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ASYMPTOTIC ANALYSIS OF THE SVD FOR THE TRUNCATED
HILBERT TRANSFORM WITH OVERLAP∗

RIMA ALAIFARI† , MICHEL DEFRISE‡ , AND ALEXANDER KATSEVICH§

Abstract. The truncated Hilbert transform with overlap HT is an operator that arises in
tomographic reconstruction from limited data, more precisely in the method of differentiated back-
projection. Recent work [R. Al-Aifari and A. Katsevich, SIAM J. Math. Anal., 46 (2014), pp. 192–
213] has shown that the singular values of this operator accumulate at both zero and one. To better
understand the properties of the operator and, in particular, the ill-posedness of the inverse problem
associated with it, it is of interest to know the rates at which the singular values approach zero
and one. In this paper, we exploit the property that HT commutes with a second-order differential
operator LS and the global asymptotic behavior of its eigenfunctions to find the asymptotics of the
singular values and singular functions of HT .

Key words. limited data, computerized tomography, spectrum, asymptotic analysis, Hilbert
transform, ill-posedness

AMS subject classifications. 34E20, 45Q05, 47A10, 47A75, 34B24, 44A12

DOI. 10.1137/140952296

1. Introduction. In two-dimensional or three-dimensional computerized
tomography, an image of an object is reconstructed from measurements that can be
modeled as Radon transform or cone beam transform data, respectively. Typically, a
source emitting a beam of X-rays rotates around the object and a detector measures
the attenuation of the X-ray beam after it traverses the object. When measurements
from a sufficiently dense set of rays crossing the object are collected, standard tech-
niques (e.g., filtered back-projection) allow for stable reconstruction [12].

In the case of limited data, e.g., when only measurements from an angular range
less than 180 degrees are available or when only a strict subset of the object support
is illuminated from all directions, reconstruction becomes more difficult. While these
cases can occur in practice (for example, with an oversize patient), reconstruction
from limited data may also allow reduction of the radiation dose to which patients
are exposed.

The differentiated back-projection, a method based on a result by Gelfand and
Graev [7], allows one to identify a class of limited data configurations, such that recon-
struction is still possible. It is based on the reduction of the two- or three-dimensional
problem to a family of one-dimensional problems. These consist of the reconstruction
of a compactly supported function in one dimension from its partially known Hilbert
transform. The application of the Gelfand–Graev formula to tomography was first
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798 R. ALAIFARI, M. DEFRISE, AND A. KATSEVICH

introduced by Finch [5] and later made explicit for two dimensions [13, 16, 19] and
for three dimensions [14, 17, 18, 20].

In two dimensions, the differentiated back-projection reduces the reconstruction
problem to a family of one-dimensional problems that can be formulated as inverting
operators of the form PΩ1HPΩ2 , where H is the Hilbert transform on L2(R); Ω1, Ω2

are finite intervals on R; and PΩ is the projection operator (PΩf)(x) = f(x) if x ∈ Ω,
or (PΩf)(x) = 0 otherwise. If Ω2 ⊂ Ω1, i.e., the Hilbert transform is measured on an
interval covering the support of the object, the inversion of PΩ1HPΩ2 is well-posed
and an explicit inversion formula is known [15].

In general, when Ω2 �⊂ Ω1 the inversion of PΩ1HPΩ2 has turned out to be severely
ill-posed. Thus, it is of interest to study the singular value decomposition (SVD) of
such operators. The SVD in the case of Ω1 ⊂ Ω2, which occurs in the so-called interior
problem, has been studied in [9]. The SVD of the truncated Hilbert transform with
a gap, which describes the case Ω1 ∩ Ω2 = ∅, has been the subject of [8]. For both
cases, the asymptotic behavior of the singular values and singular functions has been
found in [10].

This paper concerns a different setup, the truncated Hilbert transform with over-
lap HT . This is the case when the two intervals overlap, i.e., Ω1 = [a1, a3], Ω2 =
[a2, a4] for real numbers a1 < a2 < a3 < a4. For this case, a uniqueness and point-
wise stability result for the inversion was obtained in [3]. The SVD of the truncated
Hilbert transform with overlap has been characterized in [1], where it is shown that
the singular values of HT accumulate at both 0 and 1. The accumulation point 0
causes the ill-posedness of inverting the operator HT . Motivated by these results, this
paper studies the asymptotic behavior of the singular values and singular functions
of HT . We prove (Theorems 5.3 and 6.1) that the singular values σn tend to the
accumulation points 0 and 1 exponentially as

σn = 2e−nπK+/K−
(
1 +O(n−1/2+δ)

)
, n→ ∞,

σ−n =
(
1− 2e−2nπK−/K+

)(
1 +O(n−1/2+δ)

)
, n→ ∞,

for some constants K+ and K− depending on the points a1, a2, a3, a4. The paper also
describes the asymptotic behavior of the singular functions in terms of their Wentzel–
Kramer–Brillouin (WKB) approximation away from the points a1, a2, a3, a4 and in
terms of Bessel functions in a neighborhood of these points. Uniform expansions of
the singular functions are obtained by matching the WKB and Bessel approximations
in an overlap region.

The paper is organized as follows. Section 2 starts with an overview of the results
obtained in [1] that will be used in the paper. In section 3 we show an intermediate
result on the eigenvalues of a differential operator that is related to the operator HT

in a sense to be defined in section 2. Next, section 4 gives an outline and description
of the approach used to find the asymptotic behavior of the SVD. In section 5, the
asymptotic behavior of the SVD is derived for the subsequence of singular values
accumulating at zero. We use this result together with a symmetry property in section
6 to obtain the asymptotics for the case where the singular values tend to 1. We
conclude by comparing the theoretical results obtained from the asymptotic analysis
with a numerical example in section 7.

2. Preliminaries. In [1] we have analyzed the spectrum of the operator H∗
THT ,

where HT : L2([a2, a4]) → L2([a1, a3]) is the truncated Hilbert transform with overlap
defined for any fixed four real numbers a1 < a2 < a3 < a4 to be the following operator:
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ASYMPTOTICS FOR THE TRUNCATED HILBERT TRANSFORM 799

(2.1) (HT f)(x) :=
1

π
p.v.

∫ a4

a2

f(y)

y − x
dy, x ∈ (a1, a3),

where p.v. stands for the principal value.
By relating HT to a self-adjoint extension of a differential operator with which

it commutes, we found that the singular values of HT accumulate (only) at 0 and 1,
where 0 and 1 themselves are not singular values. A natural question that then arises
is the asymptotic behavior of the singular values, i.e., the convergence rates of the
accumulation at 0 and 1. Especially in view of the ill-posedness of the inversion of
HT , it is important to ask how fast the singular values decay to zero.

To answer this question, we will need to consider the SVD {fn, gn;σn}, n ∈ Z, of
HT ,

HT fn = σngn,(2.2)

H∗
T gn = σnfn,(2.3)

and study the asymptotic behavior of the singular functions fn and gn to find the
asymptotics of σn. For the indices of the singular values we choose the convention
n→ +∞ for σn → 0 and n→ −∞ for σn → 1.

In what follows, we briefly summarize results found in [1], to which we refer for
detail and proofs. By the commutation property, {fn}n∈Z are the eigenfunctions of
the differential operator LS that we define by first introducing

(2.4) L(x, dx)ψ(x) := (P (x)ψ′(x))′ + 2(x− σ)2ψ(x),

where

(2.5) P (x) =

4∏
j=1

(x− aj), σ =
1

4

4∑
j=1

aj .

Let Dmax denote the maximal domain on (a2, a3) ∪ (a3, a4) associated with L(x, dx)
given by

Dmax := { ψ : (a2, a3) ∪ (a3, a4) → C : ψ2,3, Pψ
′
2,3 ∈ ACloc((a2, a3)),(2.6)

ψ3,4, Pψ
′
3,4 ∈ ACloc((a3, a4));ψ,Lψ ∈ L2([a2, a4])},

where ψ2,3, ψ3,4 denote the restrictions of ψ to (a2, a3) and (a3, a4), respectively, and
ACloc(I) stands for the space of locally absolutely continuous functions on I. Further-
more, we introduce the notation a±j = limε→0± aj + ε and the Lagrange sesquilinear
form of two functions u, v:

[u, v] := uPv′ − vPu′.

Then, the realization LS : D(LS) → L2([a2, a4]) of L(x, dx) on the domain

D(LS) := {ψ ∈ Dmax : [ψ, u](a+2 ) = [ψ, u](a−4 ) = 0,(2.7)

[ψ, u](a−3 ) = [ψ, u](a+3 ), [ψ, v](a
−
3 ) = [ψ, v](a+3 )}

with the choice of maximal domain functions u, v ∈ Dmax

u(y) := 1,(2.8)

v(y) :=
4∑

i=1

∏
j �=i

j∈{1,...,4}

1

ai − aj
ln |y − ai|(2.9)D
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800 R. ALAIFARI, M. DEFRISE, AND A. KATSEVICH

is self-adjoint. The spectrum of LS is real and discrete and the left singular functions
fn, n ∈ Z, of HT are the eigenfunctions of LS ,

(2.10) LSfn = λnfn,

and form an orthonormal basis of L2([a2, a4]). For the differential operator L̃S :
D(L̃S) ⊂ L2([a1, a3]) → L2([a1, a3]), defined in the same way as LS, but with a2, a3, a4
replaced by a1, a2, a3 in the definitions (2.6) and (2.7), we also obtain

(2.11) L̃Sgn = λngn.

Here, gn are the right singular functions of HT as in (2.2) and (2.3). The eigenvalues
λn in (2.10) and (2.11) coincide. These properties allow us to formulate the following
commutation relation:

(2.12) HTLS = L̃SHT .

From the theory of Fuchs and Frobenius, it follows that the points ai are regular singu-
lar and that the two linearly independent solutions to (L−λ)ψ = 0 in a neighborhood
of a+i or a−i are given by

ψ1(x) =

∞∑
n=0

bn(x− ai)
n,(2.13)

ψ2(x) =
∞∑
n=0

dn(x − ai)
n + ln |x− ai|ψ1(x),(2.14)

where the coefficients dn are different to the left and to the right of ai. This allows us
to simplify the characterization of the eigenfunctions fn, n ∈ Z, as follows: A function
f ∈ L2([a2, a4]) is an eigenfunction of LS if and only if

• it solves Lf = λf for some λ ∈ C,
• it is bounded at a+2 and at a−4 ,
• it is of the form φ11(x) + ln |x− a3| · φ12(x) at a−3 and
• of the form φ21(x) + ln |x− a3| · φ22(x) at a+3 and
• with analytic functions φij such that φ11(x) matches φ21(x) continuously at
a3 and φ12(x) matches φ22(x) continuously at a3, i.e.,

lim
x→a−

3

φ11(x) = lim
x→a+

3

φ21(x),(2.15)

lim
x→a−

3

φ12(x) = lim
x→a+

3

φ22(x).(2.16)

We refer to (2.15), (2.16) as transmission conditions at the point a3.
At ai an eigenfunction g of L̃S satisfies the same conditions that an eigenfunction

of LS has at ai+1, i = 1, 2, 3.

3. The spectrum of LS has two accumulation points. In [1], we have shown
that the operator (LS − i)−1 is compact. Hence, the spectrum of LS is purely discrete
and the only possible accumulation points are λn → ±∞, n ∈ Z. As we will see in the
following sections, deriving the asymptotics of the singular values σn of HT for just
one of the two possible accumulation points for λn results in only one accumulation
point of σn. More precisely, λn → +∞ leads to σn → 0 and λn → −∞ to σn → 1.
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Since we have shown in [1] that both 0 and 1 are accumulation points of the spectrum
of H∗

THT , this suggests that the eigenvalues λn of LS accumulate at both +∞ and
−∞.

For self-adjoint realizations of L(x, dx) on an interval where the function P (x) is
negative, the spectrum of this self-adjoint realization is bounded below, but not above.
Since in the case of LS, we consider P (x) on (a2, a4), i.e., on an interval on which
P changes sign, it seems intuitive to assume that the spectrum of LS is unbounded
from below and from above.

Indeed, in the case where P (x) changes sign and 1/P (x) is locally integrable
on (a2, a4), standard results in Sturm–Liouville theory state that the spectrum of
the resulting differential operator is unbounded from below and from above [11].
However, local integrability of 1/P (x) is not the case for LS . In order to show the
unboundedness from below and from above of the spectrum of LS, we construct two
sequences of functions un ∈ D(LS), n ∈ N, supported on [a2, a3] and vn ∈ D(LS),
n ∈ N, supported on [a3, a4] for which

〈LSun, un〉/〈un, un〉 → −∞,(3.1)

〈LSvn, vn〉/〈vn, vn〉 → +∞,(3.2)

as n → ∞. For I ⊂ R, let χI denote the characteristic function on I and define
w1(x) = χ[a2,a3](x)(x − a2)(a3 − x) and w2(x) = χ[a3,a4](x − a3)(a4 − x). Then, we
choose the functions un and vn to be

un(x) := w1(x) cos(nx),

vn(x) := w2(x) cos(nx).

From (P (x)u′n(x))
′ = −P (x)w1(x)n

2 cos(nx) +O(n), we obtain

〈LSun, un〉 = −n2

∫ a3

a2

P (x)w2
1(x) cos

2(nx)dx +O(n)(3.3)

≤ −n2(a2 − a1)(a4 − a3)

∫ a3

a2

w3
1(x) cos

2(nx)dx +O(n).

A direct computation yields∫ a3

a2

((x− a2)(a3 − x))3 cos2(nx)dx =
(a3 − a2)

7

280
+O(n−4)

so that the integral on the right-hand side in (3.3) is bounded away from zero. Thus,
〈LSun, un〉 → −∞. Furthermore, from ‖un‖L2 ≤ ‖w1‖L2, we find that (3.1) holds.

Similarly, we get for vn that (P (x)v′n(x))
′ = −P (x)w2(x)n

2 cos(nx) +O(n) and

〈LSvn, vn〉 = −n2

∫ a4

a3

P (x)w2
2(x) cos

2(nx)dx +O(n)(3.4)

≥ n2(a3 − a1)(a3 − a2)

∫ a4

a3

w3
2(x) cos

2(nx)dx +O(n).

Moreover, ∫ a4

a3

((x − a3)(a4 − x))3 cos2(nx)dx =
(a4 − a3)

7

280
+O(n−4).
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802 R. ALAIFARI, M. DEFRISE, AND A. KATSEVICH

Therefore, 〈LSvn, vn〉 → +∞. The inequality ‖vn‖L2 ≤ ‖w2‖L2 then implies (3.2).
Theorem 3.1. The spectrum of LS is purely discrete and accumulates at +∞

and −∞, i.e., the operator is unbounded from below and from above. There are no
further accumulation points in the spectrum.

Remark 3.2. The singular functions fn and gn of HT are the nth eigenfunctions
of the operators LS and L̃S , respectively. The spectra of LS and L̃S are the same,
i.e.,

LSfn = λnfn,

L̃Sgn = λngn.

The above theorem states that the eigenvalues λn accumulate at both +∞ and −∞.
As a consequence (see, e.g., [4, section 4.5]), when λn is large and positive, the func-
tions fn oscillate on the region where P (x) is negative and decay monotonically where
P (x) is positive. The same is true for gn. Thus, the fn are oscillatory on (a3, a4),
the gn oscillate on (a1, a2), and they are both monotonic on (a2, a3). The opposite is
true for large negative λn. In this case, fn and gn both oscillate on (a2, a3) and are
monotonic outside of this interval. This corresponds to singular values σn of HT close
to 1 and means that when inverting HT , high frequencies of the solution can be well
recovered, if they occur in the region (a2, a3). The case λn → +∞ corresponds to
σn → 0. Thus, high frequencies of the solution on (a3, a4) cannot be recovered stably.
Figure 1 shows a plot of the singular functions fn and gn for both cases.

4. A procedure for finding the asymptotics of the singular functions.
We now want to study the asymptotic behavior of the eigenfunctions fn of LS and
gn of L̃S as λn → +∞. In section 6 we will treat the case λn → −∞. Away from the
singular points ai the solutions to the Sturm–Liouville problem for large eigenvalues
are well approximated by the WKB method (see [2]). Close to the singularities, the
solutions can be estimated by Bessel functions of the first and the second kind. These
two local asymptotic expansions can then be matched in the overlap of their regions
of validity. This procedure was introduced for two other instances of the truncated
Hilbert transform—the interior problem and the truncated Hilbert transform with a
gap—in [10], to which we refer for full detail and proofs. The difficulty here lies in
the essential difference between the Sturm–Liouville problems for LS and L̃S and the
cases considered in [10]. This is due to the presence of singular points a3 and a2 in
the interior of (a2, a4) and (a1, a3), respectively.

4.1. Outline of the construction of gn for λn → +∞. First, we start with
a solution φ = g to

(4.1) (L− λ)φ = 0

on (a1, a2) and then require that it be bounded at a1. We show that by analyticity, this
solution extends to C\[a2, a4]. Next, we extend g to (a2, a4) by analytic continuation
via the upper half plane to a+3 and require Re g(x+i0) to be bounded at a3. With this,
we can define g as the function analytic on C\[a2, a4] and extended by Re g(x + i0)
on (a2, a4). Then, g satisfies the boundary conditions at a+1 and a−3 and we prove
that it also fulfills the transmission conditions (2.15), (2.16) at a2 and hence is an
eigenfunction of L̃S. For large λ, the described procedure together with the local
asymptotic behavior of solutions to (L − λ)φ = 0 leads to finding the asymptotics of
the eigenfunctions.
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Fig. 1. Examples of singular functions fn (red) and gn (blue) for a1 = 0, a2 = 3, a3 = 6,
a4 = 12. Top: For σn close to 0, the singular functions are exponentially small on [3, 6] and oscillate
outside of [3, 6]. Bottom: For σn close to 1, the functions oscillate on [3, 6] and are exponentially
small outside of the overlap region.

4.2. Validity of the approach. The solution φ = g to (L−λ)φ = 0 is bounded
at a1 and therefore analytic on C\[a2, a4]. Furthermore, g(z) = O(1/z) as z → ∞
and g is analytic at complex infinity (see [10]). We want to construct a solution
g extended to (a2, a4) that also satisfies the transmission conditions at a2 and the
boundary condition at a3. This transition at a2 is not analytic (see [1]). In order
to find the proper extension to (a2, a4), we will make explicit that g has to be the
Hilbert transform of a function supported on [a2, a4]. To make use of this property,
we first need to introduce the Riemann–Hilbert problem.

For a given function f ∈ L2(γ) on a simple smooth bounded oriented contour
γ ∈ C, find a function F (z) such that

F (z) is analytic on C\γ,(4.2)

F (z + i0)− F (z − i0) = 2if(z), z ∈ γ,(4.3)

F (z) → 0 as z → ∞.(4.4)

This Riemann–Hilbert problem is known to have the unique solution

(4.5) F (z) =
1

π
p.v.

∫
γ

f(τ)

τ − z
dτ, z ∈ C.
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(see [6, sections 14.2 and 16.3]). This statement can be used in a “reversed” sense:
For any function F analytic on C\γ that satisfies (4.4), define the function f on γ
to be

(4.6) f(z) =
F (z + i0)− F (z − i0)

2i
, z ∈ γ.

If f ∈ L2(γ), then by construction, F is the unique solution to the Riemann–Hilbert
problem with right-hand side (4.6). Thus, F (z) = 1/π p.v.

∫
γ f(τ)/(τ − z)dτ on C\γ.

Let γ = [a2, a4], consider g on C\[a2, a4] from above, i.e., g is a solution to (4.1)
and bounded at a1, and define the function f on [a2, a3) ∪ (a3, a4] to be

(4.7) f(x) :=
1

2i
[g(x+ i0)− g(x− i0)].

Clearly, f ∈ L2([a2, a4]) because g is analytic away from the points ai and is either
bounded or has a logarithmic singularity close to the points ai. With that, F = g
is the only solution to the corresponding Riemann–Hilbert problem by uniqueness.
Let g2,4 denote the extension of g onto (a2, a4). With a slight abuse of notation,
we will denote the function g extended by g2,4 again by g. If we define g2,4(x) :=
1
2 [g(x+ i0) + g(x− i0)], the Plemelj–Sokhotksi formula yields that

(4.8) g(x) extended by g2,4(x) on (a2, a4)

is the Hilbert transform of f(x) in (4.7), where f is supported on [a2, a4]. Note
that both f(x) and g2,4(x) are solutions to (L − λ)φ = 0, because they are linear
combinations of solutions.

For the construction of g in section 5, it will be useful to express g2,4 by the
analytic continuation of g via the upper half plane only, i.e., by g(x + i0). This can
be done as follows. Since λ ∈ R, we can assume that g is real-valued on R\[a2, a4].
Hence, Im Hf = 0 on R\[a2, a4] and thus, f(x) is real-valued. Consequently, g2,4(x)
is real-valued as well. If for two complex numbers a and b, a + b ∈ R and a − b ∈ I,
then Re a = Re b and Im a = −Im b. Thus,

g2,4(x) = Re g(x+ i0),(4.9)

f(x) = Im g(x+ i0).(4.10)

With these relations, we can now show that g(x) in (4.8) satisfies the transmission
conditions (2.15), (2.16) at a2.

With (2.13), (2.14), we can write g in a neighborhood of a−2 as

g(x) =

∞∑
n=0

dn(x− a2)
n + ln |x− a2|

∞∑
n=0

bn(x− a2)
n, x < a2.(4.11)

Since g is real-valued, bn, dn ∈ R. The analytic continuation gc of g from a−2 to a+2
via the upper half plane is

(4.12) gc(x) =

∞∑
n=0

dn(x− a2)
n + (ln |x− a2| − iπ)

∞∑
n=0

bn(x− a2)
n, x > a2.

By (4.8), (4.9), for x to the right of a2, g is obtained by extracting the real part
in (4.12). Comparing Re gc(x) with (4.11) then implies the transmission conditions
(2.15) and (2.16) at a2.

Remark 4.1. Another way to see that g extended by g2,4 satisfies the transmission
conditions is the following. The function f is a solution to (L − λ)φ = 0 and thus
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is either bounded or of logarithmic singularity at a2. Suppose f has a logarithmic
singularity at a2. Then, its Hilbert transform will have a singularity at a2 that is
stronger than logarithmic. This is a contradiction to g = Hf being a solution to the
differential equation Lg = λg. Therefore, f has to be bounded at a2. This implies
that g = Hf satisfies the transmission conditions at a2.

The boundedness of g2,4 at a3 does not yet follow from the construction but
rather has to be imposed explicitly. This is done by analytic continuation of g from
the interior of (a1, a2) via the upper half plane to a neighborhood of a+3 and requiring
Re g(x+ i0) to be bounded as x→ a+3 . Using (2.13), (2.14), g to the right of a3 can
be represented by

g(x) = Re

[∞∑
n=0

dn(x− a3)
n + ln |x− a3|

∞∑
n=0

bn(x− a3)
n

]
, x > a3,

with coefficients bn, dn ∈ C. The requirement of boundedness then implies that the
coefficient b0 is purely imaginary. This together with using analytic continuation to
express g to the left of a3 by

g(x) = Re

[∞∑
n=0

dn(x− a3)
n + (ln |x− a3|+ iπ)

∞∑
n=0

bn(x− a3)
n

]
, x < a3,

then yields that g is also bounded at a−3 .
Thus, requiring boundedness of g at a+3 is sufficient to obtain that it is also

bounded at a−3 . This is useful because it allows for a procedure where the WKB
approximation only needs to be matched to Bessel solutions on intervals where the
solution is oscillatory, i.e., on (a1, a2) and (a3, a4). In these intervals, we can make
use of the results from [10], where the asymptotics of the solutions to (L − λ)φ = 0
close to the points ai were obtained in the regions where the solutions oscillate.

5. Asymptotic analysis of the singular functions and singular values
for σn → 0. In this section we want to make more precise the method motivated in
the previous section. First, we need to introduce the WKB method.

As outlined in Remark 3.2, for λ > 0 large, the solution φ = g to (L− λ)φ = 0 is
oscillatory where P is negative, i.e., on (a1, a2) ∪ (a3, a4), and monotonic where P is
positive. We approximate the solution g on (a1, a2) away from the endpoints by the
WKB method. Then, we require that g be bounded at a1. This is achieved by noting
that local solutions of (4.1) close to the singular points ai are approximated by linear
combinations of Bessel functions of the first and second kind, [10] (we will refer to
solutions of this type as Bessel solutions). Since the second kind Bessel function is
singular at the origin, we match g with a local solution at a+1 , which is approximated
by a Bessel function of the first kind. The next step is to analytically continue the
WKB approximation via the upper half plane to the region to the right of a3. This will
be an approximation to the solution g in that region because the WKB approximation
is valid with a uniform accuracy (see [10]). Recall that on (a2, a4), g is defined as
g2,4(x) = Re g(x + i0). At a+3 , we require boundedness of Re g(x + i0) by matching
it with a Bessel solution of which the coefficient in front of the unbounded part is
purely imaginary (see Figure 2 for a sketch of this procedure). As will be seen, this
requirement leaves us with a discrete set {λn}n∈N for which LSgn = λngn, λn → +∞.

In what follows we will use the following two quantities:

K− :=

∫ a2

a1

1√−P (x)dx, K+ :=

∫ a3

a2

1√
P (x)

dx.
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Fig. 2. Sketch of the construction of the gn’s from WKB and Bessel approximations.

One can show that also

K− =

∫ a4

a3

1√−P (x)dx

holds (see [10]).

5.1. The WKB approximation and its region of validity. We consider the
WKB method in order to obtain approximations for solutions g to Lg = λg and large
λ on the interior of the intervals where the solutions oscillate, i.e., on [a1 + δ, a2 − δ]
and [a3+δ, a4−δ] (for some small δ to be defined). We start by considering a solution
on [a1 + δ, a2 − δ] and define ε := 1/

√
λ. Let C+

0 be the upper half of the complex
plane including the real line, and let a− and a∗3,4 be arbitrary but fixed real numbers
such that a− < a1 and a∗3,4 ∈ (a3, a4). It has been shown in [10] that for a sufficiently

small μ1 > 0 a connected region Λ− ⊂ C+
0 exists, such that Λ− contains the segment

[a−, a∗3,4], except for O(ε2(1−μ1)) size neighborhoods of a1, a2, a3, and such that the
following holds.

Theorem 5.1 (Theorem B.3 in [10]). Using the WKB method, for every suf-
ficiently small μ1 > 0 independent of ε, the solutions of (L − λ)φ = 0 are linear
combinations of

φ̂1(z) =
1

P (z)1/4
e

√
λ
∫

z
a

dξ√
P(ξ) (1 +O(εμ1)),(5.1)

φ̂2(z) =
1

P (z)1/4
e
−√

λ
∫ z
a

dξ√
P (ξ) (1 +O(εμ1)) ,(5.2)

where the accuracy O(εμ1) is uniform in the region Λ−. The point a can, for example,
be chosen to be a1, a2, or a3.

The same holds in a region Λ+ ⊂ C+
0 which contains the segment [a∗1,2, a+] except

for O(ε2(1−μ1)) size neighborhoods of a2, a3, a4. Here, a+ and a∗1,2 are arbitrary but
fixed numbers such that a+ > a4 and a∗1,2 ∈ (a1, a2); see [10]. Figure 3 shows a sketch
of the two regions Λ− and Λ+.

5.2. The Bessel solutions and their region of validity. For x ∈ (a1, a2) ∪
(a3, a4) define t = −λ(x − ai)/P

′(ai) for fixed i = 1, . . . , 4 and let μ2 be a small
positive parameter independent of λ.

Then, the two linearly independent solutions to (L−λ)φ = 0 in a region x− ai =
O(ε2μ2) for t ∈ [0, 1) can be written as
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Fig. 3. Sketches of the regions Λ− and Λ+ on which the WKB approximations are valid with
uniform accuracy.

ψ̂1(x− ai) = J0(2
√
t) +O(t/λ)(5.3)

= J0(2
√
t) +O(ε2μ2 ),

ψ̂2(x− ai) = Y0(2
√
t) +O(t1/2/λ)(5.4)

= Y0(2
√
t) +O(ε1+μ2 )

and for t ∈ [1,O(ε2(μ2−1))] as

ψ̂1(x − ai) = J0(2
√
t) + t−1/4O(ε2μ2 ),(5.5)

ψ̂2(x − ai) = Y0(2
√
t) + t−1/4O(ε2μ2),(5.6)

where J0 and Y0 denote the Bessel functions of the first and the second kind, respec-
tively [10].

Lemma 5.2 (properties of J0 and Y0). The following holds for small arguments
0 < z � 1:

J0(z) = 1 +O(z2),(5.7)

Y0(z) =
2

π

[
ln
(z
2

)
+ γ
]
+O(z2 ln z),(5.8)

where γ denotes the Euler–Mascheroni constant. The asymptotic behavior for argu-
ments z → +∞ is

J0(z) =

√
2

πz

[
cos
(
z − π

4

)
+O(1/z)

]
,(5.9)

Y0(z) =

√
2

πz

[
sin
(
z − π

4

)
+O(1/z)

]
.(5.10)

5.3. Overlap region of validities. If 1− μ1 > μ2 and x ∈ (a1, a2) ∪ (a3, a
∗
3,4),

both the WKB solutions (5.1), (5.2), with accuracy O(εμ1), and the Bessel solutions
(5.5), (5.6), with accuracy O(ε2μ2), are valid in the region

(5.11) C1ε
2(1−μ1) < |x− ai| < C2ε

2μ2

for positive constants C1, C2 and i = 1, 2, 3 (Corollary B.11, in [10]). This also holds
for x ∈ (a∗1,2, a2) ∪ (a3, a4) and i = 2, 3, 4.
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5.4. Derivation of the asymptotics.

5.4.1. The WKB approximation in (a1,a2) away from the endpoints.
Using (5.1) and (5.2) with a = a1, the WKB solution to Lg = λg is

g(x) =
1

(−P (x))1/4
[
cos

(
1

ε

∫ x

a1

dt√−P (t) −
π

4

)
· (1 +O(εμ1))(5.12)

+ c1 sin

(
1

ε

∫ x

a1

dt√−P (t) −
π

4

)
· (1 +O(εμ1 ))

]

for a constant c1 and it is valid on x ∈ [a1 + O(ε2(1−μ1)), a2 − O(ε2(1−μ1))]. Here
we have assumed without loss of generality that the constant in front of the term
involving cosine is equal to 1.

5.4.2. Bounded Bessel solution at a+
1 . Let ψ̂1(x) and ψ̂2(x) denote the two

linearly independent solutions in the region x− a1 = O(ε2μ2). The boundedness of g
in this region requires that for t = λ(a1 − x)/P ′(a1), t ∈ [0, 1), and constants b1 and
b2 in

(5.13) g(x) = b1 · ψ̂1(x− a1) + b2 · ψ̂2(x− a1),

the coefficient b2 be equal to zero. Thus, for t ∈ [1,O(ε2(μ2−1))]

(5.14) g(x) = b1 · [J0(2
√
t) + t−1/4O(ε2μ2)].

The two solutions (5.12), (5.14) need to be matched in the overlap region in which
they are both valid, i.e., for x such that

(5.15) O(ε2(1−μ1)) ≤ x− a1 ≤ O(ε2μ2 ).

For this, we approximate the first factor in (5.12) by:

(5.16)
1

(−P (x))1/4 =
1 +O(x − a1)

((a1 − x)P ′(a1))1/4
,

and for the arguments in the trigonometric expressions we can write∫ x

a1

dt√−P (t) =

∫ x

a1

1 +O(t− a1)√
P ′(a1)(a1 − t)

dt(5.17)

=
1

(−P ′(a1))1/2

∫ x

a1

dt√
t− a1

+

∫ x

a1

O
(
(t− a1)

1/2
)
dt

= 2

√
a1 − x

P ′(a1)
+O((x − a1)

3/2).

Taylor expansions of the cosine and sine functions then results in

cos

(
1

ε

∫ x

a1

dt√−P (t) −
π

4

)
= cos

(
2

ε

√
a1 − x

P ′(a1)
− π

4

)
+O((x − a1)

3/2/ε),(5.18)

sin

(
1

ε

∫ x

a1

dt√−P (t) −
π

4

)
= sin

(
2

ε

√
a1 − x

P ′(a1)
− π

4

)
+O((x − a1)

3/2/ε).(5.19)
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Since x− a1 lies in the overlap region (5.15), the following holds:

(5.20) O((x − a1)
3/2/ε) = O(ε3μ2−1).

Inserting (5.20) in (5.18) and (5.19), we obtain for the WKB solution in the overlap
region of validity

g(x) =
1 +O(x− a1)

((a1 − x)P ′(a1))1/4
·
[
cos

(
2

ε

√
a1 − x

P ′(a1)
− π

4

)
(5.21)

+ c1 sin

(
2

ε

√
a1 − x

P ′(a1)
− π

4

)
+O(εmin{μ1,3μ2−1})

]

=
1

((a1 − x)P ′(a1))1/4
·
[
cos

(
2

ε

√
a1 − x

P ′(a1)
− π

4

)

+ c1 sin

(
2

ε

√
a1 − x

P ′(a1)
− π

4

)
+O(εmin{μ1,3μ2−1,2μ2})

]
.

We now select μ1 and μ2 such that the error term in the last equation tends to zero
and such that 1− μ1 > μ2. A convenient choice is

(5.22) μ1 =
1

2
− δ, μ2 =

1

2
− δ

3

for a small fixed δ > 0, as done in [10]. The WKB solution has to be matched with
the Bessel solution in (5.14) in the overlap region (5.15). We do this by matching the
two solutions for large t = λ(a1 − x)/P ′(a1) and exploiting the asymptotics (5.9) of
the Bessel function J0, which gives

g(x) = b1
√
ε

(
P ′(a1)
a1−x

)1/4 [
1√
π
cos

(
2

ε

√
a1−x
P ′(a1)

−π
4

)
+O

(
ε√

x− a1

)
+O

(
ε1−2δ/3

)]
.

From (x− a1)
−1/2 = O (ε−(δ+1/2)

)
, we conclude

(5.23) g(x) = b1
√
ε

(
P ′(a1)
a1 − x

)1/4 [
1√
π
cos

(
2

ε

√
a1 − x

P ′(a1)
− π

4

)
+O

(
ε1/2−δ

)]
.

Matching the two solutions (5.21) and (5.23) determines the constants b1 and c1:

b1 =

√
π

−εP ′(a1)

(
1 +O(ε1/2−δ)

)
,(5.24)

c1 = O(ε1/2−δ).(5.25)

Thus, the solution g is of the form

g(x) =
1

(−P (x))1/4
[
cos

(
1

ε

∫ x

a1

dt√−P (t) −
π

4

)
· (1 +O(ε1/2−δ))(5.26)

+O(ε1/2−δ) sin

(
1

ε

∫ x

a1

dt√−P (t) −
π

4

)]

on the interval x ∈ [a1 +O(ε1+2δ), a2 −O(ε1+2δ)].
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5.4.3. Analytic continuation to a+
3 . The next step consists of analytically

continuing g in (5.26) to a+3 via the upper half plane. Since the WKB approximation is
valid in Λ− with uniform accuracyO(ε1/2−δ) (Theorem 5.1), the analytic continuation
of the WKB approximation (5.26) is an approximation to the analytic continuation
of g. Taking into account the phase shifts of P and using∫ x

a1

dt√−P (t) =

∫ a2

a1

dt√−P (t) + i

∫ a3

a2

dt√
P (t)

−
∫ x

a3

dt√−P (t)(5.27)

= K− + iK+ −
∫ x

a3

dt√−P (t) ,

we obtain

g(x+ i0)

=
i

(−P (x))1/4 ·
[
cos

(
1

ε

∫ x

a3

dt√−P (t) −
K−
ε

− i
K+

ε
+
π

4

)
·
(
1 +O(ε1/2−δ)

)

− sin

(
1

ε

∫ x

a3

dt√−P (t) −
K−
ε

− i
K+

ε
+
π

4

)
· O(ε1/2−δ)

]
,

where x ∈ [a3 +O(ε1+2δ), a∗3,4]. The properties of the complex valued trigonometric
functions yield

g(x+ i0) =
i

(−P (x))1/4 ·
[{

cos

(
1

ε

∫ x

a3

dt√−P (t) −
K−
ε

+
π

4

)
· cosh

(
−K+

ε

)

− i sin

(
1

ε

∫ x

a3

dt√−P (t) −
K−
ε

+
π

4

)
· sinh

(
−K+

ε

)}
·
(
1 +O(ε1/2−δ)

)

+O
(
ε1/2−δ

)
·
{
sin

(
1

ε

∫ x

a3

dt√−P (t) −
K−
ε

+
π

4

)
· cosh

(
−K+

ε

)

+ i cos

(
1

ε

∫ x

a3

dt√−P (t) −
K−
ε

+
π

4

)
· sinh

(
−K+

ε

)}]
.

So far, g is a function that is not normalized on [a1, a3]. However, we will need
to work with singular functions that have their L2-norm equal to 1 on [a1, a3] in
order to estimate the singular values correctly. Thus, we incorporate ‖g‖L2([a1,a3])

derived in (8.1) in the appendix, simplify the above expression, and use the relation
sinx = cos(x− π

2 ) to obtain a new normalized function g:

g(x+ i0) =

√
2

K−
−eK+/ε

2(−P (x))1/4 ·
[
cos

(
1

ε

∫ x

a3

dt√−P (t) −
K−
ε

− π

4

)
(5.28)

+ i sin

(
1

ε

∫ x

a3

dt√−P (t) −
K−
ε

− π

4

)
+O

(
ε1/2−δ

)]
.

Next, we match this solution to a linear combination of Bessel approximations at
a+3 and then require boundedness of its real part.

In the overlap region (5.11) close to a+3 where both WKB and Bessel solutions are
valid, we define t = λ(a3 − x)/P ′(a3). The function P in (5.28) can be approximated
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ASYMPTOTICS FOR THE TRUNCATED HILBERT TRANSFORM 811

in the same way as at a+1 in (5.16)–(5.19). Factorizing the trigonometric expression,
the WKB solution (5.28) can then be written as

g(x+ i0) = −
√

1

2K−
eK+/ε

((a3 − x)P ′(a3))1/4
e−iK−/ε ·

[
cos

(
2

ε

√
a3 − x

P ′(a3)
− π

4

)
(5.29)

+ i sin

(
2

ε

√
a3 − x

P ′(a3)
− π

4

)
+O(ε1/2−δ)

]
.

In the overlap region (5.11) the Bessel solution is a linear combination of the solution

ψ̂1 in (5.5) bounded at a+3 and the solution ψ̂2 in (5.6) having a singularity at a+3 ,

(5.30) g(x) = b3ψ̂1(x− a3) + c3ψ̂2(x− a3)

for constants b3 and c3. To ensure boundedness at a+3 of the real part of (5.30), we
will need to impose Re c3 = 0. The asymptotics of J0 and Y0 in (5.9) and (5.10) for
large t allow us to write the Bessel solution similarly to (5.23) but with an additional
term in Y0:

g(x) =

√
ε

π

(
P ′(a3)
a3 − x

)1/4 (
b3

[
cos

(
2

ε

√
a3 − x

P ′(a3)
− π

4

)
+O(ε1/2−δ)

]
(5.31)

+ c3

[
sin

(
2

ε

√
a3 − x

P ′(a3)
− π

4

)
+O(ε1/2−δ)

])
.

From the matching of (5.29) with (5.31) for large t, we obtain

(5.32) b3 = −ic3(1 +O(ε1/2−δ)).

The requirement Re c3 = 0 then implies Im b3 = Im c3 · O(ε1/2−δ) and hence

(5.33) b3 = Re b3 · (1 +O(ε1/2−δ))

or more explicitly

(5.34) b3 = −
√

π

2K−ε
eK+/ε√−P ′(a3)

cos

(
K−
ε

)
(1 +O(ε1/2−δ)).

The matching also yields that Re c3 = 0 implies Re (ie−iK−/ε) = O(ε1/2−δ). Thus,

(5.35) sin

(
K−
ε

)
= O(ε1/2−δ)

and as a result

(5.36)
K−
ε

= nπ +O(ε1/2−δ
)

for n ∈ N. This equation for the parameter ε = 1/
√
λ, where λ is a large positive

eigenvalue of the operator LS , shows the essential property of the spectrum of LS to
be purely discrete and, in addition, reveals the rate at which the eigenvalues tend to
+∞. Since the spectrum of LS is unbounded both above and below, we have to make
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812 R. ALAIFARI, M. DEFRISE, AND A. KATSEVICH

a choice in terms of the enumeration of the eigenvalues λn. Equation (5.36) shows
that we can choose the enumeration such that

(5.37)
√
λn =

nπ

K−
+O(n−1/2+δ

)
, n ∈ N,

holds. With this and (5.34) we finally obtain the coefficient b3:

(5.38) b3 = (−1)n+1

√
π

2K−ε
eK+/ε√−P ′(a3)

(1 +O(ε1/2−δ)).

5.5. Asymptotic behavior of the singular values accumulating at zero.
In the previous sections we have obtained the asymptotics of the functions g with
‖g‖L2([a1,a3]) = 1 and the property that χ[a1,a3]g are the singular functions of HT for
singular values close to zero. We found g by defining it to be equal to the analytic
function on C̄\[a2, a4] extended by g2,4 on (a2, a4); see (4.8). These functions g are
the Hilbert transforms of functions f that are supported on [a2, a4]. If we normalize
f as well, this reads Hf = σg, where σ � 1 is the corresponding singular value of
HT . Applying the Hilbert transform on both sides gives Hg = − 1

σ f . Thus, in order
to estimate σ, we can proceed as follows:

1. Estimate the jump discontinuity g(a+3 )− g(a−3 ).
2. Find the logarithmic term in (Hg)(a+3 ).
3. Determine the logarithmic term in f(a+3 ).
4. Estimate σ = −f(a+3 )/(Hg)(a+3 ).

Combining the asymptotics of the Bessel solutions (5.3), (5.4) with the represen-
tation (5.30) of g close to a+3 yields the following asymptotics for g:

g(x) = b3 ·
[
J0(2

√
t) +O(ε1−2δ/3)

]
+ c3 ·

[
Y0(2

√
t) +O(ε3/2−δ/3)

]
,

where t = λ(a3 − x)/P ′(a3) ∈ [0, 1). Using the relation (5.32) between b3 and c3, we
can further write this as

g(x) = −ic3 ·
[
J0(2

√
t) +O(ε1/2−δ)

]
+ c3 ·

[
Y0(2

√
t) +O(ε3/2−δ/3)

]
.

On the other hand, we know from the theory of Fuchs and Frobenius that close to a+3
a solution to (L− λ)g = 0 is of the form

g(x) = φ1(x) + φ2(x) ln |x− a3|,
where φ1, φ2 are analytic close to a3. The requirement that Re g(a+3 ) be bounded
implies Re φ2(a3) = 0. The analytic continuation of g to a neighborhood of a−3 is
given by

gc(x) = φ1(x) + φ2(x)[ln |x− a3|+ iπ].

According to (4.9), g at a−3 is equal to Re gc(x). This determines the jump disconti-
nuity of g across a3 to be −iπφ2(a3). Hence, using the asymptotics (5.8) of Y0, the
jump discontinuity of g at a3 is equal to

g(a+3 )− g(a−3 ) = −iπφ2(a3) = −ic3 = b3(1 +O(ε1/2−δ)).

This allows us to estimate the logarithmic term in Hg to be

− 1

π
b3(1 +O(ε1/2−δ)) ln |x− a3|

(see section 8.2 in [6]).
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ASYMPTOTICS FOR THE TRUNCATED HILBERT TRANSFORM 813

Next, we find f such that supp f = [a2, a4] and Lf = λf with a WKB approxi-
mation which holds on the region Λ+. On (a3, a4), f is oscillatory, so analogously to
the procedure for g, we start with the WKB approximation on [a3 + O(ε1+2δ), a4 −
O(ε1+2δ)] and require boundedness at a+4 . This determines f (similarly to (5.26) for
g) up to a constant:

f(x) =
1

(−P (x))1/4
[
cos

(
1

ε

∫ a4

x

dt√−P (t) −
π

4

)
· (1 +O(ε1/2−δ))

+ sin

(
1

ε

∫ a4

x

dt√−P (t) −
π

4

)
· O(ε1/2−δ)

]
.

Before, we estimated g at a+3 and required its real part to be bounded. Now, in the
procedure for f , we are interested in estimating the unbounded part of f at a+3 . We
make use of the relation∫ x

a3

dt√−P (t) =

∫ a4

a3

dt√−P (t) +
∫ x

a4

dt√−P (t) = −
∫ a4

x

dt√−P (t) +K−,

which allows us to rewrite f on [a3 +O(ε1+2δ), a4 −O(ε1+2δ)]:

f(x) =
1

(−P (x))1/4
[
cos

(
−1

ε

∫ x

a3

dt√−P (t) +
K−
ε

− π

4

)
· (1 +O(ε1/2−δ))

+ O(ε1/2−δ) sin

(
−1

ε

∫ x

a3

dt√−P (t) +
K−
ε

− π

4

)]
.(5.39)

Using (5.36) and trigonometric identities, it then follows that

f(x) =
(−1)n

(−P (x))1/4
[
− sin

(
1

ε

∫ x

a3

dt√−P (t) −
π

4

)
+O(ε1/2−δ)(5.40)

− cos

(
1

ε

∫ x

a3

dt√−P (t) −
π

4

)
· O(ε1/2−δ)

]

on [a3 +O(ε1+2δ), a4 −O(ε1+2δ)].
In a neighborhood of a+3 , f can be represented as a linear combination of the

Bessel solutions (5.5) and (5.6). For constants b′3, c
′
3,

(5.41) f(x) = b′3
[
J0(2

√
t) + t−1/4O(ε1−2δ/3)

]
+ c′3

[
Y0(2

√
t) + t−1/4O(ε1−2δ/3)

]
,

where t = λ(a3 − x)/P ′(a3) and t ∈ [1,O(ε−1−2δ/3)]. Using the asymptotics of the
Bessel functions for t→ +∞ (5.5), (5.6) to match the above with the WKB solution
(5.40) in their overlap region of validity (similarly as in section 5.4.2) results in

b′3 = (−1)n+1

√
π

−εP ′(a3)
· O(ε1/2−δ),(5.42)

c′3 = (−1)n+1

√
π

−εP ′(a3)
· (1 +O(ε1/2−δ)).(5.43)
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1 2 3 4 5 6 7

−0.20

−0.15

−0.10

−0.05

0.05

0.10

0.15

singularity
O(

√
n) · ln

monotonic oscillatory

O(
√

n)|x − a3|

Fig. 4. The asymptotic behavior of the singular functions fn as σn → 0 for a1 = 0, a2 =
1.5, a3 = 6, a4 = 7.5. The behavior at a3 is obtained from (5.44) and the behavior at a4 is analogous
to that of gn at a1 (see section 5.4.2).

After normalization of f (as was done for g; see the appendix), we can find the
logarithmic term in f(a+3 ) (up to a sign) with the help of (5.8),

(5.44)
(−1)n+1

π

√
2π

−εP ′(a3)K−
ln |x− a3|(1 +O(ε1/2−δ));

see Figure 4. The sign of f is then determined by f = −σHg and σ > 0. This yields

(Hg)(a+3 )/f(a
+
3 ) =

(−1)n

π

√
π

2K−ε
eK+/ε√
−P ′(a3)

(−1)n+1
√

2π
−εP ′(a3)K−

· 1
π

· (1 +O(ε1/2−δ))

= −1

2
eK+/ε(1 +O(ε1/2−δ))

and

σ = 2e−K+/ε(1 +O(ε1/2−δ)).(5.45)

Theorem 5.3. Let λn be enumerated as in (5.37). Then, the singular values σn
of HT that accumulate at zero behave asymptotically like

(5.46) σn = 2e−nπK+/K−(1 +O(n−1/2+δ)), n→ ∞.

This is the main result of our paper. It shows the severe ill-posedness of the
underlying problem of reconstructing a function f from HTΦ = Ψ for given Ψ: A
subsequence of the singular values σn of HT decays to zero, resulting in the un-
boundedness of the inverse of HT . As a consequence, small perturbations in Ψ due
to measurement noise will result in unreliable predictions for Φ. Unlike in cases of
so-called mild ill-posedness, where the singular values decay to zero at a polynomial
rate, the singular values σn of HT decay to zero exponentially, resulting in severe
ill-posedness.

Remark 5.4. The most natural way to find the asymptotics of σn would be
to estimate the jump discontinuity of the singular functions χ[a1,a3]g and then use
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ASYMPTOTICS FOR THE TRUNCATED HILBERT TRANSFORM 815

H∗
T g = σf . However, the jump discontinuity of χ[a1,a3]g at a−3 can only be estimated

to be of the order b3 · O(ε1−2δ/3), where b3 (see (5.38)) contains the term eK+/ε.
Thus, the coefficient in front of the logarithmic term in H∗

T g will also be of the
order b3 · O(ε1−2δ/3), which results in the useless estimate σ = O(eK+/ε · ε1−2δ/3).
Therefore, it was necessary to replace HT by the full Hilbert transform H and to
consider Hg = − 1

σ f instead of H∗
T g = σf to obtain the result of Theorem 5.3.

6. Asymptotic analysis for the case of σn → 1. The previous section de-
scribed how to derive the asymptotic behavior of the singular values in a neighborhood
of their accumulation point at zero.

Here we show how to easily obtain the asymptotic behavior around the second
accumulation point equal to 1 using a symmetry property that allows us to exploit
the analysis done for the first accumulation point.

We define the operator HT,c := P[a2,a4]HP([a1,a3])c , where (·)c denotes the com-
plement in R and P is the projection operator defined in section 1. Without loss
of generality we assume a1 < 0 < a2 < a3 < a4. Consider a singular function
f ∈ L2([a2, a4]) of HT with singular value σ. As it was shown in [1], the spectrum of
H∗

THT is bounded above by 1. Therefore we can define β2 = 1 − σ2 and see that f
satisfies the eigenequation

(6.1) f − β2f = H∗
T HT f.

On the other hand we have H∗H = I, where H is the full Hilbert transform on the
line. Hence f also satisfies

(6.2) f = H∗
T HT f +H∗

T,cHT,cf.

Subtracting the two equations we obtain a new eigenequation for f , now with eigen-
value β2:

(6.3) β2f = H∗
T,cHT,cf.

We will relate this eigenequation to an eigenequation for a different truncated Hilbert
problem, obtained by the transformation x ↔ 1/x. Define η = 1/x and the singular
points ηj = 1/aj, j = 1, . . . , 4. These are ordered as η1 < 0 < η4 < η3 < η2.
Furthermore, we define the function f̄(η) = η−1f(η−1). Note that the support of f̄
is η4 < η < η2. With these notations, we have, noting that 0 /∈ (a2, a4),

x (HT,cf) (x) = x
1

π
p.v.

∫ a4

a2

f(y)

y − x
dy =

1

π
p.v.

∫ a4

a2

y f(y)

(1/x− 1/y)

dy

y2
(6.4)

= − 1

π
p.v.

∫ η2

η4

f̄(η)

η − ξ
dη = −(H̄T f̄)(ξ) with ξ = 1/x,

where we define the operator H̄T : L2([η4, η2]) → L2([η1, η3]) to be1

(6.5) (H̄Th)(ξ) =
1

π
p.v.

∫ η2

η4

h(η)

η − ξ
dη.

1In (6.4) we have assumed that the variable transformation in the principal value integrals can
be handled in the same way as for ordinary integrals. For a proof of this property we refer to [6,
section 3.5].
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816 R. ALAIFARI, M. DEFRISE, AND A. KATSEVICH

The range in ξ is obtained from

(6.6) x ∈ ([a1, a3])
c = (−∞, a1) ∪ (a3,∞) ⇒ ξ ∈ (η1, 0) ∪ (0, η3) = (η1, η3).

We now apply the adjoint transform and calculate for a2 < z < a4

z
(
H∗

T,cHT,cf
)
(z) =

z

π

{∫ a1<0

−∞
+

∫ ∞

a3>0

}
(HT,cf)(x)

z − x
dx

=
1

πω

{∫ 0

η1

+

∫ η3

0

}
(HT,cf)(1/ξ)

(1/ω − 1/ξ)

dξ

ξ2

= − 1

π

∫ η3

η1

(1/ξ) (HT,cf)(1/ξ)

(ω − ξ)
dξ

=
1

π

∫ η3

η1

(H̄T f̄)(ξ)

(ω − ξ)
dξ = H̄∗

T H̄T f̄(ω),

where ω = 1/z. We conclude that H̄∗
T H̄T f̄ = β2f̄ ; hence β2 is an eigenvalue for the

truncated Hilbert problem defined by η1 < η4 < η3 < η2.
The implication of this result for the asymptotic behavior of the singular values

around the accumulation points 0 and 1 is as follows. Consider the case β2 → 0.
From the previous section we know that the asymptotic behavior of these eigenvalues
(which are the squares of the singular values of H̄T ) is given by

(6.7) βn = 2e−nπK̄+/K̄−(1 +O(n−1/2+δ)).

Here,

K̄+ =

∫ η3

η4

{(t− η1)(t− η2)(t− η3)(t− η4)}−1/2
dt = (|a1|a2a3a4)1/2K−,

K̄− =

∫ η2

η3

{−(t− η1)(t− η2)(t− η3)(t− η4)}−1/2 dt = (|a1|a2a3a4)1/2K+,

where the last equalities can be checked by substituting t = 1/y in the integrals.
Using the previous result and recalling the definition β2 = 1 − σ2, we obtain the
asymptotic behavior in the neighborhood of 1 of the singular values of the original
problem defined by a1, a2, a3, a4.

Theorem 6.1. The singular values σ−n, n ∈ N, accumulating at 1 have the
following asymptotic behavior:

(6.8) σ−n =
√
1− β2

n =
(
1− 2e−2nπK−/K+

)(
1 +O(n−1/2+δ)

)
.

7. Comparison of numerics and asymptotics. In the previous sections, the
asymptotic behavior of the SVD has been derived. Although these asymptotics hold
only in the limit n → ∞, we would like to illustrate that they also yield a good
approximation of the SVD for small n. For this, we compare the SVD from the
asymptotic formulas with the SVD of a discretization of the operator HT .

For our example, we choose the points ai to be a1 = 0, a2 = 3, a3 = 6, a4 = 12 and
the discretization HT of HT to be a uniform sampling with 601 partition points in
the interval [0, 6] and 901 points in [3, 12]. Let vectors X and Y denote the partition
points of [0, 6] and [3, 12], respectively. To overcome the singularity of the Hilbert
kernel the vector X is shifted by half the sample size. The ith components of the
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Table 1

The singular values of HT in the transition from 1 to 0.

i 300 301 302 303 304 305
si 0.9942962 0.6630176 0.0397114 1.1321 · 10−3 2.9846 · 10−5 7.7106 · 10−7

2 4 6 8 10 12

�40

�30

�20

�10

0

Fig. 5. Logarithmic plot of the asymptotic (red line) and numerical values (blue dots) of the
singular values tending to zero.

two vectors X and Y are given by Xi =
1

100 (i +
1
2 ) and Yi = 3 + 1

100 i; HT is then
discretized as (HT)i,j = (1/π)(Xi − Yj), i = 0, . . . , 600, j = 0, . . . , 900.

Let si, i = 0, . . . , 313, denote the nonzero singular values of the matrix HT. Table
1 shows a list of a few singular values indicating that for i = 0, . . . , 300 the values si
are close to 1, whereas they are close to 0 for i = 302, . . . , 313. Although in theory,
0 itself is not a singular value of HT but the singular values only decay to 0, they do
this at an exponential rate. In practice, this leads to matrix realizations of HT which
effectively have a large kernel.

We compare the singular values si, i = 302, . . . , 313, of HT with the asymptotic
behavior of the singular values σn of HT for σn → 0 (see Theorem 5.3). Here, we
neglect the error terms, i.e., we consider the asymptotic form σn ≈ 2e−nπK+/K− , for
n = 1, . . . , 12. By shifting the indices i = 302, . . . , 313 the set of indices n that match
i are obtained. The value of the shift is found by hand. Figure 5 shows a logarithmic
plot of this comparison. While Theorem 5.3 only guarantees that 2e−nπK+/K− is a
good approximation of the singular values σn for n → ∞, our example demonstrates
good alignment already for n = 1.

Similarly, we perform a comparison of the singular values si, i = 293, . . . , 300, of
HT with the result from Theorem 6.1 on the asymptotic behavior of the singular val-
ues σ−n → 1. Again, the error terms are neglected, so that σ−n ≈ √

1− 4e−2nπK−/K+

for n = 1, . . . , 8 is considered instead. A plot comparing log(1 − si
2) with

log(4e−2nπK−/K+) is shown in Figure 6, illustrating the good alignment for small
values of n.

To conclude the numerical illustration, we compare the singular vector g307 of
HT with the asymptotic behavior obtained for the singular function g6 of HT . For
this again, only the leading terms in the asymptotic expansions are taken into con-
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�6 �4 �2 0

�40

�30

�20

�10

0

Fig. 6. Logarithmic plot of the asymptotic (red line) and numerical values (blue dots) of 1−σ2
−n

for the singular values σ−n tending to 1.

1 2 3 4 5 6

�0.10

�0.05

0.05

0.10

0.15

0.20

Fig. 7. The singular vector g307 (blue) of HT compared with the asymptotics for the singular
function g6 (red) of HT . Their good alignment makes them hardly distinguishable.

sideration. To define the approximation to g6 on the entire interval [0, 6], we first
consider the plots of the WKB and Bessel approximations close to a point ai. Then,
the point of transition from the Bessel to the WKB approximation is set by hand at a
point of good alignment between the two functions. Figure 7 shows the approximation
to g6 obtained from the asymptotics compared to the singular vector g307. In Figure
8, a logarithmic plot indicates that the asymptotic form is a very good approximation
to g307 also on the region where it decays, i.e., on [3, 6].

8. Appendix: Normalization of g on (a1, a3).

Lemma 8.1. Let g be the solution to (L− λ)φ = 0 derived in section 5.4. Then,

(8.1) ‖g‖L2([a1,a3]) =

√
K−
2

(1 +O(ε1/2−δ)).
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1 2 3 4 5 6

�20

�15

�10

�5

0

Fig. 8. A logarithmic plot of the comparison in Figure 7. This shows very accurate alignment
also in the region [3, 6] where the functions decay rapidly.

Proof. We want to determine
∫ a3

a1
g2(x)dx. The main contribution to this integral

comes from the WKB solution (5.26) on [a1 +O(ε1+2δ), a2 −O(ε1+2δ)]. We use the
abbreviation εδ := ε1+2δ and derive∫ a2−O(εδ)

a1+O(εδ)

g2(x)dx

=

∫ a2−O(εδ)

a1+O(εδ)

1√−P (x)

[
cos2

(1
ε

∫ x

a1

dt√−P (t) −
π

4

)
+O(ε1/2−δ)

]
dx

=

∫ a2−O(εδ)

a1+O(εδ)

1√−P (x)

[
1

2
cos
(2
ε

∫ x

a1

dt√−P (t) −
π

4

)
+

1

2
+O(ε1/2−δ)

]
dx.

The first summand in the integral simplifies to

1

2

∫ a2−O(εδ)

a1+O(εδ)

1√−P (x) cos
(
2

ε

∫ x

a1

dt√−P (t) −
π

4

)
dx

=
ε

4
sin

(
2

ε

∫ x

a1

dt√−P (t) −
π

4

) ∣∣∣a2−O(εδ)
a1+O(εδ)

= O(ε).

With that we obtain∫ a2−O(εδ)

a1+O(εδ)

g2(x)dx = O(ε) +
1

2

(
1 +O(ε1/2−δ)

) ∫ a2−O(εδ)

a1+O(εδ)

1√−P (x)dx

=

(
1

2
+O(ε1/2−δ)

)∫ a2−O(εδ)

a1+O(εδ)

dx√−P (x) .

With a Taylor expansion of 1/
√−P (x), we find that∫ a1+O(εδ)

a1

dx√−P (x) =
1√−P ′(a1)

∫ a1+O(εδ)

a1

1 +O(x − a1)√
x− a1

dx = O(ε1/2+δ).
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Similarly, ∫ a2

a2−O(εδ)

dx√−P (x) = O(ε1/2+δ)

and thus ∫ a2−O(εδ)

a1+O(εδ)

g2(x)dx =

(
1

2
+O(ε1/2−δ)

)(
K− +O(ε1/2+δ)

)
(8.2)

=
K−
2

(
1 +O(ε1/2−δ)

)
.

Let t = λ(a1 − x)/P ′(a1). We consider g in a neighborhood of a+1 , where it can be

represented by g(x) = b1 · ψ̂1(x − a1) for ψ̂1 as in (5.3) for t ∈ [0, 1) and as in (5.5)
for t ∈ [1,O(ε2δ−1))]. Using our previous estimate on the coefficient b1 in (5.24) and
a change of variables, we can write

∫ a1+O(εδ)

a1

g2(x)dx = b21 ·
{∫ 1

0

[J0(2
√
t) +O(ε1−2δ/3)]2(−P ′(a1)ε2)dt

+

∫ O(ε2δ−1)

1

[J0(2
√
t) + t−1/4 · O(ε1−2δ/3)]2(−P ′(a1)ε2)dt

}

= O(ε) ·
{∫ O(ε2δ−1)

0

J2
0 (2

√
t)dt+O(ε1−2δ/3)

+ O(ε1−2δ/3 · ε3(2δ−1)/4) +O(ε2−4δ/3 · εδ−1/2)

}

= O(ε) ·
{∫ O(ε2δ−1)

0

J2
0 (2

√
t)dt+O(ε1/4+5δ/6)

}
,(8.3)

where we have used the boundedness of J0 to simplify the error terms. The asymptotic
behavior (5.7), (5.9) of J0 implies that for some constant c, |J0(u)| ≤ c√

u
, for positive

u. With this we obtain∫ O(ε2δ−1)

0

J2
0 (2

√
t)dt ≤ c2

2

∫ O(ε2δ−1)

0

1√
t
dt = O(εδ−1/2)

and hence ∫ a1+O(εδ)

a1

g2(x)dx = O(ε1/2+δ).(8.4)

The part of the L2-norm of g in the region at a−2 can be found in a similar fashion.
By matching the WKB and Bessel solutions at a−2 one can find that b2 = O(ε−δ) and
c2 = O(ε−1/2) in

g(x) = b2ψ̂1(x− a2) + c2ψ̂2(x− a2)

for ψ̂1 and ψ̂2 as in (5.3), (5.5) and (5.4), (5.6), respectively. This can also be seen
from (5.42), (5.43), since the asymptotic behavior of g at a−2 can be compared to the
one of f at a+3 . Replacing b1 by b2 in (8.3), we obtain similarly to (8.4)
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∫ O(εδ)

0

b22ψ̂
2
1(x)dx = O(ε3/2−δ).

This yields∫ a2

a2−O(εδ)

g2(x)dx = O(ε3/2−δ)

+ b2c2P
′(a2)ε2

{∫ 1

0

(J0(2
√
t) +O(ε3/2−δ/3))(Y0(2

√
t) +O(ε3/2−δ/3))dt

+

∫ O(ε2δ−1)

1

(J0(2
√
t) + t−1/4 · O(ε1−2δ/3))(Y0(2

√
t) + t−1/4 · O(ε1−2δ/3))dt

}

+ c22P
′(a2)ε2 ·

{∫ 1

0

(Y0(2
√
t) +O(ε3/2−δ/3))2dt

+

∫ O(ε2δ−1)

1

(Y0(2
√
t) + t−1/4 · O(ε1−2δ/3))2dt

}
.

The asymptotics of b2 and c2 together with the boundedness of J0 allow us to simplify
the above expression to∫ a2

a2−O(εδ)

g2(x)dx = O(ε3/2−δ) +O(ε3/2−δ)

{∫ 1

0

∣∣∣Y0(2√t) +O(ε3/2−δ/3)
∣∣∣ dt

+

∫ O(ε2δ−1)

1

∣∣∣Y0(2√t) + t−1/4 · O(ε1−2δ/3)
∣∣∣ dt
}

+ O(ε) ·
{∫ O(ε2δ−1)

0

Y0(2
√
t)2dt+O(ε3/2−δ/3)

∫ 1

0

∣∣∣Y0(2√t)∣∣∣ dt
+O(ε3−2δ/3) +O(ε1−2δ/3)

∫ O(2δ−1)

1

∣∣∣Y0(2√t)t−1/4
∣∣∣ dt+O(ε1/4+5δ/6)

}

= O(ε3/2−δ) +O(ε3/2−δ)

{∫ O(ε2δ−1)

0

∣∣∣Y0(2√t)∣∣∣ dt+O(ε1/4+5δ/6)

}

+ O(ε) ·
{∫ O(ε2δ−1)

0

Y0(2
√
t)2dt+O(ε3/2−δ/3)

∫ 1

0

∣∣∣Y0(2√t)∣∣∣ dt
+ O(ε1−2δ/3)

∫ O(2δ−1)

1

∣∣∣Y0(2√t)t−1/4
∣∣∣ dt+O(ε1/4+5δ/6)

}
.

In view of (5.8) and (5.10), there exists a constant c such that |Y0(u)| ≤ c√
u

for

positive u. Thus, we obtain∫ O(ε2δ−1)

0

Y0(2
√
t)2dt = O(εδ−1/2),

∫ O(ε2δ−1)

0

∣∣∣Y0(2√t)∣∣∣ dt = O(ε3δ/2−3/4),

∫ O(2δ−1)

1

∣∣∣Y0(2√t)t−1/4
∣∣∣ dt = O(ε1/2−δ/3),
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and hence ∫ a2

a2−O(εδ)

g2(x)dx = O(ε1/2+δ).(8.5)

The last missing piece is the norm of g on (a2, a3), i.e., on the region where it is
monotonic. Here, we cannot follow the same procedure as before because the results
in section 5.2 and the corresponding results in [10] were obtained only on the regions
where the solution oscillates.

Instead, we will estimate ‖g‖L2([a2,a3]) similarly to the derivation in Appendix C
in [10]. Let {λ̄k; ḡk}k∈N be the eigensystem of the following Sturm–Liouville problem:

Lḡk(x) = λ̄kḡk(x), x ∈ (a2, a3),

where the functions ḡk(x) are bounded at the endpoints a2 and a3. Furthermore, let
gn denote the nth eigenfunction of L̃S obtained from the procedure in section 5.4 and
not normalized yet.

Then, χ[a2,a3]gn ∈ L2([a2, a3]) can be expanded in the orthonormal basis {ḡk} of
L2([a2, a3]):

χ[a2,a3](x)gn(x) =
∑
k∈N

〈gn, ḡk〉ḡk(x).

Let cn,k = 〈gn, ḡk〉. Then,

cn,k =
1

λn

∫ a3

a2

(Lgn)(x)ḡk(x)dx

=
1

λn

∫ a3

a2

(Pg′n)
′(x)ḡk(x)dx +

1

λn

∫ a3

a2

2(x− σ)2gn(x)ḡk(x)dx

= − 1

λn

∫ a3

a2

(P (x)g′n(x))ḡ
′
k(x)dx +

1

λn
lim
ε→0+

Pg′nḡk
∣∣∣a3

a2+ε

+
1

λn

∫ a3

a2

gn(x)2(x− σ)2ḡk(x)dx

=
1

λn
lim
ε→0+

P (g′nḡk − gnḡ
′
k)
∣∣∣a3

a2+ε
+

1

λn

∫ a3

a2

(P (x)ḡ′k(x))
′gn(x)dx

+
1

λn

∫ a3

a2

gn(x)2(x− σ)2ḡk(x)dx.

This implies

cn,k =
1

λn
lim
ε→0+

P (x)[g′n(x)ḡk(x)− gn(x)ḡ
′
k(x)]

∣∣∣a3

a2+ε
+
λ̄k
λn
cn,k.

The functions ḡk(x) are bounded at the endpoints a2 and a3, whereas gn(x) is bounded
at a3 but has a logarithmic singularity at a2. Hence, the above simplifies to

cn,k = − 1

λn
lim
ε→0+

P (a2 + ε)g′n(a2 + ε)ḡk(a2 + ε) +
λ̄k
λn
cn,k,

cn,k

(
1− λ̄k

λn

)
= − 1

λn
(a2 − a1)(a2 − a3)(a2 − a4)φ2,n(a2)ḡk(a2),

cn,k = Cφ2,n(a2)ḡk(a2)
1

λn − λ̄k
.
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Here C is constant and, close to a2, gn is of the form

gn(x) = φ1,n(x) + φ2,n(x) ln |x− a2|

for analytic functions φi,n. Furthermore, gn(x) satisfies the transmission conditions
(2.15), (2.16) at a2 and thus

φ2,n(a2) =
2

π
c2 = O(

√
n),

where we have used c2 = O(ε−1/2) as in (5.43).
One can also find that λ̄k = O(k2) and ḡk(a2) = O(

√
k), similarly to (5.14) and

(6.2) in [10]. Note that λn → +∞, while λ̄k → −∞. The norm of χ[a2,a3]gn can then
be found to be

‖gn‖2L2([a2,a3])
=
∑
k

c2n,k = C2φ22,n(a2)
∑
k

ḡ2k(a2)

(λn − λ̄k)2

= O(n) · O(n−2) = O(n−1),

‖gn‖L2([a2,a3]) = O(n−1/2).(8.6)

Putting together (8.2), (8.4), (8.5), and (8.6), we finally obtain

‖g‖L2([a1,a3]) =

√
K−
2

(1 +O(ε1/2−δ)).
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