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SPECTRAL ANALYSIS OF THE TRUNCATED HILBERT
TRANSFORM WITH OVERLAP∗

REEMA AL-AIFARI† AND ALEXANDER KATSEVICH‡

Abstract. We study a restriction of the Hilbert transform as an operator HT from L2(a2, a4)
to L2(a1, a3) for real numbers a1 < a2 < a3 < a4. The operator HT arises in tomographic recon-
struction from limited data, more precisely in the method of differentiated back-projection. There,
the reconstruction requires recovering a family of one-dimensional functions f supported on compact
intervals [a2, a4] from its Hilbert transform measured on intervals [a1, a3] that might only overlap,
but not cover [a2, a4]. We show that the inversion of HT is ill-posed, which is why we investigate the
spectral properties of HT . We relate the operator HT to a self-adjoint two-interval Sturm–Liouville
problem, for which we prove that the spectrum is discrete. The Sturm–Liouville operator is found
to commute with HT , which then implies that the spectrum of H∗

THT is discrete. Furthermore,
we express the singular value decomposition of HT in terms of the solutions to the Sturm–Liouville
problem. The singular values of HT accumulate at both 0 and 1, implying that HT is not a compact
operator. We conclude by illustrating the properties obtained for HT numerically.

Key words. Hilbert transform, spectrum, Sturm–Liouville, limited data, tomography, inverse
problems

AMS subject classifications. 45Q05, 47A10, 47A75, 34B24, 34B27

DOI. 10.1137/130910798

1. Introduction. In tomographic imaging, which is widely used for medical
applications, a two-dimensional (2D) or three-dimensional (3D) object is illuminated
by a penetrating beam (usually X-rays) from multiple directions, and the projections
of the object are recorded by a detector. Then one seeks to reconstruct the full 2D
or 3D structure from this collection of projections. When the beams are sufficiently
wide to fully embrace the object and when the beams from a sufficiently dense set
of directions around the object can be used, this problem and its solution are well
understood [16]. When the data are more limited, e.g., when only a reduced range
of directions can be used or only a part of the object can be illuminated, the image
reconstruction problem becomes much more challenging.

Reconstruction from limited data requires the identification of specific subsets of
line integrals that allow for an exact and stable reconstruction. One class of such
configurations that have already been identified, relies on the reduction of the 2D
and 3D reconstruction problem to a family of one-dimensioal (1D) problems. The
Radon transform can be related to the 1D Hilbert transform along certain lines by
differentiation and back-projection of the Radon transform data (differentiated back-
projection or DBP). Inversion of the Hilbert transform along a family of lines covering
a subregion of the object (region of interest or ROI) then allows for the reconstruction
within the ROI.

This method goes back to a result by Gelfand and Graev [6]. Its application to
tomography was formulated by Finch [4] and was later made explicit for two dimen-
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THE TRUNCATED HILBERT TRANSFORM WITH OVERLAP 193

(a) Finite Hilbert transform. (b) Interior problem.

(c) Truncated Hilbert transform with overlap. (d) Truncated Hilbert transform with a gap.

Fig. 1.1. Different setups for PΩ1
HPΩ2

. The upper interval shows the support Ω2 of the
function f to be reconstructed. The lower interval is the interval Ω1 where measurements of the
Hilbert transform Hf are taken. This paper investigates case (c).

sions in [17, 24, 29] and for three dimensions in [18, 25, 27, 28]. To reconstruct from
data obtained by the DBP method, it is necessary to solve a family of 1D problems
which consist of inverting the Hilbert transform data on a finite segment of the line.
If the Hilbert transform Hf of a 1D function f was given on all of R, then the inver-
sion would be trivial, since H−1 = −H . In case f is compactly supported, it can be
reconstructed even if Hf is not known on all of R. Due to an explicit reconstruction
formula by Tricomi [22], f can be found from measuring Hf only on an interval that
covers the support of f . However, a limited field of view might result in configurations
in which the Hilbert transform is known only on a segment that does not completely
cover the object support. One example of such a configuration is known as the interior
problem [1, 10, 12, 23]. Given real numbers a1 < a2 < a3 < a4, the interior problem
corresponds to the case in which the Hilbert transform of a function supported on
[a1, a4] is measured on the smaller interval [a2, a3].

In this paper, we study a different configuration, namely, supp f = [a2, a4] and
the Hilbert transform is measured on [a1, a3]. We will refer to this configuration
as the truncated problem with overlap: the operator HT we consider is given by
P[a1,a3]HP[a2,a4], where H is the usual Hilbert transform acting on L2(R), and PΩ

stands for the projection operator (PΩf)(x) = f(x) if x ∈ Ω, (PΩf)(x) = 0 otherwise.
For finite intervals Ω1, Ω2 on R, the interior problem corresponds to PΩ1HPΩ2 for
Ω1 ⊂ Ω2. The truncated Hilbert transform with a gap occurs when the intervals
Ω1 and Ω2 are separated by a gap, as in [8]. Figure 1.1 shows the different setups.
Examples of configurations in which the truncated Hilbert transform with overlap and
the interior problem occur are given in Figures 1.2 and 1.3. The truncated problem
with overlap arises for example in the “missing arm” problem. This is the case where
the field of view is large enough to measure the torso but not the arms.

Definition 1.1. Fix any four real numbers a1 < a2 < a3 < a4. We define the
truncated Hilbert transform with overlap as the operator

(1.1) (HT f)(x) :=
1

π
p.v.

∫ a4

a2

f(y)

y − x
dy, x ∈ (a1, a3),

where p.v. stands for the principal value. In short,

HT := P[a1,a3]HP[a2,a4],

where H is the ordinary Hilbert transform on L2(R).
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194 REEMA AL-AIFARI AND ALEXANDER KATSEVICH

(a) (b)

Fig. 1.2. Two examples of the truncated problem with overlap. Figure 1.2(a) shows the missing
arm problem. In both cases, the field of view (FOV) does not cover the object support. On the line
intersecting the object, measurements can only be taken within the FOV, i.e., from a1 to a3. The
Hilbert transform is not measured on [a3, a4]. Consequently, a reconstruction can only be aimed at
in the gray-shaded intersection of the FOV with the object support, called the ROI.

Fig. 1.3. The interior problem. Here, the FOV also does not cover the object support. The line
intersecting the object is such that the Hilbert transform is only measured in a subinterval [a2, a3] of
the intersection [a1, a4] of the line with the object support. The ROI is the gray-shaded intersection
of the FOV with the object support. In this case stable reconstruction of the shaded ROI is impossible
unless additional information is available.

As we will prove in what follows, the inversion of HT is an ill-posed problem
in the sense of Hadamard [3]. In order to find suitable regularization methods for
its inversion, it is crucial to study the nature of the underlying ill-posedness, and
therefore the spectrum σ(H∗

THT ). An important question that arises here is whether
the spectrum is purely discrete. This question has been answered for similar operators
before, but with two very different answers. In [11], it was shown that the finite Hilbert
transform defined as HF = P[a,b]HP[a,b] has a continuous spectrum σ(HF ) = [−i, i].
On the other hand, in [9], we find the result that for the interior problem HI =
P[a2,a3]HP[a1,a4], the spectrum σ(H∗

IHI) is purely discrete.
The main result of this paper is that H∗

THT has only a discrete spectrum. In
addition, we obtain that 0 and 1 are accumulation points of the spectrum. Further-
more, we find that the singular value decomposition (SVD) of the operator HT can
be related to the solutions of a Sturm–Liouville (S-L) problem. For the actual recon-
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struction, one would aim at finding f in (1.1) only within an ROI, i.e., on [a2, a3]. A
stability estimate as well as a uniqueness result for this setup were obtained by Defrise
et al. in [2]. A possible method for ROI reconstruction is the truncated SVD. Thus,
it is of interest to study the SVD of HT also for the development of reconstruction
algorithms.

In [8] and [9], SVDs are obtained for the truncated Hilbert transform with a
gap P[a3,a4]HP[a1,a2] and for HI . This is done by relating the Hilbert transforms to
differential operators that have discrete spectra. We follow this procedure, but obtain
a differential operator that is different in nature. In [8] and [9] the discreteness of the
spectra follows from standard results of singular S-L theory (see, e.g., [26]). In the
case of the truncated Hilbert transform (1.1) we have to investigate the discreteness
of the spectrum of the related differential operator explicitly.

The idea is to find a differential operator for which the eigenfunctions are the
singular functions of HT on (a2, a4). We define the differential operator similarly to
the one in [8, 9], but then the question is which boundary conditions to choose in order
to relate the differential operator to HT . To answer this question we first develop an
intuition about the singular functions of HT .

Let {σn; fn, gn} denote the singular system of HT that we want to find. The
problem can be formulated as finding a complete orthonormal system {fn}n∈N in
L2(a2, a4) and an orthonormal system {gn}n∈N in L2(a1, a3) such that there exist
real numbers σn for which

HT fn = σngn,

H∗
T gn = σnfn.

At the moment, the gn’s only have to be complete in Ran(HT ), but as we will see in
section 5, Ran(HT ) is dense in L2(a1, a3).

As will be shown in section 4, the functions fn and gn
(a) can only be bounded or of logarithmic singularity at the points ai,
(b) do not vanish at the edges of their supports (a+2 , a

−
4 for fn, and a

+
1 , a

−
3 for

gn).
We will now make use of the following results from [5, sections 8.2 and 8.5].

Lemma 1.2 (local properties of the Hilbert transform). Let f be a function with
support [b, d] ⊂ R. And let c be in the interior of [b, d].

1. If f is Hölder continuous (for some Hölder index α) on [b, d], then close to b
the Hilbert transform of f is given by

(1.2) (Hf)(x) = − 1

π
f(b+) ln |x− b|+H0(x),

where H0 is bounded and continuous in a neighborhood of b.
2. If in a neighborhood of c, the function f is of the form f(x) = f̃(x) ln |x− c|

for Hölder continuous f̃ , then close to the point c its Hilbert transform is of
the form

(Hf)(x) = H0(x),

where H0 is bounded with a possible finite jump discontinuity at c.
3. If f is of the form f(x) = f̃(x) ln |x−b| on [b, c], where f̃ is Hölder continuous,

then its Hilbert transform at b has a singularity of the order ln2 |x − b| if
f̃(b) �= 0.
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(a) Sketch of fn’s. (b) Sketch of gn’s.

Fig. 1.4. Intuition about the singular functions of HT .

Suppose fn has a logarithmic singularity at a+2 . Since HT integrates over [a2, a4],
the function HT fn would have a singularity at a2 of order ln2 |x − a2|. Hence, this
would violate the property of gn at a2. Therefore, fn has to be bounded at a+2 . If
fn does not vanish at a+2 , this leads to logarithmic singularities of HT fn and gn at
a2. Using the same argument we conclude that gn is bounded at a−3 and fn has a
logarithmic singularity at a3.

On the other hand, since gn is bounded at a−3 , HT fn is also bounded there. This
requires that close to a3, fn = fn,1+fn,2 ln |x−a3| for functions fn,i continuous at a3.
A similar argument holds for gn at a2. Close to that point, gn = gn,1+ gn,2 ln |x− a2|
for functions gn,i continuous at a2.

Clearly, HT fn is bounded at a+1 and HT gn is bounded at a−4 . Therefore, fn has
to be bounded at a−4 and gn must be bounded at a+1 .

Thus, if we want to show the commutation of HT with a differential operator that
acts on fn(x), x ∈ (a2, a4), we need to impose boundary conditions at a+2 and a−4 that
require boundedness and some transmission conditions at a3 that make the bounded
term and the term in front of the logarithm in fn continuous at a3.

Having found these properties of the singular functions of HT (in case the SVD
for HT exists), in section 2 we introduce a differential operator and find a self-adjoint
extension for this operator. We then show in section 3 that this self-adjoint differential
operator LS has a discrete spectrum. In section 4 we establish that LS commutes
with the operator HT . This allows us to find the SVD of HT . In section 5 we then
study the accumulation points of the singular values of HT . In particular, we find that
HT is not a compact operator. Finally, we conclude by showing numerical examples
in section 6.

2. Introducing a differential operator. In this section, we find two differen-
tial operators LS and L̃S that will turn out to have a commutation property of the
form

(2.1) HTLS = L̃SHT .

In order to find the SVD of HT , we will be interested in finding LS and L̃S with simple
discrete spectra. Initially, it is not apparent whether differential operators with such
properties exist and if so, how to find them. We do not know of a coherent theory that
relates certain integral operators to differential operators via a commutation property
as the above. However, there have been examples of integral operators for which—by
what seems to be a lucky accident—such differential operators exist.
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One instance is the well-known Landau–Pollak–Slepian (LPS) operator that arises
in signal processing in the study of time- and band-limited representations of signals
[20, 13, 14]. There, it is of interest to find the largest eigenvalue of the LPS operator
P[−T,T ]F−1P[−W,W ]FP[−T,T ]. Here, F is the Fourier transform, and T and W are
some positive numbers. This operator happens to commute with a second order
differential operator, of which the eigenfunctions and eigenvalues had been studied
long before its connection to the LPS operator was known. The eigenfunctions of
this differential operator are the so-called prolate spheroidal wave functions and they
turn out to be the eigenfunctions of the LPS operator as well. The work of Landau,
Pollak, and Slepian has been generalized and extended by Grünbaum, Longhi, and
Perlstadt [7].

More recent examples of integral operators with commuting differential operators
are the interior Radon transform [15] and two instances of the truncated Hilbert
transform mentioned earlier [8, 9].

To start our search for LS and L̃S, we follow the procedure in [8, 9] and define a
differential operator.

Definition 2.1.

(2.2) L(x, dx)ψ(x) := (P (x)ψ′(x))′ + 2(x− σ)2ψ(x),

where

(2.3) P (x) =

4∏
i=1

(x− ai), σ =
1

4

4∑
i=1

ai.

The four points ai are all regular singular, and in a complex neighborhood of each
ai the functions (x− ai) ·P ′(x)/P (x) and (x− ai)

2 · 2(x− σ)2/P (x) are complex ana-
lytic. The term regular singular point is standard in the general theory of differential
equations and, as such, is also used in the theory of S-L equations; see, e.g., [21] for
this and other terminology and basic properties of S-L equations. Consequently, by
the method of Fuchs–Frobenius it follows that for λ ∈ C any solution of Lψ = λψ
is either bounded or of logarithmic singularity close to any of the points ai; see [21].
Away from the singular points ai the analyticity of the solutions follows from the
analyticity of the coefficients of the differential operator L. More precisely, in a left
and a right neighborhood of each regular singular point ai, there exist two linearly
independent solutions of the form

ψ1(x) = |x− ai|α1

∞∑
n=0

bn(x− ai)
n,(2.4)

ψ2(x) = |x− ai|α2

∞∑
n=0

dn(x− ai)
n + k ln |x− ai|ψ1(x),(2.5)

where without loss of generality we can assume b0 = d0 = 1. The exponents α1 and
α2 are the solutions of the indicial equation

α2 + (p0 − 1)α+ q0 = 0,

where

p0 = lim
x→ai

(x− ai)P
′(x)/P (x),(2.6)

q0 = lim
x→ai

(x− ai)
2[2(x− σ)2 − λ]/P (x).(2.7)
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With our choice of P , this gives α1 = α2 = 0 which implies k �= 0. For the bounded
solution in (2.4), α1 = 0 results in ψ1(ai) �= 0. The radius of convergence of the series
in (2.4) and (2.5) is the distance to the closest singular point different from ai. In a
left and in a right neighborhood of ai, the general form of the solutions of (L−λ)ψ = 0
is

ψ1(x) = �0

∞∑
n=0

bn(x− ai)
n,(2.8)

ψ2(x) = �1

∞∑
n=0

dn(x− ai)
n + �2 ln |x− ai|

∞∑
n=0

bn(x− ai)
n(2.9)

for some constants �j. Hence we have one degree of freedom for the bounded solution,
and two for the unbounded solution. Clearly, for the bounded solutions (2.8), the co-
efficients bn are the same on both sides of ai, since we have assumed b0 = 1. However,
the bounded part of the unbounded solutions (2.9) may have different coefficients d−n
and d+n to the left and to the right of ai, respectively.

2.1. The maximal and minimal domains and self-adjoint realizations.
Since we are interested in a differential operator that commutes (on some set to be
defined) with HT , we want to consider L on the interval (a2, a4). Due to the regular
singular point a3 in the interior of the interval, standard techniques for singular
S-L problems are not applicable. It is crucial for our application that we identify a
commuting self-adjoint operator, for which the spectral theorem can be applied. We
therefore wish to study all self-adjoint realizations; we follow the treatment in Chapter
13 in [26] which gives a characterization of all self-adjoint realizations for two-interval
problems, of which problems with an interior singular point are a special case.

First of all, one needs to define the maximal and minimal domains on Ij =
(aj , aj+1) (see Chapter 9 in [26]). Let ACloc(I) be the set of all functions that are
absolutely continuous on all compact subintervals of the open interval I. Then,

Dj,max := {ψ : Ij → C : ψ, Pψ′ ∈ ACloc(Ij);ψ,Lψ ∈ L2(Ij)},(2.10)

Dj,min := {ψ ∈ Dj,max : supp ψ ⊂ (aj , aj+1)},(2.11)

and the related maximal and minimal operators are defined as follows:

Lj,max := L(Dj,max) : Dj,max → L2(Ij),(2.12)

Lj,min := L(Dj,min) : Dj,min → L2(Ij).(2.13)

We shall follow essentially the procedure in Chapter 13 in [26], to which we refer for
more detail. On (a2, a4), the maximal and minimal domains and the corresponding
operators are defined as the direct sums.

Definition 2.2. The maximal and minimal domains Dmax, Dmin ⊂ L2(a2, a4)
and the operators Lmax, Lmin are defined as

Dmax := D2,max +D3,max, Dmin := D2,min +D3,min,

Lmax := L2,max + L3,max, Lmin := L2,min + L3,min,

and, therefore,

Lmax : Dmax → L2(a2, a4),(2.14)

Lmin : Dmin → L2(a2, a4).(2.15)
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The operator Lmin is a closed, symmetric, densely defined operator in L2(a2, a4)
and Lmax, Lmin form an adjoint pair, i.e., L∗

max = Lmin and L∗
min = Lmax. In order

to define a self-adjoint extension of Lmin, we need to introduce the notion of the
Lagrange sesquilinear form

(2.16) [u, v] := uPv′ − vPu′,

where, at the singular points,

[u, v](a+i ) := lim
α→a+i

[u, v](α),(2.17)

[u, v](a−i ) := lim
α→a−i

[u, v](α).(2.18)

These limits exist and are finite for all u, v ∈ Dmax. If we choose u, v ∈ Dmax such
that [u, v](ai) = 1 for all the singular points (a+2 , a

−
3 , a

+
3 , a

−
4 ), then the extension of

Lmin defined by the following conditions

[ψ, u](a+2 ) = 0 = [ψ, u](a−4 ),(2.19)

[ψ, u](a−3 ) = [ψ, u](a+3 ),(2.20)

[ψ, v](a−3 ) = [ψ, v](a+3 ),(2.21)

is self-adjoint. We refer to (2.19) as boundary conditions, and to (2.20) and (2.21) as
transmission conditions. The latter connect the two subintervals (a2, a3) and (a3, a4).
Motivated by the conditions mentioned in section 1, we define a self-adjoint extension
of Lmin.

Lemma 2.3. The extension LS : D(LS) → L2(a2, a4) of Lmin to the domain

D(LS) := {ψ ∈ Dmax : [ψ, u](a+2 ) = [ψ, u](a−4 ) = 0,

[ψ, u](a−3 ) = [ψ, u](a+3 ), [ψ, v](a
−
3 ) = [ψ, v](a+3 )}(2.22)

with the following choice of maximal domain functions u, v ∈ Dmax,

u(y) := 1,(2.23)

v(y) :=
4∑
i=1

∏
j �=i

j∈{1,...,4}

1

ai − aj
ln |y − ai|,(2.24)

is self-adjoint.
This choice of maximal domain functions gives [u, v](ai) = 1 for i = 1, . . . , 4. The

boundary conditions simplify to

(2.25) lim
y→a+2

P (y)ψ′(y) = lim
y→a−4

P (y)ψ′(y) = 0.

For an eigenfunction ψ of LS this is equivalent to ψ being bounded at a+2 and a−4
(because the only possible singularity is of logarithmic type). Let φ1 and φ2 be the
restrictions of ψ to the intervals (a2, a3) and (a3, a4), respectively. Since ψ is an
eigenfunction, on the corresponding intervals, φ1 and φ2 are of the form φi(y) =
φi1(y) + φi2(y) ln |y − a3|. Here, the functions φij are analytic on (a2, a3) for i = 1
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and on (a3, a4) for i = 2. Having this, the transmission conditions can be simplified
as follows:

[ψ, u](a+3 ) = [ψ, u](a−3 ),
lim
y→a+3

P (y)ψ′(y) = lim
y→a−3

P (y)ψ′(y),

lim
y→a−3

φ12(y) = lim
y→a+3

φ22(y).(2.26)

The condition involving v yields

[ψ, v](a−3 ) = [ψ, v](a+3 ),

lim
y→a−3

[ψ(y)− v(y)(Pψ′)(y)] = lim
y→a+3

[ψ(y)− v(y)(Pψ′)(y)],(2.27)

lim
y→a−3

φ11(y) = lim
y→a+3

φ21(y).(2.28)

Note that on each side of (2.27) the logarithmic terms in φi2 cancel because of the
choice of the constants in v. The properties (2.25), (2.26), and (2.28) are the same
as the ones found for fn in section 1. Thus, we have constructed an operator LS for
which, close to the points a2, a3 and a4, the eigenfunctions behave in the same way
that is expected for the fn’s.

Close to a3, an eigenfunction ψ is given by

(2.29) ψ(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�11

∞∑
m=0

d−m(y − a3)
m + �21 ln |y − a3|

∞∑
m=0

bm(y − a3)
m, y < a3,

�12

∞∑
m=0

d+m(y − a3)
m + �22 ln |y − a3|

∞∑
m=0

bm(y − a3)
m, y > a3,

where similarly to (2.5), we assume d−0 = d+0 = 1 and b0 = 1. The transmission
conditions require that

�11 = �12,(2.30)

�21 = �22.(2.31)

We can thus express ψ in a sufficiently small neighborhood of a3 as

(2.32) ψ(y) = �11 + �21 ln |y − a3|
∞∑
m=0

bm(y − a3)
m +

∞∑
m=1

�±m(y − a3)
m,

where �±m stands for �+m = �11d
+
m, when y > a3 and for �−m = �11d

−
m, when y < a3.

3. The spectrum of LS. In order to prove that the spectrum of the differential
self-adjoint operator LS introduced in Lemma 2.3 is discrete, we need to show that
for some z in the resolvent set, (LS − zI)−1 is a compact operator. To do so, it is
sufficient to prove that the Green’s function G of LS−zI, which for z in the resolvent
set exists and is unique, is a function in L2((a2, a4)

2). This would allow us to conclude
that the integral operator TG with G as its integral kernel is a compact operator from
L2(a2, a4) to L2(a2, a4), where TG is equivalent to the inversion of LS − zI.

Lemma 3.1. The Green’s function G(x, ξ) associated with LS−i is in L2((a2, a4)
2)

and consequently, (LS − i)−1 : L2(a2, a4) → D(LS) ⊂ L2(a2, a4) is a compact opera-
tor.
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Proof. The self-adjointness of LS is equivalent to LS − i being one-to-one and
onto (Theorem VIII.3 in [19]). Moreover, the ai’s are limit-circle points and thus,
the deficiency index d equals 4 (Theorem 13.3.1 in [26]). This means that if we do
not impose boundary and transmission conditions, there are two linearly independent
solutions p1 and p2 of (L− i)p = 0 on (a2, a3) as well as two linearly independent solu-
tions q1 and q2 of (L− i)q = 0 on (a3, a4). Note that none of these four solutions can
be bounded at both of its endpoints because i is not an eigenvalue of the self-adjoint
operator Lj,S : D(Lj,S) → L2(Ij) with D(Lj,S) = {ψ ∈ Dj,max : limy→a+j

P (y)ψ′(y) =
limy→a−j+1

P (y)ψ′(y) = 0}. By taking appropriate combinations, if necessary, we can

eliminate the logarithmic singularity at a+2 of one of the solutions, and at a−4 of another
solution. We can thus assume that

- on (a2, a3): p1 is bounded at a+2 and logarithmic at a−3 , p2 is logarithmic at
both endpoints;

- on (a3, a4): q1 is logarithmic at a+3 and bounded at a−4 , q2 is logarithmic at
both endpoints.

We next check the restrictions imposed by the transmission conditions at a3. Close
to a3, both functions p1 and q2 are of the form (2.9). Let �11, �21 denote the free
parameters in the expression for p1 and �12, �22 the ones in q2. These can be chosen
such that they satisfy (2.30) and (2.31). Thus, there exists a solution h1(x) on (a2, a4)
given by

h1(x) =

{
p1(x) for x ∈ (a2, a3),
q2(x) for x ∈ (a3, a4),

that is bounded at a+2 and logarithmic at a−4 . In addition, it is of the form (2.32) close
to a3, i.e., it is logarithmic at a3 and satisfies the transmission conditions (2.26), (2.28)
there. Similarly, with p2 and q1 we can obtain a solution h2 on (a2, a4) that satisfies the
transmission conditions at a3 and is of ln-ln-bounded-type. Thus, imposing only the
transmission conditions, we obtain two linearly independent solutions of (L− i)h = 0
on (a2, a3)∪ (a3, a4). One of them, h1, is of a bounded-ln-ln-type, and the other one,
h2, is of a ln-ln-bounded-type, at the points a+2 , a3, a

−
4 , respectively. We are now in a

position to consider the Green’s function G(x, ξ) of LS − i. Close to a3, we can write
the two functions as hj(x) = hj1(x) + ln |x− a3|hj2(x) with continuous functions hj1
and hj2. By rescaling if necessary, we can assume h12(a3) = h22(a3). We construct G
from h1 and h2 as follows:

(3.1) G(x, ξ) =

{
c1(ξ)h1(x) for x < ξ,
c2(ξ)h2(x) for x > ξ,

where ξ ∈ (a2, a3)∪ (a3, a4) and the functions c1(ξ) and c2(ξ) are chosen such that G
is continuous at x = ξ and ∂G/∂x has a jump discontinuity of 1/P (ξ) at x = ξ:

c1(ξ)h1(ξ)− c2(ξ)h2(ξ) = 0,(3.2)

c1(ξ)h
′
1(ξ)− c2(ξ)h

′
2(ξ) = − 1

P (ξ)
.(3.3)

In other words, G is the solution of (L− i)G = δ, where δ is the Dirac delta function.
For ξ away from a3, G(x, ξ) is continuous in ξ but with logarithmic singularities at
a+2 and a−4 . This can be seen as follows. Consider ξ close to a2. There, we can write

h2(ξ) = h̃21(ξ) + h̃22(ξ) ln |ξ − a2|
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and, since h1 is bounded close to a+2 , it is of the form (2.8), i.e., h1(a
+
2 ) �= 0. Let

Wh1,h2 denote the Wronskian of h1 and h2, i.e., Wh1,h2 = h1h
′
2 − h′1h2. For c1 and c2

we obtain

c1(ξ) =
h2(ξ)

P (ξ)Wh1,h2(ξ)
,(3.4)

c2(ξ) =
h1(ξ)

P (ξ)Wh1,h2(ξ)
.(3.5)

The denominator in the above expressions is bounded by

P (ξ)(h1(ξ)h
′
2(ξ)− h2(ξ)h

′
1(ξ)) = O((ξ − a2) ln |ξ − a2|) + h1(ξ)h̃22(ξ)p(ξ),

where p(ξ) = P (ξ)/(ξ − a2) and h1(a
+
2 )h̃22(a2)p(a2) �= 0. Thus, in a neighborhood of

a+2 ,

c1(ξ) = O(ln |ξ − a2|),(3.6)

c2(ξ) = O(1).(3.7)

Similarly, since h2(a
−
4 ) �= 0, close to a−4

c1(ξ) = O(1),(3.8)

c2(ξ) = O(ln |ξ − a4|).(3.9)

For each fixed ξ ∈ (a2, a3) ∪ (a3, a4), G(x, ξ) as a function in x is continuous on
[a2, a3) ∪ (a3, a4] and has a logarithmic singularity at a3, due to the singularities in
h1(x) and h2(x). It remains to check what happens as ξ → a3. We need to make
sure that the functions c1(ξ) and c2(ξ) behave in such a way that G ∈ L2((a2, a4)

2).
Therefore, we derive the asymptotics of c1(ξ) and c2(ξ) as ξ → a−3 . For ξ = a3 − ε
and small ε > 0, (3.2) becomes

c1(a3 − ε)h1(a3 − ε)− c2(a3 − ε)h2(a3 − ε) = 0.

Since close to a3, hi = hi1 + hi2 ln(ε) and the hij are continuous, the ratio c1/c2 is of
the form

a+ b ln(ε)

c+ d ln(ε)
,

where b and d are nonzero (because the logarithmic singularity is present). Thus, the
ratio tends to the finite limit b/d as ε→ 0. Conditions (3.2) and (3.3) together imply

c2(a3 − ε) =
h1(a3 − ε)

P (a3 − ε)Wh1,h2(a3 − ε)

=
h11(a3 − ε) + h12(a3 − ε) ln(ε)

r1(ε) + ε · r2(ε) ,

where

r1(ε) = −1

ε
P (a3 − ε)

(
h21h12 − h22h11

)
(a3 − ε),

r2(ε) = O(1),
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and h12(a3) �= 0. If r1(0) �= 0, then c2 is of order O(ln(ε)), removing a possible
obstruction to square integrability of G.

Suppose r1(0) = 0, i.e.,

h21(a3)h12(a3)− h22(a3)h11(a3) = 0.

This would imply

h11(a3) = C · h21(a3),(3.10)

h12(a3) = C · h22(a3)(3.11)

for some constant C. By assumption, h12(a3) = h22(a3), so that C = 1. Now if both
(3.10) and (3.11) hold for C = 1, the function defined by

h(x) =

{
h1(x) for x ∈ (a2, a3),
h2(x) for x ∈ (a3, a4)

would be a nontrivial solution of (LS − i)h = 0 (fulfilling both boundary and trans-
mission conditions), i.e., i would be an eigenvalue of LS . But this contradicts the self-
adjointness of LS. We can thus conclude that r1(0) �= 0. This shows that c2(a3 − ε)
is of order O(ln(ε)) and, therefore, also c2 · c1c2 = c1 = O(ln(ε)).

Analogously, we can find the same asymptotics of c1(ξ) and c2(ξ) as ξ → a+3 .
Therefore, the properties of the Green’s function G(x, ξ) can be summarized as

follows:
- G(·, ξ) has logarithmic singularities at a+2 , a3, and a

−
4 ;

- G(x, ·) is of logarithmic singularity at a3;
- away from these singularities G(x, ξ) is continuous in x and ξ.

Thus, G is in L2((a2, a4)
2). Hence, TG : L2(a2, a4) → L2(a2, a4) is a compact Fred-

holm integral operator.
From this we conclude the following.
Proposition 3.2. The operator LS has only a discrete spectrum, and the asso-

ciated eigenfunctions are complete in L2(a2, a4).
Proof. By Theorem VIII.3 in [19], the self-adjointness of LS implies that for the

operator (LS − i) : D(LS) → L2(a2, a4) we have

Ker(LS − i) = {0},(3.12)

Ran(LS − i) = L2(a2, a4).(3.13)

Consequently, (LS − i)−1 : L2(a2, a4) → D(LS) is one-to-one and onto. Moreover, it
is a normal compact operator and thus we get the spectral representation

(3.14) (LS − i)−1f =

∞∑
n=0

λn〈f, fn〉fn,

where {fn}n∈N is a complete orthonormal system in L2(a2, a4). This can be trans-
formed into the spectral representation for LS:

LSf =
∞∑
n=0

(
1

λn
+ i

)
〈f, fn〉fn.(3.15)

Clearly, the eigenfunctions fn of LS can be chosen to be real valued. The com-
pleteness of {fn}n∈N is essential for finding the SVD of HT . Another property that
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will be needed for the SVD is that the spectrum of LS is simple, i.e., that each
eigenvalue has multiplicity 1.

Proposition 3.3. The spectrum of LS is simple.
Proof. From the compactness of (LS − i)−1, we know that each eigenvalue has

finite multiplicity. Suppose f1 and f2 are linearly independent eigenfunctions of LS
corresponding to the same eigenvalue λ ∈ R. Then, on all of (a2, a3) ∪ (a3, a4) the
following holds:

(3.16) f1Lf2 − f2Lf1 = 0.

Consequently,

0 = f1Lf2 − f2Lf1 = f1(Pf
′
2)

′ − f2(Pf
′
1)

′

= [f1, f2]
′.

Thus, [f1, f2] is constant on both (a2, a3) and (a3, a4). From the boundary conditions
that f1 and f2 satisfy, we find that [f1, f2](a

+
2 ) = 0 = [f1, f2](a

−
4 ), which implies

[f1, f2] = 0 on (a2, a3) ∪ (a3, a4). Since [f1, f2] = P (f ′
1f2 − f1f

′
2), we get that

(3.17) f ′
1f2 − f1f

′
2 = 0 on (a2, a3) ∪ (a3, a4).

The functions f1 and f2 satisfy the transmission conditions at a3. Consequently, they
can be written as

f1(x) = f11(x) + f12(x) ln |x− a3|,
f2(x) = f21(x) + f22(x) ln |x− a3|

in a neighborhood of a3, where fij are continuous. Since the one-sided derivatives f ′
ij

are bounded at a3, (3.17) implies

(3.18)

(
f12f21 − f11f22

)
(x)

x− a3
+O(ln2 |x− a3|) = 0.

Note that the terms containing ln |x − a3|/(x − a3) cancel. Taking the limit x → a3
in (3.18), we obtain

f12(a3)f21(a3)− f11(a3)f22(a3) = 0.

Thus, for some constant C,

(
f11(a3)
f12(a3)

)
= C

(
f21(a3)
f22(a3)

)
.

If we take f1 on (a2, a3), then f11(a3) and f12(a3) define a singular initial value
problem on (a3, a4) that is uniquely solvable (Theorem 8.4.1 in [26]). Thus, f1 = C ·f2
on (a3, a4). Now, on the other hand, by considering f1 on (a3, a4), the values f11(a3)
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and f12(a3) define a singular initial value problem on (a2, a3) which has a unique
solution. Hence, f1 = C · f2 on (a2, a3) ∪ (a3, a4) in contradiction to our assump-
tion.

4. Singular value decomposition of HT . Having introduced the differential
operator LS , we now want to relate it to the truncated Hilbert transform HT . The
main result of this section is that the eigenfunctions of LS fully determine the two
families of singular functions of HT . We start by stating the following.

Proposition 4.1. On the set of eigenfunctions {fn}n∈N of LS, the following
commutation relation holds:

(4.1) (HTL(y, dy)fn)(x) = L(x, dx)(HT fn)(x) for x ∈ (a1, a2) ∪ (a2, a3).

Sketch of proof. This proof follows the same general idea as the proof of Proposi-
tion 2.1 in [9]. We therefore provide full details only for those steps where additional
care needs to be taken because of the singularity at a3. The steps that are completely
analogous to those in the proof of Proposition 2.1 in [9] are only sketched here.

Let ψ ∈ {fn}n∈N. The boundedness of ψ at a+2 and a−4 implies that Pψ′ → 0
and Pψ → 0 there. Moreover, the transmission conditions at a3 guarantee that Pψ′

is continuous at a3. With these properties, the commutation relation for x ∈ (a1, a2),
i.e., where the Hilbert kernel is not singular, can be shown similarly to the proof of
Proposition 2.1 in [8].

Next, let x ∈ (a2, a3). The main difference from the proof of Proposition 2.1 in [9]
is that now the eigenfunctions are not in C∞([a2, a4]), but are singular at a3. However,
the fact that we exclude the point x = a3 allows us to always have a neighborhood of x
away from a3 on which ψ is bounded. We further note that ψ ∈ C∞([a2, a3)∪(a3, a4]).
Since the Hilbert kernel is singular, we need to use principal value integration and
introduce the following notation: Iε(x) := [a2, x − ε] ∪ [x + ε, a4]. Here ε > 0 is so
small that (x − ε, x + 2ε) ⊂ (a2, a3), i.e., the ε-neighborhood of x is well separated
from a3. Then,

π(HTL(y, dy)ψ)(x) = lim
ε→0+

∫
Iε(x)

[
(P (y)ψ′(y))′

y − x
+

2(y − σ)2ψ(y)

y − x

]
dy.

For the first term under the integral, we integrate by parts twice and plug in the
boundary conditions. Again, we use that Pψ′ → 0 and Pψ → 0 at a+2 and a−4 :

∫
Iε(x)

(P (y)ψ′(y))′

y − x
dy =− (Pψ′)(x− ε) + (Pψ′)(x+ ε)

ε
+

(Pψ)(x − ε)− (Pψ)(x + ε)

ε2

+

∫
Iε(x)

ψ(y)
2P (y)− P ′(y)(y − x)

(y − x)3
dy.(4.2)

The integral on the right-hand side of (4.2) can be related to the derivatives of∫
ψ(y)/(y − x)dy. In [9] similar relations (cf. (2.7)) were obtained from the Leib-

niz integral rule, using explicitly that the integrand was continuous. In our case, the
function ψ is no longer continuous because of the singularity at a3. We can generalize
the argument of [9] by invoking the dominated convergence theorem and rewrite the
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last term in (4.2) as follows:∫
Iε(x)

ψ(y)
2P (y)− P ′(y)(y − x)

(y − x)3
dy

= P (x)

[
d2

dx2

∫
Iε(x)

ψ(y)

y − x
dy +

ψ′(x− ε) + ψ′(x+ ε)

ε
− ψ(x − ε)− ψ(x+ ε)

ε2

]

+ P ′(x)

[
d

dx

∫
Iε(x)

ψ(y)

y − x
dy +

ψ(x− ε) + ψ(x+ ε)

ε

]

−
∫
Iε(x)

2ψ(y)
(y − σ)2 − (x− σ)2

y − x
dy.

Putting all the pieces together, we obtain

π(HTL(y, dy)ψ)(x)

= lim
ε→0+

{
− (Pψ′)(x− ε) + (Pψ′)(x+ ε)

ε
+

(Pψ)(x − ε)− (Pψ)(x + ε)

ε2

+ P (x)

[
ψ′(x− ε) + ψ′(x+ ε)

ε
− ψ(x − ε)− ψ(x+ ε)

ε2

]

+ P ′(x)
ψ(x − ε) + ψ(x+ ε)

ε
+ L(x, dx)

∫
Iε(x)

ψ(y)

y − x
dy

}
.

The eigenfunction ψ is in C∞[a2, x + 2ε). Following [9], we can thus express the
boundary terms in the above equation by Taylor expansions around x and make use
of the fact that the boundary terms consist only of odd functions in ε. The boundary
terms are then of the order O(ε). We thus have

(4.3) π(HTL(y, dy)ψ)(x) = lim
ε→0+

L(x, dx)

∫
Iε(x)

ψ(y)

y − x
dy.

Since for ε > 0 sufficiently small, ψ ∈ C∞([x− ε, x+ ε]), one can interchange the limit
with L(x, dx) as in [9].

Because the spectrum of LS is purely discrete, we have thus found an orthonormal
basis (the eigenfunctions of LS) {fn}n∈N of L2(a2, a4) for which (4.1) holds. Let
us define gn := HT fn/‖HT fn‖L2(a1,a3). Then, in order to obtain the SVD for HT

(with singular functions fn and gn), it is sufficient to prove that the gn’s form an
orthonormal system of L2(a1, a3) (they will then consequently form an orthonormal
basis of L2(a1, a3); see Proposition 5.2).

The orthogonality of the gn’s will follow from the commutation relation. Since
fn is an eigenfunction of LS for some eigenvalue λn, we obtain

L(x, dx)gn(x) = λngn(x), x ∈ (a1, a2) ∪ (a2, a3).

Similarly to LS , we define a new self-adjoint operator that acts on functions supported
on [a1, a3].

Definition 4.2. Let D̃max := D1,max+D2,max and L̃min := L1,min+L2,min. The

operator L̃S : D(L̃S) → L2(a1, a3) is defined as the self-adjoint extension of L̃min,
where

D(L̃S) := {ψ ∈ D̃max : [ψ, u](a+1 ) = [ψ, u](a−3 ) = 0,

[ψ, u](a−2 ) = [ψ, u](a+2 ), [ψ, v](a
−
2 ) = [ψ, v](a+2 )}(4.4)

with the maximal domain functions u, v ∈ D̃max as in (2.23), (2.24).
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The intuition then is the following. The function fn is bounded at a+2 and loga-
rithmic at a3, where it satisfies the transmission conditions. Consequently, as will be
shown below, gn is bounded at a−3 , logarithmic at a2, and satisfies the correspond-
ing transmission conditions at a2. Clearly, it is also bounded at a+1 . Thus, gn is an
eigenfunction of the self-adjoint operator L̃S . As a consequence, the gn’s form an
orthonormal system.

Proposition 4.3. If LSfn = λnfn, then gn := HT fn/‖HTfn‖L2(a1,a3) is an

eigenfunction of L̃S corresponding to the same eigenvalue

(4.5) L̃Sgn = λngn.

Proof. First of all, the commutation relation for fn yields

L(x, dx)(HT fn)(x) = (HTL(y, dy)fn)(x),

L(x, dx)gn(x) = λngn(x), x ∈ (a1, a2) ∪ (a2, a3).

What remains to be shown is that gn satisfies the boundary and transmission condi-
tions. Therefore, we consider p.v.

∫ a4
a2
fn(y)/(y − x)dy for x close to a1, a2, and a3.

In a neighborhood of a1 away from [a2, a4] this function is clearly analytic. Next, let
x be confined to a small neighborhood of a2. Since the discontinuity of fn is away
from a2, we can split the above integral into two, one that integrates over a right
neighborhood of a2 and another one that is an analytic function. The first item in
Lemma 1.2 then implies that

(4.6) p.v.

∫ a4

a2

fn(y)

y − x
dy = g̃n,1(x)− fn(a

+
2 ) ln |x− a2|,

where g̃n,1(x) is continuous in a neighborhood of x = a2. Thus, gn satisfies the
transmission conditions (2.26), (2.28).

It remains to check the behavior of gn close to a−3 . We first express fn as

fn(y) = fn,1(y) + fn,2(y) ln |y − a3|,

where both fn,1 and fn,2 are Lipschitz continuous. Then, in view of Lemma 1.2, both
summands on the right-hand side of the equation

p.v.

∫ a4

a2

fn(y)

y − x
dy =p.v.

∫ a4

a2

fn,1(y)

y − x
dy + p.v.

∫ a4

a2

fn,2(y) ln |y − a3|
y − x

dy

remain bounded as x tends to a3.
Since the spectrum of LS is simple, we can conclude that the gn’s form an or-

thonormal system and thus the following holds.
Theorem 4.4. The eigenfunctions fn of LS, together with gn := HT fn/

‖HT fn‖L2(a1,a3) and σn := ‖HTfn‖L2(a1,a3) form the SVD for HT :

HT fn = σngn,(4.7)

H∗
T gn = σnfn.(4.8)

5. Accumulation points of the singular values of HT . The main result of
this section is that 0 and 1 are accumulation points of the singular values of HT . To
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208 REEMA AL-AIFARI AND ALEXANDER KATSEVICH

find this, we first analyze the null space and range of HT , which will also prove the
ill-posedness of the inversion of HT . First, we need to state the following.

Lemma 5.1. If the Hilbert transform of a compactly supported f ∈ L2(a, b)
vanishes on an open interval (c, d) disjoint from the object support, then f = 0 on all
of R.

Sketch of proof. A similar statement (and proof) can be found in [1]. The main
difference is that here we consider a more general class of functions f . By dominated
convergence, f ∈ L1(a, b) implies that for any z ∈ Ω = C\((−∞, a) ∪ (b,∞)), the

function g(z) =
∫ b
a
f(x)/(x − z)dx is differentiable in a neighborhood of z. Thus,

g is analytic on Ω. The statement then follows in the same way as Lemma 2.1
in [1].

With this property of the Hilbert transform, we can obtain results on the null
space and the range of HT .

Proposition 5.2. The operator HT : L2(a2, a4) → L2(a1, a3) has a trivial null
space and dense range that is not all of L2(a1, a3), i.e.,

Ker(HT ) = {0},(5.1)

Ran(HT ) �= L2(a1, a3),(5.2)

Ran(HT ) = L2(a1, a3).(5.3)

Proof of (5.1). Suppose HT f = 0. Then

Hχ[a2,a4]f = 0 on (a1, a2),

and by Lemma 5.1, f = 0 on all of [a2, a4]. Thus, f ∈ L2(a2, a4) can always be
uniquely determined from HT f .

Proof of (5.2). Take any g ∈ L2(a1, a3) that vanishes on (a1, a2) and such that
‖g‖L2(a1,a3) �= 0. Suppose g ∈ Ran(HT ). By Lemma 5.1, if f ∈ L2(a2, a4) and
HT f = g, then f is zero on [a2, a4]. This implies that g = 0 on (a1, a3), which
contradicts the assumption ‖g‖ �= 0.

Proof of (5.3). The operator H∗
T is also a truncated Hilbert transform with the

same general properties. By the above argument, Ker(H∗
T ) = {0}. Thus, Ran(HT )

⊥ =
{0}.

Equation (5.2) shows the ill-posedness of the problem. It is not true that for every
g ∈ L2(a1, a3) there is a solution f to the equation HT f = g. Since Ran(HT ) is dense,
the solution need not depend continuously on the data. Thus, our problem violates
two properties of Hadamard’s well-posedness criteria [3]. These are the existence of
solutions for all data and the continuous dependence of the solution on the data. We
now turn to the spectrum of H∗

THT . In what follows, ‖·‖ denotes the norm associated
with L2(R), and 〈·, ·〉 denotes the L2(R) inner product. We begin with proving the
following.

Lemma 5.3. The operator H∗
THT has norm equal to 1.

Proof. From ‖H‖ = 1, we know that ‖H∗
THT ‖ ≤ 1. Since

‖H∗
THT ‖ = sup

‖ψ‖=1

‖H∗
THTψ‖,

finding a sequence ψn with ‖ψn‖ = 1 and ‖H∗
THTψn‖ → 1 would prove the assertion.
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Take a compactly supported function ψ ∈ L2([−1, 1]) with ‖ψ‖ = 1 and two

vanishing moments,
∫ 1

−1 ψ(x)dx = 0 =
∫ 1

−1 x ·ψ(x)dx. From this, we define a family of
functions, such that the norm is preserved but the supports decrease. More precisely,
for a > 2/(a3 − a2), we set

(5.4) ψa(x) =
√
aψ

(
a

(
x− a2 + a3

2

))
.

These functions satisfy ‖ψa‖ = 1 and supp ψa = [a2+a32 − 1
a ,

a2+a3
2 + 1

a ] ⊂ [a2, a3].
For their Hilbert transforms we obtain

(5.5) (Hψa)(x) =
√
a(Hψ)

(
a

(
x− a2 + a3

2

))
.

We can write

H∗
THTψa = −χ[a2,a4]Hχ[a1,a3]Hχ[a2,a4]ψa

= −χ[a2,a4]H(I − (I − χ[a1,a3]))Hχ[a2,a4]ψa

= ψa + χ[a2,a4]H(I − χ[a1,a3])Hχ[a2,a4]ψa,

(I −H∗
THT )ψa = −χ[a2,a4]H(I − χ[a1,a3])Hχ[a2,a4]ψa.(5.6)

Consider the L2-norm of the last expression

‖(I −H∗
THT )ψa‖2 = ‖χ[a2,a4]H(I − χ[a1,a3])Hχ[a2,a4]ψa‖2

≤ ‖(I − χ[a1,a3])Hχ[a2,a4]ψa‖2

=

∫
(−∞,a1)∪(a3,∞)

|(Hψa)(x)|2dx

= a

∫
(−∞,a1)∪(a3,∞)

∣∣∣∣(Hψ)
(
a

(
x− a2 + a3

2

))∣∣∣∣
2

dx

=

∫ a·(a1− a2+a3
2 )

−∞
|Hψ|2dy +

∫ ∞

a·(a3− a2+a3
2 )

|Hψ|2dy.(5.7)

Because of the ordering of the ai’s, we have that a1 − a2+a3
2 < 0 and a3 − a2+a3

2 > 0.
Since ψ has two vanishing moments, Hψ asymptotically behaves like 1/|y|3 and hence,
both integrals in (5.7) are of the order O(a−5). Thus, given any ε > 0, one can find
a > 2/(a3 − a2) such that

‖(I −H∗
THT )ψa‖ < ε.

Consequently,

‖H∗
THTψa‖ ≥ ‖ψa‖ − ‖(I −H∗

THT )ψa‖ > 1− ε.

Therefore

‖H∗
THTψa‖ → 1 as a→ ∞,

which implies that ‖H∗
THT ‖ = 1.

We are now in a position to prove the following theorem.
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Theorem 5.4. The values 0 and 1 are accumulation points of the singular values
of HT .

Proof. First of all, 0 and 1 are both elements of the spectrum σ(H∗
THT ). For

the value 0, this follows from Ran(H∗
THT ) ⊂ Ran(H∗

T ) �= L2(a2, a4). Moreover, since
‖H∗

THT ‖ = 1 and H∗
THT is self-adjoint, the spectral radius is equal to 1. Thus,

1 ∈ σ(H∗
THT ).

The second step is to show that 0 and 1 are not eigenvalues of H∗
THT .

0 is not an eigenvalue: If H∗
THT f = 0, then ‖HT f‖2 = 〈f,H∗

THT f〉 = 0. Since
Ker(HT ) = 0, this implies f = 0. Thus, Ker(H∗

THT ) = {0}.
1 is not an eigenvalue: Suppose there exists a nonvanishing function f ∈ L2(a2, a4),

such that

−χ[a2,a4]Hχ[a1,a3]Hχ[a2,a4]f = f.

Then,

‖Hχ[a2,a4]f‖2 = ‖f‖2 = −〈χ[a2,a4]Hχ[a1,a3]Hχ[a2,a4]f, f〉
= 〈χ[a1,a3]Hχ[a2,a4]f,Hχ[a2,a4]f〉
= ‖χ[a1,a3]Hχ[a2,a4]f‖2.

This implies that Hχ[a2,a4]f is identically zero outside [a1, a3]. By Lemma 5.1, this
implies f = χ[a2,a4]f = 0, contradicting the assumption f �≡ 0. Therefore, 0 and 1
are accumulation points of the eigenvalues of H∗

THT and consequently, of the singular
values of HT .

Since the singular values of HT also accumulate at a point other than zero, the
operator HT is not compact.

6. Numerical illustration. We want to illustrate the properties of the trun-
cated Hilbert transform with overlap obtained above for a specific configuration. We
choose a1 = 0, a2 = 1.5, a3 = 6, and a4 = 7.5. First, we consider two different
discretizations of HT and calculate the corresponding singular values. We choose the
first discretization to be a uniform sampling with 601 partition points in each of the
two intervals [0, 6] and [1.5, 7.5]. Let vectors X and Y denote the partition points of
[0, 6] and [1.5, 7.5], respectively. To overcome the singularity of the Hilbert kernel the
vector X is shifted by half of the sample size. The ith components of the two vectors
X and Y are given by Xi =

1
100 (i+

1
2 ) and Yi = 1.5 + 1

100 i; HT is then discretized as
(HT )i,j = (1/π)(Xi − Yj), i, j = 0, . . . , 600. Figure 6.1(a) shows the singular values
for the uniform discretization. We see a very sharp transition from 1 to 0.

The second discretization uses orthonormal wavelets with two vanishing moments.
Let φ denote the scaling function. For the discretization we define a finest scale
J = −7. The scaling functions on [1.5, 7.5] are taken to be φ−7,k for integers k =
192, . . . , 957, i.e., such that supp φ−7,k ⊂ [1.5, 7.5]. On the interval [0, 6] the scaling
functions are shifted in the sense that we take them to be φ−7,�+ 1

2
for integers � =

0, . . . , 765, i.e., such that supp φ−7,�+ 1
2
⊂ [0, 6]. Figure 6.1(b) shows a plot of the

singular values of this wavelet discretization of HT . Although the transition is not
as sharp as in 6.1(a), the singular values in both cases very clearly accumulate at 0
and 1.

Next, we consider the singular functions. Figure 6.2 shows the singular functions
of the uniform discretization for singular values in the transmission region between
0 and 1. Figure 6.3 illustrates the behavior of singular functions for small singular
values. As anticipated, they are bounded at the two endpoints and singular at the
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100 200 300 400 500 600

0.2

0.4

0.6

0.8

1.0

(a) Uniform discretization of size 601× 601.

100 200 300 400 500 600 700

0.2

0.4

0.6

0.8

1.0

(b) Wavelet discretization of size 766 × 766.

Fig. 6.1. a1 = 0, a2 = 1.5, a3 = 6, a4 = 7.5. Singular values of two discretizations of HT .

1 2 3 4 5 6 7

0.15
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0.05

0.05
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0.15

(a) Singular functions f448 and f449.

1 2 3 4 5 6 7

0.15

0.10

0.05

0.05

(b) Singular functions f450 and f451.

1 2 3 4 5 6

0.10

0.05

0.05

0.10

0.15

(c) Singular functions g448 and g449.

1 2 3 4 5 6

0.15

0.10

0.05

0.05

0.10

0.15

(d) Singular functions g450 and g451.

Fig. 6.2. Consecutive singular functions for the uniform discretization with 3, 2, 1, and no zeros
within the overlap region. The corresponding singular values are σ448 = 0.999963, σ449 = 0.998782,
σ450 = 0.966192, σ451 = 0.542071.

point of truncation. Figure 6.4 gives two examples of the close to linear behavior in
a log-linear plot of the singular functions. In agreement with the theory in section 4,
these plots confirm that the singularities are of logarithmic kind.

Based on the numerical experiments conducted, we make the following observa-
tions on the behavior of the singular functions and singular values. First, the singular
functions in Figures 6.2 and 6.3 have the property that two functions with consecu-
tive indices have their number of zeros differing by 1. Moreover, the zeros are located
only inside one subinterval Ij . Furthermore, the plots show that singular functions
with zeros within the overlap region correspond to significant singular values, whereas
those which have zeros outside the overlap region correspond to small singular values.
Finally, we remark that singular functions for small singular values are concentrated
outside the ROI I2 = [a2, a3].
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0.2

(a) Singular functions f452 and f453.

1 2 3 4 5 6 7
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0.1

0.1
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(b) Singular functions f454 and f455.
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(c) Singular functions g452 and g453.

1 2 3 4 5 6

0.2

0.1

0.1

0.2

(d) Singular functions g454 and g455.

Fig. 6.3. Consecutive singular functions for the uniform discretization with 1, 2, 3, and 4
zeros outside the overlap region. The corresponding singular values are σ452 = 6.29189 · 10−3,
σ453 = 2.83533 · 10−5, σ454 = 1.18274 · 10−7, σ455 = 4.83357 · 10−10.

0.005 0.010 0.050 0.100 0.500

0.05

0.10

0.15

(a)

0.005 0.010 0.050 0.100 0.500

0.20

0.15

0.10

0.05

0.00

(b)

Fig. 6.4. Log-linear plot, i.e., with a logarithmic x scale of the singular functions g450 (left)
and g453 (right) on the interval [1.5, 2.3].
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