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ABSTRACT 

Proteins of the SNARE (Soluble N-ethylmaleimide sensitive factor attachment protein 

receptor) super-family have been characterized as playing an essential role in vesicle targeting 

and fusion in all eukaryotes. The intracellular malaria parasite Plasmodium falciparum exhibits 

an unusual endomembrane system that is characterized by an unstacked Golgi apparatus, a 

developmentally induced apical complex, and various organellar structures of parasite origin in 

the infected host cells. How malaria parasites target nuclear-encoded proteins to these novel 

compartments is a central question in Plasmodium cell biology. Ultrastructural studies elsewhere 

have implicated the participation of specialized vesicular elements in transport of virulence 

proteins, including various cytoadherance and host cell remodeling factors, into the infected 

erythrocyte cytoplasm. However, little is known about the machineries that define the 

directionality of vesicle trafficking in malaria parasites. 

We hypothesized that the P. falciparum SNARE proteins would exhibit novel features 

required for vesicle targeting to the parasite-specific compartments. We then identified for the 

first time and confirmed the expression of eighteen SNARE genes in P. falciparum. Members of 

the PfSNAREs exhibit atypical structural features (Ayong et al., 2007, Molecular & Biochemical 

Parasitology, 152(2), 113-122). Among the atypical PfSNAREs, PfSec22 contains an unusual 

insertion of the Plasmodium export element (PEXEL) within its profilin-like longin domain, 

preceded by an N-terminal hydrophobic segment.  

  Localization analyses suggest that PfSec22 is predominantly a vesicle-associated 

SNARE of the ER/Golgi interface, but which associates partially with mobile extraparasitic 
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vesicles in P. falciparum-infected erythrocytes at trophozoite stages. We showed that PfSec22 

export into host cells occurs via a two-step model that involves extraparasitic vesicle budding 

from the parasite plasma membrane and fusion with the parasitophorous vacuolar membrane. 

Export of PfSec22 was independent of its membrane-insertion suggesting that this protein might 

cross the vacuolar space as a single-pass type IV membrane protein. We demonstrated that the 

atypical longin domain dictates the steady-state localization of PfSec22, regulating its ER/Golgi 

trafficking and export into host cells. Our study provides the first experimental evidence for 

SNARE protein export in P. falciparum, and suggests a role of PfSec22 in vesicle trafficking 

within the infected host cell (Ayong et al, Eukaryotic Cell, Epub Jul 17, 2009) 

Next, to define the physiological function of the PfSec22 protein in Plasmodium 

parasites, we investigated its cognate partners. Using purified recombinant proteins we showed 

that PfSec22 forms direct binding interactions with six other PfSNAREs in vitro. These included 

the PfSyn5, PfBet1, PfGS27, PfSyn6, PfSyn16 and PfSyn18 PfSNAREs. By generating GFP-

expressing parasites, we successfully localized the SNARE proteins PfSyn5, PfBet1 and PfGS27 

to the parasite cis-Golgi compartment. We confirmed the association of PfSec22 with PfSyn5, 

PfBet1 and PfGS27 in vivo by immunoprecipitation analyses. Our data indicate a conserved ER-

to-Golgi SNARE assembly in P. falciparum, and suggest that the malaria Sec22 protein might 

form novel SNARE complexes required for vesicle traffic within P. falciparum-infected 

erythrocytes.  
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CHAPTER 1:  

GENERAL INTRODUCTION 

1.1 HYPOTHESIS AND SPECIFIC OBJECTIVES 

The malaria parasite Plasmodium falciparum exhibits an unusual endomembrane system 

that is characterized by 1) presence of a digestive vacuole that is specialized in hemoglobin 

uptake and degradation, 2) presence of an apical complex; a collection of specialized secretory 

organelles that are involved in host cell invasion and immune evasion, 3) absence of a classical 

Golgi apparatus, and 4) presence of a complex network of parasite-induced tubovesicular 

structures in the infected host cell compartment. The cellular processes involved in the 

biogenesis and maintenance of these unique organellar structures in P. falciparum-infected cells 

are not understood. Additionally, asexual forms of the parasite export hundreds of virulence 

factors into the host cell cytoplasm (erythrocytes and hepatocytes) that are essential for the 

disease pathogenesis and immune evasion. The signals and machineries involved in protein 

sorting and targeting to the parasite-specific organelles are elusive. 

It is believed that both tubular and vesicle transport processes play a key role in protein 

trafficking in Plasmodium parasites. Vesicle trafficking in eukaryotic cells is a multi-step process 

that involves vesicle budding from a donor compartment, migration along cytoskeletal arrays and 

fusion with a specific target compartment. Proteins of the SNARE superfamily have been 

characterized to play an essential role in specifying the directionality of vesicle transport in 

yeast, plants and mammalian cells. However, no studies have characterized the role of this 

important protein family in vesicle targeting in malaria parasites. 
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This study was aimed at understanding the role of P. falciparum family of SNAREs 

(PfSNAREs) in vesicle targeting to the parasite-specific destinations. In this seminal study, we 

hypothesized that members of the PfSNAREs would exhibit novel features that might be 

required for their localization to pathways that are unique to the malaria parasite. A systematic 

analysis of the Plasmodium genome database was undertaken to identify the P. falciparum 

complement of SNAREs and to dissect any unique structural features. To test our central 

hypothesis, we investigated the steady-state locations of the P. falciparum Sec22 gene product 

(PfSec22), which contains an unusual insertion of the Plasmodium export element (PEXEL) 

within its N-terminal sequence preceded by a recessed hydrophobic segment. This PfSec22 

protein, unlike its yeast counterpart (Sec22p), was unable to complement a Sec22-3 temperature-

sensitive allele in Saccharomyces cerevisiae when expressed in trans. By generating various 

deletion and point mutation constructs, we further investigated the role of the atypical N-terminal 

domain and the hydrophobic segments in PfSec22 trafficking. Together, our data indicate that P. 

falciparum targets this ER/Golgi v-SNARE into the infected host cell, at trophozoite stages, 

where it associates with mobile extraparasitic vesicles. Furthermore, we show that PfSec22 

export to the infected host cell is independent of the PEXEL and C-terminal hydrophobic 

segments, and that the N-terminal hydrophobic domain regulates the Golgi exit of PfSec22 in 

malaria parasites.  

In an effort to identify other SNARE proteins that might assemble into fusogenic SNARE 

complexes with PfSec22 at the extraparasitic locations, we investigated the PfSec22 interacting 

PfSNAREs and examined their intracellular locations. We showed that PfSec22 potentially 

forms SNARE complexes with PfSyn5, PfBet1, PfGS27, PfSyn6, PfSyn16 and PfSyn18. 
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Interaction of PfSec22 with PfSyn5, PfBet1 and PfGS27 in vivo was confirmed by co-

immunoprecipitation analyses. Surprisingly, these three PfSNAREs localized exclusively to the 

Golgi-like structure suggesting that PfSec22 might form novel complexes within the 

extraparasitic vesicular transport pathways. Studies are underway to define the subcellular 

locations of PfSyn6, PfSyn16, PfSyn18 and other atypical PfSNAREs that might sequentially 

assemble into fusogenic SNARE complexes with PfSec22 at the extraparasitic locations. 

Taken together, the data presented in this study demonstrate that 1) some members of the 

Plasmodium SNARE homologues indeed exhibit structural features that are unique to the malaria 

parasite, 2) that the P. falciparum Sec22 gene product partially associates with non-canonical 

trafficking pathways in the infected host cell, 3) that the atypical longin domain regulates the 

steady-state dynamics of PfSec22 in malaria parasites, and 4) that PfSec22 forms novel SNARE 

complexes with the Plasmodium complements of Syn6 and Syn16, presumably required for 

vesicle targeting to yet an uncharacterized trafficking pathway. This study is the first detailed 

analysis of SNARE proteins in malaria parasites, and provides new insights into the organization 

of the secretory system in P. falciparum. 
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1.2 LITERATURE REVIEW 

1.2.1. Plasmodium falciparum: the most virulent form of malaria parasites 

Malaria is caused by protozoans of the genus Plasmodium. At least 200 Plasmodium 

species have been described that infect mammals, reptiles, or birds [1]. Of the four species that 

infect humans (P. falciparum, P. vivax, P. malariae, and P. ovale), P. falciparum causes the most 

lethal form of malaria, resulting in 1 to 3 million deaths annually. Between 300 and 660 million 

clinical cases of P. falciparum malaria are reported each year, a majority of whom are children 

under five years old and pregnant women [2]. An estimated 2.2 billion people worldwide are at 

risk of P. falciparum infection each year, a majority (>90%) of whom live in Sub-Saharan Africa 

[3-5]. Outside Africa, P. falciparum accounts for an estimated 85 million cases of malaria 

especially in the Amazon basin of the Americas and in Asia [6]. Although malaria once occurred 

in the United States and several parts of Western Europe, the disease receded with economic 

development and following widespread implementation of improved public health policies. 

Present day malaria in the United States and Europe is primarily imported from the Amazon 

basin, Asia, the Middle East, and Africa. Of the 1,528 reported cases of malaria in the United 

States in 2005, 48.6% were due to P. falciparum alone [7]. Some profound effects of human 

infection with P. falciparum include severe anaemia, cerebral malaria, acute respiratory distress, 

epilepsy, hypoglycaemia, acidosis, and multi-organ failures. In pregnant women, especially 

during the first and second pregnancies, P. falciparum infection may result in spontaneous 

abortion, stillbirth, low birth weights, maternal anaemia and death [2].  
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More than a deadly disease, the socio-economic impacts of P. falciparum malaria are 

enormous. About 58% of all malaria cases occur in the 20% world‟s poorest population who, 

unfortunately, are also victims of the world‟s two leading infectious agents, HIV/AIDS and 

tuberculosis [8].The disease significantly strains global economic development, debilitates the 

world‟s most active populations, endangers children‟s education, and impairs cognitive 

development in young children [8-11]. 

Significant strides have been made by both residents of endemic countries and by the 

international community to reduce the mortality and morbidity of malaria in some highest hit 

areas [6]. However, a major gap still exists between the new-found interest in malaria research 

and the tools needed to eliminate the disease in all affected areas. Some major challenges include 

1) absence of a malaria vaccine with operational implications, 2) the unprecedented rise and 

spread of multi-drug resistant parasites, 3) the limited number of antimalarials available in the 

market, 4) the rapid spread of insecticide-resistant mosquitoes, and 5) the worsening world 

economy as well as global climate changes that favor parasite development and spread. 

1.2.2. Life cycle of P. falciparum 

Plasmodium parasites exhibit a complex life-cycle that is characterized by three invasive 

forms (sporozoites, merozoites, and ookinetes), and several morphologically distinct 

intermediary forms. The developmental cycle consist of two asexual phases (exo-erythrocytic 

schizogony in the liver and erythrocytic schizogony in enucleated human erythrocytes) and one 

sexual cycle also known as sporogony occurring within the mosquito mid gut (Fig. 1) [12]. 
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Figure 1: Life cycle of human malaria parasites 

Infection of the human host is initiated when haploid sporozoites are injected along with 

saliva into the bloodstream by a feeding mosquito. The motile sporozoites then move with the 

general circulation into the liver where they invade hepatocytes and undergo an asexual 

replication known as exo-erythrocytic schizogony. Unlike P. vivax and P. ovale which go 

through a dormant period in the form of hypnozoites, liver stages of P. falciparum infection 

often last about 6 days and are usually asymptomatic. Exo-erythrocytic schizogony culminates in 

the production of several merozoites, which initially are released into the bloodstream as large 
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aggregates called merosomes [13]. Upon rupture of the merosomes, free-moving merozoites 

attach and invade enucleated erythrocytes where the parasite undergoes a complex series of 

morphological transitions resulting in a new population of merozoites. The merozoite stage 

comprises the only extracellular form (lasting about 20 seconds) of the intraerythrocytic cycle, 

which last approximately 48 hours. This cycle includes two sexual forms called gametocytes and 

three asexual forms that are subjectively referred to as rings (0-24 hpi), trophozoite (24-36 hpi) 

and schizonts or segmenters (36-48 hpi) [14, 15]. Parasite development into the trophozoite stage 

is accompanied by an active metabolism that involves ingestion of host cell cytoplasm and 

proteolysis of the ingested hemoglobin. The trophic period ends with four successive rounds of 

nuclear division without cytokinesis known as erythrocytic schizogony that occur approximately 

28-36 hpi [14, 16, 17]. Schizogony results in multinucleated schizont stage parasites that 

ultimately mature into 16-32 daughter merozoites [18, 19]. This cycle of growth and asexual 

replication repeats every 48 hours, causing parasitaemia to rise rapidly to levels as high as 10
13

 in 

some patients. Blood stage forms of the infection are responsible for the pathologies associated 

with severe malaria. These include acute anemia caused by the massive destruction of host 

erythrocytes, and cerebral and placental malarias arising from sequestration of mature stage 

parasites in the brain and placenta. In response to stimuli not well understood, a small proportion 

of the ring stage parasites differentiate into sexual gametocytic forms namely microgametocytes 

(male gametocytes) and macrogametocytes (female gametocytes). Gametocyte maturation takes 

7 to 10 days after merozoite invasion, and involves five stages designated stages I to V. Ingestion 

of gametocytes by a feeding Anopheles vector induces gametogenesis and escape of the resulting 

gametes (microgamete and macrogamete) from the host erythrocyte [20]. Upon fertilization of 
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the macrogamete by a flagellated microgamete, a diploid zygote is formed that differentiates into 

a motile ookinete. The ookinete penetrates the gut epithelial cells where it encysts to form an 

oocyst. Eventually the oocyst undergoes a meiotic reduction in chromosome number and 

multiple rounds of asexual replication (sporogony) resulting in the production of over 2000 

sporozoites. Upon rupture of the mature oocyst, the released sporozoites migrate through the 

hemocoel to the salivary gland of the mosquito where they await transfer to the vertebrate host 

during a next blood meal. 

1.2.3. Ultrastructural features of P. falciparum: presence of strange organelles  

The development of P. falciparum parasites inside human erythrocytes is a continuous 

dynamic process that involves many intermediate stages and endomembrane complexities, only a 

few of which are discernable at the ultrastructural level [18]. In addition to an endoplasmic 

reticulum (ER), an „unstacked‟ Golgi, and a mitochondria, the parasite has evolved a distinct set 

of novel organelles in response to its intracellular life-style that include a pigment vacuole, also 

known as food or digestive vacuole involved in host cell hemoglobin digestion, and a remnant 

plastid called apicoplast that is thought to have been acquired in a secondary endosymbiosis 

event [21-23]. Also present in the invasive stages is a set of secretory organelles, collectively 

known as the apical complex that include the rhoptries, micronemes and dense granules, which 

contain proteases, adhesions, and various membrane-active substances involved in host cell 

recognition and modifications [24]. During invasion of erythrocytes, the parasite becomes 

enclosed within an additional lipid bilayer called the parasitophorous vacuole membrane (PVM), 

which acts as a semipermeable barrier, separating the parasite from the host erythrocyte 
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cytoplasm [15, 25]. Beginning at the early trophozoite stage, a tubulovesicular network (TVN) 

and cleft structures called Maurer‟s clefts (MC) are visible within the host cell compartment. 

Ultrastructurally, merozoite (~ 1.6 m long and 1.0 m wide) comprise a thick bristly coat 

of thin filaments anchored to the plasma membrane with major component being the merozoite 

surface protein (MSP) 1 complex involved in host cell capture and entry [18, 26]. Beneath the 

plasma membrane lie two other membranes called alveola, which together with the plasma 

membrane form the pellicle. At the apical end lies three membranous structures that are 

collectively known as apical organelles and include two rhoptries (~650 nm long and 300 nm 

wide), several micronemes (120 x 40 nm), and multiple rounded bodies known as dense granules 

(~80 nm diameter) [18, 27]. Between the rhoptries and nucleus is a region containing closely 

packed free ribosomes, a resource for accelerating protein synthesis in the newly invaded ring 

stage parasite [18, 28]. A single mitochondrion and a single plastid (apicoplast) lie beneath a 

band of subpellicular microtubules to which the plastid is attached. 

Upon invasion of host erythrocytes, the parasite transforms into a thin discoidal, flat or 

cup-shaped ring form of the trophozoite stage [26]. Ring stage parasites comprise a thick rim of 

cytoplasm containing the chief organelles: nucleus, mitochondrion, plastid, ribosomes and 

endoplasmic reticulum (ER). Nuclear shape varies from a sausage-like form to a disc. The 

mitochondrion and plastid are always attached to each other at one end [29]. Although, the Golgi 

is not evident by transmission electron microscopy, clusters of vesicles and smooth and rough 

ER close to the nucleus suggest a Golgi body [18]. Various dense structures called cytostomes 

and at least one pigment vacuole (also known as digestive or food vacuole) are observed within 

the cytoplasm. Initially there are several small vacuoles, which then fuse at later stages to form a 
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single large pigment vacuole [30]. As the parasite develops, the surrounding parasitophorous 

vacuole membrane (PVM) extends membranous blebs and finger-like projections into the 

erythrocyte cytosol, called tubovesicular networks (TVN). The ring stage parasite eventually 

changes shape into the more rounded or irregular trophozoite form at about 24 hours post 

invasion. 

Distinction between the ring and trophozoite stages depends on cell size and shape rather 

than any fundamental internal difference, thus the ring is more properly called the ring form of 

the trophozoite stage [28]. In mature trophozoites, the ER enlarges and the numbers of free 

ribosomes multiply greatly. A more elaborate but unusual type of Golgi (unstacked Golgi) is 

evident close to the nuclear envelope [31]. The mitochondrion and plastid lengthen considerably; 

and their membrane whorls come in contact with the pigment vacuole. Enlargement of the 

trophozoite within the parasitophorous vacuole (PV) is accompanied by significant modifications 

in the host cell compartment [14, 18]. The PVM embraces the PM closely with little intervening 

space, and in a few places it forms more elaborate sets of loops, whorls, various membranous 

stacks and configurations that penetrate deep into the erythrocyte cytosol. Some of these 

configurations reach the underside of the erythrocyte plasma membrane (EPM), but no instances 

of fusion with the EPM to form an open pore has been discovered.  These membranous stacks 

correspond to the basophilic dots seen in the cytoplasm of Giemsa-stained cells called Maurer‟s 

clefts. At the ultrastructural level, Maurer‟s clefts can be classified as long clefts, often 

continuous with the PVM, or as short clefts that presumably correspond to branches of long 

clefts or detached, independent structures [27]. At the mid-trophozoite stage, the rough ER has 

proliferated considerably, and the Golgi-like complex has increased in size and number. Various 
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dense materials accumulate in the PV, suggesting of increased export of parasite factors. In 

certain strains of the parasite, the EPM is greatly deformed into knob-like structures that 

facilitate cell adhesion and sequestration of trophozoites and schizonts in deep visceral bloods 

vessels. 

The schizont stage represents intraerythrocytic parasites that are undergoing or have 

undergone repetitive nuclear division following trophic development. The nucleus divides about 

four times, with alternating bouts of DNA synthesis, resulting in 16 to 20 nuclei. Numerous 

cytoplasmic changes accompany nuclear division including great proliferation of the rough ER 

and ribosomes throughout the parasite cytoplasm, duplication of mitochondria and plastids, and 

accumulation of large lipid vacuoles required for future membrane provenance [18]. Various 

centers of merozoite formation are evident, including an ordered assembly of the apical 

organelles [28, 32]. During the last nuclear division, the merozoite-forming foci appear around 

the circumference of the parasite each containing the apical organelles. Coated vesicles bud off 

from the nuclear membrane, coalescing into the Golgi body, which in turn produces a second set 

of vesicles that fuse to create the two rhoptries, or transform individually into micronemes and 

dense granules [18, 28]. Before complete separation of each nascent merozoite, a nucleus, 

mitochondrion and plastid migrate from the central region of schizont cytoplasm into each cell, 

and the merozoite coat is added in yet an undefined process to its surface. A constriction ring 

then separates the merozoites from the residual body of the schizont containing the pigment 

vacuole, and the separate merozoites cluster within the PV. Merozoite release then follows 

disruption of the PVM and EPM, presumably triggered by apical organelle secretions. 
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1.2.4. Parasite-induced modifications in P. falciparum-infected erythrocytes  

Entry of malaria parasites into human red blood cells involves the invagination of a 

protein-free patch of the erythrocyte membrane, resulting in formation of a parasitophorous 

vacuole (PV) in which parasite development occurs [25]. This entry process is initiated by 

interactions between surface molecules of the merozoites (e.g. EBA175 and EBA140) and RBC 

membrane sialoglycophorins as well as glycophorins A and C that results in the establishment of 

a tight junction between the parasite and the RBC [33-35]. Following activation of an actin-

myosin motor in the pellicle of the invading merozoite, the merozoite then uses a gliding motility 

to enter the host cell [36]. 

Upon entry into human red blood cells (RBC), the parasite modifies the permeability and 

adhesive characteristics of the host cell to promote nutrient uptake and immune evasion [37, 38]. 

Transmission electron microscopy studies revealed that ring stage parasites are surrounded by a 

parasitophorous vacuolar membrane (PVM) [39]. Multiple membrane-bound organelles, 

including tubular extensions and whorls that emanate from the PV membrane known as the 

tubulovesicular network (TVN), also appear in the host cell cytoplasm [40]. A second set of 

slender-like structures (~20 nm wide) with an electron-dense coat and electron-lucent lumen 

called Maurer‟s clefts (~30 nm wide) is also observed in the infected erythrocyte cytoplasm 

beginning at the ring stage [18, 41, 42]. Electron tomography analyses revealed that the MC are 

flat and disc-shaped, and are connected to each other by slender profiles. These organelles, 

which are thought to arise from the PVM, are connected to the RBC membrane via tubular 

tethers of diameter about 30 nm [43, 44]. Maurer‟s clefts appear to serve as secretory organelles 

involved in virulence protein packaging and delivery to the RBC membrane [45-47]. Non-
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membrane-bound aggregates and rare vesicle-like structures of variable sizes (ranging from 25 

nm to 800 nm diameters) have also been observed in the cytoplasm of P. falciparum-infected 

erythrocytes [44, 48-52], suggesting that the parasite has developed a novel system for 

membrane trafficking outside its plasma membrane. 

A prominent morphological alteration of P. falciparum-infected RBCs is the formation of 

electron-dense structures, called knobs, at the erythrocyte plasma membrane [14, 53]. Knobs 

serve as concentration sites for immuno-variant adhesins, collectively called P. falciparum 

erythrocyte membrane protein 1 (PfEMP1), required for cytoadherence of mature stage parasites 

to the vascular endothelial linings and immune evasion [40, 54, 55]. This adhesion and 

subsequent accumulation of infected erythrocytes in the microvasculature are pivotal events in 

the pathogenesis of P. falciparum, and represent major virulence factors. 

1.2.5. Unusual transport pathways in blood stages of P. falciparum 

In contrast to a number of other intracellular pathogens, which invade and multiply 

within nucleated host cells, P. falciparum develops inside terminally differentiated human 

erythrocytes that are devoid of all intracellular organelles and protein trafficking machineries 

[56-58]. To survive within the enucleated cells, P. falciparum traffics a large number of proteins 

to, and through, the host erythrocyte where they mediate numerous functions such as nutrient 

acquisition, cytoadherence and immune evasion [14, 59-63]. The P. falciparum endomembranes 

comprise a dynamic system of overlapping compartmental boundaries, and multidirectional 

protein trafficking pathways [62, 64]. Protein trafficking to the erythrocyte surface membrane 

involves several levels of sophistication as blood stages of the parasite reside inside a 
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parasitophorous vacuole (PV); thus, are separated from the external milieu by three lipid 

bilayers: the parasite plasma membrane (PPM), the parasitophorous vacuole membrane (PVM), 

and the erythrocyte plasma membrane (Fig. 2) [62]. 

 

Figure 2: Putative transport pathways in P. falciparum-infected erythrocytes 

Soluble malaria proteins that are destined for export into the infected host cell enter the 

secretory system via the ER, and then are directed through a rudimentary Golgi to the PV. It is 

believed that some exported proteins (e.g. KAHRP, S-antigen and MSP-1) presumably are 

transported in separate vesicles to distinct sub-compartments of the PV, or might be co-

transported to the PV in mixed cargo vesicles, and sorted into resident and forward-destined 

proteins within this compartment. Along the secretory system, some proteins might be retrieved 
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from the PM or diverted from the ER or Golgi to intracellular organelles that include the 

digestive vacuole, the apicoplast, or the apical organelles. Proteins destined for locations beyond 

the PVM are first released into the PV. It has been proposed that recognition of a translocation 

motif in the exported proteins results in translocation across the PVM, via a putative ATP-

dependent transporter (ABC transporter). The exported soluble proteins then diffuse across the 

RBC cytosol to the MC or erythrocyte surface. Exported integral membrane proteins, such as 

membrane-associated histidine-rich proteins (MAHRP), are thought to traffic via a vesicle-

mediated pathway. Evidence from ultrastructural examinations suggests the presence of double 

membrane vesicles (DMVs) in the parasite cytosol, which might be involved in delivery of 

membrane-associated proteins to the PVM. 

Although a classical secretory pathway appears to operate in P. falciparum, intracellular 

traffic in this parasite is unusual in several respects. Firstly, protein transport in P. falciparum 

involves a range of destinations not found in other eukaryotes. These include the three secretory 

organelles (micronemes, rhoptries and dense granules), the PV and PVM, and various locations 

within the infected host erythrocyte. Secondly, most electron micrographs reveal no obvious 

Golgi in the parasite, although some studies have found membrane-enclosed structures 

resembling a single Golgi cisterna [18, 30, 65]. Evidence for presence of an unusual Golgi 

structure has also been provided by immunolocalization experiments using homologues of 

eukaryotic cis- and trans-Golgi antigens, which suggest that the parasite Golgi exists in a highly 

modified and „unstacked‟ form [66-68]. Thirdly, the export of some of the secreted proteins 

follows a brefeldin A-insensitive pathway, suggesting a Golgi-independent secretory process for 

the some parasite proteins. Fourthly, protein trafficking into the infected erythrocyte cytosol 
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necessitates novel machineries for translocation across the PV, the PVM, and the host cell 

cytosol. Two models have been proposed to account for protein translocation across the 

surrounding PV (~10 nm thick): a one-step and a two-step model (Fig. 3) [63, 69]. 

 

Figure 3: Models for protein transport across the PVM 

The one-step model proposes that fusion of secretory vesicles at regions where the PPM 

appears to coalesce with the PVM would result in translocation into the erythrocyte cytosol [63, 

66]. In contrast, the two-step model suggests that proteins secreted into the PV would 

subsequently be translocated across the PVM, either by protein complexes or by vesicle budding 

[62, 63]. 



17 

1.2.6. Membrane traffic in P. falciparum: Tubular versus Vesicle-mediated traffic 

Intracellular membrane traffic is an essential process in all eukaryotic cells. It involves 

the rapid and selective transport of proteins and lipids from a donor compartment to an acceptor 

membrane, required for the biogenesis and maintenance of cellular organization and functions. 

Eukaryotic membrane traffic is mediated largely by distinct transport vesicles as well as by 

continuous tubular connections that link conservative intracellular compartments.  

Digitized fluorescence and electron microscopy studies have revealed the presence of 

both transport vesicles and tubular structures in P. falciparum [39, 51, 65, 70, 71]. Tubular 

transport processes, known as cytostomal tubes, have been implicated in hemoglobin uptake and 

transport to the digestive vacuole[70]. These double membrane-bound cytostomal tubes, which 

are mostly detected in trophozoite-stage (~30-hour) parasites, appear to bud off double 

membrane-bound vesicles containing host cell hemoglobin into the parasite cytoplasm [30, 70]. 

Serial optical sections of Bodipy ceramide-stained cells, followed by three-dimensional 

reconstruction, have also revealed a network of interconnected tubules (termed TVN or 

tubovesicular network) in P. falciparum-infected erythrocytes [39]. The TVN is thought to 

develop as a series of interconnected vesicles in ring-stage parasites, which, in trophozoite 

stages, acquire a more prominent tubular morphology with a few attached vesicles [39, 72].  

Freely mobile vesicular elements have been detected in the infected erythrocyte cytosol 

[48, 52], and within the parasite cytoplasm [73]. However, the free moving vesicles in the 

infected host cell do not appear to be a dominant feature and remain poorly characterized [39]. 
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1.2.7 Vesicular traffic and the SNARE hypotheses 

Vesicular transport is a fundamental process in all eukaryotic cells, and mutations in 

components of the vesicle trafficking machineries results in various forms of human diseases 

[74-78]. According to a vesicular transport hypothesis, vesicular traffic is a multi-step process in 

which, (1) vesicles bud from a donor compartment (vesicle budding) in a process that allows 

retention of resident proteins (protein sorting), (2) budded vesicles are targeted to a specific 

acceptor compartment (vesicle targeting), and (3) the vesicle and acceptor membranes fuse into a 

single compartment (vesicle fusion) (Fig. 4)[79].  

 

Figure 4: Steps in vesicle budding and fusion 

The process of budding and fusion are iterated at the consecutive transport pathways until 

the cargo reaches its final destination [79, 80]. To balance the forward movement of organeller 

membranes (anterograde transport), and to maintain organelle homeostasis, some components of 

the transport machinery and escaped resident proteins are retrieved from the acceptor 

compartment back to the corresponding donor membrane (retrograde transport). 
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A central dogma in vesicular transport is that the process is vectorial; vesicles generated 

from one compartment will only fuse with a cognate acceptor membrane. Compartmental 

specificity is provided by distinct members of protein families, such as those involved in sorting 

(e.g. membrane coats, adaptor proteins, and cargo receptors), small GTPases of the rab family, 

tethering factors, and members of the SNARE superfamily [80, 81]. The docking and fusion 

steps of vesicular traffic are accomplished by specific interactions between vesicle-associated 

SNAREs (v-SNAREs) and cognate partners on the acceptor or target membrane (t-SNAREs). 

1.2.7.1. The SNARE superfamily: Discovery, domain architecture and functions 

SNAREs (Soluble N-ethylmaleimide sensitive factor Attachment protein Receptors) 

represent a superfamily of membrane-anchored proteins that are now widely believed to play a 

key role in vesicle targeting and fusion in all eukaryotes [81-85]. A crucial step in the discovery 

of SNAREs was the identification in a cell-free assay of an N-ethylmaleimide sensitive factor 

(NSF) that was required for intra-Golgi membrane fusion [86]. Inactivation of NSF with N-

ethylmaleimide resulted in accumulation of uncoated vesicles on Golgi membranes, suggesting a 

role in vesicle fusion [87]. It thereafter became apparent that NSF was involved in a wide range 

of membrane fusion steps both in the secretory and endocytic transport pathways [88-90]. A key 

step toward understanding NSF function was the identification of the adaptor protein, alpha-

SNAP (soluble NSF attachment protein), which binds NSF to membranes [91]. By using 

NSF/alpha-SNAP as an affinity reagent to fractionate a brain homogenate, Söllner and 

colleagues identified a set of three membrane-associated “SNAP receptors”, or SNAREs, which 

had previously been implicated in synaptic vesicle fusion with the plasma membrane [92]. One 
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of these SNAREs, synaptobrevin or vesicle-associated membrane protein (VAMP), was known 

to be located in synaptic vesicles whereas the other two proteins, syntaxin and synaptosome-

associated protein of 25-kDa (SNAP25), had been localized to the presynaptic plasma 

membrane. The discovery of the link between NSF, the adaptor protein alpha-SNAP, and the 

SNARE proteins SNAP25, synaptobravin, and Syn1 revolutionalized future analysis of synaptic 

transmission and intracellular membrane traffic. Today, several homologues of the founding 

SNAREs have been discovered, and their role in membrane traffic elucidated. 

SNAREs are functionally referred to as v- or t-SNAREs based on their localization to 

transport vesicles (v) or to the target (t) membrane during fusion. Support for a function of 

SNAREs as fusogens came from in vitro reconstitution experiments showing that purified 

recombinant SNAREs can promote liposome fusion provided that v- and t-SNAREs are in 

different liposomes [93]. The role of SNAREs in membrane fusion has recently be demonstrated 

in an in vivo model wherein cells were engineered to expressed „flipped‟ SNARE that faced the 

outside of the cell rather than the cytoplasm [94]. Efficient fusion was observed between the cells 

only when cells containing the flipped v-SNAREs were mixed with cells containing the cognate 

flipped t-SNAREs. In vitro studies of various SNARE complexes from yeast and mammals have 

validated that each v-SNARE is specific for a limited number of t-SNAREs. This selectivity of 

v- and t-SNARE interactions is encoded in the respective SNARE motifs [95], and contributes to 

the specificity of SNARE-dependent fusion in vivo. Additional the selectivity of SNARE-

mediated fusion is provided by spatial segregation of the cognate t-SNAREs from the non-

cognate counterparts during fusion, and by diverse proofreading interactions that involve specific 

inhibitory SNAREs [96]. 
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SNAREs are also divided into distinct subfamilies on the basis of whether they contain 

one or two SNARE motifs, on the sequences of the SNARE motifs, and on the type of flanking 

domains. Most SNAREs contain a single SNARE motif that is preceded by a variable N-terminal 

sequence and is followed by a C-terminal transmembrane domain [83, 97]. Other SNAREs do 

not possess transmembrane domains and are membrane anchored by post-translational lipid 

modification events. For example, SNAP25 and its relatives contain a palmitoylation cysteine-

motif between the two SNARE motifs that mediate their post-translational insertion to 

membranes [98]. Some single SNARE motif-containing SNAREs without a transmembrane 

domain also contain cysteine-motifs at the C-terminal end that can be palmitoylated or 

prenylated, resulting in membrane attachment of the protein [83, 99, 100]. 

SNAREs also differ in the sequences that surround the SNARE motif or membrane 

attachment motifs. For example, the N-termini of syntaxins are composed of separate domains 

(designated helix a, b, and c or Habc), which are conserved between syntaxins that function at 

distinct trafficking pathways [101]. On the basis of the presence or absence of a conserved N-

terminal extension in VAMP homologues, this subfamily have been divided into long VAMPs 

(or longins) and short VAMPs (brevins) [102]. Other N-terminal domains include the PX domain 

of Vam7 (yeast homologue of SNAP25) that binds to phosphoinositide-3-phosphate [103]. 

The SNARE motif On the basis of a conserved arginine or glutamine at the central ionic 

layer position of various SNARE motifs, SNAREs have also been classified as R- or Q-SNAREs 

[104]. According to the „SNARE hypothesis‟, vesicle fusion is mediated by ordered interactions 

between a single R-SNARE (often located on vesicles) and three Q-SNAREs resulting in a 

highly stable quaternary complex called a SNAREpin [93]. This 3Q:1R requirement for fusion-
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competent SNARE complexes in membrane has been confirmed by mutagenesis studies [105-

107]. Replacing one of the glutamines with arginine in the yeast exocytic SNARE complex 

causes a growth defect that could be compensated for by replacing the R-SNARE arginine with 

glutamine. SNARE complexes of lower orders (1:1 and 2:1) are also common in biological 

systems, but their physiological relevance is not known. It has, however, been demonstrated that 

liposome fusion to deposited bilayers can be accomplished with just synaptobrevin and syntaxin 

in different membranes [108-110]. Isolated SNARE domains are largely unstructured. Upon 

binary and ternary complex assembly, major structural changes occur resulting in a disorder-to-

order transition, presumably required to supply the fusion energy [111-113]. 

Intracellular membrane traffic is a fundamental process in all eukaryotic cells. It involves 

the generation of transport vesicles from a donor compartment, movement of vesicles along 

cytoskeleton arrays, and fusion with target membranes [79, 114]. Vesicle fusion is mediated by a 

family of evolutionary conserved coiled coil domain containing proteins known as soluble N-

ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) [81, 84, 115-117]. 

Increasing evidence indicates that SNAREs are both (a) the specificity determinants in the 

vectorial transport of proteins and (b) the actual catalysts in the fusion event [118, 119]. 

SNAREs are structurally characterized by a conserved stretch of 60-70 amino acids called the 

SNARE motif, a single transmembrane (TM) domain or lipid modification motif located at the 

C-terminal end of each polypeptide, and a structurally variable N-terminal segment [81, 84, 120]. 

The SNARE motif consists of a heptad repeat of hydrophobic residues that serve as points of 

contact between interacting SNAREs during complex assembly. 
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Distinct sets of SNARE proteins localize to distinct intracellular trafficking pathways 

where they selectively interact with other family members to form stable trans complexes called 

SNAREpins [121]. Each complex contains four distinct SNARE motifs that are intertwined to 

form sixteen stacked layers of interacting side chains. Conventionally, these layers are numbered 

from -7 to +8 [104, 122]. The central „0‟ layer residue of the SNARE complex is highly 

conserved and is typically comprised of three glutamine (Q) residues and one arginine (R) 

residue. Depending on the zero layer amino acid, SNAREs are structurally classified into R- or 

Q-types. Multiple sequence alignments of various SNARE domains reveal that the „0‟ layer 

arginine residue is a characteristic of SNAREs called VAMPs (Vesicle-Associated Membrane 

Proteins) while glutamine at this position is a characteristic of syntaxins and synaptosome-

associated protein (SNAP)-like SNAREs. Depending on the presence or absence of a profilin-

like fold at their N-terminal domains, VAMPs are further divided into longins (long-VAMPs) or 

brevins (short-VAMPs) [81, 83, 84]. Subunit variations within the SNARE motif have also led to 

subdivision of the two major families (Q- and R-SNAREs) into Qa (Syntaxin), Qb 

(SNAP25N/Membrin-like), Qc (SNAP25C/Bet1-like), RG (Longins), and RD (Brevin) 

subfamilies [102, 123]. Assembly of the SNARE complex under physiological conditions often 

follows a “3Q:1R” rule that involves the interaction of SNARE motifs from each of the 

subfamilies that include 1Qa-, 1Qb-, 1Qc-, and 1R-SNARE [96, 106, 121]. 

Genome sequencing of model organisms has revealed interspecies variations in the 

number and functions of most eukaryotic SNARE families. These include 16 putative SNARE 

genes in Giardia, 20 in Drosophila melanogaster, 23 in C. elegans, 24 in Saccharomyces 
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cerevisiae, 36 in Homo sapiens, and as many as 54 SNARE genes in Arabidopsis thaliana [124-

126]. In the malaria parasite, the number of SNARE family members is unknown. 

1.2.7.2. Synthesis and intracellular targeting of SNAREs 

SNAREs belong to a family of tail-anchored proteins, which insert into the ER membrane 

following a post-translational process involving various chaperones and a transmembrane 

domain (TMD) recognition complex (TRC) [127-133]. Specific sets of SNAREs reside 

predominantly in specific intracellular trafficking pathways (Fig. 5)[84]. However, the steady 

state localization of SNAREs depends on their rates of synthesis, fusion and recycling. 
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Figure 5: Subcellular distribution of SNAREs in yeast and mammals 

Little is known about the signals and machineries involved in SNARE protein targeting 

in different cell types. For the few SNAREs that have been examined, the targeting determinants 

may be located in the C-terminal transmembrane domain, the SNARE motif, or within the 

variable N-terminal cytoplasmic region [127, 134-139]. Vesicle-associated SNAREs, which 

cycle between consecutive intracellular compartments, presumably contain distinct signals for 

forward traffic to the target membrane and recycling to the donor compartment. Additionally, 

SNAREs that function in more than one trafficking pathway may contain separate signals for 
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targeting to the different transport routes. An important mechanism for SNARE protein targeting 

is their interaction with coat proteins [140, 141]. For example, interaction between the yeast ER-

to-Golgi SNAREs Sed5p, Bet1p, and Sec22p with COPII and COPI coat proteins is required for 

their ER exit and recycling. These SNAREs bind to specific sites on the Sec24p subunit by using 

diverse sequence signals: Sed5/Syn5 utilizes a YNNSNPF signal for binding to the A site, the 

LXX (LM) E signal from Sed5p and Bet1p binds to the B site, and a conformation epitope on 

Sec22 binds to a large surface region of Sec23 and Sec24 to exit the ER [142-144]. SNAREs 

may also be delivered to their final destinations as part of a complex with accessory proteins or 

other SNARE molecules that contain the appropriate targeting signal [145, 146]. It is postulated 

in this study that the Plasmodium falciparum complement of SNARE proteins will exhibit 

atypical structural features required for targeting to the parasite-specific compartments and 

vesicle transport to the novel trafficking pathways in this intracellular parasite. 

1.2.8. Protein targeting in P. falciparum  

With exception of cytosolic proteins, which remain in the cytoplasm after translation on 

free ribosomes, eukaryotic proteins are generally targeted to specific cellular destinations via 

appropriate targeting signals. In addition to targeting proteins to common eukaryotic 

endomembrane compartments (ER, Golgi, mitochondria, plasma membrane), the malaria 

parasite has evolved unusual signals and mechanisms for protein targeting to several unique 

destinations. These include the apicoplast, digestive vacuole, micronemes, rhoptries, dense 

granules, and various membranous structures inside the host cell compartment [62, 64]. Protein 

targeting to these membrane-bound organelles may follow a direct post-translational insertion 
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process involving diverse cytosolic chaperones, or occur through a classical eukaryotic secretory 

pathway wherein an N-terminal hydrophobic signal sequence directs their co-translational 

passage into the ER and Golgi bodies. Further targeting of the proteins from the Golgi might 

involve various post-translational modification processes that include N- and/or O-glycosylation, 

and lipidation processes [147, 148]. O-glycosylation has been described as being the major form 

of protein glycosylation in intra-erythrocytic P. falciparum, whereas there is little or no N-

glycosylation of the parasite proteins [149, 150]. In the absence of other targeting signals, the PV 

constitutes the default destination for all P. falciparum that enter the secretory system [15]. For 

most ER- and Golgi-resident proteins, various conserved signal motifs mediate their 

retention/retrieval from bulk flow.  Many soluble ER resident proteins contain a C-terminus 

KDEL motif (HDEL in yeast or S(DE)EL in some P. falciparum proteins), which by interacting 

with the membrane receptor ERD2 results in their retrograde transport from the cis-Golgi into 

the ER [151-153]. ER transmembrane proteins, in contrast, posses either a C-terminal dy-lysine 

motif (KKXX) or an N-terminal di-arginine motif (XXRR), which signals their retrieval from the 

Golgi [154, 155]. Several P. falciparum homologues of ER marker proteins contain the classical 

–XDEL signal, suggesting that the mechanisms for ER protein retrieval might be conserved in 

malaria parasites. For example, PfERC contains a C-terminal –IDEL motif, whereas PfBip 

contains a –SDEL motif [156, 157]. The membrane-associated PfERD2 receptor contains a C-

terminal KKXX motif, which is likely to mediate its retrieval from the Golgi. 

Export of parasite proteins into the host cell compartment conceivably necessitates a 

second signal for translocation across the PVM, in addition to an N-terminal hydrophobic signal, 

which typically resembles a canonical ER-type signal peptide located close to the N-terminus, or 
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recessed at approximately 80 amino acids from the N-terminus [15, 62, 158, 159]. A majority of 

the exported proteins, but by far not all, contain a vacuolar translocation sequence (VTS) or 

Plasmodium export element (PEXEL motif) that seems to direct traffic of both soluble and 

membrane-bound proteins to the infected erythrocyte [160-162]. Although the VTS and PEXEL 

sequences, respectively identified by Hiller et al and Marti et al, differ slightly in their structures, 

they share the conserved five-residue core motif (R, K) x (L, I) x (E, D, Q) where x represents an 

aliphatic amino acid residue [15, 73, 163-165]. This PEXEL/VTS motif is preferably located 15-

20 amino acids downstream of the N-terminal hydrophobic signal sequence in a majority of the 

exported proteins [160, 161]. Recent bioinformatics analyses have also identified three groups of 

PEXEL/VTS sequences with preferences around positions 20, 43, and 85 amino acids 

downstream the signal sequence [165]. Only 24% of the proteins, representing those with 

PEXEL/VTS preferences around position 20 and 43, actually possess a classical signal peptide. 

The group of proteins with PEXEL/VTS preferences around position 85 predominantly contains 

the recessed N-terminal hydrophobic segment, which has been shown to function as an ER 

targeting signal in P. falciparum [161, 166]. Some of the PEXEL/VTS-containing proteins, 

including all PfEMP1 proteins that are exported into the host erythrocyte, do not contain the 

canonical signal peptide. It is worth-noting that some of the exported proteins in P. falciparum 

lack both the PEXEL/VTS motif and the N-terminal signal sequence. These proteins include P. 

falciparum skeleton-binding protein (PfSBP), membrane-associated histidine-rich protein 

(MAHRP) and the coat protein (COP) II components PfSec31, PfSec23, and PfSar1, all of which 

seem to be vesicle associated [62, 64]. The lack of PEXEL/VTS motifs in some exported 

proteins indicates that more than one export mechanism must exist in malaria parasites. 
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By employing a pattern matching approach with SEED-TOP, Hiss et al identified a total 

of 1,557 (28%) polypeptides in P. falciparum with at least one PEXEL/VTS motif [165]. In a 

parallel analysis using a generalized Hidden-Markov-Model (false-positive rate: 5%), which 

requires a preceding hydrophobic region for prediction of exported proteins, it was found that 

only 7.4% of the P. falciparum may be exported into the host cell [163, 165]. This suggests that 

the presence of a PEXEL/VTS motif alone is not an absolute predictor for export. Additionally, a 

family-specific conservation of physicochemical residues seems to exist for some PEXEL/VTS-

flanking regions, suggesting that the PEXEL-flanking sequences might influence regulated 

secretion of proteins, either temporally, or even in response to external stimuli [165]. This hints 

towards potential recognition of the PEXEL/VTS motif and flanking regions by yet an unknown 

interacting factor. It has been speculated that the posttranslational translocation of PEXEL/VTS-

containing proteins across the PV membrane might rely on the combined effects of chaperones 

and protein modification enzymes that might unfold the higher-order organization of exported 

proteins, triggering a more efficient translocation through an unknown translocon [162, 167]. 

The signals and pathways responsible for nuclear protein targeting to the P. falciparum 

digestive vacuole remain poorly characterized. This novel lysosome-like organelle represents the 

site of haemoglobin degradation and heme detoxification in asexual forms of the parasite. 

Additionally, the digestive vacuole is a dynamic calcium store, containing several membrane 

transporters implicated in various mechanisms of anti-malarial drug resistance [168, 169]. 

Nuclear-encoded proteins that are targeted to the digestive vacuole include proteases and 

membrane transporters [170-175]. It has been suggested that some proteases (e.g. pro-

plasmepsin) are transported in membrane-bound vesicles to cytostomal evaginations of the 
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parasite plasma/vacuolar membrane, from where they are directed to the food vacuole [176]. 

Recent studies by Dasaradhi et al revealed that the N-terminal sequence of the cysteine protease 

falcipain-2 might contain signals required for food vacuole targeting of the protein through the 

secretory pathway [173]. 

Similarly, there is currently very little data regarding the signals and mechanisms 

necessary for protein targeting to the apical organelles. Most proteins destined for the rhoptries, 

micronemes or dense granules carry either a canonical secretory signal sequence or an internal 

hydrophobic domain for entry into the secretory system [177-179]. A secondary targeting signal 

might then direct the proteins away from bulk flow into the different apical organelles. 

Consistent with microscopic observations that the apical organelles originate from Golgi-derived 

vesicles, protein sorting to these organelles is thought to occur within the Golgi, and might 

involve interactions between sequence motifs within their cytoplasmic tails and subunits of 

cytoplasmic adaptor protein complexes [180, 181]. Numerous P. falciparum rhoptry and 

microneme proteins contain a predicted tyrosine-sorting motif within their cytoplasmic tails that 

presumably target the proteins to the apical complex [177, 178, 182]. Mutation of a tyrosine 

motif within the cytoplasmic tail of the microneme protein thrombospondin-related anonymous 

protein (TRAP) results in mistargeting to the parasite surface[182]. Some apical complex 

proteins do not possess a cytoplasmic tail or transmembrane domain, thus might be targeted to 

these organelles via interaction with transmembrane escorter proteins containing the appropriate 

cytoplasmic tail signals [183, 184]. Correct timing of expression has been shown to be an 

important factor for targeting of some nuclear-encoded proteins to the apical organelles [185-

188]. 
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The great majority of mitochondrial proteins are nuclear encoded and have to be 

imported. Most mitochondrial targeting signals are located at the N-terminus of the nascent 

polypeptide chain, although examples of internal and C-terminal signals have been reported 

[189, 190]. In higher eukaryotes, the signals for mitochondrial import contain N-terminal pre-

sequences, termed transfer peptides, of 25 to 125 amino acids in length, which are rich in 

hydroxylated and positively charged amino acids, but depleted of acidic residues. Mitochondrial 

transfer peptides interact with multiprotein translocase complexes at the outer and inner 

mitochondrial membranes, necessary for translocation into the matrix, where the pre-sequence is 

removed by a mitochondrial processing peptidase [191, 192]. Orthologs of several subunits of 

the translocase complex have been reported in P. falciparum and proteins eligibly targeted to the 

parasite mitochondria appear to contain N-terminal sequences with homologies to transfer 

peptides [193]. 

Studies on P. falciparum and its apicomplexan cousin T. gondii have shown that targeting 

to the apicoplast also requires an N-terminal signal sequence in addition to a recessed transit 

peptide [194, 195]. Comparative sequence analysis of apicoplast proteins have revealed that 

apicoplast transit peptides are enriched in lysine and asparagines, and depleted in glutamic and 

aspartic acid residues in the first 20 amino acids. According to recent models, the N-terminal 

signal sequence is responsible for co-translational import of apicoplast proteins to the ER, where 

it is cleaved in the ER lumen [196]. The transit peptide functions in diverting proteins away from 

the default secretory pathway into the apicoplast. Apparently, apicoplast proteins exit the 

secretory pathway before reaching the cis-Golgi. Recent evidence indicates that protein targeting 

to the apicoplast follows a brefeldin A-insensitive pathway, suggesting that vesicular transport 
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steps may not be required for targeting to this organelle [197]. An explanation for these findings 

is that the apicoplast presumably resides within or proximal to the ER, and its outer membrane 

may be continuous with the rough ER. 

Following translation, some parasite proteins are trafficked independent of the ER into 

the nucleus. Experimental studies are yet to be undertaken to characterize signals involved in 

protein import into the P. falciparum nucleus. Analysis of nuclear localization signals of many 

eukaryotic proteins has revealed four main classes: PKKKRKV as found on SV40 large T 

antigen; KKPAATKKAGQAKKKK, a bipartite signal consisting of two clusters of basic amino 

acids separated by a 10 t0 14 spacer sequence; PAAKRVKLD, as found in c-Myc; and various 

other signals including ones that are associated with ribosomal proteins and hnRNPs [198-203]. 

Some nuclear proteins, however, do not appear to have a nuclear localization signal and seem to 

enter the nucleus via interactions with other nuclear-targeted proteins[199]. Sequence analysis of 

various nuclear located proteins in P. falciparum has revealed that some nuclear proteins contain 

one or more nuclear localization signals [204-206]. 

1.2.9. The P. falciparum proteome and sequence characteristics 

P. falciparum contains three distinct genomes: nuclear, apicoplast and mitochondrial 

genomes. The AT-rich (80.6%) nuclear genome is composed of ~23 megabases distributed 

among 14 haploid chromosomes and encodes a total of 5,268 predicted proteins, about 60% of 

which have no homologues in higher eukaryotes [207-209]. The P. falciparum mitonchondrial 

genome consists of tandemly arrayed 6kb DNA, the smallest genomic content mtDNA known to 
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date encoding only 3 proteins (cytochrome c oxidase I, cytochrome c oxidase III, and 

cytochrome b). In contrast, the 35-kb apicoplast genome encodes 30 proteins [210, 211].  

Of the 5,268 nuclear encoded proteins, about 350-450 (~8%) are predicted to be exported 

into the host cell compartment during asexual development in human erythrocytes. About 551 of 

these nuclear-encoded proteins are predicted to be targeted to the apicoplast, whereas 246 might 

take residence in the mitochondrion [163, 207]. Relatively little has been published on the 

expression profile, subcellular localization and role of the predicted P. falciparum proteins. 

Functional profiling of the proteome at four different developmental stages (sporozoite, 

merozoite, trophozoite, and gametocyte) suggests a tight stage-dependent regulation of gene 

expression in the malaria parasite [209]. Only 6% of the parasite proteins corresponding mostly 

to housekeeping proteins were present in all four stages (49% of the sporozoite proteins were 

unique to this stage, whereas 20-33% of trophozoite, merozoite and gametocyte proteins were 

unique to each of these stages) [209]. 

In addition to providing important clues to the parasite‟s cell biology, the identification 

and characterization of the parasite‟s unique proteomes provides the only promise to identify 

new and effective drug and vaccine targets against the infections. 

1.2.10. Molecular genetics tools to study Plasmodium parasites 

The release of the complete genome sequence of P. falciparum 3D7 strain has been very 

valuable in studying gene function and expression. However, such studies have been hindered by 

the lack of molecular genetics tools to manipulate this malaria parasite [212]. Forward genetic 

screens using RNAi does not appear to be feasible in P. falciparum as the parasite genome lacks 
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any discernable RNAi machinery [213, 214]. Additionally, plasmid DNA transfection of P. 

falciparum parasites remains very inefficient at between 10
-5

 and 10
-6

 [215, 216]. Because 

purified P. falciparum merozoites are not viable to allow for direct transfection procedures, the 

only strategy to transfect malaria parasites is by electroporation of RBCs that are infected with 

young ring-stage parasites [217-219]. Although DNA may be electroporated relatively efficiently 

into the RBC cytosol, only in rare instances does the DNA cross the PVM, parasite plasma 

membrane (PPM) and the nuclear membrane. Movement of DNA across the PVM, PPM and 

nuclear membranes appears to be spontaneous as parasites can be transfected with a marginally 

increased efficiency by infecting fresh RBCs preloaded with plasmid DNA [220]. The 

incorporation of Rep20 subtelomeric repeat elements into transfection vectors allows more rapid 

establishment of stably transformed lines. Rep20 promotes chromosomal tethering of the 

plasmids, allowing episomally replicating plasmids to segregate more evenly during mitosis 

[216]. This means that more parasites would receive the replicated DNA, hence are resistant. 

Direct integration of transfected DNA is not possible and the existing strategies rely on a 

period of episomal plasmid replication and recombination before integrants may be 

obtained[221]. An integrase system and a random gene insertion piggyback transposon system 

have been developed for stable integration of plasmid DNA [222, 223]. Although gene knockout 

via homologous recombination is relatively straightforward in P. falciparum due to the haploid 

nature of its genome, genetic tools need to be developed for controlled mutagenesis or down-

regulation of most essential genes. 
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CHAPTER 2:  

THE PLASMODIUM FALCIPARUM COMPLEMENT OF SNARES  

2.1. SUMMARY 

P. falciparum inhabits terminally differentiated human erythrocytes, yet traffics several 

proteins into the host cell compartment that are critical for survival and virulence. To support 

these „extraparasitic‟ protein transport processes, this malaria parasite extensively modifies the 

host cell compartment and induces the formation of various membrane-bound structures that 

serve as sorting stations for the exported proteins. Proteins destined for export into the infected 

erythrocyte enter the secretory system through the ER from where they are trafficked through an 

unstacked „Golgi-like‟ structure, the parasite plasma membrane (PPM), the fluid-filled 

parasitophorous vacuole (PV) and parasitophorous vacuolar membrane (PVM) into the infected 

erythrocyte cytoplasm. Some of the exported proteins further associate with parasite-induced 

structures in the host cell cytoplasm called Maurer‟s cleft (MC) and tubovesicular network 

(TVN) before taking residence at the erythrocyte surface.  

Vesicular transport processes have been proposed to mediate the unusual transport of 

lipids and proteins to various destinations in the infected host cell compartment. If this is correct 

then vesicle targeting and fusion at the parasite-specific organelles must involve novel SNARE 

complexes and trafficking processes. As a first step to understanding the role of SNARE proteins 

in malaria parasites, we have identified for the first time the P. falciparum complement of 

SNAREs (PfSNAREs). Bioinformatics analysis of the P. falciparum genome revealed 18 

SNARE-like proteins that could be classified into five main phylogenetic groups; namely 

membrin-like, Bet1-like, VAMP-like, Syntaxin5-like subfamily, and a P. falciparum-specific 
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syntaxin-like subfamily. Expression of the PfSNAREs in P. falciparum was confirmed by 

reverse transcriptase PCR using gene-specific primers. Unique to the PfSNAREs was (1) 

presence of atypical zero-layer amino acids in some members (six PfSNAREs), (2) presence of 

up to two hydrophobic domain segments in three PfSNAREs, and (3) the occurrence of low-

complexity regions in seven PfSNAREs. Additionally, the three PfSNAREs, PfSec22p, PfVti1p, 

and PfSyn13p, each contain a single insertion of the Plasmodium export element (PEXEL) 

within their N-terminal cytoplasmic tails which potentially might direct the export of these 

SNARE proteins into the host cell compartment. 

As a model to study SNARE protein trafficking in malaria parasites, and to test our 

central hypothesis, we investigated the localization of the R-SNARE, PfSec22, which contains 

an unusual insertion of the PEXEL motif within its longin domain preceded by an atypical 

hydrophobic segment. We generated PfSec22-specific antibodies and GFP expressing cell lines 

for live cell imaging of N- or C-terminally tagged chimeras. Expression of both the GFP-tagged 

and untagged proteins in the malaria parasites was confirmed by immunofluorescence and 

Western blot assays using the peptide-derived PfSec22 antibodies. The data indicate that the 

Sec22 gene product in P. falciparum associates partially with mobile vesicular elements in the 

infected erythrocyte, and localizes predominantly to the parasite ER and Golgi interface. The 

association of PfSec22 with transport vesicles and the lipid bilayers was confirmed by immuno-

electron microscopy examination of ultrathin sections, and by Western blot analyses of 

subcellular fractions. Our data supports a model in which the Plasmodium parasites export 

vesicle trafficking machineries into infected host cells, required for transport of virulence factors 

to the erythrocyte surface membrane. 
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2.2. MATERIALS AND METHODS 

2.2.1. Database mining and identification of P. falciparum SNAREs 

P. falciparum homologues of SNAREs were identified by independent NCBI PSI-

BLAST and BLASTP searches of annotated proteins in the PlasmoDB Genome database (release 

4.4). Query sequences were obtained either from previously published data (human SNAREs) 

[81] or extracted from known yeast and plant SNARE sequences available at 

http://www.yeastgenome.org/ and http://www.tigr.org/tdb/e2k1/ath1/ath1.shtml, respectively. All 56 

hits resulting from the BLAST search were subsequently scanned for the occurrence of patterns, 

profiles and motifs stored in the PROSITE database (http://www.expasy.ch/prosite/) [224, 225]. 

Sequences were included as potential SNARE proteins if they contained one or more SNARE-

motif structures. The identified PfSNARE motifs were again BLAST searched against the P. 

falciparum protein database (PlasmoDB) to detect orthologs with weak sequence homology to 

the human, yeast and plant SNAREs. The transmembrane regions of the PfSNARE proteins were 

identified using the ConPred II system (ConPred_elite and ConPred_all methods) available at 

http://bioinfo.si.hirosaki-u.ac.jp/~ConPred2/. ConPred II is a robust consensus prediction system that 

makes use of prediction results of several other methods including KKD, TMpred, TopPred II, 

DAS, TMAP, MEMSAT 1.8, SOSUI, TMHMM 2.0 and HMMTOP, and presents an accuracy 

level of 100% [226]. 

2.2.2. Sequence alignment and classification of PfSNARE proteins 

To assign paralog names and classify the PfSNAREs following previously described 

criteria [81], the identified PfSNARE motif sequences were aligned by CLUSTALW 

http://www.yeastgenome.org/
http://www.tigr.org/tdb/e2k1/ath1/ath1.shtml
http://www.expasy.ch/prosite/
http://bioinfo.si.hirosaki-u.ac.jp/~ConPred2/
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(DNASTAR MEGALIGN, slow/accurate/Blosum) against the complete set of human SNARE 

motifs. A name was assigned to each PfSNARE by adding the letters Pf to the human homologue 

to which it exhibited highest sequence identity. Full-length PfSNARE sequences were also 

aligned (CLUSTALW, slow/accurate/Blosum) and manually inspected for common structural 

features. 

2.2.3. Parasite culture and RNA Isolation  

The 3D7 strain of P. falciparum were grown in human A+ red blood cells at 5% 

hematocrit in RPMI 1640 supplemented with 0.5% Albumax (GibcoBRL) essentially as 

described [227]. Parasites were harvested from asynchronous cultures by treatment of the 

parasitized red blood cells with 0.05% saponin in PBS, pH 7.2 [228]. Total RNA was isolated 

from the parasite pellet using the RNAgents Total RNA Isolation System (Promega). 

2.2.4. Expression analyses of PfSNAREs by RT-PCR 

Based on the 5' and 3' nucleotide sequences of the identified PfSNARE genes, forward 

and reverse primers were designed to amplify each complete open reading frame (ORF). 

Restriction sites for BamHI, EcoRI or XhoI, were incorporated at the 5'-end of each specific 

primer for subsequent cloning of the ORFs into an expression vector. The StrataScript
TM

 one-

tube RT-PCR system with Easy-A
TM

 High-Fidelity PCR Cloning Enzyme was used to reverse 

transcribe and amplify individual ORFs using 200ng of total RNA and the respective gene-

specific primers. A negative control containing all reagents except the reverse transcriptase was 

included. RT-PCR cycling conditions were as follows: 1 cycle of reverse transcription at 42ºC 
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for 30 minutes followed by transcriptase enzyme inactivation at 95ºC for 30 seconds; 5 cycles of 

denaturation at 95ºC for 30 seconds, annealing at 48-50ºC for 30 seconds and extension at 68ºC 

for 4 minutes; 35 cycles at 95ºC for 30 seconds, 58ºC for 30 seconds and 68ºC for 4 minutes and 

1 cycle at 68ºC for 10 minutes. RT-PCR products were analyzed by electrophoresis on a 0.8% 

agarose gel in Tris-acetate EDTA buffer, pH 8.0. 

2.2.5. Anti-peptide antibodies and expression analyses of PfSec22 proteins 

To confirm the expression of the atypical PfSec22 protein in P. falciparum, we generated 

antipeptide antibodies for use in immunoblot and immunofluorescence microscopy analyses. The 

decapeptide „YKDPRSNIAI‟, corresponding to residues 131-140 of PfSec22, was synthesized 

(Genscript) and conjugated to keyhole Limpet Hemacyanin (KLH) following the manufacturer‟s 

instructions (Pierce). Antisera were raised in rabbit against the conjugated peptide (Harlan 

Bioproducts for Science, Inc) and affinity purified by column chromatography using peptide-

conjugated agarose beads (Pierce). The reactivity of these antibodies against the endogenous 

and/or GFP-tagged PfSec22 proteins was analyzed by standard Western blot techniques.  

Briefly, parasites were released from the infected erythrocytes by treatment with 0.05% 

(w/v) saponin in PBS followed by three times PBS washes[228]. The obtained pellets were 

resuspended in M-Per mammalian protein extraction reagent (Pierce) containing a protease 

inhibitor cocktail (Roche Mini Complete EDTA-free) and benzonase (Novagen). Each 

suspension was incubated at 4ºC with agitation for 15 minutes, and then clarified by 

centrifugation at 20,800 x g for 5 minutes at 4 C. Protein concentrations in the supernatants were 

determined by Bradford analysis [229] using BioRad protein assay reagent. Sixty micrograms of 

each protein extract was resolved on a 10% SDS-PAGE followed by western blotting and 
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analysis using the purified antibodies at a 1:1000 dilution. Goat anti-rabbit HRP-conjugates, 

Pierce) were added at 1:5,000 dilutions, and the resulting complex was revealed by use of the 

Supersignal West Femto Chemiluminescence detection kit (Pierce). 

2.2.6. Immunofluorescence Analysis of PfSec22 in Parasitized Erythrocytes 

Immunofluorescence assays were performed in suspension as previously described by 

Tonkin et al [215]. Briefly, parasitized erythrocytes were washed once with phosphate-buffered 

saline (PBS) and subsequently fixed with a solution containing 4% paraformaldehyde + 0.0075% 

glutaraldehyde in PBS for 30 min at room temperature. Following one wash with PBS, the cells 

were permeabilized with 0.1% Triton X-100 for 10 min, followed by reduction of excess 

aldehydes with sodium borohydride at 0.1 mg/ml, and blockage of nonspecific binding sites with 

3% BSA in PBS at room temperature for 1 h. For co-localization analyses, the cells were probed 

with appropriate antibodies (1° and 2°) in PBS containing 3% BSA at 4ºC overnight followed by 

three washes with PBS. The purified rabbit anti-PfSec22 antibodies were used at a 1 in 500 

dilution whereas the primary antibodies against the ER marker PfBip were used at 1:1000 

dilutions. The rat anti-PfBip (MRA-19) antibodies were obtained from the Malaria Research and 

Reference Resource Center (MR4). The secondary antibodies consisted of goat anti-rabbit 

Alexa-Fluor-555, or goat anti-rat Alexa Fluor-594 (Molecular Probes), each used at a dilution of 

1 in 1,000 for 1 hour at room temperature. After washing three times with plain PBS, the cells 

were allowed to adhere to polyethyleneimine (PEI)-coated cover slips at room temperature for 

15-20 minutes. The coverslips were rinsed with PBS and were mounted onto a glass slide with 

50% glycerol containing 0.1 mg/ml of 1,4-diazabicyclo (2,2,2) octane (Sigma). Fluorescence 

signals from the secondary antibodies were captured using a laser scanning confocal microscope 
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(LSM 510, Carl Zeiss). The excitation/emission spectra settings were 543/555 for Alexa Fluor-

555 conjugated antibodies and 543/594 nm for Alexa Fluor-594 conjugates. 

2.2.7. Analysis of membrane-association properties of PfSec22 

2.2.7.1. By freeze/thaw fractionation of soluble from membrane proteins 

P. falciparum 3D7 parasites were purified by saponin treatment and resuspended in a 

TBS buffer (10 mM Tris-HCL, pH 7.4 + 150 mM NaCl), containing a cocktail of protease 

inhibitors (Roche). The cells were subjected to five cycles of freezing and thawing in liquid 

nitrogen followed by a brief sonication for 15 seconds to release both the cytosolic and the 

lumenal proteins. The disrupted cells were clarified by centrifugation at 100,000 x g for 1 h at 

4ºC to separate the soluble proteins from the membrane-associated fractions. The pellet sample 

was then normalized with the TBS buffer to the volume of the supernatant and equivalent 

volumes analyzed by western blotting. 

2.2.7.2. By alkaline extraction of peripheral from integral membrane proteins 

Membrane pellets were prepared as described above and resuspended in 3 volumes of 0.1 

M Na2CO3, pH 11. The suspension was mixed by rotation at 4
o
C for 30 min, followed by 

centrifugation as above to separate the peripheral membrane proteins in the supernatant from the 

integral membrane protein in the pellet. The resulting pellet was normalized as described above 

and equal volumes analyzed by western blotting. 
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2.2.7.3. By phase separation of hydrophobic from hydrophilic membrane proteins 

Integral membrane fractions were prepared by alkaline extraction as described above and 

solubilized using the Membrane Protein Extraction Reagent kit (Pierce). The solubilized fraction 

was clarified by centrifugation at 10, 000 X g for 3 minutes at 4
o
C, and then clouded in a 37ºC 

water bath for 20 minutes. This was followed by centrifugation at 10,000 X g for 2 min at room 

temperature to remove the hydrophilic phase (top layer) from the hydrophobic protein phase 

(bottom layer). Equal volumes of the phase-separated samples were further diluted in Laemmli 

sample buffer and analyzed by western blotting. 

2.2.8. Transfection and live cell imaging of GFP-tagged Chimeras  

To determine the steady-state dynamics and subcellular localization of PfSec22, we 

generated transgenic parasites expressing the GFP-tagged proteins. cDNAs corresponding to the 

full-length ORF of PfSec22 was amplified by RT-PCR using gene-specific primer sets. The 

amplified cDNAs were cloned into the pGEM-T Easy vector (Promega) and sequence confirmed 

prior to subcloning into the AvrII/BglII (C-terminal GFP constructs) or BglII/XhoI (N-terminal 

GFP constructs) sites of a modified pDC Plasmodium expression vector [230, 231]. In this 

vector, a 5‟ camoldulin (cam) promoter and a 3‟ hsp86 terminator element drives the expression 

of either an N-terminus or a C-terminus GFP- fused transgene. To modulate the expression levels 

of the transgenes, the corresponding 5‟-UTR sequence (0.995kb segment) was amplified from 

genomic DNA by PCR and subcloned into the PsPOM I/AvrII sites, thus replacing the much 

stronger cam promoter sequence. P. falciparum 3D7 ring stage cultures (at 5% parasitemia) were 

transfected with Qiagen-purified plasmid DNA (100 µg) by electroporation using a Bio-Rad 

Gene pulser II (0.31 KV and 950 microfarads) essentially as described [230]. Forty-eight hours 



43 

after transfection, drug selection pressure was applied using the human DHFR inhibitor, 

WR99210 at a final concentration of 2.5 nM to select for transformed parasites[219]. Expression 

of GFP-tagged proteins in the transgenic parasites was analyzed by Western blotting using 

monoclonal GFP (B-2) antibodies (Santa Cruz Biotechnology) at a 1:500 dilution. The secondary 

antibodies were HRP-conjugated Goat anti-mouse used at a 1:20,000 dilution. For live cell 

imaging, the cells were mounted under a cover slip in 50% glycerol and observed within 15 

minutes of removal from cultures by confocal microscopy. The GFP signals were captured at a 

spectra setting of 488/505 nm. 

2.2.9. Immunolocalization of GFP-PfSec22 in transgenic parasites 

The subcellular localization of PfSec22 was determined in transgenic parasites by 

immunofluorescence analyses using anti-PfErd2 (Golgi marker) and anti-PfBip (ER marker) 

antibodies. The rabbit anti-PfErd2 (MRA-1) and rat anti-PfBip (MRA-19) antibodies were 

obtained from the Malaria Research and Reference Reagent Resource (MR4) Center and used at 

a dilution of 1 in 1000. The secondary antibodies consisted of goat anti-rabbit Alexa-Fluor-555, 

or goat anti-rat Alexa Fluor-594 (Molecular Probes), each used at a dilution of 1 in 1,000 for 1 

hour at room temperature. After washing three times with plain PBS, the cells were allowed to 

adhere to polyethyleneimine (PEI)-coated cover slips at room temperature for 15-20 minutes. 

The coverslips were rinsed with PBS and were mounted onto a glass slide with 50% glycerol 

containing 0.1 mg/ml of 1,4-diazabicyclo (2,2,2) octane (Sigma). Fluorescence signals from the 

secondary antibodies were captured using a laser scanning confocal microscope (LSM 510, Carl 

Zeiss). The excitation/emission spectra settings were 543/555 for Alexa Fluor-555 conjugated 

antibodies and 543/594 nm for Alexa Fluor-594 conjugates. 
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2.2.10. Cryo-electron microscopy 

To determine the localization of PfSec22 at the ultra-structural level, the GFP-expressing 

cells were enriched by Percoll density centrifugation and fixed for 30 minutes at room 

temperature with 4% paraformaldehyde/0.1% glutaraldehyde (EMS) in 0.1M phosphate buffer, 

pH 7.2 (EMS). Upon three times wash with phosphate buffer, the cells were pelleted into 10% 

gelatin in phosphate buffer and infused with 2.3 M sucrose in phosphate buffer. The cryo-

protected pellets were frozen in liquid nitrogen and cryo-transferred to a Leica EMFCS chamber. 

Ultrathin cryosections were obtained at -120
o
C on a Leica Ultracut UCT using a Drukker 

ultramicrotome diamond knife. The resulting ribbons of frozen sections were collected onto 

carbon and formvar substrates mounted on 300 mesh nickel grids. The grids were floated on 

drops of BD JL8 anti-GFP (diluted 1:100 in 0.05 M phosphate buffer containing 1%BSA) at 5
o
C 

overnight and then incubated at room temperature for 1 hour with a 1:50 dilution of 12nm 

colloidal gold-conjugated affinipure goat anti-mouse IgG/IgM (Jackson ImmunoResearch 

Laboratories) in 0.05M phosphate buffer containing 1% BSA.  The grids were fixed with 1% 

gluteraldehyde and then embedded in 1% methylcellulose and 2.5% uranyl acetate prior to 

examination in a FEI Technai 12 TEM. The images were captured using a AMT XR111 digital 

camera. 

2.2.11. Yeast complementation analyses 

To test whether or not the atypical PfSec22 may complement a yeast Sec22-3 

temperature-sensitive allele, the PfSec22 open reading frame was amplified by RT-PCR and 

subcloned into the pMET25-HA vector using BglII/HindIII restriction sites. This vector allowed 

the constitutive expression of fusion proteins with a triple-HA tag to the N-terminus under 
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control of the MET25 promoter [232, 233]. Yeast cells (strain RSY279) were rendered 

competent by lithium chloride treatment, and separately transformed with 10µg of plasmid as 

described by Ito et al [234, 235]. The plasmids used in yeast transformation were the vector only, 

the PfSec22 recombinant vector, or the Sacharomyces cerevisiae Sec22 (YLR268W) plasmids. 

The transformants were streaked and selected on a synthetic met/his-free medium containing 

0.67% yeast nitrogen base, 2% glucose and 0.1% 5-fluoroorotic acid.  

For expression analyses, the transformed cells were grown in liquid media for 72 hours at 

the non-restrictive temperature (25
o
C), and then harvested in 50mM Tris-HCl, pH 8.0 containing 

1% Triton X-100 and 62.5 mM EDTA.  Thirty five micrograms of proteins from each clarified 

lysate was resolved by SDS-PAGE and immunoblotted using rabbit anti-HA antibodies (Zymed 

labs) at 0.5µg/ml. 

2.3. RESULTS 

2.3.1. P. falciparum encodes 18 putative SNARE proteins 

In an effort to identify and characterize PfSNARE proteins, first we used a PSI-BLAST 

approach to search the completed P. falciparum genome database (PlasmoDB) using human 

SNARE motifs as queries. This approach resulted in the identification of 15 SNARE domain-

containing proteins from the parasite genome. Next, we undertook an extensive search of the 

PlasmoDB by direct BLASTP analysis using 116 different SNARE motifs derived from the 

human, yeast, and Arabidopsis genome databases. This broadened approach yielded 3 additional 

PfSNARE homologues, resulting in a total of 18 identified SNARE genes (table 2). By 

comparison, 27 SNARE domain-containing proteins were recently identified in the genome of a 
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closely related protozoan parasite L. major using a direct BLASTP search approach [236]. The 

human and yeast genomes each encodes 36 and 24 SNARE proteins, respectively [81, 124]. A 

second BLAST search of the P. falciparum genome database using the PfSNARE motifs as 

query sequences did not identify any recognizable SNARE polypeptides, which might have been 

distantly related to our initial query sequences. Furthermore, none of the SNARE families alone 

was able to detect all 18 PfSNAREs. For example, the PfSNARE MAL8P1.21 was detected only 

by one query from the yeast SNAREs, seven queries from plant and none of the 36 queries from 

the set of human SNAREs. Similarly, PF14_0535 was detected by 2 queries from the human 

SNAREs and none of the yeast or plant SNARE sequences. Because human and yeast SNAREs 

are the most extensively characterized, and because all members of the yeast SNAREome also 

have homologues in humans, PfSNAREs were named on the basis of their sequence identities 

with the human SNAREs (Table 1). Names were assigned to the parasite proteins by adding the 

prefix Pf to the name of the corresponding human SNARE homologue. Thus, the name PfSyn5p 

was assigned to MAL13P1.169 based on the fact that human Syntaxin5 presented the highest 

sequence identity (35.2%) to this PfSNARE. Similarly, MAL8P1.21 was named as PfVAMP7p 

despite not being detected by any of the human query sequences. On the other hand, PF14_0500 

that showed highest identity (25.9%) against human SNAP29c was assigned the name PfBet1p. 

Our rationale for this is that PF14_0500 has only one SNARE motif unlike SNAP29c with two 

motifs, and because human Bet1 was the next SNARE with highest sequence identity (24.1%) to 

PF14_0500. Because PFI0515w and MAL13P1.135 exhibit highest sequence identity with Ykt6 

and because both PfSNAREs display similar structural patterns that include an N-terminal longin 

domain and a C-terminal CAAX prenylation motif, they are herein considered as isoforms and 

are named PfYkt6.1p and PfYkt6.2p, respectively. However, these two proteins are only 27.8% 
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identical in their SNARE domain and 25.6% identical when full-length sequences were aligned. 

Functional studies, however, need to be undertaken to confirm the above designations and to 

determine the role of SNARE proteins in the P.falciparum trafficking pathways. 

2.3.2. All 18 PfSNAREs are expressed in blood stages of P. falciparum. 

To verify the transcriptional expression of the PfSNARE in asexual blood stage of P. 

falciparum parasites, we synthesized the corresponding cDNAs by RT-PCR using gene-specific 

primers. As shown in Fig. 6, cDNAs with the correct sequence sizes were obtained by this 

procedure, establishing that all 18 PfSNAREs are expressed in P. falciparum. Further studies, 

however, will have to be undertaken to confirm the full-length sizes of these genes given that our 

RT-PCR primers were designed based on the predicted ORFs as published in PlasmoDB, which 

may be incomplete. For example, annotation of PfYkt6.2 (MAL13P1.135) incorrectly 

overlooked the short 3‟ exon containing the C-terminal prenylation motif of this putative 

SNARE. Therefore, the 3‟ region of the alternate predicted ORF, chr13.glimmerm_638, was 

considered for amplification in our expression analysis. Our expression analysis supports 

previous micro-array results that include data for 16 of the PfSNAREs, available at 

http://www.sciencemag.org/cgi/data/1087025/DC1/2 [186]. As shown by the micro-array data, the 

expression levels of most PfSNARE transcripts varied with the parasite developmental stages, 

some (PfYkt6.2, PfSyn3, PfSyn6, PfSNAP23, and PfSyn5) of which are expressed exclusively in 

the blood stages. PfSyn17 is expressed only in the gametocyte stage. 

http://www.sciencemag.org/cgi/data/1087025/DC1/2
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2.3.3. In silico analyses reveal atypical structural features in some PfSNAREs 

Because of the uniqueness of P. falciparum protein-trafficking pathways and the 

surprisingly low number of expressed SNARE genes, we analyzed full-length sequences of the 

PfSNAREs to detect any inter-species differences that might be required for the parasite-specific 

functions. Interestingly, some Plasmodium homologues of human SNAREs contained up to two 

hydrophobic segments each flanking the SNARE core motif. These PfSNAREs include: 

PfSec22p, PfVAMP7p and PfSyn13p. Five of the PfSNAREs contain no hydrophobic segments. 

Additionally, the three PfSNAREs PfSec22, PfSyn13p and PfVti1p contain sequence motifs that 

were predicted using MalSig to correspond to the host cell targeting PEXEL/VTS motif. 

However, the functional significance of these sequence features will have to be determined 

experimentally. 

Compared to all known eukaryotic SNAREs, the putative PfSyn3p is the largest SNARE 

so far identified. This PfSNARE has a protein sequence of 967 amino acids and is structurally 

composed of a single internal SNARE motif flanked on both sides by an asparagine-rich region. 

As revealed by RT-PCR (Fig. 6), the PfSyn3 gene was transcribed giving an amplification 

product of approximately 2900bp. Other unusually large PfSNAREs include PfSyn18p (441aa), 

PfSyn11p (442aa) and PfSyn13p (336aa). In human, syntaxin18 is the largest SNARE protein 

comprising 335 amino acid residues [237]. The core SNARE motif of PfSNAREs is confined 

within a minimum sequence length of 54 residues. As indicated in Fig. 3, six of the PfSNAREs 

exhibit neither the conserved arginine (R) of neuronal VAMPs nor the glutamine (Q) of non-

VAMPs at the zero layer position. Present at this position are atypical amino acid residues that 

include asparagines (N) in two PfSNAREs, Isoleucine (I) in two PfSNAREs, serine (S) in one 

PfSNARE and histidine (H) in one PfSNARE (Fig 7). The presence of isoleucine at the „0‟ layer 
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position of some syntaxins (PfSyn3p and PfSyn13p), and of an arginine residue in place of 

glutamine at the zero layer position of PfSyn11p are novel findings amongst all known SNARE 

families Other structural domains found within PfSNARE proteins include a profilin-like longin 

domain (4 PfSNAREs), a CAAX motif (2 PfSNAREs) and an asparagine-rich low complexity 

region (8 PfSNAREs). 

2.3.4. Phylogenetic analysis reveals a putative syntaxin subfamily of PfSNARE  

We analyzed the phylogenetic relationship between PfSNARE motifs with a 

representative set of mammalian SNARE protein sequences. As shown in Fig. 8, phylogenetic 

analysis of the PfSNAREs resulted in their classification into five subfamilies: membrin-like 

PfSNAREs (4 members), Bet1-like PfSNAREs (3 members), VAMP-like PfSNAREs (6 

members), Syntaxin5-like PfSNAREs (3 members), and a putative Pf-specific syntaxin-like 

subfamily (4 PfSNAREs). The existence of a P. falciparum-specific syntaxin sub-family is 

consistent with the presence of unique trafficking pathways in this organism. A unique feature of 

this subfamily is the occurrence of atypical zero layer amino acid residues that include arginine, 

isoleucine, or asparagines. This subfamily seems to have diverged from the syntaxin (Qa) family 

of PfSNARE and supports previous observations that the syntaxin family of protozoa constitutes 

a highly divergent group [238]. 

2.3.5. Partial export of endogenous PfSec22 in P. falciparum-infected host cells 

In an attempt to determine the functional role of PfSec22, we tested the ability of the HA-

tagged protein to complement a Sec22-3 temperature-sensitive allele in transformed yeast cells. 
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As shown in Fig. 9, the yeast cells that were transformed with the HA-PfSec22 or HA only 

constructs were inviable when cultured at the restrictive temperature (37
o
C). Immunoblot 

analyses of lysates from the HA-ScSec22 transformed cells in comparison to the HA-PfSec22 or 

HA only cells suggest that the yeast cells were unable to express the full-length PfSec22 protein. 

Unlike the ScSec22 protein, which migrated at the expected band size (~28kDa), three closely 

migrating antigen fragments of low molecular weights (<15kDa) were detected in the HA-

PfSec22 lysates. The expected band sizes of the HA-PfSec22 and 3xHA (vector only) proteins 

were 29kDa and 3kDa, respectively. This failure of the yeast cells to express the full-length 

malaria gene might be attributable to an inability of the yeast translation machinery to recognize 

the AT-rich PfSec22 nucleotide sequence (76% AT-rich), or due to a rapid turn-over of the 

heterologous protein. 

We therefore generated anti-peptide antibodies that were used to analyse the expression 

profile of PfSec22 in cultured malaria parasites by immunofluorescence detection of the 

endogenous proteins in fixed cells and Western blot analyses of various subcellular fractions. 

The peptide antigen was derived from the inter-domain region located between the longin 

domain and the SNARE motif, which showed high sequence specificity to the PfSec22 protein 

when compared to other parasite proteins. As shown in Fig. 10, the affinity purified antibodies 

specifically recognized a 26-kDa protein in cell-free extracts from ring, trophozoite, and schizont 

stage parasites, corresponding to the predicted molecular mass of the full-length PfSec22 protein. 

Expression of PfSec22 protein in all asexual life-cycle stages of the parasite is consistent with 

the gene transcription profile (available at www.PlasmoDB.org).  

By immunofluorescence analyses, we observed that the majority of the PfSec22 antigen 

localized to membrane-like compartments inside the parasite cytoplasm (Fig. 11A). We 
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investigated the membrane-association properties of PfSec22 by (i) freeze-thaw separation of 

membrane proteins from soluble fractions, (ii) alkaline extraction of peripheral membrane 

proteins from integral membrane proteins, and (iii) Triton X-114 solubilization of integral 

membrane proteins followed by immunodetection. The ER-restricted lumenal chaperone PfBip 

was used as a marker for the soluble non-membrane-associated proteins, whereas the presence of 

the KDEL receptor PfErd2 in the fractions marked the membrane-associated proteins. As shown 

in Fig. 11B, the endogenous PfSec22 protein partitioned alongside PfErd2 in the membrane 

fractions and was efficiently solubilized into the hydrophilic phase after detergent extraction 

using Triton X-114. PfErd2 was only partly solubilized by this detergent, consistent with its 

topological function as a multi-pass membrane protein containing up to seven transmembrane 

domains [66]. These results suggest that PfSec22 is an integral membrane protein, consistent 

with a requirement in vesicle trafficking. 

To determine whether PfSec22 associates with the parasite ER/Golgi interface, as has 

been reported for other Sec22 orthologs [239-242], we investigated its co-localization with the 

ER marker PfBip. A similar co-localization experiment using the Golgi marker PfErd2 was 

precluded because both the anti-PfSec22 and available anti-PfErd2 antibodies originated from 

the same host species. As shown in Fig. 11C, PfSec22 localized predominantly to the ER, 

consistent with a potential role in ER-to-Golgi transport in the malaria parasite. Surprisingly, 

albeit only in trophozoite-infected cells, we detected a small proportion of the PfSec22 antigen in 

isolated vesicular structures inside the host cell cytoplasm, suggesting that PfSec22 might 

transiently participate in vesicle traffic within the host cell compartment. 
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2.3.6. Partial export of GFP-tagged PfSec22 proteins in transgenic parasites  

To better understand the steady-state dynamics of PfSec22 in P. falciparum parasites, we 

generated a transgenic cell line expressing the GFP-tagged proteins under control of the 

endogenous PfSec22 promoter sequence. Additionally, to ensure that a suitable tagging approach 

was being employed, we first investigated the effect of the GFP tag. Transgenic parasites were 

developed that expressed the PfSec22 protein with GFP appended either to its C-terminus 

(PfSec22-GFP) or to the N-terminus (GFP-PfSec22). We confirmed the expression of both 

fusion proteins by immunoblot analyses using either anti-PfSec22 or anti-GFP antibodies. As 

shown in Fig. 12A, two protein bands corresponding to the expected sizes of the GFP-tagged 

proteins (~54 kDa) and the endogenous protein (26 kDa) were detected in each transgenic cell 

lysate using the anti-PfSec22 antibodies. In contrast, only the 54-kDa bands were detected in 

these extracts using the anti-GFP antibodies (Fig. 12A). These data established that full-length 

proteins were expressed in the respective cell lines, and that PfSec22 is not processed at the N-

terminus as has been reported for most PEXEL-containing proteins [243]. 

Live cell imaging of GFP fluorescence revealed significant differences in the distribution 

of the PfSec22-GFP and GFP-PfSec22 chimeras (Fig. 12B and 12C, respectively). In transgenic 

parasites expressing the C-terminally tagged protein, the GFP fluorescence was observed 

predominantly in the parasite cytosol (Fig. 12B). In some trophozoite-infected cells, representing 

about 10 % of the trophozoite-infected erythrocytes in culture, the GFP fluorescence was also 

detected inside the erythrocyte cytosol (Fig. 12B). In comparison, the N-terminally tagged 

protein (GFP-PfSec22) localized predominantly to ER-like structures in the parasite cytoplasm. 

Consistent with our immunofluorescence data, the GFP-PfSec22 also associated with TVN-like 

extensions and mobile vesicular elements inside the infected host cytoplasm (Fig. 12C and D). 
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We confirmed the identity of the PfSec22-associated structures by immunoelectron 

microscopy using gold-labeled anti-GFP antibodies. As shown in Fig. 13, the GFP-tagged 

protein was predominantly associated to the crescent-shaped ER in ring-stage parasites (Fig. 

13A), and to the perinuclear ER in early trophozoite cells. Development of the parasites through 

the late-trophozoite stage was accompanied by the generation of a complex network of vesicular 

elements at the parasite periphery, a subset of which was detected in the erythrocyte cytosol (Fig. 

13B and C). As indicated with the dotted arrow in Fig. 13C, the exported PfSec22-associated 

structures appeared to enter the erythrocyte cytosol via TVN-like protrusion of the vacuolar 

membrane. PfSec22-stained vesicles were also detected within the vacuolar space (Fig 13B), 

suggesting a two-step transport process for this tail-anchored membrane protein into the infected 

erythrocyte. 

Consistent with other previous EM studies, the unstacked Plasmodium Golgi was not 

obvious by our transmission electron microscopy analysis. To determine whether GFP-PfSec22 

also associates with the parasite Golgi, we investigated its co-localization with either PfErd2 

(cis-Golgi marker) or PfBip (ER marker). Immunofluorescence experiments were also 

undertaken using the anti-PfSec22 antibodies to validate the use of the GFP-tagged proteins in 

our study. As shown in Fig. 14, the GFP-PfSec22 chimera co-localized significantly with PfErd2 

and PfBip, suggesting that PfSec22 presumably cycles between the parasite ER and Golgi. The 

GFP-PfSec22 fluorescence also overlapped with the anti-PfSec22 antibody signal (Fig. 14), 

suggesting that both the tagged and untagged proteins were similarly targeted within the parasite. 

Taken together, our findings suggest that PfSec22 is predominantly a v-SNARE of the parasite 

ER/Golgi interface but which may play an additional role in vesicle traffic inside the infected 
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erythrocyte cytosol. These findings are consistent with presence of atypical sequence features in 

PfSec22, notably the recessed N-terminal hydrophobic signal and the PEXEL-like motif. 

2.4. DISCUSSIONS 

Until now, little is known about the protein trafficking machineries that mediate the 

vectorial transport and fusion of transport vesicles in P.falciparum-infected cells. Moreover, no 

studies have been undertaken to identify and characterize the role of SNARE proteins in the 

unique protein trafficking pathways of this important human parasite. Exhaustive analyses of the 

P. falciparum genome database using various bioinformatics approaches have enabled us to 

identify 18 putative SNARE proteins that presumably represent a subset of SNARE-like proteins 

in the malaria parasite, when considering the multitude of trafficking pathways in P. falciparum-

infected cells. Asexual forms of this malaria parasites target nuclear-encoded proteins to several 

unique destinations within its cytoplasm that include the digestive food vacuole, micronemes, 

rhoptries and dense granules, and to parasite-induced compartments of the infected host cell that 

include the TVN, Maurer‟s clefts and knob structures. To compensate for the multiplicity of 

transport pathways in this organism, members of the PfSNARE family presumably might 

participate in more than one transport route and might form novel SNARE complexes at the 

parasite-specific pathways. Alternatively, the malaria parasite might have evolved other proteins 

with SNARE-like activities to compensate for its unique transport pathways. This argument is 

supported by observations in both yeast and mammals that the „SNAREs‟, use1 and Sec20, are 

two unconventional fusogens that assemble into SNARE complexes with Sec22p and Syn18 but 

which contain no defined SNARE motifs structure. In spite of the conserved organization of the 
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SNARE motifs in P. falciparum, a significant degree of sequence divergence was observed in the 

PfSNARE family when compared with their human orthologs (table 1). This is consistent with 

the general observation that SNARE proteins from distantly related organisms share little 

sequence identity. For instance, yeast and human Bet1p share only 20.6% identity in their 

respective SNARE motifs. Similarly, yeast and human Sec22 are only 32.8% identical. It thus 

appears that the SNARE activity of a protein is conferred by structural organization of the 

SNARE motif rather than the amino acid composition.  

Members of the PfSNARE family also exhibit novel features that include 1) the presence 

of atypical amino acid residues at the zero layer position of some proteins, 2) the unusual 

presence of two hydrophobic domains and PEXEL-like sequences in some proteins, 3) the 

occurrence of low-complexity regions in some members, and 4) the occurrence of unusually 

large-size proteins in the PfSNARE family. Atypical zero layer amino acids have been reported 

in some members of both yeast and human SNAREs and include aspartate residues in human 

Vti1 and Slt1[81, 237], and serine in yeast Bet1p [244]. Asparagine and histidine residues have 

also been reported among syntaxin subfamily members in some protozoa, and in some 

synaptobrevins of the ciliate Paramecium tetraurelia [238, 245]. 

Prediction of transmembrane (TM) domains revealed that 13 of the 18 PfSNAREs might 

be „tail-anchored in P. falciparum, consistent with a requirement as membrane fusion proteins. 

We employed the ConPred II system to locate the putative TM domains in each PfSNARE. 

ConPred II is a consensus prediction system that utilizes 9 different prediction algorithms (see 

methods section) to locate TM domains of proteins with 100% accuracy [226]. Most SNAREs 

contain a C-terminal hydrophobic segment, which is thought to serve as a membrane anchor and 

signal for entry of the protein into the secretory system [132, 246, 247]. Surprisingly, 3 
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PfSNAREs (PfSec22p, PfVamp7p, and PfSyn13p) were predicted to contain a second TM 

domain that could be found at variable distances upstream of the SNARE motif sequence. To our 

knowledge, no SNARE proteins have yet been identified that contain more than one TM domain. 

Detailed studies are needed to understand the functional significance of these unique structural 

features and to determine whether or not they can be exploited for drug discovery. 

A few localization studies have revealed that some components (COPII and NSF 

proteins) of the P. falciparum ER-to-Golgi vesicle trafficking machinery also associate with 

membrane-bound structures in the infected host cell compartment [62, 248]. To determine 

whether P. falciparum homologues of ER/Golgi SNARE also exhibit unusual localization 

patterns in the infected erythrocytes, we investigated the distribution pattern of the atypical 

PfSec22 protein in both wild-type and transgenic parasites. In mammals, Sec22b localizes to the 

ER, the intermediate compartment, and to the cis-Golgi interface where it participates in two 

distinct SNARE complexes involved in anterograde ER-to-Golgi traffic (Sec22b, Syn5, Bet1 and 

GS27) and retrograde transport from cis-Golgi back to the ER (Sec22b, Use1, Sec20 and Syn18). 

In these complexes Sec22b functions as a t-SNARE for the COPII-derived vesicles and as a v-

SNARE for the retrograde COPI-derived vesicles [84]. In yeast, Sec22p functions as the v-

SNARE in both the anterograde and retrograde transport pathways. Our data revealed that 

PfSec22 is a v-SNARE that presumably cycles between the ER and cis-Golgi, and associates 

partially with mobile vesicles in the host cell compartment. The association of PfSec22 with 

membrane-bound vesicles was confirmed by transmission electron microscopy using monoclonal 

anti-GFP antibodies. PfSec22-containing vesicles were detected within the parasitophorous 

vacuolar space, suggesting a two-step model for export of the tail-anchored SNARE protein in 

the intracellular malaria parasite.  
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Although the significance of PfSec22 export in P. falciparum has not yet been 

investigated in this study, it is conceivable that this v-SNARE might play a role in regulated 

export of parasite components into the infected host cell, presumably, by interacting with other 

exported t-SNAREs. Our study is the first report of an exported SNARE protein in Plasmodium 

parasites, leading the way for identification of novel eukaryotic SNARE functions in the malaria 

parasite. 
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Table 1: Nomenclature and sequence features of PfSNAREs 

Names were assigned to the PfSNAREs based on their sequence identities with individual human 

SNARE protein motifs, determined by MegALIGN (DNASTAR) ClustalW multiple sequence 

alignment analyses. The SNARE motifs and hydrophobic (transmembrane) domains were 

identified on each PfSNARE using ScanProsite and ConPred_all consensus prediction methods, 

respectively. The PEXEL and recessed signal sequences were located using the MALSig malaria 

signal prediction algorithm. Absence of each of the analyzed sequence features, or disagreement 

between more than 50% of the prediction algorithms employed is indicated “none”. 
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Table 1: Nomenclature and sequence features of PfSNARE  

PfSNARE Gene ID Accession no. Size 

(aa) 

SNARE 

motif  

TMDs PEXEL 

motifs 

% identity with 

human 

PfBet1 PF14_0500 DQ649415 163 104-157 None none Bet1 (24.1%) 

PfGS27 PF11_0119 DQ649430 289 205-258 265-285 none GS27 (33.3%) 

PfSec22 PFC0890W DQ649420 221 139-192 58-78 & 

198-218 

RSIIE Sec22b (35.2%) 

PfSNAP23 MAL13P1.113 DQ649423 198 28-81 & 

142-195 

none none SNAP23 (29.6%) 

PfSyn2 PFL0505C DQ649429 310 221-274 283-303 none Syn2 (27.8%) 

PfSyn3 PF14_0535 DQ649414 967 535-588 none none Syn3 (18.5%) 

PfSyn5 MAL13P1.169 DQ649424 281 199-252 259-279 none Syn5 (35.2%) 

PfSyn6 PFE1505W DQ649418 225 145-198 203-223 none Syn6 (25.9%) 

PfSyn11 PF14_0300 DQ649427 442 353-406 417-437 none Syn11 (31.5%) 

PfSyn13 PF11_0052 DQ649428 336 240-293 4-24, 303-

323 

RNITE Syn13 (24.1%) 

PfSyn16 PFL2070W DQ649425 302 216-269 279-299 none Syn16 (40.7%) 

PfSyn17 PFB0480W DQ649426 314 227-280 289-309 none Syn17 (35.2%) 

PfSyn18 MAL13P1.365 DQ649416 441 360-413 418-438 none Syn18 (20.4%) 

PfVti1 PF14_0464 DQ649417 253 135-188 199-219 RNLSE Vti1b (22.2%) 

PfVAMP7 MAL8P1.21 DQ649422 276 194-247 110-130, 

253-273 

none VAMP7 (16.7%) 

PfVAMP8 MAL13P1.16 DQ649421 208 123-176 186-206 none VAMP8 (31.5%) 

PfYkt6.1 PFI0515W DQ649419 199 137-190 none none Ykt6 (29.6%) 

PfYkt6.2 MAL13P1.135 DQ649413 221 161-214 none none Ykt6 (46.3%) 
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Fig 6: Expression analysis of PfSNAREs by RT-PCR 

Complimentary DNAs (cDNAs) were amplified from asexual parasite mixed-stage total RNA 

using gene-specific primers and a single-tube RT-PCR approach as described under “Materials 

and Methods”. In the „control‟ reaction, the StrataScript Reverse Transcriptase enzyme was 

replaced with an equal volume of RNase-free water in the presence of the PfSec22 primer sets. 

Molecular size standards (MW in kilobase pairs) are indicated on both sides of the gel. 
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Fig 7: Sequence alignment of PfSNARE core motifs 

The various conserved layers were numbered according to Fasshauer et al [104]. The different 

colors represent 1) the hydrophobic heptad repeats (orange color), 2) the conserved arginine 

residue of R-SNAREs (pink), 3) the conserved glutamine residue of Q-SNAREs (green), and 4) 

the atypical zero layer residues (blue). PfSNAP23p-n refers to the N-terminus SNARE motif of 

PfSNAP23p while PfSNAP23p-c refers to its C-terminus motif 
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Figure 7: Sequence alignment of PfSNARE core motifs 
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Fig 8: Phylogenetic analysis of PfSNARE subfamilies 

The phylogenetic tree was constructed using DNASTAR MegAlign program (ClustalW, 

slow/accurate/Blosum). Branch lengths represent the evolutionary distance. 
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Figure 8: Phylogenetic analysis of PfSNARE subfamilies 
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Fig. 9: Yeast expression of PfSec22 and complementation analysis 

A temperature-sensitive sec22-3 strain was transformed with either empty pMET25-3xHA 

plasmid (3xHA), wild-type epitope-tagged Sec22 (HA-ScSec22), or HA-tagged PfSec22 cDNA 

(HA-PfSec22). Growth was tested at the permissive temperatures 25
o
C (A) and 30

o
C (B), or at 

the restrictive temperature 37
o
C (C) for up to 72 hours following transformation. Expression of 

the triple-HA tag in each cell line was verified by Western blot analyses using polyclonal anti-

HA antibodies (D). Unlike the yeast Sec22p protein (HA-ScSec22), which conferred 

complementation of the Sec22-3 allele at the restrictive temperature, the HA-PfSec22 yeast cells 

were inviable at this temperature presumably due to failure of these cells to express the AT-rich 

(76% AT) PfSec22 gene construct. 
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Figure 9: Yeast expression of PfSec22 and complementation analyses 
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Figure 10: Western blot analysis of PfSec22 expression in P. falciparum asexual stages 

Antibodies were generated against a peptide sequence located within the non-conserved region 

of PfSec22 and affinity purified as described in the „Materials and Methods‟ section. 

Immunoblot analysis of parasite extracts shows expression of the endogenous PfSec22 protein in 

ring (R), trophozoite (T), and schizont (S) stage parasites. Absence of antibody reaction with the 

uninfected erythrocyte lysate (UE) indicates high specificity of the antibodies to PfSec22 

proteins. 



69 

 

Figure 10: Western blot analysis of PfSec22 expression in P. falciparum asexual stages 



70 

Figure 11: Immunolocalization and membrane-association of PfSec22 

(A) Immunofluorescence analyses of P. falciparum-infected erythrocytes using anti-PfSec22 

antibodies and goat anti-rabbit Alexa Fluor-555 secondary antibodies. An intense ring of 

PfSec22 fluorescence is visible in ring and trophozoite infected cells. Isolated foci of PfSec22 

fluorescence (black arrow) are also detected in the host cell compartment in trophozoite-infected 

cells suggesting export of PfSec22 into the erythrocyte cytosol. (B) Membrane association of 

PfSec22. Saponin-purified parasites were lysed by freeze–thaw/sonication, and then centrifuged 

to separate the membrane-anchored proteins (P1) from the soluble cytosolic and lumenal proteins 

(S1). Integral membrane proteins (P2) were separated from the peripheral membrane proteins 

(S2) by alkaline extraction with 0.1 M Na2CO3 solution at pH 11. The solubility profiles of the 

integral membrane proteins were further analyzed by Triton-X114 extraction to separate the 

hydrophilic proteins in the aqueous (aq) phase from the hydrophobic proteins (hy) in the 

detergent phase.  Normalized volumes of the samples pairs were loaded into each well and 

immunoblotted with antibodies against the PfSec22 protein, the soluble protein PfBip, or the 

integral membrane protein marker PfErd2. Thirty-five micrograms of the freeze-thaw lysate were 

loaded in the lane denoted L. (C) The association of PfSec22 with the parasite ER was 

investigated by co-immunofluorescence analysis using rabbit anti-PfSec22 and rat anti-PfBip 

antibodies as indicated. Both proteins co-localized significantly to membrane profiles inside the 

parasite cytoplasm.Scale bars, 2µm 
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Figure 11: Immunolocalization and membrane-association of PfSec22 
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Figure 12: Transgene expression and live cell imaging of GFP-tagged PfSec22 proteins 

(A) Immunoblot analyses using anti-PfSec22 antibodies (left blot) or monoclonal anti-GFP 

antibodies (right blot) confirms expression of the N-terminal GFP-tagged PfSec22 (N-GFP) and 

the C-terminal GFP-tagged PfSec22 (C-GFP) proteins (~54 kDa) in the respective transgenic cell 

lines but not in untransfected parasites (3D7). The anti-PfSec22 antibodies also detected a ~26 

kDa protein in whole cell extracts from all three cell lines that corresponds to the untagged 

PfSec22 protein. (B) Live cell imaging of parasites expressing the C-terminal GFP-tagged 

PfSec22 (PfSec22-GFP), showing diffuse localization of the protein throughout the parasite 

cytoplasm, and export in trophozoite-infected cells. (C) Confocal micrographs showing 

localization of the N-terminal GFP-tagged protein (GFP-PfSec22) in early- (first row) and mid-

trophozoite (second row) stage parasites. In addition to the ER-like profiles, GFP-PfSec22 

associates with tubovesicular elements in the infected host cell. The micrographs represent 

differential interference contrast (DIC), GFP fluorescence, and a merge between the two. (D) 

Association of GFP-PfSec22 with mobile extraparasitic vesicles. Images were captured at regular 

time intervals as indicated on each micrograph. Scale bars, 2 m. 
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Figure 12: Transgene expression and live cell imaging of PfSec22 proteins 
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Figure 13: Cryo-immunoelectron microscopy of GFP-PfSec22 

Ultrathin cryosections of the GFP-PfSec22 expressing cells were probed with monoclonal anti-

GFP antibodies followed by immunogold detection using gold (12nm)-labeled anti-mouse 

secondary antibodies. (A) Association of GFP-PfSec22 with ER-derived transition vesicles 

(black arrowhead). (B) Association of GFP-PfSec22 with membrane-limited vesicles (white 

arrowheads) in the host cell compartment. (C) Association of GFP-PfSec22 with the TVN-like 

extension (dotted arrow) and membrane-bound vesicles (white arrowhead) in the infected 

erythrocyte cytosol. N: nucleus, MC: Maurer‟s cleft, RBC: red blood cell cytosol. Scale bars are 

500 nm in (A) and 100 nm in (B) and (C). 
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Figure 13: Cryo-immunoelectron microscopy of GFP-PfSec22 
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Figure 14: Co-immunofluorescence analysis of GFP-PfSec22 

Immunoflorescence micrographs showing co-localization of GFP-PfSec22 with PfErd2 (top row) 

and PfBip (ER marker, middle row). The untagged and GFP-tagged PfSec22 both co-localize 

significantly within the parasite cytoplasm as determined by labeling with the anti-PfSec22 

antibodies. Scale bars, 2µm. 
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Figure 14: Co-immunofluorescence analysis of GFP-PfSec22 
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CHAPTER 3:  

DETERMINANTS OF SEC22 TRAFFICKING IN P. FALCIPARUM  

3.1. SUMMARY 

In this study, we identified a Sec22 ortholog in Plasmodium falciparum (PfSec22) that 

contains an atypical insertion of the Plasmodium export element within the longin domain 

preceded by an N-terminal hydrophobic segment. We also showed that PfSec22 cycles 

predominantly between the ER and Golgi compartments in the malaria parasite, and partially 

associates with mobile vesicular elements in the infected host cell. Here, we have investigated 

the role of (1) the C-terminal hydrophobic domain, (2) the PEXEL motif, (3) the atypical longin 

domain, and (4) the N-terminal hydrophobic segment in PfSec22 trafficking in asexual forms of 

the malaria parasite. Transgenic parasites were developed that expressed N-terminally tagged 

GFP-PfSec22 mutants and examined by live confocal microscopy. Our data suggest that ER exit 

of PfSec22 is regulated by motifs within the 3 segment of the longin domain, deletion of which 

resulted in ER retention of the protein. The data further suggest that export of PfSec22 beyond 

the parasite ER/Golgi interface occurs independent of its membrane insertion and that the 

PEXEL-like motif is non-essential in the putative export process. Additionally, we showed that 

the N-terminal hydrophobic segment that is located within the 3 segment of the longin domain 

plays a crucial role in export of PfSec22 to the host cell and in retrograde transport from the 

Golgi back to the ER. Deletion of this region resulted in retention of the protein in the Golgi. The 

association of the N-terminal hydrophobic domain mutant with Golgi was analyzed by brefeldin 

A treatment and by sucrose density gradient fractionation of organellar compartments. Our study 

is the first report of the involvement of the longin domain in retrograde transport of Sec22 v-
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SNARE to the ER, and provides new insights in protein targeting along the secretory system in 

malaria parasites. The data however suggest major differences between the PfSec22 longin 

domain and orthologues in yeast and humans, perhaps indicative of novel Sec22 trafficking 

mechanisms in Plasmodium parasites. 

3.2. MATERIALS AND METHODS 

3.2.1. Sequence analysis and homology modeling of PfSec22 longin domain 

Multiple sequence alignments were performed by CLUSTALW (Megalign DNASTAR) 

using the PfSec22, human Sec22b and yeast Sec22p polypeptide sequences to identify structural 

features that are unique to the P. falciparum Sec22 protein. To highlight the unique structural 

differences, and potential role of the PfSec22-specific structures, the protein was modeled by 

SWISS-MODEL 8.05 using the crystal structure of Sec22b as template [138, 249]. 

3.2.2. Deletion constructs and site-directed mutagenesis 

Transfection plasmids were designed to express green fluorescent protein (GFP)-tagged 

Sec22 mutant proteins under the control of the endogenous promoter sequence. The primer set 

5‟-GGAAGATCTATGTGCGATGTAGTATTACTT-3‟ and 5‟-

CCGCTCGAGTTATTTTAGATTTAATACCCTTGA-3‟ was used to generated the C-terminal 

hydrophobic domain mutant GFP-PfSec22 198-221 by PCR using the wild type pDC-GFP-

PfSec22 plasmid as template. Similarly, the primer set 5‟-

GGATCCAGCTTTTTTATTTTTAAACGAT-3‟ and 5‟-
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CCGCTCGAGTTAAAAATAATTTTTAAAAATTATAATT-3‟ was used to construct the GFP-

PfSec22Δ1-78 fusion genes from the wild type plasmid. DNA encoding amino acids 1-58 of the 

full length Sec22 protein was also amplified by PCR using primers 5‟-

GGAAGATCTATGTGCGATGTAGTATTACTT-3‟ and 5‟-

GGATCCAAAATGGTAATTAAAATTGTTAG-3‟ and subsequently ligated via the BamHI site 

at the 5‟-terminus of PfSec22Δ1-78, cloned in a pGEMT-Easy vector. The resulting 

PfSec22Δ58-78 fusion construct was then subcloned into pDC2-0.995 vector to obtain the GFP-

PfSec22 58-78 mutant construct. Deletion of the entire longin domain sequence was achieved 

by PCR using the primer set …., and the resulting fragment was subcloned at the BglII/XhoI site 

of pDC2-0.995 vector. The GFP-PfSec22Δ198-221.PEXEL(R>A) construct was generated from 

the GFP-PfSec22 198-221 mutant plasmid by site-directed mutagenesis of the PEXEL motif-

specific arginine, replacing it with an alanine codon. All constructs were confirmed by 

sequencing prior to transfection of P. falciparum 3D7 parasites. Ring stage parasites were 

transfected by electroporation (Biorad Gene pulser II at 0.31kV, 950 F, maximum capacitance) 

using 100µg of purified plasmid (Qiagen Maxiprep kit). Positive selection for transfected 

parasites was achieved using 2.5 nM WR99210 as previously described [250, 251]. 

3.2.3. Live cell imaging and immunofluorescence analyses of PfSec22 mutants 

Both live and fixed cells were examined using a laser scanning confocal microscope 

(LSM 510, Carl Zeiss). The excitation/emission spectra settings were 488/505 nm for GFP, 

543/555 for Alexa Fluor-555 conjugated antibodies, or 543/594 nm for Alexa Fluor-594 

conjugates. To image live parasites, the cells were mounted under a cover slip in 50% glycerol 

and observed within 15 minutes of removal from cultures. Immunofluorescence assays were 



81 

performed in suspension as previously described by Tonkin et al [215]. Briefly, the cells were 

washed once with phosphate-buffered saline (PBS) and subsequently fixed with a solution 

containing 4% paraformaldehyde + 0.0075% glutaraldehyde in PBS for 30 min at room 

temperature. Following one wash with PBS, the cells were permeabilized with 0.1% Triton X-

100 for 10 min, followed by reduction of excess aldehydes with sodium borohydride at 0.1 

mg/ml, and blockage of nonspecific binding sites with 3% BSA in PBS at room temperature for 

1 h. For co-localization analyses, the cells were probed with appropriate antibodies (1° and 2°) in 

PBS containing 3% BSA at 4ºC overnight followed by three washes with PBS. Rabbit anti-

PfErd2 (MRA-1) and rat anti-PfBip (MRA-19) antibodies were obtained from the Malaria 

Research and Reference Resource Center (MR4) and were each used at a dilution of 1 in 1,000. 

The secondary antibodies were goat anti-rabbit Alexa-Fluor-555, or goat anti-rat Alexa Fluor-

594 (Molecular Probes), each used at a dilution of 1 in 1,000 for 1 hour at room temperature. 

After washing three times with plain PBS, the cells were allowed to adhere to polyethyleneimine 

(PEI)-coated cover slips at room temperature for 15-20 minutes. The coverslips were rinsed with 

PBS and were mounted onto a glass slide with 50% glycerol containing 0.1 mg/ml of 1,4-

diazabicyclo (2,2,2) octane (Sigma). 

3.2.4. Sucrose density gradient centrifugation and immunoblot analyses 

250 mg of saponin-isolated parasites were resuspended in ice-cold TBS buffer, 

containing protease inhibitor cocktail (Roche) in the presence of 2 mM EDTA or 5 mM MgCl2 

and incubated on ice for 30 minutes. Cells were disrupted by 5 freeze-thaw cycles and then 

cleared at 10,000 X g for 5 minutes at 4
o
C. The suspension was then adjusted to 47% sucrose and 

deposited (1.5 ml final volume) at the bottom of a discontinuous sucrose gradient comprising 1 
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ml of 40% sucrose, 1 ml of 35% sucrose, 0.75 ml of 25% sucrose, and 0.75 ml of 20% sucrose. 

The gradient was centrifuged at 100, 000 X g for 16 hours at 4
o
C in a Beckman SW50.1 rotor, 

and fractionated into 0.5 ml aliquots by piercing the bottom of the tube using a fraction recovery 

system (Beckman). Equal volumes of fractions were analyzed by immunoblotting using either 

the anti-PfSec22, or anti-PfErd2, or anti-PfBip antibodies, each at a concentration of 1 in 1000.  

3.2.5. Effect of Brefeldin A 

To confirm the association of the GFP-tagged proteins with the Golgi and transitional 

vesicles, we investigated the effect of the vesicle transport inhibitor brefeldin A on their steady-

state dynamics [252-254]. GFP-expressing cells were cultured in the presence of BFA (5µg/ml) 

for one hour at 37
o
C and examined by live confocal microscopy or by immunofluorescence 

analysis using antibodies to the Golgi-resident protein PfErd2. Control experiments consisted of 

the same cultures prepared in equivalent amounts of the drug solvent. 

3.3. RESULTS 

3.3.1. The P. falciparum Sec22 homologue exhibits novel features 

Multiple sequence alignment and homology modeling of the PfSec22 protein revealed 

major structural differences when compared to the human and yeast orthologues. As shown in 

Fig. 15 A and B, the N-terminal longin domain of PfSec22 contains a decapeptide sequence 

insertion, located at an unusual loop-like region between the 2 and 3 segments, that contains 

the PEXEL-like motif (
105

RSIIE
109

). This motif is preceded by a stretch of hydrophobic residues 
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located within the 5 segment of the longin domain (Fig. 15A). Prediction analyses using the 

Malaria Signal prediction algorithm (MalSig) suggested that the N-terminal hydrophobic 

segment might function as a recessed transport signal for PfSec22 targeting into the parasite‟s 

default export pathway (prediction probability = 0.8192).  

PfSec22 also contains a C-terminal hydrophobic segment that presumably serves as a 

membrane anchor, and might also double as a targeting signal. In this study, we investigated the 

role of the C-terminal hydrophobic domain, the atypical longin domain, the N-terminal 

hydrophobic domain, and the PEXEL motif in PfSec22 trafficking in transgenic malaria 

parasites. 

3.3.2. The C-terminal hydrophobic domain is required for membrane insertion of PfSec22 

To investigate whether or not the putative C-terminal transmembrane domain is a 

determinant for PfSec22 targeting in the malaria parasite, we developed a transgenic cell line 

expressing the deletion mutant GFP-PfSec22 198-221 (see schematic diagram in Fig. 16). As 

shown in Fig. 16, deletion of this C-terminus hydrophobic segment (amino acids 198 to 221) 

resulted in a cytosolic protein that was also released into the erythrocyte cytosol in a pattern 

similar to the C-terminally tagged full-length protein (compare Fig.12B and Fig. 16). These 

results suggest that the C-terminal hydrophobic segment is required for PfSec22 targeting to the 

parasite ER/Golgi interface and membrane-integration of the protein. The data further suggest 

that the occasional export of PfSec22 into the infected erythrocyte may involve processes 

independent of its membrane integration.  
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3.3.3. PfSec22 export into host cells occurs independently of the PEXEL motif 

To investigate the role of the PEXEL-like sequence (RSIIE), we mutated the PEXEL 

arginine residue using the GFP-PfSec22 198-221 construct. This mutant construct was selected 

over the wild type construct because the expressed GFP-PfSec22 198-221 protein was relatively 

more predominant in the host cell (~10% of trophozoite-infected cells) than the wild type protein 

(~5% of infected erythrocytes cells). The critical role of the PEXEL arginine in N-terminal 

processing and translocation of canonical PEXEL motif-containing proteins across the PVM has 

previously been demonstrated [164, 243, 255]. Replacement of this conserved residue in the 

exported proteins GBP130, KAHRP, or in STEVOR inhibits transport to the erythrocyte cytosol, 

and accumulation at the ER. Additionally, such mutations ablate the proteolytic cleavage of the 

proteins at the PEXEL motif [164]. In our study, replacement of the PEXEL-like arginine in 

PfSec22 with alanine (GFP- PfSec22 198-221.PEXEL(R>A)) did not inhibit export of the 

cytosolic protein to the host cell cytoplasm (Fig. 17). These findings suggest that the PfSec22 

PEXEL-like sequence is inactive in the protein export processes. Alternatively, this motif plays a 

non-essential role in PfSec22 export to the host cell cytoplasm. 

3.3.4. The longin domain is critical for ER/Golgi recycling and partial export of PfSec22 

To determine the role of the longin domain in PfSec22, we generated transgenic parasites 

expressing GFP-tagged mutants, lacking either the first 78 amino acid residues of the protein 

(GFP-PfSec22 1-78 mutant) or the entire longin domain (GFP-PfSec22 1-124). As shown in 

Fig. 18A, truncation of the longin domain at position 78 dramatically shifted the steady-state 

accumulation of the v-SNARE from the ER to the Golgi. These findings suggest that GFP-
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PfSec22 1-78 presumably has a preference for the parasite Golgi and that residues 1-78 might 

encode signals required for ER retrieval of PfSec22. Interestingly, deletion of the entire longin 

domain at position 124 resulted in retention of the GFP-PfSec22 1-124 protein in the ER (Fig. 

19). Together, these results suggest that the C-terminal end of the longin domain (residues 78 to 

124), corresponding to the 3 segment, is critical for ER exit of the PfSec22. Both the GFP-

PfSec22 1-78 and GFP-PfSec22 1-124 deletion mutants did not traffic into the host erythrocyte 

cytosol as observed with the wild-type protein and the C-terminal hydrophobic domain mutants. 

These results suggest that the PfSec22 longin plays a critical role in ER/Golgi recycling of the 

protein as well as export to the host erythrocyte cytoplasm. 

3.3.5. The N-terminal hydrophobic domain is required for PfSec22 exit from the Golgi 

Our findings that N-terminus sequence from amino acids 1 to 78 was required for Golgi-

to-ER recycling of PfSec22 suggested that the retrieval signal is located in this region. 

Additionally, domain mapping and prediction analyses also suggested that the N-terminal 

hydrophobic segment might potentially serve as a recessed export motif for PfSec22 in malaria 

parasites. To investigate the role of this domain in PfSec22 trafficking, we developed minimized 

deletion mutant lacking only the N-terminal hydrophobic segment (GFP-PfSec22 58-78 

mutant). As shown in Fig 20, the 58-78 deletion resulted in a Golgi localization of PfSec22, 

similarly to the GFP-PfSec22 1-78 mutant. 

The Golgi targeting of the GFP-PfSec22 58-78 mutant was further investigated by 

sucrose density gradient fractionation of organellar compartments, and by brefeldin A (BFA) 

inhibition assays. To overcome common difficulties in resolving the parasite ER from other 
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membrane-bound compartments, the co-fractionation experiments were done in the presence of 

the chelating agent EDTA, or in the presence of the rough ER stabilizing agent MgCl2 [256, 

257]. By this approach, a redistribution of the PfSec22 proteins alongside the ER marker PfBip, 

from a low-density fraction (in the presence of EDTA) to a high-density fraction (in the presence 

of MgCl2), suggested its association with the rough ER. To validate our ER-redistribution assay, 

we used the wild-type GFP-PfSec22 expressing cell line. Samples from equal volumes of the 

sucrose gradient fractions were analyzed by Western blot using the anti-PfSec22, anti-PfBip (ER 

marker), or anti-PfErd2 (Golgi marker) antibodies. As shown in Fig. 21A, treatment of the wild-

type parasites with EDTA resulted in enrichment of both the endogenous (PfSec22) and GFP-

tagged (GFP-PfSec22) proteins at two different zones: a low-density zone (fraction 6 and 7) and 

a high-density zone (fraction 2, 3 and 4). Both zones were also detected using the anti-PfBip 

antibodies but not the anti-PfErd2 antibodies, suggesting that these zones represent the ER-

containing fractions. In contrast with PfBip that completely redistributed to the high-density zone 

upon MgCl2 treatment, both the endogenous (PfSec22) and GFP-tagged (GFP-PfSec22) proteins 

only partially redistributed from the low-density zone (Fig. 21B). The remaining PfSec22 signals 

at the low-density zone presumably represent transport vesicles, or lipid-rich containers. 

Unlike the wild-type PfSec22 proteins from the GFP-PfSec22 expressing parasites, the 

buoyant density of the GFP-PfSec22 58-78-associated compartments in the mutant cell line did 

not change in the presence of EDTA or MgCl2 (Fig. 21C and D). This mutant protein 

consistently was enriched in the high-density (low lipid content) fractions, similarly to the Golgi 

protein PfErd2. The results strongly support our immunofluorescence data, indicating that the N-

terminal hydrophobic segment resides predominantly in the Golgi. A small proportion of the 

mutant protein also remained in the low-density zone, consistent with an association with 



87 

transport vesicles or other lipid-rich structures. In support of the Golgi retention of the 

hydrophobic domain mutant, treatment of the parasites with brefeldin A (BFA) for 1 hr resulted 

in partial redistribution of the protein back to the ER (Fig. 22), a phenomenon typical of most 

Golgi-localized proteins including the cis-Golgi marker PfErd2 [253]. 

Together, the above data suggest that the ER exit of PfSec22 occurs independently of 

residues 1 to 78 of the longin domain and that the N-terminal hydrophobic segment (amino acid 

58-78) is required for Golgi-to-ER recycling of the v-SNARE and export to the host erythrocyte 

cytoplasm. 

3.5. DISCUSSIONS 

Our findings that the longin domain of PfSec22 contains atypical features and associates 

with vesicular structures within the infected erythrocytes have led us to investigate the 

trafficking determinants of this v-SNARE. Our data strongly suggest that export of PfSec22 into 

the infected host cell is independent of its membrane-insertion, and N-terminal processing of the 

PEXEL/VTS sequence. Presumably, export of PfSec22 might involve processes similar to those 

that are utilized by several non-PEXEL/VTS motif-containing proteins that also lack the 

functional N-terminal signal sequence. These exported proteins include the Maurer‟s cleft-

associated proteins PfSBP1 and PfMAHRP-1, and the ring-exported proteins PfREX-1 and 2. 

The trafficking pathways and signals that are involved in export of these non-PEXEL/VTS 

containing proteins to the host cells are poorly understood. It has been suggested that the 

transmembrane domain and second half of the N-terminus of PfMAHRP-1 contain the putative 

targeting signals [258]. For PfREX-1, a stretch of hydrophobic amino acids and an additional 10 
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amino acid residue seem to be important for export [259]. Unlike PfMAHRP-1, PfREX-1 

appears to cross the secretory pathway in a soluble state and only after delivery into the 

erythrocyte cytosol does it associate with the MC via a coiled-coil motif [259]. PfSBP1 contains 

a transmembrane domain which is thought to be required for entry into the parasite‟s secretory 

pathway. It is also believed that additional domains in the PfSBP1 polypeptide that affect the net 

charge distribution, the solubility profile, and membrane topology of the protein also play a role 

in sorting beyond the parasite plasma membrane [260]. 

In an attempt to decipher the trafficking determinants of PfSec22, we investigated the 

role of the N-terminal longin domain and N-terminal hydrophobic segment. Truncation of the N-

terminal longin domain at position 78 or 124 of the polypeptide chain, or deletion of the N-

terminal hydrophobic segment resulted in inhibition of PfSec22 export into the infected host cell, 

suggesting that the N-terminal segment is required for export beyond the RG/Golgi interface. 

Additionally, deletion of the entire longin domain, but not the N-terminal truncation, resulted in 

retention of the protein in the ER. In yeast and mammals, ER exit of Sec22 is believed to involve 

a conformational epitope formed by interaction of motifs within the second half of the longin 

domain and the SNARE motif [137, 138, 261]. Deletion of the entire longin domain or mutation 

of the conserved residues in yeast and mammalian Sec22 proteins results in retention of the 

protein at the ER. This putative ER export motif is located within the 3 segment of the PfSec22 

longin domain and is characterized by the conserved amino acids I118 and D121. 

Truncation of the N-terminal longin domain at position 78 of the protein (GFP-

PfSec22 1-78) resulted in export from the ER and retention in the Golgi. We interpreted this 

data as evidence for a defective recycling of the mutant proteins from the Golgi back to the ER. 

In yeast, recycling of Sec22p requires interactions with the COPI budding complex and with the 
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SNARE proteins Ufe1 and Sec20 [242]. Until now, no studies have identified the retrieval signal 

of the Sec22 gene products. Expression of yeast Sec22p in sec20-1 or ufe1-1 deficient cells, or in 

the COPI (sec21-1 and sec27-1) deficient cells, results in accumulation of the protein in the 

Golgi and a lack of ER staining by anti-Sec22 antibodies [242]. It is, therefore, likely that 

recycling of PfSec22 may involve interactions between sequence motifs in the N-terminal region 

and Plasmodium homologues of the COPI complex and the SNARE proteins. 

Deletion of the N-terminal hydrophobic domain alone similarly prevented PfSec22 

recycling to the ER, suggesting that the retrieval signal for PfSec22 in located within the N-

terminal hydrophobic segment. To our knowledge, this study provides the first experimental 

evidence for the role of the Sec22 longin domain in retrograde transport of the v-SNARE, and is 

the first detailed analysis of SNARE protein targeting in malaria parasites. It is however not clear 

whether this N-terminal hydrophobic segment (amino acids 58-78) directly functions as a 

retrieval signal for PfSec22, or whether this region indirectly contributes to an overall structure 

that is required for the recycling and export processes. 
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Figure 15: Sequence analyses and homology modeling of PfSec22 longin domain 

(A) Sequence alignment of PfSec22 with its homologues in humans and yeast. Identical amino 

acids are highlighted in yellow while the PEXEL-like motif is shaded in red. The five beta 

strands ( 1-5) and three alpha helix ( 1-3) structures of the longin domain are indicated. Black 

boxes indicate the predicted hydrophobic segments (N-terminal hydrophobic and C-terminal 

hydrophobic segments). PfSec22 and human Sec22b are 30.9% identical; PfSec22 and yeast 

Sec22p are 26.2% identical. In comparison, the human and yeast Sec22 polypeptides are 37.2% 

identical. (B) Ribbon structures of human Sec22b and PfSec22 longin domains showing the 

location of the PEXEL-like motif (RSIIE). The PfSec22 structure was modeled via SWISS-

MODEL 8.05 using the human Sec22b sequence as template. 
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Figure 15: Sequence analysis and homology modeling of PfSec22 longin domain 
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Figure 16: Role of the C-terminal hydrophobic domain in PfSec22 trafficking 

Deletion of the C-terminal hydrophobic domain (GFP-PfSec22 198-221) resulted in a diffuse 

localization within the parasite cytoplasm and in the infected host cell in a pattern similar to that 

of the C-terminally tagged full-length protein (see Fig. 12). These results suggest that the C-

terminal hydrophobic domain plays an essential role in ER targeting and membrane-integration 

of PfSec22. Scale bars, 2 m. 
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Figure 16: Role of the C-terminal hydrophobic domain in PfSec22 trafficking 
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Figure 17: Export of PfSec22 PEXEL motif mutant into infected host cells 

Replacement of the PEXEL arginine with alanine (i.e RSIIE to ASIIE) did not inhibit export of 

the soluble GFP-PfSec22 198-221 protein to the erythrocyte cytoplasm at trophozoite stages, 

suggesting that the PEXEL-like motif might play a nonessential role in PfSec22 export into the 

infected host cells. Scale bars, 2 m. 
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Figure 17: Export of PfSec22 PEXEL motif mutant into infected host cells  
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Figure 18: Retention of the PfSec22∆1-78 deletion mutant in the Golgi 

Transgenic parasites were generated expressing a truncated PfSec22 mutant (GFP-PfSec22 1-

78) that lacks the N-terminal amino acid residues from position 1 to 78. Live imaging (top panel) 

and localization analyses using anti-PfErd2 antibodies confirm retention of the GFP-PfSec22 1-

78 protein in the Golgi. Scale bars, 2 m. 
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Figure 18: Retention of the PfSec22∆1-78 deletion mutant in the Golgi 
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Figure 19: Retention of the PfSec22∆1-124 deletion mutant in the ER 

Transgenic parasites were generated that express a deletion mutant of PfSec22 (GFP-PfSec22 1-

124) lacking the entire longin domain. This deletion mutant accumulated in the ER and was not 

export into the host cell. Scale bars, 2µm. 
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Figure 19: Retention of the GFP-PfSec22∆1-124 mutant in the ER 
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Figure 20: Retention of the N-terminal hydrophobic domain mutant in the Golgi 

Deletion of the N-terminal hydrophobic segment (amino acids 58 to 78) resulted in a Golgi 

localization of the the mutant protein (GFP-PfSec22∆58-78). The confocal micrographs 

represent the steady-state localization of the mutant protein in live parasites (top panel), co-

localization with the Golgi marker PfErd2 (middle panel) and co-staining with the ER marker 

PfBip (bottom panel). Scale bars, 2µm. 
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Figure 20: Retention of the N-terminal hydrophobic domain mutant in the Golgi 
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Figure 21: Differential fractionation of PfSec22 and PfSec22∆58-78 mutant 

Western blots showing co-fractionation of the endogenous PfSec22 protein with GFP-PfSec22 

(A and B), but not with the PfSec22∆58-78 mutant (C and D) in identical sucrose density 

gradients. Parasites were lysed in the presence of 2 mM EDTA (A and C), or in the presence of 

5 mM MgCl2 (B and D), and the effect of each reagent on the buoyant density of the proteins 

was detected by Western blot analyses of the density fractions. Numbers represent the fraction 

numbers, collected from bottom (fraction 1) to top (fraction 10) of a discontinuous sucrose 

density gradient consisting of 1.5 ml of 47%, 1 ml of 40%, 1 ml of 35%, 0.75 ml of 25%, and 

0.75 ml of 20% sucrose. GFP-PfSec22 and the untagged protein both partially redistributed to 

the high-density fractions (fractions 1-4) alongside PfBip in the presence of MgCl2 (B) 

suggestive of PfSec22 association with the ER. Compared to the untagged wild-type protein 

(PfSec22), which redistributed alongside PfBip in the presence of MgCl2, the GFP-PfSec22 58-

78 mutant was consistently detected in the high-density fractions in the presence of EDTA (C) or 

MgCl2 (D), suugesting its association with the Golgi. A small amount of PfSec22 proteins also 

associated with the low-density fractions (fractions 5-7) in both the EDTA and MgCl2-treated 

samples, suggesting an association with lipid-rich structures that presumably represent transport 

vesicles. 
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Figure 21: Differential fractionation of PfSec22 and PfSec22∆58-78 mutant  
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Figure 22: Effect of BFA on Golgi localization of the PfSec22∆58-78 deletion mutant 

Treatment of the GFP-PfSec22 58-78 expressing parasites with brefeldin A (BFA) resulted in 

partial redistribution of the mutant protein to the ER (top row), similarly to the Golgi-localized 

PfErd2 protein (bottom row). Treatment of the parasites with the drug solvent (0.5% methanol in 

RPMI medium) did not inhibit GFP-PfSec22 58-78 transport to the Golgi (data not shown). 

Scale bars, 2µm. 
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Figure 22: Effect of BFA on Golgi localization of PfSec22∆58-78 deletion mutant 
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CHAPTER 4:  

CHARACTERIZATION OF PFSEC22 INTERACTING PFSNARES 

4.1. SUMMARY 

SNARE proteins function in intracellular membrane traffic by selectively assembling into 

complexes that bridge vesicle and target membranes prior to fusion. In this study we identified a 

novel Sec22 gene product (PfSec22) that associates partially with mobile vesicular elements in 

P. falciparum-infected erythrocytes. Export of the v-SNARE in malaria parasites is unusual, 

suggesting a similar export of the PfSec22-interacting t-SNAREs into the infected host cell. In an 

effort to characterize the subunit components of the putative PfSec22 complexes, we investigated 

the interacting PfSNAREs by Far-Western analyses and surface Plasmon resonance spectroscopy 

using the purified recombinant proteins. We then generated transgenic parasites expressing the 

GFP-tagged PfSec22-interacting SNAREs for live cell imaging and localization analyses. 

Additionally, we investigated the in vivo binding potentials of the Q-SNAREs against the 

endogenously expressed PfSec22 protein by immunoprecipitation studies using anti-GFP 

antibodies. We found that the R-SNARE PfSec22 exhibits strong binding interactions with 

PfSyn5 (KD: 0.5µM), PfBet1 (KD: 1.6µM), PfSyn16 (KD: 2.3µM), PfSyn18 (KD: 3.4µM), 

PfSyn6 (KD: 3.8µM) and PfGS27 (KD: 4.1µM). Interaction of PfSec22 with the Syn16 and Syn6 

gene products is atypical. Our initial attempts to develop transgenic parasites expressing the 

GFP-tagged PfSyn16 and PfSyn6 proteins have been unsuccessful. Meanwhile, transgene 

expression of PfSyn5, PfGS27 and PfBet1 revealed Golgi localization of these three Q-SNAREs, 

consistent with a role in ER/Golgi transport. Treatment of the transgenic parasites with the 

vesicle traffic inhibit Brefeldin A resulted in partial re-distribution into the ER, suggestive of 
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their association with the early secretory pathway. Compared to GFP only controls, 

immunoprecipitation of the GFP-tagged chimeras resulted in PfSec22 pull-down in cell extracts 

from the PfSyn5, PfBet1 and PfGS27 expressing parasites, validating the interaction of these 

different PfSNAREs in vivo. Our data indicate a conserved ER-to-Golgi SNARE complex 

assembly in P. falciparum, and suggest that PfSec22 might form novel SNARE complexes in 

malaria parasites. 

4.2. MATERIALS AND METHODS 

4.2.1. cDNA cloning and expression of recombinant proteins 

cDNA encoding various PfSNAREs were obtained by reverse transcriptase PCR using 

the StrataScript Easy A one-tube RT-PCR system (Stratagene) and gene specific primers. For 

His-tagged proteins, the amplified open reading frames were cloned by ligation independent 

cloning (LIC) into either pET43.1EKLIC or pET50.1EKLIC vectors following the 

manufacturer‟s instructions (Novagen). GST-tagged gene constructs were generated by ligation 

of the amplified cDNA first into pGEMT Easy vector followed by subcloning into the Bam HI 

and Xho I sites of pGEX6P.1 vector. The recombinant plasmid DNAs were amplified in 

XL10Gold or Novablue E. coli cells and purified using the Qiagen Miniprep Plasmid Kit 

(Qiagen). 

The recombinant proteins were over-produced in BL21 (DE3) CodonPlus-RIPL E. coli 

cells using various optimum conditions. Briefly, overnight cultures of the recombinant bacteria 

were subcultured in 600ml of Luria Bertani (LB) media containing 100µg/ml ampicillin, 

34µg/ml chloramphenicol and 75µg/ml streptomycin at 37
o
C to an OD600 between 0.4 and 0.5. 
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Bacteria growth was continued for an additional 1 hr either at 37
o
C or 30

o
C or 20

o
C depending 

on pre-determined induction conditions followed by addition of isopropyl-thio-β-galactoside 

(IPTG) to a final concentration of 0.1mM (pGEX vectors) or 1mM for the pET vectors. The 

bacterial cells were harvested after 4hrs by centrifugation at 6,000rpm for 15 min at 4
o
C and 

resuspended in 30 ml of lysis buffer as described below. 

4.2.2. Affinity purification of fusion proteins 

For the His-tagged proteins, bacteria pellets in 50 mM Sodium phosphate, pH 7.6 

containing 300mM NaCl, 50U Benzonase, 0.1mg/ml lysozyme and Complete EDTA-free 

protease inhibitors (Roche) were lysed by French press (3 times at 1500 psi) and clarified by 

centrifugation at 10, 000rpm for 10 min at 4
o
C. The supernant was added to 2ml bed volume of 

pre-washed Talon Super-flow resin (Novagen) and incubated with gentle mixing at 4
o
C for 2 hrs. 

The unbound sample was removed by three washes at 10 minutes intervals in lysis buffer 

without Benzonase or lysozyme, and the resin was then transferred to a gravity flow column. The 

resin was again washed with 20 bed volumes of lysis buffer and eluted with a step-wise gradient 

of imidazole (10, 25, 50, 80, 100, 150, 250, and 500mM) in lysis buffer without the enzymes. 

The partially purified fractions were pooled and further purified by size exclusion 

chromatography on a HiLoad Superdex-75 column using 10mM HEPES, pH 7.4 plus 150mM 

NaCl as column buffer. One milliliter fractions were collected and the protein-containing 

fractions were pooled and concentrated by Vivaspin centrifugation. 

GST-tagged PfSec22 proteins were purified using a Glutathione Sepharose 4B column as 

described in the above batch and gravity flow procedures. The bacteria pellets were lysed in 

1XPBS, pH 7.6 containing 50U Benzonase, 0.1mg/ml lysozyme, 0.1% Triton X-100 and 1XHalt 
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protease inhibitors (Thermo Scientific), and the bound proteins were eluted with 20mM reduced 

glutathione in 50mM Tris-HCl, pH 8.0. Fractions containing the pure proteins were pooled and 

concentrated by Vivaspin centrifugation. The concentration of proteins in each sample was 

determined using a Bradford reagent kit (Biorad). 

4.2.3. Biotinylation of recombinant PfSec22 and Far-Western analyses 

Two hundred and forty micrograms of recombinant PfSec22 proteins were labeled with 

an 80-fold molar excess of N-hydroxysuccinimide-LC-Biotin (Pierce) for 18hrs at 4
o
C. The 

biotinylated sample was then dialyzed against two buffer changes (2 litres each) of PBS, pH 7.6 

for 3hrs at 4
o
C. 

For Far-Western analysis, 20µg of the recombinant Q-SNAREs were resolved by SDS-

PAGE and electrophoretically transferred onto Polyvinylidene fluoride (PVDF) membrane 

(Millipore). After blocking in 5% skim milk in PBS, pH 7.2 containing 0.1% Tween 20 for 1 hr 

at room temperature, the membranes were transferred into a fresh solution containing the 

biotinylated PfSec22 protein at a final concentration of 5µg/ml and incubated with gentle mixing 

for 36hrs at 4
o
C. The membranes were subsequently washed three times at 5 minutes each in 

blocking solution and incubated with avidin peroxidase conjugate (Thermo Scientific) solution at 

a final concentration of 2µg/ml for 2hrs at room temperature. After washing 3 times at 10 

minutes intervals, the membranes were developed using the Supersignal West Femto substrate 

kit (Pierce). 
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4.2.4. Surface plasmon resonance spectroscopy 

Surface Plasmon resonance (SPR) spectroscopy analyses were performed using the 

SensiQ SPR system and HisCap Sensor chips (ICX Technologies). The chips were sensitized by 

injecting 50µl of 50mM Nickel chloride at a flow-rate of 25µl/min and then purged with 500µl 

of air and water. To immobilize the His-tagged Q-SNAREs, 200µl of sample at 20µg/ml in 

10mM HEPES, pH7.4 containing 150mM NaCl were passed over the chip at a flow-rate of 

25µl/min. After washing the chips three times with 500µl of buffer, 80µl of GST-tagged PfSec22 

(30µg/ml in 50mM Tris-HCL, pH 8.0) were passed at a flow-rate of 10µl/min. Binding of R-

SNARE to the Q-SNARE was measured as an increase in SPR and recorded in response units 

(RU). Once sample injection was complete, the surface was regenerated by two 75-µl washes 

with 200mM EDTA, followed by three times washes with 500µl air and water. The obtained data 

was then analyzed using the QDAT
TM

 analysis software (Biological Software, Ltd). 

4.2.5. Plasmids and transfection 

To investigate the subcellular localization of the PfSec22-interacting Q-SNAREs, we 

generated transgenic parasites expressing the GFP-tagged proteins. Complementary DNAs 

corresponding to the full-length ORF of each Q-SNARE homologue was amplified by RT-PCR 

using gene-specific primer sets. The amplified cDNAs were cloned into the pGEM-T Easy 

vector (Promega) and sequence confirmed prior to subcloning into the BglII/XhoI sites of the 

modified pDC vector. P. falciparum 3D7 ring stage cultures (at 5-8% parasitemia) were 

transfected with Qiagen-purified plasmid DNA (100 µg) by electroporation using a Bio-Rad 

Gene pulser II (0.31 KV and 950 microfarads). Forty-eight hours after transfection, drug 

selection pressure was applied using the human DHFR inhibitor, WR99210 at a final 
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concentration of 2.5 nM to select for transformed parasites. Expression of GFP-tagged proteins 

in the transgenic parasites was analyzed by Western blotting using monoclonal GFP (B-2) 

antibodies (Santa Cruz Biotechnology) at a 1:500 dilution. The secondary antibodies were HRP-

conjugated Goat anti-mouse used at a 1:20,000 dilution. For live cell imaging, the cells were 

mounted under a cover slip in 50% glycerol and observed within 15 minutes of removal from 

cultures by confocal microscopy. The GFP signals were captured at a spectra setting of 488/505 

nm. 

4.2.6. Brefeldin A treatment 

To confirm the association of the GFP-tagged SNAREs with the secretory pathway, we 

investigated the effect of the vesicle transport inhibitor brefeldin A on their steady-state 

dynamics. GFP-expressing cells were cultured in the presence of BFA (5µg/ml) for one hour at 

37
o
C and examined by live confocal microscopy. Control experiments consisted of the same 

cultures prepared in equivalent amounts of the drug solvent. 

4.2.7. Co-immunoprecipitation and immunoblot Analysis 

To confirm the in vivo interaction of PfSec22 with the Q-SNAREs, whole cell lysates 

were obtained from parasites expressing the GFP-tagged PfSyn5, PfGS27 or PfBet1 proteins for 

co-immunoprecipitation analyses. Parasites were isolated by saponin treatment and solubilized in 

1XPBS plus 2% Triton X-100, pH 7.4 containing 50U/ml Benzonase and a protease inhibitor 

cocktail (Roche) for 20 minutes at 4
o
C. Cleared lysates were obtained by centrifugation at 

10.000rpm for 5 minutes at 4
o
C. 
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For each co-immunoprecipitation experiment, 500µg of parasite lysate were added to 2µg 

of monoclonal GFP (B-2) antibodies (Santa Cruz Biotechnology, Inc) and incubated with end-

over-end inversion for 16hrs at 4
o
C. Forty microlitres of protein A agarose beads (Invitrogen) 

were added to each sample and incubated for an additional 3hrs at 4
o
C. The beads were washed 

(5 minutes inversion at 4
o
C followed by centrifugation at 4,000rpm) three times with PBS to 

remove unbound proteins. The collected beads were boiled for 3 minutes in 50µl of 2XLaemnli 

sample buffer and 20µl resolved by SDS-PAGE. The separated proteins were blotted onto PVDF 

membranes and probed with either PfSec22 antibodies or rabbit anti-GFP antibodies (GenScript) 

at 1 in 1000 or 1 in 500 dilutions, respectively. Detection of the antigen signals was by use of the 

Supersignal West Femto chemiluminescence kit (Pierce). 

4.3. RESULTS  

4.3.1. PfSec22 exhibits direct binding interactions with six distinct PfSNAREs in vitro 

Our findings that PfSec22 associates with mobile vesicular elements in the parasitized 

erythrocytes suggested that this PfSNARE might participate in vesicle transport and fusion 

within the host cell cytoplasm. If true, then malaria parasites might export a subset of the 

PfSec22-interacting SNAREs into the host cell required for fusogenic SNARE assemblies. The 

Sec22 gene products in yeast and mammals mediate vesicle fusion by interacting with the ER-to-

Golgi SNARE proteins Syn5, Bet1 and GS27 (anterograde traffic) or the Golgi-to-ER SNARE 

proteins Syn18, Sec20 and Use1 (retrograde traffic). Binary interactions between cognate 

SNARE proteins are expected to nucleate the formation of fusion-competent ternary and 

quaternary complexes in vivo and in vitro. However, inhibitory and non-fusogenic Sec22 
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SNARE complexes have been reported in in vitro binding and fusion experiments involving the 

yeast Q-SNAREs Vti1, Gos1 and Sft1 [96, 262]. 

To identify and to characterize all PfSec22 interacting PfSNAREs, first we examined the 

binding capability of 12 recombinant PfSNAREs (non-R-SNAREs) with PfSec22 in vitro. Full-

length PfSNAREs were expressed using the E. coli BL21 (DE3)codonplus strain as either His-

tagged proteins (PfSec22 and the non-R-SNAREs) or GST-tagged proteins (PfSec22 only), and 

then purified by a combination of gel filtration and affinity (metal or glutathione) 

chromatography. As shown in Fig 23A (SDS-PAGE) and Fig. 23B (far-Western blot), PfSec22 

specifically interacted with PfBet1, PfGS27, PfSyn5, PfSyn16, and PfSyn18 when compared to 

the BSA signal (background control). No positive signals were detected in the lanes containing 

PfSNAP23, PfSyn2, PfSyn3, PfSyn6, PfSyn11 and PfSyn17, suggesting that these PfSNAREs 

do not form binary complexes with PfSec22 in vitro. Alternatively, binding of PfSec22 to these 

PfSNAREs might require the presence of both SNARE proteins in solution.  

As an alternative approach to identify the PfSec22-interacting PfSNAREs, we 

investigated the binding capability of the His-tagged PfSNAREs by SPR spectroscopy using a 

GST-tagged PfSec22 protein as analyte. Consistent with our far-western data, PfSec22 formed 

stable binary complexes with PfBet1, PfGS27, PfSyn5, PfSyn16, PfSyn18, and also with PfSyn6 

(Fig. 24). These results are summarized in Table 3 alongside the far-Western data. The direct 

binding of PfSec22 to PfSyn6 and PfSyn16 is atypical, as these two Q-SNAREs are expected on 

the basis of the functional locations of the yeast and mammalian homologues to function within 

the post-Golgi environment. Compared to PfSyn16, and to the classical PfSec22-interacting Q-

SNAREs, PfBet1, PfSyn5, PfGS27 and PfSyn18, the PfSyn6 protein did not interact with 

PfSec22 when immobilized on a solid phase prior to addition of the R-SNARE. Presumably, this 
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might occur as a result of an irreversible destabilization of the PfSyn6 SNARE helix following 

denaturation with sample buffer during gel electrophoresis. Additionally, PfSyn6 contains a 

positively charged and bulky histidine residue in place of glutamine at the zero layer position, 

which might interfere with binding of this protein to the R-SNARE PfSec22 under solid phase 

conditions. 

4.3.2. Localization of PfBet1, PfSyn5 and PfGS27 to the ER/Golgi interface 

To establish whether the PfSec22-interacting PfSNAREs also associate with 

noncanonical destinations within P. falciparum-infected erythrocytes, we generated transgenic 

parasites expressing the GFP-tagged proteins. In this present study, GFP-expressing parasites 

were successfully obtained following transfection with PfBet1, PfSyn5 and PfGS27 plasmids but 

not with the PfSyn6 and PfSyn16 constructs. Our failure to obtain transgenic parasites with the 

PfSyn6 and PfSyn16 constructs might have resulted from toxicity of the over-expressed proteins 

during during drug selection. It would be necessary to use the respective endogenous promoter 

elements for a controlled expression of these PfSNAREs in transgenic parasites. Alternatively, 

the localization of these PfSNAREs may be achieved by immunofluorescence studies requiring 

highly specific antibodies. 

Compared to the GFP-tagged PfSec22 protein (Fig. 27A), which localizes predominantly 

to both the ER and Golgi compartments, the Q-SNARE chimeras PfSyn5, PfBet1 and PfGS27 

each localized to the parasite Golgi at steady-state (Fig. 27B, C and D, respectively). The 

association of these PfSNAREs with the Golgi membranes was confirmed by brefeldin A (BFA)-

treatment. BFA is a fungal metabolite that inhibits vesicular transport along the ER/Golgi 

pathway resulting in the redistribution of Golgi-membrane proteins back into the ER and 
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accumulation of exported malaria proteins at the ER/Golgi interface [263, 264]. As shown in Fig. 

27 (see second row of each panel), treatment with BFA resulted in partial redistribution of the 

PfSNAREs back to the ER, and induction of a perinuclear compartment (red arrowheads) that 

also accumulated the PfSNAREs. These compartments presumably represent a chimeric 

structure formed by fusion of the enlarged Golgi with the parasite transitional ER. 

The observed effect of BFA on the Golgi-targeting of these PfSNAREs is suggestive of 

their intracellular trafficking via the parasite ER compartment. We confirmed the Golgi 

localization of PfSyn5, PfBet1 and PfGS27 by immunofluorescence analyses using specific 

antibodies against the Golgi marker PfErd2 and ER marker (PfBip). As shown in Fig. 28, the 

GFP fluorescence in all three cell lines significantly overlapped the PfErd2 signals when 

compared to their co-localization with PfBip (Fig. 28A, B and C). In contrast, the GFP-PfSec22 

fluorescence overlapped significantly with the antibody signals from both the Golgi and ER 

marker (Fig. 28D). The localization of PfSyn5, PfSyn5, PfBet1 and PfSec22 to the ER/Golgi 

interface is consistent with the intracellular locations of their human and yeast homologues. The 

restricted steady-state localization of PfSyn5, PfBet1 and PfGS27 to the Golgi compartment is 

indicative of a potential role as the t-SNARE component involved in anterograde ER-to-Golgi 

vesicle transport in P. falciparum. Consistent with our EM studies, PfSec22 localizes to both ER 

and Golgi presumably acting as the corresponding v-SNARE. Together, our data suggest a 

conserved ER-to-cis-Golgi transport process in the malaria parasite, P. falciparum. 

4.3.3. PfSec22 forms SNARE complexes with PfBet1, PfGS27and PfSyn5 in vivo 

To confirm the in vivo binding of PfSec22 to the Golgi-localized Q-SNAREs PfBet1, 

PfGS27 and PfSyn5, we immunoprecipitated the fusion proteins from each transgenic cell line 
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using monoclonal anti-GFP antibodies. The experimental controls consisted of cell lysates from 

the double GFP (GFP-GFP)-expressing parasites (negative control) and the GFP-PfSec22-

expressing cells (positive control). The immunoprecipitates were then analyzed by Western 

blotting using PfSec22 anti-peptide antibodies, or polyclonal anti-GFP antibodies. As shown in 

Fig. 29, immunoprecipitation of the GFP-tagged PfBet1, PfGS27 and PfSyn5 proteins resulted in 

co-precipitation of endogenous PfSec22. No PfSec22 signal was detected in the negative control 

precipitate, indicating that binding of PfSec22 to the GFP chimeras was specific to the Q-

SNARE protein. Immunoprecipitation of the GFP-tagged PfSec22 chimera also resulted in 

precipitation of a relatively small amount of the endogenous PfSec22 protein. Presumably, this 

finding is suggestive of a homo-polymerization of the PfSec22 protein in vivo or indicative of the 

co-assembly of both protein species into the same SNARE complexes. 

Taken together, our data strongly suggest that PfSec22, PfSyn5, PfBet1 and PfGS27 

assemble into a SNARE complex presumably involved in ER-to-Golgi trafficking in malaria 

parasites. 

4.4. DISCUSSIONS 

In this study, we undertook a comprehensive examination of direct pair-wise interactions 

between recombinant PfSNAREs in the hopes of identifying all PfSec22 complexes that might 

nucleate the higher order SNARE complexes in vivo. Compared to in vitro findings with some 

yeast and mammalian SNARE proteins showing promiscuity of some SNARE-SNARE 

interactions [262, 265, 266], we observed a significantly high level of selectivity of the PfSec22 

interactions in vitro. This vesicle-associated R-SNARE (PfSec22) selectively formed binary 
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SNARE complexes with PfSyn5 (Qa), PfSyn18 (Qa), PfBet1 (Qb), PfSyn6 (Qb), PfGS27 (Qc), 

and PfSyn16 (Qc), but not with PfSyn2, PfSyn3, PfSyn11, PfSyn17 and PfVti1 as determined by 

surface plasmon resonance spectroscopy and far-western analyses. In yeast, Sec22 assembles 

into fusogenic SNARE complexes with Sed5 (Syn5), Bet1, Bos1 (GS27), Sec20, Syn18 and 

Use1, and also form atypical binding interactions with Ykt6, Gos1, and Sft1 [262]. Whereas 

homologues of the yeast SNAREs Sec20, Use1, Gos1 and Sft1 were not detected in the P. 

falciparum genome database, previous studies by us failed to detect any binary interactions 

between PfSec22 and PfYkt6.1 suggesting a stringent selective binding interaction between 

PfSec22 and the PfSNAREs. Meanwhile, although PfSec22 did not directly interact with six of 

the twelve PfSNAREs in vitro, we cannot rule out the possibility that some of these PfSNAREs 

may participate in a higher order ternary or quaternary SNARE complex requiring a preformed 

binary complex between PfSec22 and some of the complex components. In mammals, for 

example, binding of the Golgi-to-ER recycling SNARE proteins Use1 (p31) and Sec20 (BNIP1) 

to Sec22b requires a pre-formed complex between Sec22b and Syn18, suggesting a sequential-

ordered mechanism for some fusogenic SNARE protein assemblies [267]. Studies are yet to be 

undertaken to investigate the possibility of ordered SNARE assemblies in P. falciparum. 

In an effort to confirm the PfSec22 complexes in vivo, and to determine the subcellular 

locations of the interacting partners, we generated transfection plasmids for each cognate 

SNARE gene that were used to express the GFP-tagged chimeras in transgenic parasites. In this 

study, we successfully developed transgenic parasites expressing the PfSyn5, PfBet1 and 

PfGS27 gene products, but not the PfSyn6 and PfSyn16 proteins. Because the transcription 

patterns of PfSyn5, PfBet1 and PfGS27 were similar to that of the camoldulin gene product in P. 

falciparum, we expressed these constructs under control of the camoldulin promoter element.  
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Compared to the GFP-PfSec22 cell lines, which emerged in culture after 3 weeks of 

continuous drug pressure, transgene expression of the PfSyn5, PfGS27, and PfBet1 chimeras 

appeared to delay the parasite growth in culture. The selection periods for these cell lines were 

~8 weeks for PfSyn5 and PfGS27, and ~6 weeks for PfBet1. Failure to obtain GFP expressing 

cell lines with the PfSyn6 and PfSyn16 constructs presumably could be attributable to inability 

of malaria parasites to tolerate multiple copies of these genes during development or, 

alternatively, due to a miss-timing of the gene expression levels using the heterologous P. 

falciparum camoldulin promoter element. The endogenous gene transcription patterns for these 

two PfSNAREs are not yet known. 

Consistent with the intracellular locations of the yeast and mammalian homologues [81], 

the PfSyn5, PfBet1 and PfGS27 gene products each localized to the parasite Golgi at steady-state 

as determined by co-immunofluorescence and live confocal microscopy studies. Unlike the 

PfSec22 proteins, which partially localized to the infected erythrocyte cytoplasm at trophozoite 

stages, the in vitro binding partners PfSyn5, PfBet1 and PfGS27 were not exported beyond the 

Golgi structure in all stages, suggesting that the partial export of PfSec22 into the host cell might 

involve processes that are both selective and highly regulated during parasite development. As 

revealed by our immunoprecipitation experiments, these three PfSNAREs presumably participate 

in SNARE complex formation with the vesicle-associated PfSec22 protein in vivo. Together, the 

data presented in this study strongly suggest a conserved SNARE-mediated ER-to-Golgi vesicle 

transport mechanism in P. falciparum. However, only PfSec22 localized significantly to both the 

ER and Golgi suggesting that, in P. falciparum parasites, PfSec22 presumably functions as the v-

SNARE in both the anterograde and retrograde transport pathways. 
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Additionally, our data suggest that PfSec22 might form novel SNARE complexes 

required for a potential role in vesicle traffic and fusion within the erythrocyte cytoplasm. 

According to the SNARE hypothesis, each fusogenic SNARE complex comprises at least one 

representative of the SNARE sub-families R, Qa, Qb, and Qc, resulting in a quaternary QabcR 

SNARE complex. The PfSec22-interacting SNAREs that we identified presumably can form a 

maximum of eight distinct quaternary complexes on the basis of the “1R:3Q” rule. These 

possibilities include (1) PfSec22/PfSyn5/PfBet1/PfGS27, (2) PfSec22/PfSyn5/PfBet1/PfSyn16, 

(3) PfSec22/PfSyn5/PfSyn6/PfGS27, (4) PfSec22/PfSyn5/PfSyn6/PfSyn16, (5) 

PfSec22/PfSyn18/PfBet1/PfGS27, (6) PfSec22/PfSyn18/PfBet1/PfSyn16, (7) 

PfSec22/PfSyn18/PfSyn6/PfGS27, and (8) PfSec22/PfSyn18/PfSyn6/PfSyn16. As the SNARE 

proteins PfSyn5, PfBet1 and PfGS27 are less likely to participate in transport beyond the 

ER/Golgi interface, it would be of interest to characterize the steady-state locations of PfSyn6, 

PfSyn16 and PfSyn18, and to confirm or rule out the existence of the 

PfSec22/PfSyn18/PfSyn6/PfSyn16 SNARE complex in vivo. 
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Figure 23: Far-Western analysis of PfSec22-interacting PfSNAREs 

(A) SDS-PAGE gel of purified recombinant PfSNARE proteins stained with Coomassie Brilliant 

blue. The PfSNAREs were expressed as His6/NusA/S.taggged proteins and purified by a 

combination of metal affinity and gel permeation chromatography. 20µg of proteins were 

analyzed for each sample. MK: prestained molecular weight standards, BSA (5µg): bovine 

serum albumin used as background control in far-Western experiments, B-PfSec22 (5µg): biotin-

conjugated PfSec22 proteins used as positive control in far-Western. Two major breakdown 

products are present in the PfSyn3, PfSyn11 and PfSyn18 lanes. (B) 20µg of each SNARE 

sample was subjected to SDS-PAGE using a 10% resolving gel and transferred to PVDF 

membranes. The membranes were then incubated with 5µg/ml of biotinylated PfSec22 protein 

and the labeled bands were identified by blotting with an avidin-peroxidase conjugate. 
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Figure 23: Far-Western analyses of PfSec22 interacting PfSNAREs 



122 

Figure 24: SPR analyses of PfSec22-interactions with purified PfSNAREs 

Individual His6-tagged PfSNARE were immobilized onto a nickel charged Hiscap chip and their 

binding with the GST-tagged PfSec22 was measured as time course (in seconds) increase in SPR 

response units. Strong binding of the PfSec22 protein to each of the PfSNARE was determined 

by its resistance to elution with the run buffer (50 mM Tris-HCL, pH 8.0). The arrows denote the 

start of each wash with the run buffer. Dissociation constants (KD) were calculated using the 

QDAT
TM

 analysis software. 
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Figure 24: SPR analysis of PfSec22 binding to PfSyn5, PfBet1, PfSyn16 and PfSyn18 
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Figure 25: SPR analysis of PfSec22 binding to PfSyn6, PfGS27, PfSNAP23 and PfVti1 



125 

 

Figure 26: SPR analysis of PfSec22 binding to PfSyn2, PfSyn11, PfSyn3 and PfSyn17 
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Table 2: In vitro binding interactions involving PfSec22 R-SNARE 
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Figure 27: Steady-state location and effect of BFA on PfSyn5, PfBet1 and PfGS27 proteins 

Transgenic parasites expressing each of the indicated GFP-tagged PfSNARE were incubated 

under normal culture conditions in the absence or presence of brefeldin A (5µg/ml) for 1hr, and 

examined by live confocal microscopy. Compared to the GFP-PfSec22 protein, which localizes 

predominantly to both the ER and Golgi structures, the Q-SNAREs PfSyn5, PfBet1 and PfGS27 

localized exclusively to the Golgi bodies at steady state. BFA treatment resulted in a partial 

redistribution of each of the four proteins to the ER suggesting their association with the early 

endomembrane system. Arrows indicate BFA-induced bodies that presumably results from 

fusion of the dissociating Golgi bodies with the ER. Scale bars, 2µm. 
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Figure 27: Steady-state location and effect of BFA on PfSyn5, PfBet1 and PfGS27 targeting 
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Figure 28: Differential localization of PfSyn5, PfBet1, PfGS27 and PfSec22 to ER and Golgi 

Immunoflorescence micrographs highlighting a tight association of the GFP-tagged PfPfSyn5 

(A), PfBet1 (B) and PfGS27 (C)  proteins with Golgi, as determined by co-staining with 

antibodies against PfErd2. In contrast, the GFP-PfSec22 protein (D) co-localized significantly 

with both the PfErd2 and PfBip proteins at the Golgi and ER compartments, respectively. The 

GFP-PfSec22 signal is also apparent within the infected host cell cytoplasm in trophozoite 

parasites. Scale bars, 2µm. 
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Figure 28: Differential localization of PfSec22, PfSyn5, PfBet1 and PfGS27 to ER and Golgi  
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Figure 29: Interaction of PfSec22 with PfBet1, PfGS27 and PfSyn5 in vivo 

The GFP-tagged PfBet1, PfGS27 and PfSyn5 proteins were immunoprecipitated from each cell 

lysate using monoclonal anti-GFP antibodies and then immunoblotted by using polyclonal anti-

PfSec22 or anti-GFP antibodies, as indicated to the left of each blot. 
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Figure 29: Interaction of PfSec22 with PfBet1, PfGS27 and PfSyn5 in vivo  
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CHAPTER 5 

GENERAL DISCUSSIONS AND CONCLUSIONS 

The aim of this dissertation was to investigate the potential role of SNARE proteins in 

vesicle traffic in P. falciparum, with focus on the molecular characterization of atypical 

PfSNAREs. We identified 18 SNARE domain-containing gene products in P. falciparum that 

presumably represent a subset of all PfSNAREs. By comparative analysis with homologues in 

yeast, plants and humans, we identified species-specific features in 10 of the PfSNAREs. These 

atypical features include the 1) presence of putative P. falciparum-specific export motifs, 2) 

presence of atypical amino acid residues at the zero layer position, and 3) frequent occurrence of 

low-complexity regions within the polypeptide chains. We showed that the Sec22 gene product 

in P. falciparum (PfSec22) exhibits unusual structural characteristics and associates with a novel 

transport pathway involved with vesicle targeting in P. falciparum-infected host cells. PfSec22 

also associates significantly with the parasite ER and Golgi compartments suggesting that this 

SNARE protein might function in multiple membrane trafficking pathways in P. falciparum. We 

determined that the atypical N-terminal hydrophobic domain performs a dual role, mediating the 

Golgi-to-ER recycling of PfSec22 and export of the v-SNARE to the infected host cell. 

Although PfSec22 forms direct binding interactions with known Sec22 cognate SNARE 

proteins in vitro and in vivo, the interacting PfSNAREs that we investigated localized exclusively 

to the parasite ER/Golgi interface. We propose that PfSec22 might participate in a novel 

fusogenic SNARE complex required for vesicle targeting in P. falciparum-infected erythrocytes. 

A summation of our findings is discussed below in the context of their relevance and 

significance to our understanding of the molecular cell biology of malaria parasites. 
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5.1. THE P. FALCIPARUM SNAREOME 

P. falciparum exhibits an unusual endomembrane system that is characterized by multiple 

membrane trafficking pathways and unique intracellular organelles. Our data suggest that vesicle 

targeting through the parasite endomembrane organelles might depend on the participation of 

only 18 SNARE core motif-containing proteins. Remarkably, several isoforms of mammalian 

syntaxins and VAMP family members were absent in the P. falciparum genome. This finding 

may be explained by the evolutionary distance of the human malaria parasite relative to higher 

eukaryotes, in which recent genome duplication events might have resulted in increase in the 

number of SNARE isoforms [268]. Although the number of SNARE-encoding genes that we 

identified in P. falciparum is consistent with the SNAREomes of other closely related unicellular 

eukaryotes including Giardia (17 SNAREs), Leshmania major (27 SNAREs) and Entamoeba 

histolytica (31 SNAREs), the PfSNAREome is unexpectedly small in relation to the number of 

possible vesicle transport pathways in this intracellular parasite [236, 269-271]. The 

Saccharomyces cerevisiae genome encodes 24 SNARE proteins, the human 36 SNAREs, and 

Arabidopsis thaliana 54 SNAREs [81, 124, 241]. The small number of PfSNAREs may be 

explained in part by limitations in the existing genome-based algorithms, and by the divergent 

nature of the putative PfSNARE motifs when compared with the query SNARE sequences. We 

believe that P. falciparum presumably expresses species-specific proteins with SNARE-like 

activities in order to compensate for the multiplicity of trafficking pathways in this organism. 

Such parasite-specific proteins presumably could be identified through in vivo binding 

experiments or via genetic manipulation of the parasite genome. Alternatively, members of the 

identified PfSNARE family might form novel fusogenic SNARE complexes at multiple 

intracellular locations. This is true for some yeast and mammalian SNARE proteins which form 
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distinct SNARE complexes at different intracellular trafficking pathways. In mammals, for 

example, syntaxin 5(Syn5) participates in three distinct complexes required for 1) homotypic 

fusion of ER-derived vesicles (Syn5/GS27/Bet1/Sec22b) into vesicular tubular clusters (VTC), 

also known as ER-Golgi transport container (EGTC) or ER-Golgi intermediate compartment 

(ERGIC), 2) fusion of VTC with cis-Golgi (Syn5/GS28/Bet1/Ykt6), and intra-Golgi traffic 

(Syn5/GS28/GS15/Ykt6) [81].  

5.2. PARTIAL EXPORT OF PFSEC22 INTO P. FALCIPARUM-INFECTED 

ERYTHROCYTES 

We showed for the first time that P. falciparum parasites partially export the P. 

falciparum Sec22 protein (PfSec22) into the host cell cytoplasm where it associates with TVN-

like structures and with mobile vesicular elements in trophozoite-infected cells. The PfSec22-

associated vesicles were also detected within the parasitophorous vacuole suggesting that export 

of this SNARE protein might occur via a two-step model that involves vesicle budding at the 

parasite plasma membrane (negative curvature) and fusion with the TVN/PVM membranes.  

The exported PfSec22 protein was observed only in trophozoite-infected cells, suggesting 

that the involved processes might be subject to regulation by yet unidentified factors. Regulated 

export of proteins into P. falciparum-infected erythrocytes has previously been reported [272, 

273]. The Golgi-resident protein sphingomyelin synthase, for example, localizes partially to 

subdomains of the PPM/PVM junction in trophozoite-infected cells that presumably serve as 

budding sites for nascent TVN and transport vesicles [272]. This regulated export of 

sphingomyelin synthase might induce local changes in TVN membrane lipid compositions 

resulting in membrane deformation and budding. For example, the dynamic and asymmetrical 

distribution of various phospholipids (outer leaflet) and sphingomyelin (inner leaflet) on nascent 
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TVN subdomains has been proposed to modulate growth of the TVN structure into the infected 

erythrocyte cytoplasm and extraparasitic vesicle budding, independent of coat formation [48, 

272]. It is likely that the developmental export of sphingomyelin synthase, coupled with local 

changes in the PVM/TVN membranes might regulate vesicle formation and export of various 

membrane-associated proteins across the PV interface into the erythrocyte cytoplasm [274]. 

The export of PfSec22 into the infected host cell appeared to be specific when compared 

to other PfSNAREs that have been investigated in this study. This suggests that the export 

mechanism might involve a signal-mediated process. Signal-mediated export of most malaria 

involves the Plasmodium-specific export motif (PEXEL motif), which is thought to interact with 

a putative translocon complex at the PV/PVM interface [15, 62, 275, 276]. However, a subset of 

the Plasmodium exported proteins does not contain the PEXEL motif, thus may utilize other 

putative signals and mechanisms for traffic across the PVM. We showed in this study that export 

of PfSec22 was independent of the PEXEL-like motif using targeted gene mutations, supported 

by the lack of N-terminal processing of the GFP-tagged protein as has been reported for many 

PEXEL-dependent malaria proteins [243]. By generating various N-terminus deletion mutant 

proteins, we demonstrated that export of PfSec22 into the host cells requires an intact longin 

domain sequence for both ER export and Golgi exit of the protein. It is not yet understood 

whether further transport of this PfSNARE across the PPM and PVM compartments requires 

additional sorting signals. Future studies will examine the role of sequence regions upstream the 

N-terminal hydrophobic domain in export across the PV membranes. We have also shown in this 

study that the N-terminal hydrophobic domain also plays a critical role in ER recycling of the v-

SNARE, thus in retrograde transport of Golgi-derived vesicles back into the ER. Our finding is 

the first to implicate the longin domain in ER/Golgi recycling of Sec22 gene products. Further 
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studies will determine whether or not similar sequence regions in other eukarotic Sec22 protein 

perform similar functions. 

5.3. ORGANIZATION OF THE P. FALCIPARUM ER-GOLGI INTERFACE 

Although P. falciparum parasites are believed to contain a functional ER-Golgi transport 

system, the organization of this important trafficking route in malaria parasites is poorly 

understood. We revealed in this study that PfSec22 is a vesicle-associated protein, which 

predominantly cycles between the ER and Golgi structures following a brefeldin A-dependent 

process. In an effort to characterize the steady-state locations of all PfSec22-interacting 

PfSNAREs, we found that the ER-to-Golgi SNARE orthologues PfSyn5, PfBet1 and PfGS27 

also localized to the ER-Golgi interface in P. falciparum. Unlike the PfSec22 protein, these 

SNARE proteins were not exported to the erythrocyte cytoplasm suggesting a selective sorting 

process for the exported PfSec22 protein. Within the parasite, the PfSyn5, PfBet1 and PfGS27 

proteins localized exclusively to the Golgi structure, and formed direct in vivo binding 

interactions with the PfSec22 protein. Our data suggest a conserved SNARE complex assembly 

involving the v-SNARE PfSec22, and the t-SNAREs PfSyn5, PfBet1 and PfGS27 that 

presumably mediate ER-to-Golgi vesicle trafficking in P. falciparum. BFA-treatment resulted in 

the redistribution of all four PfSNAREs to the ER compartment supporting their direct 

association with the early secretory system. The data also suggest the existence of various sorting 

machineries at the ER-Golgi interface that might be involved in ER-to-Golgi sorting or Golgi-to-

ER recycling of the malaria proteins. This argument is supported by our studies with the PfSec22 

longin domain mutants, which differentially localized to either the Golgi bodies or to the ER 

compartment. In most model system, protein sorting at the ER membrane is mediated by the coat 
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protein complex Sec23/Sec24, which together with the Sec13/Sec31 dimer and Sar1-GTPase 

play a crucial role in vesicle budding from the ER [114]. Homologues of these coat proteins have 

been identified in P. falciparum and their intracellular locations determined. Whereas PfSec24 

exclusively localizes to the Plasmodium ER exit sites, PfSar1, PfSec23 and PfSec31 localize 

partially to the infected host erythrocyte cytoplasm [231, 277-279]. Our findings with PfSec22 

are in agreement with export of some ER-to-Golgi trafficking machineries, including the 

SNARE complex disassembly factor PfNSF, into P. falciparum infected host cells [248]. 

In conclusion, the data presented in this dissertation provide the first detailed study of 

SNARE protein expression, sorting and complex assembly in malaria parasites. Our data also 

provide the first experimental evidence for SNARE protein export to the novel vesicle transport 

pathways in P. falciparum-infected erythrocytes. This present study sets the stage for the 

characterization of other PfSNAREs and, perhaps, the identification of new drug targets against 

malaria parasites. 
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