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Abstract: This study assessed the viability of wind 

electricity production at a local meteorological site in 

Sokoto State, Nigeria. 21 years monthly mean wind speed 

data at 10 m height obtained from the Nigerian 

meteorological station were employed to carry out 

monthly, seasonal, yearly and whole years wind profile 

characteristics. The data were subjected to the Weibull 

2-parameter and other statistical analyses. The 

econometrics analysis of wind electricity generation from 

the site was also studied using three wind turbine models 

of AV 928, V90 and SWT-3.6-107. The outcome showed 

that the wind speed data ranged from 2.4 to 12.1 m/s while 

the modal wind speed range was from 6.9 to 9.0 m/s. 98% 

of the data were found to be greater than 3.0 m/s and 

better potential exist for wind power generation in the dry 

season than in the wet. It was also discovered that 

potential exist for electricity generation of between 

60.0MWh and 1.5GWh per month and between 2.1 and 

10.8GWh per annum. The least cost of generating 1kWh 

of wind electricity with the turbine models at the site is 

estimated to be € 0.014. 
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1.   INTRODUCTION 

Adequate and sustainable energy production has over the years been linked to economic development. However, 

the challenge of producing sufficient energy to meet both domestic and industrial needs has always been 

heightened by the concerns for the environment. Although the conventional sources of fossil fuel burning has been 

able to produce surplus amount of energy, its finite nature is a concern for the future. Employing environmentally 

friendly sources for energy production has gained wide acceptance across the globe. This is because these sources 

which include wind, solar and hydro contain sustained potentials for abundant energy generation. Generating 

electricity from these renewable energy resources requires first and foremost preliminary resource assessment
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study. This is done to evaluate the potential and viability of producing electricity from the sources before 

investment procedure is undertaken. In the case of wind electricity production, the results of complete assessment 

study can aid in the selection of appropriate turbine model for a site. It can also be utilized in the determination of 

the wind profile characteristics of a site. Further to this, the results can be employed for the econometrics analysis 

of wind electricity generation from the turbine model selected. When this is done, wind energy investors will have 

pre-information about the quality of the required investment having known the viability and potential of the 

resources. 

Various assessment studies on some sites in Nigeria have been done to ascertain the potential and viability of the 

sites’ wind resources for electrical power generation [1-9]. Of particular interest to this study are the reports of two 

studies for sites located around Sokoto State [5, 10]. ECN-UNDP [5] simply reported that wind power of magnitude 

97MWh/yr is capable of being generated at Sokoto. It however did not state how the study was conducted, what 

magnitudes of wind power were prevalent and the period of the study. This makes the result inconclusive and 

probably speculative. Also, ECN-UNDP [5] reported the outcome of wind mapping of Nigeria carried out by 

Lahmeyer International [10]. The work by Lahmeyer International [10] used 12 months wind speed data to determine 

the average wind speed for ten selected sites across the country. The result was then used to average for the nation. 

One of the sites is in Badaga, a place in Sokoto State. It reported that wind electricity of magnitudes 153.5, 358.8 

and 1235.8 MWh/yr at heights 34.5, 42.0 and 44.0 m respectively are capable of being generated with two 

different turbine models installed at Badaga. The models are FL 250 and V52 made by Fuhrlander and Vestas 

respectively. This report is however limited in terms of accuracy. It is worthy of note that wind speed variation are 

location specific and associated with high variability in time and space. The outcome of ten stations’ result is not 

sufficient to average for a nation as large as Nigeria. More so, the limited number of data points (12 months) is not 

sufficient. The monthly and seasonal variability of wind profiles characteristics across many years were not 

captured and hence the accuracy and applicability of the result is limited. Accurate results are based on historical 

data of many years. This work was therefore based on using 21 years’ monthly mean wind speed data to evaluate 

the wind profile characteristics of a local meteorological site in Sokoto, Sokoto State, Nigeria. The result was 

further employed to determine the wind power potential and its viability for the site. The cost benefit analysis of 

wind electricity generation at the site was also carried out.  

2.   MATERIALS AND METHODS 

The focus of this study was to analyze wind speed data of a local site (13.01 ’N; 05.15’ E; Altitude 350.8 m; Air 

density 1.1845 kg/m3) in Sokoto, Sokoto State, Nigeria to determine the monthly, yearly and seasonal wind profile 

characteristics.  The potential of wind resources for power generation was also studied while the cost of 

generating wind electricity from the site was determined. 

2.1 Data Source 

The data employed for the study were monthly mean wind speeds obtained from the Nigerian meteorological 

department, Oshodi, Lagos state, Nigeria covering the period from 1987 to 2007. These were recorded 

continuously using cup-generator anemometer at a height of 10 m. Figs. 1 and 2 gives the 21 years’ monthly and 

yearly average distribution of the mean speeds, while Figs. 3 and 4 presents the monthly and annual range of mean 

measured wind speed profiles across the period.  

  

Fig. 1:  Plot of 21 Years’ Monthly Average Wind 

Speeds 

Fig. 2:  Plot of 21 Years’ Annual Average Wind 

Speeds
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Fig. 3:  Plot Showing the Monthly Mean Measured 

Wind Speed Data Range 

Fig. 4:  Plot Showing the Yearly Mean Measured 

Wind Speed Data Range 

2.2 Data Analyses 

Of the various statistical distribution that could be employed for describing and analyzing wind resource data, 

the Weibull distribution has been found to be most adequate [8, 11].  Moreover, the 2-parameters Weibull 

statistical distribution has been proved to be more accurate than that of the 3-parameters. It can be employed in 

describing and predicting the characteristics of prevailing wind profile over a place [11-14]. This study therefore 

employed the 2-parameters Weibull Probability Density Function (PDF) with scale (c) and shape (k) being the 

parameters. The PDF is given as [8, 12]: 
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Where:  f (v) is the probability of observing wind speed v.  

The corresponding Weibull Cumulative Distribution Function (CDF) is given as: 
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Where: F (v) is the cumulative distribution function of observing wind speed v. 

However, the Weibull mean wind speed and standard deviation can be evaluated from equations 3 and 4: 
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Where Γ ( ) is the gamma function of ( ). 

2.3  Validation of the Weibull Results 

The accuracy of the Weibull results in the estimation of the wind speeds with respect to the actual values was 

evaluated using three statistical methods. These are the coefficient of determination, R2, the Root Mean Square 

Error (RMSE) and the Nash-Sutcliffe model Coefficient Of Efficiency (COE) [15, 16]: 
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Where: yi = ith actual data, xi = ith predicted data with the Weibull distribution = Weibull results, z = mean of the 

actual data and N = number of observations. 

2.4 Goodness of Fit Test 

The suitability of applying the Weibull distribution to the site’s wind speed data was determined using the 

KolmogorovSmirnov (K-S) goodness of fit test according to Omotosho et al. [17]. Thus, the K-S statistical test 

based on a 95% significance level of α = 0.05 depicts the assumption that the two-parameter Weibull distribution 

is suitable at characterizing the wind speed profile of the site if P ≥ 0.05.  

2.5 Estimation of Wind Power Density 

The wind power density can be estimated from the Weibull parameters as: 

  31 3
1

2
p v c

k


 
  

 
            (8) 

where: p (v) = wind power density (W/m2) and ρ = air density at the site. 

2.6 Evaluation of Useful Site Specific Wind Speeds 

There are two wind speeds that are very useful to wind energy investors and assessors. These are called the most 

probable (vmp) and maximum energy carrying (vEmax) wind speeds. They are given in terms of the Weibull 

2-parameters as: 

𝑣𝑚𝑝 = 𝑐  
𝑘−1

𝑘
 

1

𝑘
        (9) 

𝑣𝐸𝑚𝑎𝑥 = 𝑐  
𝑘+2

𝑘
 

1

𝑘
           (10) 

2.7 Simulating the Electrical Power Output from a Wind Turbine Model 

At times it is important to determine the feasibility of employing wind turbine models in a site. To do this requires 

the ability to be able to predict the magnitude of power output that can be derived from such wind turbine models. 

Thus, the combination of Eq. 11 can be used to simulate the electrical power output from wind turbine models. 

 0

0

c

k k

c
eR c Rk k

e R c

eR R F

F

v v

v v
P v v v

P v v

P v v v

v v

 


  
 
  

 

        (11) 

The average power output (Pe,ave) from the turbine which is related to the total energy production and also the 

total income/cost analysis can be evaluated from [18]: 
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The capacity factor (CF) associated with using a wind turbine to generate electricity is given as [18, 19]: 
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Where: PeR = rated power electrical power, vc = cut-in wind speed, vR = rated wind speed and vF = cut-out wind 

speed respectively of the model wind turbine. 

In addition, three turbine models were employed for the study. These were the AV 928 (of Avantis Group), V 90 

(of Vestas) and SWT-3.6-107 (of Siemens). The technical details of the turbines are presented in Table 1. 

Tab. 1:  Technical Data of Wind Turbine Models Used in the Analysis  

Wind 

Machine 
Vc (m/s) VF (m/s) VR (m/s) PeR (kW) Hub Height (m) Rotor  Diameter (m) 

AV 928 3 25 11.6 2500 80 93.2 

V90 4 25 15 3000 80 90 

SWT-3.6-107 3 25 13 3600 80 107 

2.8 Econometrics Analysis of Electrical Generation from Practical Wind Turbines at the 

Sites 

The econometrics analysis of wind generated electricity at the site was based on the simulation results of Eq. 12. 

Thus, the cost benefit analysis of generating certain magnitude of wind electricity for a particular period of the 

turbine life was evaluated from [20]: 
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Furthermore, the specific cost per kWh of wind electricity from the turbines can be evaluated from: 

/

e,aveAnnual P
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C
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        (15) 

where: 

Cpv = present value cost, x = turbine price, RC = rate chargeable on turbine price to arrive at the cost for 

civil/structural works, Rom = rate chargeable on annual turbine price to arrive at the cost for Operation and 

Maintenance, RI = prevailing interest rate, IR = prevailing inflation rate, RSC = rate chargeable on total investment 

cost, t = turbine life or period of operation of turbine availability, CSC/kWh = specific cost per kWh of wind 

electricity. 

Moreover, in carrying out the econometrics analysis of wind electricity generation at the site, certain 

assumptions were used. These assumptions are presented in Table 2. 

Tab. 2:  Assumptions Used for the Econometrics Analysis 

Item Assumed value 

RC 20% 

ROM 25% 

RI 6% 

IR 12% 

RSC 10% 

t 20 years 
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3.   RESULTS AND DISCUSSION 

Analysis of the whole data spread revealed that the site’s wind speeds ranged between 2.4 and 12.1 m/s across the 

period of consideration. Figs. 1 and 2 however, present the average monthly and annual wind speed profiles 

covering the period between 1987 and 2007. Analyses of Figs. 1 and 2 revealed that the 21 years monthly average 

wind speeds ranged between 4.9 in October and 8.9 m/s in June. While the yearly average wind speeds ranged 

between 5.7 in 1993 and 8.6 m/s in 1987. When Fig. 1 was compared with Fig. 2, more variability was found to be 

associated with the monthly average data than those of annual data. Moreover, the range of mean measured wind 

speeds (Figs. 3 and 4) across the period revealed that almost all the data spread are values above 3.0 m/s. The 

frequency of occurrence of the wind speed data are presented in Fig. 5. 

 

Fig. 5:  Plot of Frequency of Occurrence of Wind Speed Data Range 

Fig. 6:  Plots of Monthly (a) CDF and (b) PDF from the Weibull Analysis  
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Fig. 5 revealed that of the 252 wind speed data, only 3 (1.2%) were values below 3.0 m/s.  88.5% of the data 

were values from 5.0 to 12.1 m/s. The modal wind speed range lay between 6.9 and 9.0 m/s. Moreover, since most 

new wind turbine designs can operate with cut-in wind speed of 3.0 m/s, the data values indicates that the site has 

potential for wind electricity generation.  

Tab. 3:  Some of the Results of the Weibull Analysis  

Period 
Vweibull 

(m/s) 
k (-) c (m/s) 

σweibull 

(m/s)  
σactual (m/s)  Pw (W/m2) 

JAN 8.6 6.5 9.3 1.6 1.5 709.6 

FEB 8.2 3.7 9.1 2.5 2.3 838.6 

MAR 7.4 4.3 8.1 1.9 1.9 550.0 

APR 6.9 6.6 7.4 1.2 1.2 361.2 

MAY 8.1 9.6 8.6 1.0 1.0 506.7 

JUN 8.9 9.1 9.4 1.2 1.1 677.9 

JUL 7.9 6.0 8.6 1.5 1.4 576.2 

AUG 6.0 6.6 6.5 1.1 1.0 239.6 

SEP 5.5 4.8 6.0 1.3 1.1 214.6 

OCT 4.9 4.5 5.4 1.2 1.1 157.3 

NOV 6.7 5.5 7.2 1.4 1.3 354.1 

DEC 7.7 4.9 8.4 1.8 1.8 578.5 

Dry Season 7.2 4.1 8.0 2.0 2.1 538.1 

Wet Season 7.2 5.0 7.9 1.7 1.7 478.5 

Whole Year 7.2 4.5 7.9 1.8 1.9 505.8 

1987 8.6 5.8 9.3 1.7 1.6 746.2 

1988 8.1 4.5 8.9 2.0 1.9 721.8 

1989 8.5 4.7 9.3 2.1 2.0 805.0 

1990 8.0 3.6 8.9 2.5 2.4 781.0 

1991 6.7 5.2 7.3 1.5 1.4 375.9 

1992 5.9 2.5 6.7 2.6 2.5 408.3 

1993 5.7 3.6 6.3 1.8 1.7 285.2 

1994 7.0 3.9 7.7 2.0 1.9 501.6 

1995 8.3 5.2 9.0 1.8 1.7 714.5 

1996 7.8 6.9 8.3 1.3 1.2 503.8 

1997 7.7 4.6 8.5 1.9 1.7 610.2 

1998 7.9 4.2 8.6 2.1 1.9 675.5 

1999 6.8 6.0 7.3 1.3 1.2 360.9 

2000 7.4 5.5 8.0 1.5 1.4 478.6 

2001 7.5 6.2 8.1 1.4 1.3 476.4 

2002 7.3 4.6 8.0 1.8 1.7 521.3 

2003 6.9 5.5 7.5 1.5 1.3 396.2 

2004 6.8 5.0 7.4 1.5 1.5 390.6 

2005 7.0 4.1 7.7 1.9 1.8 491.7 

2006 5.7 3.3 6.4 1.9 1.8 300.0 

2007 6.3 4.0 7.0 1.8 1.6 363.9 
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Seasonally, Figs. 1 and 3 clearly demonstrated that the site has a better wind speed profile in the dry season 

(October to March) than in the wet (April to September). The data range between the dry and wet periods were 

found to lie within 2.4 to 12.1 m/s and 2.8 to 11.3 m/s respectively. 

Statistical Weibull analysis of the site’s wind speed data gave results of Table 3 while the monthly, seasonal and 

whole year’s CDF and PDF plots are presented in Figs. 6 and 7. Figs. 6a and 7a shows that the wind speed profiles 

for the periods follow the same cumulative distribution pattern. The difference in shapes of the CDF and PDF 

plots were the results of the varying values of k and c as shown in Table 3. 

 
Fig. 7:  Plots of Seasonal and Whole Year (a) CDF and (b) PDF from the Weibull Analysis 

Fig. 6a revealed that 50% of the data series were values that ranged from about 4.9 to 8.8 m/s and below, while 

80% of the data series were values that ranged from about 6.1 to 10.5 m/s and below.  Also, the seasons’ Weibull 

plots revealed that 50% of the wet season’s data series were values that ranged from 2.8 to 7.2 m/s, while for dry it 

ranged from 2.4 to 7.3 m/s. More so, 80% of the wet season’s data ranged from 2.8 to 8.8 m/s, while for dry it 

ranged from 2.4 to 9.1 m/s. To establish the reliability and adequacy of the Weibull results, Eqs.5 to 7 were used 

together with the K-S statistics and the results are presented in Fig. 8.  

Fig. 8 reveals that results of the K-S statistical analysis gave P > 0.05 across the periodic and yearly analyses. 

This indicates that the Weibull distribution is adequate at characterizing the site’s wind speed profiles. Also, the 

reliability test results gave 0.86 ≤ R2 ≤ 0.99 and 0.87 ≤ COE ≤ 0.99. Based on the statistical interpretation that the 

Weibull predicted result is adjudged accurate if the estimated values of R2 and COE are close to 1, the results 

obtained can be described as accurate. The values of RMSE, which were 0.14 ≤ RMSE ≤ 0.58, further corroborate 

the acceptance of the Weibull results. Fig. 9 showed that the Weibull results accurately predict the measured data. 
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Fig. 8:  Estimation Parameters of the Weibull 

Statistical Distribution for (a) Periodic 

Analyses (b) Annual Analyses  

Fig. 9:  Plots Showing the Degree of Convergence of 

the Weibull Wind Speed Results to the 

Measured Wind Speeds for (a) Periodic 

Analyses and (b) Annual Analyses 

Furthermore, two wind speeds of utmost interest to wind resource assessors are the wind speed carrying 

maximum energy (vEmax) and the most probable wind speed (vmp). The knowledge of these wind speeds aid in the 

determination of the wind speed rating of a suitable wind turbine for a particular site. The results of the most 

probable (vmp) and maximum energy carrying wind speeds (vEmax)  analyses for the periods and years are 

presented in Fig. 10. It showed that the values of vmp and vEmax from January to December ranged from 5.1 to 9.3 

m/s for vmp and 5.8 to 10.2 m/s for vEmax respectively. Annually the values of vmp and vEmax ranged from 5.4 to 9.0 

m/s for vmp and 7.2 to 10.0 m/s for vEmax respectively. 

3.1 Modelling Wind Profile Characteristics of the Site 

Earlier it was proved by the K-S test results that the 2-parameter Weibull statistical distribution is adequate at 

predicting and characterizing the site’s wind speed profiles. More so, the Weibull probability density function 

according to Carta et al. [11] is relevant for the statistical analysis of wind characteristics and wind power density. 

It is also useful in the estimation of the energy output and capacity factor of wind turbines and in the analysis of 

performance of the autonomous wind energy systems [8, 11, 18]. Therefore, simple models that can approximate the 

Weibull parameters without the associated computational and repetitive procedure of Eqs.1 to 4 can be useful. 

These models can be made much more useful if they establish the relationship between the actual data and the 

Weibull results of c, k, wv and σw. Thus, once the actual mean measured wind speed, v , is known, the Weibull 

results can be evaluated for each data point. In order to establish these models, this study employed the statistical 
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regression analysis to develop the models. It also used the coefficient of determination and the Mean Square Error 

(MSE) to evaluate the degree of accuracy of the models. The obtained models are:  

0.997 0.016wv v  (R
2
 = 1.0; MSE1 = 0.43E-5)     (16) 

20.03 1.47 1.15c v v    (R
2
 = 0.990; MSE = 0.0152)   (17) 

4.67252 12.872 14.085 wk c v    (R
2
 = 0.974; MSE = 0.0720)  (18) 

0.953 0.218 0.234w k c     (R
2
 = 0.954; MSE = 0.0069)   (19) 

The wind power according to Weibull analysis can therefore be evaluated using Eq. 8 after substituting the 

values of c and k. The values of R2 and MSE for each equations presented above demonstrate that these 

mathematical models are suitable for evaluating the Weibull parameters with minimal error. 

4.   WIND TURBINE ELECTRICITY GENERATION AND ECONOMETRICS 

ANALYSES  

Installing a wind turbine at a site for electricity generation is capital intensive. More so, selecting the right wind 

turbine for the site will depend on the prevailing location’s wind profile characteristics. Thus, preliminary analysis 

to determine and forecast the magnitude of electrical power that a particular wind turbine will likely generate is a 

necessity. This invariably involves the application of different turbine models to the site’s wind profile data. In 

order to do this, Eqs.11 to 13 can be used with different turbine models to evaluate the electrical power output that 

can be generated from the turbine. Three turbine models with technical details presented in Table 1 were 

employed for the study. Moreover, because the turbine hub heights are at 80 m, it was necessary to determine the 

wind profile characteristics at this height.  This was estimated from [21]: 

    

 
α α

α
r e f

1 0 1 0 8 0r e f
10

h 80
v = v = = v 8 = v

h 10

   
       

 

where: 

vref = v80 = wind speed at 80 m, v10 = wind speed at 10 m height, href = reference height = 80 m, h10 = 10 m 

height, α = roughness factor for the sites. The commonest and widely accepted value of α for most sites is 0.143.  

The results of Weibull statistical analysis for wind speed at 80 m height were then used with Eqs.11 to 13 and 

the outcome is presented in Table 4 

In terms of the capacity factor, Table 5 shows that turbine model AV 928 will produce at the highest CF across 

the months and years. This was due to the fact that, the speed rating of the model fell adequately within the site’s 

wind speed data range at 80 m height. Model V 90 has the lowest CF. The wind speed data range at 80 m height 

was estimated to be from 3.2 to 16.3 m/s. However, in terms of the average power output, model SWT-3.6-107 

was the best and closely followed by AV 928. This was partly due to the wind speed range at the hub height being 

close to the model’s speed rating. Another reason is the fact that, for every speed value greater than the cut-in 

wind speed, it has higher potential of producing better magnitude of wind power than AV 928. As a result of the 

speed rating of model V 90, it gave the lowest average power across the months and years. Thus based on the 

site’s wind profile characteristics, SWT-3.6-107 is the best of the three turbine models, even though AV 928 is 

most efficient for the site.  

 

 

 

 

 

                                                             
1 The reported values of the MSE are the maximum obtained for monthly, seasonal, yearly and whole years’ analyses 
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Tab. 4:  Results from Simulating Electrical Power Output with the Wind Turbine Models  

 

AV 928 V 90 SWT-3.6-107 

Period Pe (kW) PeAve (kW) CF (%) Pe (kW) PeAve (kW) CF (%) Pe (kW) PeAve (kW) CF (%) 

Jan 3022.51 1524.54 60.98 2203.80 1464.53 48.82 3475.92 2028.50 56.35 

Feb 2185.80 1730.80 69.23 957.05 1237.90 41.26 1984.80 2061.60 57.27 

Mar 1314.58 1414.18 56.57 499.91 738.96 24.63 1120.02 1481.41 41.15 

Apr 614.17 898.78 35.95 128.29 203.61 6.79 395.31 624.60 17.35 

May 1579.19 1603.88 64.16 149.20 244.85 8.16 703.82 1103.84 30.66 

Jun 3666.11 2043.91 81.76 395.81 640.50 21.35 1737.68 2040.28 56.67 

Jul 1610.78 1586.61 63.46 395.56 615.66 20.52 1116.51 1526.37 42.40 

Aug 247.46 392.03 15.68 50.73 80.74 2.69 158.23 251.11 6.98 

Sep 298.30 454.42 18.18 96.42 149.75 4.99 238.79 365.35 10.15 

Oct 196.67 300.01 12.00 65.37 102.88 3.43 162.40 247.80 6.88 

Nov 631.11 903.67 36.15 173.39 270.32 9.01 462.14 713.23 19.81 

Dec 1477.82 1510.88 60.44 480.55 723.72 24.12 1168.14 1547.25 42.98 

1987 2912.10 1155.17 46.21 2389.33 1111.07 37.04 3539.07 1550.85 43.08 

1988 2015.62 1704.15 68.17 717.94 1018.45 33.95 1661.16 1911.71 53.10 

1989 2458.25 1821.65 72.87 836.57 1152.34 38.41 1982.03 2100.18 58.34 

1990 1959.25 1659.54 66.38 886.32 1165.90 38.86 1808.54 1958.52 54.40 

1991 718.26 990.73 39.63 215.75 333.85 11.13 548.51 833.31 23.15 

1992 966.48 1103.66 44.15 542.43 751.36 25.05 1018.26 1278.33 35.51 

1993 574.83 797.31 31.89 250.67 377.00 12.57 533.61 774.87 21.52 

1994 1145.44 1303.59 52.14 475.02 698.05 23.27 1019.26 1368.23 38.01 

1995 2178.76 1761.81 70.47 658.64 962.32 32.08 1662.78 1932.45 53.68 

1996 1300.66 1452.44 58.10 246.60 393.09 13.10 799.75 1199.21 33.31 

1997 1570.12 1545.77 61.83 549.61 812.15 27.07 1284.69 1639.78 45.55 

1998 1759.40 1611.91 64.48 675.56 961.37 32.05 1503.17 1794.50 49.85 

1999 633.83 913.84 36.55 153.81 241.85 8.06 437.63 683.04 18.97 

2000 1099.33 1312.11 52.48 302.98 470.68 15.69 804.66 1179.55 32.77 

2001 1112.42 1331.40 53.26 255.39 402.47 13.42 747.63 1122.27 31.17 

2002 1232.49 1377.01 55.08 429.06 646.61 21.55 1007.00 1382.09 38.39 

2003 776.65 1053.93 42.16 214.59 334.14 11.14 569.76 869.61 24.16 

2004 772.50 1041.40 41.66 240.63 371.03 12.37 600.06 902.82 25.08 

2005 1117.55 1292.23 51.69 440.31 654.15 21.81 969.99 1325.77 36.83 

2006 632.87 854.56 34.18 290.55 433.49 14.45 603.18 861.02 23.92 

2007 744.55 989.22 39.57 299.57 450.54 15.02 656.72 951.84 26.44 

4.1 Econometrics analysis 

This is estimated from Eqs.14 and 15 based on the assumptions presented in Tables 2 and 5.  

Substituting the assumptions of Table 2 into Eq. 14 gives: 

PV
C =1.30755x         (19) 
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Tab. 5:  Assumed Turbine Model Price 

Turbine model Assumed price (€) 

AV 928 2,500,000 

V90 3,000,000 

SWT-3.6-107 3,500,000 

Therefore, Eq. 20 can be used with the turbine prices to determine the present value cost. The outcome of the 

analysis is presented in Table 6. Further to this, the specific cost of generating 1kWh of electricity was evaluated 

from present value cost and average annual power output. The result is also presented in Table 6.  

Tab. 6:  Econometrics Analysis for Wind Electricity Production  

Turbine model Present value cost Average Pe,ave per 

annum (from Table 

5) × 106 kWh 

20 years average 

Pe,ave  (t × Pe,ave ) × 

106 kWh 

Specific cost per 

kWh (€) 

Specific cost per 

kWh (Nigeria 

naira) 

AV 928 3,268,875 11.3 226 0.014 3.08 

V90 3,922,650 5.7 114 0.034 7.29 

SWT-3.6-107 4,576,425 11.5 230 0.020 4.24 

Table 6 shows that the turbine model that can produce the cheapest electricity for the sites is model AV 928. 

However, considering the advantage model SWT-3.6-107 had in terms of its potential for higher power output, 

economic decision would need to be made before conclusion is reached. Such decision would be based on either 

to compromise the potential for higher power output and embrace the choice of lowest cost of power and vice 

versa. 

5.   CONCLUSION 

The study was used to assess the wind power resource potential of a local meteorological site in Sokoto, Nigeria. 

Monthly wind speed data obtained from the Nigeria meteorological agency for the site were analyzed with 

2-parameter Weibull probability density function. The outcome gave the following conclusion: 

a) The 2-parameter Weibull statistical distribution is adequate for characterizing the site wind speed profile. 

b) The monthly Weibull parameters k and c (m/s) were estimated to lie within the range 3.7 ≤ k ≤ 9.6 and 5.4 ≤ c 

≤ 9.4 respectively. 

c) The estimated range of yearly Weibull parameters k and c (m/s) lay within the range 2.5 ≤ k ≤ 6.9 and 6.3 ≤ c 

≤ 9.3 respectively. 

d) The values of the Weibull parameters showed that there is good uniformity with relatively small scatter in the 

site’s wind speed data spread.  

e) A wind turbine model with wind speed rating of cut-in and cut-out speeds of 3.0 and between 12 and 16 m/s 

respectively is suitable for the site. 

f) The econometrics analysis showed that it is possible to generate a kWh of wind electricity with € 0.014. 
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