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CONDUCTIVITY IMAGING FROM ONE INTERIOR
MEASUREMENT IN THE PRESENCE OF PERFECTLY

CONDUCTING AND INSULATING INCLUSIONS∗

AMIR MORADIFAM†, ADRIAN NACHMAN‡, AND ALEXANDRU TAMASAN§

Abstract. We consider the problem of recovering an isotropic conductivity outside some per-
fectly conducting inclusions or insulating inclusions from the interior measurement of the magnitude
of one current density field |J |. We show that the conductivity outside the inclusions and the shape
and position of the inclusions are uniquely determined (except in an exceptional case) by the mag-
nitude of the current generated by imposing a given boundary voltage. Our results show that even
when the minimizer of the least gradient problem min

∫
Ω
a|∇u| with u|∂Ω = f exhibits flat regions

(i.e., regions with ∇u = 0) it can be identified as the voltage potential of a conductivity problem
with perfectly conducting inclusions.

Key words. conductivity imaging, current density impedance imaging, minimal surfaces,
1-Laplacian

AMS subject classifications. 35R30, 35J60, 31A25, 62P10

DOI. 10.1137/120866701

1. Introduction. This paper considers the inverse problem of determining an
isotropic electrical conductivity σ from one measurement of the magnitude of the
current density field |J | generated inside the domain Ω while imposing the voltage
f at the boundary. Extending the existing work, the problem here allows for some
perfectly conducting and insulating inclusions to be embedded in Ω away from the
boundary. The domain Ω ⊂ Rn, n ≥ 2, is assumed to be bounded, open, and with a
connected Lipschitz boundary.

The problem considered in this paper is modeled by two physical principles: the
Maxwell model of the electromagnetic field at very low frequency and a magnetic
resonance technique to image current densities pioneered in [23] and [54]. Employment
of dual physical models is a fairly new trend in quantitative imaging which seeks better
accuracy and resolution of the reconstructed images, compared to the methods based
on just one physical principle. For recent progress in such hybrid imaging methods in
conductivity imaging we refer to [13], [3], [16], [2], [5], [7], [58], [28], and the review
articles [6] and [47].

Inspired by [23] and [54], two subclasses of conductivity imaging methods have
been developed: the ones which use interior knowledge of the current density field
and the ones that use the measurement of only one component of the magnetic field,
known as magnetic resonance electric impedance tomography. (See [49], [51], [30],
[35], [57], [36], [37] for work in this direction.) The problem considered here belongs
to the former subclass. The idea of using the current density field to image electri-
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3970 A. MORADIFAM, A. NACHMAN, AND A. TAMASAN

cal conductivity appeared first in [59]. In [21] a perturbation method recovered the
conductivity in the linearized case. Using the fact that J is normal to equipotential
lines, the method in [31] recovered two-dimensional isotropic conductivities. In [26]
the problem is reduced to the Neumann problem for the 1-Laplacian, and the exam-
ples of nonuniqueness and nonexistence for this degenerate elliptic problem show that
knowledge of the applied current at the boundary together with the magnitude of
current density field inside is insufficient data to determine the conductivity. Instead,
the “J-substitution” algorithm based on knowledge of the magnitude of two current
density fields has been proposed; see also [25] and [27]. The idea of using two currents
goes back to [53]; in [50] the problem is reduced to a first order system of PDEs, and
several numerical reconstructions based on solving this system are proposed. In inde-
pendent work in [24] and, respectively [32], a simple formula recovers ∇ ln(σ) at each
point in a region where two transversal current density vectors have been measured;
see also [20] for careful experimental validation of this formula.

In [44] a reconstruction method which uses the interior knowledge of the magni-
tude of just one current density field |J | has been proposed. This method relies on
the fact that in the absence of singularities, equipotential sets are minimal surfaces
in the metric g = |J |2/(n−1)I conformal to the Euclidean metric. In [46] it is shown
that the equipotential surfaces are minimizers for the area functional

(1) A(Σ) =

∫
Σ

|J |dS,

where dS is the induced Euclidean surface measure. (Note that A(Σ) is the area of Σ
in the Riemannian metric g described above.) Moreover, in [45] it is shown that the
voltage potential u is a minimizer of the functional

(2)

∫
Ω

|J | · |∇v|dx,

subject to v ∈ W 1,1(Ω) with v = f at the boundary ∂Ω, and that u is the unique
minimizer among v ∈ W 1,1(Ω) with |∇v| > 0 a.e. in Ω and v = f at the boundary.
One can determine u and hence σ by a minimization algorithm. A structural stability
result for the minimization of the functional in (2) can be found in [48]. Recently
in [43] authors presented a convergent algorithm for finding the unique minimizer of
(2). Formally, the Euler–Lagrange equation for the nonsmooth functional in (2) is the
generalized 1-Laplacian. This is in contrast with the work in [3], [2], and [16], where
the conductivity imaging from interior data leads to the generalized 0-Laplacian.

Partial reconstruction from incomplete data results are available for planar do-
mains [46]: if |J | is known throughout Ω but f is only known on parts of the boundary.
More precisely, if some interval (α, β) of boundary voltages is twice contained in the
known values of f , then one can recover the conductivity in the subregion

(3) Ωα,β := {x ∈ Ω : α < u(x) < β}.

In fact |J | need only be known in a subregion Ω̃ which contains regions of type (3)
for unknown values α’s and β’s. The method in [46] determines from the data if Ω̃
contains regions of type (3) and if so recovers all the (maximal) intervals (α, β), their
corresponding Ωα,β, and the conductivity therein.

In this paper we are interested in imaging an isotropic conductivity σ from the
magnitude of one current density field in the presence of perfectly conducting and
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CONDUCTIVITY IMAGING FROM ONE INTERIOR MEASUREMENT 3971

insulating inclusions. Even though Ohm’s law is not valid in the classical sense inside
perfectly conducting regions, we show that the conductivity outside the inclusions and
the shape and position of the inclusions are uniquely determined (see Remark 2.2)
by the magnitude of the current generated by imposing a given boundary voltage.
We also establish a connection between the above problem and the uniqueness of
the minimizers of the weighted least gradient problem min

∫
Ω
a|∇u|dx with u|∂Ω.

Such minimizers often exhibit flat regions (i.e., regions where they are constant). We
have found a new admissibility condition that allows such minimizers to be viewed
as voltage potential of conductivity problems with perfectly conducting inclusions.
Unlike the existing results (e.g., [44], [45], and [46]) we allow for |J | ≡ 0 and |∇u| ≡ 0
in open subsets of Ω. Such situations occur when insulating and perfectly conducting
inclusions are embedded inside Ω. In dimensions n ≥ 3 we allow any finite number of
open connected insulating inclusions, but in dimension n = 2 we allow only one open
connected insulating inclusion. In the following section we present and discuss our
main results.

2. Main results. Let U be an open subset of Ω with U ⊂ Ω to model the
perfectly conducting inclusions, V be an open subset of Ω with V ⊂ Ω to model the
insulating inclusions, and χU and χV be their corresponding characteristic functions.
We assume U∩V = ∅, Ω\U ∪ V is connected and the boundaries ∂U , ∂V are piecewise
C1,α. Let σ1 ∈ L∞(U) and σ ∈ L∞(Ω \ U ∪ V ) be bounded away from zero. For
k > 0 consider the conductivity problem

(4)

⎧⎪⎨
⎪⎩

∇ · ((χU (kσ1 − σ) + σ)∇u) = 0 in Ω \ V ,

∂u
∂ν = 0 on ∂V,

u|∂Ω = f.

The perfectly conducting inclusions occur in the limiting case k → ∞. The
limiting solution is the unique solution to the problem:

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · σ∇u0 = 0 inΩ \ U ∪ V ,

∇u0 = 0 in U,

u0|+ = u0|− on ∂(U ∪ V ),∫
∂Uj

σ ∂u0

∂ν |+ds = 0 j = 1, 2, . . . ,
∂u0

∂ν |+ = 0 on ∂V,

u0|∂Ω = f

(see the appendix for more details), where U = ∪∞
j=1Uj is a partition of U into

connected components.
For Lipschitz continuous conductivities in any dimension n ≥ 2 or for essentially

bounded conductivities in two dimensions, the solutions of the conductivity equation
satisfy the unique continuation property (see [9] and references therein). Consequently
the insulated (and possibly perfectly conducting) inclusions are the only open sets on
which the interior data |J | vanishes identically. However, in three dimensions or
higher it is possible to have a Hölder continuous σ and boundary data f that yield
u ≡ constant in a proper open subset W � Ω; see [52], [41]. We call such regions
W singular inclusions. On the other hand Ohm’s law does not hold in the classical
sense inside perfect conductors: the current J inside perfectly conducting inclusions
U is not necessarily zero while ∇u ≡ 0 in U [4], [34].
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3972 A. MORADIFAM, A. NACHMAN, AND A. TAMASAN

The measured data for our inverse problem is the nonnegative function a = |J(x)|
in Ω, the magnitude of the current density field J induced by imposing a voltage f at
the boundary ∂Ω. We have ∇·J = 0. In the perfectly conducting inclusion U we will
not rely on the Ohm’s law; we will use condition (6) and the transmission condition
J− · ν = J+ · ν across the boundary of ∂U (see the appendix), where J− = J |U
and J+ = J |Uc . Indeed we have found an extension of the notion of admissibility
of [45] which will be crucial in allowing us to treat the case of perfectly conducting
and insulating inclusions considered here. In a different direction, this also makes
it possible to extend results on uniqueness of minimizers of weighted least gradient
problems as discussed later in this section.

To formulate our results, we first need to introduce a notion of admissibility.
Definition 1. A pair of functions (f, a) ∈ H1/2(∂Ω)×L2(Ω) is called admissible

if the following conditions hold:
(i) There exist two disjoint open sets U, V ⊂ Ω (possibly empty) and a function

σ ∈ L∞(Ω \ (U ∪ V )) bounded away from zero such that Ω \ (U ∪ V ) is connected,
U ∪ V ∩ ∂Ω = ∅, and {

a = |σ∇uσ| in Ω \ (U ∪ V ),
a = 0 in V,

where uσ ∈ H1(Ω) is the weak solution of (5).
(ii) The following holds:

(6) inf
u∈W 1,1(U)

(∫
U

a|∇u|dx−
∫
∂U

σ
∂uσ

∂ν
|+uds

)
= 0,

where ν is the unit normal vector field on ∂U pointing outside U .
(iii) The set of zeroes of the function a outside U can be partitioned as

(7) {x ∈ Ω : a(x) = 0} ∩ (Ω\U) = V ∪W ∪ Γ,

where W is an open set (possibly empty), Γ is a Lebesgue-negligible set, and Γ has an
empty interior.

We call σ a generating conductivity and uσ the corresponding potential.
Since for u = constant,∫

Uj

a|∇u|dx−
∫
∂Uj

σ
∂uσ

∂ν

∣∣∣
+
uds = 0,

we have

inf
u∈W 1,1(Uj)

(∫
Uj

a|∇u|dx−
∫
∂Uj

σ
∂uσ

∂ν

∣∣∣
+
uds

)
≤ 0.

Hence condition (6) holds if and only if

inf
u∈W 1,1(Uj)

(∫
Uj

a|∇u|dx−
∫
∂Uj

σ
∂uσ

∂ν

∣∣∣
+
uds

)
= 0

for all connected components Uj of U .
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CONDUCTIVITY IMAGING FROM ONE INTERIOR MEASUREMENT 3973

We first note that any physical data (f, a) naturally satisfies the first two condi-
tions (i) and (ii) in the above definition. Indeed if a = |J | where ∇ · J = 0 in Ω, then
for any u ∈ W 1,1(U) we have∫

U

a|∇u|dx−
∫
∂U

σ
∂uσ

∂ν
uds =

∫
U

|J ||∇u|dx −
∫
∂U

σ
∂uσ

∂ν
uds

≥
∫
U

J · ∇udx−
∫
∂U

σ
∂uσ

∂ν
uds

=

∫
∂U

J · νudx−
∫
∂U

σ
∂uσ

∂ν
uds

=

∫
∂U

J · νuds−
∫
∂U

J · νuds = 0.

Also by the fourth equation in (5)∫
U

a|∇u|dx−
∫
∂U

σ
∂uσ

∂ν
uds = 0

for any constant function u in U . Hence (ii) holds for physical data (f, a). The first
condition (i) also obviously holds for physical data (f, a). We have added condition
(iii) for technical reasons. Even though it is not always satisfied, this condition is very
general, at least for physical applications.

On the other hand if ∫
U

σ
∂uσ

∂ν
dx = 0

then

E(u) =

∫
U

a|∇u|dx−
∫
∂U

σ
∂uσ

∂ν
uds

is not invariant under adding or subtracting constant and therefore

inf
u∈W 1,1(U)

(∫
U

a|∇u|dx−
∫
∂U

σ
∂uσ

∂ν
uds

)
= ∞.

Thus we have the following proposition about condition (6).
Proposition 2.1. Let a ∈ L∞(Ω) and U be an open subset of Ω.
• If a ≥ |J | in U for some J with ∇ · J ≡ 0 in U and J− = σ ∂uσ

∂ν |+ on ∂U ,
then condition (6) in Definition 1 holds.

• If condition (6) in Definition 1 holds, then∫
U

σ
∂uσ

∂ν
ds = 0.

Definition 2. We say that an open set V ⊂ Rn, n ≥ 3, is proper if V has a finite
number of disjoint open connected components {V1, V2, . . . , Vm} such that V̄j ∩ V̄i = ∅
if i = j and ∂Vi is a connected C1 manifold homomorphic to Sn−1 for all 1 ≤ i ≤ m.
An open set V ⊂ R2 is called proper if it is connected and ∂V is a connected C1

manifold homomorphic to S1.
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3974 A. MORADIFAM, A. NACHMAN, AND A. TAMASAN

We can now state one of our main uniqueness results.
Theorem 2.1. Let Ω ⊂ Rn, n ≥ 2, be a domain with connected Lipschitz

boundary and let (f, |J |) ∈ C1,α(∂Ω)×L2(Ω) be an admissible pair generated by some
unknown conductivity σ ∈ Cα(Ω\(U ∪ V )), where U and V are open sets as described
in Definition 1. In addition assume V is proper. Then the potential uσ is a minimizer
of the problem

(8) u = argmin

{∫
Ω

|J ||∇v|dx : v ∈ W 1,1(Ω) ∩ C(Ω), v|∂Ω = f

}
,

and if u is another minimizer of the above problem, then u = uσ in

Ω\{x ∈ Ω : |J | = 0}.

Moreover the set of zeros of |J | and |∇uσ| can be decomposed as

{x ∈ Ω : |J | = 0} ∪ {x ∈ Ω : ∇uσ = 0} =: Z ∪ Γ,

where Z is an open set, Γ has measure zero, and

Z = U ∪ V ∪W.

Consequently σ = |J|
|∇uσ | ∈ L∞(Ω \Z) is the unique Cα(Ω \Z)-conductivity outside Z

for which |J | is the magnitude of the current density corresponding to the voltage f
at the boundary.

Remark 2.2. The above theorem allows us to identify the potential u = uσ and
the conductivity σ outside the open set Z = U ∪ V ∪ W . There are a number of
ways to determine if an open connected component O of Z is a perfectly conducting
inclusion, an insulating inclusion, or a singular inclusion:

• If ∇u ≡ 0 in O and |J |(x) = 0 for some x ∈ O, then O is a perfectly
conducting inclusion.

• If |J | ≡ 0 in O and u ≡ constant on ∂O, then O is an insulating inclusion.
• If J ≡ 0 in O, u = constant on ∂O, and J is not Cα at x for some x ∈ O,
then O is either an insulating inclusion or a perfectly conducting inclusion.

• If J ≡ 0, u = constant on ∂O, and J ∈ Cα(∂O), then the knowledge of the
magnitude of the current |J | (and even the full vector field J) is not enough
to determine the type of the inclusion O.

Remark 2.3. One can compare the forward problem (5) with the minimization
problem (8) to see that the second, third, fourth, and fifth condition in the forward
problem (5) do not appear in the problem (8). This means that all of the information
about the location and shape of the inclusions is encoded in |J |.

Now we introduce an interesting connection between Theorem 2.1 and the unique-
ness of minimizers of weighted least gradient problems. Indeed, Theorem 2.1 can also
be applied independently to prove uniqueness of the minimizers of the weighted least
gradient problem

(9) u0 = argmin

{∫
Ω

a|∇u|dx, u ∈ W 1,1(Ω), and u|∂Ω = f

}

in situations where the minimizer has flat regions (is constant on open sets).
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CONDUCTIVITY IMAGING FROM ONE INTERIOR MEASUREMENT 3975

Example 2.4. For instance, consider the following example [55]. Let D = {x ∈
R2 : x2 + y2 < 1} be the unit disk and f(x, y) = x2 − y2. Consider the problem

(10) u0 = argmin

{∫
D

|∇u|dx, u ∈ W 1,1(D), and u|∂D = f

}
,

which corresponds to a ≡ |J | ≡ 1 in D. We claim that (1, x2 − y2) is an admissible
pair according to Definition 1. To prove our claim we let U = (− 1√

2
, 1√

2
)× (− 1√

2
, 1√

2
)

and V = ∅. Define

σ =

{
1

4|x| if |x| ≥ 1√
2
, |y| ≤ 1√

2
,

1
4|y| if |x| ≤ 1√

2
, |y| ≥ 1√

2
,

and

uσ =

⎧⎪⎨
⎪⎩

2x2 − 1 if |x| ≥ 1√
2
, |y| ≤ 1√

2
,

0 if (x, y) ∈ U,

1− 2y2 if |x| ≤ 1√
2
, |y| ≥ 1√

2
.

It is easy to see that uσ is the solution of (5) and |J | ≡ 1 ≡ σ|∇uσ| on Ω \ U .
Hence (i) holds in the definition of admissibility, Definition 1. Condition (iii) also
obviously holds. It remains to be shown that (6) holds. Define the vector field J(x, y)
in U as

J(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

−j if y ≥ |x|,
j if − y ≥ |x|,
i if x > |y|,
−i if − x > |y|.

Let

U0 = {(x, y) ∈ U | |x| = |y|} = T1 ∪ T2 ∪ T3 ∪ T4,

where Ti, 1 ≤ i ≤ 4, are the four disjoint triangles in Figure 1. Then |J | = 1 in U ,
J ∈ C∞(U0), and we have∫

U

|∇u|dx−
∫
∂U

σ
∂uσ

∂ν
uds ≥

∫
U0

|J ||∇u|dx−
∫
∂U

σ
∂uσ

∂ν
uds

≥
∫
U0

J · ∇udx−
∫
∂U

σ
∂uσ

∂ν
uds

=

4∑
i=1

∫
Ti

J · ∇udx−
∫
∂U

σ
∂uσ

∂ν
uds

=

∫
∂U

J · νuds−
∫
∂U

σ
∂uσ

∂ν
uds

= 0,

since J · ν ≡ σ ∂uσ

∂ν on ∂U . Thus condition (6) holds and (1, x2 − y2) is admissible in
the sense of Definition 1. It follows from Theorem 2.1 that uσ is the unique minimizer
of problem (10).

The following theorem shows that the equipotential sets contained entirely outside
the conductive inclusions are area minimizers. We describe a surface as the level set
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3976 A. MORADIFAM, A. NACHMAN, AND A. TAMASAN

Fig. 1. Current density vector field for Example 2.4.

of a regular map u, while competitors are described by level sets of some compact
perturbations of the regular map u.

Theorem 2.5 (minimizing property of level sets). Let Ω ⊂ Rn, n ≥ 2, be a
domain with connected Lipschitz boundary and let (f, |J |) ∈ C2(∂Ω) × L2(Ω) be an
admissible pair generated by some unknown C1 conductivity. Then for every v ∈
C2(Ω) with v = f on ∂Ω such that

{x : |∇v| = 0} = Zv ∩ Lv, a(Zv) = {0},
where Zv is open and Lv has Lebesgue measure zero, we have

(11) A(u−1(λ)) ≤ A(v−1(λ))

for a.e. λ ∈ R, where A is defined as (1).
The partial data result [46, Theorem 3.4] also recovers the conductivity in two-

dimensional subregions of type (3) assuming that |J | > 0 almost everywhere. Below
we show that under the assumption the full vector field J is known (not just its
magnitude |J |), the partial reconstruction result is valid in three or higher dimensions.
The result below can be viewed as the extension of the results in [31] to three or higher
dimensional models.

Theorem 2.6 (partial determination). Let Ω ⊂ Rn (n ≥ 2) be simply connected.

For i = 1, 2, let σi ∈ Cα(Ω\U i ∪ V i) be bounded away from zero and ui satisfy (5),
where U i and V i are open sets of Ω, and let

Ji =

{
σi∇ui in Ω\(U i ∪ V i),
0 in V i.

For α < β let

(12) Ωα,β := {x ∈ Ω : α < u1 < β} and Γ := Ωα,β ∩ ∂Ω.

In addition assume that V is proper and

{x ∈ Ω \ U1 : |J1(x)| = 0} = V 1 ∪W 1 ∪ Γ1,

where W 1 is open and Γ1 has Lebesgue measure zero. Then the following hold:
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CONDUCTIVITY IMAGING FROM ONE INTERIOR MEASUREMENT 3977

1. If u1|Γ = u2|Γ and J1 = J2 in Ω, then U1 ∩ Ωα,β = U2 ∩ Ωα,β, (W
1 ∪ V 1) ∩

Ωα,β = (W 2 ∪ V 2) ∩ Ωα,β

u1 = u2 in Ωα,β\V 1 and σ1 = σ2 in Ωα,β \ U1 ∪ V 1 ∪W 1.

2. If u1|Γ = u2|Γ and J1 = J2 in Ωα,β, then

(13) {x ∈ Ω : α < u2(x) < β} = Ωα,β ,

U1 ∩ Ωα,β = U2 ∩ Ωα,β, (W
1 ∪ V 1) ∩ Ωα,β = (W 2 ∪ V 2) ∩ Ωα,β, and

u1 = u2 in Ωα,β\V 1 and σ1 = σ2 in Ωα,β \ U1 ∪ V 1 ∪W 1.

Similarly to Theorem 2.1 we may determine if an open connected component O
of U1 ∪ V 1 ∪W 1 = U2 ∪ V 2 ∪ W 2 is a perfectly conducting, insulating, or singular
inclusion (see Remark 2.2).

3. Unique determination of the conductivity. In this section we prove The-
orems 2.1 and 2.6. The arguments extend those in [45] and [46] by replacing the new
admissibility condition. We start with the following proposition.

Proposition 3.1. Let Ω ⊂ Rn, n ≥ 2, be a domain and (f, |J |) ∈ H1/2(∂Ω) ×
L2(Ω). Then the following hold:

1. Assume (f, |J |) is admissible, say generated by some conductivity σ ∈ L∞

(Ω\(U ∪ V )), where U and V are described in Definition 1 and u0 is the
corresponding voltage potential. Then u0 is a minimizer for F (u) in (2) over

(14) A := {u ∈ H1(Ω) : u|Ω = f}.
Moreover, if f ∈ C1,α(∂Ω) and if the generating conductivity σ ∈ Cα(Ω\U ∪ V ),
then the corresponding potential u0 ∈ C1,α(Ω\U ∪ V ) is a minimizer of F (u)
over A.

2. Assume that the set of zeros of a = |J | can be decomposed as

{x ∈ Ω : a(x) = 0} = V ∪ Γ1,

where V is an open set and Γ1 has measure zero. Suppose u0 is a minimizer
for F (u) in (2) over A and the set of zeroes of |∇u0| can be decomposed as

{x ∈ Ω \ V : |∇u0| = 0} = U ∪ Γ2,

where U is an open set, U ∪ V ⊂ Ω, and Γ2 has measure zero. If U ∩ V = ∅
and |J |/|∇u0| ∈ L∞(Ω\(U ∪ Z)), then (f, |J |) is admissible.

Proof. Assume (f, |J |) is admissible and generated by some conductivity σ ∈
L∞
+ (Ω\(U ∪ V )). For any u ∈ A we have

F (u) =

∫
Ω\(U∪Z)

σ|∇u0||∇u|dx+

∫
U

|J ||∇u|dx

≥
∫
Ω\(U∪Z)

σ∇u0.∇udx+

∫
U

|J ||∇u|dx

=

∫
∂Ω

σ
∂u0

∂ν
uds−

∫
∂V

σ
∂u0

∂ν
uds−

∫
∂U

σ
∂u0

∂ν
uds+

∫
U

|J ||∇u|dx

=

∫
∂Ω

σ
∂u0

∂ν
uds−

∫
∂U

σ
∂u0

∂ν
uds+

∫
U

|J ||∇u|dx

≥
∫
∂Ω

σ
∂u0

∂ν
fds = F (u0),
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3978 A. MORADIFAM, A. NACHMAN, AND A. TAMASAN

where we have used the admissibility condition (6) and ν is the outer normal to the
boundary of Ω, U , and V . Hence u0 is a minimizer of F (u).

To prove (2) we note that by the Lebesgue dominated convergence theorem, the

functional F is Gateaux-differentiable at u ∈ H1(Ω) with |J|
|∇u| ∈ L∞

+ (Ω\(U ∪ V )).

Since

F (u0) =

∫
Ω

|J ||∇u0|dx =

∫
Ω\U∪V

|J ||∇u0|dx,

at a minimizer u0 we have

F ′(u0)(ϕ) =

∫
Ω\U∪V

|J |
|∇u0|∇u0.∇ϕdx = 0

for all ϕ ∈ W 1,1
0 (Ω \U ). Now let σ = |J|

|∇u0| ; then ∇.(σ∇u0) = 0 in Ω \V ∪ U . On the

other hand we have∫
Ω\U∪V

|J |
|∇u0|∇u0.∇ϕdx =

∫
∂(U∪V )

σ
∂u0

∂ν
ϕds =

∫
∂V

σ
∂u0

∂ν
ϕds = 0

for all ϕ ∈ W 1,1
0 (Ω \ U). Therefore ∂u0

∂ν = 0 on ∂V . Now let O be a connected

component of U . Then for all ϕ ∈ W 1,1
0 (Ω \ U \O) with ϕ ≡ 1 in O we have∫

Ω\U∪V

|J |
|∇u|∇u0.∇ϕdx =

∫
∂(U∪V )

σ
∂u0

∂ν
ϕds =

∫
∂O

σ
∂u0

∂ν
ds = 0.

This implies that u0 is a solution of (5). (See the appendix for more details.)
Moreover for every u ∈ W 1,1

0 (Ω) with u|∂Ω = f∫
Ω

|J ||∇u0|dx ≤
∫
Ω\V

|J ||∇u|dx

=

∫
U

|J ||∇u|dx+

∫
Ω\U∪V

|J ||∇u|dx

=

∫
U

|J ||∇u|dx+

∫
Ω\U∪V

σ|∇u0||∇u|dx

=

∫
U

|J ||∇u|dx+

∫
Ω\U∪V

σ∇u0.∇udx

=

∫
U

|J ||∇u|dx−
∫
∂U

σ
∂u0

∂ν
uds+

∫
∂Ω

σ
∂u0

∂ν
fds.

Since ∫
Ω

|J ||∇u0|dx =

∫
∂Ω

σ
∂u0

∂ν
fds,

the admissibility condition (6) follows from the above inequality. Thus (|J |, f) is an
admissible pair.

Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. Assume u0 is a solution of (5) that corresponds to the

admissible pair (f, |J |). It is a direct consequence of the admissibility assumption
that

{x ∈ Ω : |J | = 0} ∪ {x ∈ Ω : ∇u0 = 0} =: Z ∪ Γ,
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CONDUCTIVITY IMAGING FROM ONE INTERIOR MEASUREMENT 3979

where Z is an open set, Γ has measure zero, and

Z = U ∪ V ∪W.

Since ∂(U ∪ V ) is piecewise C1,α,

u0 ∈ C1,α(Ω\U ∪ V ) ∩ C(Ω\U ∪ V ∪ ∂Ω) ∩ C1,α(Ω\U ∪ V ∪ T )

for every C1,α component of ∂(U ∪ V ).
By our assumptions |J | > 0 a.e. in Ω \ U ∪ V ∪W . Hence, equality in (6) yields

|∇u0| > 0 a.e. on Ω \U ∪ V ∪W . Since U ∪W is a disjoint union of countably many
connected open sets and u0 is constant on every connected open subset of U ∪W , the
set

Θ := {u0(x) : x ∈ U ∪W}

is countable.
Now suppose u1 is another minimizer. Then we have

∇u0 = 0 in U and
∂u0

∂ν
= 0 on ∂(V ∪W ).

Without loss of generality we can assume u0 ≥ 0 in Ω. Then

F (u1) =

∫
Ω\U∪V ∪W

σ|∇u0|.|∇u1|dx ≥
∫
Ω\U∪V ∪W

σ|∇u0.∇u1|dx

≥
∫
Ω\U∪V ∪W

σ∇u0.∇u1dx =

∫
∂Ω

σ0
∂u0

∂ν
u1ds =

∫
∂Ω

σ0
∂u0

∂ν
fds(15)

= F (u0),

where ν is the outer normal to the boundary of Ω. Since u0 and u1 both minimize
the functional F (u), equality holds in (15). On the other hand the equality in Cauchy
inequality can only hold for parallel vectors, so we have that

(16) ∇u1(x) = λ(x)∇u0(x) a.e. x ∈ Ω \ U ∪ V ∪W

for some Lebesgue-measurable λ(x). In particular,

(17)
∇u0(x)

|∇u0(x)| =
∇u1(x)

|∇u1(x)|
a.e. on

(Ω \ U ∪ V ∪W ) ∩ {x ∈ Ω : |∇u1| = 0}.

Let Et = {x ∈ Ω \ U ∪ V ∪W : u0(x) > t}. Since Θ is countable, for a.e.
t > 0, ∂Et ∩ (U ∪W ) = ∅. (Otherwise u0 must be a constant.) We claim that
the sets ∂Et ∩ (Ω \ V ) are smooth C1 manifolds in Ω \ V for almost all t > 0 with
∂Et∩U ∪W = ∅. To prove this note that since u0 ∈ C1(Ω\U ∪ V ), from equality (17)
we have that the measure theoretical normal νt(x) = − ∇u0

|∇u0| extends continuously

from ∂∗Et ∩ (Ω\V ) to the topological boundary ∂Et ∩ (Ω\V ), where ∂∗Et is the
measure theoretical boundary of Et. By the regularity result of De Giorgi (see, e.g.,
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3980 A. MORADIFAM, A. NACHMAN, AND A. TAMASAN

Theorem 4.11 in [18]), we conclude that ∂Et ∩ Ω\V is a C1-hypersurface for almost
all t > 0.

The function u1 is constant on every C1 connected components of ∂Et ∩ (Ω\V ).
Indeed, let γ : (−ε,+ε) → ∂Et ∩ (Ω\V ) be an arbitrary C1 curve in ∂Et ∩ (Ω\V ).
Then we have

d

dt
u1(γ(s)) = |∇u1(γ(s))|ν(γ(s)).γ′(s) = 0,

because either |∇u1(γ(s))| = 0 or ν(γ(s)).γ′(s) = 0 on ∂Et∩(Ω\V ). So u1 is constant
along γ.

Let t be one of the values for which ∂Et ∩ (Ω\V ) is a hypersurface and ∂Et ∩
U ∪W = ∅ (which is the case for almost every t > 0). We show next that each
connected component of ∂Et intersects the boundary ∂Ω.

Arguing by contradiction, assume that Σt is a connected component of ∂Et such
that Σt ∩ ∂Ω = ∅. We consider two cases:

(I) Σ̄t is a manifold without boundary in Ω \ V .
(II) Σ̄t is not a manifold without boundary in Ω \ V .
Case I. Assume that Σ̄t is a manifold without boundary in Ω. Then ∂Ω ∪ Σt

is a compact manifold with two connected components. By the Alexander duality
theorem for ∂Ω∪Σt (see, e.g., Theorem 27.10 in [19]) we have that Rn \ (∂Ω∪Σt) is
partitioned into three open connected components: Rn = (Rn \ Ω ∪ O1 ∪ O2). Since
Σt ⊂ Ω we have O1 ∪O2 = Ω \ Σt and then ∂Oi ⊂ ∂Ω ∪ Σt for i = 1, 2.

We claim that at least one of ∂O1 or ∂O2 is in Σt. Assume not, i.e., for i = 1, 2,
∂Oi ∩ ∂Ω = ∅. Since ∂Ω is connected (by assumption) we have that O1 ∪O2 ∪ ∂Ω is
connected which implies that O1 ∪O2∪ (Rn \Ω) is also connected. Again by applying
the Alexander duality theorem for Σt ⊂ Rn, we have that Rn \ Σt has exactly two
open connected components, one of which is unbounded: Rn \ Σt = O∞ ∪O0. Since
O1∪O2∪(Rn\Ω) is connected and unbounded, we have that O1∪O2∪(Rn\Ω) ⊂ O∞,
which leaves O0 ⊂ Rn \ (O1 ∪ O2 ∪ (Rn \ Ω)) ⊂ Σt. This is impossible since O0 is
open and Σt is a hypersurface. Therefore either O1 or O2 or both have the boundary
in Σt.

Assume ∂O1 ⊂ Σt. We claim that u0 = t in O1. Indeed, since O1 is an extension
domain (∂Ω1 has a unit normal everywhere) the new map ũ0 defined by

ũ0 :=

{
u0, x ∈ Ω \O1,
t, x ∈ O1,

is in W 1,1(Ω) ∩ C(Ω) and decreases the functional, which contradicts the minimality
of u0. Therefore u0 = t in O1, which makes |∇u0| = 0 in O1. This is a contradiction
since we have assumed ∂Et ∩ U ∪W = ∅.

Case II. Assume Σ̄t is not a manifold without boundary in Ω \ V . First assume
n ≥ 3 and for any 0 < ε < ε∗ := min{mini
=j dist(Vi, Vj),mini dist(Vi, ∂Ω)} define

V ε = V ∪ {x ∈ Ω : dist(x, V ) < ε}.

Then V ε is an open set with the same number of disjoint open connected com-
ponents as V . Now let Σε

t = Σt \ V ε. Since ∂Σε
t ⊂ ∂V ε and ∂Vε \ Σε

t is open, each
connected component of ∂Σε

t is the boundary of an open set in ∂V ε with connected
boundary. Suppose M is a connected component of ∂Σε. Then M ⊂ ∂V ε

i for some
1 ≤ i ≤ m. Now if x0 ∈ Σε

t, then for ρ > 0 sufficiently small B(x0, ρ) \Σε
t = B1 ∪B2,
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CONDUCTIVITY IMAGING FROM ONE INTERIOR MEASUREMENT 3981

where B1, B2 are disjoint open sets with u0(B1) ⊂ (t,∞) and u0(B2) ⊂ (−∞, t).
Therefore

∂V ε
i \M = π1 ∪ π2,

where π1, π2 are disjoint open connected (with respect to the topology of ∂V ε) sets.
Since Σt

ε can be extended inside V ε \ V , we can extend Σε
t inside V ε

i to obtain a C1

hypersurface Σ such that

Σ ∩ (Ω \ V ε) = Σε
t ∩ (Ω \ V ε)

and ∂(Σ ∩ V ε) = M . Repeating this procedure for other connected components of
∂Σε

t leads to a C1 orientable hypersurface Sε with no boundary and Ω ∩ Sε = ∅ and
Sε ∩ (Ω \ V ε) = Σε

t . Now apply Alexander’s duality theorem to get the partition

Rn \ Sε = Oε ∪Oε
∞,

where Oε and Oε
∞ are open subsets of Rn and Oε

∞ is unbounded. Notice that Σε
t ⊂

∂Oε ⊂ Σε
t∪V ε and consequently Σε

t ⊂ ∂(Oε \ V̄ ε) ⊂ ∂V ε∪Σε
t . If ε

′ < ε, then Σε
t ⊂ Σε′

t

and V ε′ ⊂ V ε. Therefore

Oε \ V̄ ε ⊂ Oε′ \ V̄ ε′ .

Now let

O = ∪0<ε<ε∗(O
ε \ V̄ ε).

Then O is open and ∂O ⊂ Σt ∪ V . We claim that u0 = t in O. Indeed the new map
defined by

ũ0 :=

{
u0, x ∈ Ω\(V ∪O),
t, x ∈ O,

(18)

can be extended to a function in W 1,1(Ω) ∩C(Ω̄) which decreases the functional and
contradicts the minimality of u0. Hence u0 = t in O which is a contradiction because
we have assumed Et ∩ U ∪W = ∅.

Now assume n = 2. Since Σt ∩∂Ω = ∅ and V has only one connected component,
there exists two distinct point a, b ∈ Σ̄t ∩ ∂V such that

∂V \ {a, b} = π1 ∪ π2.

Now notice that Σt ∪ π1 is a continuous closed curve in R2. By the Jordan curve
theorem there exists a bounded open set O1 such that ∂O1 = Σt ∪ π1. Define O =
O1 \ V̄ = ∅. Then ∂O ⊂ Σt ∪ ∂V which is a contradiction in view of (18).

In both cases (I) and (II) the contradiction follows from the assumption that
Σt∩∂Ω = ∅. We conclude that each connected component of ∂Et reaches the boundary
∂Ωt. Since u0 and u1 coincide on the boundary ∂Ω, we have shown that u0|∂Et =
u1|∂Et = t for almost every t. Therefore u0 = u1 a.e. in Ω \ U ∪W .

Now note that u0 = u1 on the boundary of each connected component of U ∪W .
Since, u0 and u1 are constant on each connected component of U ∪ W , u0 and u1

should also agree on U ∪W . Hence u0 = u1 on Ω \V and the proof is complete.
Proof of Theorem 2.6. To prove the theorem we shall prove the stronger state-

ment (2). It is enough to prove the theorem for each connected component of Ωα,β .
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Hence without loss of generality we may assume that Ωα,β is connected. By the
definition of Ωα,β we have

(19) u1(∂Ωα,β \ Γ) ⊂ {α, β}.
Let J(x) := J1(x) = J2(x) for x ∈ Ωα,β . By our assumptions |J | > 0 a.e. in Ω \α,β
U1 ∪ V 1 ∪W 1. Hence, |∇u1| > 0 a.e. on Ωα,β \ U1 ∪ V 1 ∪W . Since U1 ∪ W 1 is a
disjoint union of countably many connected open sets and u1 is constant on every
connected open subset of U1 ∪W , the set

Θ := {u1(x) : x ∈ U1 ∪W 1}
is countable. Without loss of generality we can assume u1 ≥ 0 in Ωα,β .

Since J1 = J2 in Ωα,β, we have that

(20) ∇u1(x) = λ(x)∇u2(x) a.e. x ∈ Ωα,β\U1 ∪ V 1 ∪W 1

for some nonnegative Lebesgue-measurable function λ(x). In particular, for a.e. x ∈
Ωα,β \ U1 ∪ V 1 ∪W 1 we must have

(21)
∇u1(x)

|∇u1(x)| =
∇u2(x)

|∇u2(x)| .

Let Et = {x ∈ Ωα,β \ U1 ∪ V 1 ∪W 1 : u1(x) > t}. Since Θ is countable, for a.e.

t > 0, ∂Et ∩ U1 ∪W 1 = ∅. (Otherwise u1 must be a constant.) With an argument
similar to that of Theorem 2.1, one can show that the sets ∂Et∩(Ωα,β\V 1) are smooth

C1 manifolds in Ωα,β for almost all t > 0 with ∂Et ∩ U1 ∪W 1 = ∅ and the function

u2 is constant on each connected component of ∂Et ∩ (Ωα,β\V 1).

Now let t = α, β be one of the values for which ∂Et∩ (Ωα,β\V 1) is a hypersurface

and ∂Et ∩ U1 ∪W 1 = ∅ (which is the case for almost every t > 0). We next show
that each connected component of ∂Et intersects Γ.

Arguing by contradiction, assume that Σt ⊂ Ωα,β is a connected component of
∂Et such that Σt ∩ ∂Ω = ∅. We consider two cases:

(I) Σ̄t is a manifold without boundary in Ω \ V .
(II) Σ̄t is not a manifold without boundary in Ω \ V .
Case I. Assume that Σ̄t is a manifold without boundary in Ω\V . Then ∂Ω∪Σt is a

compact manifold with two connected components. By the Alexander duality theorem
we have that Rn \ (∂Ω ∪ Σt) is partitioned into three open connected components:
Rn = ((Rn \ Ω) ∪ O1 ∪ O2). Since Σt ⊂ Ω we have O1 ∪ O2 = Ω \ Σt, and then
∂Oi ⊂ ∂Ω ∪ Σt for i = 1, 2. With an argument similar to the one provided for the
proof of Theorem 2.1, we can show that at least one of ∂O1 or ∂O2 is in Σt. Assume
∂O1 ⊂ Σt. Since u1 satisfies the elliptic equation

∇.(σ1∇u1) = 0 in O1

and u1 = t on ∂O1, u1 = t in O1 and therefore |J | = 0 on O1. This is a contradiction
since we have assumed ∂Et ∩ U1 ∪W 1 = ∅.

Case II. If Σ̄t is not a manifold without boundary in Ω\V , then with an argument
similar to the one used in the proof of Theorem 2.1 we can show that there exists an
open set O such that the new map defined by

ũ0 :=

{
u0, x ∈ Ω\(V 1 ∪O),

t, x ∈ O,
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belongs to W 1,1(Ω) ∩ C(Ω̄) and solves (5). Since (5) has a unique solution u = ũ,
u0 = t in O which is a contradiction since we have assumed ∂Et ∩ U1 ∪W 1 = ∅.

In both cases the contradiction follows from the assumption Σt∩∂Ωα,β = ∅. Since
t = α, β and

u1(∂Ωα,β \ Γ) ⊂ {α, β},

Et intersects Γ for almost every t ≥ 0.
Since u0 and u1 coincide on Γ, we have shown that u1|∂Et = u2|∂Et = t for

almost every t. Therefore u0 = u1 a.e. in Ωα,β \U1 ∪W 1. Now note that u1 = u2 on
the boundary of each connected component of the set U1 ∪W . Since u1 and u2 are
constant on each connected component of U1 ∪W 1, u1 and u2 should also agree on
U1 ∪W . Hence u1 = u2 on Ωα,β\V 1. The proof is complete.

4. Equipotential surfaces are area minimizing in the conformal metric.
In this section we present the proof of Theorem 2.5. We prove that the equipotential
sets are global minimizers of E(Σ). This is a consequence of the minimizing property
of the voltage potential for the functional F (u). First we recall the co-area formula.

Theorem 4.1 (co-area formula). Let u ∈ Lip(Ω) and a be integrable in Ω ⊂ Rn.
Then, for a.e. t ∈ R, Hn−1(u−1(t) ∩ Ω) < ∞ and

(22)

∫
Ω

a|∇u(x)|dx =

∫ ∞

−∞

∫
u−1(t)

adHn−1(x)dt,

where Hn−1 is the (n− 1)-dimensional Hausdorff measure.
Proposition 4.1. Let a ≥ 0 be integrable in Ω, U be an open subset of Ω, and

u ∈ argmin

{∫
Ω

a|∇v|dx : v ∈ Lip(Ω) and v|Ω = f

}
.

For λ ∈ R arbitrary fixed, let u+ = max{u− λ, 0} and u− = max{u, λ} be defined in
Ω and f+ = max{f − λ, 0}, respectively, f− = min{f, λ}, be defined on the boundary
∂Ω. Then

u+ ∈ argmin

{∫
Ω

a|∇v|dx : v ∈ Lip(Ω) and v|Ω = f+

}
,

and

u− ∈ argmin

{∫
Ω

a|∇v|dx : v ∈ Lip(Ω) and v|Ω = f−

}
.

Proof. The proof is similar to the proof of Proposition 2.2 [46], and we omit
it.

Corollary 4.2. Let a ≥ 0 be integrable in Ω, U be an open subset of Ω, and

u ∈ argmin

{∫
Ω

a|∇v|dx : v ∈ Lip(Ω) and v|Ω = f

}
.

For every λ ∈ R and ε > 0 define

(23) uλ,ε :=
1

ε
min{ε,max{u− λ, 0}},
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and let fλ,ε be its trace on the boundary ∂Ω. Then uλ,ε ∈ Lip(Ω) and

uλ,ε ∈ argmin

{∫
Ω

a|∇v|dx : v ∈ Lip(Ω) and v|Ω = fλ,ε

}
.

Proof. The proof follows directly from Proposition 4.1 applied twice.
Lemma 4.3. Let a, u ∈ Lip(Ω) such that

{x : |∇u(x)| = 0} = Z ∪ L,

where Z is open and L has Lebesgue measure zero, a(Z) = {0}, and

(24) a
∇u

|∇u| ∈ W 1,1(Ω\Z).

Then for almost every λ ∈ R,

(25) lim
ε→0

∫
Ω

a|∇uλ,ε|dx =

∫
u−1(λ)

adHn−1(x),

where uλ,ε is defined by (23).
Proof. The proof is similar to the proof of Lemma 2.4 in [46]. From Theorem 4.1,

we have Hn−1(u−1(λ) ∩ Ω) < ∞ a.e. λ ∈ R. In particular

(26) Hn(u−1(λ) ∩Ω) = 0.

Since Hn−1(∂Ω) < ∞, from the disjoint partition ∂Ω =
⋃

λ∈R
(u−1(λ) ∩ ∂Ω) we have

Hn−1(u−1(λ) ∩ ∂Ω) > 0

for at most countable many λ. In particular, for almost every λ ∈ R

(27) Hn−1(u−1(λ) ∩ ∂Ω) = 0.

Let λ ∈ Range(u) be such that both (26) and (27) hold and ε > 0. Recall

uλ,ε =

⎧⎨
⎩

0 if u(x) < λ,
(u(x)− λ)/ε if λ ≤ u(x) ≤ λ+ ε,
0 if u(x) > λ+ ε.

From the co-area formula we have∫
Ω

a|∇uλ,ε|dx =

∫ +∞

−∞

∫
(uλ,ε)−1(t)

adHn−1(x)dt

=

∫ 1

0

∫
{x: u(x)=λ+tε}

adHn−1(x).(28)

To complete the proof it is enough to prove that

(29) lim
ε→0

∫
{x:u(x)=λ+ε}

adHn−1(x) =

∫
{x:u(x)=λ}

adHn−1(x)

holds uniformly for almost every t ∈ [0, 1]. The domain

Ωt,ε := {x ∈ Ω : λ < u(x) < λ+ tε}
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is Lipschitz. Since a ∈ Lip(Ω), it extends continuously to the boundary. The
a∇u/|∇u| ∈ W 1,1(Ω\Z) also extends to the boundary ∂(Ω\Z) as a bounded function.
Now notice that u(Z) is at most countable. Therefore, for a.e. λ ∈ Range(u) and a.e.
t ∈ [0, 1] the outer unit normal ν to the boundary ∂Ωt,ε exists. Then Green’s formula
in Ωt,ε yields ∣∣∣∣∣

∫
u−1(λ+tε)

adHn−1 −
∫
u−1(λ)

adHn−1

∣∣∣∣∣
=

∣∣∣∣∣
∫
u−1(λ+tε)∩Ω\Z

adHn−1 −
∫
u−1(λ)∩Ω\Z

adHn−1

∣∣∣∣∣
≤
∣∣∣∣∣
∫
{x∈∂Ω: λ<u(x)<λ+ε}

a
∇u

|∇u|νdH
n−1(x)

∣∣∣∣∣
+

∣∣∣∣∣
∫
{x∈Ω: λ<u(x)<λ+ε}

∇.a
∇u

|∇u|dx
∣∣∣∣∣ .

Using (26) we have

lim
ε→0

Hn({x ∈ Ω : λ < u(x) < λ+ ε}) = Hn

(⋂
ε>0

{x ∈ Ω : λ < u(x) < λ+ ε}
)

≤ Hn

(⋂
ε>0

{x ∈ Ω : λ ≤ u(x) < λ+ ε}
)

= Hn(u−1(λ) ∩ Ω) = 0.

Similarly by (27) we obtain

lim
ε→0

Hn−1({x ∈ ∂Ω : λ < u(x) < λ+ ε}) = 0.

This proves (29). By taking the limit ε → 0 in (28) and using (29) we obtain
(25).

Proof of Theorem 2.5. For λ ∈ Range(u), the left-hand side of (11) is zero and
and the inequality trivially holds. Since u obeys the maximum principle and u = v
on ∂Ω, Range(u) ⊂ Range(v).

Now let λ ∈ Range(u) \ (u(Z) ∪ v(Zv)
)
and recall that u(Z) and u(Zv) are both

countable. Since |∇u| = 0 a.e. in Ω \ Z and |∇v| = 0 a.e. in Ω \ Sv, for almost
every λ ∈ Range(u) the corresponding λ-level set is a C1-smooth oriented surface.
In particular the Hn−1-measure coincides with the induced Lebesgue measure on the
respective surface. Moreover, u and v satisfy (26) and (27) for a.e. λ ∈ R.

For ε > 0 arbitrary fixed, let uλ,ε be defined by (23) and define similarly

vλ,ε := min{ε,max{v − λ, 0}/ε}.
Since u = v on the boundary ∂Ω, we also have uλ,ε = vλ,ε on ∂Ω. From Corollary 4.2
we have

(30)

∫
Ω

a|∇uλ,ε|dx ≤
∫
Ω

a|∇vλ,ε|dx.

Letting ε → 0, and applying Lemma 4.3 we obtain (11).
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5. Appendix: Perfectly conductive and insulating inclusions. The re-
sults in this appendix formalize the definition of perfectly conducting as the infinity
limit of conductivity. They are slight generalization of the ones in [8] to include both
perfectly conductive and insulating inclusions.

Let U = ∪∞
j=1Uj be an open subset of Ω with U ⊂ Ω to model the union of

the connected components Uj (j = 1, 2, . . . ) of perfectly conductive inclusions and V
be an open subset of Ω with V ⊂ Ω to model the union of all connected insulating
inclusions. Let χU and χV be their corresponding characteristic function. We assume
that U ∩V = ∅, Ω\U ∪ V is connected and that the boundaries ∂U , ∂V are piecewise
C1,α. Let σ1 ∈ L∞(U) and σ ∈ L∞(Ω \ U ∪ V ) be such that

(31) 0 < λ ≤ σ1, σ ≤ Λ < ∞
for some positive constants λ and Λ.

For each 0 < k < 1 consider the conductivity problem

(32) ∇ ·
(
χU

(
1

k
σ1 − σ

)
+ σ

)
∇u = 0,

∂u

∂ν
= 0 on ∂V, and u|∂Ω = f.

The condition on ∂V ensures that V is insulating. It is well known that the problem
(32) has a unique solution uk ∈ H1(Ω) which also solves

(33)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇ · σ∇uk = 0 inΩ \ U ∪ V ,

∇ · σ1∇uk = 0 inU,

uk|+ = uk|− on ∂U,
1
kσ1

∂uk

∂ν

∣∣
− = σ ∂uk

∂ν

∣∣
+

on ∂U,
∂uk

∂ν

∣∣
+
= 0 on ∂V,

uk|∂Ω = f.

Moreover, the energy functional

(34) Ik[v] =
1

2k

∫
U

σ1|∇v|2dx+
1

2

∫
Ω\U∪V

σ|∇v|2dx

has a unique minimizer over the maps in H1(Ω) with trace f at ∂Ω which is the
unique solution uk of (33).

We shall show below why the limiting solution (with k → 0) solves

(35)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · σ∇u0 = 0 inΩ \ U ∪ V ,

∇u0 = 0 in U,

u0|+ = u0|− on ∂U,∫
∂Uj

σ ∂u0

∂ν |+ds = 0 j = 1, 2, . . . ,
∂u0

∂ν |+ = 0 on ∂V,

u0|∂Ω = f.

By elliptic regularity u0 ∈ C1,α(Ω\U ∪ V ) and for any C1,α boundary portion T of
∂(U ∪ V ), u0 ∈ C1,α((Ω\(U ∪ V )) ∪ T ).

Proposition 5.1. The problem (35) has a unique solution in H1(Ω) which is
the unique minimizer of the functional

(36) I0[v] =
1

2

∫
Ω\U∪V

σ|∇v|2dx

over the set A0 := {u ∈ H1(Ω \ V ); u|∂Ω = f, ∇u = 0 inU}.
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Proof. Note that A0 is weakly closed in H1(Ω \ V ). The functional I0 is lower
semicontinuous, strictly convex, and thus has a unique minimizer u∗

0 in A0.
First we show that u∗

0 is a solution of (35). Since u∗
0 minimizes (36), we have

(37) 0 =

∫
Ω\V ∪U

σ∇u∗
0 · ∇ϕdx

for all ϕ ∈ H1(Ω\ V̄ ) with ϕ|∂Ω = 0 and ∇ϕ = 0 in U . In particular, if ϕ ∈ H1
0 (Ω\ V̄ ),

we get
∫
Ω\U∪V

(∇ · σ∇u∗
0)ϕdx = 0 and thus u∗

0 solves the conductivity equation in

(35). If we choose ϕ ∈ H1(Ω\ V̄ ) with ϕ|∂Ω = 0 and ϕ ≡ 0 in U , from Green’s formula

applied to (37) we get
∫
∂V σ

∂u∗
0

∂ν |+ϕ = 0, for all ϕ|∂V ∈ H1/2(∂V ), or, equivalently,

σ
∂u∗

0

∂ν |∂V = 0. If we choose ϕj ∈ H1
0 (Ω \ V̄ ) with ϕj ≡ 1 in the connected component

Uj of U and ϕj ≡ 0 in U \ Uj , from Green’s formula applied to (37) we obtain∫
∂Uj

σ
∂u∗

0

∂ν = 0.

Next we show that (35) has a unique solution, and consequently u∗
0 = u0|Ω\V .

Assume that u1 and u2 are two solutions and let u = u2 − u1; then u|∂Ω = 0 and

0 =−
∫
Ω\U∪V

(∇ · σ∇u)udx = −
∫
∂Ω

σ
∂u

∂ν
uds+

∫
∂V

σ
∂u

∂ν

∣∣∣∣
+

uds(38)

+

∫
∂U

σ
∂u

∂ν

∣∣∣∣
+

uds+

∫
Ω\U∪V

σ|∇u|2dx =

∫
Ω\U∪V

σ|∇u|2dx.(39)

Since σ ≥ λ > 0, we get |∇u| = 0 in Ω \V . Since Ω \V is connected and u = 0 at the
boundary, we conclude uniqueness of the solution of (35).

Theorem 5.1. Let uk and u0 be the unique solution of (33), respectively, (35),
in H1(Ω). Then uk ⇀ u0, and consequently Ik[uk] → I0[u0] as k → 0+.

Proof. We show first that {uk} is bounded in H1(Ω) uniformly in k ∈ (0, 1). Since
1/k > 1, we have

λ

2
‖∇uk‖2L2(Ω\V )

≤ 1

2

∫
Ω\U∪V

σ|∇uk|2dx+
1

2k

∫
U

σ2|∇uk|2dx

≤ Ik[uk] ≤ Ik[u0] ≤ Λ

2
‖∇u0‖2L2(Ω\V )

or

(40) ‖∇uk‖2L2(Ω\V )
≤ Λ

λ
‖∇u0‖2L2(Ω\V )

.

From (40) and the fact that uk|∂Ω = f , we see that {uk} is uniformly bounded in
H1(Ω\V ) and hence weakly compact, so on a subsequence uk ⇀ u∗

0 in H1(Ω\V ) for
some u∗

0 with trace f at ∂Ω.
We will show next that u∗

0 satisfies (35), and therefore u∗
0 = u0 on Ω. By the

uniqueness of solutions of (35) we also conclude that the whole sequence converges to
u0.

Since uk ⇀ u∗
0 we have that 0 =

∫
Ω\U∪V

σ∇uk · ∇ϕdx → ∫
Ω\U∪V

σ2∇u∗
0 · ∇ϕdx

for all ϕ ∈ C∞
0 (Ω \ U ∪ V ). Therefore ∇ ·σ∇u∗

0 = 0 in Ω \ U ∪ V . Also because uk is
a minimizer of I[uk] we must have ∇u∗

0 = 0 in U . To check the boundary conditions,
note that for all ϕ ∈ C∞

0 (Ω) with ϕ ≡ 0 in U , we have
∫
∂V

σ ∂uk

∂ν |+ϕds = 0. Using
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the fact that ϕ were arbitrary, by taking the weak limit in k → 0 we get
∂u∗

0

∂ν |+ = 0
on ∂V . A similar argument applied to ϕ ∈ C∞

0 (Ω) with ϕ ≡ 0 in V , ϕ ≡ 1 in Uj, and

ϕ ≡ 0 in U\Uj also shows that
∫
∂Uj

σ
∂u∗

0

∂ν |+ϕds = 0. Hence u∗
0 is the unique solution

of (35) on Ω\V . Thus uk converges weakly to the solution u0 of (35) in Ω\V .
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