk,	,m will be orthonormal in L2

w if

(5.10) {fk : k = 0 mod 2} and {fk : k = 1 mod 2} are orthonormal in L2
r.

If we let ki be the radial index corresponding to i, then we claim that the above construction
implies

L̂i1,i2,j1,j2 = δki1kj1 δki2kj2

∫
S2×S2

(aj1 ⊗ aj2)(α, β)(ai1 ⊗ ai2)(α, β)
1

2π|α× β|dαdβ.(5.11)

This statement does not follow immediately from (5.10), because we still need to check the
case when ki1 �= kj1 mod 2. Note that in this case, the dependence on α in the integral over

S2×S2 is odd, and so indeed L̂i1,i2,j1,j2 = 0 in that case as well. If V̂k is the space spanned by

fk(r)Y
m
	 (α) for all �,m, then the above implies that L̂ operates separately on each V̂k1 ⊗ V̂k2 .

In the language of matrices, this means that if we divide Σ̂n into blocks Σ̂k1,k2
n based on radial

indices, L̂ operates on these blocks separately. We denote each of the corresponding “blocks”
of L̂ by L̂k1,k2 . Let us reindex the angular functions so that aki denotes the ith angular basis
function paired with fk. From (5.11), we have

L̂k1,k2
i1,i2,j1,j2

=

∫
S2×S2

(
ak1j1 ⊗ ak2j2

)
(α, β)

(
ak1i1 ⊗ ak2i2

)
(α, β)

1

2π|α × β|dαdβ.(5.12)

This block diagonal structure of L̂ makes it much easier to invert. Nevertheless, each block
L̂k1,k2 is a square matrix with dimension O(k21k

2
2). Hence, inverting the larger blocks of L̂

can be difficult. Remarkably, it turns out that each block of L̂ is sparse. In Appendix C, we
simplify the above integral over S2 × S2. Then, (5.12) becomes

L̂k1,k2
i1,i2,j1,j2

=
∑
	,m

c(�)C	,m

(
ak1i1 a

k1
j1

)
C	,m

(
ak2i2 a

k2
j2

)
,(5.13)

where the constants c(�) are defined in (C.8) and C	,m(ψ̂) is the �,m coefficient in the spherical

harmonic expansion of ψ̂ : S2 → C. It turns out that the above expression is zero for most
sets of indices. To see why, recall that the functions aki are spherical harmonics. It is known
that the product Y m

	 Y m′
	′ can be expressed as a linear combination of harmonics YM

L , where
M = m+m′ and |�− �′| ≤ L ≤ �+ �′. Thus, Cm

	 (aiaj) are sparse vectors, which shows that

each block L̂k1,k2 is sparse. For example, L̂15,15 has each dimension approximately 2 × 104.
However, only about 107 elements of this block are nonzero, which is only about 3% of its
total number of entries. This is about the same number of elements as a 3000 × 3000 full
matrix.

Thus, we have found a way to tractably solve the covariance matrix estimation problem:
reconstruct Σ̂n (approximately) by solving the sparse linear systems

(5.14) L̂k1,k2Σ̂k1,k2
n = B̂k1,k2

n ,
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where we recall that B̂n is the RHS of (3.28). Also, using the fact that Ân ≈ Â = 1
2 Iq̂, we can

estimate μ̂n from

(5.15) μ̂n =
2

n

n∑
s=1

P̂H
s Îs.

In the next two sections, we discuss how to choose the radial components fk(r) and define
Î and V̂ more precisely.

5.3. Constructing fk(r) and the space V̂ . We have discussed so far that

(5.16) V̂ = span({fk(r)Y m
	 (θ, ϕ) : (k, �,m) ∈ J})

with (k, �,m) ∈ J only if k = � mod 2. Moreover, we have required the orthonormality
condition (5.10). However, recall that we initially assumed that the real-domain functions Xs

belonged to the space of 3D Slepian functions B. Thus, we must choose V̂ to approximate the
image of B under the Fourier transform. Hence, the basis functions fk(r)Y

m
	 (θ, ϕ) should be

supported in the ball of radius ωmax and have their inverse Fourier transforms concentrated
in the unit ball. Moreover, we must have dim(V̂ ) ≈ dim(B). Finally, the basis functions
ĥi should be analytic at the origin (they are the truncated Fourier transforms of compactly
supported molecules). We begin by examining this condition.

Expanding ĥi in a Taylor series near the origin up to a certain degree, we can approximate
it locally as a finite sum of homogeneous polynomials. By [57, Theorem 2.1], a homogeneous
polynomial of degree d can be expressed as

(5.17) Hd(ξ) = rd(cdYd(α) + cd−2Yd−2(α) + · · · ),

where each Y	 represents a linear combination of spherical harmonics of degree �. Hence, if
(k, �,m) ∈ J , then we require that fk(r) = α	r

	 +α	+2r
	+2 + · · · , where some coefficients can

be zero. We satisfy this requirement by constructing f0, f1, . . . so that

(5.18) fk(r) = αk,kr
k + αk,k+2r

k+2 + · · ·

for small r with αk,k �= 0, and combine fk with Y m
	 if k = � mod 2 and � ≤ k. This leads to

the following set of 3D basis functions:

(5.19)
{
ĥi

}
= {f0Y 0

0 , f1Y
−1
1 , f1Y

0
1 , f1Y

1
1 , f2Y

0
0 , f2Y

−2
2 , . . . , f2Y

2
2 , . . . }.

Written another way, we define

(5.20) V̂ = span ({fk(r)Y m
	 (θ, ϕ) : 0 ≤ k ≤ K, � = k (mod 2), 0 ≤ � ≤ k, |m| ≤ �}) .

Following the reasoning preceding (5.17), it can be seen that near the origin, this basis spans
the set of polynomial functions up to degree K.

Now, consider the real- and Fourier-domain content of ĥi. The bandlimitedness require-
ment on Xs is satisfied if and only if the functions fk are supported in the interval [0, ωmax]. ToD
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deal with the real domain requirement, we need the inverse Fourier transform of fk(r)Y
m
	 (θ, ϕ).

With the Fourier convention (3.1), it follows from [2] that

F−1 (fk(r)Y
m
	 (θ, ϕ)) (rx, θx, ϕx) =

1

2π2
i	
(∫ ∞

0
fk(r)j	(rrx)r

2dr

)
Y m
	 (θx, ϕx)

=
1

2π2
i	(S	fk)(rx)Y

m
	 (θx, ϕx).

(5.21)

Here, j	 is the spherical Bessel function of order �, and S	 is the spherical Hankel trans-
form. Also note that (r, θ, ϕ) are Fourier-domain spherical coordinates, while (rx, θx, ϕx) are
their real-domain counterparts. Thus, satisfying the real-domain concentration requirement
amounts to maximizing the percentage of the energy of S	fk that is contained in [0, 1] for
0 ≤ k ≤ K, 0 ≤ � ≤ k, � = k mod 2.

Finally, we have arrived at the criteria we would like fk(r) to satisfy:
1. supp fk ⊂ [0, ωmax];
2. {fk : k even} and {fk : k odd} orthonormal in L2(R+, r);
3. fk(r) = αk,kr

k + αk,k+2r
k+2 + · · · near r = 0;

4. under the above conditions, maximize the percentage of the energy of S	fk in [0, 1],
for 0 ≤ k ≤ K, 0 ≤ � ≤ k, � = k mod 2.

While it might be possible to find an optimal set of such functions {fk} by solving an opti-
mization problem, we can directly construct a set of functions that satisfactorily satisfies the
above criteria.

Note that since � ranges in [0, k], it follows that for larger k, we need to have higher-order
spherical Hankel transforms S	fk remain concentrated in [0, 1]. Since higher-order spherical
Hankel transforms tend to be less concentrated for oscillatory functions, it makes sense to
choose fk to be less and less oscillatory as k increases. Note that the functions fk cannot all
have only few oscillations because the even and odd functions must form orthonormal sets.
Using this intuition, we construct fk as follows. Since the even and odd fk can be constructed
independently, we will illustrate the idea by constructing the even fk. For simplicity, let us
assume that K is odd, with K = 2K0 + 1. Define the cutoff χ = χ([0, ωmax]). First, consider
the sequence

(5.22) J0(z0,K0+1r/ωmax)χ, J2(z2,K0r/ωmax)χ, . . . , J2K0(z2K0,1r/ωmax)χ,

where zk,m is the mth positive zero of Jk (the kth-order Bessel function). Note that the
functions in this list satisfy criteria 1 (by construction) and 3 (due to the asymptotics of the
Bessel function at the origin). Also note that we have chosen the scaling of the arguments of
the Bessel functions so that the number of zero crossings decreases as the list goes on. Thus,
the functions become less and less oscillatory, which is the pattern that might lead to satisfying
criterion 4. However, since these functions might not be orthogonal with respect to the weight
r, we need to orthonormalize them with respect to this weight (via Gram–Schmidt). We need
to be careful to orthonormalize them in such a way as to preserve the properties that they
already satisfy. This can be achieved by running the (r-weighted) Gram–Schmidt algorithm
from higher k towards lower k. This preserves the supports of the functions, their asymptotics
at the origin, and the oscillation pattern. Moreover, the orthogonality property now holds as
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Figure 4. The even basis functions up to f14(r). Note that they become less oscillatory as k increases, and
that fk(r) ∼ rk at the origin. The odd basis functions have a similar structure and so are not pictured.

well. See Figure 4 for the first several even radial basis functions. Constructing the odd radial
functions requires following an analogous procedure. Also, changing the parity of K requires
the obvious modifications.

It remains to choose K. We do this based on how well criterion 4 is satisfied. For
example, we can calculate how much energy of S	fk is contained in the unit interval for all
0 ≤ k ≤ K, 0 ≤ � ≤ k, � = k mod 2. Numerical experiments show that K = Nres − 2 is a
reasonable value. For each value of Nres that we tested, this choice led to S	fk having at least
80% of its energy concentrated in the unit interval for each relevant (�, k), and at least 95%
on average over all such pairs (�, k). Thus our experiments show that for our choice of fk,
choosing roughly K ≈ Nres leads to acceptable satisfaction of criterion 4. A short calculation
yields

(5.23) p̂ = dim(V̂ ) =
K∑
k=0

(k + 1)(k + 2)

2
=

(K + 1)(K + 2)(K + 3)

6
≈ N3

res

6
=

4ω3
max

3π3
.

Recall from (3.21) that p = dim(B) = 2
9πω

3
max. Hence, we have p̂/p = 6/π2 ≈ 0.6. Hence, the

dimension of the space V̂ we have constructed is within a constant factor of the dimension of
B. This factor is the price we pay for the computational simplicity V̂ provides.

Note that a different construction of fk might have even better results. Choosing better
radial functions can be the topic of further research. In any case, the specific choice of fk does
not affect the structure of our algorithm at all because L̂ is independent of these functions,
as can be seen from (5.12). Thus, the selection of the radial basis functions can be viewed as
an independent module in our algorithm. The radial functions we choose here work well in
numerical experiments; see section 7.

5.4. Constructing Î . Finally, the remaining piece in our construction is the finite-
dimensional space of Fourier images, Î . To motivate our construction, consider applying
P̂s to a basis element of V̂ . The first observation to make is that the radial components fk(r)
factor through P̂s completely:

(5.24) P̂s(fk(r)Y
m
	 (θ, ϕ)) = fk(r)P̂s(Y

m
	 (θ, ϕ)).
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Figure 5. Block diagonal structure of P̂s. The shaded rectangles represent the nonzero entries. For an
explanation of the specific pairing of angular and radial functions, see (5.27) and (5.19) and the preceding

discussion. A short calculation shows that the kth block of P̂s has size (k + 1)× (k+1)(k+2)
2

.

Note that the P̂s on the LHS should be intepreted as C(R3) → C(R2), whereas the one on the
RHS is the restricted map C(S2) → C(S1), which we also call P̂s. The correct interpretation
should be clear in each case. Viewed in this new way, P̂s : C(S2) → C(S1) rotates a function
on the sphere by Rs ∈ SO(3), and then restricts the result to the equator.

By the rotational properties of spherical harmonics, a short calculation shows that

P̂s(Y
m
	 (θ, ϕ)) =

∑
|m′|≤	

m′=	 mod 2

c	,m,m′(Rs)
1√
2π
eim

′ϕ,
(5.25)

where the constants c	,m,m′ depend on the Wigner D matrices D	 [36]. Hence, P̂s(V̂ ) ⊂ Î if

(5.26) fk(r)Y
m
	 (θ, ϕ) ∈ V̂ ⇒ 1√

2π
fk(r)e

imϕ ∈ Î , m = −�,−�+ 2, . . . , �− 2, �.

Thus, we construct Î by pairing fk with 1√
2π
eimϕ if k = m mod 2 and m ≤ k. This leads to

the 2D basis functions

{ĝi} =

{
1√
2π
f0(r),

1√
2π
f1(r)e

−iϕ,
1√
2π
f1(r)e

iϕ ,

1√
2π
f2(r)e

−2iϕ,
1√
2π
f2(r),

1√
2π
f2(r)e

2iϕ, . . .

}
.

(5.27)

Written another way, we construct

(5.28) Î = span

({
1√
2π
fk(r)e

imϕ : 0 ≤ k ≤ K, m = k (mod 2), |m| ≤ k

})
.

If Îk is the subspace of Î spanned by the basis functions with radial component fk, (5.24)
shows that P̂s(V̂k) ⊂ Îk for each k. Thus, P̂s has a block diagonal structure, as depicted in
Figure 5.
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Let us now compare the dimension of Î to that of the corresponding space of 2D Slepian
functions, as we did the previous section. We have

(5.29) q̂ = dim(Î ) =

K∑
k=0

(k + 1) =
(K + 1)(K + 2)

2
≈ N2

res

2
=

2ω2
max

π2
.

The Shannon number in 2D corresponding to the bandlimit ωmax is ω2
max/4. Thus, we are

short of this dimension by a constant factor of 8/π2 ≈ 0.8. Another comparison to make is
that the number of grid points in the disc inscribed in the Nres×Nres grid is π

4N
2
res = ω2

max/π.

Thus, dim(Î ) is short of this number by a factor of 2
π . Note that this is the same factor that

was obtained in a similar situation in [69], so Î is comparable in terms of approximation to
the Fourier–Bessel space constructed there.

Thus, by this point we have fully specified our algorithm for the heterogeneity problem.
After finding Σ̂n numerically via (5.14), we can proceed as in steps 6–9 of Algorithm 1 to solve
Problem 1.2.

6. Algorithm complexity. In this section, we explore the consequences of the constructions
of V̂ and Î for the complexity of the proposed algorithm. We also compare this complexity
with that of the straightforward CG approach discussed in section 5.1.

To calculate the computational complexity of inverting the sparse matrix L̂k1,k2 via the
CG algorithm, we must bound the number of nonzero elements of this matrix and its condition
number.

6.1. Sparsity of L̂ and storage complexity. Preliminary numerical experiments confirm
the following conjecture.

Conjecture 6.1.

(6.1) nnz(L̂k1,k2) ≤ 1

k1 + k2 + 1

(
(k1 + 1)(k1 + 2)(k2 + 1)(k2 + 2)

4

)2

,

where nnz(A) is the number of nonzero elements in a matrix A, and the term involving the
square is the total number of elements in L̂k1,k2.

Hence, the percentage of nonzero elements in each block of L̂ decays linearly with the
frequencies associated with that block. This conjecture remains to be verified theoretically.

We pause here to note the storage complexity of the proposed algorithm, which is domi-
nated by the cost of storing L̂. In fact, since we process all the blocks separately, only storing
one L̂k1,k2 at a time will suffice. Hence, the storage complexity is the memory required to
store the largest block of L̂, which is nnz(L̂K,K) = O(K7) = O(N7

res). Compare this to the
required storage for a full matrix of the size of L̂, which is O(N12

res).

6.2. Condition number of L̂. Here we find the condition number of each L̂k1,k2 . We
already proved in Proposition 3.4 that λmin(L̂) ≥ 1/2π. For any k1, k2, this implies that
λmin(L̂

k1,k2) ≥ 1/2π. This is confirmed by a numerical experiment: in Figure 6(a) are plotted
the minimum eigenvalues of L̂k,k for 0 ≤ k ≤ 15. Note that the eigenvalues actually approach
the value 1/2π (marked with a horizontal line) as k increases. We remarked in section 3.4
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(a) Smallest eigenvalues
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(b) Largest eigenvalues

Figure 6. The smallest and largest eigenvalues of (the continuous version of) L̂k,k, for 0 ≤ k ≤ 15. The
smallest eigenvalues approach their theoretical lower bound of 1/2π as k increases. The largest eigenvalues
show a clear linear dependence on k.

that an upper bound on the maximum eigenvalue is harder to find. Nevertheless, numerical
experiments have led us to the following conjecture.

Conjecture 6.2. The maximal eigenvalue of L̂k1,k2 grows linearly with min(k1, k2).
Moreover, a plot of the maximal eigenvalue of L̂k,k shows a clear linear dependence on k.

See Figure 6(b). The line of best fit is approximately

(6.2) maximum eigenvalue of L̂k,k = 0.2358 + 0.1357k.

Taken together, Proposition 3.4 and Conjecture 6.2 imply the following conjecture about
the condition number of L̂k1,k2 , which we denote by κ(L̂k1,k2).

Conjecture 6.3.

(6.3) κ(L̂k1,k2) ≤ 1.4818 + 0.8524min(k1, k2).

In particular, this implies that

(6.4) κ(L̂) ≤ 1.4818 + 0.8524K.

6.3. Algorithm complexity. Using the above results, we estimate the computational com-
plexity of Algorithm 1. We proceed step by step through the algorithm and estimate the
complexity at each stage. Before we do so, note that due to the block diagonal structure of P̂s

(depicted in Figure 5), it can be easily shown that an application of P̂s or P̂H
s costs O(K4).

Sending the images from the pixel domain into Î requires n applications of the matrix
Q1 ∈ C

q̂×q, which costs O(nqq̂) = O(nN2N2
res). Note that this complexity can be improved

using an algorithm of the type [39], but in this paper we do not delve into the details of this
alternative.

Finding μ̂n from (5.15) requires n applications of the matrix P̂H
s , and so has complexity

O(nK4) = O(nN4
res).

Next, we must compute the matrix B̂n. Note that the second term in B̂n can be replaced
by a multiple of the identity matrix by (3.36), so only the first term of B̂n must be computed.
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Note that B̂n is a sum of n matrices, and each matrix can be found as the outer product of
P̂H
s (Îs − P̂sμ̂n) ∈ C

p̂ with itself. Calculating this vector has complexity O(K4), from which it
follows that calculating B̂n costs O(nK4) = O(nN4

res).
Next, we must invert L̂. As mentioned in section 5.1, the inversion of a matrix A via CG

takes
√
κ(A) iterations. If A is sparse, than applying it to a vector has complexity nnz(A).

Hence, the total complexity for inverting a sparse matrix is
√
κ(A)nnz(A). Conjectures 6.1

and 6.3 imply that

complexity of inverting L̂

�
K∑

k1,k2=0

√
κ(L̂k1,k2)nnz(L̂k1,k2)

�
K∑

k1,k2=0

√
min(k1, k2)

1

k1 + k2 + 1

(
(k1 + 1)(k1 + 2)(k2 + 1)(k2 + 2)

4

)2

�
K∑

k1,k2=0

(k1k2)
1/4 1√

k1k2
k41k

4
2

�
K∑

k1=0

k3.751

K∑
k2=0

k3.752 � K4.75K4.75 = K9.5.

(6.5)

Since L̂ has size of the order K6 ×K6, note that the complexity of inverting a full matrix of
this size would be K18. Thus, our efforts to make L̂ sparse have saved us a K8.5 complexity
factor. Moreover, the fact that L̂ is block diagonal makes its inversion parallelizable.

Assuming that C = O(1), solving each of the n least-squares problems (4.2) is dominated
by a constant number of applications of P̂s to a vector. Thus, finding αs for s = 1, . . . , n costs
O(nN4

res).
Next, we must fit a mixture of Gaussians to αs to find αc. An EM approach to this

problem requires O(n) operations per iteration. Assuming that the number of iterations is
constant, finding αc has complexity O(n).

Finally, reconstructing X̂c via (4.1) has complexity O(N3
res).

Hence, neglecting lower-order terms, we find that the total complexity of our algorithm is

(6.6) O(nN2N2
res +N9.5

res ).

6.4. Comparison to straightforward CG approach. We mentioned in section 5.1 that a
CG approach is possible in which at each iteration, we apply L̂n to Σ̂ using the definition
(3.28). This approach has the advantage of not requiring uniformly spaced viewing directions.
While the condition number of L̂n depends on the rotations R1, . . . , Rn, let us assume here that
κ(L̂n) ≈ κ(L̂). We estimated the computational complexity of this approach in section 5.1,
but at that point we assumed that each P̂s was a full matrix. If we use the bases V̂ and
Î , we reap the benefit of the block diagonal structure of P̂s. Hence, for each s, evaluating
P̂H
s P̂sΣ̂P̂

H
s P̂s is dominated by the multiplication P̂sΣ̂, which has complexity N7

res. Hence,
applying L̂n to Σ̂ has complexity nN7

res. By (6.4), we assume that κ(L̂n) = O(Nres). Hence,
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the full complexity of inverting L̂ using the conjugate gradient approach is

(6.7) O(nN7.5
res ).

Compare this to a complexity of O(N9.5
res ) for inverting L̂. Given that n is usually on the order

of 105 or 106, for moderate values ofNres we haveN
9.5
res � nN7.5

res . Nevertheless, both algorithms
have possibilities for parallelization, which might change their relative complexities. As for
memory requirements, note that the straightforward CG algorithm only requires O(N6

res)
storage, whereas we saw in section 6.1 that the proposed algorithm requires O(N7

res) storage.
In summary, these two algorithms each have their strengths and weaknesses, and it would

be interesting to write parallel implementations for both and compare their performances. In
the present paper, we have implemented and tested only the algorithm based on inverting L̂.

7. Numerical results. Here, we provide numerical results illustrating Algorithm 1, with
the bases Î and V̂ chosen so as to make L̂ sparse, as discussed in section 5. The results
presented below are intended for proof-of-concept purposes, and they demonstrate the qual-
itative behavior of the algorithm. They are not, however, biologically significant results. We
have considered an idealized setup in which there is no CTF effect, and have assumed that the
rotations Rs (and translations) have been estimated perfectly. In this way, we do not perform
a “full-cycle” experiment, starting from only the noisy images. Therefore, we cannot gauge
the overall effect of noise on our algorithm because we do not account for its contribution to
the misspecification of rotations; we investigate the effect of noise on the algorithm only after
the rotation estimation step. Moreover, we use simulated data instead of experimental data.
The application of our algorithm to experimental datasets is left for a separate publication.

7.1. An appropriate definition of SNR. Generally, the definition of SNR is

(7.1) SNR =
P (signal)

P (noise)
,

where P denotes power. In our setup, we will find appropriate definitions for both P (signal)
and P (noise). Let us consider first the noise power. The standard definition is P (noise) = σ2.
However, note that in our case, the noise has a power of σ2 in each pixel of an N × N grid,
but we reconstruct the volumes to a bandlimit ωmax, corresponding to Nres. Hence, if we
downsampled the N × N images to size Nres × Nres, then we would still obey the Nyquist
criterion (assuming the volumes actually are bandlimited by ωmax). This would have the effect
of reducing the noise power by a factor of N2

res/N
2. Hence, in the context of our problem, we

define

(7.2) P (noise) =
N2

res

N2
σ2.

Now, consider P (signal). In standard SPR, a working definition of signal power is

(7.3) P (signal) =
1

n

n∑
s=1

1

q
‖PsXs‖2 .
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(a) Class 1 (Clean) (b) Class 2 (Clean) (c) SNR = 0.96 (d) (d) SNR = 0.19

Figure 7. This figure depicts the effect of mean subtraction on projection images in the context of a two-
class heterogeneity. The bottom row projections are obtained from the top row by mean subtraction. Columns
(a) and (b) are clean projection images of the two classes from a fixed viewing angle. Columns (c) and (d) are
both noisy versions of column (a). The image in the top row of column (c) has an SNR of 0.96, but the SNR of
the corresponding mean-subtracted image is only 0.05. In column (d), the top image has an SNR of 0.19, but
the mean-subtracted image has SNR 0.01. Note: the SNR values here are not normalized by N2

res/N
2 in order

to illustrate the signal present in a projection image.

However, in the case of the heterogeneity problem, the object we are trying to reconstruct is
not the volume itself, but rather the deviation from the average volume, due to heterogeneity.
Thus, the relevant signal to us is not the images themselves, but the parts of the images that
correspond to projections of the deviations of Xs from μ0. Hence, a natural definition of signal
power in our case is

(7.4) P (signalhet) =
1

n

n∑
s=1

1

q
‖Ps(Xs − μ0)‖2 .

Using the above definitions, let us define SNRhet in our problem by

(7.5) SNRhet =
P (signalhet)

P (noise)
=

1
qn

∑n
s=1 ‖Ps(Xs − μ0)‖2
σ2N2

res/N
2

.

Even with the correction factor N2
res/N

2, SNRhet values are lower than the SNR values usually
encountered in structural biology. Hence, we also define

(7.6) SNR =
P (signal)

P (noise)
=

1
n

∑n
s=1

1
q ‖PsXs‖2

σ2N2
res/N

2
.

We will present our numerical results primarily using SNRhet, but we will also provide the
corresponding SNR values in parentheses.

To get a sense of the difference between this definition of SNR and the conventional one,
compare the signal strength in a projection image to that in a mean-subtracted projection
image in Figure 7.
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7.2. Experimental procedure. We performed three numerical experiments: one with two
heterogeneity classes, one with three heterogeneity classes, and one with continuous variation
along the perimeter of a triangle defined by three volumes. The first two demonstrate our
algorithm in the setup of Problem 1.2, and the third shows that we can estimate the covariance
matrix and discover a low-dimensional structure in more general setups than the discrete
heterogeneity case.

As a first step in each of the experiments, we created a number of phantoms analytically.
We chose the phantoms to be linear combinations of Gaussian densities:

(7.7) X c(r) =

Mc∑
i=1

ai,c exp

(
−‖r − ri,c‖2

2σ2i,c

)
, ri,c ∈ R

3, ai,c, σi,c,∈ R+, c = 1, . . . , C.

For the discrete heterogeneity cases, we chose probabilities p1, . . . , pC and generated
X1, . . . ,Xn by sampling from X 1, . . . ,XC accordingly. For the continuous heterogeneity case,
we generated each Xs by choosing a point uniformly at random from the perimeter of the
triangle defined by X 1,X 2,X 3.

For all of our experiments, we chose n = 10000, N = 65, Nres = 17, K = 15, and selected
the set of rotations Rs to be approximately uniformly distributed on SO(3). For each Rs,
we calculated the clean continuous projection image PsXs analytically, and then sampled the
result on an N ×N grid. Then, for each SNR level, we used (7.5) to find the noise power σ2

to add to the images.
After simulating the data, we ran Algorithm 1 on the images Is and rotations Rs on an Intel

i7-3615QM CPU with 8 cores, and 8 GB of RAM. The runtime for the entire algorithm with
the above parameter values (excluding precomputations) is 257 seconds. For the continuous
heterogeneity case, we stopped the algorithm after computing the coordinates αs (we did
not attempt to reconstruct individual volumes in this case). To quantify the resolution of
our reconstructions, we use the Fourier shell correlation (FSC), defined as the correlation of
the reconstruction with the ground truth on each spherical shell in Fourier space [48]. For
the discrete cases, we calculated FSC curves for the mean, the top eigenvectors, and the
mean-subtracted reconstructed volumes. We also plotted the correlations of the mean, top
eigenvectors, and mean-subtracted volumes with the corresponding ground truths for a range
of SNR values. Finally, we plotted the coordinates αs. For the continuous heterogeneity case,
we tested the algorithm on only a few different SNR values. By plotting αs in this case, we
recover the triangle used in constructing Xs.

7.3. Experiment: Two classes. In this experiment, we constructed two phantoms X 1

and X 2 of the form (7.7), with M1 = 1,M2 = 2. Cross sections of X 1 and X 2 are depicted
in the top row panels (c) and (d) in Figure 8. We chose the two heterogeneity classes to be
equiprobable: p1 = p2 = 1/2. Note that the theoretical covariance matrix in the two-class
heterogeneity problem has rank 1, with dominant eigenvector proportional to the difference
between the two volumes.

Figure 8 shows the reconstructions of the mean, top eigenvector, and two volumes for
SNRhet = 0.013, 0.003, 0.0013 (0.25, 0.056, 0.025). In Figure 9, we display eigenvalue his-
tograms of the reconstructed covariance matrix for the above SNR values. Figure 10 shows
the FSC curves for these reconstructions. Figure 11 shows the correlations of the computed
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(a) Mean (b) Eigenvector (c) Volume 1 (d) Volume2

Figure 8. Cross-sections of reconstructions of the mean, top eigenvector, and two volumes for three different
SNR values. The top row is clean, the second row corresponds to SNRhet = 0.013 (0.25), the third row to
SNRhet = 0.003 (0.056), and the last row to SNRhet = 0.0013 (0.025).

(a) SNRhet = 0.013(0.25) (b) SNRhet = 0.003(0.056) (c) SNRhet = 0.0013(0.025)

Figure 9. Eigenvalue histograms of Σ̂n in the two-volume case for three SNR values. Note that as the SNR
decreases, the distribution of eigenvalues associated with noise comes increasingly closer to the top eigenvalue
that corresponds to the structural variability, and eventually the latter is no longer distinguishable.

means, top eigenvectors, and (mean-subtracted) volumes with their true values for a broader
range of SNR values. In Figure 12, we plot a histogram of the coordinates αs from step 7 of
Algorithm 1.

Our algorithm was able to meaningfully reconstruct the two volumes for SNRhet as low
as about 0.003 (0.06). Note that the means were always reconstructed with at least a 94%
correlation to their true values. On the other hand, the eigenvector reconstruction shows
a phase-transition behavior, with the transition occurring between SNRhet values of 0.001
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(a) Mean
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(b) Top eigenvector
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(c) Volume 1

Figure 10. FSC curves for the mean volume, top eigenvector, and one mean-subtracted volume at the same
three SNRs as in Figure 8. Note that the mean volume is reconstructed successfully for all three SNR levels.
On the other hand, the top eigenvector and volume are recovered at the highest two SNR levels but not at the
lowest SNR.
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(a) Mean and eigenvector correlations
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Figure 11. Correlations of computed quantities with their true values for different SNRs (averaged over 10
experiments) for the two-volume case. Note that in the two-volume case, the mean-subtracted volume correla-
tions are essentially the same as the eigenvector correlation (the only small discrepancy is that we subtract the
true mean rather than the computed mean to obtain the former).
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(a) SNRhet = 0.013(0.25)
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Figure 12. Histograms of αs for two-class case. Note that (a) has a bimodal distribution corresponding to
two heterogeneity classes, but these two distributions merge as SNR decreases.

(0.002) and 0.003 (0.006). Note that this behavior is tied to the spectral gap (separation of
top eigenvalues from the bulk) of Σ̂n. Indeed, the disappearance of the spectral gap going
from panel (b) to panel (c) of Figure 9 coincides with the estimated top eigenvector becoming
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uncorrelated with the truth, as reflected in Figures 10(b) and 11(a). This phase transition
behavior is very similar to that observed in the usual high-dimensional PCA setup, described
in section 2.3.

Regarding the coefficients αs depicted in Figure 12, note that in the noiseless case, there
should be a distribution composed of two spikes. By adding noise to the images, the two
spikes start blurring together. For SNR values up to a certain point, the distribution is still
visibly bimodal. However, after a threshold the two spikes coalesce into one. The proportions
pc are reliably estimated until this threshold.

7.4. Experiment: Three classes. In this experiment, we constructed three phantoms
X 1,X 2,X 3 of the form (7.7), with M1 = 2,M2 = 2,M3 = 1. The cross sections of X 1,X 2,X 3

are depicted in Figure 13 (top row, panels (d)–(f)). We chose the three classes to be equiprob-
able: p1 = p2 = p3 = 1/3. Note that the theoretical covariance matrix in the three-class
heterogeneity problem has rank 2.

Figures 13, 14, 15, 16, 17 are the three-class analogues of Figures 8, 9, 10, 11, 12 in the
two-class case.

Qualitatively, we observe behavior similar to that in the two-class case. The mean is
reconstructed with at least 90% accuracy for all SNR values considered, while both top eigen-
vectors experience a phase-transition phenomenon (Figure 16(a)). As with the two-class case,
we see that the disappearance of the eigengap coincides with the phase-transition behavior
in the reconstruction of the top eigenvectors. However, in the three-class case we have two
eigenvectors, and we see that the accuracy of the second eigenvector decays more quickly
than that of the first eigenvector. This reflects the fact that the top eigenvalue of the true
covariance Σ̂0 is 2.1 × 105, while the second eigenvalue is 1.5 × 105. These two eigenvalues
differ because X 1 −X 3 has greater norm than X 2 −X 3, which means that the two directions
of variation have different associated variances. Hence, recovering the second eigenvector is
less robust to noise. In particular, there are SNR values for which the top eigenvector can
be recovered, but the second eigenvector cannot. SNRhet = 0.0044 (0.03) is such an example.
We see in Figure 14 that for this SNR value, only the top eigenvector pops out of the bulk
distribution. In this case, we would incorrectly estimate the rank of the true covariance as 1,
and conclude that C = 2.

The coefficients αs follow a similar trend to those in the two-class case. For high SNRs,
there is a clearly defined clustering of the coordinates around three points, as in Figure 17(a).
As the noise is increased, the three clusters become increasingly less defined. In Figure 17(b),
we see that in this threshold case, the three clusters begin merging into one. As in the two-
class case, this is the same threshold up to which the pc are accurately estimated. By the
time SNR = 0.0044 (0.03), there is no visible cluster separation, just as we observed in the
two-class case. Although the SNR threshold for finding pc from the αs coefficients comes
earlier than the one for the eigengap, the quality of volume reconstruction roughly tracks the
quality of the eigenvector reconstruction. This suggests that the estimation of cluster means
is more robust than that of the probabilities pc.

7.5. Experiment: Continuous variation. In this experiment, we sampled Xs uniformly
from the perimeter of the triangle determined by volumes X 1,X 2,X 3 (from the three-class
discrete heterogeneity experiment). This setup is more suitable to model the case when
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(a) Mean (b) Eigenv. 1 (c) Eigenv. 2 (d) Volume 1 (e) Volume 2 (f) Volume 3

Figure 13. Cross sections of clean and reconstructed objects for the three-class experiment. The top row is
clean, the second row corresponds to SNRhet = 0.044 (0.3), the third row to SNRhet = 0.0044 (0.03), and the
last row to SNRhet = 0.0015 (0.01).

(a) SNRhet = 0.044(0.3) (b) SNRhet = 0.0044(0.03) (c) SNRhet = 0.0015(0.01)

Figure 14. Eigenvalue histograms of reconstructed covariance matrix in the three-class case for three SNR
values. Note that the noise distribution initially engulfs the second eigenvalue, and eventually the top eigenvalue
as well.
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(b) Eigenvector 1
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(d) Volume 1

Figure 15. FSC curves for the mean volume, top eigenvector, and one mean-subtracted volume at the same
three SNRs as in Figure 13. Note that the mean volume is reconstructed successfully for all three SNR levels,
and that the second eigenvector is recovered less accurately than the first.
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0   0.015   0.030   0.045
0

0.2

0.4

0.6

0.8

1

SNR
het

 

 

Mean
Eig 1
Eig 2

(a) Mean and eigenvector correlations
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(b) Volume correlations

Figure 16. Correlations of computed means, eigenvectors, and mean-subtracted volumes with their true
values for different SNRs (averaged over 30 experiments). Note that the mean volume is consistently recovered
well, whereas recovery of the eigenvectors and volumes exhibits a phase-transition behavior.

(a) SNRhet = 0.044(0.3) (b) SNRhet = 0.018(0.12) (c) SNRhet = 0.0044(0.03)

Figure 17. The coordinates αs for the three-class case, colored according to true class. The middle scatter
plot is near the transition at which the three clusters coalesce.

the molecule can vary continuously between each pair X i and X j . Despite the fact this
experiment does not fall under Problem 1.2, Figure 18 shows that we still recover the rank
two structure. Indeed, it is clear that all the clean volumes still belong to a subspace of
dimension 2. Moreover, we can see the triangular pattern of heterogeneity in the scatter plots
of αs (Figure 19). However, note that once the images get moderately noisy, the triangular
structure starts getting drowned out. Thus, in practice, without any prior assumptions, just
looking at the scatter plots of αs will not necessarily reveal the heterogeneity structure in the
dataset. To detect continuous variation, a new algorithmic step must be designed to follow
covariance matrix estimation. Nevertheless, this experiment shows that by solving the general
Problem 1.1, we can estimate covariance matrices beyond those considered in the discrete case
of the heterogeneity problem.

8. Discussion. In this paper, we proposed a covariance matrix estimator from noisy lin-
early projected data and proved its consistency. The covariance matrix approach to the
cryo-EM heterogeneity problem is essentially a special case of the general statistical prob-
lem under consideration, but has its own practical challenges. We overcame these challenges
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(a) SNRhet = 0.14(0.97) (b) SNRhet = 0.014(0.1)

Figure 18. Eigenvalue histograms of covariance matrix reconstructed in continuous variation case.
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(c) SNRhet = 0.14(0.97)

Figure 19. Scatter plots (with some outliers removed) of αs for high SNR values.

and proposed a methodology to tractably estimate the covariance matrix and reconstruct the
molecular volumes. We proved the consistency of our estimator in the cryo-EM case and also
began the mathematical investigation of the projection covariance transform. We discovered
that inverting the projection covariance transform involves applying the triangular area filter, a
generalization of the ramp filter arising in tomography. Finally, we validated our methodology
on simulated data, producing accurate reconstructions at low SNR levels. Our implementa-
tion of this algorithm is now part of the ASPIRE package at spr.math.princeton.edu. In what
follows, we discuss several directions for future research.

As discussed in section 2.3, our statistical framework and estimators have opened many
new questions in high-dimensional statistics. While a suite of results are already available
for the traditional high-dimensional PCA problem, generalizing these results to the projected
data case would require new random matrix analysis. Our numerical experiments in the cryo-
EM case have shown many qualitative similarities between the estimated covariance matrix
in the cryo-EM case and the sample covariance matrix in the spiked model. There is again
a bulk distribution with eigenvalues separated from it. Moreover, there is a phase-transition
phenomenon in the cryo-EM case, in which the top eigenvectors of the estimated covariance
lose correlation with those of the population covariance once the corresponding eigenvalues
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are absorbed by the bulk distribution. Answering the questions posed in section 2.3 would be
very useful in quantifying the theoretical limitations of our approach.

As an additional line of further inquiry, note that the optimization problem (2.4) for
the covariance matrix is amenable to regularization. If n � f(p, q) is the high-dimensional
statistical regime in which the unregularized estimator still carries a signal, then of course we
need regularization when n � f(p, q). Here, f is a function depending on the distribution of
the operators Ps. Moreover, regularization increases robustness to noise, so in applications like
cryo-EM, this could prove useful. Tikhonov regularization does not increase the complexity
of our algorithm, but has the potential to make L̂n invertible. Under what conditions can we
still achieve accurate recovery in a regularized setting? Other regularization schemes can take
advantage of a priori knowledge of Σ0, such as using nuclear norm regularization in the case
when Σ0 is known to be low rank. See [25] for an application of nuclear norm minimization
in the context of dealing with heterogeneity in cryo-electron tomography. Another special
structure Σ0 might have is that it is sparse in a certain basis. For example, the localized
variability assumption in the case of the heterogeneity problem is such an example; in this
case, the covariance matrix is sparse in the real Cartesian basis or a wavelet basis. This
sparsity can be encouraged using a matrix 1-norm regularization term. Other methods, such
as sparse PCA [22] or covariance thresholding [7] might be applicable in certain cases when
we have sparsity in a given basis.

We developed our algorithm in an idealized environment, assuming that the rotations Rs

(and in-plane translations) are known exactly and correspond to approximately uniformly
distributed viewing directions, and that the molecules belong to B. Moreover, we did not
account for the CTF effect of the electron microscope. In practice, of course rotations and
translations are estimated with some error. Also, certain molecules might exhibit a prefer-
ence for a certain orientation, invalidating the uniform rotations assumption. Note that as
long as L̂n is invertible, our framework produces a valid estimator, but without the uniform
rotations assumption, the computationally tractable approach to inverting this matrix pro-
posed in section 5 no longer holds. Moreover, molecules might have higher frequencies than
those we reconstruct, which could potentially lead to artifacts. Thus, an important direc-
tion of future research is to investigate the stability of our algorithm to perturbations from
the idealized assumptions we have made. An alternative research direction is to devise nu-
merical schemes to invert L̂n without replacing it by L̂, which could allow incorporation of
CTF and obviate the need to assume uniform rotations. We proposed one such scheme in
section 5.1.

As we discussed in the introduction, our statistical problem (1.1) is actually a special case
of the matrix sensing problem. In future work, it would be interesting to test matrix sensing
algorithms on our problem. In the cryo-EM case, it would be useful to compare our approach
with matrix sensing algorithms. It would also be interesting to explore the applications of our
methodology to other tomographic problems involving variability. For example, the field of
four-dimensional (4D) electron tomography focuses on reconstructing a 3D structure that is a
function of time [26]. This 4D reconstruction is essentially a movie of the molecule in action.
The methods developed in this paper can in principle be used to estimate the covariance matrix
of a molecule varying with time. This is another kind of “heterogeneity” that is amenable to
the same analysis we used to investigate structural variability in cryo-EM.
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Appendix A. Matrix derivative calculations. The goal of this appendix is to differentiate
the objective functions of (2.3) and (2.4) to verify formulas (2.5) and (2.6). In order to
differentiate with respect to vectors and matrices, we appeal to a few results from [17]. The
results are as follows:

Dz∗(z
Ha) = a,

Dz∗(z
HAz) = Az,

DZ(tr(AZ)) = A,

DZ(tr(ZAZ
HA)) = AZHA.

(A.1)

Here, the lowercase letters represent vectors and the uppercase letters represent matrices.
Also note that z∗ denotes the complex conjugate of z. The general term of (2.3) is

(A.2) ‖Is − Psμ‖2 = (IHs − μHPH
s )(Is − Psμ) = μHPH

s Psμ− μHPH
s Is − IHs Psμ+ const.

We can differentiate this with respect to μ∗ by using the first two formulas of (A.1). We get

(A.3) Dμ∗ ‖Is − Psμ‖2 = PH
s Psμ− PH

s Is.

Summing in s gives us (2.5).
If we let As = (Is − Psμn)(Is − Psμn)

H − σ2I, then the general term of (2.4) is

∥∥(Is − Psμn)(Is − Psμn)
H − (PsΣP

H
s + σ2I)

∥∥2
F

=
∥∥As − PsΣP

H
s

∥∥2
F

= tr(AH
s − PsΣ

HPH
s )(As − PsΣP

H
s )

= tr(PsΣ
HPH

s PsΣP
H
s )− tr(PsΣ

HPH
s As)− tr(AH

s PsΣP
H
s ) + const,

= tr(ΣPH
s PsΣ

HPH
s Ps)− tr(PH

s AsPsΣ
H)− tr(PH

s A
H
s PsΣ) + const.

Using the last two formulas of (A.1), we find that the derivative of this expression with respect
to Σ is

PH
s PsΣ

HPH
s Ps − PH

s A
H
s Ps.

Taking a Hermitian and summing in s gives us (2.6).

Appendix B. Consistency of µn and Σn. In this appendix, we will prove the consistency
results about μn and Σn stated in section 2.2. Recall μn and Σn are defined nontrivially
if
∥∥A−1

n

∥∥ ≤ 2
∥∥A−1

∥∥ and
∥∥L−1

n

∥∥ ≤ 2
∥∥L−1

∥∥. As a necessary step towards our consistency
results, we must first prove that the probability of these events tends to 1 as n→ ∞. Such a
statement follow from a matrix concentration argument based on Bernstein’s inequality [59,
Theorem 1.4], which we reproduce here for the reader’s convenience as a lemma.

Lemma B.1 (matrix Bernstein’s inequality). Consider a finite sequence Ys of independent,
random, self-adjoint matrices with dimension p. Assume that each random matrix satisfies

(B.1) E[Ys] = 0 and ‖Ys‖ ≤ R almost surely.
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Then, for all t ≥ 0,

(B.2) P

{∥∥∥∥∥
∑
s

Ys

∥∥∥∥∥ ≥ t

}
≤ p · exp

( −t2/2
σ2 +Rt/3

)
, where σ2 :=

∥∥∥∥∥
∑
s

E(Y 2
k )

∥∥∥∥∥ .
Next, we prove another lemma, which is essentially the Bernstein inequality in a more

convenient form.
Lemma B.2. Let Z be a symmetric d× d random matrix, with ‖Z‖ ≤ B almost surely. If

Z1, . . . ,Zn are i.i.d. samples from Z, then

(B.3) P

{∥∥∥∥∥ 1n
n∑

s=1

Zs − E[Z]

∥∥∥∥∥ ≥ t

}
≤ d exp

( −3nt2

6B2 + 4Bt

)
.

Moreover,

(B.4) E

∥∥∥∥∥ 1n
n∑

s=1

Zs − E[Z]

∥∥∥∥∥ ≤ CBmax

(√
log d

n
,
2 log d

n

)
,

where C is an absolute constant.
Proof. The proof is an application of the matrix Bernstein inequality. Let Ys =

1
n(Zs − EZ). Then, note that E[Ys] = 0 and

(B.5) ‖Ys‖ ≤ 1

n
(‖Zs‖+ E[‖Z‖]) ≤ 2B

n
=: R almost surely.

Next, we have

(B.6) E[Y 2
s ] =

1

n2
E[Z2

s −ZsE[Z]− E[Z]Zs + E[Z]2] =
1

n2
(E[Z2

s ]− E[Z]2) � 1

n2
E[Z2

s ].

It follows that

(B.7) σ2 :=

∥∥∥∥∥
n∑

s=1

E[Y 2
s ]

∥∥∥∥∥ ≤
n∑

s=1

∥∥E[Y 2
s ]
∥∥ ≤

n∑
s=1

1

n2

∥∥E[Z2
s ]
∥∥ ≤

n∑
s=1

1

n2
E[‖Zs‖2] ≤ B2

n
.

Now, by the matrix Bernstein inequality, we find that

P

{∥∥∥∥∥ 1n
n∑

s=1

Zs − E[Z]

∥∥∥∥∥ ≥ t

}
= P

{∥∥∥∥∥
n∑

s=1

Ys

∥∥∥∥∥ ≥ t

}

≤ d exp

( −t2/2
σ2 +Rt/3

)
≤ d exp

( −3nt2

6B2 + 4Bt

)
.

(B.8)

This proves (B.3). The bound (B.4) follows from [59, Remark 6.5].
Corollary B.3. Let P be a random q × p matrix such that ‖P ‖ ≤ BP almost surely. Let

A = E[PHP ] and let An = 1
n

∑n
s=1P

H
s Ps, where P1, . . . ,Pn are i.i.d. samples from P . Then,

(B.9) P {‖An −A‖ ≥ t} ≤ p exp

( −3nt2

6B4
P + 4B2

P t

)
.
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Moreover,

(B.10) E ‖An −A‖ ≤ CB2
P max

(√
log p

n
,
2 log p

n

)
= CB2

P

√
log p

n
,

where the last equality holds if n ≥ 4 log p.
Proof. These bounds follow by letting Z = PHP in Lemma B.2 and noting that ‖Z‖ ≤ B2

P

almost surely.
Corollary B.4. Let P be a random q × p matrix such that ‖P ‖ ≤ BP almost surely. Let

LΣ = E[PHPΣPHP ] and let LnΣ = 1
n

∑n
s=1P

H
s PsΣP

H
s Ps, where P1, . . . ,Pn are i.i.d.

samples from P . Then,

(B.11) P {‖Ln − L‖ ≥ t} ≤ p2 exp

( −3nt2

6q4B8
P + 4q2B4

P t

)
.

Moreover,

(B.12) E ‖Ln − L‖ ≤ Cq2B4
P max

(√
2 log p

n
,
4 log p

n

)
= Cq2B4

P

√
2 log p

n
,

where the last equality holds if n ≥ 8 log p.
Proof. We wish to apply Lemma B.2 again, this time for ZΣ = PHPΣPHP . In this case

we must be careful because Z is an operator on the space of p × p matrices. We can view it
as a p2 × p2 matrix if we represent its argument (a p × p matrix Σ) as a vector of length p2

(denoted by vec(Σ)). Then, almost surely,

‖Z‖ = max
‖vec(Σ)‖=1

‖Zvec(Σ)‖ = max
‖Σ‖F=1

‖ZΣ‖F
= max

‖Σ‖F=1

∥∥PHPΣPHP
∥∥
F
≤ ‖P ‖4F ≤ q2 ‖P ‖4 ≤ q2B4

P .
(B.13)

In the penultimate inequality above we used the fact that ‖A‖F ≤ √
rank(A) ‖A‖ for an

arbitrary matrix A. Now, (B.11) follows from (B.3) by setting B = q2B4
P and d = p2.

Proposition B.5. Let EA
n be the event that

∥∥A−1
n

∥∥ ≤ 2
∥∥A−1

∥∥, and let EL
n be the event that∥∥L−1

n

∥∥ ≤ 2
∥∥L−1

∥∥. Then,

(B.14) P[EA
n ] ≥ 1− αA

n , P[EL
n ] ≥ 1− αL

n ,

where

(B.15) αA
n = p exp

( −3nλmin(A)
2/4

6B4
P + 2B2

Pλmin(A)

)
and αL

n = p2 exp

( −3nλmin(L)
2/4

6q4B8
P + 2q2B4

Pλmin(L)

)
.

Proof. Note that λmin(An) ≥ λmin(A)− ‖An −A‖. It follows that

P
[∥∥A−1

n

∥∥ > 2
∥∥A−1

∥∥] = P

[
λmin(An) <

1

2
λmin(A)

]
≤ P

[
‖An −A‖ > 1

2
λmin(A)

]
.(B.16)
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By Corollary B.3, it follows that

P

[
‖An −A‖ > 1

2
λmin(A)

]
≤ p exp

( −3nλmin(A)
2/4

6B4
P + 2B2

Pλmin(A)

)
= αA

n .(B.17)

Analogously, Corollary B.4 implies that

P

[
‖Ln − L‖ > 1

2
λmin(L)

]
≤ p2 exp

( −3nλmin(L)
2/4

6q4B8
P + 2q2B4

Pλmin(L)

)
= αL

n .(B.18)

Now, we prove the consistency results, which we restate for convenience. In the following
propositions, define

(B.19) B2
I := E[‖I − Pμ0‖2].

Note that

(B.20) B2
I ≤ B2

PE[‖X − μ0‖2] + E[‖E‖]2.

Also, recall the following notation introduced in section 2.2:

(B.21) |||V |||m = E[‖V − E[V ]‖m]
1
m ,

where V is a random vector. For example, (B.20) can be written as B2
I ≤ B2

P |||X|||22 + |||E|||22.
Proposition B.6. Suppose A (defined in (2.10)) is invertible, that ‖P ‖ ≤ BP almost surely,

and that |||X|||2, |||E|||2 <∞. Then, for fixed p, q we have

(B.22) E ‖µn − μ0‖ = O

(
1√
n

)
.

Hence, under these assumptions, μn is consistent.
Proof. Since P[‖µn − μ0‖ ≥ t] ≤ t−1

E[‖µn − μ0‖] by Markov’s inequality, it is sufficient
to prove that E[‖µn − μ0‖] → 0 as n→ ∞. Note that by the definition of µn and Proposition
B.5,

E[‖µn − μ0‖] = P[EA
n ]E

[‖µn − μ0‖ | EA
n

]
+ (1− P[EA

n ])E
[
‖µn − μ0‖ | EA

n

]
≤ P[EA

n ]E
[∥∥A−1

n bn − μ0
∥∥ | EA

n

]
+ αA

n ‖μ0‖
≤ P[EA

n ]E
[∥∥A−1

n (bn −Anμ)
∥∥ | EA

n

]
+ αA

n ‖μ0‖
≤ P[EA

n ]2
∥∥A−1

∥∥E [‖bn −Anμ0‖ | EA
n

]
+ αA

n ‖μ0‖
≤ 2

∥∥A−1
∥∥E [‖bn −Anμ0‖] + αA

n ‖μ0‖ .

(B.23)

Since bn −Anμ0 =
1
n

∑n
s=1P

H
s (Is − Psμ0), where these summands are i.i.d., we find

E [‖bn −Anμ0‖]2 ≤ E

[
‖bn −Anμ0‖2

]
=

1

n
E

[∥∥PH(I − Pμ0)
∥∥2] ≤ 1

n
B2

PB
2
I .(B.24)
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Putting together what we have, we arrive at

(B.25) E[‖µn − μ0‖] ≤
2
∥∥A−1

∥∥BPBI√
n

+ αA
n ‖μ0‖ .

Inspecting this bound reveals that E[‖µn − μ0‖] → 0 as n→ ∞, as needed.
Remark B.7. Note that with a simple modification to the above argument, we obtain

(B.26) P[EA
n ]E[‖μn − μ0‖2 | EA

n ] ≤
4
∥∥A−1

∥∥2
n

B2
PB

2
I .

This bound will be useful later.
Before proving the consistency of Σn, we state a lemma.
Lemma B.8. Let V be a random vector on C

p with E[V V H ] = ΣV , and let V1, . . . ,Vn be
i.i.d. samples from V . Then, for some absolute constant C,

(B.27) E

∥∥∥∥∥1n
n∑

s=1

VsV
H
s −ΣV

∥∥∥∥∥ ≤ C ‖ΣV ‖
∥∥∥Σ−1/2

V

∥∥∥ √
log p√
n

(
E ‖V ‖logn

)1/ logn
,

provided the RHS does not exceed ‖ΣV ‖.
Proof. This result is a simple modification of [47, Theorem 1].
Proposition B.9. Suppose A and L (defined in 2.10) are invertible, that ‖P ‖ ≤ BP almost

surely, and that there is a polynomial Q for which

(B.28) |||X|||j , |||E|||j ≤ Q(j), j ∈ N.

Then, for fixed p, q, we have

(B.29) E ‖Σn − Σ0‖ = O

(
Q(log n)√

n

)
.

Hence, under these assumptions, Σn is consistent.
Proof. In parallel to the proof of Proposition B.6, we will prove that E[‖Σn − Σ0‖] → 0

as n→ ∞. We compute

E[‖Σn − Σ0‖]
= P[EA

n ∩ EL
n ]E

[‖Σn − Σ0‖ | EA
n ∩ EL

n

]
+ (1− P[EA

n ∩ EL
n ])E

[
‖Σn −Σ0‖ | EA

n ∩ EL
n

]
≤ P[EA

n ∩ EL
n ]E

[∥∥L−1
n Bn − Σ0

∥∥ | EA
n ∩ EL

n

]
+ (αA

n + αL
n) ‖Σ0‖

≤ P[EA
n ∩ EL

n ]E
[∥∥L−1

n (Bn −LnΣ0)
∥∥ | EA

n ∩ EL
n

]
+ (αA

n + αL
n) ‖Σ0‖

≤ 2
∥∥L−1

∥∥P[EA
n ∩ EL

n ]E
[‖Bn −LnΣ0‖ | EA

n ∩ EL
n

]
+ (αA

n + αL
n) ‖Σ0‖

≤ 2
∥∥L−1

∥∥P [EA
n ]E

[‖Bn −LnΣ0‖ | EA
n

]
+ (αA

n + αL
n) ‖Σ0‖ .

(B.30)

D
ow

nl
oa

de
d 

12
/0

6/
18

 to
 1

32
.1

70
.1

92
.7

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COVARIANCE MATRIX ESTIMATION IN CRYO-EM 179

Now, we will bound E
[‖Bn −LnΣ0‖ | EA

n

]
. To do this, we write

Bn −LnΣ0

=

(
1

n

n∑
s=1

PH
s (Is − Psµn)(Is − Psµn)

HPs − 1

n

n∑
s=1

PH
s (Is − Psμ0)(Is − Psμ0)

HPs

)

+

(
1

n

n∑
s=1

PH
s (Is − Psμ0)(Is − Psμ0)

HPs − (σ2A+ LΣ0)

)
+ σ2(A−An) + (L−Ln)Σ0

=: D1 +D2 +D3 +D4.

(B.31)

Let us consider each of these four difference terms in order. Note that

E[‖D1‖ | EA
n ] ≤ B2

P

1

n

n∑
s=1

E
[∥∥(Is − Psµn)(Is − Psµn)

H − (Is − Psμ0)(Is − Psμ0)
H
∥∥ | EA

n

]
.

(B.32)

Moreover,

(Is − Psµn)(Is − Psµn)
H − (Is −Psµ0)(Is − Psµ0)

H

= {(Is − Psμ0) + Ps(μ0 − µn)} {(Is − Psμ0) + Ps(μ0 − µn)}H − (Is − Psμ0)(Is − Psμ0)
H

= (Is −Psμ0)(μ0 − µn)
HPH

s + Ps(μ0 − µn)(Is − Psμ0)
H + Ps(μ0 − µn)(μ0 − µn)

HPH
s .

(B.33)

Using the Cauchy–Schwarz inequality and (B.26), we find

E
[∥∥(Is − Psμ0)(μ0 − µn)

HPH
s

∥∥ | EA
n

]2
≤ B2

PE[‖Is − Psμ0‖ ‖μ0 − µn‖ | EA
n ]

2

≤ B2
PE[‖Is − Psμ0‖2 | EA

n ]E[‖μ0 − µn‖2 | EA
n ]

≤ 4
∥∥A−1

∥∥2
nP[EA

n ]
2
B4

PB
4
I .

(B.34)

Here, we used (B.26). This bound also holds for the second term in the last line of (B.33). As
for the third term,

E[
∥∥Ps(μ0 − µn)(μ0 − µn)

HPH
s

∥∥ | EA
n ] ≤ B2

PE[‖μ0 − µn‖2 | EA
n ] ≤

4
∥∥A−1

∥∥2
nP[EA

n ]
B4

PB
2
I .(B.35)

Putting these bounds together, we arrive at

P[EA
n ]E[‖D1‖ | EA

n ] ≤ P[EA
n ]B

2
P

(
2
2
∥∥A−1

∥∥
√
nP[EA

n ]
B2

PB
2
I +

4
∥∥A−1

∥∥2
nP[EA

n ]
B4

PB
2
I

)

=
4B4

PB
2
I

∥∥A−1
∥∥

n

(√
n+

∥∥A−1
∥∥B2

P

)
.

(B.36)
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Next, we move on to analyzing D2. If V = PH(I − Pμ0), note that

(B.37) ΣV = E[V V H ] = E[PHP (X − μ0)(X − μ0)
HPHP ] + E[PHEEHP ] = LΣ0 + σ2A.

By Lemma (B.8), we find
(B.38)

P[EA
n ]E[‖D2‖ | EA

n ] ≤ E

∥∥∥∥∥ 1n
n∑

s=1

VsV
H
s − ΣV

∥∥∥∥∥ ≤ C ‖ΣV ‖
∥∥∥Σ−1/2

V

∥∥∥ √
log p√
n

(
E ‖V ‖logn

) 1
log n

.

Since Σ0 = E[(X − μ0)(X − μ0)
H ], it follows that ‖Σ0‖ ≤ E[‖X − μ0‖2] = |||X|||22. Further,

the calculation (B.13) implies that

(B.39) ‖LΣ0‖ ≤ ‖LΣ0‖F ≤ q4B4
P ‖Σ0‖F ≤ q4B4

P

√
rank(Σ0) ‖Σ0‖ ≤ q4B4

P

√
rank(Σ0)|||X|||22.

Also, it is clear that ‖A‖ ≤ B2
P . Furthermore, Minkowski inequality implies that

(
E ‖V ‖logn

) 1
logn ≤ BP

(
BP (E[‖X − μ0‖logn]

1
logn + E[‖E‖logn] 1

log n )
)

= BP

(
BP (|||X|||logn + |||E|||logn

)
.

(B.40)

Hence, (B.38) becomes

P[EA
n ]E[‖D2‖ | EA

n ] ≤ CB3
P

(
q4B2

P

√
rank(Σ0)|||X|||22 + σ2

)
×
∥∥∥(LΣ0 + σ2A)−1/2

∥∥∥ √
log p√
n

(
BP (|||X|||logn + |||E|||logn

)
.

(B.41)

Next, a bound for D3 follows immediately from (B.10):

(B.42) P[EA
n ]E[‖D3‖ | EA

n ] ≤ E[‖D3‖] = σ2E[‖A−An‖] ≤ σ2C ′B2
P

√
log p

n
.

Similarly, (B.12) gives

P[EA
n ]E[‖D4‖ | EA

n ] ≤ E[‖D4‖] ≤ E[‖L−Ln‖] ‖Σ0‖F
≤ σ2C ′q2B4

P

√
2 log p

n

√
rank(Σ0)|||X|||22.

(B.43)
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Combining the four bounds (B.36), (B.39), (B.42), (B.43) with (B.30) and (B.31), we
arrive at

E[‖Σn − Σ0‖]

≤ 2
∥∥L−1

∥∥{4B4
P (B

2
P |||X|||22 + |||E|||22)

∥∥A−1
∥∥

n

(√
n+

∥∥A−1
∥∥B2

P

)
+ CB3

P

(
q4B2

P

√
rank(Σ0)|||X|||22 + σ2

) ∥∥∥(LΣ0 + σ2A)−1/2
∥∥∥

×
√
log p√
n

(
BP (|||X|||logn + |||E|||logn

)

+ σ2C ′B2
P

√
log p

n
+σ2C ′q2B4

P

√
2 log p

n

√
rank(Σ0)|||X|||22

}

+ (αA
n + αL

n)|||X|||22.

(B.44)

Fixing all the variables except n, we see that the largest term is the one in the second line,
and it decays as Q(log n)/

√
n due to the moment growth condition (B.28).

Appendix C. Simplifying (5.12). Here, we simplify the expression for an element of L̂k1,k2 :

L̂k1,k2
i1i2,j1j2

=

∫
S2×S2

(ak1j1 ⊗ ak2j2 )(α, β)(a
k1
i1

⊗ ak2i2 )(α, β)K(α, β)dαdβ.(C.1)

Let Ak
i,j = aki a

k
j . Then, (C.1) becomes

L̂k1,k2
i1i2,j1j2

=

∫
S2×S2

Ak1
i1j1

(α)Ak2
i2j2

(β)K(α, β)dαdβ.(C.2)

Recall from section 5.3 that aki is a spherical harmonic of order up to k. It follows that Ak1
i1j1

has a spherical harmonic expansion up to order 2k1 (using the formula for the product of
two spherical harmonics, which involves the Clebsch–Gordan coefficients). The same holds
for Ak2

i2j2
, where the order goes up to 2k2. Let us write C

m
	 (Ak

ij) for the �,m coefficient of the

spherical harmonic expansion of Ak
ij . Thus, we have

(C.3) Ak1
i1j1

(α) =

2k1∑
	=0

∑
|m|≤	

C	,m(Ak1
i1j1

)Y m
	 (α), Ak2

i2j2
(β) =

2k2∑
	′=0

∑
|m′|≤	′

C	′,m′(Ak2
i2j2

)Y m′
	′ (β).

It follows that

L̂k1,k2
i1i2,j1j2

=
∑
	,m

∑
	′,m′

C	,m

(
Ak1

i1j1

)
C	′,m′

(
Ak2

i2j2

)∫
S2

∫
S2

Y m
	 (α)K(α, β)Y m′

	′ (β)dαdβ.(C.4)

Since K(α, β) depends only on α ·β, by an abuse of notation we can write K(α, β) = K(α ·β).
Thus, the Funk–Hecke theorem applies [38], so we may write

(C.5)

∫
S2

Y m
	 (α)K(α, β)dα = c(�)Y m

	 (β),
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where

(C.6) c(�) =
2π

P	(1)

∫ 1

−1
K(t)P	(t)dt.

Note that the P	 are the Legendre polynomials. Since K is an even function of t and P	 has
the same parity as �, it follows that c(�) = 0 for odd �. For even �, we have

(C.7) c(�) = 2

∫ 1

0

1√
1− t2

P	(t)dt.

It follows from formula 3 on p. 423 of [45] that

c(�) = 2

∫ 1

0

1√
1− t2

P	(t)dt = π

(
�!

2	( 	2 !)
2

)2

.(C.8)

Using Stirling’s formula, we can find that c(�) ∼ �−1 for large �.
Finally, plugging the result of Funk–Hecke into (C.4), we obtain

L̂k1,k2
i1i2,j1j2

=
∑
	,m

∑
	′,m′

c(�)C	,m

(
Ak1

i1j1

)
C	′,m′

(
Ak2

i2j2

)∫
S2

Y m
	 (β)Y m′

	′ (β)dβ

=
∑
	,m

c(�)C	,m

(
Ak1

i1j1

)
C	,m

(
Ak2

i2j2

)
.

(C.9)

Thus, we have verified (5.13).
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